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Abstract

The electromagnetic transition form factor allows probing the internal structure of mesons

by studying them in the rare Dalitz mode. The internal structure here reveals the in-

formation on the quark composition, constituent quark mass, quark-gluon structure and

their interactions, quark confinement mechanism, and the fact that how confinement af-

fects meson internal structure. These form factors are provided as an input to the hadronic

contribution of the anomalous magnetic momentum of muon aµ = (gµ − 2)/2, which is

an interesting quantity and could be a potential hint for physics beyond the Standard

Model [1, 2, 3, 4, 5, 6, 7, 8, 9]. It is well known that the gyromagnetic ratio g of a lone

muon, which is its rate of precession in an external magnetic field, should be 2 according

to the Paul Dirac formula. However, the value of the ratio g deviates from 2 due to muons

interactions with a quantum foam of subatomic particles popping in and out of existence. Al-

though, the Standard Model is able to predict this anomaly called anomalous magnetic mo-

ment aµ = (gµ − 2)/2 extremely precisely, the difference between the accepted theoretical

predictions reviewed by Aoyama et al. (2020) [7] (116591810(43)×10−11) and the experi-

mental global average published by Albahri et al. (2021) [8, 9] (116592061(41)×10−11) is

at a significance of 4.2 sigma. The theoretical efforts by Aoyama et al. (2020) [7] account

for both the non-perturbative methods of computation, the dispersion relations and the lat-

tice approach to QCD. This is compelling evidence of new physics and hints at the existence

of unknown interactions involving additional particles or forces that are not accounted for

by the Standard Model. Subsequently, Borsanyi et al. (2021) [10] computed the value of

(gµ − 2)/2, which is 7075(55)×10−11, using lattice approach to QCD. This result favours

the experimentally measured value of (gµ − 2)/2 over the results based on the dispersion

relation.

The electromagnetic transition form factors of mesons have been studied experimentally

as well as theoretically. Among various mesons, the ω is one of the mesons which shows

disagreement with the standard vector meson dominance prediction, as determined from the

decay ω → l+ l−π0 [11, 12, 13, 14, 15]. However, its form factor seems to agree with the

data except at larger four-momentum transfer (q2) when theoretical efforts attempt to go

beyond the vector meson dominance [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Earlier ex-

periments provided results on the electromagnetic transition form factor for the ω-π vertex in

the ω → µ+µ−π0 mode, as reviewed by L. G. Landsberg in Ref. [11]. Thereafter, the NA60

collaboration has confirmed the results in AA as well as pA collisions [13, 14, 15]. Fur-

thermore, in the immediate past, the transition form factor has been recomputed using spin-

improved holographic light-front wave-functions for the mesons, which shows an agreement

with the NA60 data in all invariant mass ranges [27]. Moreover, the recent measurement

from the photon-induced reactions with A2 tagged-photon facility at MAMI shows a better

agreement with most of the theoretical calculations as compared to the previous experi-

ments [28]. However, no final conclusion could be drawn from the MAMI data due to the

lack of precision and NA60 measurements are limited by its inability to reconstruct the π0

meson and the analysis approach, which is entirely based on the MC models. Consequently,

more measurements with a different experimental approach, other than heavy-ion collision
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or photon-induced reactions, and with alternative analysis methods that solely not rely on

the MC models, and with much better statistics are invigorated.

WASA-at-COSY detector, which consists of a forward and a central part that nearly cov-

ers 4π steradian, is capable of reconstructing the recoil particle in the forward direction

and the decay products, e+, e−, γ, in the central part. Thus, inclusive, as well as exclusive

reconstruction of the decaying meson, is possible. This reduces the obscurities in back-

ground subtraction as compared to NA60 measurements. Moreover, detecting e+e− pairs

gives access to the full range of q2 due to kinematics. Furthermore, WASA-at-COSY uses

a completely different experimental approach of elementary reactions (hadron-hadron colli-

sions) and produces the mesons close to the meson production threshold. Considering these

advantages, WASA-at-COSY could be proved to be a potential tool to improve our under-

standing of the form factor of ω meson. This allowed WASA-at-COSY to investigate the

issues noticed by other experiments.

The data available for such studies are recorded with WASA-at-COSY using pd and pp

collisions with the focus on doing a feasibility study for the ω− π transition form factor

in the ω → e+e−π0 decay mode. The main goal of this thesis is the feasibility study to

reconstruct the ω → e+e−π0 decay with the WASA-at-COSY pd collision data recorded at

1.45 GeV and 1.50 GeV beam kinetic energies. This feasibility study has been conducted

by firstly studying the two major background contributions ω → π0γ and ω → π0π+π−,

followed by the ω → e+e−π0 decay.

As a first step, the analysis of the prominent real photon case ω → π0γ is established as a

reference decay for the ω → e+e−π0 mode and its branching ratio is determined. A branch-

ing ratio study of the ω → π0γ mode as a reference decay will ensure the control and quality

of the analysis procedure and the data. Furthermore, the most prominent background contri-

bution ω → π0π+π−, which is having the same topology as that of the signal ω → e+e−π0,

has been investigated as a background study and the data quality cross-check. Finally, the

analysis of the ω → e+e−π0 exclusive final state is established.
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1. Theory and Motivation

1.1. The ω meson

The particle ω is a meson, consisting of quark (u,d,s, ..) and anti-quark (ū, d̄, s̄, ..) pairs

combined as ((uū−dd̄)/
√

2). The quark model classifies ω as a vector meson under SU(3)

group. The ω meson is a member of one of the three generated octets where the parallel

aligned quark and anti-quark pair sets the spin angular momentum to be 1. The spin an-

gular momentum in combination with 0 orbital angular momentum gives the total angular

momentum as 1 (J = l+s = 1). As a consequence of the 0 orbital angular momentum, the

ω meson has odd parity. Moreover, the wave-function of the ω meson is asymmetric under

the charge conjugation or C-parity transformation. The same is true for the C-parity and

isospin Iz (z-component of the isospin I) derived G-parity transformation (G = −1). The

zero strangeness, zero isospin and zero hypercharge of the ω meson makes it a truly neutral

particle. The final quantum number of the ω meson is written as IG(JPC) = 0−(1−−) (see

Table 1.1 for reference).

s l J P C G S Iz Q

1 0 1 -1 -1 -1 0 0 0

Table 1.1.: Quantum numbers of the ω meson.

Since 1955, many theorists predicted ω as a neutral vector meson [29, 30, 31, 32, 33,

34, 35, 36] for different reactions, and since then many experimental searches have been

performed. The ω meson was experimentally discovered first by B. Maglich in the 1961 at

the Lawrence Berkeley National Laboratory Bevatron [37, 38] in the p̄p → π+π−π+π−π0

reaction. Its quantum number and lifetime were first determined at Berkeley [37, 38]. Ever

since, many investigations have been made to understand its properties. Experimentally, the

mass of the ω meson was found to be (782.65±0.12) GeV/c2 [39].

Due to the very short lifetime of the omega meson (0.8×10−22) s the classical method

of particle scattering can not be used to reveal any structural information. However, the

information about its quark content and quark wave function is accessible via studying the

decay processes of the ω meson.

The constituent quark mass value can be found from the decay width, by considering

the meson radiative decays (ω → π0γ) within the framework of U0(1)×U(1)× SU(2)
gauge symmetry, based on the linear sigma-model extended by the gauge and quark-

meson interactions [40]. The quark-gluon structural information can be obtained by study-

ing the ω decay in the rare Dalitz mode where a pseudoscalar meson and a virtual pho-

ton (γ∗) is produced. The virtual particles violate the relativistic energy-momentum relation

E2 = p2 +m2, and therefore, the virtual photon involved in the exchange mechanism be-

comes off-shell. Hence the squared four-momentum transferred by the virtual photon can

be measured as the invariant mass of the dilepton. The dileptons invariant mass distribu-

tions, obtained from the empirical result, are compared with the theoretical predictions

1



1. Theory and Motivation

for the point-like particle. Any deviation from the expectation reveals the inner structure

of the meson, which is characterized by the transition form factor. The various form fac-

tors describing the photon-hadron interaction are needed as an input for calculations of

the hadronic light-by-light (LBL) contribution to the anomalous magnetic momentum of

muon aµ = (gµ − 2)/2 [1, 2, 3, 4, 5, 6, 7, 8, 9]. The most important contribution is from

the lightest state, the pion. The form factor that describes the interaction of off-shell pions

(E2− p2 6= M2) with off-shell (or on-shell (E2− p2 = M2)) photons π0∗ → γ∗γ∗ enters in the

pion-exchange contribution to LbL in the (gµ −2). The recent experimental world-average

result announced by the Muon g-2 collaboration at Fermilab is significantly away from the

Standard Model (SM) based theoretical prediction [7, 8, 9, 10]. The form factor of the vec-

tor meson (ω) is just a special case of the pseudoscalar meson π0, where one of the virtual

photons couples to an ω and the other to a dilepton. The focus of this work is to perform

the feasibility studies for the ω−π transition form factor measurement using ω → π0e+e−

decay mode.

1.2. The Form Factor

The study of the structure of hadron is important in elaborating the present knowledge

on the nature of matter. The structure of an atom is represented by the electrons’ spatial

distribution, which is described by the ground state wave function. The electron probabil-

ity density function of a hydrogen like atom at a point x is defined in term of the electron

wave function ψ(x) as ρ(x) = ψ∗(x)ψ(x), if spin is neglected. The charge density and the

probability density function of an atom are proportional to each other and hence, the charge

density of the atom is defined as eρ(x). The wave functions of all possible atomic states must

be known to determine an atom’s complete structure. The idea of the charge distribution is

still acceptable in nuclei, but the charge distribution and spatial distribution are not directly

proportional any more. A new complication comes into existence while going deep inside

an atom for the nucleons. As an impact of the high momentum, needed for the structural

exploration, nucleons recoil with the velocities near light (∆p ·∆x ≥ h̄/2). Consequently, it

becomes difficult to evaluate the nucleon charge distribution from the cross-section. There-

fore, this problem was addressed by introducing a term called form factor describing the

nucleon structure. No structure is found for leptons up to the smallest distances studied

(≤ 10−18), apparently, they are found to be point-like Dirac particles.

The history of form factor begins with the Rutherford scattering. In Rutherford scattering,

both the projectile and target were considered as point particles with no spin. The process is

modified by introducing the spin 1
2

to the projectile, called Mott scattering. The cross section,

considering the extended structure of the target, is then further modified by introducing the

form factor. The differential cross section (dσ/dq2) for the scattering of a point particle such

as an electron from a particle with a specific space structure is given as

dσ

dq2
=

dσ

dq2
|point−like | F(q2) |2 . (1.1)

The multiplicative factor F(q2) is called the form factor, where q2 = (p−p′)2 is the square

of the momentum transfer. The form factor at zero momentum transfer is 1 for both negative

and positive particles. The form factor can be found by comparing the experimental data

with the differential cross-section of the scattering of an electron off a point like particle

(dσ/dq2
point−like).

2



1.3. The Electromagnetic Form Factor

1.3. The Electromagnetic Form Factor

The form factor described in the previous section is the simplest case of the spin-1
2

elec-

tron scattering off the spin-less nucleus. The target spin is introduced further to achieve a

more realistic picture. The magnetic moment due to spin has its own spatial distribution,

and consequently the magnetic form factor comes into play. The description of the electro-

magnetic structure in such cases is given by two different form factors, namely, electric and

magnetic. Therefore, termed as electromagnetic form factor. The form factor here carries

q

QED

q

 ...φ, ω, ρ

VMD

Figure 1.1.: A simple picture representation of the coupling of the photon (with four-momentum

q) to a nucleon in the quantum electro-dynamics (QED) and vector meson dominance

(VMD).

complete information of the electromagnetic structure of particles and is a directly measur-

able characteristic of the particle’s structure, both in the relativistic and the non-relativistic

processes. However, in the relativistic case, no simple correlation between the form factor

and the spatial distribution of the hadron can be obtained. The Quantum Field Theory (QFT)

suggests that the interaction between the particles in these processes occurs via exchange

of virtual photons. The simplest of such mechanisms, as given by the Quantum Electro-

Dynamics (QED), is the exchange of one virtual photon, as illustrated in Fig. 1.1. The

virtual photon can provide the information about the probability amplitude of a particle

traveling through space and time. The momentum transfer (q) in these processes is a four-

dimensional quantity defined as q2 = (∆E)2 −∆p2. The virtual photon can be space-like or

time-like, depending upon whether the |q2| is negative or positive, respectively.

(a) (b)

Figure 1.2.: (a): The left panel represents the Feynman diagram for electron-hadron elastic scatter-

ing via photon (γ∗) exchange in the space-like momentum transfer region (q2 < 0). (b):

The Feynman diagram of the electron-positron annihilation is shown on the right

panel. Where a pair of hadron and anti-hadron is created via a virtual photon exchange

in the time-like momentum transfer region (q2 > 0).

3



1. Theory and Motivation

The simplest example of space-like form factors is the elastic electron-hadron (eH) scat-

tering, such as ep, en, eπ± and eK± scattering. The Feynman diagram of the eH scattering

is illustrated in the (a) panel of Fig. 1.2. Here, the direction of electron’s momentum in the

center-of-mass (CM) frame is altered, i.e., ∆p2 = (2p · sinθ
2
)2 6= 0, where θ is the scattering

angle. While the energy transfer remains constant in the CM frame, i.e., (∆E)2 = 0. There-

fore, q2 = −∆p2 = −4p2 · sin2 θ
2
< 0, where 0 ≤ θ

2
≤ π

2
. The smaller θ

2
corresponds to the

smaller values of sin2 θ
2

and thus larger q2 values. In other words the larger the momentum

transfer is, the smaller will be the space where the electron gets scattered by hadron, which

is a corollary of the uncertainty principle. Here the magnitude of the momentum transferred

by the virtual photon can be altered by tuning the momentum of the incident electron.

Alternatively, the electron-positron annihilation to create hadron(s), such as, e+e− →
π+π− and e+e− → K+K−, is one of the example of the time-like momentum transfer. The

(b) panel of Fig. 1.2 shows the Feynman diagram of the same. In these processes, equal en-

ergetic electron and positron with equal and opposite momentum annihilate to create an in-

termediate virtual photon. The virtual photon transfers no momentum ∆p2 = 0 but transfers

an energy twice that of the energy of each electron, i.e., ∆E2 = (2E)2. The four-momentum

transferred by the virtual photon is q2 = 4E2 > 0. In such processes, the four-momentum

transfer can be varied by changing the projectile energy.

In a nutshell, the form factor of a hadron can be studied experimentally in the full kinemat-

ically allowed q2 range by performing the elastic scattering and annihilation experiments,

which are complementary to each other. The four-momentum transfer of the virtual photon is

plotted in the full (q2) range in the left panel of Fig. 1.3. The range of the space-like and time-

like virtual photons are also shown in the figure. As mentioned earlier, in the case of elastic

scattering or in the space-like region, the charge particle’s form-factor decreases as |q2| in-

creases. Herewith, for higher momentum transfer, the virtual photon is sensitive only to the

inner part of the hadron charge density. The same is true for the time-like region. However,

in the time-like region, other phenomena like vector-meson dominance (VMD) dominates

and are well evident.

In photon-hadron interaction, a dominant phenomenon comes into play. Where a photon

can interact with hadrons not only directly, but also via a virtual vector meson state with

the same quantum number as that of the photon. These intermediate propagator mesons are

ρ, ω, φ, η′. Such type of photon-hadron interaction is predominant and hence is called the

vector meson dominance [11]. Here the hadronic electromagnetic current Jµ is proportional

to the vector meson fields Vµ [41, 42], i.e., Jµ(x) = ∑
V
[eM2

V/2g
V γ]Vµ(x). Where M2

V is the

vector meson mass, e is the charge of an electron, g
V γ is the vector meson and photon cou-

pling constant and µ represents the space-time coordinate. The strength of the vector meson

transitions into photons is determined by the coefficient eM2
V/2g

Vγ . A simple pictorial rep-

resentation of VMD is illustrated in Fig. 1.1, where the intermediate virtual meson state can

be seen as propagators in photon-nucleon interaction. The Feynman diagrams of the previ-

ously discussed processes, electron scattering and pair annihilation, under the VMD model

are shown in the left panel of Fig. 1.3 for illustration.

The qualitative feature of the form factor under VMD model up to the ρ meson is illus-

trated in the left panel of Fig. 1.3. Here, as q2 increases and approaches to the vector meson

mass (q2 = MV ), the virtual meson will immediately decay via its prominent channel like a

real particle after reaching the on-mass shell. At this value of q2, a strong resonance enhance-

ment can be seen in the distribution of form factor. After passing the resonance (q2 > Mρ),

the form factor will start to diminish until the mass of the next vector meson is reached. This

mechanism is seen well pronounced in the time-like virtual photons ranges. The resonance
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1.3. The Electromagnetic Form Factor

Figure 1.3.: Left panel: The qualitative behavior of the electromagnetic form factor in the whole

physically accessible range of q2. The shaded portions represent the kinematically pro-

hibited region q2 > 0 to q2 < (2Ml)
2 and q2 > (MA−MB)

2 to q2 > (MA+MB)
2 [11]. The

Feynman diagrams for the elastic scattering and annihilation processes in the VMD are

shown. Right panel: The π0 meson form factor squared in naive VMD, taken from

Ref. [1].

enhancement at the vector meson mass is parameterized by the pole approximation using

the BreitWigner formula [1, 39, 41, 43], where the form factor distribution is fitted with the

pole formula shown in Equation 1.5. The kinematic limits for the form factor are determined

by the masses of the particles involved in the process. The greater the mass of the decaying

meson, the larger is the range of the momenta transferred q2 by the virtual photon. Thus, the

quantitative behavior of the form factor for different mesons will be different.

The single-photon exchange processes discussed above (electron scattering and pair an-

nihilation) were for the charged particles. There are particles, truly neutral in nature like γ,

such as the π0, η, η′, ρ0, ω, and φ, which do not possess any kind of charge, i.e., identical

to their antiparticles. They can be either symmetric (C=1 for pseudoscalar mesons π0, η,

η′) or asymmetric (C=-1 for photons and vector mesons ρ0, ω and φ) under charge conju-

gation parity (C), which is conserved in electromagnetic and strong interactions. The form

factor information of these truly neutral particles (A) can be accessed from some of their

allowed electromagnetic decays into at least one virtual photon (γ∗ → e+e−) and another

truly neutral particle (B, γ).

Let’s understand and compare the simplest of these processes diagrammatically for two

types of mesons. The electromagnetic decay of a pseudoscalar meson (A) into two photons

(A → γγ) is allowed under the C, and hence their conversion Dalitz decay (A → γγ∗ → A →
γe+e−). The Feynman diagrams for these types of decays are illustrated in Fig. 1.4. In these

types of single photon exchange processes, the electromagnetic form factor can be extracted

from the transition amplitude, as both are proportional. Here, the form factor defines the

electromagnetic properties of the meson ‘A’ only, as a single meson is involved. On the other

hand, these single photon exchange processes and thus, their corresponding conversion de-

cays are not allowed for the vector mesons due to C parity conservation (see Fig. 1.4). Which

lead the decay amplitude, and hence the electromagnetic form factor of the single photon

exchange process to zero. Resultantly, for the vector mesons, the electromagnetic form fac-

5
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A A

B

A

Pseudoscalar 

meson

Vector 

meson

ALLOWED NOT 

ALLOWED

ALLOWED

A
V

B

A
V

Pseudoscalar/

Vector meson

Figure 1.4.: The Feynman diagram for the electromagnetic decays of the truly neutral particles. The

first column shows the allowed two photon decay of the pseudoscalar mesons involving

single photon exchange process and the corresponding conversion decay. The second

column illustrates the forbidden, under C parity conservation, two photon decay of the

vector mesons. The third column represents the allowed decay of a meson (A) into

another meson (B) and a real or virtual photon.

tor cannot be calculated explicitly, but can be calculated as a transition vertex of one particle

(A) transforming into another (B), as illustrated in the third column of Fig. 1.4. The virtual

photons in such decay modes transfer the 4-momentum to the lepton pair. The transition

form factors in meson conversion decays A → Bγ∗ are described in the VDM according to

Equation 1.5.

Furthermore, these single photon exchange processes in photon-meson interactions dis-

cussed so far are the special cases of the double photon exchange processes in π0 meson

π0∗ → γ∗γ∗ [1], which is a generic representation. Wherein, because the off-shell pion π0∗

is not a physical quantity, a model-dependent approach is used to describe the interactions

of on-shell pions (π0) with off-shell (γ∗) or on-shell (γ) photons. Similar to the electron-

hadron interactions, the inherited virtuality could be both the space-like or the time-like. As

mentioned in the beginning, these models are therefore helping to define the constraints for

the models used to evaluate hadronic LbL scattering. A brief overview of the generalized

case of the pion transition form factor under VMD based models, and further the specificity

related to the vector meson transition form factor is presented next.

1.4. The Electromagnetic Meson Transition Form Factor

A naive VMD model picture for the double photon exchange process in π0 meson is

presented in the right panel of Fig. 1.3. The boundaries of the experimentally accessible

regions are defined by the parabola and the axes of the plots. Three regions are accessi-

ble via the experimental probes Region 1, Region 2, and Region 3. Region 1, q2
1,2 ≥ 0

and

√

q2
1 +
√

q2
2 ≤ mP, can be probed by the P → γ(∗)γ(∗) decays. Region 2,

√

q2
1 > mP,

0 ≤
√

q2
2 ≤

√

q2
1 −mP, is accessible via the processes e+e− → Pγ(∗). Region 3, q2

1,q
2
2 ≤ 0,

6



1.4. The Electromagnetic Meson Transition Form Factor

is approachable via the γ(∗)γ(∗) → P processes (e+e collisions). The region inside the second

and fourth quarters of the diagrams and inside the parabola are not accessible experimen-

tally. The list of reactions that are relevant in the context of transition form factors can be

found in Ref. [1].

A large class of models for form factors are based on the VMD model. The VMD based

isobar model can describe the resonances in the form factor of the double- and single-photon

exchange process. Wherein the relation between the vector-meson-conversion and the pseu-

doscalar (π0) transition form factors can be understood with the pion transition form factor,

which is characterized as [1]

Fπ0(q2
1,q

2
2) = Fvs(q

2
1,q

2
2)+Fsv(q

2
1,q

2
2), (1.2)

where one of the virtual photons couples to an isovector v and other to an isoscalar s state

due to the isospin and G-parity. The first and second subscripts in the right-hand term refer

to the photons with momentum q1 and q2, respectively. The Fsv(q
2
1,q

2
2) can be neglected,

provided

√

q2
2 is close to a resonance mass Mω or Mφ and

√

q2
1 is not. The resonance mass

Mω is highlighted as the black dashed line in the right panel of Fig. 1.3.

Furthermore, in the isobar model, the quantity Fvs(q
2
1,q

2
2) can be approximated by using

the BreitWigner formula [1, 39, 41, 43]. Thus, Fπ0(q2
1,q

2
2) becomes

Fπ0(q2
1,q

2
2)≈ fV→π(q

2
1)

1

q2
2 −M2

V + iMV Γtot

gVγ, for q2
2 ≈ M2

V , (1.3)

where Γtot and fV→π(q
2
1) is the total width of the isoscalar vector meson V and an appropri-

ately normalized form factor of the transition V → π0γ∗, respectively. This gives

Fπ0(q2
1,M

2
V )

Fπ0(0,M2
V )

≈ fV→π(q
2
1)

fV→π(0)
= FV→π(q

2
1), (1.4)

where at the photon point the vector-to-pion transition form factor FV→π is normalized to

1. Clearly, the form factor of the transition of the ω meson to a π0 meson can be expressed

as |Fπ0(q2
1,M

2
ω)/Fπ0(0,M2

ω)|2, which is the two-dimensional π0 form factor. The form factor

of the single-photon exchange process reduces to the Equation 1.5, which at low energies

(q2 ≪ Λ2) can be approximated successively as [1]

F(q2,0) =
M2

V

M2
V −q2 − iMV Γtot

≈
[

1− q2

M2
V

]−1

≈ 1+
q2

Λ2
, (1.5)

where parameter Λ is related to the mass of the intermediate vector meson. The above rela-

tion is known as the single-pole formula, which is often fitted to the q2 dependence to obtain

the mass corresponding to the resonance enhancement. This mass value Λ is called the char-

acteristic pole mass. Furthermore, the Fourier transform of the form factor in Equation 1.5

to the coordinate space gives the charge distribution of the transition region [11].

For the specific case of the ω meson, the example processes where the ω − π transi-

tion form factor can be studied are, the Dalitz decay ω → π0e+(µ+)e−(µ−) (measured), µ,

e+e− → π0ω (measured), η′ → ωγ (measured) and η′ → ωe+e− (not measured) [1]. As a

continuation, the Dalitz decay of the ω meson to probe the ω−π transition form factor is

discussed next.
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1. Theory and Motivation

1.5. The ω−π Transition Form Factor via Dalitz Decay

For the Dalitz decay of the vector mesons ω → e+e−π0, the effective mass ml+l− is pro-

portional to the probability of emitting a virtual time-like photon, which is given as

s = q2 = m2
l+l− = (El+ +El−)

2 − (pl+ + pl−)
2. (1.6)

The kinematic limits for the electromagnetic transition form factor in the A → Bγ∗ → Bl+l−

decay is determined as

(2Ml)
2 ≤ s = q2 = m2

l+l− ≤ (MA −MB)
2. (1.7)

The VMD diagram for the specific case of the ω Dalitz decay ω → π0 l+l− is illustrated

Figure 1.5.: The VMD diagram of the ω Dalitz decay.

in Fig. 1.5. The electromagnetic structure of the region of transition of ω into π0 can be

obtained by studying the probability of the decay as a function of the squared effective mass

of the lepton pair (ml+l−). The leptonic pair mass spectrum of the decay rate of the ω meson

is defined as

dΓω→π0 l+l−

dq2Γω→π0γ

=
α

3π

[

1− 4m2
l

q2

]

1
2
[

1+2
m2

l

q2

]

1

q2





(

1+
q2

m2
ω −m2

π0

)2

− 4m2
ωq2

m2
ω −m2

π0





3
2

× | Fω−π(q
2) |2

= [QED]point−like× | Fω−π(q
2) |2 .

(1.8)

The dilepton mass spectrum for the Dalitz decay of a point-like ω meson is theoretically

described in the framework of QED by the Kroll-Wada formula [44]. Equation 1.8 shows

that the measured spectrum of lepton pairs is compared with QED calculations for the point-

like particles to determine the transition form factor | Fω→π0 l+l−(q
2) |2 in the time-like re-

gion. The q2 distribution of the ω− π transition form factor is fitted using a single-pole

formula, as stated in Equation 1.5. The slope parameter b at small q2 can be obtained by

taking the derivative,

bω−π =
dFω−π(q

2)

dq2
|q2=0 =

1

Λ2
. (1.9)

The slope parameter for the ω Dalitz decay bω−π is estimated to be 1.70 GeV−2 under

the simple VMD framework [11]. Correspondingly, the characteristic mass for ρ meson is

Λ ≈ mρ ≈ 0.770 GeV.

The slope parameter is used to determine the characteristic size < r2 >
1/2

, which is the

Root Mean Squared (RMS) “radius ” of the ω− π vertex structure. In the range of small

8



1.6. Existing Experimental Data and VMD Comparison

momentum transfers, form factor can be given as

Fω−π(q
2) = 1+q2 dFω−π(q

2)

dq2
|q2=0= 1+q2bω−π = 1+

1

6
q2< r2 >

where, < r2 >
1/2

= [6
dFω−π(q

2)

dq2
|q2=0]

1/2 = [6bω−π]
1/2 .

(1.10)

The RMS “radius ” < r2 >
1/2

connected with the region of the ω−π transition is calculated

to be 0.63×10−13 cm, according to VMD [11].

An overview of the experimental inputs and theoretical predictions under different models

in the direction of describing ω−π transition form factor will be presented in Section 1.6

and Section 1.7, respectively.

1.6. Existing Experimental Data and VMD Comparison

The first experimental result was published in 1981 by the Lepton-G collaboration [12],

where the characteristic mass Λω is found to be Λ
Lepton−G
ω−π ≈ mρ ≈ (0.65±0.03) GeV, es-

tablished in the decay ω → π0µ+µ−. The corresponding slope parameter of the form fac-

tor is found to be [Λ−2
ω−π]

Lepton−G = (2.4± 0.2) GeV−2. Clearly, the value obtained from

the experiment has four σ deviation from the VMD calculation. In the range of large

q2 = m2
µ+µ− the form factor distribution obtained by the experiment rises faster than what

is predicted by the VDM. Fig. 1.6 shows the steep rise towards the end of the decay re-

gion (higher q2 ranges). This discrepancy from VMD, statistically significant, remains

unexplained up to today. In year 2009, high quality data were taken by the NA60 col-

laboration using heavy ion collision (peripheral In−In measurement [13]). The statistical

errors are improved by a factor of nearly 4 in this case. This data set shows a signifi-

cant improvement in terms of accuracy in the measured transition form factor compared

to Lepton-G experiment. The characteristic pole mass of this NA60 data set is found to

be Λ
NA60In−In
ω−π ≈ mρ ≈ (0.668±0.009(stat.)±0.003(syst.)) GeV and the slope parameter is

[Λ−2
ω−π]

NA60In−In = (2.24± 0.06(stat.)± 0.02(syst.)) GeV−2. Despite improved statistics, the

[Λ−2
ω−π]

NA60In−In obtained from NA60 measurement differed from the VMD expectation by

10σ. Another measurement to study ω → π0µ+µ− form factor was performed by NA60 col-

laboration in 2011 using p−A collision [14]. The measured characteristic pole mass of this

data set is found to be Λ
NA602011

p−A

ω−π ≈ mρ ≈ 0.667 GeV, while the corresponding slope parame-

ter is [Λ−2
ω−π]

NA602011
p−A = (2.248±0.030(stat.)±0.009(syst.)) GeV−2. In this data set, a relative

increase is seen close to the kinematic cutoff by a factor of ≈ 10 and the measured form

factor strongly deviates from the VMD. Furthermore, in 2016, a new high-precision mea-

surement of the electromagnetic transition form factors of the ω was performed where the

data sample is 10 times larger than the previously collected In-In data [15]. The measured

slope parameter in new data [Λ−2
ω−π]

NA602016
p−A = (2.223± 0.026(stat.) ± 0.037(syst.)) GeV−2

characterized the pole mass as Λ
NA602016

p−A

ω−π ≈ mρ ≈ 0.671 GeV. Within the errors, a perfect

agreement between the four data sets is observed. The data for the NA60 collaboration for

both In−In and p−A collisions are shown in Fig. 1.6. The results from the new measure-

ment confirms on more strong basis the discrepancy between the VMD predictions for ω
meson form factor and the experimental measurements. In spite of having gigantic statis-
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1. Theory and Motivation

tics, NA60 analysis relies heavily on Monte Carlo simulations to extract the ωπ transition

form factor because it is unable to reconstruct all final state particles. Which is an advan-

tage for the WASA-at-COSY data over the NA60 and a motivation to contribute to this

field of study. Recently, the A2 tagged-photon facility at the Mainz Microtron, MAMI, have

measured the Dalitz decays ω → π0e+e− in the γp → ωp reaction [28]. The slope parame-

ter, [Λ−2
ω−π]

MAMI = (1.988±0.210(tot.)±0.009(syst.)) GeV−2, is slightly lower than previous

NA60 measurements based on ω → π0µ+µ− channel. The derived characteristic pole mass

is Λ
NA602016

p−A

ω−π ≈ mρ ≈ 0.707 GeV. Though the result from the MAMI measurement is in better

agreement with the VMD calculations as compared to the previous experiments, no final

conclusion could be drawn about the discrepancy at the higher masses. This is due to the

significantly large statistical uncertainty in this region. Therefore, more high statistical mea-

surements of the ω → π0e+e− decay is strongly encouraged. Correspondingly, most recent

preliminary results from the CLAS g12 experiment, as presented in Ref. [45], indicates an

agreement with the observations of the previous MAMI experiment. However, the analysis

is in the preliminary state and not precise enough to resolve the deviations from VMD at

larger masses. All in all, the discrepancy between VMD predictions and experimental data

remained unsolved till now.

1.7. Beyond the VMD Model

As mentioned previously, the measured transition form factor of the ω−π transition ver-

tex shows a significant discrepancy from the standard VMD prediction. There are theoretical

efforts that attempt to go beyond the vector meson dominance in a systematic way. Some of

the major approaches beyond VMD are effective field theory calculations, dispersion anal-

ysis based approaches, and Light-front holographic approach, as discussed briefly in the

following subsections.

1.7.1. Effective Field Theories

The models based on vector meson dominance could not explain the steep rise of the ω
form factor. A systematic improvement of these phenomenologically successful models is

not clear in the energy range of hadronic resonances, unlike the effective field theory. The

effective field theories are extended towards higher energies using a new counting scheme,

based on the hadrogenesis conjecture, for the Goldstone bosons (π, K, η) and the light vector

mesons (π, ω, K∗, φ), as described in Ref. [46] and further explored in Ref. [47]. Unlike the

standard counting scheme in Chiral Perturbation Theory (ChPT), the new scheme treats both

the Goldstone bosons (P) and the light vector mesons (V) on equal footing and their masses

as soft, i.e., of the order of a typical momentum q (mP ∼ q and mV ∼ q). Consequently, within

the framework of this counting scheme, masses up to the φ meson mass (mφ ≈ 1.02 GeV )

are soft [16]. Additionally, in order to describe the decays of the light vector or pseudoscalar

mesons, all involved momenta are necessarily smaller than the mass of the decaying particle

and thus, also of the order of q (∂µ ∼ q). The restriction to these mesons can be justified by

the hadrogenesis conjecture [48], wherein it is considered that all other low-lying mesons

are dynamically generated by the interactions between the Goldstone bosons and vector

mesons.

The range for q is limited (on tree level) in ChPT by the not-considered mesons (in prac-

tice by mV ) and (for loops) by the scale 4π f , where f is the pion decay constant [17]. This
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1.7. Beyond the VMD Model

Figure 1.6.: The black filled triangles in figures, taken from Ref. [28], are the data from MAMI ex-

periment [28]. These data points are referred to as “This Work: Data” in Ref. [28], as

seen in the legends. The pole approximation fit is shown as the black solid line, indi-

cated as “This Work: Fit” in Ref. [28]. p0 and p1 are the normalization and the slope

parameter Λ−2, respectively. The measurements from the Lepton−G [12] are shown as

open red squares in panel (b). The NA60 results obtained in In−In measurement [13]

are shown by open green circles in (a) and (c). The measurements from p−A colli-

sions [15] are indicated by open green triangles in (b). The blue dashed line in (a)

represents the VMD prediction. The results of a chiral Lagrangian treatment with ex-

plicit vector mesons are shown with a red dash-dotted line in (a) [18, 19]. The dispersive

solution calculated by the Bonn group for the full 3π re-scattering is shown by the error-

band borders as magenta dashed lines in (b) [20]. The cyan dashed lines in (a) represent

the upper and lower bounds by Caprini [22] for the discontinuity calculated with the

partial-wave amplitude f1(s) based on the improved N/D model [49], and in (b) are

the simplified VMD-inspired partial wave solutions of the discontinuity equation from

Ref. [20]. The model-independent calculations using Canterbury approximants taken

from a private communication of P. Masjuan [28] is shown by a magenta dashed line

covering a gray error band. The blue dashed line in (c) represents the basic calculation

from JPAC [21]. The effect from including higher-order terms of the inelastic contri-

butions in the ω−π transition form factor, by fitting them to the NA60 In−In data, is

shown as the black dotted and red dash-dotted lines in (c). Wherein the solutions with

adding one and the two terms are shown by the black dotted and red dash-dotted lines,

respectively. Similarly, the effects of fitting the higher-order terms to the MAMI results

for the solutions with one (magenta long-dashed line) and two (cyan dash-double-dotted

line) terms are shown in (c).

limitation is overcome in the scheme presented in Ref. [46], by including the vector mesons

and resumming the two-particle reducible diagrams (rescattering processes). The theory

which calculated the leading-order chiral Lagrangian for the decay ω → π0γ∗ using the

new counting scheme is presented in [16, 46]. In principle, the vector meson (ω) can ei-

ther directly decay into a pseudoscalar meson (π0) and a photon (real (γ) or virtual (γ∗))

or indirectly via an intermediate vector meson (ρ0), as drawn in Fig. 1.7. For the decay of

an ω meson into a neutral pion (π0) and a real (γ) or virtual photon (γ∗), the Lagrangian

becomes [16]

Lωπ = L
dir
ωπ +L

indir
ωπ . (1.11)

To check the Lagrangian in terms of the diagram, please refer to Fig. 1.7. The leading-

order Lagrangian of Ref. [46] allows only for the indirect decay. The relevant part of the
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1. Theory and Motivation

leading-order Lagrangian L indir
ωπ is given as [16, 17, 18, 19]

L
indir
ωπ = L

indir
ωπ (ω → π0)+L

indir
ωπ (ω → ρ0)+L

indir
ωπ (ρ0 → γ/γ∗). (1.12)

The constitute Lagrangians are expressed as [16, 17, 18, 19]

L
indir
ωπ (ω → π0) =− hA

16 f
εµναβtr

{

[

Vµν,∂
τVτα

]

+
∂βΦ

}

,

L
indir
ωπ (ω → ρ0) =− bA

16 f
εµναβtr

{

[

Vµν,Vα,β

]

+
[Φ,χ0]+

}

,

L
indir
ωπ (ρ0 → γ/γ∗) =−eV mV

4
tr{V µνQ}∂µAν,

(1.13)

where hA and bA are the constant parameters, χ0 = diag(m2
π,m

2
π,2m2

K −m2
π) is the mass

matrix, Q = diag(2/3,−1/3,−1/3) is the quark charge matrix and Aν denotes the photon

field. The vector mesons are represented by the antisymmetric tensor fields described by the

matrix Vµν and the Goldstone bosons are described by the matrix Φ,

Vµν =





ρ0
µν +ωµν

√
2ρ+

µν

√
2K+

µν√
2ρ−

µν −ρ0
µν +ωµν

√
2K0

µν√
2K−

µν

√
2K0

µν

√
2φµν



 , Φ=







π0 + 1√
3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η

√
2K0

√
2K− √

2K0 − 2√
3
η






.

(1.14)

Direct (dir) 

Decay

Indirect (indir) 

Decay

QEDhere

Figure 1.7.: The above figure shows diagrams for the direct and indirect decays of the ω meson

into a neutral pion (π0) and a real (γ) or virtual (γ∗) photon. The full Lagrangian

Lωπ and the constituent direct (Ldir
ωπ : next-to-leading order correction) and indirect

(L indir
ωπ : leading-order term) Lagrangians are shown with each diagram. The L indir

ωπ

constitutes three terms, one for each transition ω → π0, ω → ρ0 and ρ0 → γ∗, i.e.,

L indir
ωπ =

{

L indir
ω→π0ρ0 +L indir

ρ0→γ∗

}

=
{[

L indir
ω→π0 +L indir

ω→ρ0

]

+L indir
ρ0→γ∗

}

. The diagrams for each

transition and the corresponding Lagrangian are shown. The decay of the photon into a

dilepton (γ∗ → e+e−) is described by QED.

In order to determine the uncertainties in the calculations, a very rough estimation of one

particular next-to-leading-order term of the Lagrangian (Ldir
ωπ ) is performed in Refs. [16, 17,

18, 19]. This term describes the direct decay of a vector meson (ω) into a Goldstone boson
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1.7. Beyond the VMD Model

(π0) and a photon (γ/γ∗),

L
dir
ωπ =− eA

4 f mV

εµναβtr
{

[Q,∂τVτα]+ ∂βΦ
}

∂µAν, (1.15)

where eA is a constant parameter. The diagram for the direct process is shown in Fig. 1.7.

The constants hA, bA and eA in Equation 1.11 are the open parameters, which can be

fixed by fitting the partial decay widths for the two-body decays ω → π0γ to the available

experimental data. Two parameter sets are fixed in [16, 17, 18, 19]: P1 with eA = 0, hA =
2.32 and hA = 0.27 (describes the leading-order calculation) and P2 with eA = 0.015, hA =
2.10 and hA = 0.19 (includes the particular next-to-leading-order term).

The form factors calculated with the Lagrangian in Equation 1.11, using the parameter

sets P1 and P2, contain both, a term of VMD type (Equation 1.5) and a constant term [16,

17, 18, 19],

Fω−π(q
2) = gωπ

m2
ρ

m2
ρ −q2

+(1−gωπ)

where gωπ =
hA(m

2
ρ+m2

ω)−8bAm2
π

(hA +4 eA

eV
)m2

ω −8bAm2
π

= 2.01±0.24.

(1.16)

For gωπ = 2, one can obtain a particularly simple form

Fω−π(q
2) =

m2
ρ +q2

m2
ρ −q2

, (1.17)

which is very different from the VMD in Equation 1.5.

This approach is regarded as an important step forward and the corresponding re-

sults [16, 17, 18, 19] are plotted in Fig. 1.6. The ω−π transition form factor obtained by

this calculation gives a much better description of the NA60 data than the standard VMD

model, except for high dilepton masses close to the kinematic boundary. Though the results

of the MAMI group [28] are in better agreement with the theoretical approaches as com-

pared to NA60, no conclusive remark could be made about the large invariant masses due to

the significant measurement error.

The calculation in Refs. [16, 17, 18, 19] yields a significantly larger theoretical value

of pole parameter, which is around twice the pole parameter from VMD, [Λ−2
ω−π]

ChPT ≈
3.32 GeV−2 ≈ 2M−2

ρ . The adopted ρ meson mass in the reference is Mρ = 776 MeV . The

new calculated pole parameter is closer to the pole parameter obtained from the experiments

Refs.[12, 13, 14, 15, 28], as compared to the VMD. However, the problem with the steep rise

at the higher mass range is not resolved conclusively. The alternative theoretical calculation

developed for the form factor description using the dispersion analysis approach is discussed

next.

1.7.2. Dispersion Relation Calculations

Another theoretical attempt to describe the ω − π transition form factor is made by

conducting the calculations with the effective method of dispersion relations [20, 49]. In

Ref. [49], the input parameter dependence of the γπω vertex functions had been studied on

the basis of partial-wave dispersion relations and unitarity. Wherein the right-hand cut is

approximated by the 2π contribution and the left-hand cut by the nearest s- and u-channel
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1. Theory and Motivation

Figure 1.8.: Diagrammatic representation of the discontinuity of the ω → π0e+e− transition form

factor. The black circle denotes the ω → 3π amplitude ( f1(s)). The white circle repre-

sents the pion vector form factor (FV
π (s)) [20].

poles. Further, the electromagnetic ωπ transition form factor is calculated as a function of s

in the time-like and space-like region. The ω→ π0γ∗ electromagnetic transition form factors

in Ref. [20] have been calculated using dispersion theory, which relies on a previous disper-

sive analysis of the ω → π+π−π0 decay in Ref. [50] and the pion vector form factor. The

corresponding P-wave projection of the ω → π+π−π0 decay f1(s) and the pion vector form

factor FV
π (s) is used as an input. The decay ω→ π+π−π0 in Ref. [20] is treated in the isospin

limit with the assumption that Mπ0 = Mπ+ = Mπ− = Mπ. For the analysis in Ref. [20] only

l = 1 partial-wave projection has been used and the higher partial wave contributions are ne-

glected. This is because in Ref. [50] a simplified model for additional F-wave contributions

was studied and it was found out that they correspond to the negligible corrections. The

dispersion relation for the transition form factor have been set by calculating the two-pion

discontinuity disc fV π0(s) of the diagram shown in Fig. 1.8 as [20]

disc fV π0(s) =
iq3

ππ(s)

6π
√

s
FV∗

π (s) f1(s)θ(s−4M2
π), (1.18)

where s = (pω − pπ0)2, p is the particle momenta, θ denotes the center-of-mass scattering

angle between the initial- and final-state momenta, and q3
ππ(s) = (s2 − 4sM2

π)
3/2. The dis-

continuity relation for the two ingredients to the dispersion integral, the FV
π (s) and f1(s),

have been solved under elastic ππ final state approximation [20]. In order to suppress in-

elastic contributions, the analysis in Ref. [20] is confined to two-pion intermediate states

and neglects any higher contributions, and further a once-subtracted solution is employed.

The resulting form factor obtained from the dispersive approach is plotted in Fig. 1.6. The

error-band borders are shown as the magenta dashed lines in the b panel of Fig. 1.6, which

represent the simplified VMD-inspired ω→ 3π partial wave f1(s)= aΩ(s) inside the disper-

sion integral in Ref. [20]. Where ‘a’ is the subtraction constant in the solution of the f1(s)’s
unitarity relation or discontinuity equation. This serves as an overall normalization and is

adjusted to reproduce the ω → 3π partial width. Ω(s) is the Omnés function, which is a

solution to the FV
π (s)’s unitarity relation, Ω(s) = exp

{

s
π

∫ ∞
4M2

π
ds′ δ(s′)

s′(s′−s)

}

. An enhancement

over the pure VMD result is observed even with the simplified version of the partial wave

in Ref. [20], that is similar to the pink curve shown in the left panel of Fig. 1.9. The area

covered between the cyan dashed lines in the b panel of Fig. 1.6 is the correct full ω → 3π P

wave [20], which leads to a further enhancement for invariant masses of the lepton pair near

and slightly above the two-pion threshold. This suggests that the three-pion effects, in par-

ticular, lead to an enhancement in the two-pion-threshold region [20]. The approach leads
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1.7. Beyond the VMD Model

to a significant enhancement of the transition form factor over the pure VMD result. The

results are an improved description of the data.

The dispersive analysis returns the pole parameter

[Λ−2
ω−π]

dispersive ≈ (2.34....2.41) GeV−2 ≈ (1.41...1.45)M−2
ρ [20]. (1.19)

The ρ meson mass used for this comparison is Mρ = 775.5 MeV [20]. This value shows

that there is a significant enhancement with respect to the VMD value, but not as large as

the theoretical value obtained from the effective field theory calculations. The new pole pa-

rameter values are still significantly smaller than the experimental measurements obtained

in Refs. [12, 13, 14, 15]. Instead, the results and the pole-approximations from the MAMI

group [28] indicates no contradiction with these solutions. However, as mentioned earlier,

the MAMI measurements lack precision and are indecisive hitherto. In essence, the dis-

persive calculation cannot explain the steep rise towards the end of the decaying region in

Lepton-G and NA60 data [12, 13, 14, 15], which is comparably better described by the ef-

fective field theory calculations of Refs. [16, 17, 18, 19]. Further, various other theoretical

formalisms based on the dispersive framework are discussed.

1.7.3. Dispersive Framework Based Subenergy Unitarity Approach

The two-pion approximation discussed previously is precise in the lower energy ranges,

up to the ωπ threshold. Due to the availability of the insufficient information on the dis-

continuity, the dispersion integral in Refs. [20, 49] had been evaluated by applying the two-

pion approximation above this threshold. However, some of the constraints are missing on

the high energy behavior in this approach, specifically for the inelastic channels’ contri-

bution. Some of these deficiencies are taken care of by the Joint Physics Analysis Center

(JPAC) group [21] by adopting the alternative method for incorporating these three-body ef-

fects. In Ref. [21], the electromagnetic form factor of the ω meson has been analyzed within

the framework of dispersive formalism, which is based on the isobar decomposition and

sub-energy unitarity. The inelastic contributions from the isobar decomposition have been

parametrized through a conformal expansion with a coefficient, that can either be fitted to

the data or determined by comparing with other theoretical studies such as Lattice QCD of

EFT expansion. As an extension of this approach, Ananthanarayan. et. al. [23, 24] have

investigated the ωπ transition form factor by exploiting a model-independent integral con-

dition on the modulus. The upper and lower bounds on the modulus of the ωπ form factor

in the region below the ωπ threshold (elastic region) have been derived with this formalism.

The basic calculations from JPAC, shown as a blue dashed line Fig. 1.6c, is obtained by

using the first term in the expansion of the inelastic contribution in terms of conformal vari-

ables. The weight parameter of the conformal variables is determined from the experimental

value for Λ(ω → π0γ). In addition, other solutions obtained by including the higher-order

inelastic-contribution terms in the transition form factor and fitting their parameters to the

experimental data are shown in Fig. 1.6c. Clearly, the basic calculation from JPAC lies

below the NA60 In−In measurements at large invariant masses. However, it is closer to

the MAMI data points. Moreover, the estimations by including another conformal variable

term in the form factor fit produce the same results as the base calculations. Although, a

better agreement with NA60 is obtained by appending the two more conformal variables

terms [23, 24]. However, the steep rise at the larger invariant masses (inelastic form factor)

is still not justified. The new solution for MAMI measurement is close to the basic calcula-

tion, which shows an agreement with the expectations for higher-order terms of the inelastic

contributions. As said earlier, the conclusions with the present MAMI measurements are
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1. Theory and Motivation

ambiguous.

1.7.4. Dispersive Framework Based Unitarity and Analyticity Approach

The discrepancies between the recent calculations [18, 20, 21, 23] of the ωπ transi-

tion form factor and the recent measurements at higher invariant masses have intrigued I.

Caprini [22] to strive in this direction. Unlike the dispersive analysis approaches so far, the

new approach in Ref. [22] included the available experimental data above ωπ threshold in

the dispersive analysis framework. Herein the form factor is analyzed using the discontinu-

ity from Equation 1.18 as an input below the ωπ threshold (mω+mπ)
2. The N/D formalism

for the P partial wave of the scattering process ω → ππ from Ref [49] is used to estimate the

dependence on the input parameters in the unitarity relation. Which is further improved by

a simple prescription that simulates the rescattering in the crossed channels. The upper and

lower bounds on the modulus of the ωπ form factor are evaluated using a N/D formalism

based partial-wave amplitude f1(s). However, above the threshold (mω +mπ)
2, the experi-

mental information on the modulus is used as input. The estimated bounds have been shown

as cyan dashed lines in Fig. 1.6b. This approach provides a ground to test the consistency

of the experimental data on the ω−π electromagnetic form factor, which exploits analyt-

icity and unitarity in a parameterization free way [22]. Clearly, the effect is quite modest

in the frame of the N/D model. However, the narrow band calculated with this approach is

significantly lower than the experimental data in the inelastic region except for the MAMI

measurement, which is anyway inconclusive due to the lack of precision.

1.7.5. Model-Independent Calculations using Canterbury Approximants

Furthermore, a model-independent formalism estimated the ωπ transition form factor us-

ing Canterbury approximants [25]. These approximants are an extension of the Padé theory

for bivariate functions [25]. The simple monopole obtained by fitting Equation 1.5 to the

predictions from this method is Λ−2
ω−π = (1.93± 0.26)GeV−2 and the parameter Λω−π is

(0.72±0.05) GeV. Which is taken from Masjuan’s private communication, as mentioned in

Ref. [28]. In this approach, the Λ parameter for the ω−π transition is accomplished by con-

sidering isospin breaking and assuming that the slope of the ω−π transition form factor is

the same as for the π0 transition form factor. An overview of the π0 transition form factor can

be found in Ref. [1]. The double virtuality of the π0 transition form factor is accounted for by

fixing one virtual photon to the ω-meson mass and other to the dilepton invariant mass. The

output of the methodology has been shown in Fig. 1.6a as a gray error band. Clearly, the

prediction has the large uncertainty at higher invariant masses, which is estimated from the

uncertainty originate due to the extrapolation of the π0 transition form factor in the larger q2

ranges. Despite the predictions is able to describe both NA60 and MAMI data sets within

the errors, the predictions are not convincing due to the large uncertainties.

1.7.6. Dispersive Analysis Within the Framework of the Khuri-Treiman

Equations

In pursuit of resolving the puzzle of the persisted discrepancy between experimental mea-

surements and theoretical predictions, the dispersive analysis of the ω−π transition form

factor has been revisited recently by JPAC collaboration [26]. The modified framework is

based on the Khuri-Treiman (KT) equations [51]. In this approach, simultaneous analysis
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1.7. Beyond the VMD Model

Figure 1.9.: Left Panel: A representation of the normalized ω−π transition form factor estimated

in Ref. [26]. Figure is picked from Ref. [26]. The data shown are the results from

Refs. [13, 15, 28]. The two different solutions from Ref. [26] are presented as lines

and their associated error bands. The solutions overlap almost completely in the ω−π

invariant mass range are shown. The Vector Meson Dominance prediction is shown as

dot-dot-dashed brown lines for comparison. The simpler model without Khuri-Treiman

equations, Fsim(s) = áΩ(s), is shown as a dotted pink curve. Right Panel: The plot,

which is taken from Ref. [27], compares the theoretical calculations for the time-like

ω− π transition form factor from Ref. [27] to data from Refs. [12, 13, 15, 28]. The

solid blue, solid-black and dot-dashed red curves are the predictions with B = 0, B =

1, and B≫1, respectively. The VMD prediction and the empirical pole fit are shown

as dashed-cyan and dotted-green curves, respectively. The Λ in pole fit Equation 1.5 is

averaged over the fitted values reported by Lepton-G, MAMI, and NA60 experiments.

of the ω → 3π decay and the ω−π transition form factor has been explored. A dispersive

representation with subtractions, which emerged from the solution of the KT equation, has

been followed for the ω → 3π amplitude. The amplitude is obtained entirely by the ππ P-

wave scattering phase shift, except for the values of the subtraction constants. Only one

subtraction is performed here. The subtraction introduced a free parameter b in addition

to the existed global normalization parameter a. Please refer to Ref. [26] for the parame-

ter descriptions. The normalization parameter a is fixed from the partial decay widths. The

modulus |b| and phase φb of the new parameter b is fixed from fits to experimental data. As

a first step, the free parameters (|a|, |b|, φb, | fωπ0(0)|) are fixed to the two different sets of

Dalitz-plot parameters given by BESIII and the corresponding partial decay widths. The cal-

culations have been performed for two set of parameters, two (“2par.”) and three (“3par.”),

depending upon if the Dalitz plot distribution is assumed to be described by two (α and β)

or three (α, β and γ) parameters, respectively [26]. In any case, the Dalitz plot parameters

α, β and γ, obtained by previous theoretical [21, 50, 52] and experimental [53, 54] result.

The ωπ transition form factor is fully determined by the discontinuity across the right-

hand cut, up to the possible subtractions. To be coherent with the elastic approximation in

the ω → 3π analysis, the only two-pion contribution is incorporated in the discontinuity

Equation 1.18. The full s-channel P-waves ω → 3π amplitude f1(s) and the pion vector form

factor FV
π (s) was provided as input. Its solution is approximated by the Omnès function

Ω(s). Like ω → 3π amplitude, the sensitivity to the high energy region is reduced by using a

once-subtracted dispersion relation. Resultantly, a new parameter φωπ0(0), defining the phase
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at s=0, is introduced to the ω−π transition form factor calculations [26]. Consequently, the

functions FV
π (s) and f1(s) have different phases, and the discontinuity of the transition form

factor is complex for all phases. Here the modulus of subtraction constant is fixed to the PDG

average [39] of the ω → π0γ partial decay width Γ(ω → π0γ) at s=0. The dependence of the

ω−π transition form factor on the new free parameter φωπ0(0) is studied in relation to the

MAMI and NA60 data as the second step. Two well separated minima, one at φωπ0(0)≃0.2

and another at φωπ0(0)≃2.5, are observed in this variable, as discussed in Ref. [26]. These

two solutions are referred to as “low φωπ0(0)” and “high φωπ0(0)” in Ref. [26] and adopted

in this document.

The calculations using both solutions, as shown in the left panel of Fig. 1.9, are al-

most indistinguishable. The new predictions are consistent with the NA60 and MAMI

data [13, 15, 28], except for the highest two points of the NA60 data. However, the large un-

certainty in MAMI data left the inference about MAMI measurement inconclusive. Notice-

ably, the theoretical description of the data from this approach represents an improvement

over previous theoretical analyses [19, 20, 21].

A comparison of the simplest description of this approach is made with the simpler frame-

works of other approaches. Where a KT formalism with no subtractions and no crossed

channel effects is used. Similar to Ref. [20], a simpler model which ignores the crossed-

channel effects by inserting the f1(s) = áΩ(s) into the partial wave equation have been ex-

amined. The results from this simple model are shown as a pink dotted line in the left panel

of Fig. 1.9. The simplified calculation lies below the experimental points and is very simi-

lar to that of Ref. [20] mentioned previously. However, this simplified estimation is able to

describe the Dalitz-plot, as reported in Ref. [26]. Therefore, the solution of the KT equation

for the ω → 3π amplitude with an additional subtraction is the minimum requirement to de-

scribe both sets of data, the Dalitz-plot and the transition form factor, simultaneously. All in

all, the KT formalism offers a simple framework which allows to provide the partial waves

in the direct channel with left hand cuts in terms of the isobars of the crossed channels, while

allowing to incorporate crossing symmetry, unitarity and analyticity (to some extent) [26].

1.7.7. Light-front holographic radiative transition form factors

In addition to the dispersive analysis framework, there are alternative efforts that attempt

to predict the ωπ transition form factor. One of the completely different frameworks is using

the overlap integrals of the meson light-front wavefunctions [55, 56, 57]. As an extension,

recently, M. Ahmady et. al [27] have computed the transition form factors and the decay

widths for the light vector mesons (ρ, ω, K∗ φ) and pseudoscalar mesons (π, K, η, η′) using

spin-improved holographic light-front wavefunctions for the mesons. These spin-improved

wavefunctions were proposed for the vector mesons V = (ρ, K∗, φ) in Refs. [58, 59, 60]. The

vector meson wavefunctions were used to predict their decay constants, the cross-sections

for diffractive (ρ/φ)-electroproduction, and several observables for the semileptonic decays

B(s) → (ρ,K∗,φ)+ ll̄ [27]. The spin-improved holographic wavefunctions have been used in

processes involving only one light (pseudoscalar or vector) meson. The V → P γ∗ transition

form factors and the corresponding V → P γ decay widths have been predicted simulta-

neously [27]. The difference between pseudoscalar and vector mesons lies in the quark-

antiquark helicity wavefunction that modifies their universal holographic wavefunction. In-

deed, in light-front holography, there is no distinction between the dynamical wavefunctions

of light pseudoscalar and vector mesons. The mixing of the neutral mesons (η,η′) and (φ,ω)

have been accounted by using the SU(3) octet-singlet mixing scheme. In the formalism, the
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importance of dynamical spin effects has been quantified as dimensionless constants A and

B. The system will only carry the non-dynamical γ+γ5 spin structure under the setting A =

B = 0. The value of A required by data is 0 [27]. However, B≥1 will be favored by the pion

data and B = 0 will be preferred by the (charged) kaon data. Consequently, B is treated as a

free parameter in this framework.

The numerical predictions for the ω→ π0γ∗ time-like transition form factor from Ref. [61]

is presented in the right panel of Fig. 1.9. The pole approximation from Equation 1.5 is

fitted to the average data of the Lepton-G, MAMI, and NA60 and shown as a dotted-

green curve. The obtained average Λ value of data is 0.676 GeV [27]. The predictions

for the B=1 and B≫1 are in perfect agreement with the Lepton-G [13] and NA60 mea-

surements [15]. However, the MAMI [28] data lies below both the predictions. For B=0,

predictions lie below the predictions for the B=1 and B≫1 as well as the data from Lepton-

G and NA60. On the other hand, predictions for B=0 aligns with the MAMI measurement in

all invariant mass ranges. Yet, the large uncertainty in MAMI data restrains to draw any con-

clusive remark. Nonetheless, the predictions for the (ρ, ω, φ) → πγ radiative decay widths

show that B≥1 is favored by the data, i.e., B≥1 is favored for the pion. Overall an excellent

agreement with the available data for the decay widths as well as the time-like transition

form factors in the low-momentum region has been observed. This approach supports the

idea that light pseudoscalar and vector mesons share a universal holographic light-front

wavefunction which is modified differently by dynamical spin effects [27].

1.7.8. Miscellaneous

In addition to the approaches discussed so far, Faessler et al. [62, 63] strives to describe

the ω−π transition form factor. The predictions from their calculations show good agree-

ment with the data up to ≈0.55 GeV/c2. The corresponding prediction is not shown here,

however, figure. 3 of Ref. [15] can be referred for the illustration. In a nutshell, their theoret-

ical computation is unable to describe the data from Refs. [12, 13, 14, 15] close to the upper

kinematical boundary, M≈mω−mπ0 . Moreover, the results from the MAMI group [28] agree

with the predictions within error, but their measurements are limited by the precision. An-

other theoretical approach in Ref. [64] has re-studied the transition form factors of the vector

mesons ρ,ω,φ with ρ−ω−φ in the tri-meson-mixing pattern. This is described by the tri-

mixing matrices in the light-cone constituent quark model. The limitation of this approach

is that the calculations are restricted to masses below ≈0.4 GeV/c2. Please refer to figure 5

of Ref. [64] for visualization.

1.8. Data with WASA-at-COSY

Hitherto, it has been seen that the data collected for the ω−π transition form factor during

the measurements by Lepton-G and NA60 are not described by the VMD. Despite, the data

from the MAMI experiment aligned with the VMD predictions within error, the inference

is inconclusive due to significantly large measurement error. Theoretical efforts are being

made to explain the dataset, using effective field theory calculations, dispersive analysis

based frameworks under different assumptions, model-independent calculations with Can-

terbury approximants, and using spin-improved holographic light-front wavefunctions for

mesons. All calculations show better results than VMD. Amongst them, the latest approach

using spin-improved holographic light-front wavefunctions for the mesons is in excellent
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agreement with the available NA60. Furthermore, the results from other theoretical frame-

works are in a reasonable agreement with the MAMI points within errors. These approaches

cannot completely account for the steep rise close to the end of the decay region in the

NA60 and Lepton-G measurements. However, as mentioned earlier, the interpretations from

the MAMI measurement are indecisive due to significantly larger total uncertainties. NA60,

despite having a sufficiently precise data, is unable to exclusively reconstruct the elemen-

tary decay products. Moreover, its entire analysis approach is based upon the Monte Carlo

simulations. These features are enabled in the WASA-at-COSY facility and it’s analysis ap-

proach. Which are the advantages for the WASA over NA60. In order to verify the position

of points on the higher invariant mass range, theoretical approaches strongly encourage more

experimental investigation of the ω Dalitz decay. More data from a different experimental

approach and analysis methods is helpful to verify the accurate position of data points in

different mass ranges and to have data points with smaller errors (better precision). The data

with WASA-at-COSY is using a completely different experimental approach of elementary

reactions, instead of heavy-ion collisions [12, 13, 14]. The WASA-at-COSY detector is ca-

pable of reconstructing the electrons. Therefore, e+e− pairs can be detected, giving access

to the full range of virtual photon mass (larger as well as smaller). It is also possible to re-

construct two photons from the π0 and hence the exclusive reconstruction of the decaying

meson (ω → π0e+e−) is possible.

Two test beam-times were proposed for near threshold ω meson production, using two re-

action mechanisms: proton beam on deuteron target pd → 3He ω (at 1.45 GeV and 1.50 GeV

kinetic energies) [65] and proton beam on proton target pp → pp ω (at 2.063 GeV kinetic

energy) [66]. Both methods are complementary and have different advantages and disad-

vantages. The focus of this work is based on the analysis of the data recorded using the

proton beam bombarded on deuteron target pd → 3Heω (at 1.45 GeV and 1.50 GeV kinetic

energies). Before approaching toward the search of the ω → π0e+e− event candidates, the

decay ω → π0γ will be analyzed as one of the reference channel and the branching ratio

will be established. This will also help to judge the quality of the data set and the analysis

procedure.
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The Wide Angle Shower Apparatus (WASA) was built by an international collabora-

tion and was first used at the CELSIUS (Cooling with Electrons and Storing of Ions

from the Uppsala Synchrotron) facility of the TSL (The Svedberg Laboratory, Uppsala

) in 1990 [67]. The WASA was installed at the COoler SYnchroton (COSY) facility at

Forschungszentrum Jülich, Germany [68] in 2006 and data has been taken since April 2007.

WASA has been designed to study the light mesons such as η and π0 near the production

threshold using pp and pd reactions. Its unique feature to detect charged as well as neu-

tral particles allows for the reconstruction of the full final state of the decaying meson. An

inclusive tagging of mesons is also possible using the missing mass technique.

2.1. The COoler SYnchroton (COSY) Facility

COSY is a COoler SYnchrotron and storage ring operated at Forschungszentrum Jülich,

Germany. The schematic view of the COSY accelerator complex is shown in Fig 2.1. The

two major components of the COSY are: the injector isochronous cyclotron and (unpolar-

ized and polarized) H− ion sources for the purpose of particle injection. The cooler syn-

chrotron has a circumference of 184 m and three extraction beam lines serving external

experimental areas [69, 70]. The COSY facility delivers polarized and unpolarized beams

of protons and deuterons in the momentum range of 270 MeV/c to 3.7 GeV/c.

Up to 1011 particles can be stored in the ring, yielding typical luminosities up to 1031

cm−2 s−1 for internal experiments with unpolarized beams and targets at COSY [71]. In

combination with the pellet target system of the WASA facility, luminosities of up to 1032

cm−2 s−1 are feasible [72].

At COSY, two cooling methods can be used during injection and the accumulation of the

beam to reduce the phase space volume: the electron cooling and the stochastic cooling. The

electron cooling can be used at the injection energies up to 38 MeV and the stochastic

cooling can be used over an energy range of 0.8−2.5 GeV [73, 74]. The beam cooling at

COSY results in a high momentum resolution up to δrms = (∆p/p)rms ≈ 1×10−4 [74].

The thick target of the WASA makes the above two cooling methods inadequate to

compensate for the energy loss, which is experienced by the particles with each rev-

olution. Therefore, the data for this beam time was taken in the barrier-bucket (BB)

mode. Where a radio-frequency cavity is used to overcome the mean energy loss of the

particles traversing the target by grouping the beam particles in the ring into a single

bunch [74]. The proton bunch in the barrier bucket mode occupies nearly the entire circum-

ference of the ring. This leads to a constant beam energy and constant rate of interactions

compared to the traditional bunched beam, where protons are grouped into smaller bunches

and some of the ring circumference is left empty.

The data for this beam time is taken at two beam kinetic energies 1.45 GeV and 1.50 GeV.

The two energies are chosen for the systematic studies of the background subtraction, which

will be explained in Chapter 5.
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Figure 2.1.: Floor plan of the COSY ring in the Research Center at Jülich (as of 2014). The inter-

nal and external experimental set-up are highlighted. The WASA detector is mounted

upstream of the electron cooler.

2.2. Wide Angle Shower Apparatus (WASA)

The WASA is a nearly 4π detector, installed in one of the straight sections of the COSY

storage ring [68]. A cross sectional view of the detector can be seen in Fig. 2.2. For both,

the cartesian (x,y,z) and the spherical (r,θ,φ) coordinate system, the origin is located in the

interaction point of the COSY beam and the pellet target. Both systems are based on a right-
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Figure 2.2.: Layout of the WASA detector at COSY with all sub-detectors labeled.

handed coordinate system with Z-axis parallel to the beam axis and the positive direction

as the beam direction. The axis opposite to the flow direction of the pellets is defined as the

positive y-axis. A normal to the beam line and pellet stream pointing out of the COSY ring

is defined as x-axis in the Cartesian system. The polar angle θ is measured from the positive

z-axis and has a range of 0 ≤ θ ≤ π. The angle of the vector’s projection on the x-y plane,

with the positive x-axis, is measured as the azimuthal angle φ for the spherical coordinate

system which has a range of 0 ≤ φ ≤ 2π. The x- and y-components of the beam momentum

vector are zero and every detector component is symmetric in φ. The following sections

provide a brief description of the pellet target system, Forward Detector components and

Central Detector components.

2.2.1. The Pellet Target System

The internal experiment WASA-at-COSY is specifically designed in such a fashion that a

clean detection of the decay products of the meson should be possible. Which comes with a

number of demands and strict constraints on the type of target system of the experiment. If

a thin target is used, lower luminosities would be achieved. Which in turn, will lead to the

collection of statistics insufficient to study rare meson decays. Thus, a low background (from

secondary beam target interactions) thick target is required to achieve desired luminosities

requisite for the high-statistics experiments. Being an internal experiment, the thick target

for the WASA-at-COSY will exhaust the beam very fast. This suggests that the target must

have the capability to turn on and off, as and when required. Additionally, a very thick target

increases the photon conversions in the target material. In order to satisfy these requirements,

the WASA-at-COSY experiment uses a high-density pellet stream of frozen hydrogen or

deuterium directed into the path of the beam at the rate maximum up to 10kHz [68, 75, 76]. It

is possible to achieve a luminosity of the order of 1032cm−2s−1 with the effective target
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Figure 2.3.: Left: Schematic view of the WASA-at-COSY Pellet Target System. Right: Schematic

representation of the beam and target interaction at the typical pellet rates. The original

idea is to get one pellet in the beam for the total time T (arbitrary), i.e., the rate is a

constant function of time. But it could only be achieved that there is a pellet in the

beam for the half time T/2 (upper panel) and a hole (no pellet in the beam) for the same

time T/2 (lower panel). The discrete spikes of the interactions can be seen as green

distribution, drawn arbitrarily.

thickness of ≥ 1015 atom/cm2.

The WASA-at-COSY pellet target system is situated directly above the interaction re-

gion. The left panel of Fig. 2.3 illustrates the components of the target system. The process

of pellet target preparation starts with cooling down the hydrogen or deuterium gas by a cold

head until it liquefies. The liquid gas is then pressed out through a liquid jet nozzle with an

opening of approximately 12µm in diameter, which is kept close to the triple point temper-

ature of the target gas. The liquid jet nozzle can be seen in the upper part of Fig. 2.3. The

liquid stream breaks into equally spaced droplets by a piezo-electrical transducer with a

frequency around 70 kHz. The droplets then pass through a vacuum chamber where they

get further cooled via evaporation. These droplets are completely frozen after a short dis-

tance in a vacuum, providing solid droplets with a diameter between 25 µm and 35 µm

called pellets. In the scattering chamber, the pellet beam has a size of 2−4 mm. After the

interaction with the proton ion beam of COSY, the pellets are deposited in the pellet beam

dump. Deuterium, as the target material, needs regular breaks in which the nozzle is heated

up to evaporate blockage caused due to frozen materials present in the form of impurities.

The data for the current studies is collected using a deuterium target and the description

of data taking is given in Section 2.3. Data taking was consisted of target regenerations after

every 48 hours integrated with 9 nozzle changes. The average pellet rate during the beam

time was between 2000 - 5000 pellets per second.

The pellet target influences the data analysis in two ways. Firstly, in the form of back-
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ground contributions from the evaporated gas and secondly due to several aspects related to

the structure of the pellet stream. The background which is produced from the evaporated

gas is a direct outcome of the evaporation of the pellets in the beam pipe. The evaporated gas

spreads in the beam pipe and has a probability to interact with the beam particles outside

the primary interaction point. Accordingly, these interactions will generate events outside

the primary vertex. The structure of the pellet stream affects the analysis because, at a typ-

ical rate, there is only one pellet in the beam for half the cycle time T/2. The scenario is

illustrated in the right panel of Fig. 2.3. Resultantly, interactions are seen in the form of

discrete spikes appearing at the time when single pellets transit the beam. However, there

is no rate for the subsequent half of the cycle time T/2. The time gaps when there is no

pellet in the beam can be filled by increasing the pellet rate. As an effect, the maximum

achievable luminosity directly depends on the pellet rate. Nevertheless, the maximum num-

ber of particles in the beam is limited by the instantaneous rate, which may already be at the

detector limit. Consequently, it is important that the impact due to systematic effects of high

luminosities must be taken care of during the analysis and these effects will be discussed in

Chapter 5.

2.2.2. The Forward Detector (FD)

The Forward Detector (FD) is designed for detection and identification of the scattered

and charged recoil particles like protons, deuterons and He nuclei in the polar angular range

from 3 to 18 degrees. The produced meson can be tagged via the missing mass technique,

which will be explained later in Chapter 4.

The Forward Detector consists of twelve planes of plastic scintillator sub-detectors pro-

viding energy and time information, and four layers of straw tube tracker used for the mea-

surement of angles up to the precision of 0.2◦. The signals of the plastic scintillators are

used on the trigger level, exploiting both energy and angular information.

Plastic scintillator counters are widely used for charged particle detection by ioniza-

tion. The mechanism for detecting ionizing radiation is via the transfer of the energy to

the detector material. An inevitable scenario of this detection method is that the charged

particle loses an undetectable amount of energy in inelastic collisions with the nucleus of

the detector material. These losses in energy are called nuclear losses and are present in

prominent amounts to affect the event selection in an unavoidable way. The influence of the

nuclear losses on the 3He identification will be seen in Chapter 4.

The individual components are described briefly in the succeeding subsections. More

detailed information about the Forward Detector can be found in [68].

2.2.2.1. Forward Window Counter (FWC)

The Forward Window Counter (FWC) is the first sub-system of the Forward Detector

along the beam direction. It is mounted on the conical stainless steel vacuum window of the

scattering chamber. The window counter has a double layer of the scintillator detector man-

ufactured from 3 mm thick BC408 plastic scintillator material, as shown in Fig. 2.4. Each

layer is divided into 24 elements individually read out photomultiplier tubes. The first

layer is inclined by 800 with respect to the beam axis. The second layer is perpendicular

to the beam axis and mounted in front of the supporting steel cross. The elements of the

second layer are shifted by half an element with respect to the first layer. Which results

in an effective granularity of 48 elements. 3He particles, having a relatively bigger energy

loss in FWC as compared to protons and pions, can be characterized effectively on the
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Figure 2.4.: Left picture: 2 layers of the Forward Window Counter. A quarter of the second layer,

as indicated by the green color, is removed to show the structure of the first layer. Right

picture: The Forward Window Counter, exploded view. Two separate layers of window

counter can be seen along with the intervening steel cross.

trigger level. The signal from the FWC, in coincidence with the azimuthal angle in the

subsequent detectors, is used in the first level trigger logic, which will be discussed in

Section 2.2.5. This trigger is effective to suppress the background from particles not

originating from the interaction region.

Figure 2.5.: A 3D view of the Forward Proportional Chamber to the left and an upstream view of

the Forward Proportional Chamber to the right. Some internal straws are removed to

illustrate the structure.
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2.2.2.2. Forward Proportional Chamber

The Forward Proportional Chamber (FPC) is a tracking device and is mounted directly

over the window counter. The detector consists of four modules and each module is

assembled from four layers of 122 proportional drift tubes (straws). Each 8 mm diameter

tube is synthesized from 26 µm thick aluminized Mylar foil and 20 µm stainless steel

sensing wire. The FPC is used for accurate reconstruction of track coordinates and precise

angular information of the particles. The modules are rotated by an azimuthal angle with

respect to each other. The first module is oriented by -450, the second module is oriented

by +450 to the beam axis. The third and fourth modules are aligned along the x and y

axis. The orientation of the four modules is illustrated in the left panel of Fig. 2.5 and

the orientation of the individual straw tubes is shown in the right panel of Fig. 2.5. The

FPC, with a geometrical overlap with FTH, improves the azimuthal and polar angles of the

reconstructed particle by a factor of two, as compared to using only the FTH pixel [72].

Figure 2.6.: The three layers of the Forward Trigger Hodoscope hit by two particles (left). The inter-

section of the elements defines pixels as indicated in the projection of the planes (right).

2.2.2.3. Forward Trigger Hodoscope

The Forward Trigger Hodoscope (FTH) is the third sub-detector installed downstream

after the proportional chamber. It is used for precise tracking and particle identification. The

FTH consists of three layers of BC408 plastic scintillators. Each layer has a thickness of

5 mm. There are 48 radial elements in the first layer. The second and the third layers are

divided into 24 elements shaped like an Archimedian spiral oriented in clockwise and

counter clockwise directions, respectively, as shown in Fig. 2.6. When a particle passes

through the detector, it will deposit energy in the elements of all three layers. Depending

on the unique geometric overlap between them, by combining at least two of the three

elements, a pixel is formed. The pixel with a constant angular size is used for resolving

multi-hit ambiguities. The combination of any two layers forms the special structure called

pixel structure, as shown in Fig. 2.6. A hit is the signal from a single detector element. The

trigger hodoscope is used in the first level trigger logic in a coincidence with the FWC and

the other sub-detectors. Consequently, provides the hit multiplicity as well as polar and

azimuthal angles on the trigger level. The FTH is used as the starting point for the offline

track reconstruction. Furthermore, it provides accurate timing information of ∼ 1 ns for
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reconstructed tracks. The FTH is used for identification of the recoil 3He particle(s) in the

Forward Detector via the ∆E−E method.

Figure 2.7.: The five layers of the forward range hodoscope consist of 24 elements each. This il-

lustration shows two protons interacting with the FRH with the activated elements col-

ored. Moreover, one proton passes through the FRH while the other stops in layer 4.

2.2.2.4. Forward Range Hodoscope

The Forward Range Hodoscope shown in Fig. 2.7 is the most important sub-detector

for the kinetic energy reconstruction and the identification of the particles. It consists of

five layers of thick plastic scintillator shaped like a cake piece. Which are installed directly

after the FTH contributing the most to the stopping power of the Forward Detector. Each

layer is assembled of 24 scintillator bars. The signal from each bar is read out individually

by XP2412 photomultiplier tubes. The first three layers have a thickness of 11 cm,

whereas the last two have a thickness of 15 cm. Together with the FWC and the FTH, it

is used in the trigger to check the track alignment in the azimuthal angle. The stopping

power of the Range Hodoscope for different particles is summarized in Table 2.1. It

is evident that the 3He has higher energy loss than proton, deuteron and pions, and can

be therefore distinguished from other particles during the analysis stage in the ∆E−E plot(s).

Particle Maximum Energy Deposited

π± 200 MeV

p 360 MeV

d 450 MeV
3He 1000 MeV
4He 1100 MeV

Table 2.1.: Stopping power of particles in forward range hodoscope.
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2.2.2.5. Other miscellaneous Components

In addition to the above mentioned sub-detectors, the FD consists of 3 more parts: For-

ward Range Intermediate (FRI), Forward Veto Hodoscope (FVH), Forward Range Absorber

(FRA) and some dead material intervening each sub-detector. The FRI is not used any-

more. The purpose of FVH and FRA is to serve as a veto for fast protons, which is not under

the scope of this work. A detailed description of FVH and FRI can be found in Ref. [77] and

Ref. [78], respectively.

2.2.3. The Central Detector (CD)

The Central Detector surrounds the scattering chamber and the point of interaction. It is

designed to detect and identify the decay products, i.e., γ, π± and e±, of the light mesons. It

covers the polar angular region between 200 and 1690. The CD provides almost 96% of the

4π geometrical acceptance for both charged and neutral particles.

The main components of the Central Detector are described briefly in the subsequent

subsections with a more detailed information that can be found in Ref. [68].

2.2.3.1. The Superconducting Solenoid - (SCS)

The Superconducting Solenoid (SCS) is positioned inside the calorimeter. The SCS has

a diameter of 554 mm and a length of 465 mm. It surrounds the thin Plastic Scintillator

Barrel (PSB) and the Mini Drift Chamber (MDC). This setup provides an axial magnetic

field of up to 1.3 T in the interaction region to measure the momentum of the tracks formed

in the Mini Drift Chamber. The magnetic field, for the beam time analyzed in this work,

is set to 1 T. The return path for the magnetic flux is provided by a yoke made out of soft

iron with low carbon content. The yoke shields the readout electronics from the magnetic

field while also serving as a support for the calorimeter crystals and directing the field

lines. The photomultipliers for the Scintillating Electromagnetic Calorimeter (SEC) are

accommodated outside of the iron yoke, connected through the light guides via the holes

excavated in the yoke. In this way the PMTs are not influenced by the magnetic field and

signals are sufficiently fast to be used for triggering. In order to allow for high accuracy of

the energy measurements in the calorimeter, the wall thickness of the aluminum wall in the

SCS is minimized to 16 mm. Which is as small as 0.18 radiation lengths. The magnetic

field strength is mapped with a Hall probe prior to installation and this map is used for

reconstruction and simulations. Detailed information about SCS can be found in Ref. [79].

2.2.3.2. The Mini Drift Chamber - (MDC)

The MDC is a cylindrical drift chamber placed around the beam pipe covering scattering

angles from 240 (the angle of the front end of the fifth layer) to 1590. It is used in the de-

termination of the charged particle momenta and the interaction vertex. The Drift Chamber

consists of 1738 drift tubes (straws) arranged in 17 cylindrical layers located between 41

and 203 mm of radii.

The straws in nine odd layers are parallel to the beam axis. They are used to reconstruct

the axial component of the helical path formed due to the propagation of the charged particle

in the drift chamber. The other eight even layers have been skewed by an acute angle (20 −
30) with respect to the z-axis in order to measure the z-component. These ‘stereo’ layers

form a hyperboloidal shape. These arrangements are 60 mm in diameter and assembled

around the thin-walled (1.2 mm) beryllium beam pipe, as shown in Fig. 2.8. A helix can be

reconstructed using at least three axial and two stereo straws. There are some inefficiencies
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Figure 2.8.: The fully assembled MDC inside Al-Be cylinder.

for particles at lower angles due to a significant number of defective straws.

When ionizing particles cross, free electron pairs are generated in the straw tubes along

the trajectory. By measuring the time that electrons need to reach the wire, a precise

reconstruction of the trajectory of a transversing particle and hence the closest approach of

the particle to the wire can be calculated. The achievable angular resolution of the scattering

angle for a charged particle in the Central Detector is ∼1.2◦. To minimize the amount

of structural material and hence to reduce the energy loss of particles and the external

conversion of photons, the MDC directly surrounds the beryllium (Z=4) beam pipe. For

the same reason, another vertical beryllium tube is used to accommodate the pellet target

stream. In order to take care of the particles traveling to the Forward Detector, a flange is

carved so that particles fly in a vacuum until they reach the exit window. Details about the

MDC can be found in Refs. [80, 81].

2.2.3.3. The Plastic Scintillator Barrel - (PSB)

The PSB is located inside the SCS and surrounds the MDC, as shown in Fig. 2.9. It is

consisting of 148 thin plastic scintillator elements. Fig. 2.9a shows the 3-D structure of the

central barrel of the PSB colored in blue embedded over the MDC colored in brown. The

PSB is, together with MDC and Scintillating Electromagnetic Calorimeter (SEC), used for

the identification of charged particles by the ∆E −P and ∆E −E methods, as illustrated in

Fig. 3.8. Moreover, it serves as a charged particle veto for the γ−identification. The plas-

tic scintillator barrel provides fast signals for the first level trigger logic. The sensitivity

towards charged particles makes it possible to be used in triggers, demanding a certain mul-

tiplicity of charged particles in the final state. The PSB provides a time reference to the

reconstructed MDC helices for the particle identification. Which substantially reduces the

contribution of the artifacts originating from the MDC helix-finding routine. The PSB and

SEC coincidences can also be used to identify charged particles, independent of the MDC.

The PSB consists of three parts, one cylindrical part, one forward end cap, and one

backward end cap. It is made from 8 mm thin BC-408 the plastic scintillator. The forward

and backward parts are assembled from 48 wedge shaped elements. The backward part of

the PSB is conical while the forward part is flat shaped and inclined perpendicular to the
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(a) Central Part of PSB over MDC. (b) Layout of one section of the PSB detector.

Figure 2.9.: (a) is a 3D view of the central part of the PSB in blue and the Mini Drift Chamber in

brown. The end-caps to fit the trapezoidal elements of the backward and forward parts

are shown. (b) is one fully equipped element. The central barrel wall is denoted by

A. The trapezoidal elements fitted in the forward and backward caps are indicated by B

and C, respectively. D represents the light guides (see Refs. [72, 82] for details).

beam axis. Both end caps, with 19 cm diameter at the forward end and 12 cm diameter at the

backward end, have a central hole in the beam pipe. The forward end cap is perpendicular

to the beam axis while the elements of the backward end cap are inclined by 300, forming

a conical surface. The cylindrical central part of the detector is 55 cm long and is split into

48 elements. One of the top and one of the bottom element of the central part is split in two

to accommodate the target stream at φ=900 and φ=2700, respectively. The scintillating bars

are arranged in a way that there is an overlap with the neighboring element by 6mm. Each

bar is attached to a photomultiplier tube (PMT) through an acrylic light guide. Fig. 2.9b

shows one section of the complete plastic barrel with both end caps, the barrel element,

and the light guides. The PMTs are placed outside of the iron yoke to shield them from the

magnetic field. Details of the Plastic Scintillator Barrel can be found in Ref. [80].

2.2.3.4. The Scintillating Electromagnetic Calorimeter - (SEC)

The SEC is the outermost sensitive part of the CD around the solenoid and is used to

detect the energy of charged and neutral particles [83]. It consists of 1020 sodium doped

cesium iodide (CsI(Na)) crystals shaped like truncated pyramids. The crystals are arranged

into 24 layers along the beam axis, as shown in Fig. 2.10a. These layers are divided into

three subsections:

• the central part (SECC): consists of 17 layers with 48 crystals each and covers

scattering angle from 360 -1500,

• the forward part (SECF): consists of 4 layers with 36 crystals each and covers scat-

tering angle from 200 −360, and

• the backward part (SECB): has 3 layers, two of them have 24 crystals and the

innermost layer near the COSY beam pipe has 12 crystals.
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(a) (b)

Figure 2.10.: Cross sectional view of the calorimeter. (a) is a 3-D illustration of calorimeter in-

dicating the positions of the PSB (plane brown area) and the MDC (brown hatched

area). The SECB is represented by the lateral side facing the reader with a beam pipe

opening. While the central cylindrical part is SECC. The SECF can be seen as the lat-

eral side with an opening for beam pipe where calorimeter ends seen along the blue

z-axis. The polar angle coverage, size and shape of the elements in each SEC layer

has been illustrated in (b). The shape, size and position of SECF and SECB elements

are more explicitly seen here as olive and citron colored strips. Whereas, while yellow

strips are the same illustration for the SECC. The number of elements in each layer is

given by the numbers at the top of the diagram (details can be found in Refs. [72, 82]).

1020 crystals in 24 layers are arranged in such a way that the central crystal is perpendic-

ular to the beam axis and inclination increases towards the forward and backward parts. The

lengths of the crystals are different for all the three parts of the SEC. For instance, the back-

ward part elements are the shortest (20 cm long), the forward part elements are 25 cm long

and the central part elements are the longest with 30 cm length. The crystal size is different

in the three parts. Fig. 2.10b shows the SEC with the number of layers, crystals, size and the

polar angle coverage. There are gaps between the different calorimeter sections for the PSB

light guides as well as for the pellet line. It covers a geometric acceptance of 20◦ < θ < 170◦

providing nearly 96% of the full solid angle coverage. However, this angular coverage ex-

cludes the gaps for the pellet tubes, PSB light guides, forward and backward openings of

the scattering chamber, liquid helium supply of the solenoid, and structural supports. Photo-

multiplier tubes placed outside of the iron yoke are connected to each trapezoidal crystal of

SEC (16 radiation length) using long plastic light guides. The use of the light guides enable

the PMTs operating outside the magnetic field. A fully equipped single calorimeter module

consists of a CsI crystal, a light guide, a PM tube and a high voltage unit, enclosed in a

special housing. More details on the construction and the design of the calorimeter can be

found in Ref. [83].

The calorimeter is sensitive for detecting the charged particles and photons. γ/e± in

the SEC produces an electromagnetic shower through a chain of pair production and

bremsstrahlung. The signal from the shower is detected by PMTs attached to each el-

ement. A single shower can laterally expand to several elements, therefore the position

of a shower is reconstructed as the weighted average of the contributing crystals. Where

32



2.2. Wide Angle Shower Apparatus (WASA)

the weight is a function of deposited energy in the corresponding element. A charged

hadron (π±), either produces a delayed hadronic shower at these energies via the decay

π± → µ±νµ(ν̄µ) → [ e± + νe(ν̄e) + νµ]νµ(ν̄µ) [84], or deposit energy via ionization. The

SEC can also detect the π± which are stopped in the SEC (see Ref. [84] for details). The

energy and angular information from the calorimeter are used for the reconstruction of

photons and charged particles. The energy resolution of SEC for photons is given as

∆E/E = 5%/
√

E(GeV ) and for stopped charged particles is 3%/
√

E(GeV ) [67, 68]. The

typical angular resolution is about 5 and 7.5 degrees in θ and φ, respectively. However, the

lower limit of angular resolution is defined by the crystal size.

2.2.4. Overview of the Data Acquisition System

The design of the Data Acquisition System (DAQ) is based on the third generation of DAQ

systems at COSY [85, 86]. This comprises new readout electronics based on an optimized

parallel bus with LVDS technology and FPGA-controlled event and buffer management. A

synchronization system and a high speed optical link to the readout computer. Several dif-

ferent digitization modules are used to deal with the differences in the signals from different

detector components [87]. The DAQ system is able to cope with the desired high luminosity

as well as with the long signal from the inorganic scintillator (SEC) and the shorter signal

from the plastic scintillators (Forward Detector and PSB) [86].

The DAQ system is structured into different layers. The signal from the different detector

components is received by the front-end electronics preamplifier, splitters and discrimina-

tors [86]. The front-end electronics is connected to the 14 crates of the digitizing layer

(ADCs and TDCs). Each digitizing crate is connected to the readout computer farm via an

optimized protocol over an optical link. Where an event is stored using the event builder. The

events from the event builder, at last, are written to the Redundant Array of Independent

Disks (RAID) system. The system runs in a mode in which the trigger is coming few µs

after the signal has been digitized. The temporarily stored data is split into 20-22 Gigabyte

files saved as ‘runs’ for practical purposes. The saved data files are then transferred from

the RAID arrays to the tape archive for long term storage. The DAQ allows count rates of

20k event/s [88]. A description and the performance of the DAQ system can be found in

Refs. [85, 86].

2.2.5. Trigger System

The WASA data acquisition system is capable of readout ∼20k events per sec-

ond [88]. The effective event rate can be reduced if only the appropriate events are saved. For

high luminosities (∼1032 cm−2 s−1), the event rate exceeds beyond the data acquisition

limit, resulting in some dead time of the DAQ. In these cases, a substantial reduction of the

event rate becomes necessary. In order to achieve this, a sophisticated set of conditions per-

forming an on-line selection of relevant event is required. Such a set of conditions is called

‘trigger’. A trigger selects the significant events before they are written to disk to reduce the

data rate [88], using the well discriminated information from each detector.

The trigger conditions are specified using the multiplicities as well as space and time

coincidences of different detectors. The information from each scintillating detector has al-

ready been discriminated before reaching the trigger system. To restrict the signals emerging

from particular particle types, specific triggers can be confined to processing higher or lower

energy signals by varying the thresholds on the discriminator levels.
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The trigger operates on fast plastic scintillator detectors such as PSB, FTH, FWC

and FRH is based on a set of hit multiplicity, geometrical coincidences and time co-

incidences. This information is combined in the cluster multiplicities within each sub-

detector. The cluster is considered to be formed by combining the adjacent hits within the

time coincidence of 15 ns for thin scintillators (PSB, FTH and FWC) and 20 ns for thick

scintillators (FRH) [88]. The conditions on the kinematics of the desired particles can also

be used to reduce the huge background left after constraining hit multiplicity. The kinematic

conditions will control the angular and energy distribution of the events and hence reduce the

crude background in a considerable amount. The background originating due to the particles

coming far off the interaction region, cannot be dealt with using only hit multiplicities and it

becomes important to use additional conditions on spatial information. In such cases, track

matching is done on the trigger level, which cleans up the event rate to a good extent. Track

matching involves the angular matching of the clusters in different layers of detectors orig-

inating due to the same particles. The trigger will show response if there are hits in FTH,

FRH and one of the layers of FWC at the same time and within the same φ value. Such a

trigger is named as “ matching trigger ”.

The matching trigger used during data taking for the pd → 3He ω reaction employs the

unique signature of the 3He ion in the Forward Detector. As mentioned previously, 3He

can easily be distinguished from protons and pions on trigger level, due to the relatively

higher energy loss of 3He particle in FWC. The background in the form of pion, proton

and deuteron is mainly due to the physics of the pd reaction. These byproducts lie below

the 3He band (see Fig. 3.7) and are rejected in a substantial amount during data taking by

setting proper thresholds in FWC, FTH and FRH. This is done by requiring the software

based high thresholds over the energy deposited in the different components of the Forward

Detector. The trigger for this beam time has already selected the 3He particle and saved the

events with at least one 3He particle. For which, the trigger performed a check on the angular

information (φ), between the modules of the FTH, FRH and FWC. Hits are assigned on the

same trajectory if hits in the consecutive detectors are at the same azimuthal angle. Any hit

in the first layer of the FTH issued a trigger signal if it is in coincidence with hits in one of

the two layers of the FWC and a hit in the first layer of the FRH. At least one element with

the signal above the high threshold with the matching condition is required. No additional

decay biased trigger is required because a strong rate reduction is observed using 3He based

trigger. The efficiency of the 3He trigger for this beam time is found to be close to 99%. The

trigger efficiencies of the matching conditions for different cases are discussed in Ref. [89].

The trigger deployed over slower detectors such as SEC uses a quickly calculated de-

posited energy sum and clusters multiplicity [88]. A cluster in the SEC is defined as a group

of hits in adjacent elements, having at least one common edge. The 16-channel discrimina-

tors units are used for each digitized signal for the cluster multiplicity trigger system and

for TDCs [88]. The output of the discriminator is provided as the analog sum of the sig-

nal provided from each channel. This output can again be summed in an external common

module to deliver the total-deposited-energy at the trigger level. A piece of more detailed

information about the WASA trigger system can be found in Ref. [88].

More than one trigger condition can be used during the experiment. Each condition is a

set of basic requirements on several detectors, combined with logical operator AND. There

is a possibility that the event rate for one trigger is higher than the data acquisition limit. The

particular trigger can be pre-scaled by a factor, so that only a part of the events satisfying

the condition will be recorded. For example, if a trigger is pre-scaled to 20, it means every

20th event satisfying the trigger condition will be saved in DAQ. The trigger rates are con-
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tinuously monitored and stored as a separate event once every second, which can later be

used during analysis.

2.3. Experiment Conditions during ω Production

The data used for this work was collected using the reaction pd → 3He ω at two different

proton beam energies, Tp = 1.45 and 1.5 GeV during Spring 2011. The beam time is almost

equally divided between the two beam energies. The proposed beam time [65] was for 4

weeks in total, but effectively ≈ 20 TB of raw data could be acquired on the disk during

a time span of ≈ 13 days. More than 50% of the beam time was lost because of the pellet

target regeneration and nozzle changes due to blockage.

Along with the pd data set, few runs for the pp → pp π0 reaction at beam kinetic energy

Tp=400 MeV were also recorded. The main purpose of these runs was to gain monitoring

and calibration of the Electromagnetic Scintillator Calorimeter, which will be discussed in

Section 3.5.1.

A separate dataset was acquired using a proton beam and a proton target (pp → pp ω)

at 2.063 GeV beam kinetic energy [66]. The production cross section of the proton-proton

reaction is larger than the proton-deuteron reaction. It was expected that the pp → pp ω
data should be able to serve for high statistics for the rare ω decays, which are not possible

to study with the same amount of the pd → 3He ω data. The main purpose of both beam-

times is to check the feasibility of the ω−π transition form factor of the Dalitz decay with

WASA-at-COSY. The idea was to first develop an analysis procedure for the ω decays using

the pdω data and then apply it to the ppω data.

The production of ω mesons using pd reaction is preferred for this study over the pp

reaction due to various advantages. Although the production cross section for the pd →
3He ω reaction at 1.45 GeV beam kinetic energy is (83.6±1.5±2.2) nb [90], while for the

pp→ pp ω reaction at 2.063 GeV is (5.7±0.6±0.8±0.9) µb [91]. The drawback of the small

cross sections for the pd induced reaction is compensated by the following aspects:

• 3He can easily be identified by their energy loss in the Forward Detector at the trigger

level. Trigger conditions are discussed in Section 2.2.5.

• A smaller boost compared to the pp induced reaction for the decaying meson increases

the acceptance in the Central Detector.
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Calibration and Run Information

The event reconstruction is the process where digitized information from each sub-

detector is stored on the hard disk after the event building, which is further translated to the

kinematic information of the particle for physics analysis. The event reconstruction consists

of three steps calibration, track reconstruction and energy reconstruction, and particle iden-

tification. The comparison with the simulations also goes simultaneously. In this chapter,

the tools used for the event reconstruction in addition to the process of event reconstruction

are described. Furthermore, the run information about the data set useful for this study is

discussed.

3.1. Analysis Tools

Figure 3.1.: Flow chart of the event reconstruction.

The complete analysis chain is comprised of a number of intermediate steps. The flow

chart of the analysis chain used in this work is given in Fig. 3.1. The time and energy

information from the individual detector elements are combined into hit objects and stored

in the object classes named hit banks. The simulated data is generated using a Monte Carlo

simulation tool for hadronic physics named PLUTO [92]. The PLUTO generated events

are processed through the GEometry ANd Tracking (GEANT) based WASA Monte Carlo

simulation software [93]. The output of the experimental data and the simulated data, then
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passes through the WASA RootSorter framework [94]. The ROOT software [95] framework

is used as a visualization tool, developed in the European Organization for Nuclear Research

(CERN) [96]. The basic description of the PLUTO event generator, WASA Monte Carlo,

and WASA Root Sorter are given in the succeeding paragraphs.

3.1.1. The PLUTO Event Generator

PLUTO is a ROOT based Monte Carlo event generator designed for hadronic interactions

from pion production threshold to intermediate energies of a few GeV per nucleon and to

study the heavy ion reactions [92]. The package has been designed within the HADES col-

laboration [97]. The input beam and target particles, the final state products and the beam

momentum are defined by the user. PLUTO produces the kinematic values of the final state

particles by generating the events satisfying the energy and momentum conservation con-

straint. The events generated by PLUTO are the “true Monte Carlo” events. PLUTO will

sample an isotropic phase space distribution using the algorithm as in the GENBOD rou-

tine from the CERNLIB software package [98]. If the generated phase space distribution is

not adequate to describe the data, PLUTO is capable of incorporating the relevant physics

models. These models can be added by the user, which have been implemented for the sim-

ulations used for this study.
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Figure 3.2.: The PLUTO acceptance for the recoil 3He particle using the pd → 3He ω reaction. The

distribution of the 3He polar angle θ in lab frame θLAB
3He

as a function of the 3He polar

angle in the center of mass frame θCM
3He

is shown. The lower limit of the forward detector

acceptance is indicated by the red line. The blue-cyan-green palette is the distribution

for 1.45 GeV and the violet-yellow palette shows the distribution for 1.50 GeV.

The prominent multi pion background contributions pd → 3He π+π−π0, pd → 3He π+π−,

pd → 3He π0π0π0 and pd → 3He π0π0 have been generated using PLUTO, where an equal

populated phase space distribution is used. To generate the resonance reactions, where un-

stable particles ω, ρ, η and π0 mesons are produced, mass dependent Breit Wigner sampling

is used. Wherein the total and partial widths of the resonance are calculated recursively in

a coupled-channel approach [92]. The production cross sections of the ω meson, η meson,

direct π+π−π0, direct π0π0π0 and direct π0π0 are known at current energy [90, 99, 100]. The

cross section of the direct π+π− production, π0 meson production and ρ meson production

are not known at current energy, but known on other energies [101, 102, 103, 104]. For the ω
meson production, the angular dependence of the production cross-section has been exper-
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3. Event Reconstruction, Detector Calibration and Run Information

imentally measured in Ref. [90] and implemented in the simulations. The decays ω → π0γ
and ω → π+π− are simulated with the flat phase space. To describe the mass dependence of

the decay width, a form factor is implemented in the Dalitz decay ω → π0e+e−. The dilep-

ton pair is generated with a mass distribution based on the Quantum Electrodynamics (QED)

calculations for a point-like particle, as shown in Equation 1.8. The implemented form fac-

tor is as in Equation 1.8, where the characteristic mass Λω = 0.65 GeV. In the ω → π+π−π0

decay, the distribution of the final state particles are based on the matrix elements calculated

in Ref. [105]. The matrix elements have been implemented for the decays η → π+π−π0

and η → γπ+π−, based on the parameterization of the Dalitz plot distributions measured in

Ref. [106] and Ref. [107], respectively. The η → γγ, π0 → γγ and the ρ → π+π− decays are

simulated with a flat phase space.

The kinematics of the 3He particles in the ω production reaction (i.e. pd → 3He ω) are

studied using the event generator. The scattering angle in the center of mass frame (θCM
3He

) has

been plotted against the scattering angle in the laboratory frame (θLAB
3He

) in Fig. 3.2. The scat-

tering angle in the laboratory frame has a maximum limit up to ≈10◦ for 1.45 GeV and ≈12◦

for 1.50 GeV. Both are within the detector acceptance in the forward direction (3◦−18◦). The

lower limit of the detector acceptance is shown as a red dashed line at θLAB
3He

=3◦. Fig. 3.2

shows that 96% of the phase space for 1.50 GeV and 95% for 1.45 GeV is within the de-

tector acceptance in the forward direction. The scattering angle in the laboratory frame for

each particle, e+, e− and γ, in the central detector is limited to 20−169◦. The geometrical

acceptance after including the decay products ω → γγγ, is 71% for 1.45 GeV and 72% for

1.50 GeV. However, the total geometrical acceptance for the ω → π0e+e− decay is 68% and

70% for 1.45 GeV and 1.50 GeV, respectively.

3.1.2. WASA MONTE CARLO

The PLUTO simulated kinematic data is tracked for each particle through the defined vol-

umes of detectors from their interaction point. This is done using a GEANT (Ref. [93]) based

detector modeling software package called Wasa Monte Carlo (WMC). A virtual model of

the WASA detector is set up using the properties of both sensitive detectors and passive sup-

port material. To study the response of the detector for single particle tracks, the information

can also be generated internally in WMC. The output from the WASA Monte Carlo frame-

work is the “reconstructed Monte Carlo” data. The output data from the WMC are saved in

a format similar to the experimental data.

3.1.3. WASA ROOT SORTER

The simulated data is analyzed with the RootSorter analogue to the experimental

data. RootSorter is a ROOT data analysis framework based data reconstruction and analysis

package developed by members of the COSY-ANKE Collaboration [94]. The RootSorter

is a part of the WASA program library and is used to decode and reconstruct both the ex-

perimental as well as simulated data. The kinematic variables θ, φ and the kinetic energy

are obtained by reconstructing the digitized signals from the experimental data and the MC

simulated data within the RootSorter framework. In addition, the initial four-momenta of

particles delivered by the event generator are also retraced.
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3.2. The Track Reconstruction

3.2.1. The Forward Detector

Track Assignment

A track is the trajectory of the particle inside the detector using the corresponding hit in-

formation. A signal from a single detector element is called a “hit”. Individual hits in time

coincidence are combined to form a cluster. The angular information and time of a cluster are

estimated as an average of the corresponding information of the contributing hits [72]. The

energy of a cluster is calculated by summing up the deposited energies in the individual

elements. When more than one adjacent element gets hit, they are treated as part of the

cluster.

The clusters are merged to form a track. The merging is done by considering the geomet-

ric overlap of the hit elements and the coincidence timing. Clusters in different detectors

with a tolerance of ±1 element within φ coincidences are assigned to the tracks. Depending

on the azimuthal angle overlap, the time difference, and a minimum amount of deposit

energy, the routine searches for overlap between the clusters formed in the FWC, FRH, and

FVH. To resolve the ambiguities due to multiple hits, the minimum time difference between

the track and the cluster is selected.

Track Reconstruction

The reconstruction procedure provides the four-vector of a particle that involves the θ, φ and

energy calculation. The track reconstruction routine of charged particles in the FD searches

for a geometrical overlap between the clusters in all three layers of the FTH. The overlapping

elements form pixels, which define the θ and φ of the track, assuming the vertex position is

at the interaction point. The angular and time information of FTH is assigned to the track

if at least two layers of FTH have hits within time coincidence. The angular information is

refined by using information from the FPC. The energy of a track is calculated by summing

the energies in the FRH layers, if hits in the FRH are in geometrical and time coincidences

with hits in the FTH.

The simulations are used to reconstruct the kinetic energy of the particles in the

FRH. The kinetic energy is calculated in the backward direction via the Bethe-Bloch equa-

tion [39, 108], by using the information from the stopped particle, until the initial kinetic

energy of the particle is achieved. However, as a consequence of the quenching effect and

other energy losses in the active and passive material, the original kinetic energy will al-

ways be more than the sum of energy deposited in all detectors of FD. The quenching is the

group of all radiationless de-excitation modes which do not produce scintillating light, but

degrade mainly to heat. These quenching effects, in addition to all types of energy losses,

have been taken care of by introducing the correction parameters. These parameters have

been implemented in the framework of WASA by calculating individual energy deposit to

kinetic energy (Edep → Ekin) tabulated parameters, using the Monte Carlo (MC) simulations

for each particle type of known angle and energy. The Edep → Ekin translation is obtained by

plotting the distribution of the relative difference of the reconstructed deposited energy and

the initial kinetic energy as a function of deposited energy in specific detector layers. The re-

sulting distributions are fitted with exponential functions and higher order polynomials. One

such plot is shown in Fig. 3.3 to illustrate the parameterization used for the reconstruction

of protons [78]. The fit parameters are deployed in the Edep → Ekin translation and thus, the

kinetic energy reconstruction for the experimental data.
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3. Event Reconstruction, Detector Calibration and Run Information

The kinetic energy of 3He particle is determined from the specific (Edep → Ekin) tables

based on the measured angles, energy loss pattern and the layer number where the particle is

stopped. The particular tables for kinetic energy reconstruction have been chosen by deter-

mining the particle type, which is done using the particle identification methods presented in

Section 3.3.1. Most of the 3He particles for the ω meson production reaction at the current

beam energies are stopped in the second layer of FRH. The conversion parameter set exists

for the 3He particle. However, for the current pd → 3He ω data set, these parameters are

able to translate the energy deposited to the kinetic energy up to the third layer of FRH. For

the 3He data set, which is a part of this study, a further fine-tuning of these parameters is

required to match the simulations and data. A more detailed description of the fine tuning

process has been discussed in Refs. [109, 110].

Figure 3.3.: The relative energy difference (Ekin − Edep)/Edep is plotted as a function of the de-

posited energy Edep for the Monte Carlo simulations of proton tracks of kinetic energies

ranged 0-1 GeV [78]. The lower branches represent the stopped particles while the

punch through particles are labeled as “PT”. The black graphs represent the parameter-

ization of the respective bands.

The relationship between deposited energy and the initial kinetic energy (True kinetic

energy) for the simulated 3He particles is shown in the left panel of Fig 3.4. The 3He par-

ticle stopping in different layers of the FRH can be seen as clear structures on the his-

togram. There is no separate structure seen for the 5th layer of the FRH because the par-

ticles stopped in the FRH5 are not distinguished from particles passing through the whole

detector. The reconstructed kinetic energy as a function of the true kinetic energy is shown

in the right panel of Fig 3.4 for the simulated 3He tracks. The 3He particles stopping in

inactive material between the layers can be seen as kinks and the purple background is the

nuclear interactions. The energy in the inactive material is lost and these losses cannot be

corrected. The energy reconstruction for the particles stopping in the inactive material is

done by considering that they are stopping in the previous plane. The resolution of the 3He

kinetic energy worsens for 3He at high energies. Since 3He particles in the pd → 3He ω re-

action at current beam energies acquire a kinetic energy up to 1.0 GeV, it is not a significant

problem here.
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Figure 3.4.: (a) The relationship between true kinetic energy and energy deposited in the FRH for

simulated single track of 3He, for energy between 200 MeV and 1.50 GeV and θ ranged

from 0◦ to 20◦. (b) True versus reconstructed kinetic energy for the same simulated

tracks.

3.2.2. The Central Detector

The Central Detector consists of three different types of detectors. Each of these detectors

has a different procedure to identify hits from the same particle. The hit information is

finally combined to reconstruct the particle track. The procedures are described in the

following subsections for each detector.

Calorimeter (SEC)

An electromagnetic shower is produced when γ or e± is incident on the calorimeter. The

number of crystals responding within the shower depends on the initial energy of the photon

and the properties of the crystal material. The shower and hence the incident photon is

reconstructed by identifying the crystals, where the shower belongs, via the nearest neighbor

search.

< < <

Figure 3.5.: A schematic drawing of the cluster finding algorithm of the SEC. The boxes represent

the individual SEC modules. The white boxes are the SEC elements with the energy

deposit less than 2 MeV while the colored boxes are the crystals with an energy deposit

larger than 2 MeV. The two areas formed by colored boxes represent two reconstructed

clusters formed when two photons hit the calorimeter. These two clusters are separated

by a minimum distance of four elements from each other.
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The cluster finding algorithm, as elaborated in Ref. [111], loops over all hits in the

calorimeter to reconstruct the photon cluster. A single cluster is defined as a group of hits

that surrounds at least one non-hit element. The hit with the maximum energy deposit, above

5 MeV, is assigned as the central hit. The hits in any neighboring crystal having a time differ-

ence smaller than 50ns with respect to the central hit and with a minimum energy of 2MeV

are assigned to the cluster [111]. A simplified version of the cluster finding algorithm in the

calorimeter is illustrated in Fig. 3.5. The sum of the energy deposited by each hit defines the

energy of the cluster. A cluster above 20 MeV is considered for track reconstruction. This

is necessary to reject the low-energy background. The position of a cluster is determined by

the weighted sum of the position of each element, which is estimated using Equation 3.1

and Equation 3.2 [111, 112, 113]. It is for this reason that the position resolution of the re-

constructed cluster has better precision than the SEC element granularity. 5 degrees in θ and

7.5 degrees in φ is the geometrical coverage for a single element of the SEC. The position

resolution for the photon in SEC varies with cluster energy and position. It has an average 2◦

standard deviation in θ and φ with respect to the true value. The cluster position is defined

by taking the mean value of the individual positions

~X =
∑i wi~xi

∑i wi
, (3.1)

where the weights depend on the deposited energy

wi = MAX {0,W0+ ln
Ei

∑i Ei
}, (3.2)

where ~xi is the position vector from the origin to the center of the crystal i and Ei is the

energy of ith cluster. The parameter W0 has the value 5 [111].

Plastic Scintillator Barrel (PSB)

The cluster finding algorithm in the PSB assigns a new cluster for the highest energetic hit

above the minimum energy deposited Emin = 0.5 MeV. It further searches for a suitable hit

above Emin but less than the highest energetic hit within 10 ns time difference [72]. This

process continues until another hit with higher energy deposit is found. This is repeated

until all hits in the PSB are considered. The hit in the cluster with the highest energy deposit

is the central hit. The time information is calculated as an average of the contributing

hits. The energy of the central hit is assigned as the energy deposit of the cluster. Each plane

of PSB has a single value for the polar angle θ, which is 30◦ for the forward part, 90◦ for the

central part, and 140◦ for the backward part. The azimuthal angle φ of a cluster is an average

of the φ of constituent elements. Clusters with not more than three elements are consid-

ered and saved into the cluster bank, which will later be used during the track finding routine.

Mini Drift Chamber (MDC)

The track reconstruction involves the reconstruction of the momentum and direction of the

charged particles. The charged particles in MDC follow the helical path under the influence

of the magnetic field (B̃) by SCS, as shown in Fig. 3.6. The angles θ and Φ0, and the momen-

tum (P̃) are obtained from the direction of the helical path using the Lorentz relation. The

helical trajectories of a charged particle in the MDC are reconstructed in two steps, Pattern

Recognition (PR) and Track Fitting (TF) [80].

The helix recognition is done by identifying the hit pattern, assuming that the MDC has
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0
Y

X

Z

Figure 3.6.: A schematic drawing of the trajectory of the charged particle reconstructed by the pat-

tern recognition as a helix (arbitrarily chosen) with axis parallel to the Z-axis of the

WASA coordinate system. The radius r of the helix and the transverse momentum P̃

of the particle in the X-Y-plane is shown as the blue line and purple arrow, respec-

tively. The polar angle Φ0 describes the relative orientation of the helix center (xc, yc)

and coordinate center. The angle θ is the angle between a vector tangent to the helix and

the z-axis. These parameters are determined by MDC during helix reconstruction.

a homogeneous magnetic field along the z-direction. The hit straws belonging to the same

helix are grouped together, and the first step estimation of helix parameters is done. The

detailed description of the helix parameterization can be found in Refs. [80, 84]. The PR

method is based on a global minimization procedure, which is done in two stages. The first

stage forms the axial tracklets by fitting the circles formed by projecting the hit coordinates

onto the XY-plane to the hits in the axial MDC tubes. The second stage combines the axial

tracklets with the inclined tubes to complete the 3-D helices. The plane of a track is defined

by using a combination of the origin and hit in at least two stereo straws. The homogeneous

magnetic field assumption helps here to produce a single and smooth helix. The pattern

recognition algorithm is attempting to find the best fit for any number of tracks to the array

of the MDC hits [114].

A single helix is used for each track in the pattern recognition. The track parameters are

calculated from the helix parameters described above. For which the value of the magnetic

field is determined from the magnetic field map described in Ref. [68]. Consecutively, the

momentum of the charged particle is determined. The magnitude of the momentum is given

by the Lorentz relation by using the helix parameters. For a more accurate determination of

the track parameters, a Kalman filter [115, 116] is used. The track fitting takes care of the

measurement errors and physical effects such as energy loss in the detector material, multi-

ple Coulomb scattering, and the magnetic field inhomogeneity. The tracks are traced back to

their origin from the outer layer of MDC by using a full fitting algorithm. This mapping is
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done in discrete steps. At each step, the helix parameters are recalculated based on the last

step prediction. The errors from the helix and drift distance are taken into account at each

step. For the first hit, the helix parameters from the PR are used with estimated errors. Ac-

cordingly, with these newly calculated helix parameters, a new helix is constructed. The

parameters from this new helix are used as initial parameters for the next step. This process

continues until the center point or origin is reached.

In this analysis, the main goal is to distinguish electrons and pions. In the initial stage

of the analysis, all particles are identified by default as pions. The tracks belonging to the

electrons are re-fitted to achieve the precision in the track parameters after using the particle

identification method.

3.2.2.1. Track Assignment

The clusters produced by the same particle in MDC, PSB and SEC are matched and

assigned as one track by a track finding algorithm. The track reconstruction algorithm is

optimized by taking the combination of the trajectories of the particle in the individual

detectors. The combinations are listed in Table 3.1. Eight different categories are contem-

plated based on the different combinations to identify a particle as charged or neutral. The

algorithm is based on the propagation of the reconstructed MDC helix outward through the

rest of the detectors.

Charged tracks are assigned by matching the position of the MDC helix with PSB

and SEC clusters. To ensure that the SEC and MDC clusters are stemming from the same

particles, the maximum matching angle between the SEC clusters and MDC tracklets

is 20 in the default setting. A detailed description can be found in Ref. [72]. To have a

valid charged track, there must always be a cluster in the MDC with or without including

information from one or both of the other two detectors.

Neutral tracks in the central detectors are assigned as the clusters in the SEC, which

are not in positional coincidence with the MDC helix, i.e., 20◦. The momentum vectors, as

defined in Equation 3.1, originate at the primary interaction vertex and point towards the

center of the SEC cluster. These vectors are assigned as the photon candidates. Neutrons

have a detection efficiency of less than 10% [117].

Based on these algorithms, all possible tracks are identified as charged tracks or neu-

trals. If the clusters in the calorimeter do not correlate with the MDC and PSB clusters, they

are assigned to neutral tracks.

Combination Track information

MDC, PSB, SEC charged track, punching through the calorimeter,

registered in all detectors

MDC, PSB charged track, stopped in PSB or the solenoid

MDC, SEC charged track, not detected in PSB

PSB, SEC charged track, not detected in MDC

MDC charged track, stopped in MDC

PSB charged track, stopped in PSB, not detected in MDC

SEC neutral track

Table 3.1.: A list of possible hit combinations in the sub-detectors of the Central Detector that result

in tracks [72].
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3.3. Particle Identification Method
3.3.1. The Forward Detector for 3He Identification

Each detector has a unique method of identifying particles using the characteristic sig-

nature left in the passage through the material. For example, charged particles should be

discriminated from neutrals. In neutral particles, neutrons and photons should be discrimi-

nated. Correspondingly, pion, proton, deuterons, 3He and 4He have to be separated among

the charged particles. Although neutrons can be reconstructed by particles from secondary

interactions in the FD, it is mainly used to reconstruct charged particles. The FD particle

identification procedure used in this analysis is based on the specific energy loss described

by the Bethe equation [39, 108]. Due to the different masses of the particles, the deposited

energy and stopping power of the detectors allows to clearly separate them. This method is

called the ∆E−∆E technique. Fig. 3.7 illustrates the ∆E−∆E technique used in FD for the

MC simulation of energetically equally distributed single tracks of various particles. These

single track simulations do not include the nuclear interactions of the particles with the pas-

sive material of the detector. Consequently, a clear separation between the different charged

particles can be identified. A graphical cut can be used to select and separate the individual

bands for the desired particle species. It is possible to substantially reduce the background

from the other hadronic-nuclear interactions and nuclear losses by using a graphical cut.
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Figure 3.7.: MC simulation showing the ∆E−∆E method used in the FD particle identification. The

energy deposited in the first layer of the FTH is plotted as a function of the energy

deposited in the first layer of the FRH. The single tracks of the particles isotropi-

cally distributed in φ within the detector acceptance range for θ from 3◦ to 18◦ are

shown. The energy range of the generated single tracks of the 3He particles is between

0 and 1000 MeV; positrons and photons between 0 and 100 MeV; deuterons, protons

and pions are 0−450 MeV, 0−360 MeV and 0−200 MeV, respectively. Each particle

type has a characteristic band.

3.3.2. The Central Detector for e±, π± and γ Identification

The neutral particles in the CD are reconstructed and treated as photons. For the charged

particles, two different correlations are used to separate leptons, pions, and protons, as

demonstrated in Fig. 3.8. A good discrimination between the electrons and pions as well

as between the negative and positive charged particles are seen. Both the PSB and SEC

information can be used for particle identification.
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(a) (b)

Figure 3.8.: (a) is the Energy loss in the PSB as a function of the signed momentum from the

MDC. However, the energy deposited in the SEC as a function of signed momentum

from the MDC has been shown in (b). The plots are taken from Refs. [72, 84]. Both

histograms are the simulation of the isotropic single tracks of e± and π±.

3.4. Preselection

Preselection is a set of conditions employed to reduce to a subset of relevant events from

the raw data using the reaction and the decay specific conditions. Even though the majority

of the background is filtered out at the trigger level, these background contributions are still

present in a large amount. The goal of the preselection is to decrease file size and com-

puting time. The preselection is done by using the distinctive features of the 3He particles

identified in the forward direction. To select 3He particles, the ∆E-∆E method described in

Section 3.3.1 is used. The events with one 3He track are saved as a subset of the initial data

set and are the relevant candidates for the pd→3He X reaction [110]. The reconstruction

efficiency of the selection criteria is 94%, which includes the detector acceptance discussed

in Section 3.1.1 and the track reconstruction efficiency in the forward detector. The prese-

lection suppressed the backgrounds from protons and deuterons in the forward detector. The

presorted data are almost 15% of the initial data. After preselection, the process of the de-

tector calibration is described in the subsequent section.

3.5. Energy Calibration

3.5.1. Scintillating Electromagnetic Calorimeter

The calibration procedure of the SEC is to optimize the reconstruction of photons. The

initial calibration constants, carried out after the detector was brought from Uppsala, are ob-

tained from the study of cosmic ray µ [83]. The existing calibration constants are obtained

from the previous η meson beam time, and are derived using the photons from the neutral

pion decay π0 → γγ. The calibration data are a dedicated data set collected for the reaction

pp → ppπ0 at 400 MeV beam kinetic energy. This is the energy near π0 production thresh-

old and is the ideal candidate for the calibration purposes. At this energy: 1. a clean π0

peak is obtained, 2. photons will be distributed isotropically and offer better statistics in all

modules, 3. because of the high pion rate, a few hours of data taking is sufficient.

The energy calibration constants kis are generated for each module ith by selecting two
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Figure 3.9.: The black histogram represents the invariant mass of two neutral crystals in the SEC

for module 529 after deploying existing calibration constants. The small hump around

0.010 MeV/c2 is the consequence of the combinations where both SEC clusters are the

wrongly reconstructed low energy photons called split-offs, which will be discussed in

Section 4.2.1. The data are fitted with the combined function of asymmetric Gaussian

(Novosibirsk) and a polynomial. The combinatorics in addition to the π0 peak are fitted

with the green polynomial. These combinatorics are coming from the combinations of

wrongly reconstructed photons that do not belong to the same event. p0 and p2 are the

peak position and σ obtained from the fit.

neutral clusters in the SEC under the clean condition of the π0 production data. These con-

stants lead to an energy correction per element as Ei → Ei.ki. The 2γ invariant mass, which

is used as the monitoring spectra and for the gain correction, has been assigned to the central

crystal. The invariant mass is

Mγ1γ2
=

√

(Eγ1
+Eγ2

)2 −|( ~Pγ1
+ ~Pγ2

)|2 =
√

2Eγ1
Eγ2

(1− cosθ1,2)∼
√

Eγ1
Eγ2

(3.3)

where Eγ1
,Eγ2

and ~Pγ1
, ~Pγ2

are the energies and momenta of the photons. θ1,2 is the opening

angle between γ1 and γ2. As an example, the invariant mass Mγ1γ2
for one of the modules is

shown in Fig. 3.9. Mγ1γ2
distribution is fitted with a combined Novosibirsk and polynomial

function to extract the peak position. The Novosibirsk function N(x) is a Gaussian with a

logarithmic tail providing a good description of the 2γ invariant mass distribution [118],

N(x) = A exp

[−(β)2

τ2
− τ2

2

]

where, β = ln(1+Λτ(x− x0)) ; Λ =
sinh

(

τ
√

ln4
)

Στ
√

ln4
.

(3.4)

The function has four free parameters: ‘A’ is the amplitude, ‘τ’ is the tail parameter, ‘Σ’ is

the width, and ‘x0’ is the peak position. The tail for the π0 distribution is negative. The

Novosibirsk function fitted in the peak range characterizes the peak shape. However, the

polynomial describes the background.

The peak position of the fitted function is at (0.1365 ± 0.0004) GeV/c2, i.e., not at the

correct pion mass 0.135 GeV/c2. Simultaneously, the peak positions for all modules are de-
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Figure 3.10.: The peak positions from the fitted function for all modules are plotted for the pp →
ppπ0 data at 400 MeV. The y-axis represents the peak position and the x-axis is the

SEC module number. The black points are the peak positions using initial calibra-

tion constants and the red points are the peak positions using updated calibration con-

stants. The green line is the constant fit. The fit parameters (average values) are listed

in the legends in the respective colors. The standard deviations (σ) are estimated with

Equation 3.5, as χ2/nd f >> 1.

termined and plotted as black points in Fig. 3.10. The crystals from the left, middle and right

regions of the histogram belong to the backward, central and forward part of the SEC. The

spread in the peak positions is larger in the backward and the forward part of the calorime-

ter. This is related to the detector geometry as well as to the statistics in those parts. The

different crystal sizes in these parts, the lower granularity of the calorimeter crystals in the

back part, and an exit cone in the forward part significantly worsen the accuracy of the recon-

struction. Moreover, the insufficient statistics in the forward and the backward part makes

it more uncertain to determine the peak position in these parts. However, the situation is

worse in the backward part due to the forward boost. The larger fit error in these parts is the

consequence of the low statistics.

The average peak position obtained by a constant fit to the distribution in Fig. 3.10 is

0.1364 GeV/c2. χ2/nd f >> 1 indicates that the fit error does not represent the actual un-

certainty in the distribution, but it is underestimated. Therefore, the uncertainty of the fit

parameter is estimated as the standard deviation (σ) of the distribution

σ =

√

1

N −1

N

∑
i=1

(X(i)− p0)2, (3.5)

where N is the total number of measurements. The σ of the black distribution is

0.0005 GeV/c2, as listed in Fig. 3.10. This average peak position (0.1364 ±0.0005) GeV/c2

indicates that the 2γ invariant mass with existing calibration is off from the π0 meson

mass. Consequently, a global calibration correction factor κg, global for all detectors, is

introduced for gain correction. Wherein it is assumed that for each module the influence of
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the other 1019 modules to the invariant mass of that module is leveling out [119]. The factor

κg is

κg =
Mπ0

M
Avg
γγ

, (3.6)

where M
Avg
γγ is the peak position of the 2 photon invariant mass integrated over all 1020

modules. The difference between the real π0 mass and the actual one is assigned solely to

the particular ith detector module, for which the 2γ invariant mass is plotted. In this case, the

gain is corrected according to

ki = k0
i ×
(

Mπ0

Mi
γγ

)n

×κg , (3.7)

where k0
i is old gain constant and ki is the new gain constant for ith module. n is the order

of the Mπ0 and Mi
γγ function. Considering the invariant mass is proportional to the square

root of the energy of each photon, a quadratic function is used in the first place followed by

a linear hypothesis. This is done to avoid gain overcorrection (biased) in one direction. The

gain correction is done iteratively, until a stable and precise peak position is obtained at

the correct π0 mass. The final results of updated calibration constants are illustrated as the

red points in Fig. 3.10. Evidently, the precision of measurement is improved and the peak

position is stabilized, i.e., the spread over the crystals is reduced. The average peak position

(0.1351 ± 0.0001) GeV/c2, as shown in the legend, is at the correct π0 mass. The error σ
in the peak position is determined using Equation 3.5 as the fit error is underestimated, i.e.,

χ2/nd f >> 1.

The peak position and the precision are cross checked for the higher energetic photons

in the pd → 3He ω (pdω) beam time, where the π0 distribution integrated over modules is

studied run wise under the pd → 3He π+π−π0 hypothesis. This is done because it is one of

the prominent background reactions for the proton-deuteron collision at the current energies

(Appendix C.1). Moreover, it has a single π0 in the final state. Resultantly, this reaction

will have the cleanest π0 distribution. The resolution (FWHM) and peak position of the

fitted function for the pdω beam time are plotted in the top and bottom panels of Fig. 3.11,

respectively.

The percentage gain in resolution over peak position (σ/peak-position) is 12% for the pdω
data. In this case, the peak position is shifted at the smaller value (0.1295 ± 0.0012) GeV/c2

with the updated constants. These shifts arise because higher energetic photons in the pdω
data have different energy distribution than the 400 MeV pp → ppπ0 data. Which implies

that the approximation Mγ1γ2 ∼
√

Eγ1Eγ2 of the algorithm does work differently. Addition-

ally, the time-dependent inconsistencies, mainly due to the temperature dependent long-term

drifts of the gain, can also be seen over the run period. Both the incorrect position of the π0

peak and the time dependent fluctuations are corrected by applying the run wise global cor-

rection factor.

The correction is named global because the gain in each run period is corrected by em-

ploying a single constant for all 1020 elements. The global correction factor kG is extracted

for each run as a ratio of the 2γ invariant mass Mγγ peak position and the π0 rest mass Mπ0 . kG

for rth run is

kr
G =

Mγγ
r

Mπ0

(3.8)
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Figure 3.11.: The y-axis of (a) represents the full width half maximum (FWHM) obtained from the

fit with the fit error. The x-axis is the run number. The variation of the peak position

with the fit error over the run period is shown in (b). The magenta and the red distri-

butions are the comparisons between updated calibration constants and updated cali-

bration constants with global correction, respectively. The green lines are the constant

fits. The fit parameters are tabulated in the legends and highlighted in the respective

colors. Considering χ2/nd f >> 1 and << 1, the standard deviation (σ) is the esti-

mated uncertainty from Equation 3.5.

kGs for all runs are extracted with the updated calibration constants. The data after

global corrections are plotted as magenta points in Fig. 3.11. The average peak posi-

tion (0.1352 ± 0.0004) GeV/c2 is at the correct π0 mass and time dependent incon-

sistencies are substantially improved after global corrections. The average value for the

FWHM is (39.2±1.8) MeV. However, the percentage gain in resolution remained unchanged
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12%. Nevertheless, the aim to obtain a stable and precise peak position at π0 rest mass is

achieved.
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Figure 3.12.: The x-axis of the left column represents the signed momentum (Momentum×Charge)

and the y-axis is the deposited energy in the Plastic Scintillator. The total energy de-

posited in the 30th element of the central layer, by the homogeneously distributed

isotropic single track of π−, is shown in the top left panel. The corresponding data

distribution with updated calibration constants is plotted in the bottom left panel. The

projections of both histograms for the minimum ionizing pion, below the black dashed

line at -350 MeV/c momentum, are plotted in the top right panel. The solid histogram

is the Monte Carlo and dashed is the data. The red curve is the Landau function fitted

to the projections. The peak positions for the two histograms are listed in the bottom

right panel. The ratio of two, as listed in the bottom right panel, is nearly 1. Which is

an indication of a reasonable calibration.

3.5.2. Plastic Scintillators

The calibration procedure for the PSB consists of two steps: energy calibration and non-

uniformity correction. The description of the plastic scintillator calibration can be found

in Ref. [72] and Ref. [84]. As a first step, the constants to convert the measured energy

deposited from the QDC units to MeV are determined. The energy loss of a charged particle

in a thin plastic scintillator is described by the Bethe-Bloch-Equation, which is a function

of the incident kinetic energy of the particle, the path length of the particle through the

material, and the properties of the scintillating material. The fluctuations of the energy loss

by the ionization of a charged particle were theoretically described by Landau [120]. This

description ends with a universal asymmetric probability density function. Considering the

dependence of the path length of a particle on the scattering angle theta, the deposited energy

by the minimum ionizing particles (MIPs) is corrected for the path length for all theta values

in the second step. This step is called the non-uniformity correction.

The path length correction is necessary as the signal generated by the particle has to prop-

agate through the elements to the light-guides at the upstream end. Correspondingly, the
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signal is attenuated by the time it arrives to the readout end. The deposited energy of such

particles have been rectified for the path length for all values of θ and calibrated deposited

energy. The change in the peak position is related to the polar angle by an exponential form

Ecorrected = Eoriginal.exp [−(θ−θr)/C], where C is the non-uniformity correction constant

and θr is a constant reference angle. These constants are determined by fitting the expo-

nential function to the deposited energy of minimum-ionizing pions versus the polar angle

distribution of the data. The non-uniformity correction and the initial calibration constants

employed in this study are determined in Ref. [84].
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Figure 3.13.: An illustration of the mean of the deposited energy as a function of the PSB ele-

ments. The mean values are the peak positions of the Landau fits. The errors shown

are statistical obtained from the fit. The black points are the data after new calibration

and the red points are the Monte Carlo results. The mean values of the Monte Carlo

simulation and data are in agreement.

The process of calibration for this work demanded a fine tuning of the initial calibration

constants with the goal of having the peak positions for the data and MC simulation at the

same point. This is accomplished by comparing the energy deposit in the PSB for each

reconstructed MDC signed momentum (momentum×charged) of the data and Monte Carlo,

as shown in Fig. 3.12. The data distribution represents the path length corrected energy loss

per unit path length in the PSB. Clearly, the distribution is dominated by the pions, as only a

single band is visible. Simultaneously, the Monte Carlo simulated isotropic π− tracks with

the kinetic energy ranged from 10 MeV to 1000 MeV are utilized as a reference for the

calibration fine tuning. The π-mesons are MIPs and lose a constant amount of energy above

250 MeV/c. Subsequently, the projection of energy deposited in the PSB, left from the black

dashed line at -350 MeV/c signed momentum, is plotted in the upper right panel of Fig. 3.12

for the data and simulations. Both the distributions are fitted with a Landau function [120]

to extract the peak positions and resolutions.

The updated calibration constants are determined to match the position of the data peak

with simulations. The updated calibration constant C
updated
i for ith element is derived from
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the initial constant Cinitial
i for the same ith element as

C
updated
i = Cinitial

i × PMC
i

Pdata
i

, (3.9)

where Pdata
i and PMC

i are the peak positions for ith element in the data and Monte Carlo,

respectively. An illustrative plot to demonstrate the calibration of element 30 in the central

layer of the PSB is presented in the top right panel of Fig. 3.12. A comparison between

the peak positions of the simulation and the calibrated data is shown. The ratio of two peak

positions (MP
DP

=
PMC

i

Pdata
i

), as shown in the bottom right panel of Fig. 3.12, is nearly 1. This is

an indication of a stable calibration. Similarly, the peak positions for all 150 PSB elements

are extracted and populated in Fig 3.13. The errors shown are from the fits. The black points

are the calibrated data and the red points are simulations. The large spread in the backward

part is due to the lack of statistics, which makes it more difficult to locate the peak po-

sition. Moreover, most of the decay products in the data have the forward boost and pass

through the central and the forward part of the PSB. The Monte Carlo distribution in these

parts has been populated by simulating the isotropic single tracks. Regardless, the peak po-

sitions for the data and Monte Carlo are in agreement within errors for all elements of the

PSB. Hence, the goal of the calibration is achieved.

E
v
e
n

ts
 /

 b
in

Figure 3.14.: Example distributions for the drift time calibration for one layer in MDC. The figure is

taken from Ref. [110]. The distribution of -0.13.TDCtube-T0 for data is shown as black

points in the left panel. The data are fitted with a Fermi function to the determined

offset. The right spectrum is the integral of the left spectrum along with the range

indicated by the vertical lines [110].

3.5.3. Mini Drift Chamber

The calibration of the MDC improves the positional information called drift distance by

using the time information called drift time. The time taken by the cascade to reach the

anode wire is called the drift time. Which is about 100-200 ns depending on the radius of

the straw [84]. The time from the PSB is used as the start time for the drift time calcula-

tion. The closest approach of a cascade to reach the wire within the drift time is called the

drift distance. It is determined by measuring the drift time using distance-time relation. The

MDC calibration, which consists of two steps, is performed before the helix reconstruction.
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As a first step, the relative offsets between various straws and between times from different

TDC modules are corrected. This is done by determining the position of the rising edge of

the hit distribution with respect to the PSB time when the cascade reaches the anode of each

straw, as shown in the left panel of Fig. 3.14 [109]. In the second step, a range around the

distribution is defined, corresponding to the range of the possible drift times. Such a range is

shown as a blue window in the right panel of Fig. 3.14 for respective time values shown on

the left panel [109]. The smallest time belongs to the particle passing near the anode while

the largest time belongs to the particle passing near the tube surface. This time window

is mapped to the possible drift distance values. This information is used in the calibration

routine on the hit level. The detailed description of the calibration procedure for MDC is

discussed in Ref. [84]. The MDC calibration for this data set is done and can be found in

Refs. [109, 110].
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Figure 3.15.: Deposited energy in the first layer of FRH as a function of the deposited energy in

the second layer of FRH is shown in the left and middle panels. The simulations af-

ter matching to the data are plotted in the left panel. The middle panel represents the

measured data. The red dashed lines indicate the range in the second layer of FRH

(0.11 GeV−0.15 GeV), for which the deposited energy in the first layer of FRH is

projected. The projection for the Monte Carlo simulation and the experimental mea-

surement is plotted in the right panel as blue and red histograms, respectively. The

black distribution is the Gaussian function fitted to projections. The fit parameters are

arranged in the legends highlighted in the respective colors.

3.6. Data and Monte Carlo matching

To compare simulated events with the experimental data and have optimized efficiencies,

the simulated events must show the same performance for each detector component as for

the data. The data and the Monte Carlo (MC) simulation are matched using a procedure

developed for WASA. This package provides means to modify the detector response in the

Monte Carlo according to the experimental data. The procedure of matching the Monte

Carlo response to the data is referred to as smearing in this thesis and the related parame-

ters as smearing parameters. Each detector has a separate smearing parameter that defines

the detector behavior, describing the particle properties such as energy and time on the hit

level. Both the peak position and width of the particle property can be varied.

The Monte Carlo resolution of the energy deposit in each layer of the forward detec-

tor is matched with the measurement by employing the relative Gaussian smearing to the

deposited energy E as

E = E ×Random Gauss(1,σsmear−rel), (3.10)

where Random Gauss is a random generator, which samples a random number from the
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Figure 3.16.: The black points represent the resolution of the energy deposit σ(Edep) in the first

layer of FRH as a function of the smearing parameters σ(E)/
√

E for the energy deposit

in FRH 2 between 0.11 GeV and 0.15 GeV. The Monte Carlo simulations for the

pd→ 3Heω → 3Heπ0γ reaction have been used to generate the distribution. The red

curve represents a linear fit to the black points. The y-intercept of the blue horizontal

line represents the resolution of experimental measurement (σ = 0.0082 GeV ). The

corresponding parameter σ(E)/
√

E = 0.025 is shown as the x-intercept of the blue

vertical line.

Layer Resolution

σdata (MeV) σMC (MeV)

FWC1 0.7344 ± 0.0068 0.6812 ± 0.0024

FWC2 0.6463 ± 0.0040 0.6545 ± 0.0020

FTH1 0.8903 ± 0.0047 0.8606 ± 0.0029

FTH2 1.7323 ± 0.0120 1.6673 ± 0.0110

FTH3 1.9859 ± 0.0186 1.8557 ± 0.0162

FRH1 8.2107 ± 0.1253 8.2403 ± 0.2978

FRH2 18.9576 ± 0.1171 18.6171 ± 0.1370

Table 3.2.: The σ of the energy deposit for the data and simulation in different layers of the forward

detector are listed after relative smearing.

standard Gaussian Distribution with mean value 1 and resolution σsmear−rel . The user con-

trolled parameter σsmear−rel is tuned to smear the Monte Carlo simulation for a detector

component. The parameter σsmear−rel is the relative energy resolution σ(E)/
√

E. The dif-

ferent resolution of the corresponding detector layer is achieved for different σsmear−rel val-

ues. To identify the σsmear−rel value corresponding to the resolution of the experimental

data, the resolution for a range of σsmear−rel is determined. For which the deposited energies

of simulated and measured 3He particles in various FD layers are plotted as a function of

the deposited energy in the consecutive layer. Subsequently, the projection over the energy

deposited in one layer for the different energy ranges of the other layer is fitted with the

Gaussian function and σ is determined. One such illustration for the first layer of FRH is

shown in Fig. 3.15, where the simulation is plotted after applying the final smearing param-

eter σ(E)/
√

E. This is accomplished by fitting the resolution of the Gaussian fit for differ-

ent values of the parameter σ(E)/
√

E, as illustrated in Fig. 3.16. The accurate value for the

smearing parameter σ(E)/
√

E corresponding the measured data, as highlighted in Fig. 3.16,

is 0.025. The effect of the obtained smearing parameter is demonstrated in Fig. 3.15, where

Monte Carlo has a resolution close to the measurement. Likewise, the smearing parame-
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ters for other layers of FD are obtained. The σ for the simulation is in agreement with the

measurement for all layers of the forward detector, as evidenced in Table 3.2.
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Figure 3.17.: The background-subtracted distribution of the 2γ invariant mass is shown. The red

histogram is the data at 1.50 GeV. The blue histogram is the Monte Carlo simulation

using pd→ 3Heπ+π−π0 reaction. The simulation shown is the result after the match-

ing procedure. The dashed distributions are the asymmetric Gaussian (Novosibirsk)

fit. The fit parameters are shown in the legends.

The calibrated data and the simulation are matched for the SEC using the combined per-

formance and acceptance of all subsystems. Wherein, a single smearing parameter is used

for all detectors of the calorimeter. The resolution of the π0 peak in the Monte Carlo simu-

lation is modified using a relative Gaussian smearing, as described for the FD. The desired

value of the smearing parameter σ(E)/
√

E corresponding to the resolution in the measure-

ment is obtained. The simulated data for the reaction pd → 3He π+π−π0 describe the mea-

surement in terms of peak position and resolution, as shown in Fig. 3.17. Minor discrepan-

cies in the line shape around the tails are due to the background subtraction. In a nutshell,

the peak positions and resolutions of the data and Monte Carlo are close to each other.

The smearing of the PSB is done iteratively following the same procedure as described

for the FD. Where the relative root mean square value of the energy resolution is provided

as input. Herein each of the 150 PSB elements has a separate smearing parameter. The σ of

the smearing result is shown in Fig. 3.18a. Evidently, the simulation describes well the data

within errors.

The simulation of MDC is conformed with the data according to the time resolution of a

single drift tube, that is accomplished by smearing the spatial resolution for drift distance

on the hit level. The residuals of the drift distance are used as a monitoring parameter. The

residual is the difference between the fitted and measured distance. Ideally, the residuals

should be zero if there are no systematic shifts, which is observed in the form of a prominent

peak near zero. 17 different parameters are deployed to match the Monte Carlo simulations

of 17 MDC layers with the data. These parameters are derived iteratively as obtained for

FD. The width of the residual of the drift distance for the smeared Monte Carlo and data is

extracted and compared in Fig. 3.18b for all layers. The comparison is quantified in terms of

the absolute difference between the resolution of the smeared Monte Carlo simulations and

measurements |σMC −σDATA|, as demonstrated in Fig. 3.18b. Furthermore, |σMC −σDATA|
distribution is fitted with a constant function. The uncertainty in the fit parameter is estimated

from Equation 3.5 as χ2/nd f >> 1. The attained value of the fit parameter (0.06±0.05) is

close to 0. This indicates that the peak widths of the smeared Monte Carlo are in good

agreement with the calibrated data for all the MDC layers.
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Figure 3.18.: The mean and σ of the Landau fit for different PSB elements are plotted in (a). How-

ever, (b) represents the σ of the Lorentzian peak as a function of the MDC layer num-

ber. The black points are the data after applying updated calibration constants and the

red points are Monte Carlo simulation after the matching procedure. The absolute dif-

ference in the data and the Monte Carlo resolutions (|σMC −σDATA|) in the MDC is

plotted as blue points. The absolute difference is fitted with the blue dashed constant

function. The parameter of the constant fit, as listed in the legend, is valued at 0.

3.7. Run Information

The pd → 3He ω experiment was run with 126 s long cycle structure. In the 126 s cy-

cle, the data is accepted only in the flat top period. When the beam is accelerated to the

desired energy and stored in the ring, the flat top period starts. 1.4 s after beam acceleration,

the high voltages of the detectors (CD, FD, MDC and FPC) are ramped up to the normal

operation level. At the cycle time of 5.5 s, the pellet vacuum shutters open and the data

acquisition starts. The pellet vacuum shutters closed at 116 s to block the pellet, till the flat

top of the next cycle is reached. The high voltages ramp down at 116 s, before the beam is

dumped, to protect the wire chamber and photomultiplier tubes from high current. Fig. 3.19

is an illustration of the scaler readout for a cycle during data collection. A detailed graph-

ical description of a single cycle structure can be found in Fig. 3.20. The duty cycle of

DAQ is around 88.5%. However, the average livetime of the data acquisition is estimated

to be 82%. That is the ratio of input trigger and accepted trigger signals (DAQ livetime =
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 mV)410×BCT(
TR_In
TR_acc
Pellet

)­310×TR17 (

Figure 3.19.: Scaler display for several cycles of the experiment. The x-axis is the clock time during

a run. The time for each of the three cycles shown in the plot is 126 seconds. The black

curve is beam intensity provided by a beam current transformer (BCT), downscaled

by a factor of 10000. The castleton green line is the pellet rate. The blue curve is the

rate of the experimental trigger called input trigger (TR In) which includes all triggers

shown on the display except black, castleton green, and red lines. The red curve is the

trigger accepted by the data acquisition called trigger accepted (TR acc). The sky blue

curve is trigger 17, which is a measure of the luminosity. Other curves are the rates for

the other input triggers, which will not be discussed here. The rate of all trigger rates

is given in s−1.

TR In/TR acc) measured at different time instances during the data taking.

Figure 3.20.: The detailed structure of a cycle during the pd → 3He ω beam time.

The total run time for the full beam is the sum of the time of individual runs, which is

estimated to be 205.1 hours. The values are arranged in Table 3.3. Considering the duty

cycle of 88.5% and DAQ lifetime of 82.0%, the effective time for data taking (TR) is 148.83

hours, as shown in Table 3.3. The effective time of the run (TR) is used to estimate the

average luminosity and will be discussed in Section 4.1.2.

The luminosity is an important feature and must be studied in an experiment given how

it affects the data analysis at higher values, which will be discussed in a systematic way in

Section 5.2.2. The luminosity achieved can be monitored via Trigger 17 called “luminos-

ity trigger”. Trigger 17 is a measure of the pd scattering events during the experiment. It
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3.7. Run Information

1.45 GeV 1.50 GeV Entire data

Total Time of data taking 105.08 hours 100 hours 205.08 hours

Duty Cycle 88.5%

DAQ life time 82%

Time of data taking TR 76.26 hours 72.57 hours 148.83 hours

Table 3.3.: An estimation of the effective time of the data taking.

sends a signal if both the central and forward layers of PSB have at least one hit above

thresholds. This trigger gives the luminosity measure in terms of the total event rate per sec-

ond. However, the events are not distributed uniformly but appear in discrete spikes when-

ever individual pellets are passing through the proton beam, as demonstrated in Fig. 2.3. In

addition, the pellet rate fluctuates throughout the beam time with an average value between

2,000 and 8,000 pellets per second. To account for these effects, an instantaneous event rate

is derived when the pellet traverses the beam. This instantaneous rate is the ratio of the lumi-

nosity rate to the pellet rate “TR17/Pellet rate”. More details about this factor can be found

in Ref. [84].
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Figure 3.21.: The pellet rate and the Trigger 17 rate are plotted in the left panel as red and dark

green histograms, respectively. The dashed, dotted and the solid lines are the corre-

sponding distributions for the rates averaged over the runs at 1.45 GeV, 1.50 GeV and

for the combined data set. The right panel represents the instantaneous luminosity

factor “TR17/Pellet rate” combined for all the runs.

The factor “TR17/Pellet rate”, which is the relative measure of the instantaneous lumi-

nosity, is used for this work. The instantaneous luminosity can be estimated by combining

the relative measure with a conversion factor, which is derived from the trigger simula-

tions and known attributes of the pellet target. It is clearly seen in Fig. 3.19 that the trigger

rates and hence the relative measure of the luminosity vary over the cycle. The luminos-

ity is varied due to various factors, such as the fractional fluctuations in the beam current

and the pellet target variations due to the temperature. The luminosity trigger, pellet rate,

and the instantaneous luminosity measure have been averaged over the beam time and plot-

ted in Fig. 3.21. Clearly, the values of the most probable instantaneous luminosities mea-

sure are ≈150 pellet−1 for 1.45 GeV, ≈130 pellet−1 and ≈220 pellet−1 for 1.50 GeV and

≈150 pellet−1 for the entire data set.
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The analysis starts with selecting the pd → 3He ω final state by identifying 3He particles

using the particle identification method described in the previous chapter. Followed by the

selection of the Central Detector tracks specific to the ω decay. Specific conditions are used

to suppress the background coming from different reactions and other ω decays.

In the reaction pd → 3He ω, the ω meson is tagged via the missing mass derived from

the initial and final state particles p, d and 3He. The missing mass, which is the effective

mass of the system, is the difference of the square of the missing energy and the missing

momentum of the system. The missing mass (MM3He), which is used to tag the ω meson, is

derived from the scattered 3He particle and can be expressed as

MM2
3He

=
(

Ep +Ed −E3He

)2 −
(

~Pp+~Pd −~P3He

)2

, (4.1)

where Ep, Ed and E3He are the energies of the proton beam, target deuteron and the 3He

and ~Pp, ~Pd and ~P3He are their momenta, respectively. In an event where an ω meson is

produced, MM3He should correspond to the ω meson mass. This missing mass is independent

of the decay mode of the ω and depends only on the measurement of the 3He particles. The

missing mass without a decay specific selection in the Central Detector is called inclusive

for this study. As an example, in the final state pd → 3He ω, the ω meson is reconstructed

inclusively. Whereas, when the ω meson is tagged with additional decay specific constraints

in the Central Detector, the missing mass is called exclusive. For instance, the decays ω →
π0γ and ω→ e+e−π0 are the candidates of the exclusive final state. In the following sections,

the analysis steps used to select ω decay channels are presented.

4.1. pd → 3He ω Final State Reconstruction

In order to reconstruct the pd → 3He ω inclusive final state, the 3He track in the forward

direction is identified using the method described in Section 3.3.1.

4.1.1. 3He Selection

The initial selection of the 3He candidates starts from the threshold-based trigger level

and further selection is made during the preselection, as discussed in Section 3.4. The dedi-

cated calibration constants are mentioned in [110]. In order to have a realistic Monte Carlo

efficiency, the threshold and the trigger conditions used during the experiment are mimicked

and applied to the simulated data.

The ∆E-∆E distributions, as used for the preselection in Section 3.4, are plotted for the

Monte Carlo simulation of the pd → 3He ω(ω → π0γ) reaction and preselected data in

Fig. 4.1a and Fig. 4.1b, respectively. In the data distribution, a 3He band is seen along

with residual background contributions. This background mostly constitutes of protons and
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Figure 4.1.: Particle identification plot for 3He particles. The energy deposited in the first layer of

the forward range hodoscope (FRH1) as a function of energy deposited in the first layer

of forward trigger hodoscope (FTH1) is plotted in the top row. (a) represent the Monte

Carlo simulations and (b) is data. The missing mass of 3He particles using Equation 4.1

is plotted in (c) for two energies. The peak at the ω meson mass 0.7827 GeV/c2 sitting

on top of a continuous background.

deuterons originating from the elastic scattering, quasi-elastic scattering and breakup reac-

tions. The boundary around the 3He band is enhanced due to the graphical cut used during

preselection (Section 3.4). The loci around the deposited energy of 0.015 GeV in FTH 1 and

0.02 GeV in FRH1, and the deposited energy of 0.005 GeV in FTH 1 and 0.16 GeV in FRH1

correspond to the minimum ionizing protons and deuterons that fall into the graphical cut

implemented for the preselection. Although, the latter structure includes contributions from

the low energy protons and deuterons satisfying the preselection condition. It has been ob-

served in simulations that the high energy 3He particles lose a remarkable amount of energy

due to nuclear interactions with the detector material.

The graphical cut to select 3He particles is optimized by choosing the best cut window

from the available selection choices. The cut optimization aims to achieve the maximum

possible signal and minimum possible background content. For this purpose, a quantity

called significance (S) is defined. S gives the measure of the statistical power to observe the

signal and provides the number of standard deviations the signal is away from zero [121].

S =
Ns

σ(Ns)
=

Ns√
Ns +Nb

, (4.2)

where Ns is the number of observed signal events in the ω peak, σ(Ns) is the uncertainty in
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Ns, and Nb is the number of events in the remaining background. The numbers Ns and Nb

have been obtained by fitting the 3He particles missing mass distribution (Equation 4.1). The

fitting procedure will be discussed later in Section 4.1.2.

Significance less than 3 means that the statistical power is not sufficient to observe the

signal. On the other hand, significance between 3 and 5 means that the signal is close to

be observed, while its value larger than 5 would mean that signal will be observed. In a

nutshell, the significance is a qualitative instrument that allows to monitor and quantify the

signal quality.
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Figure 4.2.: A comparison between the efficiencies of the signal decay ω→ π0γ and the backgrounds

at each step of the analysis. The labels on the x-axis are various analysis conditions

and the y-axis represents the corresponding efficiency. The explicit values for each cut

are listed in Appendix. E.1. Evidently, the signal to background ratio has improved

significantly at each step of the analysis.

For cut optimization, the significance and the overall reconstruction efficiency (ε) are

optimized simultaneously, as explained in Appendix B.1. The reconstruction efficiency (ε)

is defined as,

ε =
Numbers of events survived the selection criteria

Total number of simulated events
=

N

N0
. (4.3)

The overall reconstruction efficiency is the product of the geometric acceptance, the intrinsic

efficiency of the detector and the reconstruction efficiency of the analysis algorithms. The in-

trinsic efficiency is defined as the fraction of particles impinging on the detector that interacts
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4.1. pd → 3He ω Final State Reconstruction

with it to produce detector signals. The geometric limitation of the detector is determined

from the output of the event generator, as discussed in Section 3.1.

The selection to choose 3He particles for this analysis is indicated on the Monte Carlo and

data distributions in Fig. 4.1. The corresponding reconstruction efficiency εinc is 84.65% for

1.45 GeV and 86.71% for 1.50 GeV beam energy, as shown in Fig. 4.2. The selection has

the statistical significance value of 61 and 66 for 1.45 GeV and 1.50 GeV, respectively. Fur-

ther details are given in Appendix B.1. The smaller significance for 1.45 GeV data set as

compared to 1.50 GeV can be explained with the fact that the cross section for ω production

is comparable at both energies, while the multi pion production cross section is larger at

1.45 GeV [90, 99]. The events from the residual background contributions will be rejected

at the later stages of the analysis.

The kinetic energy of the 3He particle is reconstructed using the scattering angle θ and

the deposited energy, as described in Section 3.2.1. The back to back decay of the two-body
3He-ω final state in the center of mass frame is no longer the same in the lab frame. The

trajectories and energies of 3He particles and ω mesons are correlated in the lab frame. In

order to see this correlation for 3He particle, the scattering angle as a function of the kinetic

energy is plotted in Fig. 4.3. Owing to the kinematic constraint, the 3He particles from the

ω production lie on the arc as seen in the simulation.
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Figure 4.3.: Correlation between the polar angle θ and the kinetic energy of the 3He particles. The

distribution of the Monte Carlo simulation using the pd → 3He ω(ω → π0γ) reaction

is shown in (a), and for the data is plotted in (b). The kinetic energy and θ values are

kinematically restricted to the curvature, clearly visible in the simulation spectrum. The

similar curvature is seen in the data, but in coincidence with the background from the

non-resonant multi pion production. The simulation shows the 3He particles from the ω

meson production is within the geometric acceptance of the WASA detector.

The 3He particles from non-resonant direct pion production and the mis-reconstructed

tracks account for large background contributions in the data. Resultantly, the maxima of the

ω meson curvature in the data shift to the lower energy as compared to the simulation. The

maxima of the curvature is defined as the position on the ω arc with the maximum number

of entries. These maxima can be seen as the red portion of the arc in both histograms of

Fig. 4.3. The maxima are subsequently comparable when the background contribution in the

data is reduced at the later stage of the analysis, as shown in Fig 4.15. The gaps at 0.5 GeV

and 0.7 GeV kinetic energies are due to the separation between the individual layers of FRH.

Due to these gaps the energy information in the material between the layers is lost.

The missing mass distributions MM3He for two beam energies are shown in Fig. 4.1c. Ev-

idently, the missing mass distributions for two energies have peaks at the ω meson mass

0.7827 GeV/c2, on top of a continuous background. The peak positions for two energies are
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at the PDG value of the ω meson mass, which indicate the goodness of detector calibra-

tion and kinetic energy reconstruction. The background of the missing mass distributions

ends at different values because of the different phase space of the two energies. The two

phase space distributions are useful for systematic studies of the background subtraction,

as discussed in Chapter 5. The steep rise in background continuum, between 0.60 GeV/c2

and 0.65 GeV/c2, is due to the geometric acceptance limit of the forward detector for these

multipion non-resonant background reaction (refer to Appendix A.3). This in turn enhanced

further by the 3He particle identification cut, which makes a different influence on the two

types of major reactions (see Appendix A.2). The background of the multi pion production

is subtracted to extract the ω meson peak, as discussed in the next section.

4.1.2. Inclusive Missing Mass of the 3He after 3He Selection

The ω meson, including all ω decays, is tagged via the missing mass of the proton,

deuteron and 3He system. In order to count the number of ω mesons in the data, the smooth

background from the direct pion production must be subtracted. This is achieved via a si-

multaneous fit of the signal peak and background distribution.

The Monte Carlo simulated phase spaces of the multi pion productions are used to fit

background in the data. The Monte Carlo simulation is an isotropic phase space distribution

where only resonance production with mass-dependent Breit-Wigner sampling and energy-

momentum constraints are included. As the correct phase shape of the background is un-

known, the phase space simulations of the most prominent backgrounds are weighted with

a polynomial to fit the data. For a comparison with the neutral final state ω → π0γ at the

later stage of the analysis, only neutral multi pion productions (π0π0 and π0π0π0) are con-

sidered. The final combined fit function used to describe the data is given as

Fit function= p0 ·PSω→π0γ(x)+(p1 ·PSπ0π0(x)+ p2 ·PSπ0π0π0(x)) ·
(

1+ p3 · x+ p4 · x2 + ...
)

,
(4.4)

where x is the missing mass of 3He estimated using Equation 4.1. pi are the fit parame-

ters. PSω→π0γ(x), PSπ0π0π0(x) and PSπ0π0(x) are the Monte Carlo phase space (PS) distri-

butions for the ω → π0γ decay, pd → 3He π0π0π0 reaction and pd → 3He π0π0 reaction,

respectively, at missing mass x. (1+ p3 · x+ p4 · x2 + ...) represents the polynomial convo-

luted with the background phase space distributions.

As seen in Fig. 4.1c, the two energies have different kinematic limits and phase space dis-

tributions, and therefore the resulting polynomial order and fit ranges are different for two

energies. To decide the order of the polynomial and fit range, the goodness-of-fit (calculated

using MINUIT minimization routine in root) is monitored for various polynomial orders

and the fit ranges. The polynomial of order 5 between fit range [0.575−0.840] GeV/c2

provides the lowest χ2 value for 1.50 GeV spectrum (see Appendix K for illustration). How-

ever, the phase space of the 1.45 GeV beam energy is more sophisticated to fit. In this case,

the ω peak is sitting directly on the top of the maximum of the background phase space

(compare Fig. 4.1c and Appendix A.3). A higher order (6th) polynomial, and the fit range

[0.575−0.855] GeV/c2 provide the minimum value for the χ2/nd f in 1.45 GeV data (Ap-

pendix K).

The final fits are shown in Fig. 4.4. The background-subtracted peak is compared to the

Monte Carlo simulation of the pd → 3He ω(ω → π0γ) reaction. The peak positions for both

energies 1.45 GeV and 1.50 GeV are (783.44±0.12) MeV/c2 and (783.33±0.12) MeV/c2,

respectively, which are near the ω meson mass (782.70±.12) GeV/c2. The peak widths
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are almost double the particle data group value (8.49±0.08) MeV/c2 [39]. That is

(15.36±0.36) MeV/c2 for 1.45 MeV and (15.71±0.37) MeV/c2 for 1.50 GeV GeV beam

enery. This is due to the fact that the ω line shape is convoluted with the detector resolu-

tion. Appendix F can be referred to for 3He resolution.
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Figure 4.4.: The inclusive missing mass spectrum of 3He particles for the two beam kinetic ener-

gies. The black histogram is data, the green curve is the combined fit of the signal

(Monte Carlo simulation for the ω → π0γ decay) and the background (Monte Carlo

simulation for the pd → 3He π0π0 and pd → 3He π0π0π0) convoluted with a polyno-

mial. The background-subtracted data have been plotted as magenta points. The sub-

tracted data is compared to the simulation of the ω → π0γ plotted as the red curve. The

simulation, in combination with the parameter p0, is sufficient to describe the line-shape

of the subtracted data peak.

The events in the background-subtracted peak, which provide an estimated number of ω
mesons, are listed in Table 4.1. The errors shown in the ω count are statistical, propagated

as, statσsignal =
√

σ2
data +σ2

background =
√

N
count range
data +N

count range
background . The in-peak signal to

background ratio (N
count range
signal /N

count range
background ) is 0.0325 and 0.0400 at 1.45 GeV and 1.50 GeV,

respectively. Which is estimated by dividing the numbers in the peak region (N
count range
sigal ) to

the number in the background distribution (N
count range
background ) in the peak region. The peak region

is the missing mass distribution between 0.736 GeV/c2 and 0.824 GeV/c2. As mentioned
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Entire data set

1.45 GeV 1.50 GeV (1.45 GeV+1.50 GeV)

Nrec
ω (3.15±0.04)×105 (3.28±0.04)×105 (6.43±0.06)×105

Nω
◦ = Nrec

ω
εinc

(3.72±0.05)×105 (3.78±0.05)×105 (7.50±0.07)×105

Table 4.1.: A list of the number of ω mesons reconstructed Nrec
ω and the total number of ω mesons

Nω
◦ produced using the inclusive missing mass. The errors shown here are statistical.

previously, the smaller signal to background ratio at 1.45 GeV is due to the fact that the

ω production cross section is comparable at both energies, while the multi pion production

cross section is larger at 1.45 GeV [90, 99].

The efficiency corrected numbers are the estimate of the total number of ω mesons pro-

duced, as shown in Table 4.1. The sum of the numbers at two energies gives the numbers

for the entire data set. The estimated number of ω mesons is around 0.64 million and effi-

ciency corrected number is about 0.75 million. The numbers from Table 4.1 will be used in

Chapter 5 to estimate the branching ratio and the number of the ω → e+e−π0 decays.

The total number of ω mesons (N◦
ω) is used to estimate the average luminosity LA, which

is averaged over the entire beam time as

LA =
Nω

◦

csω ×TR

=

[

(7.50±0.07)×105

(83.6±1.5)nb×148.83 hours

]

entire data

LA = (1.67±0.04)×1031cm−2s−1,

(4.5)

where TR is the total run time from Table 3.3 and the cross section csω is (83.6±1.5)nb at

1.45 GeV beam kinetic energy [90]. The known cross section at 1.45 GeV is used for the

entire data set in the calculations because the cross section at 1.5 GeV range is negligibly

different [90]. The luminosity is comparable to the luminosities in previous pd → 3He η
experiments [72, 84]. The order of the instantaneous luminosity is known from the estimated

average luminosity LA, as the instantaneous luminosity dependence branching ratio of ω →
π0γ will be studied is Section 5.2.2.

4.2. pd → 3He ω(ω → π0γ) Final State Reconstruction

The study of the ω → π0γ decay is presented below. This decay serves as one of the

reference channel of the ω→ e+e−π0 decay. The three neutral tracks in the Central Detector

for the π0γ → γγγ final state are selected in addition to the 3He particles in the forward

direction. The following discussion describes the routine used to reconstruct the π0γ final

state.

4.2.1. γ Identification

Three or more neutral tracks having energy deposit above 20 MeV are identified in the

SEC, assuming that the track has no corresponding hits in the PSB and MDC. No explicit

condition is added on the track multiplicity in the Central Detector because it will filter out

good event candidates due to chance coincidences and neutral split-offs.

The chance coincidence may lead to the inclusion of tracks from background events

within time conditions and/or drop the efficiency at higher luminosities, due to the long
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Figure 4.5.: Time coincidence plots to select the three photons final state of the ω decay. The black

distributions represent the time differences in data. The events within the red dashed

lines have been selected.

SEC signals and correspondingly long integration times. The wrongly reconstructed tracks

due to these effects violate the principle of energy-momentum conservation. These effects

have been studied in detail in Ref. [84]. However, in this work, the first effect is taken care

of by applying strict Kinematic conditions and the second effect will later be studied in

Section 5.2.2.

Split-offs are wrongly reconstructed low energetic fake photon tracks. As stated in the

previous chapter, a cluster in the SEC is reconstructed by looking for a continuous spread of

energy deposited by the particle into neighboring elements. The average cluster size is a few

crystals surrounded by a border of empty crystals, as shown in Fig. 3.5. There is a possibility

that one of the elements from the same cluster does not fire, thus creating a hole. As a result

of this gap, the same cluster may be split into two different clusters very close to each

other. One of the two clusters has very low energy. Therefore, an event with one photon can

be reconstructed as two tracks. The low energetic cluster is called split-off. These split-offs

can be seen in any kind of shower in the SEC: the electromagnetic shower of photons, the

electromagnetic shower of e± and the hadronic shower of π±. A detailed description about

split-off can be found in Ref [122].

The γ identification in the Central Detector starts with checking the time coincidence

of the neutral track with the selected 3He particles. The time of 3He tracks is taken from

FTH, while for the neutral tracks it is provided by SEC cluster. As different detectors have

different resolution, it is necessary to use different time cut for charged and neutral parti-

cles. The time difference distributions used to monitor the chosen time window are presented

in Fig. 4.5. The optimal time windows are indicated. Neutral tracks with time coincidences

of (-50 ns−40 ns) with the 3He particles and (-35 ns−35 ns) with other neutral tracks are

considered. The presence of some background cannot be ruled out despite using a narrower

time cut. The cut windows are chosen in such a way that the region of maximum density

of the signal is included and the background from events like pile up or spurious tracks is

excluded from the selection. The remaining physical background, which cannot be elimi-

nated by the time cut, will be highly suppressed by applying the decay specific kinematic

conditions.
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Figure 4.6.: The invariant mass distributions of any two neutral tracks in the Central Detector within

the time window shown in Fig. 4.5. The black curve is data and the red curve is Monte

Carlo simulation for the ω → π0γ decay. The simulation is scaled to the data with re-

spect to the maximum height of the spectra. A peak is observed at the π0 meson mass

0.135 GeV/c2, in both distributions.

4.2.2. π0 Reconstruction

The π0 meson in the ω→ π0γ decay channel is reconstructed by investigating the invariant

mass of two neutral tracks for all possible combinations. The two γ invariant mass (Mγ1γ2
)

in the Central Detector is calculated from the reconstructed energies (Eγ1,Eγ2) and momenta

(Pγ1,Pγ2), using Equation 3.3.

Fig. 4.6 shows the invariant mass of any two reconstructed photons in data and Monte

Carlo of the pd → 3He ω(ω → π0γ → γγγ) reaction. In both cases a peak is seen on top of a

continuous background. The enhancement of the spectra at low energy ((0.01-0.02) GeV/c2)

is mainly from the split-offs. The rest of the background shape is a result of the combinations

where one of the γ is not from the π0 meson. The broad hump around 0.7 GeV/c2 in the

combinatorics of the Monte Carlo simulation is seen due to the fact that the three photons

invariant mass in the ω → π0γ decay must peak at the ω meson mass 0.7827 GeV/c2. When

the single photon combines with one of the photons from the π0 → γγ decay, the invariant

mass must not be at the ω meson mass but close to it. This projection is not very prominently

seen in the data, since at this stage of the analysis a large contribution of background is

coming from the other ω decays and direct multi pion productions. The peak position for

Monte Carlo and data is at the correct pion mass 0.135 GeV/c2. In order to select the events

from the ω → π0γ decay, more specific cuts dedicated to choosing the π0γ final state have

been used.

4.2.3. ω → π0γ → γγγ Final State Selection

The ω → π0γ → γγγ final state is fully reconstructed with one 3He track reconstructed

in the Forward Detector and at least three neutral tracks in the electromagnetic calorime-

ter. The next step is to check the overall kinematic balance of the reaction.
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4.2.3.1. Overall Kinematic Check

The energy and momentum balance, which are the differences of the energy sum and

momentum sum of the incoming (Ein,~Pin) and outgoing particles (Eout,~Pout), respectively,

are checked for the reaction hypothesis pd → 3He ω(ω → π0γ → γγγ). The overall missing

energy δE and absolute value of the overall missing momentum |δ~P| of the p, d, 3He and 3γ
system are used as a measure of the overall kinematic of the system.

δE = (Ein −Eout) = (Ebeam +Etarget)−
(

E3He +Eγ1
+Eγ2

+Eγ3

)

,

δ~P =
(

~Pin −~Pout

)

=
(

~Pbeam +~Ptarget

)

−
(

~P3He +
~Pγ1

+~Pγ2
+~Pγ3

)

,
(4.6)

where E and~P are the energies and momenta of the particle mentioned in the subscripts.

For the reaction of interest and the reactions with same topology, the δE and δP are

connected via the overall missing mass (δM) as, δE
2 = |δP|2 + δM

2. However, for the
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Figure 4.7.: The top panel shows the calculated overall missing momentum as a function of the over-

all missing energy for different energy shift (δe) and mass parameter m. The energy-

momentum balance calculations for no energy shift (δe = 0) and different mass param-

eter m are plotted in the bottom panel (inspired by Ref. [122]).

reactions having a different number of particles and/or particle masses than the reaction of

interest, a constant shift in the overall missing energy will be observed. This shift depends

upon the energy of the missing or additional particles. In these cases, the δE and δP will be

correlated via another consideration, |δ~P| = δP =
√

(|δE|+δe)2+m where δe and m are
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the shift parameter and mass parameter, respectively [122]. This correlation might follow

different distributions depending upon different scenarios of particle numbers and particle

type.

For better understanding, |δP| is calculated as a function of δE and plotted in Fig. 4.7. The

plot explains the following scenarios:

Scenario I: (δE = |δP| = m = δe =0), where all entries are localized at (0,0) in Fig. 4.7. When

energy, momentum and mass are conserved.

Scenario II: (δe 6= 0), where a shift in the energy axis is seen, shown as a red and blue

curve in the top panel of Fig. 4.7. These situations will be followed by the reactions having

a different topology or particle masses.

Scenario III: (δE = |δP| 6= 0 but m =0), which is illustrated by the dashed lines in

Fig. 4.7. Here the reactions differ by the number of photons only and the massive parti-

cles remain same, i.e., the energy and momentum are conserved for massive particles only.

Scenario IV: (m 6= 0), which is shown by solid histograms in Fig. 4.7. The value of the mass

parameter m will determine the shift in the momentum axis as well as the curvature of the

hyperbola, as illustrated in the bottom panel of Fig. 4.7.

Distributions of the overall missing momentum and overall missing energy are plotted

in Fig. 4.8 for the Monte Carlo simulation of the signal decay ω → π0γ and possible back-

ground reactions, and the data.

The energy, momentum and mass are conserved and all events should lie at (0,0) for

an ideal case of the ω → π0γ decay. However, due to the detector response and wrongly

reconstructed particles, δE and |δP| values are smeared and acquire non zero values around

(0,0). The asymmetric distribution of the ω→ π0γ decay around (0,0), as shown in Fig. 4.8b,

is due to underestimation of the photon momentum. The blue arm towards the negative

energy axis is due to the wrongly reconstructed photons, which are mainly split-offs. A

parallel hyperbolic structure, which is having a vertex shifted towards the positive energy

axis, is formed due to the combinations of the fake photons.

In case of data, the hyperbolic structure corresponding to the π0γ decay is not clearly

visible and is rather dominated by the continuous distributions of the δe and m values. The

largest contribution is originated from the direct neutral pion productions π0π0 and π0π0π0,

which lead to scenario II. The number of photons in these reactions is larger than π0γ de-

cay. A shift, as compared to the π0γ decay, towards the positive energy values near (0,0) is

seen and the positive values of the missing energy are preferred (Fig. 4.8c and Fig. 4.8d). The

blue arm from the parallel hyperbolic structure is more intense due to split-offs, which result

in an increase of photons in the final state.

In addition to the neutral pions, the background from the direct charged pion produc-

tion and contribution from the pionic ω decays (mostly ω → π+π−π0) is present in the

data. These multi pion final states follow the scenario IV. Resultantly, a shift in the energy

axis is seen (Fig. 4.8e-h). The missing energy values are always positive in this case, as two

charged pions are missing to balance out the energy and momentum. Besides, the condi-

tion of the neutral track multiplicity is fulfilled by the low energetic split-offs created in the

hadronic shower.

The residues from the decays η → γγ and π0 → γγ persist in the selection (see Fig. 4.2

for the reconstruction efficiencies). The criterion of the three photon final state is fulfilled

by one or more split-offs, which are the contributions due to scenario II. Wherein the low

energetic fake photon makes a negligible change in the missing energy. The distributions

from these contributions are localized around (0,0), as seen in Fig. 4.8i-j. The preferred

orientation towards the positive values of the missing energy is an indication that photon
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Figure 4.8.: The absolute value of the overall missing momentum |δP| vs overall missing energy

δE of the 3He particles and 3γ system is shown for 1.5 GeV beam energy. a represents

the data, b is the simulated signal, and the simulated backgrounds are shown from c to

j. Various δE-|δP| constraints used for purity check are indicated on the data. The solid

black box shows the selection boundaries for the relevant event candidates.
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four-momenta is underestimated.

A constraint on the overall missing energy and overall missing momentum is used to

refine the event selection. As discussed previously, the sample is contaminated with the

in-peak backgrounds ω → π+π−π0 and ω → π+π−, and these contributions cannot be sub-

tracted from the missing mass spectrum. Resultantly, the signal and backgrounds cannot be

distinguished on an event-by-event basis, but only in a “statistical” sense. In this case, the

cut optimization is done by evaluating the probability from the Monte Carlo simulations that

a given event is a signal event. This probability, estimated using the Bayes theorem [121],

can be regarded as a purity of the sample and is given as [121]

π =
Ns

Ns +∑
i

Nbi

=
1

1+∑
i

εbi

εs
wi

=
1

1+∑
i

Nbi

N0
bi

N0
s

Ns
wi

=
1

1+∑
i

Nbi

Ns
wi

, (4.7)

where Ns and Nbi are the number of events in the MC simulation of the signal and in the ith

background contribution out of various decays and reactions, respectively. The superscript 0

refers to the total events simulated for the signal and the backgrounds. For this analysis, an

equal number of events are simulated for the signal and all backgrounds, i.e., N0
bi = N0

s . The

efficiencies of the signal εs and ith background εbi are the likelihoods that a signal event

is identified as signal and ith background event is identified as the signal. w is a weighting

factor depending on the relative cross-sections and branching fractions

w =
csb ×BRb

css ×BRs
, (4.8)

where cs and BR are the cross sections and the branching ratios of the given subscripts,

respectively, which are listed in Appendix C.1 for the signal and backgrounds. These cross-

sections and the branching ratios are the so-called prior probabilities of the signal and back-

grounds. A modification of Equation 4.7 for jth background gives the probability P(b) of jth

background to appear in an event as the signal.

P j (b) =

εb j

εs
w j

1+∑
i

εbi

εs
wi

. (4.9)

Furthermore, the contribution (events) of jth background for a single event of the signal is

εb j

εs

w = jth background events per event of the signal. (4.10)

The expected statistical error (< δMmeas >) in any measurement (< Mmeas >) is related

to the quantity ε×π as [123]

< δMmeas >

< Mmeas >
=

C√
ε×π

, (4.11)

where C is a constant term. Equation 4.11 shows that the expected statistical error is minimal

if the event selection maximizes the quality ε×π (“efficiency × purity”). A way to optimize

the statistical significance in Equation 4.2 is to optimize the quantity ε×π [123].

The quantities ε, π and ε× π as a function of different energy-momentum constraints

are shown in Fig. 4.9 for 1.5 GeV beam energy. The |δP| − δE cuts used in this study are
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Figure 4.9.: The efficiency (black), purity (red) and the quantity purity×efficiency (green dashed)

are plotted as a function of the different δE −|δP| selection criteria. The left axis with

black labels represents the efficiency and the right axis highlighted with red labels is

purity. The quantity purity×efficiency, when downscaled by a factor 3.5, is plotted using

the purity axis. The final selection and the corresponding variables are indicated by the

straight dashed lines. The variable values are listed in the legends.

shown in Fig. 4.8a. Clearly, a larger value of ε× π may be achieved as the cut window

approached close to (0,0), see Fig. 4.9. This reduction is due to the suppression of back-

ground contributions in the vicinity of (0,0). However, at the same time the signal is reduced

too, as evident in the efficiency distribution shown in Fig. 4.9. Thus, a compensation in

purity is made to achieve better efficiency. Finally, a cut rejecting all in-peak backgrounds

and the charged pion productions, as illustrated in Fig. 4.8 with solid boxes, is used for the

analysis. The background from the neutral pion will be dealt with later using more specific

kinematic conditions. The remnant of the resonance production will be subtracted by fitting

the missing mass.

As observed in Fig. 4.8, the majority (≈90%) of the signal events are localized below

0.15 GeV missing momentum. Moreover, almost all the events from the decays/reactions

having charged pions in the final state lie below 0.20 GeV missing energy. The rectangu-

lar enclosure formed by |δE| ≤ 0.2 GeV and |δP| ≤ 0.15 GeV/c is considered as the final

constraint to select 3γ as coming from the π0γ decay. The effect of the energy-momentum

conservation condition on the measured branching ratio has been explored in the next chap-

ter.

The condition rejects approximately 88% of the events from the direct π0π0π0 produc-

tion. However, roughly 58% for the events from the π0π0 production passed this constraint,

as most of the events fall over the hyperbolic structure near (0,0) due to the reaction kine-

matics. Moreover, almost 81% of the remnant events of the η → γγ decay and 85% of the

π0 → γγ decay fall under this box. The reconstruction efficiencies of the signal and back-

grounds are plotted in Fig. 4.2.

The optimal value of the quantity ε×π for the final selection is 0.3642×0.0228= 0.0083

in 1.45 GeV data. Similarly, ε×π = 0.3604×0.0237= 0.0085 for 1.50 GeV. The statistical

significance of the selection for 1.45 GeV and 1.50 GeV is 15 and 16, respectively. Clearly,

the signal to background ratio is being improved as compared to the inclusive final state,

which is evident from efficiencies in Fig. 4.2.
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Figure 4.10.: The invariant mass of any two neutral tracks for the reconstructed Monte Carlo simu-

lations of the ω → π0γ decay (black), the direct π0π0 production (red), and the direct

π0π0π0 production (blue). The green lines are the narrow selection around the π0 peak

used for the purity test. Ns/Nbi values are listed in the legend.

4.2.3.2. Monochromatic γ Selection Criterion

In addition to using the overall kinematic constraint, another condition,

called “Monochromatic γ” in this study, is used to refine the selection. This condi-

tion is essentially used for two reasons. Firstly, it reduces the background coming from

direct neutral pion productions. Secondly, it is a better way to distinguish the single photon

from the photon coming from the π0 meson decay.

The separation of the single γ from other two photons is also possible by using a mass

window over the invariant mass of two photons. However, most of the events from the

background productions, π0π0 and π0π0π0, are localized in the π0 peak region, as shown

in Fig. 4.10. Therefore, the cut on the invariant mass of two photons is not very effective

in reducing background contribution. Which is clearly demonstrated from the values of the

function Ns/Nbi in the denominator of the Equation 4.7. Ns/Nbi value for the π0π0 and

π0π0π0 productions are 0.39 and 0.12, respectively. In order to reach high purity, Ns/Nbi

should be as large as possible. It is therefore better to use a cut on a variable that distributes

the signal and backgrounds in different kinematical regions, such as the “Monochromatic

γ”.

Let’s first understand the kinematics behind the selection criterion. In the ω-rest sys-

tem (CM), π0 and γ decay back to back and have equal and opposite 3-momenta. The

kinematics of the ω → π0γ decay are presented in Appendix D. The single γ, specified

by the subscript ‘m’ (γm), is monochromatic in the rest frame of the ω meson with en-

ergy PCM
γm

= ECM
γm

= 0.38 GeV . Whereas, the energy ECM
π0 = 0.40 GeV and momentum

PCM
π0 = 0.38 GeV of π0 are distributed among the two photons from the π0 meson decay. The

opening angle between the γm and π0 is 180◦. The angle between the γm and the two photons

from π0 decay is distributed between 0◦ to 180◦, with most of the entries localized close to

its maximum at 168.50◦ (details are in Appendix D). The angle between the two γ from π0

decay in the CM system lies between 39.14◦ and 180◦, where the maximum contribution is

at 39.14◦ and most of the entries are localized towards the maximum (Appendix D).

In order to study these kinematic variables, the angle between the first two photons
6 (γ1,γ2)

CM and the energy of the third photon ECM
γ3 in the ω rest frame are plotted for

all photon combinations. The one-dimensional spectra of these variables are presented in

Fig. 4.11a for the true Monte Carlo (PLUTO) and the true Monte Carlo (GEANT) simu-
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(a) The true MC simulations for the ω → π0γ decay (filled area), the reconstructed

MC simulations for the ω → π0γ decay (blue), π0π0 production (green), and

π0π0π0 production (magenta) are compared at 1.50 GeV.
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(b) The reconstructed MC for the π0π0 production (blue) and π0π0π0 production (red) are

shown at 1.50 GeV.

Figure 4.11.: (a) is the distributions of the angle between two photons 6 (γ1,γ2)CM
and the energy

of third photon ECM
γ3 in the ω rest frame. The similar lines represent the energy and

angle window used to study the function Ns/Nbi. (b) represents values of Ns/Nbi as a

function of the cut window. The function Ns/Nbi obtained by using the π0 mass window

in Fig. 4.10 is shown as dashed lines for a comparison.

lations of signal and backgrounds. For these tests, the two types of cuts 6 (γ1,γ2)
CM and

ECM
γ3 are uncorrelated. Fig. 4.11b shows a comparison between the quantity Ns/Nbi for dif-

ferent energy and angular windows (solid lines) and the π0 mass cut (dashed lines) for

two major backgrounds. It is observed that Ns/Nbi is larger if cuts on these kinematic vari-

ables are used, as compared to the cut on π0 mass shown in Fig. 4.10. This indicates that

the “Monochromatic γ ” selection has better sensitivity as compared to π0 mass cut. A cut

on the monochromatic energy between 0.20 and 0.52 GeV yields the best sensitivity. For

the opening angle between two photons, it seems that the sensitivity increases as the cut

becomes tighter around the maximum point. However, at the same time, the efficiency de-
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4. Data Analysis and Signal Extraction

creases. The efficiency, signal phase space and the statistical significance of the different

combinations of energy and angular constraints are studied for cut optimization. Related

details can be found in Appendix B.3.
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tion at 1.50 GeV.

Figure 4.12.: (a) and (b) are the monochromatic γ plot for data and Monte Carlo, respectively. The x-

axis represents the angle between the photons decaying from the π0 in the ω-rest frame

(6 (γ1,γ2)CM
). Two photons coming from π0 are considered as first and second, in three

photon combinations. The y-axis represents the energy distribution of the third γ in the

ω-rest frame (ECM
γ3 ). The distributions are plotted for all possible combinations of three

photons. The used optimum cut to select events for the correct π0γ combinations are

shown as the black boxes.

The distribution of ECM
γ3 as a function of 6 (γ1,γ2)CM

is plotted for all combinations in

Fig. 4.12. The structure on the right side of these plots originates when the single γ and a

γ from the π0 decay are combined. The prominent region on the left side corresponds to

the π0. An optimal selection of 0.20 GeV<ECM
γ3 <0.52 GeV and 30◦ < 6 (γ1,γ2)CM <80◦

is shown. The achieved statistical significance for the optimal selection is 17.97 and 20.60

for 1.45 GeV and 1.50 GeV, respectively. The respective reconstruction efficiency is 34.74%

and 34.35%. The phase space acceptance is 92% for both cases. The efficiencies in Fig. 4.2

convey that the monochromatic condition is not affecting the signal statistics by a great

amount, as the signal efficiency has been reduced by only≈2%. However, this cut is showing

a significant influence on the dominant backgrounds, since the π0π0 production is reduced

by ≈11% and π0π0π0 by ≈5%.

4.2.4. Influence of the ω → π0γ Final State Selection on the Decay

Kinematics

The quantitative influence of the final selection for the ω → π0γ decay is seen in terms

of the exclusive efficiency εexc, as listed in Fig. 4.2. The detector’s total acceptance after

π0γ selection is 34.74% for 1.45 GeV and 34.35% for 1.50 GeV. It has been observed

that the π0π0 direct production has the largest probability (P(b)=89%) to appear in an

event. The probability P j (b) has been evaluated using Equation 4.9. There is a chance

that about 7% of the event is a direct π0π0π0 production. The probability of existence of

other contributions, ω → π+π−π0, ω → π+π−, η → γγ and π0 → γγ decays, direct π+π−π0

and π+π− productions, is almost 0. The absence of any in-peak background contribution

makes it easier to deal with the background situation and measure the absolute branching

fraction. The multi pion background contributions are subtracted by fitting the missing
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4.2. pd → 3He ω(ω → π0γ) Final State Reconstruction

mass distribution. The influence of the final state selection criteria on the kinematics of the

phase space is visualized in terms of control spectra in the following subsections.
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Figure 4.13.: The co-planarity angle ∆Φ is plotted as a function of two photon invariant mass from

the π0 decay. The top and bottom row represent the distributions with and without π0γ

selection criteria, respectively. The left and right distributions represent the data and

the Monte Carlo simulation of the signal, respectively.

4.2.4.1. The Co-planarity Angle (|∆Φ|)
As discussed in Section 4.2.3.2, the π0 meson and the single γ of the ω → π0γ decay

fly back-to-back in the ω rest frame. A detailed kinematics have been provided in Ap-

pendix. D. This feature effectively separated the two photons from the π0 decay and reduced

the background from the multi pion production.

The effect of the cut is observed on the co-planarity angle ∆Φ, as an illustration. Which

is an absolute difference in the azimuthal angle of the π0 meson and the single γ in the

center of mass frame of ω meson, ∆Φ = |φCM
π0 − φCM

γ |. The four-momentum of the π0

meson is reconstructed based on the four-momentum vectors of two γ identified as coming

from the π0 → γγ decay. In an ideal case, ∆Φ should be 180◦. The invariant mass of

two γ decaying from the π0 meson as a function of ∆Φ is shown in Fig. 4.13, before

and after ω → π0γ final selection. As photons from the π0 were indistinguishable before

the selection criteria, all photon combinations are seen in the upper row. After the final

selection criteria, the data and Monte Carlo distributions are predominantly localized near

∆Φ = 180◦. A separate region of the two photon combinations from the π0 meson decaying

back to the single γ is seen in the vicinity of 180◦ and π0 meson mass. The data have a

broader distribution around ∆Φ = 180◦ due to the presence of contribution from the direct

pion productions. Nevertheless, both distributions become cleaner after the selection criteria.

4.2.4.2. The 2γ Invariant Mass

The distribution of the two photon invariant mass is a powerful kinematic observable

for the ω → π0γ decay. The invariant mass of two γ is used as a monitoring spectrum to

check the effect of the kinematic cuts. The invariant mass of 2 neutral tracks in the SEC
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Figure 4.14.: The black line is the two γ invariant mass distribution for all combinations. The blue

curve is the histogram after the overall kinematic check. The green curve is the dis-

tribution after the monochromatic γ selection criterion for all combinations. The red

curve is the distribution for the 2γ decaying from the π0, after the monochromatic γ

cut. A cleaner π0 peak is seen after each condition.

for the data is shown in Fig. 4.14 after different conditions. The distribution after selecting

three γ in the Central Detector shows a peak at the π0 rest mass (mπ0 =0.135 GeV/c2)

on the top of large background from combinatorics and other background reactions. The

distribution after using the constraint on the energy and momentum conservation shows

that the background from other reaction channels is suppressed to a great extent. Although,

the combinatorics are still seen in the distribution, as shown in Fig. 4.14. The invariant

mass of 2γ from the π0 decay can be seen with a cleaner π0 peak after passing through the

monochromatic criterion. The peak position of the final π0 distribution (red curve) obtained

by fitting a combined Novosibirsk and polynomial function is at (135.01±0.10) MeV/c2

and (134.82±0.11) MeV/c2 for 1.45 GeV and 1.50 GeV beam energies, respectively. The

FWHM of the π0 peak is (35.19±0.12) MeV and (35.93±0.11) MeV for 1.45 GeV and

1.50 GeV beam energies, respectively.
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Figure 4.15.: The kinetic energy correlation with the polar angle after π0γ final selection is shown

for data. The background from the multi pion production is reduced substantially as

compared to the inclusive final state shown in Fig 4.3b. The position of the arc in

simulated data is drawn as the black dashed enclosure.
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4.2.4.3. The Kinetic Energy and the θ Correlation of 3He Particles

A considerable effect is seen on the kinetic energy vs θ plot of 3He particles after the

π0γ selection criteria. The 3He arc from the ω production was obscured by the background

in the inclusive final state, as shown in Fig. 4.3. The situation is improved and a cleaner
3He arc is seen in Fig. 4.15 along with the substantially reduced background from multi

pion production. A reference arc of Monte Carlo simulation is drawn for comparison. The

maximum of the curvature in the data, which was shifted towards the lower kinetic energy,

is now positioned at the same energy as that of the simulation given in Fig. 4.3. The data

and the simulation look comparable. The background in data is reduced substantially and a

clean signal is seen.

4.2.4.4. The Exclusive Missing Mass of the 3He Particles after ω → π0γ Final State

Selection

The energy resolution of the Forward Detector is better than the Electromagnetic

Calorimeter. This is evident from the FWHM value of the average true and reconstructed ki-

netic energy difference relative to the true kinetic energy distributions. FWHM distributions

have been illustrated in Appendix F. The FWHM is around (37.22±0.35) MeV for the 3He

particles and approximately (197.26±1.57) MeV for photons. Therefore, the missing mass

spectrum is used to monitor this analysis and to obtain results. A one-dimensional spectrum

of the 3He particles missing mass after π0γ final state selection is shown in Fig. 4.16. The

missing mass is exclusive, as all final state products are reconstructed. An enhancement at

the ω meson mass (0.7827 GeV/c2) is seen on a smooth background from direct pion pro-

duction. The background is considerably reduced and a cleaner peak is seen at the ω mass,

as compared with the inclusive missing mass shown in Fig. 4.4. In order to count for the

signal and background separately, the background is fitted and subtracted from the data.

The best fitted range and polynomial order in this case are [0.575−0.84] and 5 for

1.45 GeV, while [0.575−0.855] and 4 for 1.50 GeV. N
count range
signal /N

count range
background has improved

to 0.0984 and 0.1120 for 1.45 GeV and 1.50 GeV, respectively, as against 0.0325 and 0.0400

in the inclusive final state. The peak position of the extracted data, (782.70±0.32) MeV/c2

for 1.45 GeV and (783.09±0.33) MeV/c2 for 1.50 GeV, is at the correct ω meson

mass 0.7827 GeV/c2. The resolution (FWHM) of the background-subtracted data peak is

(14.78±1.14) MeV for 1.45 GeV and (14.77±1.21) MeV for 1.50 GeV. Within errors, these

values are in agreement with each other. The systematic effect due to the fit function will be

discussed in the next chapter.

The number in the background-subtracted peak gives the number of the ω → π0γ decays

in data. The yield for two energies is listed in Table 4.2. The error shown are statistical. The

number of the reconstructed ω → π0γ decays when corrected by the Monte Carlo efficiency

yields the total number of ω → π0γ decays. The numbers for the entire data set, estimated as

the sum of the numbers for two energies, are shown in Table 4.2. These numbers will later

be used to estimate the branching ratio of the ω → π0γ decay.
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Figure 4.16.: The exclusive missing mass of 3He particles after final π0γ selection is shown. The

smooth phase space background from the multi pion production has been reduced

substantially. The black histogram corresponds to data, the green histogram is a com-

bined fit of the signal and the background. The continuous background from multi pion

production is described by the background simulations convoluted with polynomial,

shown as the blue histogram. The fit parameters are shown. The background-subtracted

data have been plotted as a magenta histogram at the bottom of the figure. The sub-

tracted data is consistent with the simulation of ω → π0γ along with the fit parameter

p0.

Entire data set

(X( f )) 1.45 GeV 1.50 GeV (1.45 GeV+1.50 GeV)

total number of

ω → π0γ decays (1.08±0.05)×104 (1.08±0.04)×104 (2.16±0.06)×104

reconstructed Nrec
ω→π0γ

total number of

ω → π0γ decays (3.11±0.13)×104 (3.14±0.13)×104 (6.25±0.18)×104

N◦
ω→π0γ

=
Nrec

ω→π0γ

εexc

Table 4.2.: The number of the ω → π0γ decays estimated from the exclusive missing mass.
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4.3. pd → 3He ω(ω → e+e−π0) Final State Reconstruction

To analyze the reaction pd → 3He ω → 3He e+e−π0, the charged particles e+e− in the

Central Detector are identified along with the 3He particle and π0. The method used to

identify the final decay products e+, e− and π0 in the Central Detector is explained in the

following subsections.

4.3.1. γ Identification

Two or more neutral tracks above 20 MeV energy deposit in the Central Detector are

identified as two gamma candidates. The neutral tracks which are in a time coincidence

between -50 ns and 40 ns with 3He particle are considered. The identified neutral tracks are

in a time coincidence of -35 ns to 35 ns. These time coincidence plots for neutral tracks are

shown in Fig. 4.5.

4.3.2. e+e− Identification

Reference Decay/Reaction Weighting 1.5 GeV

Name Factor wi εi(%) wi × εi

ω → π0e+e− pd → 3He ω(ω → π0e+e−) 1 11.3100

ω → π+π−π0 pd → 3He ω(ω → π+π−π0) 1158±91 14.9000 172.5420±13.5590

ω → π0γ pd → 3He ω(ω → π0γ) 109±9 0.0610 0.0664±0.0055

ω → π+π− pd → 3He ω(ω → π+π−) 20±2 1.7800 0.3560±0.0356

ω → ηγ pd → 3He ω(ω → ηγ) 1±0 0.0793 0.0008±0.0000

π+π−π0 pd → 3He π+π−π0 14137±1136 12.4400 1758.6428±141.3184

π0π0π0 pd → 3He π0π0π0 1787±150 0.1400 2.5018±0.2100

π+π− pd → 3He π+π− 932±74* 0.9900 9.2268±0.7326

π0π0 pd → 3He π0π0 3216±261 0.0600 1.9296±0.1566

ρ → π+π− pd → 3He ρ(ρ → π+π−) 155347±1242* 1.5684 2436.4624±19.4795

η → γγ pd → 3He η(η → γγ) 495±45 0.0004 0.0012±0.0002

η → π+π−π0 pd → 3He η(η → π+π−π0) 288±27 7.9890 23.0083±2.1570

η → γπ+π− pd → 3He η(η → γπ+π−) 53±5 1.5040 0.7971±0.0752

π0 → γγ pd → 3He π0(π0 → γγ) 3070±246 0.0004 0.0123±0.0010

*: extrapolations

Table 4.3.: The weighting factors wi are listed for the probable background contributions with re-

spect to the signal decay ω → e+e−π0. wi is estimated by applying Equation 4.8. The

corresponding efficiency εi and the quantity wi × εi after the selection of at least a pair

of oppositely charged tracks and at least two neutral tracks are shown for 1.5 GeV beam

energy. The numbers for 1.45 GeV can be found in Appendix G.1.

The next step in the reconstruction of the e+e−π0 final state is to identify the lepton pair in

the Central Detector. The e+e− pair selection is aimed at reducing the most prominent back-

ground from the reactions having the same topology, but with charged pions. For instance,

the ω → π+π−π0 decay and the π+π−π0 direct production.

To ensure that tracks from the oppositely charged particles are coming from the same

event, their time coincidence with the 3He particles, two photons, and with each other must
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(a) The time difference between the 3He particles and the
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(b) The time difference of the charged tracks with the

neutral tracks (from SEC).
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(c) The time difference between two charged tracks.

Figure 4.17.: (a), (b) and (c) are the time coincidence plots to select the two charged particles and

two photons in the final state of the ω → e+e−π0 decay. The time information of the

charged and neutral particles comes from the plastic scintillator barrel and electromag-

netic scintillating calorimeter, respectively. The time coincidence of the neutral tracks

with the 3He particles and between the neutral tracks is shown in Fig. 4.5. The red

dashed lines illustrate the cuts used for the time coincidence. The two charged tracks

above 20 MeV energy deposit have a time coincidence with 3He particle from -50 ns to

40 ns and with the photons between -38 ns and 38 ns are chosen. The time coincidence

between two charged tracks is constrained between -38 ns and 38 ns. Wider time cuts

are used to avoid the systematic effects from different shapes of the time spectra in

data and simulations. Moreover, to select any slow 3He particle, which may fall in the

extended tail on the right-hand side.

be affirmed. The time coincidence for the three cases is shown in Fig. 4.17. It is observed

in the plots that the time selection spectra for charged tracks are narrower than that of the

neutral tracks, as shown in Fig. 4.5 and Fig. 4.17. This is because the time resolution of

the plastic scintillator detectors (5 ns) is significantly better than that of the calorimeter

(40 ns) [68]. The corresponding time cuts are shown. The background from the chance

coincidences will later be suppressed by applying decay specific kinematic constraints.

The pattern recognition in the MDC has an efficiency of about 80% for a single charged

track [72]. The reconstruction efficiencies to select two charged tracks, as plotted in

Fig. 4.18, are 22.42% and 22.47% for 1.45 GeV and 1.50 GeV beam energy, respectively. It

should be noted here that the reconstruction efficiency includes the efficiency of the track

fitting algorithm. This further reduced by 56% and 54% for 1.45 GeV and 1.50 GeV beam

energy, respectively, when the condition of at least two neutral tracks in the CD is added.

The reconstruction efficiency of the signal, after selecting at least a pair of oppositely
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Figure 4.18.: The efficiencies of the signal decay ω → e+e−π0 and the backgrounds are plotted

as a function of the analysis steps. The labels on the x-axis represent the selection

criterion and the y-axis is efficiency. The values of reconstruction efficiencies are listed

in Appendix H.1. Clearly, an improvement in the signal to background ratio is observed

with each condition.

charged tracks and at least two neutral tracks, is reduced by 87% from the inclusive final

state. Which can be verified from Fig 4.18. The reconstruction efficiencies of signal and

backgrounds after selecting at least a pair of oppositely charged tracks and at least two

neutral tracks are listed in Table 4.3. The efficiency of the most abundant in-peak back-

ground, ω → π+π−π0, is reduced by 83%. Whereas, the reconstruction efficiency of the

decay ω → π0γ is dropped to 0.06%. This is one of the potential in-peak backgrounds be-

cause of its branching ratio relative to the signal, BRω→π0γ/BRω→ e+e−π0=109, please refer

to Appendix C.1 for explicit branching ratios. The final states like the ω → π0γ decay, which

have topology different than the signal decay ω → e+e−π0, have survived mainly due to the

effects from the detector response. For instance, the conversion electrons at the beam pipe

are responsible for the survival of the final states ω → π0γ, ω → ηγ, π0π0, π0π0π0, η → γγ
and π0 → γγ. However, the backgrounds ω→ π+π−, π+π−, η → π+π−γ, ρ→ π+π−, η → γγ
and π0 → γγ are there due to the split-offs. These effects will be dealt with later in this

analysis. The in-peak background contribution from the ω → π+π− shows a reduction of

98%. The decay ω → ηγ is suppressed up to 0.08%. Considering the relative decay prob-

abilities BRω→ηγ/BRω→ e+e−π0 ∼1.0 and efficiency << 1%, it is not one of the prominent
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Figure 4.19.: Particle identification (PID) plots for the charged particles in the CD. The first col-

umn is the ∆E −P plot of the energy deposit in the SEC versus charged momentum

[Charged×Momentum] reconstructed in the MDC. The energy deposited in the PSB

as a function of the charged momentum is plotted in the second column. The first and

the second rows are the MC simulations of ω → e+e−π0 and ω → π+π−π0, respec-

tively. The third row is data. The events above the optimal selection, shown as red

lines, are identified as electrons.

in-peak backgrounds. The branching fractions of different decays and the reconstruction

efficiencies are listed in Appendix C.1 and Appendix H.1, respectively. The most abun-

dant multi-pion production π+π−π0 is reduced by 85% and the direct π+π− production by

99%. The efficiency of the direct π0π0 production is reduced up to 0.06-0.07%. For the

π0π0π0 production reaction, the efficiency is reduced to 0.14%. The decays η → π+π−π0,

η → π+π−γ, and ρ → π+π− have been reduced by 84%, 97%, and 98%, respectively. The

decay modes η → γγ and π0 → γγ have reduced close to 0 and they are not the potential

background candidates. However, considering their weighting factors wi, as listed in Ta-

ble. 4.3, their contribution for each ω → e+e−π0 event will be monitored, until suppressed

completely.

As the next step, the electrons are separated from the pions by using the particle identifi-

cation method (PID) described in Section 3.3.2. The particle identification plots are shown

in Fig. 4.19. The distributions for the ω → e+e−π0 and ω → π+π−π0 decays illustrate the

position of the electron and pion pairs. As observed in Table 4.3, a large contribution from
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4.3. pd → 3He ω(ω → e+e−π0) Final State Reconstruction

the pions is present in the data in comparison to electrons. Consequently, the electrons and

pions cannot be separately seen by naked eyes. An optimum graphical selection is used to

select electrons, as shown by the red dashed lines. Appendix B.4 can be referred to for details

on cut optimization. The signal purity of the selected data sample is around 0.04%. The se-

lection has an efficiency of 8.87% and 8.58% for 1.45 GeV and 1.50 GeV, respectively. The

overall reconstruction efficiency of the cut has been plotted in Fig 4.18. Almost 76% of

the electrons from the ω → e+e−π0 decay have been selected. However, only 8% pions

from each the decay ω → π+π−π0 and the direct π+π−π0 production have survived the se-

lection. In addition, selection includes around 3% pions from the decays ω → π+π− and

ρ → π+π−, around 4% pions from the η → π+π−γ and direct π+π− production, and 9%

pions from the η → π+π−π0 decay.

The remnant background contributions, when normalized to the signal using Equation 4.8,

show up in large quantities. The normalized background contributions can be seen in the

form of weighting factors wi listed in Table 4.3. wi basically represent the number of the

pd → 3He X(X → Y ) reactions produced with every ω → e+e−π0 decay. In addition, the

measure of the background contributions per ω → e+e−π0 event, i.e.,
εb j

εs
w, is obtained from

Equation 4.10 for the present analysis condition. The relative reconstruction efficiencies

have been taken into account accordingly.
εb j

εs
w values are plotted in Fig. 4.25 for differ-

ent contributions. The explicit
εb j

εs
w values and the probability P j (b) that a given event is

jth background contribution can be found in Appendix I. P j (b) has been evaluated from

Equation 4.9. As seen in Fig. 4.25 that the background contributions ω → π+π−π0 and di-

rect π+π−π0 production is present in most abundance. In addition, the contributions from

other pionic final states are present in a large amount. The contribution per ω → e+e−π0

event for the decay η → π+π−γ will add up to a considerable amount, when scaled for more

events of the ω → e+e−π0 decay. Contributions from the neutral reactions, direct π0π0 and

π0π0π0 productions persist in the event sample. The fractions of the decays η → γγ (0.05)

and π0 → γγ (0.20) per ω→ e+e−π0 decay have survived. The contributions ω → π+π− and

ω → ηγ are completely suppressed.

4.3.3. The ω → e+e−π0(π0 → γγ) Final State

Hitherto in order to fully reconstruct the ω → e+e−π0 → e+e−γγ final state, one 3He

particle in the Forward Detector in time coincidence with at least one, e+e− pair and at

least two neutral tracks in the Central Detector are identified. The event selection is further

refined by using additional constraints over the detector responses and reaction kinematics,

as discussed in the following.

4.3.3.1. Effects from External Conversion

Dilepton pairs created in the material of the beam pipe are mis-reconstructed as com-

ing from the vertex, as shown in Fig. 4.20. The vertex of the electron and positron for the

conversion pair is determined by calculating the point of the closest distance between the

reconstructed MDC helices of the dilepton. The distance between the conversion vertex and

the beam-target interaction point (0,0) in the xy-plane is equal to the radius (R) of the beam

pipe, as shown in Fig. 4.20. However, the vertex of the reconstructed electron-positron pair

(non-conversion event) is close to the primary vertex. This implies that the distance be-

tween the non-conversion vertex and the primary vertex point is close to zero. As discussed

previously, the opening angle between two particles influences their invariant mass. Corre-

spondingly, the method to reduce the events from external conversion in the beam pipe is
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monitored by the invariant mass of the lepton pair calculation at the beam pipe [124].

Figure 4.20.: Schematic view of the mis-reconstruction of conversion e+ and e− at the beam

pipe. The curved arrows denote the momenta of the e+ and the e−. The black and

orange arrows are the vectors for the reconstructed and conversion pairs, respec-

tively. The momenta are parallel for the conversion pair and opening angle between

them is close to zero at the beam pipe radius.

The dilepton invariant mass is calculated by first evaluating the azimuthal angle of the

particles at the beam pipe using the MDC helix parameters. Which is then used to deter-

mine the momenta of particles. The four vectors of the dilepton pair are reconstructed at

the beam pipe by assigning the electron mass. The four vectors of the conversion dielectron

are added to calculate the invariant mass of the created pair. The momenta of e+ and e−

from the conversion events are parallel to each other at the point of conversion at the beam

pipe. Moreover, the opening angle between their trajectories at the beam pipe is close to

zero, i.e., 6 C ≈ 0 (see Fig. 4.20). It is at this point that the photon which creates the conver-

sion dilepton pair intersects the beam pipe. The invariant mass of the conversion electron

pair evaluated via the energy-momentum four-vectors at the beam pipe is around twice the

electron mass. The electron and positron pair coming from the non-conversion events have a

large opening angle, i.e., 6 NC >> 0, and correspondingly the values of their invariant mass

at the beam pipe are larger than their true invariant mass. As electron and positron pairs tra-

verse the beam pipe after their flight through the magnetic field, the opening angle increases

during the flight and so does the invariant mass. The conversion and non-conversion events

are monitored by the two-dimensional histogram where the radius of the closest approach

as a function of the invariant mass of the lepton pair at the beam pipe is plotted, as shown in

Fig. 4.21.

The ω → π0γ decay is the most influential background due to the conversion events. As

this decay mode differs from the signal decay by only a virtual photon, i.e., ω → e+e−π0 →
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Figure 4.21.: Radius of the closest approach (CA) e+e− or the radius of vertex as a function of the

e+e− invariant mass at the beam pipe. The top left panel is data. The top right panel is

the Monte Carlo simulation of the signal, ω → e+e−π0 decay. The second left panel is

the Monte Carlo simulation of the ω → π0γ decay. The distributions for the direct π0π0

and π0π0π0 production are presented in the second right and the bottom left panels,

respectively. The Monte Carlo simulation of the ω → π+π−π0 decay is shown in the

bottom right panel. The conversion events are seen as a red diagonal structure starting

from around 30 mm radius of CA in Monte Carlo. This structure is not prominent in

the data. The combinations above black dashed line are rejected.

π0γ∗. The final states with at least four γ in the final state, i.e., direct π0π0 and π0π0π0 pro-

ductions, might behave like the e+e−π0 final state, if one of the photons produced a dilepton

pair via the internal conversion. The conversion dilepton in combination with two photons

might pass the selection criteria in these final states. Decays with two photons in the final

state such as π0 → γγ and η → γγ could have ended up being the same topology, if one of

the photons produces a conversion dielectron pair and other photons produce an extra pho-

ton due to neutral split-off. As mentioned already, these are not one of the most abundant

background candidates, but their contributions for each ω → e+e−π0 decay event is moni-

tored. In order to compare the characteristic features of the data and Monte Carlo, the Monte

Carlo simulation of the decay ω → π+π−π0 is shown. The events above the invariant mass

0.08 GeV/c2 in data distribution is mainly coming from the decays and reactions having at

least one pion pair in the final state. The invariant mass of pions at the beam pipe is much
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higher than the invariant mass of the dilepton pair. The possibility that they contribute to the

conversion events is very low, as hardly any conversion event is seen in the histogram.

The internal conversion of photons are seen as the events above the radius of the beam

pipe (30 mm) and at the lowest dilepton invariant masses in the data, as seen for the Monte

Carlo. The cut shown in Fig. 4.21 is used to suppress the conversion electrons. The combina-

tions below this line are considered as combinations not coming from external conversions.

The influence of the conversion cut is quantitatively seen in terms of the reconstruction

efficiencies, as plotted in Fig 4.18. Almost 80% of the ω → π0γ decays are rejected. 85% of

the events from the direct π0π0 production and 75% of the π0π0π0 production is lost due to

this condition. Whereas, only 14% of the signal (ω → e+e−π0) events are rejected, which is

1.2% of the overall reconstruction efficiency.

The signal purity of the selected sample is not affected, as the background is much

larger than the signal. The neutral backgrounds are suppressed significantly.
εb j

εs
w j values

in Fig. 4.25 show that the decay ω → π0γ, direct π0π0 and π0π0π0 productions for a single

event of the ω → e+e−π0 decay is reduced to around 0.14, 7 and 7 from 0.60, 42 and 24,

respectively. Moreover, for the η → γγ and π0 → γγ decays
εb j

εs
w j is suppressed to 0.01

from 0.05 and 0.20, respectively. These backgrounds will further be reduced later when the

specific constraint over the decay kinematics is used.
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Figure 4.22.: The black curve is the invariant mass of any two neutral tracks in the central detec-

tor for data. The blue curve is Monte Carlo simulations for the ω → e+e−π0 decay

scaled to the data with respect to the maximum intensity. A peak at the π0 meson mass

(0.135 GeV/c2) is observed in both spectra. The data has a huge combinatorics back-

ground coming from the multi-pion productions. The invariant mass window shown

with magenta lines is used to select π0 candidates.

4.3.3.2. π0 Candidates Selection

The π0 meson in the e+e−π0 final state is reconstructed using the invariant mass (Mγ1γ2
)

of two neutral tracks identified in the Central Detector, as shown in Equation 3.3. The two

photon invariant mass distribution of the data and Monte Carlo of the ω → e+e−π0 decay

are shown in Fig. 4.22. A peak near the π0 mass 0.135 GeV/c2 is sitting on top of the

background coming from combinatorics and background reactions. The FWHM of the π0

peak in data is 39 MeV. In order to restrict the two photons coming from π0 a mass window
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4.3. pd → 3He ω(ω → e+e−π0) Final State Reconstruction

of 0.070 GeV/c2−0.210 GeV/c2 is used. The two neutral tracks within this window are

selected as decay photons from π0.

The backgrounds having only two charged pions in the final state (π+π−) are mostly

survived due to the split-offs from the hadronic shower. A cut on the two photons invariant

mass will take care of all kinds of split-offs, which can be seen as a hump at low invariant

masses.

The condition on the two photon invariant mass covered almost 98% of the signal events,

as shown in Fig 4.18. However, an efficiency reduction of only 3-4% is seen for the decays

ω → π+π−π0, direct π+π−π0 production and η → π+π−π0 decay. The direct π+π− pro-

duction, the decays η → π+π−γ and ρ → π+π− have been reduced by 87%, 70% and 85%,

respectively.

The evaluated
εb j

εs
w j values in Fig. 4.25 show that the decays η → γγ and π0 → γγ have

zero contributions for each event of the ω → e+e−π0 decay. However, the direct π+π−

production, the decay ρ → π+π− and the decay η → π+π−γ is reduced to 81.00, 0.96 and

0.03 from 613.00, 6.00 and 0.12, respectively, for every signal event. An improvement from

0.04% to 0.05% is seen in signal purity π, as shown in Fig. 4.25.

The purity of 0.05% is significantly low and indicates that the additional kinematic

constraint is required. The next step towards the final state reconstruction is to monitor the

overall kinematics of the reaction pd → 3He ω → 3He e+e−π0.
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Figure 4.23.: The overall missing momentum (δP) has been plotted against the overall missing en-

ergy (δE) of the 3He particle and γγe+e− system. The distributions represent the data

(left) and the Monte Carlo simulation of the signal (right). The ω → e+e−π0 events

near the vertex (0,0) is hidden under the enormous background in the data. The indi-

vidual background contributions are shown in Fig. 4.24. The red rectangular enclosure

in both plots shows the optimal area selected as ω → e+e−π0 decay.

4.3.3.3. Overall Kinematic Check

The overall missing momentum |δP| and the overall missing energy δE for the Monte

Carlo simulation of signal decay ω → e+e−π0 and the data is plotted in Fig. 4.23. The

Monte Carlo simulations of the possible background contributions are shown in Fig. 4.24.

The |δP| and δE are evaluated using Equation 4.6.

The structure corresponding to the signal ω → e+e−π0 is hidden underneath large back-

ground contributions in data. Which is evident from the
εb j

εs
w j values.

εb j

εs
w j after recon-

struction of the e+, e− and π0 particles is 1700, 170, 81, 25, 7 and 7 for the direct π+π−π0

production, ω→ π+π−π0 decay, direct π+π− production, η→π+π− decay, π0π0 production

and π0π0π0 production, respectively. These background contributions lead to continuous δe
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Figure 4.24.: The distributions of the overall missing momentum (δP) as a function of the overall

missing energy (δE) are shown for the background contributions. The Monte Carlo

simulation of the direct π+π−π0 production, the decays ω → π+π−π0, η → π+π−π0

and η → π+π−γ, the direct π0π0, π0π0π0 and π+π− productions, the decays ρ → π+π−

and ω → π0γ are plotted from the top left to the bottom panel, respectively.

and m values, resulting in the data distribution shown in Fig. 4.23. The parameters δe and m

are defined in Section 4.2.3.1.
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4.3. pd → 3He ω(ω → e+e−π0) Final State Reconstruction

The prominent structure around (0.1,0) in the data distribution, mainly originates from

the decay ω → π+π−π0 and direct π+π−π0 production due to scenario ii, as discussed in

Section 4.2.3.1. Correspondingly, the events from the η → π+π−π0 decay lie in the same

region. A similar structure for the decay η → π+π−γ is seen on account of scenario iv. As

one photon is missing, the structure for the decay η → π+π−γ is slightly shifted towards

the origin as compared to the π+π−π0 final state.
εb j

εs
w j value for the η → π+π−γ at this

stage is 0.03 and this may end up to a significant count when scaled for more events of the

ω → e+e−π0 decay.

The direct π0π0 and π0π0π0 productions and the ω → π0γ decay acquire the same topol-

ogy as that of the signal if conversion lepton survives the conversion cut. At this point, the

fraction
εb j

εs
w j for the ω → π0γ decay is 0.06. Which mostly lie over the hyperbolic struc-

ture close to (0,0). Whereas, the direct neutral pions will follow scenario ii and have an

energy shift towards the positive energy axis, with most of the entries preferably towards

the positive energy axis.

The decay ρ→ π+π− and direct π+π− production are following scenario iv, where neither

of energy, momentum and mass is conserved. Among them, the contribution from the direct

π+π− production is not negligible, firstly, due to the expectedly high cross section [90, 99,

101], and secondly, more events in this reaction are localized near (0,0) and have maximum

chances to survive.

The event selection is refined by using an additional constraint over the energy and mo-

mentum balance. The restriction on energy and momentum is optimized by studying the

efficiency, purity and the quantity efficiency×purity for different cuts. The details are pro-

vided in Appendix B.5. It is seen that the combination of −0.2 GeV ≥ δE ≤ 0.2 GeV and

|δP| ≤ 0.18 GeV/c, as indicated by the red lines in Fig. 4.23 and Fig. 4.24, is the optimal

selection window. The reconstruction efficiency of this selection, as shown in Fig. 4.18, is

5.59% and 5.33% for 1.45 GeV and 1.50 GeV, respectively. An improvement in purity is

achieved. The purity, as plotted in Fig. 4.25, has been enhanced to 0.12% and 0.13% from

0.05% in 1.45 GeV and 1.5 GeV data sets, respectively.

Fig. 4.18 shows that the restriction selects almost 75% of the signal events passing through

the selection. Approximately 75%, 70%, 50% and 70% of events had been rejected from the

ω → π+π−π0 decay, direct π+π−π0 production, η → π+π−π0 decay and η → π+π−γ decay,

respectively. The direct π0π0 and π0π0π0 productions are further reduced by 60% and 97%,

respectively. Almost 80% and 91% of the residuals from the direct π+π− production and the

ρ → π+π− decay has been rejected. Around 68% of the traces from the ω → π0γ decay have

still passed the cut.

The fractional contributions per ω → e+e−π0 decay (
εb j

εs
w j) in Fig. 4.25 suggest that most

abundant background contributions which passed the selection criteria are direct π+π−π0

production (>700) and ω → π+π−π0 decay (≃58). The second strong contributions are

coming from the direct π+π− production (>23) and the η → π+π−π0 decay (≃16). The

contribution from the η → π+π−γ decay is 0, i.e., suppressed completely. Clearly, the signal

to background ratio has improved significantly.

4.3.4. Influence of the ω → e+e−π0 Exclusive Final State Selection on

the Decay Kinematics

The impact of the ω → e+e−π0 final state selection criteria can be seen in the form of

the exclusive efficiency (εexc) plotted in Fig. 4.18. 5.59% of the total detector acceptance

for 1.45 GeV beam kinetic energy indicates that almost 8.25% of the geometrically ac-
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Figure 4.25.: The background contributions for a single event of the ω → e+e−π0 decay (
εb j

εs
w j)

are plotted as a function of analysis conditions.
εb j

εs
w j has been evaluated from Equa-

tion 4.10 using w js from Table 4.3.
εb j

εs
w j values and the corresponding background

probabilities P j (b), as discussed in Equation 4.9, can be found in Appendix I. The

purity π at each step, estimated using Equation 4.7, is given as the red text.

cepted phase space (see Section 3.1) survived. Similarly, almost 7.78% of the geometrically

accepted phase space for 1.50 GeV beam Kinetic energy persists. The overall detector ac-

ceptance for 1.50 GeV beam energy has turned out to 5.33%.

The total reconstruction efficiency for the e+e−π0 final state is used to estimate

the number of the ω → e+e−π0 events that should be found in the data. The

expected numbers will be useful to judge the quality of the data and the analy-

sis. The expected number of ω → e+e−π0 decays in-data (N
expected

ω→ e+e−π0) is calculated as

N
expected

ω→ e+e−π0 = N◦
ω × εexc ×BRPDG

ω→ e+e−π0 , where N◦
ω is the total number of ω mesons in the

data for two beam energies listed in Table 4.1. BRω→ e+e−π0 =(7.7±0.6).10−4 is the branch-

ing ratio of the ω → e+e−π0 decay [39]. A total of (16±4)1.45 GeV + (16±4)1.50 GeV =

(32±6) ω → e+e−π0 events is expected in the entire data set.

In addition to this, a significant difference is the seen in the fractional contribution

of the backgrounds per signal event
εb j

εs
w j, the probability P j (b) of backgrounds to

appear in a signal and the sample purity π.
εb j

εs
w j and π for each step has been plotted in

Fig. 4.25. Correspondingly, P j (b) is listed in Appendix I for the reference. More impor-
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4.3. pd → 3He ω(ω → e+e−π0) Final State Reconstruction

tantly, a perceptible influence is observed in the kinematic phase space of the data. The

effect of the final selection is monitored by checking the following quantities.
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Figure 4.26.: Missing mass spectra are shown after the e+e−π0 final state selection. The upper

panel is the plot for 1.45 GeV and the lower panel is for 1.50 GeV beam energy. The

black histograms in the plots are the data. The green histogram is the combined fit

of the signal (ω → e+e−π0) and backgrounds (π+π−π0 and π+π−) convoluted with

a polynomial. The background shape is described by the π+π−π0 and π+π− phase

space simulations convoluted with the polynomial of order 3. The magenta points are

the background-subtracted ω peak, which is well explained with the simulation of the

ω → e+e−π0 decay convoluted with parameter p0.

4.3.4.1. Missing Mass of 3He after ω → e+e−π0 Exclusive Final State Selection

The exclusive missing mass of 3He particle is plotted in Fig. 4.26 after the 3He and exclu-

sive ω → e+e−π0 final state selection. The two spectra in Fig. 4.26 show a comparison be-

tween two energies. A cleaner peak at the ω mass 0.7827 GeV/c2 is seen on top of the multi

pion background as compared to the inclusive missing mass in Fig. 4.4. The direct π+π−π0

has largest probability P j (b) (=87.00%) to present in the event sample (Appendix I). The

in-peak background from the ω → π+π−π0 decay is the second most abundant background

and has P j (b)=7.00%. The backgrounds from the direct π+π−, π0π0 and π0π0 productions

and the decay η → π+π−π0 have probability of 3.00%, 0.50%, 0.04% and 2.00% respec-
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tively, to be seen as a signal. The contribution from the ω → π0γ decay, which is 0.06 for

each ω → e+e−π0 decay (
εb j

εs
w j), is rounded up to 2 when scaled to the 32 events of the

ω → e+e−π0 decay expected in the data.

The background from all multi-pion background productions and the decay η → π+π−π0

have been subtracted from the data by fitting the missing mass spectra, as shown in Fig. 4.26.

The extracted number of the reconstructed ω → e+e−π0 decays has been listed in Table 4.4

and compared with the expected number.
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Figure 4.27.: The background-subtracted data peaks from the 3He missing mass distributions in

Fig. 4.26 are plotted as black points. The blue filled area is the cocktail sum of the

ω → e+e−π0 and ω → π+π−π0. The contributions from other ω decays are negligi-

ble. The red area at the bottom is the signal ω → e+e−π0. The magenta histogram is

the contribution from the ω → π+π−π0 decay. The dark green dashed lines represent

the range used to estimate the number of ω mesons in the peak.

As mentioned already, the in-peak background from the ω → π+π−π0 decay is the sec-

ond most abundant contribution. This is reflected in the counts under the background-

subtracted ω peak. The extracted number is 100 times larger than the expected ω→ e+e−π0

events. Thus, the subtracted data peak must be explained by the superposition of signal and

backgrounds, and further the backgrounds must be subtracted from the peak. A superposi-

tion fit of the signal and the background ω decays is plotted in Fig. 4.27. The superposition

fit is created using

Superposition Fit = p0×Superposition = p0×∑
X

(PSX × csX ×BRX) (4.12)
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4.3. pd → 3He ω(ω → e+e−π0) Final State Reconstruction

where PSX , csX and BRX are the Monte Carlo simulation phase space,

cross section and branching ratio for the Xth contribution, respectively. As

X∈
[

ω → e+e−π0,ω → π+π−π0,ω → π0γ
]

, the common coefficient csω will be taken

care in parameter p0. The value of csω is equated as 1. The coefficient BRX of each X is

well known, and hence, all the contributions in this case are called as “fixed species”. p0,

which is used to scale the superposition of Monte Carlo to the data, is a free parameter

in the fit function. The covariance matrix is calculated by the fit routine from the known

attributes of the “fixed species”and unknown parameter p0. The superposition fit function

takes care of the error arises due to the background subtraction. This is well evident in the

parameter value p0. The errors are propagated throughout in a systematic way. The errors

of the branching fractions and the parameter p0 are taken into account, accordingly. The

error of the Xth decay (σX ) is estimated as

σX = (p0× csX ×PSX ×BRX)×
√

(
σp0

p0
)2 +(

σPSX

PSX
)2 +(

σBRX

BRX
)2 +(

σcsX

csX
)2. (4.13)

As no separate cross section coefficient is used, i.e., csX = 1, the error in cross section σcsX

is 0 for this fit. Whereas, the error of the Monte Carlo superposition (σSuperposition) is

σSuperposition =

(

p0×∑
X

(csX ×PSX ×BRX)

)

×
√

√

√

√

√

√

√

(
σp0

p0
)2 +

∑
X

(

(
σPSX

PSX
)2 +(

σBRX

BRX
)2 +(

σcsX

csX
)2
)

× (csX ×PSX ×BRX)
2

(

∑
X
(csX ×PSX ×BRX)

)2
,

(4.14)

The area under the sum and the background-subtracted data peak between the mass range

of 0.736 GeV/c2 − 0.824 GeV/c2, which is same as used for the inclusive final state and

the ω → π0γ exclusive final state, is in agreement within the errors. The range chosen is

5σ on left and 4σ on the right side of the ω peak. The background contribution from the

ω → π+π−π0 decay is estimated and listed in Table 4.4.

1.45 GeV 1.50 GeV Entire data

ω → e+e−π0 expected (N
expected

ω→ e+e−π0) (16±4) (16±4) (32±6)

Number of events in the continuous (2266±164) (1971±154) (4237±225)

background subtracted peak

in-peak background ω → π+π−π0 (2225±168) (1937±157) (4162±230)

ω → e+e−π0 reconstructed in data (39±235) (32±220) (71±322)

(Nrec
ω→ e+e−π0)

overall purity (%) 0.14% 0.13% 0.14%

overall significance 0.24 0.20 0.31

in-peak purity (%) 1.72% 1.62% 1.66%

in-peak significance 0.82 0.72 1.10

Table 4.4.: The number of reconstructed ω → e+e−π0 decays, overall purity, overall significance,

in-peak purity, and the in-peak significance are presented. For overall purity and signif-

icance, all background contributions have been taken into consideration. However, for

in-peak purity and significance, only in-peak backgrounds are used.
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The most abundant in-peak background contribution from the ω → π+π−π0 decay is

subtracted from the data peak to have an estimate of the number of the ω → e+e−π0 decays

in data.

Nω→ e+e−π0 = NDATA peak −Nbackground = NDATA peak −Nω→ π+π−π0 = 71Entire data (4.15)

The errors are propagated systematically for two energies, as,

σω→ e+e−π0 =±
√

σ2
data +σ2

ω→ π+π−π0 =±
√

2252 +2302 =±322Entire data (4.16)

The resulting number, as listed in Table 4.4, is estimated to be (39±235) and (32±220)

for 1.45 GeV and 1.50 GeV, respectively. The in-peak signal to background ratio, which

was 0.0325 and 0.0400 in the inclusive final state for 1.45 GeV and 1.50 GeV, respec-

tively, turns out to be 26.61×10−4 for 1.45 GeV and 24.90×10−4 for the respective en-

ergies. The number of reconstructed ω → e+e−π0 decay is nearly two times the expected

number (32±6). This is an indication that there are still remnants of the background from

the ω → π+π−π0 decay, which is almost 50% of the current yield. One of the reasons for

this discrepancy may be the background contributions that are not accurately estimated from

the Monte Carlo simulations. However, the estimated errors are large enough to accommo-

date for this inaccuracy. Therefore, within errors, the numbers extracted and the numbers

expected for two energies are in agreement. The large error bars are due to the presence of

huge background contributions in the event sample and the background subtractions.

The overall purity and in-peak purity of the sample listed in Table 4.4 are consistent

with previous numbers listed in Fig. 4.25. The statistical significance indicates that with

existing statistics it is unrealistic to find a selection capable of allowing the observation

of the signal [121]. In order to observe a signal, the significance of at least 3 should

be needed. The achieved yield for the ω → e+e−π0 decay is supporting the previous

statement. (71±322) reconstructed events basically mean 0 events, i.e., ω → e+e−π0 decay

is not found in the data. The result will be discussed later in Chapter 5.

4.3.4.2. Invariant Mass of e+e− after ω → e+e−π0 Exclusive Final State Selection

As discussed in Chapter 1, the main focus of this work is to check for the feasibility of

measuring the ω−π transition form factor. The reconstructed e+e− pair is giving an access

to the full range of virtual photon mass (q2) shown in Fig. 1.6. The dilepton invariant mass,

which is evaluated from Equation 1.6, is plotted in Fig. 4.28 for both energies. In order to

compare data with Monte Carlo, a superposition histogram of signal (ω → e+e−π0) and all

possible backgrounds is created as

Fitsuperposition = p2× (.p0×PSπ+π− +p1×BRρ→π+π− ×PSρ→π+π− +∑
X

(PSX × csX ×BRX)),

(4.17)

where cs, BR and PS are the cross section, branching ratio and the simu-

lated phase space of the Xth decay/reaction. The subscript X varies over the

set
[

ω → e+e−π0, ω → π+π−π0, ω → π0γ, π+π−π0, π0π0, π0π0π0, η → π+π−π0
]

. The

free parameter p2 is the scaling parameter, which normalizes the Monte Carlo sum to the

data. The signal and the backgrounds in Equation 4.17 are the fixed species, whose at-

tributes (cs and BR) are known, as listed in Appendix C.1. The parameters p0 and p1 are the

unknown coefficients of the direct π+π− production and the ρ meson production. As these
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4.3. pd → 3He ω(ω → e+e−π0) Final State Reconstruction

attributes are unknown at the current energies. For convenience, parameters p0 and p1 are

named as “variable species ”, in this document.

In order to fit a combination of fixed species and variable species to the fixed data yield,

the variable species must be normalized appropriately. So that true marginal distribution is

reproduced. The plot technique is influenced by Ref. [125]. Wherein, firstly the covariance

matrix of Equation 4.17 is calculated from fixed species only, i.e., fixing variable species to

0. In the next step, for fixed attributes of the fixed species, the obtained covariance matrix of

Equation 4.17 is modified by allowing variable species to be varied freely.
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Figure 4.28.: The e+e− invariant mass distributions after the ω → e+e−π0 final state selection are

shown for 1.45 GeV (top) and 1.50 GeV (bottom) beam energies. The black points

represent the data distribution. Which is compared with the superposition histogram

of the Monte Carlo signal and backgrounds, highlighted as the yellow area. The in-

dividual signal and background contributions are plotted. The respective percentage

contributions are given in the legend.

The final superposition histogram and the contributing backgrounds are plotted in

Fig. 4.28 with data. The parameter values are listed in Fig. 4.28. The value of the parame-

ter p0, which is (9.81±0.40)×10−6 b for 1.45 GeV and (7.75±0.34)×10−6 b for 1.5 GeV,

anticipates the cross section of the π+π− production to be significantly larger. Which is ap-
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proximately two orders of magnitude higher than the ω meson production. In contrast, the

values of parameter p1 are (56.42±0.24)×10−9 b and (51.42±0.19)×10−9 b for 1.45 GeV

and 1.50 GeV, respectively. This indicates that the cross-section of the ρ meson production

is expected to be comparable to the ω meson cross-section. The ∼100% decay width of the

ρ → π+π− makes it a probable background candidate for the rare ω → e+e−π0 decay (refer

to Appendix C.1 for branching fractions). The weighting factors wi for the direct π+π− pro-

duction and the decay ρ → π+π− are re-evaluated from Equation 4.8, by equating csπ+π−

and csρ→π+π− with the p0 and p1 values, respectively. The new wi for the direct π+π−

production is (153679±13811) and (116277±9298) for 1.45 GeV and 1.50 GeV, respec-

tively. Similarly, for the decay ρ → π+π−, the re-estimate of wi turns out to be (877±80) for

1.45 GeV and (799±70) for 1.50 GeV. Accordingly, εb

εs
w values for the direct π+π− produc-

tion are (22±2) and (18±2) in 1.45 GeV data and 1.50 GeV data, respectively. Whereas,
εb

εs
w

of the ρ → π+π− decay is (0.11±0.01) for 1.45 GeV and (0.09±0.01) for 1.50 GeV. Traces

of these contributions survived the split-off cut are scaled up to a significant amount, due to

the large values of parameters p0 and p1. The contribution from ρ → π+π− decay impacts

the quality of the final sample, as the masses of the ρ and ω mesons are comparable [39].

Moreover, the distributions in Fig. 4.28 suggest that the entries in the data and the Monte

Carlo simulations are localized within the physically allowed regions (refer to Ref. [126]

for kinematic limit details). Furthermore, the line shape of the superposition and data are

comparable. Conclusively, Within errors, the Monte Carlo simulation is in agreement with

the expectations. However, the discrepancy between data and Monte Carlo for the higher

invariant masses might be due to the unknown production mechanisms of the direct pro-

cesses, given an isotropic phase space population has been assumed for the simulations. In

addition, the statistical fluctuations are contributing to this discrepancy.

Contribution 1.45 GeV 1.50 GeV

Events σstat σfit Events σstat σfit

DATA 30357 ± 174 26733 ± 164

MC:

SUM 30011 ± 173 126 26352± 162 107

ω → e+e−π0 37 ± 6 1 34± 6 1

ω → π0γ 3 ± 2 0 3 ± 2 0

ω → π+π−π0 2161 ± 47 10 2066± 46 10

π+π−π0 26452 ± 163 100 23150 ± 152 88

π+π− 1044 ± 33 80 806± 28 60

π0π0 96 ± 10 3 87± 9 3

π0π0π0 12 ± 4 1 13± 4 1

η → π+π−π0 204 ± 14 2 190± 14 2

ρ → π+π− 3 ± 2 0 3± 2 0

overall purity (%) 0.12% 0.13%

overall significance 0.21 0.21

in-peak purity (%) 1.68% 1.62%

in-peak significance 0.79 0.74

Table 4.5.: The number of events in the superposition histogram and in the individual contributions

is shown for two energies. The statistical and fit errors are given.

An estimate for the number of the signal and background events to be found in data

is obtained from the superposition histogram and compared with the estimates from the
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4.3. pd → 3He ω(ω → e+e−π0) Final State Reconstruction

missing mass spectra. The counts for the superposition histogram and for each contribution

are listed in Table 4.5. The statistical errors and errors due to fit are shown. The errors

due to fit are propagated bin wise in a systematic way, as shown in Equation 4.13 and

Equation 4.14. BRX for the direct production is taken as 1 and its error σBRX
=0. The cross

section csX for the direct π+π− production and the ρ meson production are unknown, and

hence the parameter values p0, p1 and the corresponding errors are used.

The number of ω → e+e−π0 decay is estimated to be (37±6±1)1.45GeV and

(34±6±1)1.5GeV for two energies. This estimate agrees well with the signal yield in data

obtained from the missing mass spectra, as listed in Table 4.4. The yield of each back-

ground contribution for a single event of the ω→ e+e−π0 decay (
εb

εs
w), as listed in Fig. 4.25,

is in agreement with the current yield shown in Table 4.5. Provided, the current yield is ex-

trapolated for (37±6±1) and (34±6±1) events of the ω → e+e−π0 decays in 1.45 GeV and

1.5 GeV data, respectively.

The statistical significance and purity, as listed in Table 4.5, are consistent with the pre-

viously obtained values in Fig. 4.25 and Table 4.4. The small value of the statistical signif-

icance supports the statement that event selection does not have enough statistical power to

observe the signal.
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5.1. The Inclusive Missing Mass of 3He: pd → 3He ω

The inclusive missing mass distributions are used to estimate the total number of ω
mesons, as discussed in the previous chapter. The Monte Carlo simulation of the ω → π0γ
channel has been combined with the neutral multi-pion productions, which are the most

prominent backgrounds for the ω → π0γ final state, to fit the data.

The statistical significance of the event selection, 61 for 1.45 GeV and 66 for 1.50 GeV,

is large enough (>>5) to observe the ω meson in data. The signal to background ratio

for the inclusive missing mass spectrum in the peak region is 3% for 1.45 GeV and 4%

for 1.50 GeV. The situation is improved after π0γ final state selection and a better preci-

sion in the fits is obtained. The background-subtracted data distribution is described by the

simulations. The peak positions and the resolution obtained for two energies are listed in

Table 5.1. The peak positions obtained from data for both energies are close to the particle

data group value (0.7827±0.0001) GeV/c2. The number of ω mesons extracted from the

background-subtracted peak is presented in Table 4.1 of the previous chapter.

peak position (MeV) FWHM (MeV)

MC data MC data

Inclusive final state

1.45 GeV 782.34±0.02 783.44±0.12 15.40±0.06 15.36±0.36

1.50 GeV 782.49±0.02 783.33±0.12 15.75±0.08 15.71±0.37

ω → π0γ final state

1.45 GeV 782.36±0.10 782.70±0.32 14.13±0.36 14.78±1.14

1.50 GeV 782.39±0.12 783.09±0.33 15.52±0.47 14.77±1.21

Table 5.1.: The peak position and resolution (FWHM) of the background-subtracted peak for two

beam energies at different stages of the analysis.

The total number of ω mesons Nω◦ in data is estimated as

Nω
◦ =

Nrec
ω

εinc
=

[

(3.15±0.04)×105

0.8465

]

1.45 GeV

+

[

(3.28±0.04)×105

0.8671

]

1.50 GeV

=
[

(3.72±0.05)×105
]

1.45 GeV
+
[

(3.78±0.05)×105
]

1.50 GeV

Nω
◦ =

[

(7.50±0.07)×105
]

entire data
,

(5.1)

where Nrec
ω is the number of reconstructed ω mesons obtained from the background sub-

tracted peak. The εinc is the Monte Carlo efficiency of the selection criteria. The errors

shown are the propagated statistical errors. The numbers are used to evaluate the average

luminosity (LA = (1.67± 0.04)× 1031cm−2s−1) during the beam time, as shown in Equa-

tion 4.5, and the branching ratio. Which is evaluated later in this chapter.
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5.2. The Exclusive Missing Mass of 3He:

pd → 3He ω (ω → π0γ)

The signal to background ratio after implying the exclusive final state is improved to

0.0984 for 1.45 GeV and 0.1120 for 1.50 GeV as compared to the inclusive final state. The

significance values of 17.97 (1.45 Gev) and 20.60 (1.50 GeV) are sufficient to detect the

ω → π0γ decay in data. The missing mass distributions after exclusive selection are used

to estimate the total number of ω mesons decaying into π0γ. The total number N◦
ω→π0γ

of

ω → π0γ decays during the full beam time is calculated as

N◦
ω→π0γ =

Nrec
ω→π0γ

εexc
=

[

(1.08±0.05)×104

0.3474

]

1.45 GeV

+

[

(1.08±0.04)×104

0.3435

]

1.50 GeV

=
[

(3.11±0.13)×104
]

1.45 GeV
+
[

(3.14±0.13)×104
]

1.50 GeV

N◦
ω→π0γ =

[

(6.25±0.18)×104
]

entire data
,

(5.2)

where Nrec
ω→π0γ

is the number of ω → π0γ decays in the background subtracted data peak and

εexc is the reconstruction efficiency. These numbers can be referred from Table 4.2. The total

number of ω → π0γ decays will be used to determine the branching ratio of the ω → π0γ
decay, as discussed in the upcoming section.

Branching ratio of the ω → π0γ decay (BRmeasured
ω→π0γ

)

1.45 GeV 1.50 GeV Entire data

(1.45+1.5) GeV

BRmeasured
ω→π0γ

=
N◦

ω→π0γ

N◦
ω

(3.11±0.13)×104

(3.72±0.05)×105

(3.14±0.13)×104

(3.78±0.05)×105

(6.25±0.18)×104

(7.50±0.07)×105

BR f = (8.36±0.37)% = (8.31±0.34)% = (8.33±0.25)%

Table 5.2.: The measured branching ratio BRmeasured
ω→π0γ

for 1.45 GeV beam energy, 1.5 GeV beam

energy and the combined data set are given in the second, the third and fourth columns,

respectively. N◦
ω and N◦

ω→π0γ
are listed in Table 4.1 and Table 4.2, respectively. The values

shown here are the final branching ratios BR f .

5.2.1. Branching Ratio of the ω → π0γ Decay

The average branching fraction of the ω → π0γ decay calculated for the average luminos-

ity is expressed as

BRmeasured
ω→π0γ =

N◦
ω→π0γ

N◦
ω

=

[

(6.25±0.18)×104
]

entire data

[(7.50±0.07)×105]entire data

BRmeasured
ω→π0γ = (8.33±0.25)%,

(5.3)

where N◦
ω and N◦

ω→π0γ
are taken from Equation 5.1 and Equation 5.2, respectively. The

measured branching ratio in three cases, as listed in Table 5.2, are found close to the particle

data group (8.40±0.22)% [39]. The errors shown here are statistical. The systematic errors
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are estimated by exploring the systematic effect coming from the background subtraction

and the analysis procedure. Which will be presented in Section 5.2.3.
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Figure 5.1.: The inclusive missing mass of 3He particles as a function of luminosity mea-

sure “TR17/Pellet rate” is plotted in the top panel for 1.50 GeV beam energy. As an

illustration, the bin in the luminosity range of (150 - 200) pellet−1 has been projected

as black histogram in the bottom left panel. The luminosity range of the missing mass

projection is indicated by two red lines. To extract the number of ω mesons, the missing

mass spectrum is fitted. The bottom right panel represents the missing mass projection

and the fit for the same luminosity range after the π0γ final state. The number of the

ω → π0γ decays is extracted.

5.2.2. Luminosity Dependence of the Measured Branching Ratio of the

ω → π0γ Decay

The instantaneous luminosity for the ω production is the ratio of the total num-

ber of ω mesons to the interaction cross-section with an average of one pellet in the

beam. The missing mass of 3He is plotted as a function of the instantaneous luminosity

factor “TR17/Pellet rate” in the top panel of Fig. 5.1. Which is a relative measure for the

instantaneous luminosity,

Instantaneous Luminosity =
TR17

Pellet rate
(5.4)

where trigger 17 represents a measure of the luminosity described in Section 3.7.

The instantaneous luminosity factor, in combination with a conversion factor derived from

the known attributes of the pellet target and the trigger simulations, would be the instanta-

neous luminosity. In the following sections, the instantaneous luminosity factor is referred

to as luminosity.
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Large luminosities could cause pileups from chance coincidences, possibly affecting the

results. The trigger used during the pd beam time, based on the unique signature of 3He

particle, effectively suppresses background from elastic, quasi-elastic and breakup reac-

tions. These backgrounds, around one million times larger than the ω production [90, 127],

constitute the majority of the total cross section of the pd collision. Owing to the high cross-

section, there is a possibility that these background events survive the trigger conditions at

high rates in the form of event pileup.

The pileup from the background might coincide in time with the long SEC signals, named

as coincidences, and are mostly considered as a signal or part of the actual event. These

chance coincidences create an imbalance in energy and momentum and cause a reduction in

efficiency. Which further becomes pronounced at higher luminosities. The effect is scaled

up depending on the number of γ in the event. As a consequence, the branching ratio would

decrease with increasing luminosity. For detailed description of the luminosity effects please

refer to Ref. [84].

In order to see this effect, the branching fraction with respect to luminosity is studied. To

accomplish this, the inclusive missing mass of 3He is plotted as a function of the instanta-

neous luminosity in the upper panels of Fig. 5.1 for 1.5 GeV. It can be seen from the plot that

most of the time the luminosity lies between 100 pellet−1 and 250 pellet−1. The 3He missing

mass for different luminosity ranges are fitted and a number of ω mesons extracted. One of

such missing mass fits for the luminosity range (150 - 200) pellet−1 is shown in the bot-

tom left panel of Fig. 5.1 for 1.5 GeV beam energy. The number of ω meson extracted in

1.50 GeV data set is (7.77±0.20)×104. Correspondingly, the projection onto the missing
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Figure 5.2.: The measured branching ratio of the ω → π0γ decay is plotted as a function of the

different luminosity values. The blue, red and black points are the data at 1.45 GeV,

1.5 GeV and the combined data for both energies, respectively. The branching ratios for

three data sets are in agreement within error.

mass after ω → π0γ final state is fitted and the peak is extracted for different luminosity

bins. As an example, the fit for the range (150 - 200) pellet−1 is shown in the right panel of

Fig. 5.1. The number extracted from the data is (2.59±0.21)×103 for ω → π0γ final state at
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1.50 GeV beam energy. The errors shown are the propagated statistical errors. The extracted

numbers for both energies and each bin are presented in Appendix J for two final states.

The branching ratio of the decay mode ω → π0γ is obtained using Equation 5.3. Where

the total number of the ω → π0γ decays is divided with the total number of ω mesons for

corresponding luminosity bins. The evaluated branching ratio for different bins is plotted in

Fig. 5.2. The overall data are obtained by adding the individual contributions of two beam

energies, as shown in Equation 5.1 and Equation 5.2. The branching ratio for the com-

bined data set is estimated for each bin, as shown previously in Equation 5.3. The errors

shown here are statistical. It can be seen in Fig. 5.2 that the branching ratio is not changing

significantly and is consistent within uncertainties. The branching ratios in different lumi-

nosity range for three data sets are in agreement within errors with the particle data group

(8.40±0.22)% [39]. The branching ratios are comparably larger for the last two higher lu-

minosity bins. This jump might arise due to the statistical fluctuations and systematics in

the fitting procedure, as the statistics in these bins is low. The fits for the last two bins are

presented in Appendix J. The last two bins may have an influence on the branching ratio

to some extent. Therefore, it is significant to do a systematic check of the branching ratio

measurement for luminosity. Which is presented in the following.

5.2.3. Systematical Uncertainties

Systematic uncertainties are often of comparable size to the statistical uncertainties in

the measurement of a physical quantity. Consequently, they play a key role in the measure-

ment. Some common examples of systematic uncertainty include uncertainties that arise

from the detector calibration, detector acceptance, parameters of the model used to make

inferences that are not known precisely, physical/detector related background which cannot

be separated from the signal and signal selection bias in the analysis.

Two types of systematic effects have been explored for this study [128]. In the first type,

the systematic study is performed using a selection of different sets of events, which are

a subset of the final analysis sample. In particular, the luminosity dependent effect is a

candidates for this type of test. In this case, two variables σ∆ and λ are tested to determine if

the branching ratio value for the selected subset, BRi, deviate systematically from the final

branching ratio, BR f [129],

σ∆ =
√

|σ2
i −σ2

f |

λ =
BR f −BRi

σ∆
.

(5.5)

The |λ|> 2 for a particular test indicates the presence of a systematic effect that is not under-

stood properly. The systematical deviation that arises due to this effect has to be accounted

for as the difference in the branching ratios, BR f −BRi.

The second type of systematic study is independent of the selected data set. For instance,

the systematic effect arises due to background subtraction and different types of cuts used

for the final event selection. In this case, the difference between the final branching ratio,

BR f , and the branching ratio from the cross check, BRi, is given in terms of the uncertainty
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Figure 5.3.: The branching ratios as a function of luminosity are fitted for the different luminosity

ranges, as indicated on the top legends. The blue, red and black markers represent the

1.45 GeV, 1.50 GeV and the combined data set, respectively. The constant fits for dif-

ferent ranges are plotted as dashed lines. The fit parameters and χ2/nd f are listed in

legends.

of the standard analysis [129],

∆BR =
BR f −BRi

σBR f

. (5.6)

If an effect is greater than one standard deviation, i.e., |∆BR|> 1, then this systematic effect

should be considered as BR f −BRi.

5.2.3.1. Systematic Uncertainty due to Luminosity

The systematic effect on the branching ratio from the last three luminosity bins is un-

derstood and presented here. The branching ratio is estimated by fitting three histograms in

Fig. 5.2 with a constant fit. The fits for two extreme luminosity ranges (50 - 500) pellet−1

and (50 - 300) pellet−1 are shown in Fig. 5.3. The χ2/nd f << 1 indicates that the error esti-

mated by the fit routine is not the true error of distribution. Rather, there is an overestimation

of errors. In this particular case, where each measurement has different error (σi) and hence

different weight (wi =
1

σ2
i

), the uncertainty is estimated as the weighted standard deviation
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Luminosity Entire data

pellet−1 1.45 GeV 1.5 GeV (1.45+1.50) GeV

BRi λ BRi λ BRi λ

(50−500) 8.26±0.13 0.29 8.43±0.80 -0.17 8.35±0.29 -0.14

(50−400) 8.26±0.13 0.29 8.40±0.58 -0.19 8.34±0.24 -0.14

(50−350) 8.26±0.13 0.29 8.36±0.04 -0.15 8.31±0.08 0.08

(50−300) 8.26±0.14 0.29 8.36±0.04 -0.15 8.31±0.08 0.08

Table 5.3.: The branching ratio values obtained in the systematical tests for luminosity are listed for

three data sets. The corresponding systematical check variable λ is presented.

σw of the parameter p0 from the data points X(i) [130].

σw =

√

√

√

√

√

√

√

N
N

∑
i=1

wi (X(i)− p0)2

N −1
N

∑
i=1

wi

, (5.7)

where N is the total number of measurements. The parameter p0 and the estimated uncer-

tainty are listed in Table 5.3. Likewise, the branching fraction estimates for other luminosity

ranges are tabulated in Table 5.3. It is observed that the branching ratio for 1.45 GeV is con-

sistent in each luminosity range. Moreover, the uncertainties in 1.45 GeV data are similar for

all luminosities. However, for 1.5 GeV the branching ratios and uncertainties are consistent

for the lower and medium luminosities (50-350) pellet−1. The deviation of the branching ra-

tio from its final value and its error increases when higher luminosity bins (350-500) pellet−1

are included. It should be noted here that the branching ratios for a full luminosity range (50-

500) pellet−1 are the same as that of the branching ratios listed in Table 5.2, however, using

a different method. The branching ratios, within errors, are in agreement for both cases.

The systematic effect is studied using the first type of test, as explained in Equa-

tion 5.5. Clearly, none of the three data sets have λ value greater than 2, as shown in

Table 5.3. This implies that the luminosity does not have any systematical deviation which

is not taken care of by the statistical error.

5.2.3.2. Systematic Effect due to the Fitting Procedure

The branching fraction is obtained by dividing the two numbers extracted by fitting two

missing mass distributions. The systematic effect, in the branching ratio, would get can-

celed if both distributions had similar phase spaces because the fits would also be compara-

ble. However, the inclusive and exclusive missing mass distributions in the present data have

different phase spaces. Consequently, their fits are different. This implies that the systematic

effect due to the fitting procedure is not canceled, and accordingly it has been tested in the

following.

The fit range and polynomial order are altered in order to study this effect. Only the con-

verging fits from various combinations are considered. As an illustration, the extracted num-

bers Nrec
ω and Nrec

ω→π0γ
, and the branching ratio estimate BRmeasured

ω→π0γ
are plotted in Fig. 5.4 for

different combinations in 1.45 GeV data. The corresponding distributions for 1.5 GeV beam

energy and explicit values for both energies can be found in Appendix L.1 for reference.

The second type of systematic check is applicable in this case because the same data set is

used for all tests. The results from the systematic check have been presented in Table 5.4. It
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Figure 5.4.: The top panel represents the number of reconstructed ω mesons (Nrec
ω ) and the middle

panel is the number of reconstructed ω → π0γ events (Nrec
ω→π0γ

) for different combi-

nations of fit ranges and polynomial orders in 1.45 GeV data. The left parts of both

histograms represent the varied fit range for the fixed polynomial order, same as used

for the final fits shown in Fig. 4.4. The vice-versa is represented by the right portion of

both histograms. The branching fraction BRmeasured
ω→π0γ

for different combinations of the fit

ranges and polynomial orders of the inclusive and exclusive missing mass is plotted in

the bottom panel for 1.45 GeV data. The errors shown are statistical.
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5. Results and Discussions

is clear from the table that |∆B| is greater than 1 only for 1.45 GeV data. The systematical

uncertainty, which is the difference of test value with respect to the final branching ratio

value, is taken into account as

σ(1.45 GeV ) f it−sys =
+0.70
−0.05. (5.8)

|∆B| < 1 in the 1.5 GeV data set suggests that there is no systematic effect that arises due

to background subtraction in this data. The error is propagated to estimate the systematic

uncertainty in the combined data as

σ(1.45 GeV +1.50 GeV ) f it−sys =
+0.70
−0.05. (5.9)

5.2.3.3. Systematic Effect due to 3He Identification

The systematic effect due to the 3He identification is studied and presented in this

section. Various selections considered for the cut optimization in Section 4.1.1 are used

here. These graphical cuts are illustrated in Fig. 5.5. The name and description of various
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(a) Preselected data: FTH1 vs. FRH1. Cut 2 is the final
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(b) Preselected data: FRH1 vs. FRH2.
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(c) Preselected data: FRH2 vs. FRH3.
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Figure 5.5.: Particle identification (PID) plot for 3He particles. The enclosures formed by the same

types of lines are various conditions on the energy loss patterns used for the consistency

check and cut optimization. ‘Cut 2’ on the FTH1 vs. FRH1 is the criterion used for final

analysis.

cuts used are listed in Table 5.5. All aspects of the selection criterion are considered for

this study, i.e., if the selection is too wide ‘FTH1 vs FRH1 (Cut 1)’, optimum ‘FTH1 vs

FRH1 (Cut 2)’ and too narrow ‘FTH1 vs FRH1 (Cut 3)’. Additionally, the Monte Carlo

study indicates that most of the 3He is stopped in the FRH2. However, very few 3He acquire
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Range/Pol 1.45 GeV Range/Pol 1.5 GeV

BR f −BRi ∆BR BR f −BRi ∆BR

(0.5000-0.8400)/6inc 0.00 0.00 (0.5000-0.8550)/5inc 0.00 0.00

(0.5250-0.8400)/6inc 0.00 0.00 (0.5250-0.8550)/5inc 0.00 0.00

(0.5500-0.8400)/6inc 0.00 0.00 (0.5500-0.8550)/5inc 0.00 0.00

(0.6000-0.8400)/6inc -0.05 -0.14 (0.6000-0.8550)/5inc 0.00 0.00

(0.5750-0.8325)/6inc +0.16 +0.43 (0.6250-0.8550)/5inc +0.21 +0.62

(0.5750-0.8400)/7inc +0.06 +0.16 (0.6500-0.8550)/5inc +0.21 +0.62

(0.5750-0.8400)/8inc +0.16 +0.43 (0.5750-0.8450)/5inc +0.21 +0.62

(0.5750-0.8400)/9inc +0.24 +0.65 (0.5750-0.8475)/5inc +0.21 +0.62

(0.5750-0.8400)/10inc +0.26 +0.70 (0.5750-0.8500)/5inc +0.21 +0.62

(0.5000-0.8400)/5exc 0.00 0.00 (0.5750-0.8525)/5inc +0.07 +0.21

(0.5250-0.8400)/5exc 0.00 0.00 (0.5750-0.8575)/5inc +0.10 0.29

(0.5500-0.8400)/5exc 0.00 0.00 (0.5750-0.8550)/6inc -0.08 -0.24

(0.6000-0.8400)/5exc +0.39 +1.05 (0.5750-0.8550)/7inc -0.13 -0.38

(0.6250-0.8400)/5exc +0.55 +1.49 (0.5750-0.8550)/8inc -0.10 -0.29

(0.5750-0.8250)/5exc 0.00 0.00 (0.5750-0.8550)/9inc -0.13 -0.38

(0.5750-0.8275)/5exc 0.00 0.00 (0.5750-0.8550)/10inc -0.05 -0.15

(0.5750-0.8300)/5exc 0.00 0.00 (0.5000-0.8550)/4exc 0.00 0.00

(0.5750-0.8325)/5exc +0.08 +0.22 (0.5250-0.8550)/4exc 0.00 0.00

(0.5750-0.8350)/5exc +0.08 +0.22 (0.5500-0.8550)/4exc 0.00 0.00

(0.5750-0.8375)/5exc +0.08 +0.22 (0.6000-0.8550)/4exc +0.08 +0.24

(0.5750-0.8425)/5exc +0.08 +0.22 (0.5750-0.8450)/4exc -0.23 -0.68

(0.5750-0.8450)/5exc +0.08 +0.22 (0.5750-0.8475)/4exc -0.16 -0.47

(0.5750-0.8475)/5exc +0.08 +0.22 (0.5750-0.8500)/4exc -0.08 -0.24

(0.5750-0.8500)/5exc +0.08 +0.22 (0.5750-0.8525)/4exc 0.00 0.00

(0.5750-0.8400)/6exc +0.24 +0.65 (0.5750-0.8575)/4exc 0.00 0.00

(0.5750-0.8400)/7exc +0.55 +1.46 (0.6000-0.8600)/4exc +0.08 +0.24

(0.5750-0.8400)/8exc +0.70 +1.89 (0.6000-0.8625)/4exc +0.15 +0.44

(0.5750-0.8400)/9exc +0.46 +1.24 (0.6000-0.8650)/4exc +0.15 +0.44

(0.5750-0.8400)/10exc +0.55 +1.49 (0.5750-0.8550)/6exc +0.08 +0.24

(0.5750-0.8550)/7exc +0.31 +0.91

(0.5750-0.8550)/8exc +0.31 +0.91

(0.5750-0.8550)/9exc +0.31 +0.91

(0.5750-0.8550)/10exc +0.22 +0.65

Table 5.4.: The systematical checks for the background subtraction using different combinations of

fit range and polynomial orders are presented. The deviations of the test values from

the final branching ratio value (B f −Bi) and the estimates of the test variable ∆BR are

shown. The tests for which ∆BR is greater than 1 are highlighted in red.

enough energy to reach FRH4 (see Appendix A.1 for illustration). As a result, another com-

bination of graphical cut, named ‘Combined’, is included in this study. Wherein, the 3He

are forced to additionally pass the conditions on energy loss patterns of the subsequent FRH

layers. These additional selection criteria are shown in Fig. 5.5. The 3He structure, along

with associated protons and deuterons and the minimum ionizing protons and deuterons,

is seen coming from various scatterings and breakup reactions. Imposing additional condi-

tions for each layer rejects 3He that loses energy via scattering with a nucleus in the detector
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5. Results and Discussions

Cut Name Cut Description

1. ‘Combined’: Events within the black enclosure

[FTH1 vs FRH1 (Cut 2)]+[FRH1 vs FRH2] in Fig. 5.5a must additionally

+[FRH2 vs FRH3]+[FRH3 vs FRH4] pass the conditions indicated by

the black enclosures in Fig. 5.5b,

Fig. 5.5c and Fig. 5.5d

2. Widest Selection window: Events within the magenta

‘FTH1 vs FRH1 (Cut 1)’ enclosure in Fig. 5.5a

(equivalent to the preselection PID)

3. Optimum Selection window: Events within the black

‘FTH1 vs FRH1 (Cut 2)’ enclosure in Fig. 5.5a

Optimized selection, used for the final analysis

4. Narrow Selection window: Events within the blue enclosure

‘FTH1 vs FRH1 (Cut 3)’ in Fig. 5.5a

Table 5.5.: The second column represents the name and the third column is the description of the

different graphical cuts used for the cut optimization and systematic studies.

material in a further downstream layer.

The branching ratio estimates as a function of the 3He PID cuts have been presented in

Fig. 5.6 for three data sets. The efficiency of the cut increases from left to right on the x-

axis. The missing mass spectra, efficiencies, the numbers, and the branching ratio estimate

BRmeasured
ω→π0γ

for each cut can be found in Appendix M.

He PID in FD3

Combined
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FRH1 vs FTH1 (cut 2)
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Figure 5.6.: An illustration of the systematic effect on the branching ratio measurement due to the
3He particle identification (PID) method. The x-axis of distribution represents different
3He PID cuts. Whereas, the y-axis corresponds to the branching ratio value for each

cut. The blue, red and black points are the 1.45 GeV, 1.50 GeV and combined data set,

respectively. The errors are propagated statistical errors.

The second type of check is performed to ascertain the uncertainty estimate present in

the distributions. The ∆BR values (>1) for 3He PID, as shown in Table 5.6, indicate that

1.45 GeV data have systematical deviation arising due to particle identification which has

not been explained by the statistical uncertainty. This systematic effect is accounted as the
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5.2. The Exclusive Missing Mass of 3He: pd → 3He ω (ω → π0γ)

deviation of test value from the final branching ratio,

σ(1.45 GeV )3He pid =
+0.55

0 . (5.10)

However, no systematic effect has been observed in 1.5 GeV and combined data sets, which

is arising because of 3He identification.

Entire data

1.45 GeV 1.50 GeV (1.45+1.50) GeV

B f −Bi ∆BR B f −Bi ∆BR B f −Bi ∆BR
3He PID:

1. Combined +0.03 +0.08 +0.01 +0.03 +0.05 +0.20

2. FRH1 vs FTH1 (cut1) +0.55 +1.53 -0.22 -0.65 +0.14 +0.56

3. FRH1 vs FTH1 (cut3) +0.08 +0.22 +0.12 +0.35 +0.13 +0.52

|δP|− |δE| test:

1. |δE|< 0.50; |δP| < 0.300 -6.43 -17.38 -3.54 -10.41 -4.98 -19.92

2. |δE|< 0.40; |δP| < 0.250 -3.27 -8.84 -2.91 -8.56 -3.10 -12.40

3. |δE|< 0.30; |δP| < 0.200 -1.02 -2.76 -0.77 -2.27 -0.90 -3.60

4. |δE|< 0.15; |δP| < 0.125 +0.05 +0.14 -0.09 -0.27 -0.03 -0.12

5. |δE|< 0.10; |δP| < 0.100 +0.05 +0.14 +0.07 +0.21 +0.05 0.20

Mono. γ test:

1. 0.10< E <0.52; 5< θ <100 -0.13 -0.35 +0.24 +0.71 +0.05 +0.20

2. 0.20< E <0.52; 5< θ <100 0.00 0.00 +0.09 +0.27 +0.04 +0.16

3. 0.20< E <0.52; 35< θ <60 -0.05 -0.14 +0.09 +0.27 +0.01 +0.25

4. 0.15< E <0.48; 20< θ <90 +0.16 +0.43 -0.02 -0.06 -0.04 -0.16

5. 0.20< E <0.45; 35< θ <75 -0.03 -0.08 +0.19 +0.56 +0.08 +0.32

6. 0.25< E <0.42; 37< θ <61 +0.03 +0.08 0.00 0.00 0.00 0.00

7. 0.22< E <0.40; 30< θ <80 +0.03 +0.08 +0.45 +1.32 +0.24 +0.96

8. 0.22< E <0.40; 35< θ <60 +0.21 +0.57 +0.16 +0.47 +0.19 0.76

Table 5.6.: The systematic checks for the 3He identification, |δP| − |δE| and monochromatic γ

cuts. Different combinations of cuts are used as mentioned in the first column. The differ-

ence between the final branching ratio and the test values (B f −Bi) and the estimates of

the test variable ∆BR are presented. The tests for which ∆BR is greater than 1 are marked

in red.

5.2.3.4. Systematic Effect due to |δP|−δE cut

The energy-momentum (|δP| − δE) conservation constraint is one of the key conditions

which plays an important role in selecting the ω → π0γ final state. The quantitative effect

of the constraint is already seen in Fig. 4.2, where almost 3.91% of the signal events in

1.45 GeV data set and 4.24% in 1.50 GeV is rejected by this condition. The influence of this

restriction on the result is presented in this section.

The systematic check is done by varying the |δP|−δE constraints and fixing all the other

analysis conditions to same as described in Section 4.2. The different constraints which are

illustrated in Fig. 4.8 have been used for systematic study. The same constraints are used

for cut optimization in Section 4.2.3.1. The constraints vary from a subset of the final cut

to its superset, as shown in Fig. 4.8. The corresponding missing mass spectra, counts in

the background-subtracted peak, efficiencies and the branching ratio BRmeasured
ω→π0γ

estimate
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Figure 5.7.: The systematic effect on the measured branching ratio due to the energy-momentum

constraint is illustrated for three data sets. Various energy-momentum conservation con-

straint is presented on the x-axis and the measured branching ratio with statistical errors

for each constraint is shown on the y-axis. The blue, red and black markers are the

points for the 1.45 GeV, 1.50 GeV, and combined data set, respectively.

have been presented in Appendix N. The BRmeasured
ω→π0γ

for various constraints are plotted in

Fig. 5.7. The points are arranged from left to right in the decreasing order of efficiency.

It has been observed that the branching ratio below the absolute missing energy of

0.20 GeV is consistent within the error. However, a jump is observed for the cuts above

0.20 GeV missing energy. This is because the in-peak pion background from the decay

ω → π+π−π0 starts contributing above 0.20 GeV missing energy. Which is evident from

Fig. 4.8. The jump, for the points above 0.40 GeV, is even higher on account of another

in-peak contribution from the ω → π+π− decay. This leads to an overestimation of the

reconstructed number of ω → π0γ decays and henceforth, the branching ratio. Conse-

quently, the inclusion of measurements above (|δE| >)0.20 GeV is responsible for the

large systematic errors. Furthermore, in order to achieve an accurate error estimate after

including the points with |δE| >0.20 GeV, the number of in-peak background decays

must be subtracted from the ω peak. However, this will require the branching ratio of

the ω → π0γ decay as an input parameter, which is an observable here. Consequently, to

correctly estimate the systematic uncertainty, it would be justified to restrict the fit up to

|δE| = 0.20 GeV. The fourth point from the right in Fig. 4.8 is the cut used in the final

analysis, i.e., |δE| <0.20 GeV;|δP| <0.150 GeV. This cut has been excluded from the

systematic check. The second kind of systematic check has been performed. The results are

listed in Table 5.6 for various tests. The ∆BR values for the most appropriate tests, which

are |δP|− |δE| test 4. and 5. in Table 5.6, are not greater than 1 (∆BR |> 1). This indicates

that the deviations of the test values from the final branching ratio have been taken care

of by the statistical uncertainties. There is no systematic effect that arises due to energy

momentum constraint.

5.2.3.5. Systematic Effect due to “Monochromatic γ” Criteria

The “monochromatic γ” selection criterion is another kinematic restriction that is influ-

ential in selecting a cleaner ω → π0γ final state, as discussed in Section 4.2.3. It is seen in
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Figure 5.8.: Various combinations of the energy and angular windows used for the cut optimization

and systematic studies are plotted on data distribution. The energy and angular ranges

are the same as shown in Fig. 4.11. The final cut to select events for the correct π0γ

combinations are shown as the solid black box.

Fig. 4.14 that the monochromatic constraint is proven to be an effective tool to separate the

π0 from other combinatorics. The investigation to explore the systematic effect is done by

studying the number Nrec
ω→π0γ

and branching ratio BRmeasured
ω→π0γ

for varied monochromatic γ se-

lections. The conditions used for cut optimization in Section 4.2.3.2 are considered for this

systematic study. The illustration and the description of different monochromatic cuts are

given in Fig. 5.8. This exercise improved the present understanding of the result. The miss-

ing mass spectra, efficiencies, the number of reconstructed ω → π0γ decays, and the mea-

sured BRmeasured
ω→π0γ

for different monochromatic cuts have been presented in Appendix O. The

estimated BRmeasured
ω→π0γ

for each cut is plotted in Fig. 5.9. The points in Fig. 5.9 are organized

in decreasing order of efficiency from left to right.

The fluctuations seen in the branching ratio are not significant and measured values are in

agreement within errors. Moreover, there is no dependency seen in the branching ratio. In

order to quantify the systematic effect, the second type of systematic check has been per-

formed. The results have been presented in Table 5.6 in the form of variable ∆BR. The ∆BR

values for 1.45 GeV data and combined data suggest that there is no significant effect is seen

due to the monochromatic γ criterion in these data sets. On the contrary, for 1.50 GeV data,

a significant deviation in branching ratio is seen which cannot be explained with statistical

uncertainty (as ∆BR >1). The systematical uncertainty is accounted for as the difference of

test value with respect to the final value as

σ(1.50 GeV )mono−sys =
+0.45
−0.02. (5.11)

5.2.4. Results

The systematic effects due to the luminosity effects, fitting procedure, and different anal-

ysis conditions have so far been explicitly discussed. The systematical uncertainties in dif-

ferent data sets are summarized in Table 5.7. The results from the systematical studies have

shown that there is no effect seen due to luminosity which changes the branching ratio val-

ues beyond what cannot be explained by the statistical uncertainties. It is observed that the

background subtraction procedure introduces an effect greater than one standard deviation
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Figure 5.9.: The systematic effect on the branching ratio due to the monochromatic γ criterion is

demonstrated in this distribution. The monochromatic γ cuts and the corresponding

branching ratios are the x-axis and the y-axis of the distribution, respectively. The prop-

agated statistical errors are shown. The blue, red and black markers are the points for

1.45 GeV, 1.50 GeV and combined data set, respectively. The final value BR f is plotted

on the fourth bin named 0.2< Ecm <0.52&30< θcm <80, which is the final cut used.

1.45 GeV 1.5 GeV (1.45+1.5) GeV

σBR ∆BR σBR ∆BR σBR ∆BR

luminosity - - - - - -

f it − sys +0.70
−0.05

+1.89
−0.14 - - +0.70

−0.05
+1.89
−0.14

3He pid +0.55
0

+1.53
0 - - - -

|δP|−δE - - - - - -

mono−γ - - +0.45
−0.02

+1.32
−0.06 - -

Table 5.7.: The systematical uncertainties in the BRmeasured
ω→π0γ

are presented for three data sets.

in 1.45 GeV and combined data sets. However, 1.5 GeV data have no significant system-

atic effect due to the background subtraction procedure. In addition, 1.45 GeV data have

a considerable systematic effect that arises due to 3He PID condition. Which has not been

observed in 1.5 GeV and combined data sets. Moreover, a significant systematic effect that

arises due to the monochromatic γ selection criterion is observed in the 1.50 GeV data. Con-

versely, for 1.45 GeV and combined data, this effect is not seen. The final values of the

branching ratio with statistical and systematical uncertainties are given as,

BRmeasured
ω→π0γ (1.45 GeV ) = 8.36(±0.37stat)(+0.70)

(−0.05) f it − sys
(+0.55)

(0)
3He pid%,

BRmeasured
ω→π0γ (1.50 GeV ) = 8.31(±0.34stat)± (+0.45)

(−0.02)mon− sys%,

BRmeasured
ω→π0γ = 8.33(±0.25stat)(+0.70)

(−0.05) f it − sys%.

(5.12)

The results obtained are consistent within errors in three data sets. Furthermore, the eval-

uated branching ratios for the entire data set are in agreement with the particle data group
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value (8.40±0.22)%. However, the branching ratio value has significant systematic uncer-

tainty.

5.3. Analysis of the Missing Mass of 3He after ω → e+e−π0

Final State Selection: Exclusive

It is expected from Section 4.3 that a total of (16±4) events should be found in 1.45 GeV,

(16±4) in 1.50 GeV and (32±6) in the entire data set. The expectations are a few orders

less than what is seen in the data peaks. This is due to the contributions from other decays

of the ω meson. The in-peak background contributions, as discussed in Section 4.3, must

be subtracted from the data peak. Correspondingly, the data peak has been explained with a

superposition of the Monte Carlo simulations using the branching ratios. The superposition

plot of the signal and all background ω decays is plotted in Fig. 4.27. The area under the

sum histogram within the mass range of 0.740 GeV/c2 − 0.816 GeV/c2 is in agreement with

the area under the data peak. 98% area of the superposition histogram is the contribution

from the ω → π+π−π0 decay. The number of ω → e+e−π0 candidates are estimated to

be (39±235) and (32±220) for 1.45 GeV and 1.50 GeV, respectively. The difference in the

estimated numbers for the two energies is due to the different continuous background shapes

and the different efficiencies for the two energies. The total number of reconstructed Dalitz

decay candidates is (71±322) in the entire data set. The numbers for all cases are tabulated

in Table 5.8. Furthermore, these (71±322) events are extracted and cross-validated from the

superposition histogram of the e+e− invariant mass distributions, as shown in Fig. 4.28.

1.45 GeV 1.50 GeV Entire data set

ω → e+e−π0 expected (16±4) (16±4) (32±6)

ω → e+e−π0 reconstructed (39±235) (32±220) (71±322)

Table 5.8.: The number of the ω → e+e−π0 events expected and reconstructed from the superposi-

tion histogram, as shown in Fig. 4.27, are shown for three data sets.

The reconstructed ω → e+e−π0 decays (71±322) are almost two times of the events

expected (32±6). Firstly, this indicates that despite using particle identification, the ex-

tracted event sample still has at least 50% background contribution from the decay ω →
π+π−π0. Which could not be eliminated at this point with the current approach. The second

reason for this discrepancy might be that the Monte Carlo simulation is not able to give an

accurate background estimate. This implies that a different physics model might be useful.

Nevertheless, the persisting discrepancy is covered under the large errors in the

yield. Within errors, the reconstructed and the expected yield show an agreement. However,

the large error indicates that in principle 0 signal could be found in the data. Considering

no signal is found in the data, it is infeasible to determine the transition form factor in the

existing pd → 3He ω data set with the current approach.

In order to obtain a reasonable form factor distribution with the pd collision, the statisti-

cal power must be improved either by increasing the signal statistics and/or by reducing the

background, mainly the in-peak contributions. Increasing the signal yield could only be pos-

sible if the time of the run is increased, as the current reconstruction efficiency, luminosity,

and the cross section are already at the limits (see their relation in Equation 4.5). How-

ever, firstly, any such possibility has been ruled out as WASA-at-COSY is no longer func-

tional, and secondly, it was unreasonable to run the experiment for so long when another
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alternative approach that has a comparably larger cross section is available with the pp

collision. Correspondingly, the test beam time data for the pp collision had already been ac-

quired for the feasibility test. The only way to attempt a reasonable form factor distribution

with the existing pd data is to reduce the contribution from the ω→ π+π−π0 decay to nearly

0. Such that the error is substantially suppressed and comes closer to zero. The background

situation is expected to improve by using a kinematic fit procedure for the ω → e+e−π0 de-

cay hypothesis, and other machine learning and deep learning approach, such as the neural

network, decision tree, random forest, support vector machine, genetic algorithm, etc.
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The branching ratio of the ω → π0γ decay has been measured in the pd data set. The

results are listed in Table 6.1. The branching ratio BRmeasured
ω→π0γ

measured in the overall data is

BRmeasured
ω→π0γ = 8.33(±0.25)stat(+0.70)

(-0.05)sys%; (6.1)

The branching ratios measured in three data sets are in agreement within errors with the

PDG value (8.40± 0.22)% [39]. However, it has significant systematic uncertainty. It has

also been realized that using two different beam energies is helpful to have insights about

the systematic effects arising due to the background subtraction method. Furthermore, it

is recommended that the branching ratios relative to one of the prominent ω decays, such

as ω → π+π−π0, are determined in a manner where explicit exclusive yield is possible. For

relative branching ratios, numbers obtained from the inclusive missing mass are not required

and that results in more precise measurement. However, the analysis of the most prominent

ω decay ω → π+π−π0 had been the subject of a different thesis [110]. The current result is

an indication that the procedure to extract the signal for π0γ as one of the reference decay

for ω → e+e−π0 is well established.

BRmeasured
ω→π0γ

(%)

1.45 GeV 1.50 GeV combined data

8.36(±0.37)stat(+0.70)sys
(-0.05)fit

(+0.55) sys

(0)3He pid
8.31(±0.34)stat (+0.45)sys

(-0.02)mono 8.33(±0.25)stat(+0.70)sys
(-0.05)fit

Table 6.1.: The final values of the branching ratio of the ω → π0γ decay mode for three data sets.

Concurrently, a total of (39±235) events of the ω → e+e−π0 decay is reconstructed in

1.45 GeV data, and (32±220) in 1.5 GeV data. The extracted (71±322) events in the entire

data set turn out to be almost double the yield expected from the inclusive final state. The

event sample at this stage has impurities from the in-peak ω → π+π−π0 contributions. Con-

sidering the large errors, the estimated numbers are in agreement with the expectations. Al-

though, the reconstructed events are equivalent to zero as large errors outsize the statistics.

In a nutshell, the feasibility study of the ω−π transition form factor with the WASA-at-

COSY pd collision data has been conducted successfully. Conclusively, a high precision

measurement of the transition form factor could not be obtained with the existing pd →
3He ω data set and current analysis approach. This is because, firstly, there are not enough

signal events present in the data, and secondly, the large errors are leading the effective

signal yield close to ‘0’. The large error bars are the consequence of the subtraction of a

huge amount of background events. The majority of background consists of pions in the

final state. As the inseparable pions fall under the graphical cut and kinematic constraints

and survived till the end. These events, in combination with the cross section and branching

ratios, become significant.

Simultaneously, a successful establishment of the branching fraction for the ω → π0γ de-

cay and its agreement with the world average is an indication that the WASA apparatus with
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its simulation and analysis techniques are on the right track. The ω−π transition form factor

is not feasible only due to the lack of statistics obtained in the current experiment. There is

no issue with the WASA-at-COSY apparatus or its technique, if this experiment would have

been run for the sufficient time it might have detected a significant signal with the existing

analysis methods.

However, in order to achieve a reasonable form factor distribution from the existing

pd data set, the background contributions having pions in the final state must be re-

duced. Specifically, the contribution from the ω → π+π−π0 decay has to be suppressed

close to 0. Which is not attainable with the current analysis approach. Presumably, the back-

ground situation and the signal purity are expected to improve by implying the alternative

approaches based on machine learning methods or using the kinematic fitting procedure for

the analysis chain or using both. However, the extent of improvement by these alternatives

is limited. Nevertheless, exploration of these methods could be the potential outlook for this

study.

Alternatively, the data for a test beam time using the pp → ppω reaction, where the

cross section is comparably larger, had already been collected. Which could be a promising

substitute to improve the statistical significance. An exploration of pp test beam data is

another potential outlook for this study.

118





Appendix



A. ∆E −∆E Distributions of the Monte

Carlo Simulations of the Backgrounds

Fig. A.1 shows the ∆E−∆E distributions of the Monte Carlo simulations of the signal and

backgrounds for the energy loss pattern in various layers of the Forward Detector. The distri-

butions are shown in support of the cut optimization discussed in Section 4.1.1. Evidently, a

few 3He particles from the ω production acquire enough energy and reach the FRH4. While

a large number of the 3He particles from the direct π0π0 production are stopped in the

FRH4. Moreover, a significant number of the 3He particles from the direct π0π0π0 produc-

tion are able to reach the FRH4. Graphical cuts used in Fig 5.5 for cut optimization are

illustrated in Fig. A.1. The graphical cut selects almost all the 3He particles from the ω
production.
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Figure A.1.: The particle identification plots for 3He particles for the Monte Carlo simulations of

the signal and background reactions. The first, second and third rows are the respective

FRH1 vs. FRH2, FRH2 vs. FRH3 and FRH3 vs. FRH4 distributions. The left, middle

and right columns are the Monte Carlo simulations of the ω → π0γ decay, direct π0π0

and direct π0π0π0 productions, respectively.

The ∆E −E plot for the multi pion background production π0π0 and π0π0π0, as shown

in Fig. A.2, has been compared with the signal shown in Fig. 4.1a. Evidently, the graphical

cut used to select 3He is differently influencing the two background phase spaces. A conse-

quence of this influence is seen in the background line shape of the 3He missing mass spectra

of data, as seen in Fig. 4.1c. Which is more explicitly visible in the individual phase spaces

for the direct multi-pion production presented in Fig. A.3. This is because no physics spe-
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Figure A.2.: The energy deposited in the forward range hodoscope (FRH1) is shown as a function of

energy deposited in the forward trigger hodoscope (FTH1). The left panel is the Monte

Carlo simulation for the pd → 3He π0π0 reaction and the right panel is the Monte

Carlo simulation for pd → 3He π0π0π0 reaction. The effect of the 3He identification

cut, which is chosen using the signal distribution, can be seen as the black dashed lines.

cific process and interactions are implemented in PLUTO to simulate the multi pion phase

space.
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Figure A.3.: The effect of 3He identification cuts on the missing mass phase space of the multi pion

productions is illustrated. The black, dark green, red and magenta histograms are the

Monte Carlo simulation for the pd → 3He π+π−π0, pd → 3He π0π0π0, pd → 3He π+π−

and pd → 3He π0π0 reactions, respectively, for 1.50 GeV beam energy. Similarly, the

Monte Carlo simulations of the same reactions using 1.45 GeV are plotted as the yellow,

blue, dark blue and bright green histograms, respectively.

The phase spaces of the double and triple pion productions, as shown in Fig. A.3, explain

the line shape of the data in Fig. 4.1c. This justifies that the use of a combined phase space

of the double and triple pion production is more accurate for fitting. Therefore, Equation 4.4

is a better representation of the fitting function than folding one of multi-pion phase space

with a polynomial.

It can be seen in Fig. A.3 that the maxima of the background phase space in 1.45 GeV

fall at the ω meson mass (0.7827±0.0001) GeV/c2. However, the position of ω meson peak

lies on the left edge of the 1.50 GeV multi pion phase space.

Regardless of simulating an equal number of events, the phase spaces of 1.45 GeV turned

out to be higher in amplitude as compared to 1.50 GeV. Which further illustrates the fact

that the multi pion production cross section is comparably larger in 1.45 GeV as compared

to 1.50 GeV (see Table C.1).
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B. Cut Optimization

B.1. ∆E −∆E Cut for 3He Selection

The graphical cut to select 3He particles, as discussed in Section 4.1.1, is optimized by

selecting the best cut window out of the various selection choices. The name and description

of various cuts used are listed in Table 5.5, while their illustration is shown in Fig. 5.5. The

fitted spectra are presented in Appendix M.1. The efficiencies and the reconstructed num-

bers for each cut are listed in Table M.1. The estimated statistical significance and the overall

reconstruction efficiency (ε) of the signal are plotted in Fig. B.1 for two energies. The op-

timized cut has a statistical significance value of 61 and 66 for 1.45 GeV and 1.50 GeV,

respectively, as indicated in Fig. 4.1a. The reconstruction efficiency εinc corresponding to

the optimum cut is 84.65% for 1.45 GeV and 86.71% for 1.50 GeV beam energy.
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Figure B.1.: The Monte Carlo efficiency (black) and the statistical significance (red) of various par-

ticle identification conditions are plotted in the left and right columns for 1.45 GeV and

1.50 GeV, respectively. ‘Cut 2’ on the FTH1 vs. FRH1 is the criterion used for the final

analysis.

B.2. δE −δP Cut for the ω → π0γ Decay

Cut optimization plot, as discussed in Section 4.2.3.1 for 1.5 GeV, is shown in Fig. B.2

for 1.45 GeV beam energy. The final selection is indicated by the dashed lines. The optimal

value of the quantity ε.π is 0.3642×0.0228 = 0.0083. The obtained statistical significance

of the selection is 15.
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Figure B.2.: The efficiency (ε), purity (π) and the purity×efficiency (ε × π) as a function of the

different δE-δP selection criteria for 1.45 GeV beam energy are shown. The black, red

and green distributions represent the ε, π and ε×π, respectively. The final selection is

indicated by the straight dashed lines. The variable values are listed in the legend.

B.3. Monochromatic γ Selection Cut for the ω → π0γ Decay

Plots to support the “cut optimization”for monochromatic γ selection discussed in Sec-

tion 4.2.3.2 are presented in Fig. B.3. The efficiency and signal phase space along with the

statistical significance, for various combinations of the energy and angular constraints shown

in Fig. 5.8, are presented. The resulting Monte Carlo efficiencies, PLUTO phase space, and
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Figure B.3.: The resulting phase space acceptance, efficiency and statistical significance, for differ-

ent combinations of the energy and angular windows, as shown in Fig. 5.8, are plotted

for two energies. An optimum cut is chosen, shown as dashed straight lines.

statistical significance are plotted in Fig. B.3. Which shows that 1.45 GeV data has the max-

imum significance for the energy and angular values closer to the maximum of distribution

in Fig. 4.11a. Since the maximum significance is reached at the cost of reconstruction effi-

ciency and phase space, the selection of events very close to the maximum of energy and

angular distributions is avoided. Thus, an optimal selection of 0.20 GeV<ECM
γ3 <0.52 GeV

and 30◦ < 6 (γ1,γ2)CM <80◦ is used instead. Furthermore, the maximum significance for

1.50 GeV is reached by using the optimal selection similar to that of 1.45 GeV, as shown in

Fig. B.3. The significance of the narrow selection (right bump) in 1.45 GeV is larger than

optimal selection (middle bump). Whereas, in 1.50 GeV it is slightly lower than optimal

selection. The change in significance is due to the difference in the center of mass energy

of the systems, at the two energies. This further leads to a different angular and energy dis-

tribution of photons in direct pion productions at two energies. Consequently, a relatively
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B.4. e+e− Identification Cut for the ω → e+e−π0 Decay

larger amount of background events is rejected towards narrower selection in 1.45 GeV, as

compared to 1.50 GeV. The achieved statistical significances for the optimal selection are

17.97 and 20.60 for 1.45 GeV and 1.50 GeV, respectively. The overall reconstruction effi-

ciencies, for 1.45 GeV and 1.50 GeV beam energies, are 34.74% and 34.35% respectively.

While the phase space acceptance is 92% in both cases.

B.4. e+e− Identification Cut for the ω → e+e−π0 Decay

Momentum in MDC (GeV/c)×Charge
1− 0.5− 0 0.5 1

E
d

e
p

 i
n

 S
E

C
 (

G
e
V

)

0.1

0.2

0.3

0.4

0.5

0

1000

2000

3000

4000

5000

DATA

1
 + cc

.P1

E = ­m

n
 +

 c
c

.P
n

E
 =

 ­m
1 + c

c.P
1E = m

n
 +

 c
c

.P
n

E
 =

 m

|Slope m| (c)
0 0.5 1 1.5 2 2.5 3

E
ff

ic
ie

n
c

y

0

0.05

0.1 P
u

ri
ty

0

0.002

0.004

0.006

0.008

Efficiency (8.87%)
Purity (0.0004)

)
­5

10×(3.6 ­175×Purity×Efficiency

1.45 GeV

|Slope m| (c)
0 0.5 1 1.5 2 2.5 3

E
ff

ic
ie

n
c

y

0

0.05

0.1

P
u

ri
ty

0

0.002

0.004

0.006

0.008
Efficiency (8.58%)
Purity (0.0004)

)
­5

 10×(3.4 ­175×Purity×Efficiency

1.5 GeV

Figure B.4.: The top panel is the ∆E − P plot of the energy deposit in the SEC (EdepSE ) ver-

sus charged momentum [Charged×Momentum] (PMDC) reconstructed in the MDC for

data. The linear relation between EdepSE and PMDC, used to separate the e± from the

π±, are shown as black distribution for slopes m1 and mn. Where m1.....mn are various

slopes considered for the study. The conditions are varied in the direction of the arrow,

by varying the slopes from m1 to mn. The bottom row represents the distributions of

the quantities: efficiency (solid black), purity (solid red), and efficiency×purity (solid

green), for various slope parameters. The optimal quantities for the chosen condition, as

indicated by dashed lines, are listed in legends. The events above the red lines (optimal

selection) on ∆E −P plots are identified as electrons.

The optimization of the particle identification (PID) cut, as discussed in Section 4.3.2,

is presented here. The PID plot to separate the electrons from the pions is shown in

Fig. B.4. The deposited energy in the electromagnetic scintillating calorimeter (EdepSE) as

a function of the signed momentum (Charge×Momentum) (PMDC) in the mini drift chamber

is plotted in the top panel of Fig. B.4. A graphical correlation between energy EdepSE and

momentum PMDC: EdepSE=m.PMDC+c, is used to separate electrons from pions. Where c

is the energy EdepSE intercept and m is the slope - a quantity that defines graphical corre-

lation. The correlation is optimized by studying the efficiency, purity and efficiency×purity

(ε×π) for different |m| values in [|m1|......|mn|]. Fig. B.4 shows that the sample with a high

ε×π value is obtained at larger slopes, i.e., nearly vertical lines, where almost all the elec-

trons are outside the selection. This is reflected in the efficiency of selection which is close to
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B. Cut Optimization

zero at large slopes. Compensation between two quantities is made and an optimum correla-

tion is considered as indicated by dashed lines. This optimum correlation selects most of the

electron and rejects as many pions as possible. The optimum selection EdepSE=0.94.PMDC+c

has an efficiency of 8.87% and 8.58% for 1.45 GeV and 1.50 GeV, respectively. The signal

purity of the selected data sample is 0.04% at both energies.

B.5. δE −δP Cut for the ω → e+e−π0 Decay
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Figure B.5.: Top panel is the overall missing momentum (δP) against the overall missing energy

(δE) of the 3He particle and γγe+e− system for data. Various energy-momentum con-

servation constraints chosen for “cut optimization ” are shown with the same types of

lines. The efficiency (black), purity (red) and efficiency×purity (green) for different

cuts are shown in the bottom row. The optimal cut, considered in this analysis, is indi-

cated by straight (dashed) lines. The values are listed in legends. The area enclosed by

the red rectangle in data is the optimal cut to select events as ω → e+e−π0 decay.

The event selection is refined by using an additional constraint over the energy and mo-

mentum balance. The restriction on energy and momentum, as discussed in Section 4.3.3.3,

is optimized by studying the efficiency, purity and quantity efficiency×purity for different

cuts. The “cut optimization” plots, in Fig. B.5, shows that the maximum value for the quan-

tity efficiency×purity is obtained from the window closer to (0,0). The efficiencies for these

selections are reduced tremendously, i.e., close to 0. Compensation between two quantities

is made and an optimal selection shown as dashed straight lines is considered. The com-

bination of −0.2 GeV ≥ δE ≤ 0.2 GeV and |δP| ≤ 0.18 GeV/c is the optimal selection

window. The efficiencies of this selection are 5.59% and 5.33% for 1.45 GeV and 1.50 GeV,

respectively. An improvement in purity is achieved for both energies - from 0.05% to 0.12%

and 0.13% for 1.45 GeV and 1.50 GeV, respectively.
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C. Production Cross Sections and

Branching Fractions of the Signal and

Backgrounds

The production cross sections and the branching fractions employed to estimate the

weighting factors w listed in Table 4.3 are shown in Table C.1. These value have been used

in the superposition fit in Section 4.3.4.1 and Section 4.3.4.2 to estimate the number of the

ω → e+e−π0 decay in data.

Decay Branching Ratio (BR [39]) Reaction Cross Section (σ) at 1.45 GeV

pd → 3He ω (83.6±1.5±2.27) nb [90]

BRω→π+π−π0=(89.3±0.6)%

BRω→π0γ=(8.40±0.22)%

BRω→π+π−=(1.53±0.06)%

BRω→π0e+e−=(7.7±0.6)×10−4

BRω→ηγ=(4.5±0.4)×10−4

pd → 3He π+π−π0 (910±7±80) nb [99]

pd → 3He π0π0π0 (115±3±23) nb [99]

pd → 3He π+π− Unknown

extrapolated to 10µb from [101, 102, 103]

pd → 3He π0π0 (207±3±8) nb [100]

pd → 3He ρ Unknown

BRρ→π+π−≈100% extrapolated to 60 nb from ω cross section

pd → 3He η (80.8±3.6±43.1) nb [99]

BRη→γγ=(39.41±0.20)%

BRη→π+π−π0=(22.92±0.28)%

BRη→γπ+π−=(4.22±0.08)%

pd → 3He π0 0.50 nb

BRπ0→γγ=(98.823±0.034)% extrapolated from [101, 104]

Table C.1.: Cross section table for the pd → 3He X reactions. The branching fractions for the rele-

vant decays are given.
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D. Kinematics of the ω → π0γ Decay and

it’s Monochromatic γ Property

This section presents a detailed description of the kinematics of the ω → π0γ decays and

monochromatic γ, as discussed in Section 4.2.3.2.

In the ω-rest system (CM), π0 and γ will decay back to back and will have equal and

opposite 3-momenta, as shown in the top left panel of Fig. D.1. The single γ, specified by

the subscript ‘m’ γm, will be monochromatic in the rest frame of the ω meson, with energy

PCM
γm

= ECM
γm

=
[(

m2
ω −m2

π0

)

/(2×mω)
]

= 0.38 GeV. (D.1)

Whereas, the energy and momentum of π0,

ECM
π0 =

[(

m2
ω +m2

π0

)

/(2×mω)
]

= 0.40 GeV,

PCM
π0 =

[(

m2
ω −m2

π0

)

/(2×mω)
]

= 0.38 GeV,
(D.2)

are distributed among the two photons decaying from the π0 meson.

In the center of mass system of the π0 meson (CMπ0), as shown in the top right panel of

Fig. D.1, the energy and momenta of the secondary photons are unique and depend only on

the mass of the π0 meson, i.e., E∗
γ1
= P∗

γ1
= E∗

γ2
= P∗

γ2
= mπ0/2. The π0 meson in the center

of mass frame of the ω meson acquire a velocity, defined by its energy and momentum. Due

to the motion of the π0 meson in the CM system, the energies and angles of the secondary

photons will have some distribution in the CM system. As they are emitted over a range of

angles in the CMπ0 system, the energy and momentum of the secondary photons in the CM

system depend on the CMπ0 system decay angle relative to the direction of motion of the

parent π0 meson. The energy and momentum of the secondary photons can be transformed

from the CMπ0 system to the CM system in terms of the decay angles as

Eγ1
= b(E∗

γ1
+βP∗

γ1
cosθ∗1), Eγ2

= b(E∗
γ2
−βP∗

γ2
cosθ∗2),

Pγ1
= b(βE∗

γ1
+P∗

γ1
cosθ∗1), Pγ2

= b(βE∗
γ2
−P∗

γ2
cosθ∗2),

Pγ1
sinθ1 = P∗

γ1
sin∗θ1, Pγ2

sinθ2 = P∗
γ2

sin∗θ2,

(D.3)

where β is the constant velocity of the CMπ0 system, if seen from the CM system of

the ω meson and b is the Lorentz boost factor. According to the relativistic kinematics,

β=PCM
π0 /ECM

π0 =0.38/0.40=0.94/c, correspondingly, b=ECM
π0 /mπ0=0.40/mπ0=2.99c2. Equa-

tion D.3 is the relation between the angles in CM system and angles in the CMπ0 sys-

tem. Using the Lorentz transformations in Equation D.3, the CM angular distribution

S(θ) = d(cosθ∗)/d(cosθ) is given as

S(θ1) =
sinθ1

2b2(1−βcosθ1)2
, S(θ2) =

sinθ2

2b2(βcosθ2−1)2
, (D.4)
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Figure D.1.: Kinematical diagram: Top Left: Rest frame of ω meson (CM); Top Right: Rest frame

of π0 meson (CMπ0). The CMπ0 system quantities have been denoted by an asterisk. β

refer to the velocity of the CMπ0 system as seen from the CM; b is 1/
√

1−β2. Bottom:

Calculation of the angular distributions using relativistic kinematics. The distribution

(S(θ1),S(θ2)) of the angle (θγ1
,θγ2

) between the momenta the decaying π0 and its decay

products is shown as red filled area. The yellow filled area corresponds to the calculated

distribution (S(dθγmγ1
),S(dθγmγ2

)) of angle (θγmγ1
,θγmγ2

) between the photon from the π0

and single photon γm. The blue filled area is dn/dθγ1γ2
, the distribution of the angle

(θγ1γ2
) between photons coming from the π0 in the CM system.

see Refs. [126, 131] for the derivation. The distribution for Equation D.4 is calculated and

plotted as the red filled area in the bottom panel of Fig. D.1. This shows that the angular

distribution of the secondary photons with respect to their parent π0 meson is distributed

between 0◦ to 180◦. Furthermore, it is maximum at 11.50◦ in the CM frame with most of

the entries concentrated towards the lower angles.

As shown in the top left panel of Fig. D.1, the γm and π0 decay back to back, thus, the

opening angle between them (θγmπ0) is 180◦. This means that the number of events within

a θγmγ1
or θγmγ2

interval is equal to the number of events within the corresponding θ1 or θ2

interval, provided the following relation is satisfied

dθγmγ1
= dθγmπ0 −dθ1 = 180◦−dθ1, dθγmγ2

= dθγmπ0 −dθ2 = 180◦−dθ2. (D.5)

Thus, the angular distribution for a θγmγ1
and θγmγ2

interval for the θ1 or θ2 interval, satisfying

Equation D.5, will be

S(θγmγ1
)dθγmγ1

= S(θ1)dθ1, S(θγmγ2
)dθγmγ2

= S(θ2)dθ2. (D.6)
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D. Kinematics of the ω → π0γ Decay and it’s Monochromatic γ Property

The calculated S(θγmγ1
) (S(θγmγ2

)) distribution is plotted as yellow filled area in the bottom

panel of Fig. D.1, which shows that the angle between the monochromatic γ and the two γs

from π0 decay are distributed between 0◦ to 180◦ with most of the entries localized close to

its maximum at 168.50◦.

The distribution of the opening angle, θγ1γ2
, between two secondary photons from the

decaying π0 meson in the CM system is [131]

dn

dθγ1γ2

=
1

2βb

cos
θγ1γ2

2

sin2 θγ1γ2
2

√

b2sin2 θγ1γ2
2

−1

. (D.7)

The minimum value of θγ1γ2
is when sin

θmin
γ1γ2
2

= 1/b= ECM
π0 /mπ0 , implies θmin

γ1γ2
= 39.14◦. The

distribution for different θγ1γ2
range calculated from Equation D.7 is shown in the bottom

panel of Fig. D.1 as the blue area, which shows that the angle between the two γ from π0 de-

cay in the CM system has a range from 39.14◦ to 180◦. Wherein the maximum contribution

is at 39.14◦ and most of the entries are localized towards the maximum.
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E. Reconstruction Efficiencies for the

ω → π0γ Final State

The reconstruction efficiencies of the signal decay ω → π0γ and the probable back-

grounds, as discussed in Section 4.2, are presented in Table E.1.

εω→π0γ εω→π+π0π0 εω→π+π− επ0π0 επ0π0π0 επ+π−π0 επ+π− εη→γγ επ0→γγ

(%) (%) (%) (%) (%) (%) (%) (%) (%)

Cut 1.45 GeV

I 84.65 61.59 79.70 79.80 61.80 50.12 17.79

II 40.33 12.76 1.85 47.60 75.99 11.11 1.1 0.37 0.07

III 36.42 0.00 0.00 27.80 9.16 0.00 0.00 0.30 0.06

IV 34.74 0.00 0.00 17.24 4.07 0.00 0.00 0.13 0.00

1.50 GeV

I 86.71 60.62 79.05 79.16 60.81 50.12 19.77

II 40.28 13.29 1.95 46.35 75.25 11.48 1.12 0.33 0.07

III 36.04 0.00 0.00 26.54 8.54 0.00 0.00 0.27 0.05

IV 34.35 0.00 0.00 17.25 3.99 0.00 0.00 0.11 0.00

I εinc : 1 3He , II: ≥ 3γ, III: δ|P|−δE, IV: εexc : mono-γ

Table E.1.: A comparison between the efficiencies of the signal decay ω → π0γ and the backgrounds

(the decay ω → π+π−π0, the decay ω → π+π−, π0π0 production, π0π0π0 production,

π+π−π0 production, π+π− production, η → γγ decay and π0 → γγ decay) is shown at

each analysis step.

F. Resolution of the 3He and γ
The sample resolution distributions for the 3He and γ particles, as discussed in Sec-

tion 4.2.4.4, are presented in this section. Fig F.1 represents the true and reconstructed

kinetic energy difference relative to the true kinetic energy of the two particles averaged

over all θ and φ ranges.
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Figure F.1.: The true and reconstructed kinetic energy difference relative to the true kinetic energy.
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G. The Weighting Factor wi of

Backgrounds Relative to Signal

Decay ω → e+e−π0

Table G.1 lists the weighting factor wi values for signal and backgrounds for 1.45 GeV

beam energy. The reconstruction efficiencies (εi), after selecting at least a pair of charged

particles and at least a pair of oppositely charged tracks and at least two neutral tracks, and

their products with the weighting factors (εi×wi) are shown in Table G.1. These parameters

have been discussed in Subsection 4.3.2 for 1.5 GeV. The wi values have been discussed in

Section 4.3 at different analysis steps.

Reference Decay/Reaction Weighting 1.45 GeV

Name Factor wi εi(%) wi × εi

ω → π0e+e− pd → 3He ω(ω → π0e+e−) 1 11.6500

ω → π+π−π0 pd → 3He ω(ω → π+π−π0) 1158±91 14.6800 169.9944±13.3558

ω → π0γ pd → 3He ω(ω → π0γ) 109±9 0.0617 0.0700±0.0055

ω → π+π− pd → 3He ω(ω → π+π−) 20±2 1.7600 0.3520±0.0352

ω → ηγ pd → 3He ω(ω → ηγ) 1±0 0.0805 0.0008±0.0000

π+π−π0 pd → 3He π+π−π0 14137±1136 12.3900 1751.5743±140.7504

π0π0π0 pd → 3He π0π0π0 1787±150 0.1400 2.5018±0.2100

π+π− pd → 3He π+π− 932±74* 0.9600 8.9472±0.7104

π0π0 pd → 3He π0π0 3216±261 0.0700 2.2512±0.1827

ρ → π+π− pd → 3He ρ(ρ → π+π−) 155347±1242* 1.5288 2374.9450±18.9877

η → γγ pd → 3He η(η → γγ) 495±45 0.0009 0.0045±0.0004

η → π+π−π0 pd → 3He η(η → π+π−π0) 288±27 8.3308 2.3993±0.2250

η → γπ+π− pd → 3He η(η → γπ+π−) 53±5 1.5603 0.8270±0.0780

π0 → γγ pd → 3He π0(π0 → γγ) 3070±246 0.0006 0.0184±0.0015

*: extrapolations

Table G.1.: The weighting factors wi, estimated by using Equation 4.8, are listed for the probable

background contributions with respect to the signal ω → e+e−π0. The efficiency εi and

the quantity wi × εi of the signal and backgrounds are listed for 1.45 GeV beam energy.
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H. Reconstruction Efficiencies for the

ω → e+e−π0 Final State

Table H.1 presents the reconstruction efficiencies of the ω → e+e−π0 decay and back-

ground reaction at each step of the analysis. These efficiencies have frequently been dis-

cussed in Section 4.3.

I II III IV V VI VII VIII

1.45 GeV ε(%)
S 84.6500 22.4200 12.4600 11.6500 8.8700 7.6000 7.4500 5.5900

B1 84.6500 25.9200 16.4900 14.6800 1.1700 1.1300 1.0900 0.2800

B2 84.6500 0.1300 0.0659 0.0617 0.0482 0.0099 0.0044 0.0030

B3 84.6500 32.5500 2.1200 1.7600 0.0575 0.0522 0.0087 0.0006

B4 84.6500 0.1541 0.0850 0.0805 0.0647 0.0128 0.0016 0.0006

B5 79.8000 22.6300 13.7500 12.3900 1.0100 0.9600 0.9100 0.2800

B6 61.8000 23.0400 1.1400 0.9600 0.0400 0.0300 0.0039 0.0008

B7 61.5900 0.1100 0.0800 0.0700 0.0700 0.0100 0.0100 0.0040

B8 79.7000 0.1600 0.1600 0.1400 0.1200 0.0300 0.0300 0.0010

B9 50.1200 13.7824 8.7165 8.3308 0.7643 0.7027 0.6658 0.3200

B10 50.1200 15.2065 1.6853 1.5603 0.0662 0.0576 0.0178 0.0041

B11 82.5300 30.9000 1.8500 1.5288 0.0553 0.0520 0.0077 0.0007

1.50 GeV ε(%)
S 86.7100 22.4700 12.1100 11.3100 8.5800 7.3700 7.2100 5.3300

B1 86.7100 26.2900 16.7700 14.9000 1.1500 1.1100 1.0700 0.2700

B2 86.7100 0.1300 0.0653 0.0610 0.0481 0.0098 0.0042 0.0029

B3 86.7100 32.8000 2.1700 1.7800 0.0601 0.0541 0.0090 0.0006

B4 86.7100 0.1550 0.0844 0.0793 0.0636 0.0138 0.0021 0.0009

B5 79.1600 22.0100 13.8700 12.4400 0.9900 0.9400 0.8900 0.2500

B6 60.8100 22.7700 1.1800 0.9900 0.0400 0.0300 0.0040 0.0008

B7 60.6200 0.1100 0.0800 0.0600 0.0600 0.0100 0.0100 0.0040

B8 79.0500 0.1700 0.1600 0.1400 0.1200 0.0300 0.0300 0.0010

B9 50.1200 13.1804 8.3374 7.9890 0.7329 0.6735 0.6371 0.3002

B10 50.1200 14.3605 1.6158 1.5040 0.0614 0.0538 0.0164 0.0055

B11 82.8600 30.8090 1.9125 1.5684 0.0532 0.0479 0.0072 0.0006

S: ω → e+e−π0, B1: ω → π+π−π0, B2: ω → π0γ, B3: ω → π+π−, B4: ω → ηγ,

B5: π+π−π0, B6: π+π−, B7: π0π0, B8: π0π0π0, B9: η → π+π−π0,

B10: η → π+π−γ, and B11: ρ → π+π−

I εinc : 1 3He , II: ≥ 2C, III: ≥ 2C2γ, IV: ≥ 1C+C−2γ, V: ≥ 1e+e−2γ(e± PID) ,

VI: conversion, VII: ≥ 1 e+e−π0 (mπ0 cut) and VIII εexc : δE −δP

Table H.1.: A comparison between the efficiencies of the signal decay ω → e+e−π0 and the back-

grounds, after each analysis step.
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I. The Purity of ω → e+e−π0 Decay at

Different Analysis Stages

Contribution PID conversion cut π0 cut δE −δP

ω → π0e+e− 1 1 1 1
εbj

εs
wj:

ω → π+π−π0 152.81±11.97 172.24±13.50 169.49±13.27 58.03±4.54

ω → π0γ 0.60±0.05 0.14±0.01 0.06±0.01 0.06±0.01

π+π−π0 1609.69±129.31 1785.67±143.44 1726.75±138.71 708.10±56.88

π0π0π0 24.17±2.03 7.05±0.59 7.19±0.61 0.32±0.03

π+π− 700.55±56.02 613.21±49.03 81.32±6.50 22.23±1.78

π0π0 42.91±3.45 7.15±0.58 7.30±0.59 3.89±0.31

ρ → π+π− 5.81±0.47 6.38±0.51 0.96±0.08 0.12±0.01

η → γγ 0.05± 0.01 0.01±0.00 0.00±0.00 0.00±0.00

η → π+π−π0 24.79±2.29 26.60±2.46 25.71±2.37 16.47±1.52

η → γπ+π− 0.40 ± 0.00 0.12±0.00 0.03±0.00 0.00±0.00

π0 → γγ 0.21±0.02 0.02±0.00 0.00±0.00 0.00±0.00

Table I.1.: The fraction
εb j

εs
w j is listed for the 1.45 GeV data set after various analysis conditions. The

first, second, third and fourth column are the
εb j

εs
w j values after e+e− PID, conversion cut,

cut on 2 γ invariant mass (π0 cut) and δE −δP constraint. w j are taken from Table 4.3.

Contribution PID conversion cut π0 cut δE −δP

ω → π0e+e− 1 1 1 1
εbj

εs
wj:

ω → π+π−π0 155.27±12.16 174.47±13.66 171.92±13.46 58.68±4.60

ω → π0γ 0.60±0.05 0.14±0.01 0.06±0.01 0.06±0.01

π+π−π0 1631.14±131.03 1803.04±144.84 1745.01±140.18 663.10±53.26

π0π0π0 24.99±2.10 7.27±0.61 7.43±0.63 0.34±0.03

π+π− 724.23±57.91 632.35±50.56 86.18±6.89 23.32±1.86

π0π0 38.02 ± 3.06 7.38±0.59 7.38±0.59 4.10±0.33

ρ → π+π− 5.78±0.46 6.06±0.48 0.93±0.08 0.10±0.01

η → γγ 0.04±0.0 0.01±0.00 0.00±0.00 0.00±0.00

η → π+π−π0 24.58±2.27 26.29±2.43 25.42±2.35 16.21±1.50

η → γπ+π− 0.38 ± 0.00 0.39±0.00 0.03±0.00 0.00 ±0.00

π0 → γγ 0.19±0.02 0.01±0.00 0.01±0.00 0.00±0.00

Table I.2.:
εb j

εs
w j values, as shown in Table I.1 for 1.45 GeV, are shown for the 1.5 GeV data.

The contributions of each background for a single event of the ω → e+e−π0 decay
εb j

εs
w j,

probability P j (b) of occurrence of each background contribution for an event, and purity
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π of the signal are presented after various analysis conditions. Equation 4.10, Equation 4.9

and Equation 4.7 is used to estimate
εb j

εs
w j, P j (b) and π. The quantities

εb j

εs
w j, P j (b) and π

have thoroughly discussed in Section 4.3. Table I.1 and Table I.2 represent the
εb j

εs
w j values

in 1.45 GeV and 1.5 GeV data. Whereas, P j (b) and π values are given in Table I.3 and

Table I.4 for 1.45 GeV and 1.5 GeV beam energy, respectively.

Contribution PID conversion cut π0 cut δE −δP

purity (%)

ω → π0e+e− 0.04± 0.00 0.04± 0.00 0.05± 0.00 0.12± 0.01

P j (b) (%)

ω → π+π−π0 5.96±0.57 6.58±0.64 8.39±0.88 7.16±0.76

ω → π0γ 0.02±0.00 0.01±0.00 0.00±0.00 0.01±0.00

π+π−π0 62.81±6.12 68.17±6.76 85.49±9.06 87.40±9.34

π0π0π0 0.94±0.10 0.27±0.03 0.36±0.04 0.04±0.01

π+π− 27.34±2.66 23.41±2.31 4.03±0.43 2.75±0.29

π0π0 1.68±0.16 0.27±0.03 0.36±0.04 0.48±0.05

ρ → π+π− 0.23±0.02 0.24±0.02 0.05±0.01 0.01±0.00

η → γγ 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

η → π+π−π0 0.97±0.11 1.02±0.11 1.27±0.15 2.03±0.24

η → γπ+π− 0.02±0.00 0.01±0.00 0.00±0.00 0.00±0.00

π0 → γγ 0.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Table I.3.: The probability P j (b) and purity have been given for 1.45 GeV beam energy. The values

after e+e− PID, conversion cut, cut on 2 γ invariant mass, and δE − δP constraint has

been listed in the second to fourth columns, respectively.

Contribution PID conversion cut π0 cut δE −δP

purity (%)

ω → π0e+e− 0.04± 0.00 0.04± 0.00 0.05± 0.00 0.13± 0.01

P j (b) (%)

ω → π+π−π0 5.96±0.57 6.56±0.64 8.40±0.88 7.65±0.80

ω → π0γ 0.02±0.00 0.01±0.00 0.00±0.00 0.01±0.00

π+π−π0 62.60±6.10 67.82±6.72 85.30±9.03 86.46±9.20

π0π0π0 0.96±0.10 0.27±0.03 0.36±0.04 0.04±0.01

π+π− 27.79±2.70 23.79±2.35 4.21±0.45 3.04±0.32

π0π0 1.46±0.14 0.28±0.03 0.28±0.03 0.53±0.06

ρ → π+π− 0.22±0.02 0.23±0.02 0.05±0.01 0.01±0.00

η → γγ 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

η → π+π−π0 0.94±0.10 0.99±0.11 1.24±0.14 2.11±0.25

η → γπ+π− 0.02 ±0.00 0.02±0.00 0.00±0.00 0.00±0.00

π0 → γγ 0.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00

Table I.4.: P j (b) and purity values for 1.5 GeV are listed in a similar fashion as for 1.45 GeV in

Table I.3.
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J. Luminosity Dependent Missing Mass

Analysis

)2He (GeV/c3Missing Mass 

0.6 0.65 0.7 0.75 0.8 0.85

E
n

tr
ie

s
 /
 2

 M
e
V

0

2000

4000

6000

 / ndf  296.58 / 1272χ
3.20e­05±p0       6.82e­04
6.24e­07±p1       1.62e­05
9.71e­07±p2       4.66e­05
2.15e+01±p3       ­4.28e+04
3.22e+01±p4       2.28e+05
4.65e+01±p5       ­2.54e+05
6.39e+01±p6       ­3.73e+05
8.11e+01±p7       8.82e+05
8.90e+01±p8       ­4.44e+05

(a) 1.45 GeV: luminosity range: (350−400) (pellet−1)

)2He (GeV/c3Missing Mass 

0.6 0.65 0.7 0.75 0.8 0.85

E
n

tr
ie

s
 /
 2

 M
e
V

0

500

1000

1500

 / ndf  125.69 / 1272χ
1.67e­05±p0       1.55e­04
9.71e­04±p1       5.73e­03
5.87e­04±p2       4.16e­03
2.60e+00±p3       2.66e+01
3.77e+00±p4       ­3.85e+01
1.76e+01±p5       ­1.49e+02
3.81e+01±p6       3.45e+02
2.08e+01±p7       ­1.83e+02

(b) 1.50 GeV: luminosity range: (350−400) (pellet−1)

)2He (GeV/c3Missing Mass 

0.6 0.65 0.7 0.75 0.8 0.85

E
n

tr
ie

s
 /
 2

 M
e
V

0

2000

4000

 / ndf  303.19 / 1272χ
2.68e­05±p0       4.25e­04
1.11e­06±p1       5.66e­06
1.62e­06±p2       4.12e­05
3.49e+03±p3       3.92e+04
8.90e+03±p4       ­9.82e+04
1.34e+03±p5       ­1.68e+04
1.83e+04±p6       2.04e+05
1.18e+04±p7       ­1.29e+05

(c) 1.45 GeV: luminosity range: (400−500) (pellet−1)

)2He (GeV/c3Missing Mass 

0.6 0.65 0.7 0.75 0.8 0.85

E
n

tr
ie

s
 /
 2

 M
e
V

0

200

400

600

 / ndf  131.88 / 1352χ
2.37e­06±p0       9.00e­05
1.23e­02±p1       4.12e­02
2.74e­03±p2       9.78e­03
7.69e­02±p3       ­3.22e+00
8.43e­02±p4       2.84e+00
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Figure J.1.: The inclusive missing mass spectra with the fit functions are presented for last two

luminosity bins for two energies.

lum. 1.45 GeV 1.50 GeV entire data

Nrec
ω (N1) (×103) Nrec

ω (N2) (×103) Nrec
ω (N1+N2) (×103)

(50-100) (26.07±1.12) (30.12±1.22) (26.07±1.12)+(30.12±1.22)
(100-150) (101.44±2.23) (84.96±1.96) (101.44±2.23)+(84.96±1.96)
(150-200) (97.39±2.46) (77.73±1.99) (97.39±2.46)+(77.73±1.99)
(200-250) (51.67±1.83) (71.86±1.99) (51.67±1.83)+(71.86±1.99)
(250-300) (24.74±1.31) (31.18±1.32) (24.74±1.31)+(31.18±1.32)
(300-350) (15.21±0.93) (7.75±0.67) (15.21±0.93)+(7.75±0.67)
(350-400) (7.47±0.66) (2.04±0.34) (7.47±0.66)+(2.04±0.34)
(400-500) (5.02±0.55) (1.01±0.20) (5.02±0.55)+(1.01±0.20)

Table J.1.: The number of reconstructed ω mesons is listed for the 1.45 GeV, 1.50 GeV, and com-

bined data set in different luminosity ranges.
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lum. 1.45 GeV 1.50 GeV entire data

Nrec
ω→π0γ

(N1) (×102) Nrec
ω→π0γ

(N2) (×102) Nrec
ω→π0γ

(N1+N2) (×102)

(50-100) (8.89±1.31) (10.00±1.41) (8.89±1.31)+(10.00±1.41)
(100-150) (33.80±2.44) (27.99±2.21) (33.80±2.44)+(27.99±2.21)
(150-200) (33.47±2.59) (25.86±2.13) (33.47±2.59)+(25.86±2.13)
(200-250) (17.49±1.89) (23.76±2.05) (17.49±1.89)+(23.76±2.05)
(250-300) (8.60±1.33) (10.26±1.34) (8.60±1.33)+(10.26±1.34)
(300-350) (5.13±0.89) (2.60±0.67) (5.13±0.89)+(2.60±0.67)
(350-400) (2.57±0.58) (1.26±0.34) (2.57±0.58)+(1.26±0.34)
(400-500) (1.72±0.52) (0.67±0.19) (1.72±0.52)+(0.67±0.19)

Table J.2.: The number of the ω → π0γ decays reconstructed in 1.45 GeV, 1.50 GeV, and combined

data are tabulated for different luminosity bins.

The details about the luminosity based systematic effect discussed in Section 5.2.3.1

are presented in this section. Fig. J.1 and Fig. J.2 are illustrations of the inclusive

and exclusive missing mass fits for last two luminosity ranges (350−400) pellet−1 and

(400−500) pellet−1. The number of reconstructed ω mesons Nrec
ω and reconstructed

ω → π0γ decay Nrec
ω→π0γ

, in each luminosity range, are given in Table J.1 and Table J.2,

respectively. The branching ratio measured in each bin is listed in Table J.3.
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Figure J.2.: The exclusive missing mass in the last two luminosity bins and the fits are presented for

two energies.
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J. Luminosity Dependent Missing Mass Analysis

lum. 1.45 GeV 1.50 GeV entire data

BRω→π0γ(%)

(50-100) (8.31±1.28) (8.38 ±1.23) (8.35±0.89)

(100-150) (8.12±0.61) (8.32 ±0.69) (8.21±0.46)

(150-200) (8.38±0.68) (8.40 ±0.73) (8.39±0.50)

(200-250) (8.25±0.94) (8.35 ±0.76) (8.31±0.59)

(250-300) (8.47±1.39) (8.31 ±1.14) (8.38±0.88)

(300-350) (8.22±1.51) (8.47 ±2.30) (8.30±1.27)

(350-400) (8.38±2.03) (15.59 ±4.94) (9.92±1.91)

(400-500) (8.35±2.69) (16.75 ±5.78) (9.74±2.44)

Table J.3.: The branching ratio BRω→π0γ of the ω → π0γ decay is listed for different luminosity

ranges. The second, the third and the fourth column represents the results for 1.45 GeV,

1.50 GeV, and for the combined data set, respectively.
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K. Reduced χ2 for Different Fit Ranges

and Polynomial Orders

Polynomial Order
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Figure K.1.: χ2/nd f as a function of the polynomial order is plotted for different fit ranges. The

plot is presented for the 1.50 GeV beam energy data. The fit for the various ranges is

converging for the polynomial of order 5.

The polynomial’s order having the converging fit to the missing mass spectra shown in

Fig. 4.1c are diagnosed in this section. Which is achieved by monitoring the minimum value

of the function calculated using MINUIT minimization routine in root for various polyno-

mial orders. It is observed that in order to control the background shape, the function has

to be fitted to the full phase space of the distribution. The background starts approaching

inside the peak when a narrower fit range close to the peak region was selected. The poly-

nomial of order 5 between fit range [0.575−0.840] provides the lowest χ2/nd f value for

the 1.50 GeV, as compared to the lower orders. However, in the case of the 1.45 GeV beam

energy, the ω peak is sitting directly on the top of the maximum of the background phase

space (compare Fig. 4.1b and Appendix A.3). Which enhanced the sensitivity of the fit. Con-

sequently, 6th order polynomial with fit range [0.575−0.855] provide the minimum value

for the χ2/nd f for 1.45 GeV data. Adequate fits are found in the mentioned fit ranges and

polynomial orders.
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L. Systematic Effect Due to the Fitting

Procedure

The following sections present a detailed description of the systematic studies for the

fitting procedure, as discussed in Section 5.2.3.2. The number of the reconstructed ω mesons

and the number of the ω → π0γ decays are given in Table L.1 and Table L.2, for different

combinations of the fit ranges and polynomial orders. The fits, which are converging after

MINUIT minimization are considered for the systematic studies. The obtained numbers and

the branching fractions have been plotted in Fig. L.1 for changing fit ranges and polynomial

orders, for 1.5 GeV beam energy.

1.45 GeV 1.50 GeV

For Inclusive Missing Mass Fit

Nrec(×105) BRmeasured
ω→π0γ

(%) Nrec(×105) BRmeasured
ω→π0γ

(%)

Fit Range Fit Range

0.5000−0.8400 3.15 ± 0.04 8.36 ± 0.37 0.5000−0.8550 3.28 ± 0.04 8.31 ± 0.34

0.5250−0.8400 3.15 ± 0.04 8.36 ± 0.37 0.5250−0.8550 3.28 ± 0.04 8.31 ± 0.34

0.5500−0.8400 3.15 ± 0.04 8.36 ± 0.37 0.5500−0.8550 3.28 ± 0.04 8.31 ± 0.34

0.5750−0.8400∗ 3.15 ± 0.04 8.36 ± 0.37 0.5750−0.8550∗ 3.28 ± 0.04 8.31 ± 0.34

0.6000−0.8400 3.13 ± 0.04 8.41 ± 0.36 0.6000−0.8550 3.28 ± 0.04 8.31 ± 0.34

0.5750−0.8325 3.21 ± 0.04 8.20 ± 0.37 0.6250−0.8550 3.33 ± 0.04 8.19 ± 0.34

0.6500−0.8550 3.33 ± 0.04 8.19 ± 0.34

0.5750−0.8450 3.33 ± 0.04 8.19 ± 0.34

0.5750−0.8475 3.33 ± 0.04 8.19 ± 0.34

0.5750−0.8500 3.33 ± 0.04 8.19 ± 0.34

0.5750−0.8525 3.31 ± 0.04 8.24 ± 0.34

0.5750−0.8575 3.32 ± 0.04 8.21 ± 0.34

Polynomial Polynomial

6∗ 3.15 ± 0.04 8.36 ± 0.37 5∗ 3.28 ± 0.04 8.31 ± 0.34

7 3.17 ± 0.04 8.30 ± 0.37 6 3.25 ± 0.04 8.39 ± 0.35

8 3.21 ± 0.04 8.20 ± 0.37 7 3.23 ± 0.04 8.44 ± 0.35

9 3.24 ± 0.04 8.12 ± 0.36 8 3.24 ± 0.04 8.41 ± 0.35

10 3.25 ± 0.04 8.10 ± 0.36 9 3.23 ± 0.04 8.44 ± 0.34

10 3.26 ± 0.04 8.36 ± 0.35

(∗): final combination of parameters; Nrec = Nrec
ω

Table L.1.: Tabulation of the number of ω mesons reconstructed (Nrec
ω ) and branching ratio (BR), for

different ranges and polynomial orders of the inclusive missing mass fits for two beam

energies.
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1.45 GeV 1.50 GeV

For Exclusive Missing Mass Fit

Nrec(×104) BRmeasured
ω→π0γ

(%) Nrec(×104) BRmeasured
ω→π0γ

(%)

Fit Range Fit Range

0.5000−0.8400 1.08 ± 0.05 8.36 ± 0.37 0.5000−0.8550 1.08 ± 0.04 8.31 ± 0.34

0.5250−0.8400 1.08 ± 0.05 8.36 ± 0.37 0.5250−0.8550 1.08 ± 0.04 8.31 ± 0.34

0.5500−0.8400 1.08 ± 0.05 8.36 ± 0.37 0.5500−0.8550 1.08 ± 0.04 8.31 ± 0.34

0.5750−0.8400 1.08 ± 0.05 8.36 ± 0.37 0.5750−0.8550 1.08 ± 0.04 8.31 ± 0.34

0.6000−0.8400 1.03 ± 0.05 7.97 ± 0.37 0.6000−0.8550 1.07 ± 0.04 8.23 ± 0.34

0.6250−0.8400 1.01 ± 0.05 7.81 ± 0.37 0.5750−0.8450 1.11 ± 0.04 8.54 ± 0.34

0.5750−0.8250 1.08 ± 0.05 8.36 ± 0.37 0.5750−0.8475 1.10 ± 0.04 8.47 ± 0.34

0.5750−0.8275 1.08 ± 0.05 8.36 ± 0.37 0.5750−0.8500 1.09 ± 0.04 8.39 ± 0.34

0.5750−0.8300 1.08 ± 0.05 8.36 ± 0.37 0.5750−0.8525 1.08 ± 0.04 8.31 ± 0.34

0.5750−0.8325 1.07 ± 0.05 8.28 ± 0.37 0.5750−0.8575 1.08 ± 0.04 8.31 ± 0.34

0.5750−0.8350 1.06 ± 0.05 8.28 ± 0.37 0.5750−0.8600 1.07 ± 0.04 8.23 ± 0.34

0.5750−0.8375 1.06 ± 0.05 8.28 ± 0.37 0.5750−0.8625 1.06 ± 0.04 8.16 ± 0.34

0.5750−0.8425 1.06 ± 0.05 8.28 ± 0.37 0.5750−0.8650 1.06 ± 0.04 8.16 ± 0.34

0.5750−0.8450 1.06 ± 0.05 8.28 ± 0.37

0.5750−0.8475 1.06 ± 0.05 8.28 ± 0.37

0.5750−0.8500 1.06 ± 0.05 8.28 ± 0.37

Polynomial Polynomial

5∗ 1.08 ± 0.05 8.36 ± 0.37 4∗ 1.08 ± 0.04 8.31 ± 0.34

6 1.05 ± 0.05 8.12 ± 0.37 6 1.07 ± 0.04 8.23 ± 0.34

7 1.01 ± 0.05 7.81 ± 0.37 7 1.04 ± 0.04 8.00 ± 0.34

8 0.99 ± 0.05 7.66 ± 0.37 8 1.04 ± 0.04 8.00 ± 0.34

9 1.02 ± 0.05 7.90 ± 0.37 9 1.05 ± 0.05 8.00 ± 0.34

10 1.01 ± 0.05 7.81 ± 0.37 10 1.05 ± 0.05 8.09 ± 0.34

(∗): final combination of parameters; Nrec = Nrec
ω→π0γ

Table L.2.: The number of the ω → π0γ decays reconstructed (Nrec
ω→π0γ

) and branching ratio (BR)

are listed for two energies, for various fit ranges and polynomial orders of the exclusive

missing mass fit.
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L. Systematic Effect Due to the Fitting Procedure
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Figure L.1.: Nrec
ω and Nrec

ω→π0γ
are presented in the top and middle panels, respectively, for differ-

ent combinations of fit ranges and polynomial orders for 1.5 GeV beam energy. The

varied fit range for the fixed polynomial order same as used for the final fit shown in

Fig. 4.4 has been plotted in the left part of both histograms. Whereas the right portion

of the histograms presents the vice-versa. The bottom panel illustrates the BRmeasured
ω→π0γ

for different combinations of the fit ranges and polynomial orders for the inclusive and

exclusive missing mass in 1.5 GeV data.
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M. Systematic Effect Due to the 3He

Identification Cut
Forthcoming sections describe the particulars of the systematic studies for the 3He identi-

fication cuts considered in Section 5.2.3.3. The sample inclusive and exclusive mass spectra

with fits are shown in Fig. M.1. The efficiency ε, number of the ω meson reconstructed Nrec
ω ,

the total number of the ω meson N◦
ω, number of the reconstructed ω → π0γ decays Nrec

ω→π0γ
,

the total number of the ω → π0γ decays N◦
ω→π0γ

and the measured branching ratio BR have

been organized in Table M.1 for different particle identification cuts.

M.1. Missing Mass Spectra for Different Cuts

The representative missing mass spectra for both energies after one of the 3He identifica-

tion cuts, as discussed in Section 5.2.3.3, are shown in Fig. M.1 for both inclusive and exclu-

sive final states. The missing mass spectra for the final measurement have been demonstrated

in Fig. 4.4 and Fig. 4.16 for the respective final states. As established previously in Fig. A.2,
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Figure M.1.: The Missing mass spectra for a particular 3He identification cut are presented for two

beam energies. The left and right columns represent the distributions for 1.45 GeV and

1.50 GeV, respectively. The inclusive missing mass is plotted in the top row and exclu-

sive in the bottom row. The best fit functions are plotted on the respective histograms.

the graphical cut for the 3He identification influences the signal and background spaces dif-

ferently. The effect is prominently seen in the inclusive missing mass spectra. However, the
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M. Systematic Effect Due to the 3He Identification Cut

exclusive missing mass spectra have similar phase space for all cuts with a fractional varia-

tion in the statistics. The similar phase space is due to the effective kinematic conditions used

to select the ω → π0γ decay, as discussed in Section 4.2.3. The phase space and Nrec
ω→π0γ

is

significantly influenced by changing the ω → π0γ final state selection criteria. These effects

are illustrated in Appendix N and Appendix O by performing the systematic check for the

energy-momentum conservation constraint and monochromatic γ selection criterion, respec-

tively. The influence of the 3He identification cuts is numerically seen in the reconstruction

efficiencies for two final states listed in Table M.1. Furthermore, its quantitative effect is

translated to Nrec
ω and Nrec

ω→π0γ
, which can be observed in Table M.1. Nrec

ω and Nrec
ω→π0γ

for

each cut is used to estimate the N◦
ω and N◦

ω→π0γ
. The numbers, Nrec

ω , N◦
ω, Nrec

ω→π0γ
and N◦

ω→π0γ
,

for the combined data set (1.45 GeV+1.50 GeV) are estimated by adding the numbers for

two energies. The numbers in the table are organized in decreasing order of efficiencies from

left to right. The branching ratios tabulated in Table M.1 are estimated using Equation 5.3

for three data sets. The systematic effect due to the particle identification cut for 3He can be

seen in Table 5.7.

combined FRH1 vs FTH1 FRH1 vs FTH1 FRH1 vs FTH1

(cut 1) (cut 2) (cut 3)

εinc(%) 85.26 84.71 84.65 83.49

εinc(%) 35.02 34.75 34.74 34.30

Nrec
ω (×105) 3.27±0.04 3.24± 0.06 3.15± 0.04 3.15± 0.04

N◦
ω(×105) 3.84±0.05 3.83± 0.07 3.72± 0.05 3.77± 0.05

Nrec
ω→π0γ

(×104) 1.12±0.05 1.01± 0.05 1.08± 0.05 1.07± 0.04

N◦
ω→π0γ

(×104) 3.20± 0.13 2.91±0.14 3.11±0.13 3.12±0.13

BR(%) 8.33±0.36 7.82±0.38 8.36±0.37 8.28±0.36

(1.50 GeV)

εinc(%) 87.33 86.79 86.71 85.36

εexc(%) 34.63 34.36 34.35 33.81

Nrec
ω (×105) 3.34± 0.04 3.25 ± 0.05 3.28± 0.04 3.21±0.04

N◦
ω(×105) 3.83± 0.05 3.75±0.06 3.78± 0.05 3.76± 0.04

Nrec
ω→π0γ

(×104) 1.10±0.04 1.10± 0.04 1.08± 0.04 1.04±0.04

N◦
ω→π0γ

(×104) 3.18±0.12 3.20±0.13 3.14±0.12 3.08±0.12

BR(%) 8.30±0.34 8.53±0.36 8.31± 0.34 8.19±0.30

((1.45+1.5) GeV)

Nrec
ω (×105) 6.61±0.06 6.49± 0.08 6.43±0.06 6.36± 0.05

N◦
ω(×105) 7.67±0.07 7.58±0.09 7.50± 0.07 7.53± 0.06

Nrec
ω→π0γ

(×104) 2.22± 0.06 2.12 ± 0.06 2.16± 0.06 2.11± 0.06

N◦
ω→π0γ

(×104) 6.38± 0.18 6.11± 0.19 6.25 ± 0.18 6.20 ± 0.18

BR(%) 8.32 ±0.25 8.04±0.26 8.33± 0.25 8.20±0.25

Table M.1.: The efficiency ε, Nrec
ω , N◦

ω, Nrec
ω→π0γ

, N◦
ω→π0γ

and the measured branching ratio BR are

organized for different particle identification cuts in three data sets. The blue text repre-

sents the values for the final particle identification cut shown in Fig. 5.5.
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N. Systematic Effect Due to the

Energy-Momentum Constraint

A piece of comprehensive information about the systematic uncertainty due to the energy-

momentum conservation constraint, as discussed in Section 5.2.3.4, is demonstrated in this

chapter. The missing mass spectra, the number of reconstructed ω → π0γ decays Nrec
ω→π0γ

,

the reconstruction efficiency ε, and the branching ratio estimates BRmeasured
ω→π0γ

for different

energy-momentum conservation constraints are discussed in the following.
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Figure N.1.: The exclusive missing mass spectra for two extreme energy-momentum conservation

constraints are illustrated for two energies. The left and right columns are 1.45 GeV

and 1.50 GeV beam energies, respectively. The number Nrec
ω→π0γ

extracted using the fit

functions is shown.

N.1. Missing Mass Spectra for Different Constraints

The missing mass spectra for the exclusive ω → π0γ final state are shown in Fig. N.1

for two extreme energy-momentum constraints as an illustration. Evidently, the phase space

is changed for different selections. Resultantly, the systematic uncertainty will addition-

ally be influenced by the fitting procedure. To quantize the systematic effect, the number

Nrec
ω→π0γ

for each energy-momentum conservation constraints are extracted and presented in

Table N.1. N◦
ω→π0γ

for each cut presented in Table N.1 is estimated from Nrec
ω→π0γ

and ε. The

points in Table N.1 are arranged in decreasing order of efficiency from top to down. The
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N. Systematic Effect Due to the Energy-Momentum Constraint

numbers for the combined data set (1.45 GeV+1.50 GeV) are approximated by adding the

numbers for two energies. The measured branching ratio BRmeasured
ω→π0γ

for each cut are listed

in Table N.1 for three data sets. Wherein the value of N◦
ω is the same as for the final mea-

surement in Table 4.1. The systematic effect in the BRmeasured
ω→π0γ

due to energy-momentum

conservation constraint has been quantified in Table 5.7.

dE-dP cut εexc (%) Nrec
ω→π0γ

(×104) N◦
ω→π0γ

(×104) BRmeasured
ω→π0γ

(%)

(1.45 GeV)

(|δE|<0.50&|δP|<0.300) 37.26 2.05±0.08 5.50±0.22 14.79± 0.64

(|δE|<0.40&|δP|<0.250) 36.97 1.60±0.07 4.33±0.20 11.63± 0.56

(|δE|<0.30&|δP|<0.200) 36.40 1.27±0.06 3.49±0.17 9.38± 0.47

(|δE|<0.20&|δP|<0.150) 34.74 1.08± 0.05 3.11±0.13 8.36± 0.37

(|δE|<0.15&|δP|<0.125) 32.03 0.99±0.04 3.09±0.12 8.31± 0.34

(|δE|<0.10&|δP|<0.100) 25.27 0.78±0.03 3.09±0.11 8.31± 0.50

(1.50 GeV)

(|δE|<0.50&|δP|<0.300) 37.09 1.66±0.08 4.48±0.21 11.85± 0.57

(|δE|<0.40&|δP|<0.250) 36.77 1.56±0.07 4.24±0.18 11.22± 0.51

(|δE|<0.30&|δP|<0.200) 36.14 1.24±0.06 3.43±0.16 9.08± 0.43

(|δE|<0.20&|δP|<0.150) 34.35 1.08±0.04 3.14±0.12 8.31± 0.34

(|δE|<0.15&|δP|<0.125) 31.50 1.00±0.04 3.18±0.11 8.40± 0.31

(|δE|<0.10&|δP|<0.100) 24.73 0.77±0.03 3.12±0.11 8.24± 0.31

((1.45+1.5) GeV)

(|δE|<0.50&|δP|<0.300) 3.71±0.11 9.98±0.23 13.31± 0.42

(|δE|<0.40&|δP|<0.250) 3.16±0.10 8.57±0.27 11.43± 0.38

(|δE|<0.30&|δP|<0.200) 2.51±0.08 6.92±0.31 9.23± 0.32

(|δE|<0.20&|δP|<0.150) 2.16± 0.06 6.25±0.18 8.33± 0.25

(|δE|<0.15&|δP|<0.125) 1.99±0.05 6.27±0.16 8.36± 0.23

(|δE|<0.10&|δP|<0.100) 1.55±0.04 6.21±0.16 8.28± 0.22

Table N.1.: A tabulation of the efficiency ε, Nrec
ω→π0γ

, N◦
ω→π0γ

and BRmeasured
ω→π0γ

for different energy-

momentum conservation constraints is presented for three data sets. The final values

obtained by fitting the distributions in Fig. 4.16 are highlighted as blue.
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O. Systematic Effect Due to the

Monochromatic γ Selection Criterion
The specifications of the systematic studies of monochromatic γ selecting criterion dis-

cussed in Section 5.2.3.5 are elaborated in this chapter. The sample missing mass spectra,

the numbers Nrec
ω , N◦

ω, Nrec
ω→π0γ

and N◦
ω→π0γ

, and the measured branching ratio BRmeasured
ω→π0γ

are

summarized in the following.

O.1. Missing Mass Spectra for Different Criteria
The exclusive missing mass spectra for two extreme monochromatic γ selections are pre-

sented in Fig. O.1. The missing mass distributions and fits for the final cut are demonstrated

in Fig. 4.16. Evidently, the monochromatic γ cuts are causing an immense effect on the kine-

matics, and thereby on the phase space of the backgrounds and signal. The line shape and

the statistics are varied for two cuts. This is quantitatively seen in the reconstruction efficien-

cies εexc and the extracted numbers Nrec
ω→π0γ

listed in Table O.1. The cuts in Table O.1 are

)2He (GeV/c3Missing Mass 

0.6 0.65 0.7 0.75 0.8 0.85

E
n

tr
ie

s
 /

 2
 M

e
V

0

2000

4000

 / ndf  187.46 / 1272χ
7.31e­05±p0       3.34e­03
2.10e­05±p1       4.39e­04
7.22e­05±p2       2.73e­03
3.40e+00±p3       ­5.15e+04
5.26e+00±p4       3.06e+05
7.51e+00±p5       ­6.76e+05
9.76e+00±p6       6.58e+05
1.06e+01±p7       ­2.38e+05

(a) 1.45 GeV: 0.1<Ecm<0.50&5< 6 cm<100

)2He (GeV/c3Missing Mass 

0.6 0.65 0.7 0.75 0.8 0.85

E
n

tr
ie

s
 /

 2
 M

e
V

0

1000

2000

3000

4000
 / ndf  273.06 / 1352χ

8.06e­05±p0       3.59e­03
1.05e­02±p1       ­1.85e­02
3.85e­02±p2       4.96e­01
7.65e+00±p3       ­5.14e+01
4.72e+01±p4       3.60e+02
1.08e+02±p5       ­9.19e+02
1.08e+02±p6       1.01e+03
4.04e+01±p7       ­4.03e+02

(b) 1.50 GeV: 0.1<Ecm<0.50&5< 6 cm<100
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(c) 1.45 GeV: 0.22<Ecm<0.4&35< 6 cm<60
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(d) 1.50 GeV: 0.22<Ecm<0.4&35< 6 cm<60

Figure O.1.: The exclusive missing mass spectra are shown for the two extreme cases of the

monochromatic γ selection. The left and the right columns are the 1.45 GeV and

1.50 GeV data sets, respectively. The fit functions are shown. The numbers in the

background-subtracted peaks Nrec
ω→π0γ

are listed in Table O.1.

arranged from top to bottom in the decreasing order of efficiency. N◦
ω→π0γ

is estimated from

the corresponding εexc and Nrec
ω→π0γ

. The numbers for two energies are combined to estimate
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the numbers in the entire data set. The branching ratio BRmeasured
ω→π0γ

for each cut is measured

using the N◦
ω from the final measurement, as listed in Table 4.1. The estimated BRmeasured

ω→π0γ

values have been arranged in Table O.1. The uncertainty that arises due to the systematic

effect of the monochromatic γ selection is quantified Table 5.7.

Monochromatic cut εexc (%) Nrec
ω→π0γ

(×(104) N◦
ω→π0γ

(104) BRmeasured
ω→π0γ

(%)

(1.45 GeV)

(0.1< Ecm <0.50&5< 6 cm <100) 36.42 1.15±0.05 3.16±0.14 8.49± 0.39

(0.2< Ecm <0.50&5< 6 cm <100) 36.38 1.13±0.05 3.11±0.14 8.36± 0.38

(0.15< Ecm <0.48&20< 6 cm <90) 36.12 1.13±0.05 3.13±0.13 8.41± 0.38

(0.2< Ecm <0.50&30< 6 cm <80) 34.74 1.08±0.05 3.11±0.13 8.36± 0.37

(0.2< Ecm <0.45&35< 6 cm <75) 33.45 1.02±0.04 3.05±0.13 8.20± 0.37

(0.22< Ecm <0.4&30< 6 cm <80) 30.44 0.95±0.04 3.12±0.14 8.39± 0.39

(0.2< Ecm <0.50&35< 6 cm <60) 29.37 0.91±0.04 3.10±0.14 8.33± 0.39

(0.25< Ecm <0.42&37< 6 cm <61) 27.73 0.86±0.04 3.10±0.13 8.33± 0.38

(0.22< Ecm <0.4&35< 6 cm <60) 25.76 0.78±0.04 3.03±0.15 8.15± 0.41

(1.50 GeV)

(0.1< Ecm <0.50&5< 6 cm <100) 36.02 1.10±0.05 3.05±0.13 8.07± 0.36

(0.2< Ecm <0.50&5< 6 cm <100) 35.98 1.12±0.05 3.11±0.13 8.22± 0.35

(0.15< Ecm <0.48&20< 6 cm <90) 35.71 1.11±0.05 3.11±0.13 8.22± 0.35

(0.2< Ecm <0.50&30< 6 cm <80) 34.35 1.08±0.04 3.14±0.12 8.31± 0.34

(0.2< Ecm <0.45&35< 6 cm <75) 33.04 1.04±0.05 3.15±0.12 8.33± 0.34

(0.22< Ecm <0.4&30< 6 cm <80) 29.98 0.92±0.04 3.07±0.13 8.12± 0.37

(0.2< Ecm <0.50&35< 6 cm <60) 28.94 0.91±0.04 3.15±0.13 8.31± 0.36

(0.25< Ecm <0.42&37< 6 cm <61) 27.31 0.81±0.04 2.97±0.13 7.86± 0.35

(0.22< Ecm <0.4&35< 6 cm <60) 25.30 0.78±0.04 3.08±0.14 8.15± 0.38

((1.45+1.5) GeV)

(0.1< Ecm <0.50&5< 6 cm <100) 2.25±0.07 6.21±0.19 8.28± 0.26

(0.2< Ecm <0.50&5< 6 cm <100) 2.25±0.07 6.22±0.18 8.29± 0.26

(0.15< Ecm <0.48&20< 6 cm <90) 2.24±0.07 6.24±0.19 8.32± 0.26

(0.2< Ecm <0.50&30< 6 cm <80) 2.16±0.06 6.25±0.18 8.33± 0.25

(0.2< Ecm <0.45&35< 6 cm <75) 2.06±0.06 6.20±0.18 8.37± 0.25

(0.22< Ecm <0.4&30< 6 cm <80) 1.87±0.06 6.19±0.19 8.25± 0.27

(0.2< Ecm <0.50&35< 6 cm <60) 1.82±0.06 6.25±0.19 8.33± 0.26

(0.25< Ecm <0.42&37< 6 cm <61) 1.67±0.05 6.07±0.19 8.09± 0.26

(0.22< Ecm <0.4&35< 6 cm <60) 1.56±0.05 6.11±0.20 8.14± 0.28

Table O.1.: Various monochromatic γ selection criteria have been listed in the first column. The

corresponding reconstruction efficiencies ε, Nrec
ω→π0γ

, N◦
ω→π0γ

and BRmeasured
ω→π0γ

are arranged

in the second, third, fourth and fifth column, respectively. The blue texts are the values

for the cut employed in the final analysis.
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rity. Technical note, ETH Zürich, Institute for Particle Physics,

https://www.desy.de/ blist/notes/whyeffpur.ps.gz, 2002. 72

[124] Roberto Versaci et al. Study of the η→ π+π−e+e− decay at KLOE. J.Phys.Conf.Ser.,

171:012050, 2009. 86

[125] Eugenia Maria Teresa Irene Puccio. First observation of the charmless decay

B+ → K+π0π0 and study of the Dalitz plot structure. Doctor of Philosophy, Uni-

versity of Warwick, 2011. 97

[126] E. Byckling and K. Kajantie. Particle Kinematics. A Wiley-Interscience Publication,

1973. 98, 129

[127] D. V. Bugg, D. C. Salter, G. H. Stafford, R. F. George, K. F. Riley, and R. J. Tapper.

Nucleon-nucleon total cross sections from 1.1 to 8 GeV/c. Phys. Rev., 146:980–992,

Jun 1966. 103

[128] Patrik Adlarson. Studies of the Decay η → π+π−π0 with WASA-at-COSY. Doctoral

thesis, Uppsala Universitet, 2012. 104

[129] Roger Barlow. Systematic errors: Facts and fictions. In

Advanced Statistical Techniques in Particle Physics., pages 134–144,

http://www.ippp.dur.ac.uk/Workshops/02/statistics/proceedings//barlow.pdf, 2002.

104, 105

[130] John R. Taylor. An Introduction to Error Analysis - The Study of Uncertainties in

Physical Measurements. Springer-Verlag, 1994. 106

[131] John Philpott Joseph Rothberg Roberta Bigelow, Michael J. Moloney. Nuclear and

Particle Physics Simulations: The Consortium of Upper-Level Physics Software. Wi-

ley, 1995. 129, 130

157



List of Figures

1.1. The coupling of the photon to a nucleon in QED . . . . . . . . . . . . . . . 3

1.2. The elastic scattering of the electron (e) by a hadron target (H) . . . . . . . 3

1.3. The qualitative behavior of the electromagnetic form factor . . . . . . . . . 5

1.4. The Feynman diagram for the electromagnetic decays of the truly neutral . 6

1.5. The VMD diagram of the ω Dalitz decay . . . . . . . . . . . . . . . . . . . 8

1.6. The transition form factor results from Ref. [28] . . . . . . . . . . . . . . . 11

1.7. Decays which contributes in leading order to the decay of . . . . . . . . . . 12

1.8. Diagrammatic representation of the discontinuity of the ω → π0e+e− . . . 14

1.9. The theoretical calculations from Ref. [27] for the ω → π0γ∗ . . . . . . . . 17

2.1. Schematic view of the COSY . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2. Layout of the WASA detector . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3. Schematic view of the WASA-at-COSY Pellet Target System . . . . . . . . 24

2.4. Forward Window Counter . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5. 3D view and upstream view of FPC . . . . . . . . . . . . . . . . . . . . . 26

2.6. The three layers of the FTH . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7. The five layers of the forward range hodoscope . . . . . . . . . . . . . . . 28

2.8. The fully assembled MDC inside Al-Be cylinder. . . . . . . . . . . . . . . 30

2.9. (a) is a 3D view of the central part of the PSB and MDC . . . . . . . . . . 31

2.10. Cross sectional view of the calorimeter . . . . . . . . . . . . . . . . . . . . 32

3.1. Flow chart of the event reconstruction . . . . . . . . . . . . . . . . . . . . 36

3.2. The PLUTO acceptance for the recoil 3He particle using pd → 3He ω . . . 37

3.3. The relative energy difference (Edep −Ekin)/Edep is plotted as a function . . 40

3.4. Relationship between reconstructed kinetic energy and energy deposited . . 41

3.5. A schematic drawing of the cluster finding algorithm of the SEC . . . . . . 41

3.6. A schematic drawing of the trajectory of the charged particle reconstructed 43

3.7. MC simulation showing the ∆E−∆E method used in the FD . . . . . . . . . 45

3.8. (a) is the Energy loss in the PSB as a function of the signed momentum . . 46

3.9. The black histogram represents the invariant mass of two neutral crystals . . 47

3.10. The peak positions from the fitted function for all modules are plotted . . . 48

3.11. The y-axis of (a) represents the full width half maximum (FWHM) . . . . . 50

3.12. The x-axis of the left column represents the signed momentum . . . . . . . 51

3.13. An illustration of the mean obtained from Landau fit . . . . . . . . . . . . 52

3.14. Example distributions for drift time calibration for one layer in MDC . . . . 53

3.15. Deposited energy in the first layer of FRH as a function of deposited energy 54

3.16. The black points represent the resolution of the energy deposit σ(Edep) . . 55

3.17. The background-subtracted distribution of the 2γ invariant mass is plotted . 56

3.18. The mean and σ of the Landau fit for different PSB elements . . . . . . . . 57

3.19. Scaler display for several cycles of the experiment . . . . . . . . . . . . . . 58

3.20. The detailed structure of a cycle during the pd → 3He ω beam time . . . . 58

158



List of Figures

3.21. The instantaneous luminosity factor TR17/(Pellet rate) plotted . . . . . . . 59

4.1. Particle identification plot for 3He particles . . . . . . . . . . . . . . . . . 61

4.2. A comparison between the efficiencies (y-axis) of the signal decay . . . . . 62

4.3. Correlation between the θ and the kinetic energy of the 3He particles . . . . 63

4.4. The inclusive missing mass spectrum of 3He particles for two energies . . . 65

4.5. Time coincidence of the neutral tracks . . . . . . . . . . . . . . . . . . . . 67

4.6. The invariant mass of two neutral tracks in the Central Detector . . . . . . . 68

4.7. The overall missing momentum is calculated as a function . . . . . . . . . 69

4.8. The δE vs |δP| distributions for the backgrounds . . . . . . . . . . . . . . . 71

4.9. The overall missing energy (δE) vs overall missing momentum (|δP|) . . . 73

4.10. The invariant mass of two neutral tracks in the Central Detector . . . . . . . 74

4.11. The true Monte Carlo simulation, reconstructed Monte Carlo simulation . . 75

4.12. The monochromatic γ plot for data and Monte Carlo. . . . . . . . . . . . . 76

4.13. A 2-dimensional variation of the dilepton e+e− invariant mass . . . . . . . 77

4.14. The black line is the two γ invariant mass distribution for all combinations . 78

4.15. The kinetic energy correlation with the polar angle . . . . . . . . . . . . . 78

4.16. The exclusive missing mass of 3He particles after final π0γ final state . . . . 80

4.17. The time coincidence plot for 2 charged and 2 neutral . . . . . . . . . . . . 82

4.18. The efficiencies of the signal decay ω → e+e−π0 . . . . . . . . . . . . . . 83

4.19. Particle identification plots for the charged particles in the CD . . . . . . . 84

4.20. Schematic view of the mis-reconstruction of conversion e+ and e− . . . . . 86

4.21. Radius of the closest approach e+e− . . . . . . . . . . . . . . . . . . . . . 87

4.22. The invariant mass of two neutral tracks in the Central Detector . . . . . . . 88

4.23. The δE has been plotted against δP for data and the ω → e+e−π0 . . . . . . 89

4.24. The δP has been plotted against δE for backgrounds . . . . . . . . . . . . . 90

4.25. The background contributions for a single event of the . . . . . . . . . . . 92

4.26. Missing mass spectra after the e+e−π0 final state selection . . . . . . . . . 93

4.27. Superposition plots of the background-subtracted missing mass peaks . . . 94

4.28. The e+e− invariant mass of distribution for the ω → e+e−π0 decay . . . . . 97

5.1. The inclusive missing mass of 3He particle as a function of luminosity . . . 102

5.2. The branching ratio of the ω → π0γ decay for different luminosity values . . 103

5.3. The branching ratio distribution fitted for different luminosity . . . . . . . . 105

5.4. The top panel represents the number of reconstructed ω mesons (Nrec
ω ) . . . 107

5.5. Particle identification (PID) plot for 3He . . . . . . . . . . . . . . . . . . . 108

5.6. An illustration of the systematic effect . . . . . . . . . . . . . . . . . . . . 110

5.7. The systematic effect on the measured branching ratio . . . . . . . . . . . . 112

5.8. Various combinations of the energy and angular windows . . . . . . . . . . 113

5.9. The illustration of the systematic effect . . . . . . . . . . . . . . . . . . . . 114

A.1. The particle identification plots for 3He particles for the MC simulations . . 121

A.2. δE −E plot for the background from the multi pion production . . . . . . . 122

A.3. The effect of 3He identification cut on the multi pion phase space . . . . . . 122

B.1. The energy deposit in FTH1 as a function of the energy deposit in FRH1 . . 123

B.2. The overall missing energy (δE) vs overall missing momentum (|δP|) . . . 124

B.3. The PLUTO, Monte Carlo simulation and data for monochromatic γ . . . . 124

B.4. Particle identification plots for the charged particles in the CD . . . . . . . 125

159



List of Figures

B.5. The δE has been plotted against δP for data and the ω → e+e−π0 . . . . . . 126

D.1. Kinematical diagram: Left: Rest frame of ω meson (CM) . . . . . . . . . . 129

F.1. The resolution of 3He and γ. . . . . . . . . . . . . . . . . . . . . . . . . . 131

J.1. The inclusive missing mass spectra with the fits . . . . . . . . . . . . . . . 136

J.2. The exclusive missing mass spectra with the fits . . . . . . . . . . . . . . . 137

K.1. χ2/nd f as a function of the polynomial order. . . . . . . . . . . . . . . . . 139

L.1. Nrec
ω and Nrec

ω→π0γ
are presented in the top . . . . . . . . . . . . . . . . . . . 142

M.1. The Missing mass spectra for one of the 3He identification cuts . . . . . . . 143

N.1. The exclusive missing mass spectra for two energy-momentum conservation 145

O.1. The exclusive missing mass spectra are shown for two monochromatic . . . 147

160



List of Tables

1.1. Quantum numbers of the ω meson . . . . . . . . . . . . . . . . . . . . . . 1

2.1. Stopping power of particles in forward range hodoscope . . . . . . . . . . 28

3.1. A list of possible hit combinations in the sub-detectors of the CD . . . . . . 44

3.2. The σ of the energy deposit for data and simulation . . . . . . . . . . . . . 55

3.3. An estimation of the effective time of data taking . . . . . . . . . . . . . . 59

4.1. Total number of ω mesons estimated using inclusive missing mass . . . . . 66

4.2. The number of ω → π0γ decay estimation . . . . . . . . . . . . . . . . . . 80

4.3. The weighting factor wi for 1.5 GeV . . . . . . . . . . . . . . . . . . . . . 81

4.4. The number of reconstructed ω → e+e−π0 decays . . . . . . . . . . . . . 95

4.5. The number of events in the superposition histogram and . . . . . . . . . . 98

5.1. The peak position and FWHM of the background-subtracted peak . . . . . 100

5.2. The BRmeasured
ω→π0γ

for two energies . . . . . . . . . . . . . . . . . . . . . . . 101

5.3. The branching ratio values obtained in the systematical . . . . . . . . . . . 106

5.4. The systematical checks for the background subtraction . . . . . . . . . . . 109

5.5. The second column represents the name . . . . . . . . . . . . . . . . . . . 110

5.6. The systematic check results for the 3He identification . . . . . . . . . . . 111

5.7. The systematic error σ in BRmeasured
ω→π0γ

. . . . . . . . . . . . . . . . . . . . . 114

5.8. The number of the ω → e+e−π0 events expected and reconstructed . . . . . 115

6.1. The final values of the branching ratio of the ω → π0γ decay mode . . . . . 117

C.1. Cross section table for the pd → 3He X reactions. . . . . . . . . . . . . . . 127

E.1. A comparison between the efficiencies of ω → π0γ and backgrounds . . . . 131

G.1. The weighting factor wi for 1.45 GeV . . . . . . . . . . . . . . . . . . . . 132

H.1. A comparison between the efficiencies of ω → e+e−π0 and backgrounds . . 133

I.1. The fraction
εb j

εs
w j is listed for the 1.45 GeV data . . . . . . . . . . . . . . 134

I.2.
εb j

εs
w j values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

I.3. The probability P j (b) of occurrence of each background . . . . . . . . . . 135

I.4. P j (b) and purity values for 1.5 GeV are . . . . . . . . . . . . . . . . . . . 135

J.1. The number of reconstructed ω mesons and total entries . . . . . . . . . . . 136

J.2. The number of the ω → π0γ decays reconstructed . . . . . . . . . . . . . . 137

J.3. The branching ratio of the ω → π0γ decay . . . . . . . . . . . . . . . . . . 138

L.1. Tabulation of the Nrec
ω and BR for different fit ranges . . . . . . . . . . . . 140

L.2. The number of the ω → π0γ decays reconstructed . . . . . . . . . . . . . . 141

161



List of Tables

M.1. The efficiency ε, Nrec
ω , N◦

ω, Nrec
ω→π0γ

, N◦
ω→π0γ

. . . . . . . . . . . . . . . . . 144

N.1. The Nrec
ω→π0γ

and BRmeasured
ω→π0γ

for different δE −δP conservation . . . . . . . 146

O.1. The Nrec
ω→π0γ

and BRmeasured
ω→π0γ

for different monochromatic γ cut . . . . . . . 148

162



List of acronyms

CELSIUS Cooling with Electrons and Storing of Ions from the Uppsala Synchrotron

CLEO Particle detector used at the Cornell Electron Storage Ring (CESR)

KLOE K LOng Experiment

WASA Wide Angle Shower Apparatus

QCD Quantum Chromodynamics

QED Quantum Electrodynamics

QFT Quantum Field Theory

ChPT Chiral Perturbation Theory

LbL Light by Light

EFT Effective Field Theories

VMD Vector Meson Dominance

KT Khuri-Treiman

PDG Particle Data Group

CAD Computer-Aided Design

COSY COoler SYnchrotron accelerator

ANKE Apparatus for Studies of Nucleon and Kaon Ejectiles

PAX Polarized Antiproton eXperiments

FD Forward Detector

FRH Forward Range Hodoscope

FPC Forward Proportional Chamber

FTH Forward Trigger Hodoscope

CD Central Detector

MDC Mini Drift Chamber

PSB Plastic Scintillator Barrel

SEC Scintillator Electromagnetic Calorimeter

SQDC Slow Charge-to-Digital Converter

SCS Superconducting Solenoid



List of Tables

PMT Photomultiplier Tube

RAID Redundant Array of Independent Disks

DAQ Data Acquisition System

TF Track Fitting

PID Particle Identification

PR Pattern Recognition

TR Trigger

LA Average Luminosity

BR Branching Ratio

cs Cross Section

PS Phase Space

164





Acknowledgements

Completion of this doctoral dissertation was possible with the support of several people. I

would like to express my sincere gratitude to all of them. First of all, I am extremely grateful

to my research supervisors, Prof. Frank Goldenbaum and PhD habil. Susan Schadmand, for

their valuable guidance, scholarly inputs and consistent encouragement, I received through-

out the research work. This feat was possible only because of the unconditional support

provided by them.

I am very thankful to Prof. James Ritman for making it possible for me to write this thesis
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