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1 Introduction

This chapter gives an overview of the application areas in which magnetic fields occur.
Based on these examples, motivational questions are raised, which this dissertation
attempts to answer. The reader is presented what the expectations and objectives
are. The structure and organization of this thesis will be outlined.

In order to give an idea of what the term hysteresis is based on in general, this topic
is explained by means of an example. This example already exhibits some similarities
with later problems.

Furthermore, this work is placed in the current state of research in order to achieve
a clear distinction on what has already been researched and what part of this work
represents new findings.

1.1. Application Examples and Motivation

Magnetic fields are ubiquitous. Even the very weak earth magnetic field can be used
in the form of a compass and has thus significantly influenced the history of mankind.
An increasing level of technology has made measuring magnet fields common. The
majority of today’s smartphones have a built-in magnetometer that enables a digital
compass.

The current environmental policy focuses on electrically powered vehicles (e.g. cars,
trucks and trains), especially in combination with battery power. This circumstance
poses various challenges for the electric motors used, e.g., the space limitations, the
desired high efficiency or the use at various outside temperatures. So both industry
and research communities are currently very interested in efficient electric motors
that are well adapted to their intended use case.

However, there is currently also a great public interest in the use of generators,
especially with the background of regenerative energy generation. Wind turbines
and hydroelectric power plants, for example, convert kinetic energy into electrical
energy. Here, the efficiency of the conversion is a key issue. This efficiency has been
increased by modern materials and optimized designs and continues to be a research
goal.

From the electro-technical field, transformers can be cited as an example. There,
two circuits are coupled with each other via magnetic fields in order to achieve a
transformation of the voltage.



1.1. Application Examples and Motivation

Highly technological examples include applications in magnetic resonance imaging in
the medical field and particle accelerators in the field of experimental physics. There,
very strong and at the same time very controlled magnetic fields are required.

Nowadays, a wide range of materials is available (for examples see [25]). This
means that the best possible selection of materials can be made depending on the
application.

Motivation The above examples are intended to give a small insight into the wide
range of applications of magnetic fields. In addition to measurements of prototypes,
theoretical modeling is of course also a core part of the development process. In
many applications, efficiency plays a central role. In order to optimize this efficiency,
precise knowledge of the course of the magnetic fields and their propagation in
different materials is necessary. Therefore, there are different approaches for material
models.

However, efficiency also depends on losses. There are various sources of losses in an
electromagnetic system. These are characterized by loss models. Losses are usually
accompanied by the generation of heat. Hence, not only the magnetic material
properties are interesting, but also the thermal ones. In the end, the magnetic
properties are again dependent on the temperature. This results in a complex
integrated system. The more computing capacity is available, the more complex
models can be used and more effects can be taken into account.

This dissertation focuses on the special choice of ferromagnetic materials. These
materials have the special effect of magnetic hysteresis and are important, because
of the particularly strong resulting magnetic fields. The following questions will be
the motivation of this dissertation. A visual overview is given in Figure 1.1 and a
more detailed version of the expectations and objectives can be found in the next
section.

I What magnetic behavior do ferromagnetic materials possess?
Chapter 2 presents the basic features of magnetism including the hysteresis effect.

I How can magnetic hysteresis be mathematically modeled?
Chapter 3 defines a hysteresis model without thermal dependence.

I Are there particular losses associated with the effect of hysteresis and how can
they be modeled?
Section 4.1 describes a hysteresis loss model.

I What effect does a temperature change have on the hysteresis model?
Section 4.2 states an extension of the hysteresis model including thermal dependence.

I How to combine all these aspects into a numerical simulation?
Chapter 5 develops a numerical simulation of a benchmark problem.

2
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Figure 1.1.: Overview of the structure of this thesis.
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1.2. Expectations and Objectives

1.2. Expectations and Objectives

This dissertation has several focus areas. All sections have in common that it is a
dissertation with mathematical background. Nevertheless, it is tried to perform the
analyses from different points of view. From the purely mathematical area, methods
for proving existence and uniqueness of solutions are used. From a physical point of
view it is discussed whether these solutions are reasonable for the underlying models.
The existing models will be extended by further parameters, with special focus on
a temperature dependence. Under the numerical aspect, the models and physical
relations will be combined to a thermal magnetic simulation.

Unfortunately, what this dissertation cannot provide are real measured values on
the extended models. It tries to compare the results with available literature and to
check for general reasonability. Thus, in some places, examples and parameters of
an academic nature will have to suffice.

Due to the wide interdisciplinary spread of the approaches, it is unfortunately not
possible to discuss each approach in detail under every aspect. The achievement of
this dissertation is mainly bringing together the different aspects. The final result is
a numerical simulation for thermal magnetic field calculation, including magnetic
hysteresis, a hysteresis loss model and temperature dependence.

The document is structured as follows.

I The remainder of this chapter is intended to provide a very rough overview and
motivation. A concrete example is used to illustrate the concept of hysteresis. A
rough positioning within the literature is given.

I In Chapter 2, the reader is introduced to electromagnetism. The physical quantities
involved are introduced and Maxwell equations are presented. These equations are
describing the interaction of electrical and magnetic fields with electric charges and
currents. In addition to the fundamental Maxwell equations, one needs other models
for material equations. Here the focus lies on the relationship of the two magnetic
fields #„

H and #„

B.

Simplifying assumptions are made and alternative formulations are introduced, such
that the overall problem is reduced. The result is the so-called Curl-Curl Equation,
which is the basis for all further considerations. From a numerical point of view, this
equation is adjusted and embedded in a benchmark problem. Thereby, the relation
between #„

H and #„

B still remains open.

To explore the physical claims and relationships of #„

H and #„

B, an introduction and
overview of magnetism is given in the second part of Chapter 2. Phenomena at the
micro and macro levels are presented. This allows materials to be classified. The
class of ferromagnetic materials shows effects of hysteresis. In this context, it is
explained what hysteresis means in relation to magnetic fields. A motivation in which
application the effect of hysteresis is explicitly desired and where it is undesired is
explained by means of an example of a stepper motor.

4
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At the end of Chapter 2, the reader should have gained a basic understanding of
magnetic hysteresis and should have an idea of what is required of a mathematical
hysteresis model from a physical point of view. Furthermore, it should be clear which
missing part of the hysteresis model is supposed to fill in the numerical simulation of
the benchmark problem.

I In Chapter 3, the focus is on the mathematical consideration of a particular
magnetic hysteresis model, the Tellinen model [54]. It is first formally defined and
the chosen approaches are physically motivated. Then, basic properties are presented.

For a deeper investigation, suitable mathematical approaches have to be introduced
beforehand. This leads to the consideration of first order reversal curves (FORCs)
and the artificial extension of their definition range. These extended FORCs allow
an investigation if and under which conditions Tellinen’s model fulfills the physical
requirements.

The existence and uniqueness of solutions of the model are examined and whether
the model shows a basically stable behavior. Approaches are developed and it is
explained how the model could be incorporated into the numerical simulation of the
benchmark problem.

At the end of Chapter 3, the reader should be familiar with the notation and
approaches used by the interpretation of Tellinen’s model. The approaches used to
study the model should be comprehensible.

I Chapter 4 deals with extensions of the original Tellinen model. On the one hand,
a loss model is presented that is adapted to Tellinen’s model in its approaches. On
the other hand, a thermal dependence is added to Tellinen’s model. This allows a
simulation of the approximations where heat generation occurs due to losses and how
the model reacts to it. Both model extensions are examined using similar approaches
as in Chapter 3. Their physical meaningfulness is discussed.

By the end of Chapter 4, the reader should be familiar with both extensions and
their properties.

I Chapter 5 takes up the preparations from Chapter 2 and elaborates the benchmark
in detail. The finite difference method is used with offset grids. This simulation
brings together the findings of the previous chapters. The magnetic field simulation
and the thermal simulation are executed one after the other. Special attention is
paid to the boundary conditions and the material transition inside. The presented
numerical results are analyzed and it is discussed again, if the results fit the physical
requirements.

With the results of Chapter 5 the approaches are evaluated. The results show good
agreement with the expected results and the models are considered as validated.

I The conclusion in Chapter 6 summarizes the insights of the dissertation. These are
finally evaluated and placed in the overall context. The disadvantages and limitations
of the models are also explicitly addressed. The reader should therefore be presented

5
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Figure 1.2.: Comparison of the output of a comparator and a Schmitt trigger.

with a most unbiased view of the research results. An outlook on possible further
research is given.

1.3. Introduction to Hysteresis: an Example

Before the explicitly used magnetic hysteresis model is presented in Chapter 3, a
short overview on the term hysteresis shall be given. This will be illustrated by an
example from electrical engineering [136, 138–140].

The hysteresis effect can be observed in a wide variety of applications [22, 51, 56]. In
general, a system with hysteresis depends not only on its independent input values. It
additionally depends on the previous values of its output. To illustrate this behavior,
an example is given below.

A continuous input voltage Uin ∈ [0, 5] (in V) shall be discretized to the binary states
1 (5 V) and 0 (0 V). This is done once with a simple comparator (without hysteresis)
and once with a Schmitt trigger (with hysteresis). Figure 1.2 shows a graphical
comparison of the different behaviors for a selected excitation Uin = Uin(t).

The comparator can easily be described by a function fcomp : [0, 5]→ {0, 1} with

fcomp(Uin) =
{

1 if Uin ≥ 2.5 ,
0 if Uin < 2.5 .

(1.1)

It is comparable to a simple toggle switch with switching point at 2.5 V. The Schmitt
trigger has two switching points UT− = 2 V and UT+ = 3 V. UT+ is the positive-going
threshold voltage and UT− the negative-going threshold voltage. The Schmitt trigger
changes its output to 1, only if Uin ≥ UT+ holds and likewise to 0 only if Uin ≤ UT−

holds. In all other cases it does not change its output and keeps its old state.

This feature has advantages in the application for noisy inputs. The simple compara-
tor changes its state over and over as soon as there is even a minimal noise in the

6
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Schmitt trigger Comparator

Figure 1.3.: Input vs output for a comparator and a Schmitt trigger.

range of its switching point. The Schmitt trigger on the other hand is immune to
small noise. After it has changed its state, the input voltage must change its value
by UT+ − UT− to trigger another change of state. Therefore, the value UT+ − UT−

can be used to quantify the strength of the hysteresis effect.

As seen in Figure 1.2 the Schmitt trigger has some time delay in comparison to
the simple comparator. Commonly, hysteresis effects add some sort of delay to the
system. Or from another point of view hysteresis can add additional resistance,
work, energy or in general some sort of obstacle to change the current state of the
system.

Another visual representation of hysteresis behavior is shown in Figure 1.3. It shows
the input voltage versus the output state for the comparator and the Schmitt trigger.
Assuming both systems start in the state of 0 (0 V) and with Uin = 0 V. Uin is
increased to 5 V and decreased back to 0 V. The comparator follows in the sequence
of points

A→ B→ C→ F→ G→ H→ G→ F→ C→ B→ A . (1.2)

The forward and backward paths are the same. Thus the output can be defined as a
function of the input Uin, as done in (1.1). The Schmitt trigger proceeds along the
sequence

A→ B→ C→ D→ G→ H→ G→ F→ E→ B→ A . (1.3)

The forward and backward paths differ and thus no function solely depending on Uin
can model this behavior. In the above cycle, for an input of Uin = 2.5 V the output is
once 0 (at C) and another time 1 (at F). Thus, for the same input the model outputs
different values, depending on the history of the system (in this case: if it is in state
0 or 1). Such a system is denoted as a path dependent system.

This section should give a brief insight that systems with hysteresis are not necessarily
easy to model and calculate. The relationship between the input variables and output

7



1.4. State of the Art

variables cannot necessarily be represented by functions. In the further course of
this work, hysteresis will be examined in special relation to magnetic fields and
ferromagnetic materials.

1.4. State of the Art

At this point, a brief overview and positioning in the current state of research will
be given.

Models for magnetic hysteresis were and still are actively researched [20]. It currently
exists a broad spectrum of models with many different approaches (examples: [29,
40, 42, 43, 46, 56, 57]). A comparison of different hysteresis models can be found in
[50].

These models form the basis, but it is not necessarily easy to embed them in a
numerical simulation, i.e., the chosen hysteresis model should fit the chosen numerical
approach. As examples [24, 55] can be mentioned.

The effect of hysteresis holds another source of electrical losses. Quantifying these is
an important task for loss models. Thus, many hysteresis models have been extended
by loss calculations [15, 18, 23, 26]. The difference between those approaches has
been studied intensively [33, 44, 50].

The effect of magnetic hysteresis is temperature dependent. Accordingly, there are
temperature-dependent extensions to various hysteresis models [16, 27, 47].

This closes the circle that a temperature change can be calculated from the hysteresis
losses and this fact is taken into account by the hysteresis model. Thus, however,
the numerical simulation must also include several physical aspects. For example,
an excitation of the materials can be generated by external currents. The induced
magnetic field generates hysteresis losses. Heat propagates within the materials and
in turn influences the hysteresis behavior. When talking about a simulation in the
context of this dissertation, is is a synonym for a multiphysics simulation. However,
this also poses numerical challenges since effects such as electric currents, magnetic
fields, and temperature can be on different time scales. Thus, in order to implement
such a simulation in a meaningful way, appropriate numerical approaches have to
be pursued. Worthwhile to mention are the co-simulation and multirate approach
[145–149, 152, 153].

The chosen hysteresis model within this dissertation is Tellinen’s model [36, 54].
It will be presented and discussed in Chapter 3. According to [50], this model is
considered to be more simple. Nevertheless, it agrees relatively good with measured
values. An approach to loss calculation has already been stated in the original
source. In [38], the author of this dissertation and his coauthors presented an
alternative approach. This approach is presented and further explored in Section 4.1.
A thermal extension of Tellinen’s model is presented in [37], again by the author of
this dissertation and his coauthors. This is stated and analyzed in more detail in

8
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Section 4.2. A numerical integration of the Tellinen’s model and its extensions into
a finite difference approach is done in Chapter 5.

Thus, this dissertation fits well into existing literature and fills a gap. The steps that
have already been performed for various other hysteresis models are repeated here
using Tellinen’s model. This has not yet been published in this form, at least the
author is not aware of anything to this end.

9





2 Electromagnetism – Theoretical
Background Knowledge

In this chapter a rough overview of the theoretical background of electromagnetism
is given. Thereby, the topic is approached from different sides.

I From the field of theoretical physics, the fundamental Maxwell’s equations, the
material equations and all required physical quantities are introduced in Section 2.1.
For the general case, certain assumptions are made and thus simplify the system of
consideration. This leads to the Curl-Curl Equation, a partial differential equation
(PDE) of parabolic type. It serves as the basis for the numerical benchmark in Chap-
ter 5. Also, it is presented how to reduce the consideration from multidimensional to
scalar quantities for the specifically chosen benchmark problem. It remains an open
question how to incorporate the effect of hysteresis into the benchmark problem.

I In order to explain the effect of magnetic hysteresis, the underlying physical
phenomena are explained in Section 2.2. Weiß domains and Bloch walls are examined.
Based on this background information, a classification of materials is established. It
shows the characteristic properties of ferromagnetic materials and their difference
from other materials.

I From these physical motivations the effect of hysteresis can be quantified in
a mathematical sense in Section 2.3. The properties of the saturation curve are
presented and requirements for a hysteresis model are derived from these. Different
approaches for hysteresis models are discussed.

I In Section 2.4 the operation of a stepper motor is presented. With this concrete
example, it is illustrated that applications depend on different types of materials.
This example should also motivate why the combination of magnetic field calculation
including the effect of hysteresis and temperature is of particular interest.

The objective of this chapter is to lay the foundations for the hysteresis model in
Chapter 3. From a mathematical point of view, the task of such a model and its objec-
tive shall be motivated. From the physical point of view, the relationships are to be
presented, so that the hysteresis model can be checked for physical meaningfulness.

2.1. Maxwell’s Equations

The fundamentals of electromagnetism are described by Maxwell’s equations (2.1)
[134, 135, 21, 78]. The quantities involved are listed in Table 2.1.



2.1. Maxwell’s Equations

Table 2.1.: Overview of the symbols, units and descriptions of the used quantities.
Symbol Unit Description

ρ C/m3 electric charge density
#„

J A/m2 electric current density
#„

E V/m electric field
#„

D C/m2 electric displacement field, electric induction
#„

H A/m magnetic field strength
#„

B T magnetic flux density
µ H/m magnetic permeability
ε C/(V m) permittivity
σ S/m electric conductivity

#„∇ · #„

D = ρ (2.1a)
#„∇ · #„

B = 0 (2.1b)
#„∇× #„

E = −∂
#„

B

∂t
(2.1c)

#„∇× #„

H = #„

J + ∂
#„

D

∂t
(2.1d)

In the selected representation (2.1), all fields are assumed to have three spatial
dimensions. The Maxwell equations contain both of Gauss’s laws, i.e., eqs. (2.1a)
and (2.1b), Faraday’s law (2.1c) and Ampère’s law with added displacement current
(2.1d). With this basic theory, the interaction between the fields and globally the
phenomena of electromagnetism are described. For example, magnetic monopoles
cannot be realized. However, since the full set of equations is quite difficult to solve
numerically, there are approximations for certain assumptions. This will be discussed
in Section 2.1.2. The focus will be on fields #„

H and #„

B, but these quantities must be
embedded in the overall system. An isolated calculation is not possible.

Remark 2.1. Maxwell’s equations (2.1) form an underdetermined system of equations.
These equations still have to be supplemented by material equations such that a
uniquely solvable system results. Each of these material equations describes the
relation between two fields. While Maxwell’s equations are fundamental equations,
the user has the choice of the material model. Material equations are the focus of
the next section.
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2.1. Maxwell’s Equations

2.1.1. Material Equations

To extend Maxwell’s equations (2.1) to a fully determined system, three additionally
relations are added. They are a mathematical description of the materials behavior
and relate two of the fields in the combination

#„

J ↔ #„

E ,
#„

D ↔ #„

E ,
#„

B ↔ #„

H . (2.2)

Depending on how these relations are defined, different material properties may
or may not be reflected. First, one of the simplest choices of material models is
introduced. After that, approaches for more complex models will be presented. In
particular, the focus will be on the relation between #„

B and #„

H.

The quantity σ in the SI unit S/m is the electrical conductivity (cf. Table 2.1). It
describes the ability of a material to conduct electric fields and is closely related to
the electrical resistance and Ohm’s law. If σ is assumed to be a constant, it yields

#„

J = σ
#„

E . (2.3a)

The quantity ε in the unit of C/(V m) describes the permittivity of the material and
is a measure of the electric polarizability (cf. Table 2.1). Assuming it is a constant,
it yields the relation

#„

D = ε
#„

E . (2.3b)

The focus will lie on the quantity µ. It is the magnetic permeability in the SI unit
H/m and it is a measure on how a material amplifies or dampens magnetic fields.
Similarly, the constant approach is given by

#„

B = µ
#„

H . (2.3c)

One possible choice for the material equations is given by the set of equations (2.3).
This choice uses a constant, multiplicative and scalar approach for each of the
equations. This represents the most rudimentary material model.

In order to show how (2.3) can be extended to cover further material properties, µ is
considered exemplary. The same approach can be applied to the quantities σ and
ε.

Instead of using µ ∈ R, a function µ : R3 → R with µ = µ( #„x ) and #„x being the
spatial coordinate can be used. This would allow different spatial domains to be
assigned to various values for µ. Thus, one can perform a simulation with several
materials. If the simulation is not stationary in time, µ should be extended to
include a time dependency. Likewise, a temperature dependency can be useful, if the
temperature changes significantly. This is useful when losses are considered within
the simulation. Thus, if a constant µ is replaced by a function µ = µ( #„x , t, T, . . .),

13



2.1. Maxwell’s Equations

some dependencies – e.g., spatial coordinate #„x , time t, temperature T – can be taken
into account.

However, the approaches from (2.3) also have very clear limitations as to which
effects cannot be modeled. From the basic mathematical structure, one field ( #„

H)
is multiplied by a scalar (µ) and yields the other field ( #„

B). This means that the
field #„

B and #„

H are parallel at any time and µ is considered to be independent of
direction. Materials for which this approach is suitable are called isotropic. But not
every material falls in this category. Anisotropic materials can not be modeled by
this scalar approach.

Remark 2.2. The anistropy can also be used to motivate the complexity and inter-
disciplinarity of magnetic hysteresis [19, 30, 32, 35, 49, 53]. Magnetic properties
of materials depend on their production and processing process. Metal sheets, for
example, can be manufactured by rolling them out in a cold state. The magnetic
properties along and perpendicular to the rolling direction differ (often referred to
with hard and easy axis). Subsequent mechanical processing and internal stresses
in the material also have an influence on the magnetic properties. By means of
temperature and annealing, the magnetic properties can be changed.

Another important aspect with respect to the mathematical approach by multiplying
one field by a scalar quantity is that no magnetic hysteresis can be modeled in this
way. In Section 1.3 it has already been motivated that the hysteresis effect is caused
by the fact that different output quantities can result from the same input data. This
cannot be modeled by (2.3). To give another short illustrative example, it should
be mentioned that there cannot be permanent magnets in the formulation (2.3c).
A permanent magnet is characterized by the fact that a magnetic field #„

B 6= #„0 is
formed without any excitation #„

H = #„0 . This constitutes an impossible condition, if
#„

B = µ · #„

H holds.

Remark 2.3. In the further course of this dissertation, equations (2.3a) and (2.3b) will
remain the proper choice for these material parameters. But (2.3c) will be replaced
later by a hysteresis model. For the current consideration, (2.3c) is assumed to be in
effect.

Remark 2.4. Given the above observations, it is the task of a hysteresis model to link
the two fields #„

H and #„

B with each other. Hysteresis models can be roughly classified
into scalar [31, 45, 48, 54] and vector [16, 26, 27, 46] models. Scalar models are solely
suited for isotropic materials and vectorial may be suited for anisotropic materials.
A scalar model will be introduced later in this dissertation. For this reason, µ is still
considered to be a scalar and not a tensor. Historically, some scalar models were
extended to vector models and isotropic to anisotropic ones. Within this section,
#„

H and #„

B will be considered as three dimensional fields. But in Section 2.1.5, a
benchmark problem will be introduced such that they can be reduced to scalar values
h, b. The hysteresis model presented in Chapter 3 will be based solely on scalar
quantities. However, the upcoming sections should be as general as possible. Thus,
fields #„

H and #„

B are used.
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2.1. Maxwell’s Equations

material #„

B

effect

#„

H

excitation
amplification

damping

µ

ν

magnetic
field strength

magnetic
flux density

Figure 2.1.: The task of a magnetic hysteresis model is a definition of the relationship
of the excitation #„

H and the resulting effect #„

B. Depending on the direction
of calculation this is either denoted with µ or ν.

Table 2.2.: Naming conventions for the approximations of Maxwell’s equations.
name effects

electr. energy magn. energy losses
electrostatic X
magnetostatic X
stationary field X

electroquasistatic (EQS) X X
magnetoquasistatic (MQS) X X
wave equation X X

full set X X X

Remark 2.5. Within theoretical considerations #„

H is often used as the independent
variable. It is considered as the excitation, µ the amplification and #„

B as the resulting
field. In some computations the inverted direction is needed. This is denoted with ν.
An overview is given in Figure 2.1.

2.1.2. Approximation of Maxwell’s Equations in the
Magnetoquasistatic Case

The full set of Maxwell’s equations (2.1) is not easy to solve. Different approximations
depending on the application exist. In the context of this dissertation, the so-called
magnetoquasistatic approximation – abbreviated as MQS in the following – is used.

The effects – integrated into the full Maxwell equations – can be roughly divided
into three categories. They are either based on the electric energy, the magnetic
energy or losses. Each possible combination of effects is denoted differently as shown
in Table 2.2. These approximations have already been well studied in the literature
[80, 82–85].

This dissertation focuses on magnetic fields and losses and neglects the electrical
energy. It is a good approximation for fields that change only slowly.
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2.1. Maxwell’s Equations

Under the assumptions of the MQS approximation, the displace current density
vanishes, i.e.,

∂
#„

D

∂t
≈ 0 . (2.4)

Thus, one term from the complete Maxwell equations (2.1) is omitted while the rest
remains valid. The system simplifies in a mathematically sense.

These reduced Maxwell equations are introduced in the following Section 2.1.3. In
the follow-up Section 2.1.4, they are used to reduce the system into s single PDE.

2.1.3. Reformulation via Potentials

A common reformulation of the combination of the Maxwell equations (2.1) and the
material equations (2.3) is based on the introduction of the magnetic vector potential
#„

A and the electric scalar potential ϕ [77–79, 81]. This formulation defines

#„

B = ∇× #„

A ,
#„

E = −∇ϕ− ∂
#„

A

∂t
. (2.5)

Remark 2.6. #„

A and ϕ are not unique. If #„

A and ϕ are solutions to the Maxwell
equations (2.1), so are #„

A† = #„

A +∇ξ and ϕ† = ϕ − ∂ξ
∂t

for any scalar field ξ. The
resulting values of #„

B and #„

E are invariant w.r.t. this transformation. Common
approaches called gauges make further demands on #„

A and ϕ, such that only one
unique solution results. Two well known versions are the Lorenz and Coulomb gauge.
The MQS approximation from Section 2.1.2 will be used and combined with the
potential formulation (2.5) from this section and then a very compact representation
results in the following Section 2.1.4. Using this compact version a benchmark
problem will then be defined in Section 2.1.5. This benchmark problem uses rotational
symmetry and other assumptions to reduce the dimension of the involved fields to
scalar quantities. By a suitable choice of the boundary conditions, the solution
becomes unique even without explicitly gauging of the potentials. Therefore, it is
not needed to pursue the problem of gauging any further at this point.

2.1.4. Curl-Curl Equation

Within this section the Curl-Curl Equation will be derived. In a somewhat modified
form, this equation can be found in literature1. This section will now combine the
preparations from Sections 2.1.1 to 2.1.3.

1 [78, equation 3.97], [84, equation 2.20], [150, equation 2.28], [151, equation 2.27]

16



2.1. Maxwell’s Equations

Starting with (2.1d), the displacement current is omitted by the MQS approximation.
Using the material equations (2.3a) and (2.3c) to replace the quantities #„

H and #„

J
yields

#„∇× #„

H

=ν
#„
B

= #„

J

=σ
#„
E

+ ∂
#„

D

∂t
≈0

. (2.6)

Now the quantities #„

B and #„

E can be expressed using the potentials (2.5). This results
in

#„∇×
(
ν

#„

B

= #„∇× #„
A

)
= σ

#„

E

=− #„∇ϕ− ∂
#„
A

∂t

. (2.7)

Introducing #„

J src = −σ∇ϕ as the source current density, i.e., the current that is
applied externally, and rearranging the equation gives

σ
∂

#„

A

∂t
+ #„∇×

(
ν
( = #„

B

#„∇× #„

A
)

= #„
H

)
= #„

J src . (2.8)

At this point it is very important to pay attention to the exact definition of ν. In
this derivation ν was considered a constant scalar with #„

H = ν · #„

B. In this case ν can
be factored out from the outer curl. If the term σ ∂

#„
A

∂t
is ignored, the expression

#„∇×
(

#„∇× #„

A
)

= 1
ν

#„

J src = µ
#„

J src (2.9)

is obtained. This version can be found more frequently in the literature1. But it was
consciously refrained on this simplification.

If ν is instead a function that somehow converts from #„

B to #„

H, i.e., #„

H = ν
(

#„

B
)
, the

representation (2.8) is still valid. Or in general, as soon as ν is not constant, the
simplification (2.9) is not necessarily easily possible.

Remark 2.7. ν in (2.8) is still up to closer inspection and is currently a placeholder
function for the hysteresis model presented in Chapter 3. It is supposed to be
representative for a conversion from #„

B to #„

H. For the problem to be well posed, the
function ν must be determined. Further investigations are carried out for a general
ν at first.

Remark 2.8. The equation (2.8) represents a PDE. A viable numerical method for
solving such a PDE is the finite difference method [94, 96].
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2.1. Maxwell’s Equations

0 rin rout

copper

iron

(a) Overview of material
distribution.

x

y

z

(b) Coordinate system.

#„

J =

 0
0
Jz


#„

B =

Bx

By

0



(c) Field orientation.

Figure 2.2.: Visualization of the coordinate systems of the benchmark problem.

The Curl-Curl Equation presented in (2.8) serves as a starting point and is valid
for general multidimensional problems with advanced ν. Equation (2.8) is used in
the following Section 2.1.5 and applied to a special benchmark problem. There, the
fields #„

H and #„

B are reduced to scalar quantities. This results in the actual differential
equation, which will be solved numerically in Chapter 5 later on.

The reader is given a rough overview of the physical background in Section 2.2 before
the hysteresis model is presented in Chapter 3. In Section 3.3, the problem – how to
define ν – is resumed and different approaches for ν in combination with the specific
hysteresis model are investigated.

2.1.5. Application of the Curl-Curl Equation in a
Rotationalsymmetric Benchmark Problem

In this section, preparations for the benchmark problem in Chapter 5 are made. The
key insight will be that, with a suitable construction of the benchmark problem, the
vector field quantities #„

H, #„

B can be reduced to scalar quantities h, b. This is not
generally possible, rather it is a constraint on the used approaches. Unfortunately,
this is necessary because the hysteresis model in the form presented in Chapter 3
can only be applied to scalar fields.

This reduction of dimensions is achieved by having the benchmark problem to specify
the orientation of the fields #„

H and #„

B. For each point in space a reference vector
#„

V ref is given by the benchmark problem such that the relation #„

H = h · #„

V ref and
#„

B = b · #„

V ref result. Using rotational symmetry and constraining the orientation of
certain vector quantities, a scalar equivalent to (2.8) is derived.

A standard example of magnetic field calculation is an infinitely long conductor.
This example is modified and a sheath around the conductor is added. The setup is
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2.1. Maxwell’s Equations

shown in Figure 2.2(a). Three different materials are used.

The conductor is assumed to be copper-like. It is conductive with electric conductivity
σCo ∈ R, but has no magnetic hysteresis. Thus, the relations b = µCo ·h and h = νCo ·b
with µCo = 1

νCo
∈ R can be applied.

The environment is assumed to be in vacuum. A vacuum has no electrical conductivity
and the known relation b = µ0 · h prevails. If possible, the vacuum is integrated via
suitable boundary conditions instead of simulating it explicitly.

The main focus is on the sheathing. The sheath is modeled as iron-like and features
both a constant electrical conductivity and magnetic hysteresis. The hysteresis
is modeled by the hysteresis model of Chapter 3. At this point, ν is used as a
placeholder to convert the fields with h = ν(h) = ν(b, h0, b0) for the current state
(h0, b0).

The conductor is straight and aligned along the z–axis, which also serves as the axis
of rotation. The benchmark problem is assumed to be constant along the z–axis and
such that all derivatives ∂

∂z
are assumed to be zero.

(2.8) is converted from cartesian coordinates (x̂, ŷ, ẑ) to cylindrical coordinates
(r̂, ϕ̂, ẑ). Further details on this procedure can be found, for example, in [78]. In
doing so, some quantities are restricted to certain dimensions. With the following
representations of the curl operator in the different coordinate systems,

#„∇car ×

Ax

Ay

Az

 =


∂Az

∂y
− ∂Ay

∂z

∂Ax

∂z
− ∂Az

∂x
∂Ay

∂x
− ∂Ax

∂y

 ,
#„∇cil ×

Ar

Aϕ

Az

 =


1
r

∂Az

∂ϕ
− ∂Aϕ

∂z

∂Ar

∂z
− ∂Az

∂r
1
r

(
∂(rAϕ)

∂r
− ∂Ar

∂ϕ

)
 (2.10)

a suitable system can be created. The current density #„

J and the vector potential #„

A
are restricted to the z component, i.e.,

#„

J =

 0
0
Jz

 = jẑ ,
#„

A =

 0
0

Az

 = Aẑ . (2.11)

With this setup the field #„

B is restricted to the xy–plane, or respectively the ϕ–plane,
i.e.,

#„

Bcart = #„∇cart ×
#„

Acart =


∂Az

∂y

−∂Az

∂x

0

 ,
#„

Bcil = #„∇cil ×
#„

Acil =


0
−∂Az

∂r

0

 = bϕ̂ . (2.12)

The field #„

B has only a tangential and no radial part, as seen in Figure 2.2(c). The
same is true for the #„

H field. Thus, the fields #„

H and #„

B are parallel for each spatial
coordinate, respectively. All in all, this results in a system that couples the quantities
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copper iron vacuum

0 rin rout

Figure 2.3.: Material distribution of the benchmark problem along the radius r.

to fixed directions. With this information and using scalar values A, h, b, j an
equivalent representation of (2.8) in cylindrical coordinates is given by

σ
∂A

∂t
+ 1

r

(
∂

∂r
r ν
( =b

− ∂

∂r
A
)

=h

)
= j . (2.13)

The different materials are aligned along the radius r as shown in Figure 2.3. Thus, the
objective for the further thesis is the numerical solution of (2.13) under consideration
of the different materials from Figure 2.3. For this purpose, the physical basics for
ferromagnetism and magnetic hysteresis are presented in the further course of this
chapter. To concretize the current placeholder µ and ν, a hysteresis model is defined
in Chapter 3 and its properties are studied. Due to the coordinate transformation, a
singularity results at r = 0. Also the material transitions at rin and rout have to be
investigated separately. Solutions to these problems are presented in Chapter 5. For
the directly following sections and chapters, this short discourse and foreshadowing
of Chapter 5 serves to clarify that some multidimensional problems can be reduced
to scalar quantities.

2.2. A Brief Introduction to Ferromagnetism

As motivated in Remarks 2.4 and 2.7, the hysteresis model in Chapter 3 is intended
to link the magnetic field strength #„

H and the magnetic flux density #„

B. Ferromagnetic
materials generate particularly strong magnetic fields, have a hysteresis effect and
are therefore of particular interest.

This section is intended to introduce the reader to the basics of ferromagnetism
such that the mathematical approaches of the hysteresis model in Chapter 3 can
be physically motivated. To this end, the physics of magnetism is presented in a
minimalistic manner from the molecular to the macroscopic level. For more profound
insights, it is referred to the specialized literature [14, 21, 24, 52].

First, the formation of Weiß domains and Bloch walls is motivated. Based on the
response of the material to an excitation, a classification can be made. This allows
us to differentiate ferromagnetic materials from others and to show the distinctive
properties.
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overall sum

(a) no resulting field

overall sum

(b) weak resulting field

overall sum

(c) strong resulting field

Figure 2.4.: Sketch of magnetic domains. The domain of the material is subdivided
into small parts that share a magnetic orientation. The resulting field
depends on the sum of all subdomains.

The reader is presented with a superficial physical motivation as to why the effect of
hysteresis occurs in ferromagnetic materials. Furthermore, characterizing key figures
are introduced.

Remark 2.9. Equation #„

B = µ0
#„

H with µ0 ≈ 4π · 10−7H/m describes the relationship
between #„

H and #„

B without a material, i.e., in vacuum. It serves as a reference whether
a material amplifies (µ > µ0) or dampens (µ < µ0) a magnetic field.

Remark 2.10. The SI unit system revised µ0 on 20th of May 2019 [2]. Before, it
was considered a constant with exact value of 4π · 10−7H/m. But currently it is
considered a quantity that has to be specified experimentally. The numerical value
differs only slightly. In the context of this dissertation, µ0 = 4π · 10−7H/m is used
for calculations.

2.2.1. Weiß Domains and Bloch Walls

The following section justifies the behavior of ferromagnetic materials with physical
processes. This cannot necessarily be generalized to other classes of materials. A
rough classification and delimitation of the material types is then given in Sec-
tion 2.2.2.

Molecules of a material with a dipole moment can be vividly viewed as small magnets.
These molecules are not randomly aligned but follow the physical principle of energy
minimization, i.e., they always try to achieve the most favorable state in terms of
energy. Since each molecule generates a magnetic field, they interact with each other
based on their magnetic fields.

Now the question arises, what is the most favorable state in terms of energy? This
depends on the scale. Simplified, there are two dominant effects. At the microscopic
level, molecules that are very close to each other try to align themselves constructively,
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2.2. A Brief Introduction to Ferromagnetism

Weiß domains

Bloch wall

Figure 2.5.: The basic schematic principle of Weiß domains and Bloch walls is shown.
Between the areas with very similar orientation (Weiß domains), there
are narrow areas that act as a transition between them (Bloch walls).

i.e., as parallel as possible with the same orientation of the magnetic poles. However,
if all molecules were to align themselves in the same way, a very strong magnetic
field would form at the macroscopic level. This is, however, unfavorable in terms of
energy. On this macroscopic level, it is most favorable from an energy point of view,
if the individual molecules align themselves as destructively as possible, resulting in
a magnetic field that is as weak as possible in total. These two opposing effects cause
local clusters to form in which the molecules constructively overlap. However, the
clusters each have different orientations, so that the magnetic fields of the clusters
destructively cancel each other out.

An actual visual measurement of these clusters is given in [5] and an abstracted
sketch in Figure 2.4. These clusters are called magnetic domains or Weiß domains.
The Weiß domains are separated by thin areas where the molecules are changing
their orientation from one domain to the adjacent one. The typical transition is
called Bloch wall, but there are also special variants like the Néel wall. See [34] for a
comparison of the wall types. For a rough overview, the scope of this thesis will be
limited to Bloch walls. If the magnetization is considered in a plane, the transition
is found also within this plane and is continuous, as shown in Figure 2.5.

The superposition of all magnetic fields results in a complex system. Assuming
that the material is not externally excited in any way, it takes the most favorable
attainable state w.r.t. energy. For example, let x be the position of one random
Bloch wall. As shown in Figure 2.6(a), the current position must be at a local
minimum in terms of energy.

Now the material is excited a little by applying a magnetic field, for example. Then
the Bloch wall continues to try to stay in the local energy minum, but experiences a
small force due to the interaction with the external magnetic field. For simplicity, it
is assumed that all other Bloch walls do not change and the single Bloch wall has
no significant effect on the energy levels shown in Figure 2.6. The now increased
energy level is not sufficient to overcome the adjacent local maximum. If the external
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Figure 2.6.: Shown is a schematic view of potential energy w.r.t. to the Bloch wall
position x. The shaded area represents the achievable states and the
dashed line represents the maximum energy. Compare to [62, Fig. 4]
and [75, Fig. 1].

excitation vanishes, the Bloch wall falls back to its starting point. It is concluded
that if the external excitation is small, the process is reversible and x is confined
around the local minimum, as marked in Figure 2.6(a).

But what happens if the external excitation is not small? As shown in Figure 2.6(b),
a higher energy level than the adjacent local maximum allows the Bloch wall to
“jump” over the local maximum into the next more preferred local minimum. Again
let the external excitation now be off again, the Bloch wall remains in the new lower
local minimum. The material has permanently changed its configuration and this
process is irreversible. This specific Bloch wall is now restricted to another domain
as shown in Figure 2.6(c).

The above assumptions were highly simplistic, but are sufficient for basic motivation.
Of course, all Bloch walls must be considered at the same time and any change in
the position of these will affect all the others. Often, if one Bloch wall is changing
its position, it triggers further ones to change their position as well. So there is some
kind of avalanche effect [70]. However, one can still roughly categorize the resulting
effects into reversible and irreversible ones. This distinction will be relevant several
times in this thesis.

The phenomenon of jumping over a local energy maximum is called the Barkhausen
effect, jumps or noise. This is a well-known and widespread effect in the application
[58, 62, 63, 69–71, 73, 75]. These jumps happen nearly spontaneously and induce
an electric current. They were first noticed when amplified with a loudspeaker and
perceived as auditory noise. Because this effect is based upon electric current, losses
occur and are part of recent research [68, 72]. Since losses cause a temperature
change, the temperature dependence must be investigated [60, 74].

The irreversibility of the Barkhausen effect is directly linked with the hysteretic
properties and affect the magnetic properties of the material [67]. Especially material
defects or the deliberate introduction of other chemical substances in the form of

23



2.2. A Brief Introduction to Ferromagnetism

h

b

Figure 2.7.: Shown is the relation between a scalar applied magnetic field h and the
resulting magnetic flux density b. The actual relation is based upon many
very small discrete events: the Barkhausen noise (blue). A continuous
approximation (black) is used. Figure based on [61, Fig. 1].

alloys influence the magnetic hysteresis. The Bloch walls get pinned to them and can
thus significantly increase the irreversible aspect. In applications, the Barkhausen
effect is used for example in non-invasive material testing [59, 61, 64–66, 76]. The
strength with which a Bloch wall is held in position also depends on mechanical
properties.

Remark 2.11. According to the above motivation, the magnetization process of
a material is not a continuous phenomenon. It is caused by many very small
discrete changes in the position of Bloch walls, as shown in Figure 2.7. The exact
representation and calculation of each Bloch wall is not necessary if the consideration
is on a coarser scale. The sizes of the Weiß domains are depending on several factors.
As measured in [5], the scale of a Weiß domain is in the order of µm. The intention
is the simulation of magnetic materials in the order of mm, cm or above. Due to
the sheer number of Bloch walls in a material of this scale, the discrete situation is
approximated by a continuous approach, as shown in Figure 2.7.

Remark 2.12. The magnetic behavior of a material depends on how it responds to
excitation by an external magnetic field. The above motivation is strongly focused
on ferromagnetic materials. For others, different physical backgrounds apply. Since
this work deals exclusively with ferromagnetic materials, other materials will not
be considered in detail. Nevertheless, the distinctive properties in comparison to
other material classes are shown. Therefore, a rough classification of materials is
introduced in the following section.

2.2.2. Classification of Materials

For a rough classification diamagnetic, paramagnetic and ferromagnetic materials
are introduced with respect to the reference in vacuum as mentioned in Remark 2.9.
Scalar fields h and b are assumed.

To quantify the difference w.r.t. to vacuum, the dimensionless scalar quantity of
relative permeability defined by µr = µ

µ0
is introduced. Additionally the dimensionless
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magnetic susceptibility is defined by χm = µr − 1. Information on the numerical
values of these quantities are taken from [1, 6, 8, 9, 13] and differ a little bit depending
on the source. These numbers are only for an overview on the order of magnitude.

A diamagnetic material reacts with an external magnetic field in a destructive way,
i.e., it hinders the field. The field inside a diamagnetic material is weaker than in
vacuum, i.e., µdia

r < 1 and χdia
m < 0. Examples are gold with χm = −3.4 · 10−5, silver

with χm = −2.4·10−5, copper with χm = −9.4·10−6 and zinc with χm = −1.6·10−5.

A paramagnetic material slightly amplifies the magnetic field, i.e., µpar
r > 1 and

χpar
m > 0. Here examples are aluminum with χm = 2.2 · 10−5, lithium with χm =

1.4 · 10−5 and tungsten with χm = 6.8 · 10−5.

Both, diamagnetic and paramagnetic materials, exhibit only reversible magnetic
properties and therefore return to the original state without external excitation.
There is no hysteresis effect. If the external magnetic field is not unusually strong, µr

or χ is assumed to be independent of the external magnetic field [7]. These materials
can be modeled with b = µ · h. Note that µ can be temperature dependent.

Ferromagnetic materials are characterized by the properties presented in Section 2.2.1,
which includes the non-linear properties and irreversible, i.e., hysteresis, behavior.
A direct comparison of the µ values between diamagnetic, paramagnetic and ferro-
magnetic materials is not meaningful because the linear approach b = µ · h cannot
be used for ferromagnetic materials. Because of this fact, there are other different
approaches to defining µ. In the remainder of this paper, a differential definition is
used, i.e.,

µdiff = dB

dH
, µr,diff = µdiff

µ0
. (2.14)

For the linear approach b = µ · h it yields µ = µdiff and a comparison of the
relative values µr and µr,diff is possible. A not fully saturated ferromagnetic material
can exhibit values of µr,diff up to 106 [133, 137]. Because of this difference over
several orders of magnitude, diamagnetic and paramagnetic materials are considered
nonmagnetic in common language, and by magnetic materials one typically means
ferromagnetic materials.

Remark 2.13. Summarizing the above statements, ferromagnetic materials have a
several order of magnitudes stronger magnetic effect in comparison to other material
classes. The magnetic field is highly amplified by ferromagnetic materials. Such
materials exhibit non-linear and irreversible, i.e., hysteresis, behaviour. These
properties characterize ferromagnetic materials [137] and make them interesting for
application.

The strength of the hysteresis effect and whether or not this effect is desired in the
application plays an elementary role in the material selection. Therefore, within the
ferromagnetic category there is a distinction between irreversible effects that are not
so pronounced and a strong manifestation of these effects. Such materials are called
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(a) linear, b = µ · h
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(b) non-linear, b = µ(h) · h
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(c) non-linear with hysteresis

Figure 2.8.: Various possible relationships between b and h are shown.

soft or hard ferromagnetic materials. An application example of how to combine soft
and hard materials for an electric motor is given in Section 2.4.

The division into dia-, para- and ferromagnetic materials is only a rough classification.
In the corresponding literature (e.g., [7, 10]) there are even finer breakdowns based
on the physical properties, which are predominating the magnetic interaction. At
this point it is sufficient to work out which properties distinguish ferromagnetic
materials from other materials.

2.3. Hysteresis & Ferromagnetic Materials

Having shown the physical background of ferromagnetism in Section 2.2.1 and worked
out the main distinguishing features from other classes of materials in Section 2.2.2,
the effect of hysteresis are now looked at from a mathematical point of view. The
statements are limited to scalar quantities. It have already been shown in Section 2.1.5
that the benchmark problem can be reduced to scalar problems.

In the following sections, the foundations for the special hysteresis model in Chapter 3
is laid. For this purpose, the following substantive points are worked through.

I First, in Section 2.3.1, the problem of hysteresis is examined in the mathematical
sense. It is worked out what exactly a hysteresis model should calculate.

I In Section 2.3.2 saturation curves are introduced. On the one hand these are
used to explain further notation and the characteristic numbers of a ferromagnetic
material. In particular, different equivalent coordinate systems are defined. On the
other hand, these curves limit the definition range of a hysteresis model.

I From the context already presented, in Section 2.3.3 requirements and conditions
for hysteresis models will be formulated. This information allows to derive approaches
for hysteresis models.
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2.3.1. Mathematical Problem Definition

Within Section 2.2.2 different material classes were introduced. The simplest ones
are based on a linear model for the relationship between h and b. If µ is allowed to
be a function instead of a constant, non-linear materials without hysteresis effects
are also feasible. These cases are shown in Figures 2.8(a) and 2.8(b). However, a
process with hysteresis as shown in Figure 2.8(c) is not possible with an approach of
calculating b via some function µ, i.e., b = µ(h).

Since b = µ(h) does not work globally, the requirement are weakened a bit for the
hysteresis model. It should describe the course of b in dependence of h for the current
state (h0, b0), i.e.,

b = b(h) = µ(h, h0, b0) . (2.15)

This approach corresponds to an expansion or approximation with reference to point
(h0, b0). The validity of states (h0, b0) is investigated next in Section 2.3.2.

This approach restricts the applicability or rather sets new conditions. It is assumed
that the current behavior is uniquely defined by the current state. It is irrelevant how
the current state has been reached. This is a weakening of a general path dependence
as noted in the previous sections.

However, it must also be discussed that this approach must be coordinated with the
global approach. In this case, the Curl-Curl Equation (2.8) or (5.9a) is to be solved
numerically. To do this, the finite difference method is used in Chapter 5. With this
in mind, discrete steps are assumed in time and this allows to update the current
state (h0, b0) at each time step.

But in Equations (2.8) and (5.9a) it is not asked for µ, but for the inversion ν, i.e.,

h = h(b) = ν(b, h0, b0) . (2.16)

Since not every hysteresis model is easy to invert, the chosen model must fit the
global context. To forestall Chapter 5, both versions – (2.15) and (2.16) – are needed
in the benchmark problem. The chosen hysteresis model in Chapter 3 allows this
inversion.

Remark 2.14. To summarize, in the context of this thesis, a hysteresis model starting
from current state (h0, b0) defines the progression of fields via functions µ and/or ν
w.r.t. Equations (2.15) and (2.16). An example is given in Figure 2.9.

2.3.2. Characteristics of Saturation Curves

As already seen in Figure 2.9, the range of reachable states (h, b) is constrained.
These boundaries will be physically motivated and their importance for a hysteresis
model is stated. In the process, new notations and coordinate systems will be

27



2.3. Hysteresis & Ferromagnetic Materials

−4 −2 0 2 4
−2

−1

0

1

2

·105

h[A/m]

b[T
]

Figure 2.9.: Relation between h and b for different initial states (black circles). Satu-
ration curves are shown with dashed lines.

introduced. In this section, the approach that h is the independent variable is chosen
and b = b(h) is to be calculated depending on it.

As already explained in Section 2.2.1, the strong amplification of the magnetic field in
ferromagnetic materials is caused by the alignment of the Weiß domains. Assuming
the material is fully saturated, i.e., the Weiß domain and Bloch walls are orientated
and positioned optimally to amplify the magnetic field. This state is reached at
h� 0. Now, using a smooth and monotonous transition, h is increased until a full
saturation in the opposite direction occurred, i.e., 0� h. This transition is material
specific and will be denoted with B+

sat(h). Since physics has no preferred direction,
the transition from 0� h to h� 0 is symmetric to B+

sat. This will be denoted with
B−

sat and defined by

B−
sat(h) = −B+

sat(−h) . (2.17)

The saturation curves B±
sat can be measured experimentally and allow a quick rough

overview of the magnetic behavior of a ferromagnetic material. Therefore, some key
characteristics will be introduced on the basis of this curve.

But B±
sat are also of interest in a mathematical sense. The curves represent a natural

boundary. There can be no physically meaningful state (h, b) outside these curves.
From the context follows

B+
sat(h) ≤ B−

sat(h) for all h ∈ R . (2.18)

Thus, the further considerations can be restricted to the set I with

I =
{
(h, b) ∈ R2

∣∣∣B+
sat(h) ≤ b ≤ B−

sat(h)
}

. (2.19)

I is the definition domain of the hysteresis models.

In the previous sections, it have already been explained that without material the
relation b = µ0 · h exists. Thus, the relationship between h and b can be divided into
components with and without material influence. This can be achieved in two ways,

28



2.3. Hysteresis & Ferromagnetic Materials

depending on whether one wants to make this distinction with respect to h or b. If
the intrinsic induction bi and the magnetization M are introduced, it results in

b(h) = µ0 · h + bi(h) = µ0 ·
(
h + M(h)

)
. (2.20)

Because bi and M differ only in scaling by µ0, the investigations are restricted
to the study of bi for the purposes of this thesis. This results in two different
coordinate systems, (h, b) and (h, bi). Mathematically, these are connected by the
simple relationship

b(h) = µ0 · h + bi(h) , bi(h) = b(h)− µ0 · h . (2.21)

Analogously, a corresponding B±
i,sat from the saturation curves B±

sat can be defined.

Remark 2.15. An analysis of the magnetic field can be done in different ways. If one
considers h as the independent variable, then considerations in the (h, M), (h, bi)
and in the (h, b) planes are possible. These possibilities have also caused confusion
in the literature. A study on this issue can be found in [52]. In the context of this
thesis, the analysis and definition will occur either in the (h, b) or (h, bi) plane. A
distinction within the quantities is done by a sub-script of “i”. Since both versions
are simply connected by (2.21), both formulations are equivalent. The most suitable
version is selected in the respective context and where possible it is tried to present
both in parallel.

From the physical backgrounds properties for B±
sat and B±

i,sat can be derived. The
material can only achieve a limited amplification of the magnetic field. This is
reached, if all Weiß domains and Bloch walls are optimally oriented for amplification.
And results in the first key parameter B∞

i,sat, the contribution of the material in
saturation. It is defined by

lim
h→−∞

B±
i,sat(h) = −B∞

i,sat , lim
h→+∞

B±
i,sat(h) = B∞

i,sat . (2.22)

B∞
i,sat is a measure of the maximum achievable gain of the material’s magnetic field.

Remark 2.16. Complete magnetization is one of the few ways to create a defined
state in the material. A state in the non-saturation state is dependent on all previous
states of the material. This is of course a challenge from a numerical point of view.
The acquisition and integration of many previous states is memory and computation
intensive. A possible approach of hysteresis models is to use only the current state
for calculations. But also in practical applications this plays an important role. To
produce a material with a fixed magnetization or demagnetize it, profound knowledge
and approaches are necessary. Some application examples can be found in [113–116].

Through (2.22), the asymptotic behavior of B±
sat is also declared and it yields

lim
h→−∞

(
B±

sat(h)−
(
µ0 · h−B∞

i,sat

))
= 0 , (2.23a)

lim
h→+∞

(
B±

sat(h)−
(
µ0 · h + B∞

i,sat

))
= 0 . (2.23b)
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Figure 2.10.: Illustration of the main characteristics of saturation curves B±
sat. Com-

parable figures can be found with modified notation in various literature
[14, 25, 28, 36, 52].

From this, a rough shape of the saturation curves B±
sat can already be derived, as can

be seen in Figure 2.10. Now, a few characteristic quantities of such saturation curves
are introduced. These quantities allow a first rough estimation of a material [112].

Due to the general shape of B±
sat intersections with the coordinate axis exist. These

represent the other key characteristics. The remanence Br is the intersection with
the b or bi axis, i.e.

Br = B−
sat(0) = B−

i,sat(0) , −Br = B+
sat(0) = B+

i,sat(0) . (2.24)
After a material is excited to positive saturation and then this excitation is mono-
tonically attenuated until there is none, the material retains the remanence flux
density Br. The remanence is therefore the maximum achievable flux density without
excitation. Only with remanence a material can be a permanent magnet.

The intersection with the h–axis is denoted as magnetic coercivity Hc, i.e.,
B+

sat(Hc) = 0 , B−
sat(−Hc) = 0 . (2.25)

If a material is negatively saturated and the excitation is monotonously increased,
the coercivity field strength is the needed excitation to compensate the magnetization
so that there is no flux density. Note that Hc 6= Hic holds. Hc is therefore a measure
of how easy or difficult it is to repolarize or demagnetize a material. As mentioned
in Section 2.2.2, ferromagnetic materials can be divided into hard and soft materials.
Soft ferromagnetic materials have a small Hc, while hard ferromagnetic materials
have a large Hc. Application examples for both types are presented in Section 2.4 in
form of a stepper motor.

The typical profile of the saturation curves B±
sat are “S” or sigmoidal shaped, as

shown in Figure 2.10. Such curves can be approximated with logistic approaches
(e.g., [36]).
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Remark 2.17. In this thesis, it is assumed that the saturation curve B+
sat exists as

a continuously differentiable real function, i.e., B+
sat ∈ C1. Later in Section 4.2

the condition are tightened to B+
sat ∈ C2. It is not of importance, how B+

sat was
constructed.

In order to be able to evaluate this assumption a little bit, a few approaches are
presented briefly. Starting from experimentally measured values, these can be
interpolated and approximated in a suitable way [88, 90, 91]. However, suitable
approach functions can also be adapted to the measured values by means of curve
fitting [36].

2.3.3. Demands on and Approaches for Hysteresis Models

The previous sections are now summarized and the expectations for the hysteresis
model in Chapter 3 are presented. For an overview, however, other approaches are
also briefly motivated. In doing so, the requirements and assumptions are explicitly
adapted to the approaches of this dissertation. That is, differences may well arise in
a different context.

The simulation in Chapter 5 aims at solving the analytical Equations (2.8) and (5.9b)
numerically. For this purpose, starting from the current state (h0, b0), the relationship
between h and b is required (see Remark 2.14). This is represented by µ and ν
respectively and shall be the output of the hysteresis model. An analytical solution
is not expected, an embedding in the numerical methods is sufficient. Neither is an
exact description of the physical states expected, a simplified statistical or smoothed
view is sufficient as mentioned in Remark 2.11.

The allowed values for the states (h0, b0) ∈ I have already been worked out in (2.19)
and I should be the definition domain of the hysteresis model. In addition, the
saturation curves B±

sat represent a restriction and the hysteresis model should respect
these in the form, such that no solution can leave the domain I. This automatically
determines the limit behavior for h→ ±∞ according to (2.23). The hysteresis model
must have basic symmetrical properties, since from a physical point of view there is
no preferred direction.

The hysteresis model must fit the current technical possibilities. On the one hand, this
concerns the numerical aspects such as computational costs and memory requirements.
This is particularly important because it must be embedded in partially already
complex numerical approaches. On the other hand, it must be possible to adapt the
model to materials that are actually produced. A purely mathematical modeling is not
the goal of this dissertation. This is mainly intended to determine which measurement
data of the material must be available. In this case, the saturation curves B±

sat and the
characteristic quantities Hc, Br and B∞

i,sat– as possible experimental measurements –
have already been presented.

Now, approaches for hysteresis models based on the presented correlations are
outlined. The first approach is based on a large number of hysterons arranged in
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parallel. This approach is usually called the discrete Preisach model and based on
this model, there are many variations and extensions [19, 23, 26, 33, 42, 43, 45].

A hysteron has a similar behavior as the Schmitt trigger already discussed in
Section 1.3. The characteristics of a hysteron are the activation levels and the
amplitude. If the excitation is above the activation level, the hysteron contributes a
specific amount to the magnetization. If the excitation is below the deactivation level,
the hysteron does not contribute to the magnetization. In case that the excitation is
between these two levels, it holds its previous state. Using an appropriate number
of hysterons, fitting their characteristics to the measured data and sum over all
hysterons, yields a valid hysteresis model.

Also the phenomenon that hysteresis is vividly associated with lagging behind or
overcoming friction or resistance allows approaches to hysteresis [17, 41, 48].

The hysteresis model presented in Chapter 3 is based on differential equations. Based
on the current state (h0, b0) ∈ I an associated value µdiff(h, b) = db

dh
as in (2.14) is

defined.

Remark 2.18. With this overview, it is justified that approaches for hysteresis models
can be derived from the phenomenological observations. These approaches are also
used for the self-derived loss model in Section 4.1.

Historically, many different hysteresis models have been formed, each with their own
advantages and disadvantages. A comparison of the models is therefore of interest
and has been carried out in various literature [40, 42, 50].

2.4. Application Example – Stepper Motor

Before a hysteresis model is presented in Chapter 3, a short side note with an
application example will be presented in this section. It is motivated that only a
suitable choice of different materials can make an effective motor. Also, a certain
pattern of excitation emerges from this example, which will be picked up again
later.

Stepper motors are a specific design of electric motors with selected areas of applica-
tion. First, the general structure and function of such a motor shall be described.
Second, the requirements and properties of the materials used shall be considered.
This provides a clear motivation why researchers are dealing with the aspects of
hysteresis, temperature and losses.

2.4.1. Basic Design and Functionality

In the context of this thesis, only a rough and simplified review of the functional
principle is carried out. For more detailed explanations it is referred to specialized
literature such as [122–131].
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Figure 2.11.: A simplified illustration of a stepper motor.

Table 2.3.: Discrete states of operation of a stepper motor in Full-Step-Mode. (cw =
clockwise, ccw = counterclockwise)

states I II III IV
coil currents IA +1 −1 −1 +1
in unit of Imax IB +1 +1 −1 −1
rotation cw ←−−−−−−−−−−−−

ccw −−−−−−−−−−−−→

The main application area of stepper motors is the relatively exact positioning even
without complicated control or sensor processing. It is controlled via a list of discrete
input states, as shown in Table 2.3. If the motor is operated within its specifications,
it follows the control input and moves to discrete angles. If you run through the
list of excitations, you get a rotation of the motor. At any time the position of the
motor is known from the excitation state.

In the example motor a circular motor is considered consisting of two parts: rotor
(rotating) and stator (non-rotating). A permanent magnet is mounted on the motor
shaft and represents the rotor. The stator consists of several coils which can be
excited via 2 phases. The coils are usually current controlled. This results in IA(t)
and IB(t) as control signals at time t. One of the key characteristic of such a motor
is the maximum allowed current Imax. In the example are two pairs of opposing coils,
arranged as shown in Figure 2.11.

In the example only the simplest and most basic mode of operation is considered. It
is called Full-Step-Mode. In this mode the coil currents IA(t) and IB(t) are always
either Imax or −Imax. So there exist only four discrete input states, as listed in
Table 2.3. To change the state, exactly one coil current is inverted. Running through
this sequence of states in the correct order, the motor’s direction of rotation can be
determined. For each change of state the motor rotates by a specific angle. A typical
value is 1.8◦, which correspond to 200 steps per revolution. The example motor has
a step angle of 90◦.

The stator and the rotor are only coupled by the magnetic field. By changing the
currents in the coils the magnetic field is shifted and by the physical principle of
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Figure 2.12.: An illustration of the excitation of a stepper motor.

energy minimization, the rotor is not anymore in optimal position. The resulting
force turns the rotor, so that it tries to get back in optimal position. If this magnetic
force of the motor is greater than the force required to turn the rotor, the motor will
rotate. And according to the conception of the motor and the known excitation state,
one can conclude the (approximate) angular position of the motor. A simplified
illustration can be found in Figure 2.12.

2.4.2. Important Aspects in the Context of this Thesis

Based on the previous example, approaches – that are taken up in the further course
of this thesis – are motivated.

In general, electric motors are based on the interaction of magnetic fields. The
strength and course of the fields can be heavily influenced by the use of certain ma-
terials and geometric arrangements. From a mathematical point of view, approaches
are needed to model such a motor and then optimize it according to certain criteria,
e.g., efficiency, torque or thermal rating. See [117–121] for a few selected examples
from literature.

The focus will lie in modeling the hysteresis effect for ferromagnetic materials. In
particular, Tellinen’s scalar hysteresis model (see [54] and Chapter 3) will be examined
and extended.

The above example clearly shows that an efficient and durable motor requires different
materials. The permanent magnets should provide a strong magnetic field even
after a long time of usage. This means that neither the constant remagnetization
of the coils nor the resulting heat should significantly weaken the magnetization of
the magnets. Therefore, a particularly strong manifestation of the hysteresis effect
is desired. The materials used for permanent magnets therefore fall more into the
category of hard ferromagnetic materials.

The coils contain cores for generating particularly strong and shaped magnetic fields.
These cores must be easily remagnetizable and best with the lowest possible losses.
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Therefore, materials from the field of soft ferromagnetic materials are more likely to
be used here. Since in many applications the maximum possible current is limited
by Imax, the application case is that the excitation always changes between +Imax
and −Imax. One focus of this thesis will be to investigate the behavior of Tellinen’s
hysteresis model for exactly this type of excitation (see Section 3.2).

The compactness of a motor plays a noteworthy role in the application. This makes
heat management a topic of interest. In addition to ohmic losses, hysteresis losses are
added due to the constant remagnetization of the coils. On the one hand Tellinen’s
model shall be supplemented by a loss model for hysteresis losses (see Section 4.1). On
the other hand it shall be extended to include temperature changes (see Section 4.2).
In the case of stepper motors this is of special importance. For a full revolution of
the motor, typically the coils need to be remagnetized hundreds of times. Even if the
motor is standing still, a step loss can only be avoided if a current flows continuously
and thus a non-rotating stepper motor continuously has ohmic losses and heats
up.
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3 Tellinen’s Scalar Hysteresis Model

The objective of this chapter is to present a scalar hysteresis model based on [54].
This model defines a coupling between the magnetic flux density b and the magnetic
field strength h.

Chapter 2 already explained that the proposed benchmark problem is constructed in
such a way that the multidimensional fields #„

H, #„

B can be reduced to scalar quantities
h,b. µ is also assumed to be scalar.

Some knowledge already presented in the previous chapters is repeated and comple-
mented to a complete presentation of the model. Within the consideration it is often
switched between the already introduced coordinate systems (h, b) and (h, bi). In
many places both representations are presented side by side.

In this chapter, the temperature dependence is not yet considered. The temperature
T is assumed to be constant. In the later Section 4.2 a temperature dependence
extension will be presented.

This chapter is structured as follows.

I First, Section 3.1 defines the hysteresis model mathematically. Required equations
and definition domains are specified. The basic thoughts and ideas of the model
are illustrated to the reader. Afterwards, the presented definitions are physically
motivated. The assumptions made and the approaches used are compared with the
physical background from Chapter 2 and checked for reasonableness.

I In Section 3.2 Tellinen’s model is examined and properties are shown. Thereby,
properties available in the original source [54] are presented. Also further investi-
gations already published by the author of this dissertation [36–38] but also new
more detailed ones are presented. The investigations start with basic properties like
symmetry and monotonicity. Based on the first order reversal curves a consideration
over specially defined paths is introduced. This methodology is taken up again in the
following chapters. Thus, the behavior of Tellinen’s model with respect to certain
excitations can be mathematically proven.

I A purely isolated consideration of the Tellinen model does not answer the question
of how it can be integrated into a numerical magnetic field simulation. Therefore,
in Section 3.3 initial approaches are presented, how this could be done. Thereby,
different application possibilities are derived from Tellinen’s model. The concrete
implementation will be examined later in Section 5.3.
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3.1. The Original Tellinen Model

This specific hysteresis model was introduced 1998 by Tellinen [54]. A comparison
of different hysteresis models [50] describes this model as a fast and simple one.
Nevertheless, in most studies it exhibits a very good agreement with the measurements.
Tellinen himself already emphasized that it should be a quick and simple model. The
model should also require a material analysis that is as easy as possible to measure.
It is natural that in the past 20 years the measurement possibilities have developed
further. A few thoughts on how this development might influence the Tellinen model
are presented in Section 3.2.2.

Tellinen’s model is a scalar one, i.e., the magnetic fields are regarded as scalars
h, b ∈ R. This means in particular that this model cannot be integrated into the
general Curl-Curl Equation (2.8). But for certain problems, this equation can be
reduced to scalar quantities, such as (2.13).

In this section, the model is first defined mathematically. Then, the model is
physically motivated. Further properties of the model are examined afterwards in
Section 3.2.

3.1.1. Mathematical Definition

As mentioned in Remark 2.15, the analysis and definition can either happen in (h, b)
or (h, bi) coordinates. At this point both versions are introduced side by side.

As input, the model only requires one measurement of the material: the limiting
saturation curve B+

sat. Given is either B+
sat ∈ C1(R) or B+

i,sat ∈ C1(R) with the
following properties. Both functions are linked with (2.21) by

B+
sat(h) = B+

i,sat(h) + µ0h , B+
i,sat(h) = B+

sat(h)− µ0h . (3.1)

Using symmetry arguments, B−
sat and B−

i,sat are defined by

B−
sat(h) := −B+

sat(−h) , B−
i,sat(h) := −B+

i,sat(−h) . (3.2)

B+
sat, B−

sat and analogously B+
i,sat, B−

i,sat must form a closed curve without overlap.
This is given by

B+
sat(h) < B−

sat(h) , B+
i,sat(h) < B−

i,sat(h) ,

lim
|h|→∞

(
B−

sat(h)−B+
sat(h)

)
= 0 , lim

|h|→∞

(
B−

i,sat(h)−B+
i,sat(h)

)
= 0 .

(3.3)

The derivatives of B+
sat and B+

i,sat must be bounded from below by

d
dh

B+
sat(h) > µ0 > 0 ,

d
dh

B+
i,sat(h) > 0 ,

lim
|h|→∞

d
dh

B+
sat(h) = µ0 , lim

|h|→∞
d

dh
B+

i,sat(h) = 0 .
(3.4)

38



3.1. The Original Tellinen Model

B+
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B−
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h

b

µ0

dB+
sat

dh

dB−
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dh

h
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dh

(a) (h, b)–plane

B+
i,sat

B−
i,sat

h

bi

dB+
i,sat

dh

dB−
i,sat

dh

h

dbi
dh

(b) (h, bi)–plane

Figure 3.1.: Overview of B±
sat and B±

i,sat and their derivatives.

Typical for ferromagnetic materials are “S”-shaped or sigmoidal curves for B±
sat. A

visual overview of B±
sat and B±

i,sat is given in Figure 3.1.

Remark 3.1. A simple interpolation of the measured data for B+
sat or B+

i,sat may
not be valid for Tellinen’s model. Some interpolation methods may overshoot and
violate the condition (3.4). Specialized monotonocity preserving methods, e.g. [86,
87, 89], are necessary. Even further data processing steps like approximation and
consideration of noisy measurement data [88, 90, 91] are an important factor in the
creation of the material curve B+

sat or B+
i,sat. In the context of this dissertation, this

aspect will not be considered further. The material curve B+
sat or B+

i,sat was somehow
created and is available as a C1(R) function with the above conditions.

Tellinen’s model operates on and inside the saturation loop. The set of all valid
states (h, b) is given by

I =
{
(h, b) ∈ R2

∣∣∣B+
sat(h) ≤ b ≤ B−

sat(h)
}

. (3.5)

A more detailed analysis of I is found in Section 3.2.3. A corresponding definition of
Ii for the (h, bi) coordinates is made via

Ii =
{
(h, bi) ∈ R2

∣∣∣ (h, bi + hµ0) ∈ I
}

. (3.6)

For any (h, b) ∈ I, Tellinen’s model links h and b by the ordinary differential equation
(ODE)

db

dh
= µdiff =

µ+
diff = λ

dB+
sat(h)
dh

+ (1− λ)µ0 , if h is increasing,

µ−
diff = (1− λ)dB−

sat(h)
dh

+ λµ0 , if h is decreasing,
(3.7)
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B+
sat

B−
sat

h

b

(a) Example path starting from the demag-
netized state.

B+
sat

B−
sat

h

b

(b) Schematic of Tellinen’s model. With
predefined values on the boundaries, in-
ner values are calculated via interpola-
tion.

Figure 3.2.: Basic ideas and examples of Tellinen’s model. dh > 0 in red and dh < 0
in blue. Comparable figures can be found in [37–39].

with λ being the relative vertical position inside I, respectively Ii, defined by

λ = B−
sat(h)− b

B−
sat(h)−B+

sat(h) =
B−

i,sat(h)− bi

B−
i,sat(h)−B+

i,sat(h) ∈ [0, 1] . (3.8)

Remark 3.2. For a simpler notation the abbreviation µ+
diff = µ+

diff(h, b) and µ−
diff =

µ−
diff(h, b) are introduced. In general, it is tried to express – by a suitable notation –

if quantities are directional or not. This is indicated by a superscript of + or -. If
both directions are meant simultaneously, ± is used.

Equation (3.7) can be formulated equivalently in (h, bi) as

dbi

dh
=

 λ
dB+

i,sat(h)
dh

, if h is increasing,

(1− λ)dB−
i,sat(h)
dh

, if h is decreasing .
(3.9)

Tellinen’s model combines several approaches and ideas.

I First, it determines the relative vertical position of (h, b) ∈ I inside the loop via
λ. A value of λ = 0 represents (h, b) = (h, B−

sat(h)), i.e., the current working point is
on the upper boundary. In a similar way λ = 1 represents (h, b) = (h, B+

sat(h)), i.e.,
the lower boundary.

I Second, it splits up the right hand side of the ODE (3.7) depending whether h
is increasing or decreasing. For both cases, it assigns certain values of db

dh
on the

boundaries.

I Third, it performs a linear interpolation based on the boundary values and the
relative position λ.
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B−
sat

B+
sat

h

b

(a) dh > 0, µ+
diff(h, b) = db

dh

B−
sat

B+
sat

h

b

(b) dh < 0, µ−
diff(h, b) = db

dh

Figure 3.3.: Resulting vector field from Tellinen’s model.

Remark 3.3. Although it might be possible to solve the ODE (3.7) analytically for
certain B±

sat curves, it is assumed in this thesis that this is generally not possible.

Remark 3.4. A numerical solution is nevertheless possible, see Figure 3.2(a) for an
example. Since the fundamental basis of Tellinen’s model is an ODE, a whole range
of basic literature w.r.t. analytical and numerical properties, e.g. [92, 93, 95, 97],
can be referred to for later analyses and approaches.

Unfortunately the model does not provide a direct link between the quantities h and
b. Instead it connects these quantities by the ODE (3.7). Thus, the model creates
a vector field as shown in Figure 3.3. A definition of the function ν, motivated in
Remark 5.3, is therefore not available at this time. In the following Sections 3.2
and 3.3 this issue will be discussed again.

3.1.2. Physical Motivation

Tellinen’s model [54] directly addresses the physical motivation of the saturation
curves B±

sat and B∞
i,sat as in Section 2.3.2. A small mathematical subtlety is the

difference between (2.17) and (3.4), namely that B+
sat 6= B−

sat holds. Saturation curves
B±

sat are referred to and used as the defining property of a ferromagnetic material.
Especially the view that these curves are a natural limit of the possible reachable
states will be mentioned in the argumentation in a moment. That the limit is
respected – in a mathematically sense – by the model will be investigated in the next
Section 3.2.

Tellinen’s model separates between the contribution of the material and a vacuum.
The two coordinate systems (h, b) and (h, bi) have already been introduced in Sec-
tion 2.3.2. The meaning of the maximum amplification of a magnetic field by a
ferromagnetic material B∞

i,sat has also already been presented. Furthermore, as al-
ready argued in Remark 2.11, the model assumes such a high number of discrete
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3.1. The Original Tellinen Model

Barkhausen jumps and Bloch wall motions, that this can be approximated by a
continuous stochastic process.

If the derivatives dB±
i,sat

dh
is considered as shown in Figure 3.1(b) and scale them by a

factor of 1
2B∞

i,sat
, in each case a valid stochastic density function is obtained. According

to the reasoning of the authors in [54], this density function can be used to describe
Bloch Wall motions. Depending on the direction ( dh ≷ 0), the material behaves
differently. This is achieved and represented in the model by a direction-dependent
definition.

Now, three steps to explain and motivate the model are following. First, a motivation
is given on the saturation curves B±

i,sat with the proper direction. Second, a motivation
is given on the saturation curves B±

i,sat but on the opposing direction. Third, states
(h, bi) inside the saturation curves are defined via interpolation. An overview in
(h, b)–coordinates can be found in Figure 3.2(b).

Assuming the current state lies on the lower saturation curve, i.e., (h0, bi,0) =(
h0, B+

i,sat(h0)
)
. If dh > 0 holds, the proper direction is used and the saturation

curve is exactly the process described. So starting in some (h0, bi,0) =
(
h0, B+

i,sat(h0)
)

and increasing h results in the path
(
h, B+

i,sat(h)
)

for all h ≥ h0.

Instead on the lower boundary B+
i,sat, (h0, bi,0) = (h0, B−

i,sat(h0)) with increasing h is
now assumed. For a fixed h0 and increasing h, the state (h0, B−

i,sat(h0)) is the most
oppositional – in the sense of being the maximal state for decreasing direction – one
possible. In this state the Bloch walls and Weiß domains are maximally counter-
aligned, i.e., the most favorable state, if h would be decreasing. But if an increasing
h is considered, the material is in a state with maximum resistance for a change in
this direction. This resistance must first be broken down to cause a change in the
magnetic field. For this concrete condition, therefore, it is assumed that although h
becomes larger, bi does not change.

Now, two states results, in which once the resulting path follows the saturation curve
B+

i,sat and once where bi should not change. To model this situation, the differential
permeability µdiff – as already introduced in (2.14) – is used and an equivalent
µi,diff = µdiff − µ0 in the (h, bi)–coordinate system is defined. To clearly represent
the directionality, superscripts are used as shown in (3.7) to indicate whether h is
increasing or decreasing. If the two cases are combined, for an increasing h equation

µ+
i,diff

(
h, B+

i,sat(h)
)

=
dB+

i,sat

dh
, µ+

i,diff

(
h, B−

i,sat(h)
)

= 0 (3.10a)

is obtained. Using symmetry arguments, if h is decreasing an analogously argumen-
tation is used. The roles of the boundary curves are reversed and results in

µ−
i,diff

(
h, B+

i,sat(h)
)

= 0 , µ−
i,diff

(
h, B−

i,sat(h)
)

=
dB−

i,sat

dh
. (3.10b)
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So for a fixed h, it is motivated how to do the modeling on the saturation curves.
Thus, the next logical step is to extend this consideration to the intermediate space.

Now, the special case (h, bi) = (0, 0) is briefly considered and the case of increasing
h is chosen for purposes of motivation. For h = 0, equations (3.10) supply the
two extreme cases, if bi would be maximal and minimal. Or differently formulated,
the maximal possible constructive and the maximal destructive alignment of the
Bloch walls and Weiß domains for this specific value of h. bi = 0 is considered,
which is right in the middle of B+

i,sat(0) and B−
i,sat(0). The state (h, bi) = (0, 0)

is characterized by the fact that there is no external excitation (h = 0) and the
individual magnetic domains exactly balance each other out (bi = 0). In other words,
the exact centered positioning between the extremes results in a balance because
one half of the Weiß domains are maximally constructively aligned and the other
half maximally destructively aligned.

In [54] this concept is generalized. The relative position λ of the current state (h0, bi,0)
between the extremes

(
h0, B+

i,sat(h0)
)

and
(
h0, B−

i,sat(h0)
)

determines their influence
on µdiff. Mathematically, this is a simple linear interpolation. In Figure 3.2(a) it can
be seen, that the path clearly adapts more to the respective saturation curve the
closer it gets to it.

From this motivation the illustrative nature of Tellinen’s model is explained in the
following and is shown in Figure 3.2(b). In a scalar environment only two directions
are possible, denoted by + and −. A ferromagnetic material behaves differently to
these excitation directions and the mathematical definitions are therefore directional.
The definition domain of the model is given by I/Ii from (3.5) and (3.6). On the
boundary certain values are set based on the above physical background. Points
inside are calculated by vertical interpolation based on the relative position λ from
(3.8). Putting all this together, equation (3.7) is obtained in (h, b) coordinates and
equation (3.9) in (h, bi). This results in a compact model that couples the two
quantities h, b via a directional ordinary differential equation.

Demands on a hysteresis model have been stated in Section 2.3.3, and now it is to
discussed which ones are satisfied by Tellinen’s model.

The model couples the fields h and b via the differential equation (3.7). In general,
it does not provide a direct relation b = µ(h) or h = ν(b). So, how this model is
integrated into the benchmark problem (2.13) remains to be seen and is open for
discussion in Section 3.3.

Even though it is not possible to verify Tellinen’s model in the scope of this dissertation
due to a lack of suitable measured values, other literature sources like [50, 54] attribute
good experimental agreement to the model. This agreement includes, among other
things, that the boundary curves B±

sat are not violated. This can already be roughly
seen in the definition of the model. However, a thorough mathematical proof follows
in Section 3.2.

Due to its directional definition, Tellinen’s model is path dependent. More precisely,
the model defines the behavior of the fields for a current operating point (h0, b0) ∈ I.
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Since in general the calculated values of µ+
diff and µ−

diff differ, the model is not reversible
without further ado.

No contradiction in the model w.r.t. the physical motivation of ferromagnetic
materials is found. On the contrary, the approaches of the model can be motivated
physically and phenomenologically.

However, it should be explicitly mentioned again that such a hysteresis model
is nevertheless only an approximation. Certain physical phenomena are modeled
differently by different hysteresis models. The goal of Tellinen’s model was not to
develop a model that is as accurate as possible. The focus was on a simple and
fast model. Based on the above observations, Tellinen’s model is considered to be a
physically reasonable model which is sufficient for the demands on the accuracy of
the hysteresis effect.

Next, a mathematical analysis of the model follows and it is checked whether there are
any pitfalls from a mathematical point of view that have not yet become obvious.
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3.2. Properties of Tellinen’s Scalar Hysteresis Model

Now the properties of Tellinen’s model shall be considered in more detail. On the one
hand these are basic properties like monotonicity and symmetry. On the other hand,
it shall be examined, if the model actually yields physically meaningful results. For
this purpose, first order reversal curves (FORCs) are introduced in Section 3.2.2 as a
basis for a mathematical investigation. The definition domain I is further partitioned
in Section 3.2.3. So statements can be made more differentiated depending on
the current working point (h0, b0) ∈ I. In the course of this section, the model is
investigated, how it behaves under a certain type of excitation. It will be checked, if
generally only physically reasonable solutions can be found. Conditions are derived
to prevent an undesired behavior.

Individual parts of this investigation have already been examined by the creator of the
model in [54]. Other aspects have been published by the author of this dissertation
and colleagues [36–38]. However, the holistic and profound investigation of Tellinen’s
model remains one of the main focuses of this thesis.

3.2.1. Basic Properties

First of all, a few fundamental properties of Tellinen’s model are shown.

Computational effort and memory requirements

Evaluation of µdiff at a working point (h, b) ∈ I requires only one evaluation of each
of the functions B±

sat and either an evaluation of dB+
sat

dh
or dB−

sat
dh

. So it has a very
small number of calls to these functions. If a path shall be determined with the
model, the whole arsenal of numerical methods for solving ODEs are available. This
allows the user to decide about accuracy and computational effort. This statements
refers to the isolated application of the model, i.e., not integrated into an all-in-one
simulation.

Remark 3.5. Tellinen’s model does not need to store the chronological sequence of
the previous states. Only the current state (h0, b0) ∈ I is needed. Furthermore, only
the two functions B+

sat and dB+
sat

dh
are needed, i.e., the memory requirements are low.

Monotonicity

Monotonicity should be considered under two different aspects. First, the internal
functions are to be investigated. Afterwards, the solutions are examined.

Lemma 3.6: For any fixed h, µ+
diff(h, b) is strictly monotone decreasing in b and like-

wise µ−
diff(h, b) is strictly monotone increasing. λ(h, b) is strictly monotone decreasing

in b.
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Proof. If h is fixed, so are B+
sat(h) and B−

sat(h). λ as defined in (3.8) is strictly
monotonously decreasing in the variable b. Another valid formulation of µ±

diff in (3.7)
reads

µ+
diff(h, b) = µ0 + λ(h, b)

∈[0,1]

(
dB+

sat(h)
dh

− µ0

)
>0

, (3.11a)

µ−
diff(h, b) = dB−

sat(h)
dh

+ λ(h, b)
∈[0,1]

(
µ0 −

dB−
sat(h)
dh

)
<0

. (3.11b)

Using the monotonicity of λ and the signs of the factors, the monotonicity of µ±
diff is

obvious.

Lemma 3.7: Let p+ denote a solution of the ODE (3.7) with initial value (h0, b0) ∈ I
and increasing h. p+ is strictly monotone increasing.

Proof. As shown in (3.11), µ+
diff ≥ µ0 > 0 holds. Hence the solution p+ of the ODE

(3.7), fullfils dp+

dh
= µ+

diff(h, b) ≥ µ0 > 0 and is strictly monotone.

Remark 3.8. A direct consequence of Lemma 3.7 is, that it does not matter if it
is checked whether h or b is increasing or decreasing. Further it ensures that any
solution b = p+(h) is invertible and h = (p+)−1(b) exists. This will be used for
defining a suitable ν.

Remark 3.9. In the physical sense this means that an increase of the excitation
h always leads to an increase of the resulting field b as well. The Weiß domains
and Bloch walls are therefore only realigned to match the excitation and do not
counteract it. This is the expected behavior for ferromagnetic materials.

Alternative formulation w.r.t. ν

Remark 3.10. In the default definition of the model, h is seen as the independent
variable and b as a dependent one. But it is also possible to switch this setting, as
stated in [54].

The fundamental basis is the ODE (3.7). With the above mentioned properties an
equivalent formulation is given by

dh

db
= νdiff(h, b) =


ν+

diff(h, b) = 1
µ+

diff(h,b) ,if b is increasing,

ν−
diff(h, b) = 1

µ−
diff(h,b) ,if b is decreasing .

(3.12)

Thus, it is possible to use either h or b as the independent variable. In both cases the
right side of the ODEs (3.7) and (3.12) are based on the evaluation of the functions
µ±

diff.

46



3.2. Properties of Tellinen’s Scalar Hysteresis Model
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Figure 3.4.: Possible use of symmetry within Tellinen’s model. All three plots show
an equivalent path. The blue parts are based upon µ−

diff and red ones on
µ+

diff. If the domain is restricted by symmetry, the active area is marked
green.

In the following considerations and analysis it will be assumed that h is the inde-
pendent variable. This assumption corresponds to the usual approach from the
literature. But it has already been motivated in Chapter 2, that for the chosen
simulation approach a calculation in the form h = ν(b) is necessary. As just shown,
the Tellinen’s model can be used equivalently well in both variants. Therefore this
does not create a problem. For the case of actual solving (2.13), approaches for ν
are presented in Section 3.3.

Symmetry

The model exhibits symmetry in many regards. Starting with the definition of B−
sat

in (3.2), followed by d
dh

B+
sat(h) = d

dh
B−

sat(−h),

µ+
diff(h, b) = µ−

diff(−h,−b) (3.13)

can be concluded. As shown in Figure 3.4, the curves behave symmetrically. This
also fits to the physical background. No preferred direction can be observed.

Unfortunately, the symmetry cannot be exploited for simplification. It is possible
to restrict the domain to a halfplane instead of the whole hb-plane. Two possible
choices are shown in Figures 3.4(b) and 3.4(c). However it is not possible to restrict
the domain to only one quadrant. Furthermore, it have to be considered that the
direction changes at the skip when using symmetry.

But since there are no obvious savings in terms of memory or computing time,
symmetry is not used to reduce the domain. However, symmetry is extensively used
in the further studies. Usually only the case for increasing h is examined. Equivalent
statements for decreasing h then follow by symmetry arguments.
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Figure 3.5.: Idea of first order reversal curves (FORCs) and two examples.

3.2.2. First Order Reversal Curves and their Extension

First order reversal curves (FORCs) are created by magnetizing a material to full
saturation, demagnetize it a specified amount and magnetize it again to full saturation.
The part of this cycle inside the saturation curve is called a FORC. An overview
is given in Figure 3.5. FORCs are curves that start on the boundary at some
(h0, B−

sat(h0)) ∈ I and are defined for all h ≥ h0. Typically such a measurement is
performed for different degrees of demagnetization. While until now only the actual
saturation curves B±

sat have been considered, FORCs contain information within I.

FORCs [110] and FORC diagrams [108, 109, 112] derived from FORCs, are a valuable
first-pass characterization tool [107] and basis for material analyses [106, 111].

FORCs can be approached under two different aspects. On the one hand, FORCs
can provide information about the behavior of the material inside of I. Considering
the time of origin of Tellinen’s model and the technological progress since then, more
advanced and fast measuring methods are possible today [110]. One could use the
FORCS for interpolation not only based on data on the boundary curves B±

sat, but
also to insert further intermediate stages within I.

On the other hand, FORCs are used as a mathematical construct in the upcoming
analysis. They can be computed by Tellinen’s model. If designed this way, they are
solutions to the ODE (3.7).

Hence the two approaches differ in the source of information. The first approach gets
FORCs from measurements. The second approach generates FORCs from within
Tellinen’s model. If for a material only measurements of the saturation curves B±

sat
are available, Tellinen’s model can calculate FORCS and thus an examination of the
material using FORC diagrams is possible. In the framework of this thesis, FORCs
diagrams shall not be discussed further.
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Figure 3.6.: First order reversal curves (red) and the extension outside of I, Ii (green).

Definition and properties of extended FORC’s

The paths p+ and p+
i are defined in the following as an extension of FORCs. While

the motivation will be in (h, bi) coordinates, the definition easily carries over to (h, b)
coordinates.

Remark 3.11. The extension to the area outside of I serves only mathematical
purpose. In the application, only I is relevant.

Construction of p+

Definition 3.12: The path p+
i denotes the solution of the initial value problem

(IVP) with p+
i (h0) = bi,0 for given (h, bi,0) ∈ Ii and

dp+
i (h)
dh

=
µ+

i,diff

(
h, p+

i (h)
)

if
(
h, p+

i (h)
)
∈ Ii

0 else
. (3.14)

With p+(h) = p+
i (h) + hµ0, an equivalent definition of p+ is possible by the IVP

p+(h0) = b0 = bi,0 + h0µ0 ((h0, b0) ∈ I) and

dp+(h)
dh

=
µ+

diff

(
h, p+(h)

)
if
(
h, p+(h)

)
∈ I

µ0 else
. (3.15)

An example is presented in Figure 3.6.

The existence, uniqueness and domain of p+ will now be investigated.

The extension outside of I, respectively Ii, is done in such a way, that the right hand
side of the IVP’s are continuous and differentiable. Using the theory of ODEs and
especially the Theorem of Picard–Lindelöf, the following properties can be proven.

Lemma 3.13: For any point (h0, b0) ∈ I exists an unique path p+, such that
p+(h0) = b0 and (3.15) holds. p+ is defined over the whole domain of R.
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h

bi

(a) Solutions of (3.14). Parts within Ii are
shown in red, above in green and below
in blue.

h0

bi,0
h

bi

(b) The possibilities of a path p+
i starting in

(h0, bi,0) ∈ int(Ii). It could intersect the
boundaries B±

i,sat or stay between them.

Figure 3.7.: Sketch of the proof of Lemma 3.13 in (h, bi) coordinates.

Proof. The right hand side of (3.15) is defined conditionally, whether
(
h, p+(h)

)
∈ I

or
(
h, p+(h)

)
/∈ I holds. These transitions happen either at B+

sat or B−
sat.

First, solutions that are completely in I are considered. Second, it will be proven that
a solution of (3.15) does not leave the domain I along B+

sat. Third, the transition at
B−

sat is analyzed.

Initially, the consideration is limited to the interior of the domain I, i.e., int(I).
There the ODE dp+(h)

dh
= µ+

diff(h, p+(h)) with the initial value (h0, b0) ∈ int(I) holds.
Another formulation of µ+

diff (compared to (3.7) and (3.8)) is given by

µ+
diff(h, b) = B−

sat(h)− b

B−
sat(h)−B+

sat(h)
dB+

sat(h)
dh

+ b−B−
sat(h)

B−
sat(h)−B+

sat(h)µ0 . (3.16)

µ+
diff is continuous in both variables and differentiable in the second variable:

∂

∂b
µ+

diff(h, b) =
µ0 − dB+

sat(h)
dh

B−
sat(h)−B+

sat(h) . (3.17)

µ+
diff(h, b) is linear in b and with the restriction to b ∈ [B−

sat(h), B+
sat(h)] globally

limited. Therefore, µ+
diff is Lipschitz continuous in the second variable. The Picard-

Lindelöf Theorem guarantees existence and uniqueness of a solution of the IVP as
long as

(
h, p+(h)

)
∈ int(I) holds.

Next the definition domain of p+ must be examined. There are three possibilities.
The path p+ can either stay between B+

sat and B−
sat. In this case p+ is defined on the

complete R. Or p+ tends towards the boundaries B±
sat. Then p+ can be continued up

to the boundary and there exist intersections with B+
sat or B−

sat. An overview is given
in Figure 3.7, separately for h > h0 and h < h0. These two cases will be considered
individually.
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1) h0 < h:
At the boundary B−

sat it holds

µ+
diff

(
h, B−

sat(h)
)

= µ0 <
dB−

sat(h)
dh

for all h ∈ R . (3.18)

This means that the path p+ cannot cross the boundary curve B−
sat from the bottom.

With p+(h0) = b0 < B−
sat(h0) this results in p+(h) < B−

sat(h) for all h > h0.

At the boundary B+
sat it holds

µ+
diff

(
h, B+

sat(h)
)

= dB+
sat(h)
dh

for all h ∈ R . (3.19)

Thus, also here a intersection is not possible, i.e., there remains only the possibility
that p+ can be continued for all h > h0 and

B+
sat(h) < p+(h) < B−

sat(h) for all h ≥ h0 (3.20)

applies.

2) h < h0:
Equation (3.19) also holds in this case. Hence B+

sat is globally a lower bound for all
solutions with initial value (h0, b0) ∈ int(I). B+

sat is itself a solution of (3.15). This
ensures that a solution of (3.15) can never leave the feasible area I over the boundary
B+

sat.

At this point it will not be examined in detail which of the two remaining cases
occurs. This is done separately in Lemma 3.16. Here it is proved that both cases
yields the desired properties.

Assuming that there exists no intersection of p+ and B−
sat. Then (3.20) holds for all

h ∈ R and p+ is defined on complete R.

Assuming the existence of an intersection of p+ and B−
sat at (h∗, b∗), path p+ can be

extended from h0 to h∗, inclusive. At the intersection (h∗, b∗), (3.18) holds. This
means that p+ can pass the boundary B−

sat only from one side. Equation (3.19) is
valid for h∗ < h and p+(h∗) = B−

sat(h∗) holds. This leads in a definition domain of
p+ of at least [h∗,∞).

Consider the case distinction in (3.15), this can be extended p+ for all h < h∗. The
solution outside of I is given by

p+(h) = b∗ + µ0(h− h∗) for all h < h∗ . (3.21)

Furthermore the transition of p+ at position h∗ is continuously and differentiable.

This approach works as well if the starting point (h0, b0) satisfies b0 = B−
sat(h0). So

for all possible initial values (h0, b0) ∈ I it was shown, that solutions p+ of the ODE
(3.15) can always be extended to the whole R.

The resulting path p+ is continuously, differentiable and unique by construction as
solution of the ODE (3.15).
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Remark 3.14. In the sequel any path denoted by p+ is defined as a solution of (3.15)
w.r.t. some initial value (h0, b0) ∈ I. Existence and uniqueness of such path is
ensured by Lemma 3.13.

Properties of p+

Remark 3.15. Any two paths p+
0 , p+

1 are either identical for all h ∈ R or distinct and
without intersections. The paths are ordered, such that if p+

0 (h0) = b0 < b1 = p+
1 (h0)

holds for any h0 ∈ R, this also applies directly to all h ∈ R. This is a direct
consequence of Lemma 3.13. In particular, this also applies when p+

0 = B+
sat holds.

Lemma 3.16: Given p+ w.r.t. (h0, b0) ∈ int(I). The following statements are true.

i) Path p+ has exactly one intersection with B−
sat, i.e., !∃h∗ ∈ R : p+(h∗) = B−

sat(h∗) .

ii) Left of this intersection p+ is outside of I, i.e., ∀h ∈ (−∞, h∗) :
(
h, p+(h)

)
/∈ I .

iii) Right of this intersection p+ is inside of I, i.e., ∀h ∈ (h∗,∞) :
(
h, p+(h)

)
∈ int(I) .

Proof. First, the existence of h∗ is proven by contradiction. It is assumed that such
h∗ does not exist.

The path p+ is defined w.r.t. (h0, b0) ∈ int(I), such that

B−
sat(h0) > b0 > B+

sat(h0) (3.22)

holds. As stated in Remark 3.15, this results directly in p+(h) > B+
sat(h) for all

h ∈ R. p+ and B−
sat are both continuous functions. By assumption they have no

intersection. Hence p+ must be inside of I for all h, i.e.,

B+
sat(h) < p+(h) < B−

sat(h) for all h ∈ R . (3.23)

By construction of p+, it follows

µ0 <
dp+(h)

dh
= µ+

diff

(
h, p+(h)

)
<

dB+
sat(h)
dh

for all h ∈ R . (3.24)

p+ and B+
sat are both differentiable functions. Thus, the following integral represen-

tation holds:

p+(h)−B+
sat(h)

>0

= b0 −B+
sat(h0)

>0,constant

+
∫ h

h0
µ+

diff

(
t, p+(s)

)
− dB+

sat(s)
ds

<0

ds > 0 . (3.25)

Using (3.22), (3.23) and (3.24) to determine the signs, it can be concluded that

p+(h)−B+
sat(h) > b0 −B+

sat(h0)
constant

> 0 for all h < h0 (3.26)

holds. This means in particular that

lim
h→−∞

(
p+(h)−B+

sat(h)
)

> 0 (3.27)
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is true. However, by (3.3) it must hold

lim
h→−∞

(
B−

sat(h)−B+
sat(h)

)
= 0 (3.28)

and with (3.23) it follows

lim
h→−∞

(
p+(h)−B+

sat(h)
)

= 0 . (3.29)

The eqs. (3.27) and (3.29) form a contradiction and the existence of h∗ is proven.

Second, the uniqueness is proven. By construction it holds

dp+(h∗)
dh

= µ+
diff

(
h∗, p+(h∗)

)
= µ+

diff

(
h∗, B−

sat(h∗)
)

= µ0 <
dB−

sat(h∗)
dh

. (3.30)

This relation combined with the continuity of p+ and B−
sat excludes multiple intersec-

tions h∗. In summary, using p+(h) > B+
sat(h) for all h ∈ R results in:

p+(h)


> B−

sat(h) if h < h∗

= B−
sat(h) if h = h∗

< B−
sat(h) if h > h∗

⇒
(
h, p+(h)

)
/∈ I if h < h∗

∈ ∂(I) if h = h∗

∈ int(I) if h > h∗
. (3.31)

Lemma 3.17: Given paths p+
1 and p+

2 with p+
1 < p+

2 . Let h∗
1, h∗

2 denote the
corresponding intersection with B−

sat, see Lemma 3.16. It holds h∗
1 < h∗

2.

Proof. B−
sat is strictly monotonously increasing. If p+

1 < p+
2 holds, their respective

intersections at
(
h∗

1, B−
sat(h∗

1)
)

and
(
h∗

2, B−
sat(h∗

2)
)

must fulfill B−
sat(h∗

1) < B−
sat(h∗

2) and
h∗

1 < h∗
2.

Now that the existence and uniqueness of p+ has been shown, the course of the path
p+ shall be investigated. For this purpose, the limit values of p+ are first examined.
Afterwards the behavior inside of I is further examined.

Lemma 3.18: The following statements are true.

i) For each path p+ exists a unique equivalent p+
i and vice versa.

ii) Any path p+
i can be identified by its limit lim

h→−∞
p+

i (h) = b−∞
i ∈ [−B∞

i,sat, B∞
i,sat).

iii) It holds lim
h→∞

p+
i (h) = B∞

i,sat for any path p+
i .
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h∗
bot h∗

top

p
+
bot

p
+
top

h

b

Figure 3.8.: Overview of the proof of Lemma 3.20. It can be observed that outside of
I (green) the distance between the two paths p+

top, p+
bot does not change.

As soon as at least one of the paths is inside I (red), the distance
decreases.

Proof. The first statement follows directly from Definition 3.12. It can be easily
switched between (h, b) and (h, bi) coordinate systems.

First, assume p+ = B+
sat, i.e., p+ is defined w.r.t. (h0, b0) =

(
h0, B+

sat(h0)
)
. Equiva-

lently, it holds p+
i = B+

i,sat. In this case, the second and third statement are true by
definition of B∞

i,sat in (2.22).

Second, assume p+ is defined w.r.t. (h0, b0) with b0 6= B+
sat(h0). As proven in

Lemma 3.16 each p+ has exactly one intersection with B−
sat at (h∗, b∗). Equivalently,

p+
i has exactly one intersection with B−

i,sat at (h∗, b∗
i ). And since p+

i is constant
outside of Ii, it holds limh→−∞ p+

i (h) = b∗
i ∈ (−B∞

i,sat, B∞
i,sat).

Furthermore, Lemma 3.16 states that p+ is inside of I for h > h∗. Equivalently, p+
i

stays inside of Ii. This property in particular means that B+
i,sat(h) < p+

i (h) < B−
i,sat(h)

for all h ∈ (h∗,∞) holds. With limh→∞ B+
i,sat(h) = limh→∞ B−

i,sat(h) = B∞
i,sat, the

third statement holds true.

Remark 3.19. At this point, paths p+ has been examined so far that it is ensured
they are mathematically well defined and correspond to the physical motivation.
The fact that these paths are also partly outside or more precisely above I does not
bother. On the contrary, the following investigations make use of this fact.

Lemma 3.20: Given paths p+
top, p+

bot defined w.r.t. (h0, btop) ∈ I and (h0, bbot) ∈ I
with btop > bbot. Then for any h1, h2 ∈ R with h1 < h2 it holds

p+
top(h1)− p+

bot(h1) ≥ p+
top(h2)− p+

bot(h2) > 0 . (3.32)

If
(
h1, p+

bot(h1)
)
∈ I is fulfilled, the statement can even be formulated stricter to

p+
top(h1)− p+

bot(h1) > p+
top(h2)− p+

bot(h2) > 0 . (3.33)
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Proof. A visual overview is given in Figure 3.8. By Remark 3.15 p+
top(h) > p+

bot(h)
for all h ∈ R holds. By Lemma 3.16 exist h∗

top, h∗
bot with p+

top(h∗
top) = B−

sat(h∗
top),

p+
bot(h∗

bot) = B−
sat(h∗

bot) with h∗
bot < h∗

top. Define

dist(h) = p+
top(h)− p+

bot(h) > 0 (3.34)
as the distance (difference) between the paths. According to the section-wise definition
of p+

top/bot the following derivative results:

d
dh

dist(h) =


µ0 − µ0 = 0 if h ≤ h∗

bot ,

µ0 − µ+
diff

(
h, p+

bot(h)
)

< 0 if h ∈ (h∗
bot, h∗

top) ,

µ+
diff

(
h, p+

top(h)
)
− µ+

diff

(
h, p+

bot(h)
)

< 0 if h∗
top ≤ h .

(3.35)

It holds µ+
diff

(
h, p+

bot(h)
)

> µ0 by construction and µ+
diff

(
h, p+

top(h)
)

< µ+
diff

(
h, p+

bot(h)
)

by monotonicity (Lemma 3.6). Therefore dist is monotonously decreasing on R,
strictly monotonously decreasing over [h∗

bot,∞) and bounded from below by 0.

Remark 3.21. A direct conclusion of Lemma 3.20 is given by
|p1(h0)− p2(h0)| > |p1(h1)− p2(h1)| (3.36)

for any p1 6= p2 and h0 < h1 with
(
h0, p1(h0)

)
∈ I or

(
h0, p2(h0)

)
∈ I.

Lemma 3.22: Given a path p+ w.r.t. (h0, b0) ∈ I. It holds

lim
h→∞

(
p+(h)−B+

sat(h)
)

= 0 . (3.37)

Furthermore, λ
(
h, p+(h)

)
is monotone increasing and convergent for h→∞.

Proof. Assume (h0, b0) =
(
h0, B+

sat(h0)
)

holds. Then p+(h) = B+
sat(h) and λ

(
h, p+(h)

)
=

1 for all h ∈ R are true. This meets the desired conditions.

Now, assume (h0, b0) 6=
(
h0, B+

sat(h0)
)
. By Lemma 3.16, h∗ with

(
h∗, p+(h∗)

)
=(

h∗, B−
sat(h∗)

)
∈ I exists, such that for all h > h∗ yields B+

sat(h) < p+ < B−
sat(h).

With limh→∞
(
B−

sat(h)−B+
sat(h)

)
= 0 as in (3.3), the first statement is proven.

Let (h, b) =
(
h, p+(h)

)
∈ int(I). For any (h, b) a λ = λ(h, b) can be calculated by

(3.8). Define
bλ(h) = λB+

sat(h) + (1− λ)B−
sat(h) (3.38)

as the path having a constant λ, i.e., λ
(
h, bλ(h)

)
= const. It can be observed that

d
dh

bλ(h) = λ
d

dh
B+

sat(h) + (1− λ) d
dh

B−
sat(h)

> λ
d

dh
B+

sat(h) + (1− λ) d
dh

µ0 = d
dh

p+(h)
(3.39)

holds. Therefore, λ
(
h, p+(h)

)
is monotone increasing by Lemma 3.6. Overall, λ is

limited to [0, 1] and in combination with the monotonicity convergent.
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−1

0

1

B+
i,sat

B−
i,sat

h

b i

0

0.5

1

h

λ

Figure 3.9.: λ = λ
(
h, p(h)

)
for different paths p(h). Monotonicity and convergence

of λ are clearly seen.

Remark 3.23. Lemma 3.22 describes that visually the paths p+ do converge to the
lower boundary B+

sat and also the relative position between the limiting curves is
oriented downwards and convergent. But limh→∞ λ

(
h, p+(h)

)
= 1 is not generally

valid as shown in Figure 3.9.

Construction of p−

So far only the case was considered that µ+
diff is used. By symmetry the observation

can be interpreted analogously to the case µ−
diff.

Definition 3.24: Using symmetry arguments, the path p− can be defined for any
(h, b) ∈ I by

p−(h) = −p+(−h) (3.40)

with p+ being defined with respect to (−h,−b) ∈ I.

Conclusions

Lemma 3.25: Any point (h, b) ∈ I is hit exactly by a path p+ and a p−, i.e.,
p+(h) = b = p−(h). p+ fulfills (3.15) and p− an analogous version of (3.15) based on
µ−

diff.

Proof. This statement follows directly by the definition of p− and the symmetrical
properties of Tellinen’s model.

An example and visualization is given in Figure 3.10. Further analysis of the paths
p± follows in Sections 3.2.5 and 3.2.6.
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h

bi

(a) only one common point

h

bi

(b) two common points

Figure 3.10.: Idea of Helper Paths. Path p+ (red) and p− (blue) are defined w.r.t.
(h0, bi,0) ∈ Ii (marked with circle). Sections in Ii are shown with solids
lines and outside segments dashed.

p+

p−

(h0, b0)

(h1, b1)

(a) Both path can be defined w.r.t. turn-
ing point (h0, b0). This allows the
right turning point (h1, b1) of a sta-
ble curve to be calculated.

p+

p−

(h0, b0)

(h1, b1)

(b) Path p+ is defined w.r.t. the left
turning point (h0, b0) and p− w.r.t.
the right turning point (h1, b1). This
describes the actual progression of an
excitation cycle.

Figure 3.11.: Presentation of possible applications of paths p+ and p−.

Remark 3.26. Lemma 3.16 proves that in positive direction (∆h > 0) the path p+

will stay inside of I. Using symmetry arguments, the same is true for any path p− in
negative direction (∆h < 0). So any path that starts in I and consists of a series of
paths p+

k and p−
k will stay inside of I, as long as the paths are always used according

to their associated direction. Remark 3.11 is regarded as confirmed because it can
be assumed that an application has a valid start value ((h0, b0) ∈ I). The extension
of the paths p to the area outside of I is therefore not relevant for the application
and does not cause any problems.

Remark 3.27. As shown in Figure 3.11, there are several applications for path p+ and
p−. In the framework of this thesis two main approaches are used. On the one hand,
the second turning point of a closed cycle can be calculated (see Figure 3.11(a)). For
this purpose, both paths start from a common point (h0, b0) and a further intersection
point (h1, b1) is searched for. Then (h0, b0) and (h1, b1) represent the turning points
of a closed cycle. On the other hand, the actual return path can be examined, if the
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B+
sat beq B−

sat

µ0

µeq
diff

d
dh

B+
sat

d
dh

B−
sat

µ+
diff,µ+

i,diff

µ−
diff,µ−

i,diff

b

µ
di

ff
1 λeq 0

0

µeq
i,diff

d
dh

B+
i,sat

d
dh

B−
i,sat

λ

µ
i,d

iff

Figure 3.12.: Motivation for beq and λeq.

second turning point is selected by (h1, b1) =
(
h1, p+(h1)

)
(see Figure 3.11(b)). The

path p− is defined w.r.t.
(
h1, p+(h1)

)
and evaluated at (h0). In general the point

(h0, b0) is not hit by p−.

After the basic definition of the paths p+ and p− and the motivation to use them in
Remark 3.27, it is now examined in more detail under which conditions two paths
p± have intersections.

3.2.3. Partition of I

At this point I from (3.5) is examined more closely. Therefore a partition of I is
created. The goal is to be able to quickly and easily make statements at a given point
(h0, b0) ∈ I, whether and where the corresponding paths p+ and p− have another
intersection.

Lemma 3.28: For all h ∈ R exists an unique beq ∈
(
B+

sat(h), B−
sat(h)

)
such that

µ+
diff(h, beq) = µ−

diff(h, beq) holds. beq = beq(h) is a continuous function.

Proof. A visual overview is given in Figure 3.12. Starting with µ±
diff = µ±

diff(h, b) and
λ = λ(h, b) the condition

µ+
diff = λ

dB+
sat(h)
dh

+ (1− λ)µ0
!= λµ0 + (1− λ) dB−

sat(h)
dh

= µ−
diff (3.41)

can be solved for λeq and yields

λeq(h) = λ(h, beq) =
dB−

sat(h)
dh

− µ0
dB+

sat(h)
dh

+ dB−
sat(h)
dh

− 2µ0
=

dB−
i,sat(h)
dh

dB+
i,sat(h)
dh

+ dB−
i,sat(h)
dh

∈ (0, 1) . (3.42)
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B+
sat

B−
sat

beq I=

I>

I<

h[A/m]

b[
T
]

(a) in bh-space

B+
sat

B−
sat

beq I=

I>

I<

h[A/m]

b i
[T
]

(b) in bih-space

Figure 3.13.: Example of the partition of I into I<, I= and I>.

Inserting in (3.8) and solving for b yields

beq(h) =

∈
(

B+
sat(h),B−

sat(h)
)

B−
sat(h)−

d
dh

B−
i,sat(h)

d
dh

B−
i,sat(h) + d

dh
B+

i,sat(h)
∈(0,1)

(
B−

sat(h)−B+
sat(h)

)
>0

. (3.43)

Existence, uniqueness and continuity result directly from the definition in (3.43).

Remark 3.29. An example is given in Figure 3.13. Note, that beq is not always as
smooth and monotone as shown in Figure 3.13, see Figure 3.15. Further analysis of
desirable and needed attributes of beq is discussed in the next section.

The whole domain I can now be partitioned into three parts: above, below and
exactly on beq. This results in the following definition:

I� = {(h, b) ∈ I
∣∣∣ µ+

diff(h, b) � µ−
diff(h, b)}

= {(h, b) ∈ I
∣∣∣ λ � λeq}

= {(h, b) ∈ I
∣∣∣ beq(h) � b} for all � ∈ {=, <, >}.

(3.44)

Remark 3.30. The sets I<, I> and I= are a partition of I, i.e., they are non-empty,
pairwise disjoint and their union span completely I. Each point (h, b) ∈ I can
therefore be uniquely assigned to I>, I= or I<.

Lemma 3.31: The sets I<, I>, I= are symmetrical, s.t.

(h, b) ∈ I> ⇔ (−h,−b) ∈ I< , (h, b) ∈ I= ⇔ (−h,−b) ∈ I= (3.45)

holds.
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h

b

(a) A simple closed hystere-
sis loop.

h

b

(b) A non-simple closed
hysteresis loop because
it has minor hysteresis
loops.

h

b

(c) A non-simple closed
hysteresis loop because
it hast intermediate in-
tersections.

Figure 3.14.: Examples of simple and non-simple closed hysteresis loops. Sections
based on µ+

diff are shown in red and µ−
diff in blue. Comparable figures

can be found in [38, 39].

Proof. Utilizing µ+
diff(h, b, ) = µ−

diff(−h,−b) from (3.13) yields

(h, b) ∈ I> ⇔ µ+
diff(h, b) >µ−

diff(h, b)
⇔ µ−

diff(−h,−b) >µ+
diff(−h,−b) ⇔ (−h,−b) ∈ I< (3.46)

and

(h, b) ∈ I= ⇔ µ+
diff(h, b) =µ−

diff(h, b)
⇔ µ−

diff(−h,−b) =µ+
diff(−h,−b) ⇔ (−h,−b) ∈ I= .

(3.47)

3.2.4. Simple closed hysteresis loops

Even though Tellinen’s model can correctly reproduce more complex curve shapes
[50], the focus here lies on simple closed loops. This is mainly due to the loss model
in Section 4.1. This model will be only defined for simple curves.

Here, at this point it is defined what is exactly a simple loop and under which
conditions it is formed. A main focus will be the stability of Tellinen’s model for
simple loops.

In the previous Figures 2.8(c), 3.2(a) and 3.14(a) the paths are shown in such
way, that a counterclockwise flow occurs. For closed curves and the motivation in
Section 2.3, that magnetic hysteresis can be viewed as a resistance to change of state,
this order is considered to be physically reasonable. An arrangement that the return
path p− runs below the forward path p+, i.e., the loop is traversed clockwise, is not
motivatable from the physical background. Thus, a focus of the analysis of Tellinen’s
model will be the geometric arrangement of paths p± for closed curves.
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First, in this context, a simple closed curve is defined and it is stated which situations
are to exclude explicitly. For this, the already defined paths p± are used and argued
about the geometric arrangement and intersections. It will be proven that Tellinen’s
model does indeed allow for undesirable situations in the context of this thesis.
Therefore, the second step is the derivation of suitable conditions, such that in
the further course of this dissertation a simple closed curve – which is traversed
counterclockwise – can be assumed.

Remark 3.32. Any curve γ : [t0, t1]→ R2 that is based on Tellinen’s model can be
disassembled into parts that are either based on µ+

diff or µ−
diff. Therefore, γ can be

seen and considered as a series of segments of paths p+
k and p−

k . See Figure 3.14(b)
for an example.

Definition 3.33 (simple closed hysteresis loop): A simple closed hysteresis loop
consists of a closed path γ : [t0, t1] → R

2 which can be exactly separated up into
γ+ and γ−. γ+ and γ− are segments of paths p+ and p−, respectively. The turning
points (h0, b0) and (h1, b1) (w.l.o.g. h0 < h1) are the only common points of the
paths p± on the interval [h0, h1]. See Figure 3.14(a) for an example.

As visualized in Figures 3.14(b) and 3.14(c), there are two undesirable situations,
the existence of minor hysteresis loops and the existence of further intersections.
Conditions are now examined so that these unwanted properties do not occur.

Simple Excitation

The existence of minor hysteresis loops can be prevented, if a suitable excitation
is used. The excitation must be periodic. Furthermore, the excitation must be
monotonically increasing from its minimum to its maximum and monotonically
decreasing the other way round. For example a single frequency sine wave or a
triangle wave are fulfilling these conditions. In this thesis only use sinusoidal wave
forms will be used.

Remark 3.34. Even with simple excitation, intermediate intersections of the paths
p+ and p− are possible. Examples are given in Figures 3.14(c) and 3.15.

Intermediate intersections

To be able to classify common points of p+ and p−, first a distinction between
intersection and contact points is introduced.

Definition 3.35 (Intersection, Contact point): Given paths p+, p− with a common
point p+(h0) = b0 = p−(h0) for a (h0, b0) ∈ I. (h0, b0) is called an intersection of p+

and p− if ε0 ∈ R>0 exist, such that for all ε with 0 < ε < ε0(
p+(h0 − ε)− p−(h0 − ε)

)(
p+(h0 + ε)− p−(h0 + ε)

)
< 0 (3.48)
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holds. (h0, b0) is called a contact point of p+ and p− if ε0 ∈ R>0 exist, such that for
all ε with 0 < ε < ε0(

p+(h0 − ε)− p−(h0 − ε)
)(

p+(h0 + ε)− p−(h0 + ε)
)

> 0 (3.49)

holds.

With this definition it can be now distinguish whether the geometrical vertical order
of the paths p± at the common point (h0, b0) changes (intersection) or not (contact
point).

Now, criteria are set up to determine, when a common point is an intersection.

Lemma 3.36: Given paths p+, p−. Any common point, i.e., p+(h0) = b0 = p−(h0)
with (h0, b0) ∈ I> ∪ I< is an intersection.

If (h0, b0) ∈ I> is an intersection, then(
p+(h0 − ε)− p−(h0 − ε)

)
< 0 <

(
p+(h0 + ε)− p−(h0 + ε)

)
(3.50)

holds for 0 < ε� 1. If (h0, b0) ∈ I< is an intersection, then(
p+(h0 − ε)− p−(h0 − ε)

)
> 0 >

(
p+(h0 + ε)− p−(h0 + ε)

)
(3.51)

holds for 0 < ε� 1.

Proof. W.l.o.g. only the case (h0, b0) ∈ I> is considered. The case (h0, b0) ∈ I>

follows from symmetry arguments.

With (h0, b0) ∈ I> it holds

dp+(h0)
dh

= µ+
diff

(
h0, p+(h0)

)
> µ−

diff

(
h0, p−(h0)

)
= dp−(h0)

dh
. (3.52)

This relation then applies in an open domain d = (h0 − ε, h0 + ε) for ε small enough.
For (h0, b0) ∈ int(I>) this is true. For the case (h0, b0) =

(
h0, B+

sat(h0)
)
, the paths

p± are continued outside of I by their construction. This covers all possible cases.

Define the function dist : d→ R with

dist(h) = p+(h)− p−(h) ,
d

dh
dist(h) = dp+(h)

dh
− dp−(h)

dh

(3.52)
> 0 . (3.53)

It holds dist(h0) = 0 by assumption. The function dist is strictly monotonically
increasing on the domain d. Equation (3.50) is proven by the fact that

dist(h0 − ε) < dist(h0) = 0 < dist(h0 + ε) (3.54)

holds.

The procedure for the second case is similar. Then dist would be monotonically
decreasing.
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Remark 3.37. Lemma 3.36 describes how the paths are arranged geometrically. At
an intersection (h0, b0) ∈ I>, path p+ must cross path p− from below. If (h0, b0) ∈ I<

holds, it must pierce from top.

Now it shall be examined whether the existence of further intersections is guaran-
teed.

Lemma 3.38: The following statements are true.

I) Given (h0, b0) ∈ int(I<) and the paths p+, p− w.r.t. (h0, b0). It exists (h1, b1) ∈
I> with h0 < h1 and p+(h1) = b1 = p−(h1).

II) Given (h1, b1) ∈ int(I>) and the paths p+, p− w.r.t. (h1, b1). It exists (h0, b0) ∈
I< with h0 < h1 and p+(h0) = b0 = p−(h0).

III) Given paths p+, p− with a finite number of intersections and contact points
at (h0, b0), (h1, b1), . . . , (hn, bn) ∈ I with h0 < . . . < hn and n ≥ 1. Then
(h0, b0) /∈ I> and (hn, bn) /∈ I< holds.

Proof. Given (h0, b0) ∈ int(I<) and the paths p+, p− w.r.t. (h0, b0). For the paths p±,
associated paths p±

i exists and the following examination is done in (h, bi) coordinates.

First the limits of the paths p±
i are considered. By Lemma 3.18 it holds

lim
h→∞

p+
i (h) = B∞

i,sat , lim
h→∞

p−
i (h) = b+∞ < B∞

i,sat . (3.55)

The case limh→∞ p−
i (h) = B∞

i,sat only applies, if p−
i is defined w.r.t. (h0, bi,0) =(

h0, B−
i,sat(h0)

)
. This is excluded per prerequisite (h0, b0) ∈ int(I<).

According to (3.51) it exists a ε > 0 such that

p+
i (h0 + ε) < p−

i (h0 + ε) (3.56)

holds. The paths p±
i are continuous.

Using the vertical order at h = h0 + ε in (3.56) – comparing this to the limit
case (3.55) – it is concluded that there must exists at least another intersection
(h1, bi,1) with h0 < h1. Since

(
h, p+

i (h)
)
∈ Ii for all h > h0 holds by Lemma 3.16,

(h1, bi,1) ∈ Ii is true. At (h1, bi,1), p+
i must strike through p−

i from below, so it yields
dp+

i (h1)
dh

>
dp−

i (h1)
dh

. Switching back to (h, b) coordinates, (h1, b1) ∈ I> holds.

Analogously one proceeds for the statement II).

To prove statement III), it will be first proven that the common points of p± are
within I. Then it is a direct consequence of statements II) and III). Assuming
paths p± have a common point on the boundary of I, i.e., they are defined w.r.t.
(h∗, b∗) = (h∗, B±

sat(h∗)). Then either p+ = B+
sat or p− = B−

sat holds, but not both.
Each path that is not the boundary has exactly one intersection with the boundary
as proven in Lemma 3.16. But since the condition is that there are at least two
common points, this case cannot occur. Hence the considered common points are
inside of I and statements I) and II) are applicable.
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Figure 3.15.: Example of a non-monotone beq
i . Similar figures can also be found in

[38, 39].

Lemma 3.39: Given paths p+, p− with a finite number of intersections and contact
points at (h0, b0), (h1, b1), . . . , (hn, bn) with h0 < . . . < hn and n ≥ 1. For any
1 ≤ k ≤ n holds that (hk−1, bk−1) and (hk, bk) are not both simultaneously element
of I> or I<.

Proof. This will be proven by contradiction. Assuming that two successive common
points (hk−1, bk−1) and (hk, bk) are both element of I>. The case of I< follows
analogously. As proven in Lemma 3.36, there exists ε1, ε2 ∈ R>0, such that

p+(hk−1 + ε1) > p−(hk−1 + ε1) , p+(hk − ε2) < p−(hk − ε2) (3.57)

holds. ε1 and ε2 can be chosen small enough, such that hk−1 < hk−1+ε1 < hk−ε2 < hk

holds. The paths p± are continuous and therefore at least one other common point
between hk−1 and hk must exist. This contradicts the assumption, that the above
list of all intersections and contact points is complete.

Remark 3.40. Motivated by Figure 3.15 and lemmas 3.38 and 3.39 it is concluded
that the information whether a common point (h0, b0) of two paths p± lies in I> or
I< yields important information about the existence of another common point.

Lemma 3.41: Given paths p+ and p−, which are respectively defined w.r.t. (h+, b+),
(h−, b−) ∈ int(I). If the number of intersections of paths p± is finite, this number is
even.

Proof. Instead of p+ and p− the corresponding paths p+
i and p−

i are considered.
These paths are defined w.r.t. (h+, b+

i ), (h−, b−
i ) ∈ int(Ii). By Lemma 3.18 the
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Figure 3.16.: Additional examples for paths p±
i based for the same B±

i,sat as in Fig-
ure 3.15. Common points are marked. Similar figures can also be found
in [38, 39].

following limits exists:

lim
h→−∞

p+
i (h) = b+,−∞

i > −B∞
i,sat , lim

h→∞
p+

i (h) = B∞
i,sat ,

lim
h→−∞

p−
i (h) = −B∞

i,sat , lim
h→∞

p−
i (h) = b−,+∞

i < B∞
i,sat .

(3.58)

Thus in both limits the path p+ is above p−. Because paths p+ and p− are continuous
an odd number of intersection (change of vertical order) is in contradiction to this.

Remark 3.42. In the consideration, a finite number of common points between two
paths p+ and p− is assumed. An infinite number could arise, for example, from the
fact that the paths p± move on an interval along beq and do not just cross it. For
other reasons, a condition is imposed below which restricts the number of common
points in the finite case. This prevents at the same time the case of infinitely many
common points. Therefore, this case will not be further investigated here.

Intersectionfree bh-loop

As motivated in Section 2.3 and at the beginning of this section, Tellinen’s hysteresis
model should enable an analysis of simple hysteresis loops. As already stated in
Remark 3.34, simple excitations are not sufficient to guarantee simple hysteresis
loops. Now criteria, such that this is guaranteed, are developed.

Remark 3.43. Of course it can be checked a posteriori if a simple hysteresis loop was
generated. The domain of h can be restricted to suitable ranges, such that a proper
hysteresis loops with the right vertical order (p− above p+), as seen in Figure 3.15(b),
is obtained. But a globally valid criteria is desired, such that any resulting hysteresis
loop is simple.
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Remark 3.44. Figure 3.16 gives additional examples of common points for given
paths p±. Note that common points on beq can be contact points (Figures 3.16(a)
and 3.16(c)) or intersections (Figure 3.16(b)). It is possible to determine from the
geometric arrangement of p+, p− and beq which type of common point on beq is.
Outgoing from this property, a condition to B±

sat is derived, so that only simple
hysteresis loops are created.

Remark 3.45. By definition (3.43) and assumption B±
sat ∈ C1(R) , it can be con-

cluded that beq is continuous, but in general not differentiable. For the following
consideration, the requirements of B±

sat are tightened and B±
sat ∈ C2(R) is presumed.

With this also beq ∈ C1(R) applies. This is obviously a disadvantage and must
be taken into account when creating the saturation curves B±

sat. For example, the
curves shown in Figures 3.15 and 3.16 have been generated using a shape-preserving
piecewise cubic interpolation method (PCHIP [87]). However, at the data points this
method is not twice continuously differentiable, which is reflected in the bends in beq

and beq
i .

Remark 3.46. Conditions are now derived, such that there is a maximum of two
intersections for any paths p+ and p−. To do this, the behavior at the next higher
number of four intersections, as proven by Lemma 3.41, is investigated. As proven
in Lemma 3.38, two consecutive intersections cannot be both in I> or I<. Thus,
between two intersections the paths p± must have a common point with beq. This
can be seen for example in Figures 3.15(b) and 3.16(b), i.e., if the possibilities of
common points between paths p± and beq are limited, this also limits the number of
intersections of p+ and p−. Now, the paths p± shall be prevented from piercing beq

from below. This is the case, for example, in Figure 3.15(b) between the second and
third intersection point.

Lemma 3.47: Given any valid B±
sat and any paths p± and p−. If

dbeq(h)
dh

> µeq
diff(h) = µ±

diff

(
h, beq(h)

)
for all h ∈ R (3.59)

holds, the following statements are true.

I) Each intersection of p+ and p− is either in I< or I>, but not in I=.

II) Any paths p+ and p− can have at most two intersections.

Proof. I): This is proven by contradiction. It is assumed there exists a
(
h∗, beq(h∗)

)
∈

I= that is a intersection of paths p+ and p−. Let define dist : R→ R with dist(h) =
p+(h)−p−(h) and d dist(h)

dh
= dp+(h)

dh
− dp−(h)

dh
= µ+

diff

(
h, p+(h)

)
−µ−

diff

(
h, p−(h)

)
. Since(

h∗, beq(h∗)
)

is assumed as an intersection, it must hold dist(h∗) = 0 and dist must
change its sign at h∗.

Since (3.59) holds, there exists ε > 0, such that(
h, p+(h)

)
,
(
h, p−(h)

)
∈ I> for all h ∈ (h∗, h∗ + ε) ,(

h, p+(h)
)
,
(
h, p−(h)

)
∈ I< for all h ∈ (h∗ − ε, h∗)

(3.60)
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holds. Directly from (3.60) also follows

d dist(h)
dh

= µ+
diff

(
h, p+(h)

)
− µ−

diff

(
h, p−(h)

)
< 0 for h ∈ (h∗ − ε, h∗) ,

= 0 for h = h∗ ,

> 0 for h ∈ (h∗, h∗ + ε) .

(3.61)

So dist has a local minima at h∗ and therefore no sign change at h∗. This contradicts
the conditions above. Thus an intersection of paths p+ and p− is never on beq and
must be therefore either in I> or I<.

II): First, assume both paths are equal to their corresponding boundary, i.e., p+ =
B+

sat and p− = B−
sat. By condition (3.3) these paths have no intersection. Second,

assume that exactly one of the paths p± is equal to its corresponding boundary B±
sat.

In this case there is exactly one intersection, proven by Lemma 3.16. Hence only
the case remains, that both paths p± are defined w.r.t. (h+, b+), (h−, b−) ∈ int(I),
respectively.

Assuming that the paths p± have 4 or move intersections. Let them be denoted by
(h1, b1), . . . , (hn, bn) and ordered, i.e., h1 < . . . < hn. There is an even number of
intersections, proven by Lemma 3.41, so n yields n = 2k for k ∈ N≥2. Combining
the statements I) and Lemma 3.38 the intersections lie alternately in I> and I<.
And it can be deduced that (h1, b1) ∈ I< must hold.

So (h2, b2) ∈ I> and (h3, b3) ∈ I< is true. This means that b2 < beq(h2) and
b3 > beq(h3) applies. So beq must cross the paths p± from above on the interval
(h2, h3). This contradicts (3.59). Thus only two or less intersections are possible.

Remark 3.48. An alternative formulation of (3.59) is given by

dB−
i,sat(h)
dh

dB+
i,sat(h)
dh

(
dB+

sat(h)
dh

+ dB−
sat(h)
dh

)
>
(
B−

sat(h)−B+
sat(h)

) d
dh

 dB+
i,sat(h)
dh

dB−
i,sat(h)
dh

 . (3.62)

Remark 3.49. Equation (3.59) does not only limit the number of common points for
any paths p+, p− to a maximum of two, if there are only a finite number of these
points. It additionally ensures, that there can not be an interval (h0, h1) such that
beq(h) = p+(h) = p−(h) for all h ∈ (h0, h1) holds.

Remark 3.50. Unfortunately, condition (3.59) is not a sharp distinction. It also
prevents situations that would actually be valid. Figure 3.16(b) shows such valid
but excluded situation.

Remark 3.51. In the further course of the thesis it is assumed that any two paths p±

can have a maximum of two common points. This is ensured either by a retrospective
check (see Remark 3.43) or by the global condition (3.59).
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Conclusion

At this point a good overview – how the paths p+ and p− behave – is achieved.
The paths are mathematically well defined and reflect the physically motivated
properties.

The definition domain of Tellinen’s model I could be subdivided more finely (see
(3.44)). Many properties can be examined by a simple check, whether the considered
point is in I<,I> or I= (see Lemmas 3.36, 3.38 and 3.47).

Conditions to conclude the existence of a second intersection (see Lemma 3.38) are
derived. The limit values of the paths p±

i and the asymptotic behavior of p± are
clearly defined (see Lemma 3.18). And by examining the vertical arrangement at
intersections (see Definition 3.35 and lemma 3.36), the global arrangement of the
paths can easily be analyzed.

This specially chosen construction of the paths p± (see Definition 3.12) is a powerful
tool for analyzing Tellinen’s model.

Condition (3.59) may restrict the applicability of the model. Whether this is relevant
in the application or not, cannot be answered globally. This limitation is mainly due
to the fact that a loss model based on the enclosed area is defined in Section 4.1 of
this thesis. There, the orientation of the enclosed area plays an important role. It is
up to the user to decide whether a closed curve, where p− is below p+, is a problem.
It has been shown that it is possible to create such loops with Tellinen’s model and
derive an a priori condition for B+

sat, to prevent these kind of loops.

3.2.5. Existence and Uniqueness of Stable Loops

Parts of the following studies have already been published in [38].

In the previous chapter the mathematical basis was created. Now, the behavior
of Tellinen’s model is investigated with respect to a given excitation. As already
mentioned in Remark 3.10, h or b can be considered as independent variables. In
this section h is specified, as before, and describe the change of b using Tellinen’s
model.

Definition 3.52 (sweeping): Given h0, h1 ∈ R with h0 < h1. An excitation of h
is denoted as sweeping, if h can be described by a continuous, periodic function
f : R→ [h0, h1] by h = f(t). In each period f increases monotonously from h0 to h1
and then decreases monotonously back to h0.

Remark 3.53. An example for Definition 3.52 is given by f(t) = h0 + (h1−h0)1−cos(t)
2 .

Remark 3.54. Sweeping is by definition a simple excitation.
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Figure 3.17.: Idea of the proof of Lemma 3.57. Paths based on µ+
diff are shown in red

and µ−
diff in blue.

As already motivated in Remark 3.27, the examination via the paths p± allows
to take different approaches. Up to now, the focus lied on the initial situation
that an intersection is on hand and define both paths p± to this point. Now
a different approach is taken. It is started with an arbitrary point (h0, b0) ∈ I
and its corresponding path p+. A h1 with h1 > h0 is chosen and define p− w.r.t.(
h1, p+(h1)

)
∈ I. Of interest is the evaluation of p− at h0 compared to b0.

Definition 3.55 (stable loop, turning points): Given (h0, b0) ∈ I and h1 ∈ R with
h1 > h0. Let p+ defined w.r.t. (h0, b0) and p− w.r.t.

(
h1, p+(h1)

)
∈ I. If b0 = p−(h0)

holds, the loop consisting of p+(h)
∣∣∣
h∈[h0,h1]

and p−(h)
∣∣∣
h∈[h0,h1]

is denoted as stable.

Otherwise, it is unstable. Let denote
(
h1, p+(h1)

)
as a turning point. For a stable

loop (h0, b0) is also a turning point.

Remark 3.56. A stable loop by Definition 3.55 correspond to a simple closed hysteresis
loop. By condition (3.59) all required properties are ensured. The procedure in
Definition 3.55 corresponds to the execution of one cycle of a sweeping excitation.

It will be proven, that there is exactly one bL ∈
(
B+

sat(hL), B−
sat(hL)

)
for any hL, hR ∈

R with hL < hR, so that a stable curve results. Then it is shown that sweeping on
[hL, hR] for any bL ∈

(
B+

sat(hL), B−
sat(hL)

)
converges to this stable curve.

Lemma 3.57: Given valid B±
sat, which fulfills (3.62). For any hL and hR with

hL < hR exists bL and bR, such that (hL, bL) ∈ int(I) and (hR, bR) ∈ int(I) are the
only turning points of a stable curve.

Proof. Assume hL, hR as given and constant. Define the function

dist :
[
B+

sat(hL), B−
sat(hL)

]
= [bL,min, bL,max]→ R ,

dist(b) =
(

b +
∫ hR

hL

dp−(h)
dh

dh
)
−
(

b +
∫ hR

hL

dp+(h)
dh

dh
)

=
∫ hR

hL

dp−(h)
dh

− dp+(h)
dh

dh . (3.63)
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The paths p± are defined with reference to (hL, b), such that (3.63) is indeed a
function of the variable b. Visually dist describes the difference of the paths p±

with a common starting point (hL, b) at hR, as shown in Figure 3.17. A value of
dist(b) = 0 represent a closed loop. It will be shown that

dist
(
B−

sat(hL)
)

= dist
(
bL,max

)
> 0 and dist

(
B+

sat(hL)
)

= dist(bL,min) < 0 (3.64)

holds. With dist being continuous and having a change of sign, a zero crossing and
therefore a stable curve must exists.

As an interim result it is shown, that

b−
R,min < b+

R,min < b+
R,max < b−

R,max (3.65)

holds, with b±
R,min/max being the evaluations of the paths p±

min/max w.r.t. to (hL, bL,min/max)
at h = hR.

The path p−
min lies on B+

sat for h = hL and outside of I for all h > hL. So by definition

b−
R,min = B+

sat(hL) +
∫ hR

hL

dp−
min(h)
dh

dh = B+
sat(hL) +

∫ hR

hL
µ0 dh (3.66)

holds. The path p+
min lies on B+

sat for h = hL and is therefore, by definition, identical
to B+

sat for all h.

b+
R,min = B+

sat(hL) +
∫ hR

hL

dp+
min(h)
dh

dh

= B+
sat(hL) +

∫ hL

hR

dB+
sat(h)
dh

>µ0

dh > b−
R,min

(3.67)

From Remark 3.15 and p+
min(hL) = b+

L,min < b+
L,max = p+

max(hL), follows

p+
min(hR) = b+

R,min < b+
R,max = p+

max(hR) . (3.68)

From Lemma 3.16 follows that p+
max(h) < p−

max(h) holds for any h > hL and thus in
particular at hR with

b+
R,max = p+

max(h) < p−
max(h) = b−

R,max . (3.69)

Evaluation of dist at bL,max and bL,min yields

dist(bL,max) = b−
R,max − b+

R,max > 0 , (3.70a)
dist(bL,min) = b−

R,min − b+
R,min < 0 . (3.70b)

Therefore, a value bL with bL,min < bL < bL,max and dist(bL) = 0 must exists. By
Remark 3.15 the corresponding value of bR must lie between b+

R,min and b+
R,max.

The existence of more intersections of p± is prevented by (3.62).
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hL hR

B+
satB−

sat

btop
L

btop
R

bbot
L

bbot
R

h[A/m]

b[T
]

Figure 3.18.: Idea of the proof of Lemma 3.58. Paths based on µ+
diff are shown in red

and µ−
diff in blue.

Lemma 3.58: The values bL and bR in Lemma 3.57 are unique.

Proof. This is proven by contradiction. Assuming there exists two stable curves for
the given parameters hL, hR. Let the turning points be denoted as btop

L , btop
R , bbot

L , bbot
R

with bbot
L < btop

L and bbot
R < btop

R as shown in Figure 3.18. Let p±
top = p±

top(h) be the
paths going through (hL, btop

L ) ∈ I and likewise p±
bot = p±

bot(h) through (hL, bbot
L ) ∈ I.

Each of the curves is closed, i.e.,
∫ hR

hL
µ+

diff(h, p+
top) dh =

∫ hR

hL
µ−

diff(h, p−
top) dh ,∫ hR

hL
µ+

diff(h, p+
bot) dh =

∫ hR

hL
µ−

diff(h, p−
bot) dh

(3.71)

holds. Subtracting these two equations leads to
∫ hR

hL
µ+

diff(h, p+
top)− µ+

diff(h, p+
bot)

<0

dh =
∫ hR

hL
µ−

diff(h, p−
top)− µ+

diff(h, p−
bot)

>0

dh . (3.72)

Arguing that p±
top > p±

bot holds by Remark 3.15 and application of the monotonicity
(Lemma 3.6) in the second component of µ±

diff results in a contradiction. Therefore
for a given set of parameters only one unique stable loop can exists.

3.2.6. Convergence to Stable Loops in the Case of Non-closed
Paths

Lemma 3.59: Given hL, hR ∈ R with hL < hR and any bL with (hL, bL) ∈ I.
Starting with bL = B0. Create a path p+

0 w.r.t. (hL, B0) ∈ I and hereinafter another
path p−

0 w.r.t.
(
hR, p+

0 (hR)
)
∈ I. The following iterative scheme is applied. For

k ∈ N define p+
k w.r.t.

(
hL, p−

k−1(hL)
)

and path p−
k w.r.t.

(
hR, p+

k (hR)
)
.
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The paths p+
k and p−

k−1 share the common point
(
hL, p+

k (hL)
)

=
(
hL, p−

k−1(hL)
)

=
(hL, Bk) ∈ I. They form (in general) an open loop, i.e., p+

k (hR) 6= p−
k−1(hR). The

paths p+
k and p−

k converge for k → ∞ to the stable loop defined in Lemmas 3.57
and 3.58.

Proof. Define ϕ :
[
B+

sat(hL), B−
sat(hL)

]
→
[
B+

sat(hL), B−
sat(hL)

]
with

ϕ(bk) = bk +
∫ hR

hL
µ+

diff

(
h, p+

k (h)
)

dh

=p+
k

(hR)

+
∫ hL

hR
µ−

diff

(
h, p−

k (h)
)

dh

= p+
k (hR) +

∫ hL

hR
µ−

diff

(
h, p−

k (h)
)

dh

=p−
k

(hL)

= p−
k (hL)

(3.73)

with p+
k defined w.r.t. (hL, bk) and p− w.r.t.

(
hR, p+

k (h1)
)
. This corresponds to going

from hL to hR on path p+
k , stopping in the turning point

(
hR, p+

k (hR)
)

and going
back to hL via p−

k . This is one cycle of a sweeping excitation (see Definition 3.52).
So bk = p+

k (hL), p+
k (hR) = p−

k (hR) and p−
k (hL) = ϕ(bk) applies in particular.

A stable loop exists and is unique as proven in Lemmas 3.57 and 3.58. It consist of the
turning points (hL, bfix

L ) and (hR, bfix
R ) and paths p+

fix and p−
fix. It fulfills bfix

L = ϕ
(
bfix

L

)
and is therefore the only fixed point of ϕ.

It will be proven that for any bk ∈
[
B+

sat(hL), B−
sat(hL)

]
\
{
bfix

L

}
|ϕ(bfix

L )− ϕ(bk)| = |bfix
L − ϕ(bk)| < |bfix

L − bk| (3.74)

holds. With (3.74) it is proven, that ϕ is a contraction and bfix
L is an attractive fixed

point on the whole definition domain of ϕ. Thus ϕ is unconditionally convergent
with limit value bfix

L . By construction of ϕ and rearranging

ϕ(bfix
L )− ϕ(bk) = bfix

L − bk +
∫ hR

hL
µ+

diff

(
s, p+

fix(s)
)
− µ+

diff

(
s, p+

k (s)
)

<0, if bfix
L >bk

>0, if bfix
L <bk

ds

+
∫ hL

hR
µ−

diff

(
s, p−

fix(s)
)
− µ−

diff

(
s, p−

k (s)
)

>0, if bfix
L >bk

<0, if bfix
L <bk

ds

(3.75)

holds. Using the monotoncity of µ±
diff in the second component (see Lemma 3.6) and

the ordering of the paths (see Remark 3.15) yield the signs of the terms. Note that
integration limits are swapped for the second term. Thus, both integrals yield the
same sign for the cases bfix

L ≷ bk. Altogether this results in

0 < ϕ(bfix
L )− ϕ(bk) = bfix

L − ϕ(bk) < bfix
L − bk , if bfix

L > bk ,

0 > ϕ(bfix
L )− ϕ(bk) = bfix

L − ϕ(bk) > bfix
L − bk , if bfix

L < bk ,
(3.76)

which proves (3.74).
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Figure 3.19.: Numerical example of convergence for sweeping. The left turning points
are denoted as Bk. The paths are solved numerically by a Runge–Kutta
method (RK45, rtol=10−8, atol=10−9). Comparable figures can be
found in [38, 39].

Remark 3.60. Lemma 3.59 proves, that sweeping (going back and forth) between hL
and hR using Tellinen’s model converges toward a unique stable loop. A numerical
example is given in Figure 3.19. The model behaves predictably and well behaved.
The stable state is almost reached after only a few cycles. The assumption of simple
excitation may not agree for many applications. There are certainly examples of
this as shown in Section 2.4. But with this it can still prove that Tellinen’s model
permanently tries to reach a stable state.

3.3. Solver Strategies

The goal of this section is to provide an overview of how Tellinen’s model can
be integrated into the benchmark problem (2.13). This is done with a numerical
background. In Chapter 5 the finite difference method with an iterative solver is
applied to (2.13). To realize this, the previous placeholder h = ν(b) in (2.13) has to
be replaced by Tellinen’s model.

This poses a few challenges. The evaluation must be done separately in each grid
point. This means that the chosen approach must be reasonable in terms of computing
power and memory requirements, specially because this has to be done several times
per grid point and time step due to the iterative solving. It is assumed that there is
no analytical solution to the ODE (3.7) of Tellinen’s model.

The observation are restricted to one grid point and it is assumed that at this grid
point the material is currently in state (h0, b0) ∈ I. The time steps of the overall
simulation are chosen small enough so that the searched solution is close to the old
one. This leads directly to a problem. Tellinen’s model is not differentiable in exactly
that state (h0, b0). Since it is unknown in general whether the fields increase or
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h0

b0

h

b

Figure 3.20.: Approach 1 based on explicit Euler. An exemplary trajectory of the
paths p± are shown dashed. The section-wise linearized approximation
is marked with solid lines.

decrease, this is unfortunately a fact which cannot be changed straightforward. Thus,
the approach of the integration of Tellinen’s model directly influences the choice
of possible solution methods for the overall simulation. A detailed consideration
of this follows in Chapter 5. Here, for the time being it is sufficient to present the
approaches and the argumentation that there are different possibilities.

To solve the ODE (3.7), the usual numerical methods are available. Since Tellinen’s
model is more generally focused on fast rather than accurate representation of
hysteresis, it is focused on appropriate lower order methods. Two different approaches
– based on the explicit Euler method – are now presented.

It must be distinguished well between the levels discussed. When an ODE is
mentioned, always the ODE (3.7) is meant, i.e., the Tellinen model. On this ODE
numerical methods are applied to get a function h = ν(b), which is used in the PDE
(2.13). This results in a total system, which shall be solved numerically.

3.3.1. Approach 1 – Linearizing / Explicit Euler

Let (h0, b0) ∈ I be the current state. The underlying ODE (3.7) is replaced with
one step of the explicit Euler method. µ±

diff is evaluated at the current state, i.e.,
µ±

diff = µ±
diff(h0, b0). The directional dependence is expressed by a section-wise defined

function or more clearly by a min and max formulation. This results in a function
b(h), which calculates the corresponding b for all h.

b(h) = µ(h) = b0 +
{

µ+
diff · (h− h0) if h ≥ h0

µ−
diff · (h− h0) if h < h0

= b0 + µ+
diff ·max(0, h− h0) + µ−

diff ·min(0, h− h0)
(3.77a)
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Under the assumption that the function b(h) is evaluated only close enough around
(h0, b0), this b(h) is a 1st order approximation or linearization of Tellinen’s model. A
visualization is given in Figure 3.20.

With µ±
diff ≥ µ0 > 0 the resulting function µ is strictly monotone increasing and can

be therefore be inverted.

h(b) = ν(b) = h0 +


1

µ+
diff

(b− b0) if b ≥ b0

1
µ−

diff
(b− b0) if b < b0

= h0 + 1
µ+

diff
max(0, b− b0) + 1

µ−
diff

min(0, b− b0)

(3.77b)

The functions µ, ν provide a bijection between h and b. They are continuous and
piece wise linear. But at h0 or b0 respectively, they are not differentiable.

Using this approach inside a simulation (e.g. discretization of (2.13)), it would lead
to a non-linear system, because ν is non-linear. Furthermore, the system must be
solved near the current state (h0, b0), at which ν is not differentiable. Solvers based
on the derivative (like Newtons method) could be failing and showing non convergent
behavior.

3.3.2. Approach 2 – Delaying Direction Information

This approach continues the first and tries to reduce the problem to a linear one. To
achieve this, the information about a change of direction is delayed by one time step.
The decision if µdiff = µ+

diff or µdiff = µ−
diff is used, is now based on what happened in

the previous time step. This simplifies (3.77a) and (3.77b) to

b(h) = µ(h) = b0 + µdiff(h− h0) ,

h(b) = ν(b) = h0 + 1
µdiff

(b− b0)
(3.78a)

with

µdiff =
{

µ+
diff(h0, b0) , if h,b increased last step ,

µ−
diff(h0, b0) , if h,b decreased last step .

(3.78b)

If this approach is now inserted into the PDE (2.13) and rearrange, it holds

σ
∂A

∂t
+ 1

r

∂

∂r

(
r

µdiff

(
− ∂

∂r
A
))

= j + 1
r

∂

∂r

(
r
( b0

µdiff
− h0

))
jcorr

. (3.79)

The left-hand side of (3.79) is identical to a formulation with the non-hysteresis
approach b = µ · h. With the above mentioned approaches, it is possible to consider
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h0

b0

h

b

Figure 3.21.: Approach 2 based on delaying direction information. The direction of
travel is counterclockwise. Instead in the actual turning point (h0, b0),
the change from µ+

diff (red) to µ−
diff (blue) is delayed by one time step.

the effect of the hysteresis by an additional term, a current correction jcorr, on the
right side of the PDE (2.13).

But there is also a disadvantage of this approach. The reversal point is not resolved
precisely and the wrong value for µdiff is used for one time step. See Figure 3.21 for
a visualization. Depending on how large the differences between µ+

diff and µ−
diff are,

this error is more or less significant. As mentioned in Section 2.2.2, ferromagnetic
materials can have values of µdiff up the range of 106 · µ0. Close to the saturation
curves B±

sat, either µ+
diff or µ−

diff approaches µ0, while the other value approaches
dB±

sat
dh

. This means that, especially near the boundaries B±
sat, a difference between µ+

diff
and µ−

diff of up to several orders of magnitude is possible. In this isolated case, any
further investigations at this point are not target-oriented. Only when the benchmark
problem in Chapter 5 with the concrete numerical approach, it can be investigated
whether the advantages or disadvantages of the approach prevail.

3.4. Interim Conclusion & Further Remarks

Before Tellinen’s model is extended in the next chapter, a brief summary of the
results so far is given and outstanding issues are presented.

I In Section 3.1, Tellinen’s model [54] is introduced and defined. The mathematical
definition can be represented compactly and the ODE (3.7) is identified to be the core
of the model. In parallel, an equivalent definition in (h, bi) coordinates is provided.
All permissible states are combined in the set I.

The model can be justified phenomenologically from the properties of ferromagnetic
materials. The directional dependence of the model should be mentioned here as a
particularly important property. Some notations have been introduced which will be
used in the further course of the dissertation.
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I One of the objectives of Section 3.2 is to verify the model for well-definedness.
The investigations prove that the model results for all starting points (h0, b0) ∈ I in
paths that lie completely in I. It is also shown that the model can be formulated
in terms of both µ and ν. Thus it is basically suitable to be integrated into the
benchmark problem.

When performing the investigations, extended first order reversal curves are defined.
These are providing paths p+ and p− for each point. With these paths it can be proven
that for each sweeping excitation between the values hL, hR the model monotonously
converges to an unique limit. Based on this statement, the model is considered to be
stable.

However, during the analysis, it is noted that the resulting hysteresis loops are not
necessarily simple. In principle, more than two intersection points for paths p+ and
p− are possible. However, a global condition on B±

sat can be derived, such that this
case can no longer occur.

Not only have been shown that the model is well defined, analysis methods and
approaches have been developed. These will also be applied to the extensions of the
Tellinen model in the coming chapter.

I In Section 3.3, Tellinen’s model is examined in terms of its integrability into the
benchmark problem. It is shown that a direct integration of Tellinen’s model is not
reasonable in relation to the numerical background. For this purpose, the underlying
ODE (3.7) of the Tellinen model is replaced by numerical approximations. These are
inserted into the PDE (2.13) of the benchmark problem. Two different approaches
are been discussed.

These approaches are approximating the ODE (3.7) starting from the current state
(h0, b0) and allow the computation of the next step. In particular, the embedding of
the directional dependence becomes easier with these approaches. But there are also
disadvantages, especially with respect to the numerical robustness of the resulting
PDE system.

However, the investigations can not be continued in isolation from the rest. This
issue is addressed again in Chapter 5 and both approaches are attempted to be
implemented.
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4 Modifications and Extensions of
Tellinen’s Scalar Hysteresis Model

Tellinen’s scalar hysteresis model has been introduced and analyzed in Chapter 3.
This model is consistent and applicable. But it is temperature independent and so
far the temperature T was assumed to be constant.

In Chapter 2, the influence of temperature was addressed briefly. Here, the material-
specific Curie temperature will take an important role. Heating a ferromagnetic
material to this temperature even once, completely demagnetizes it. But even before
that, heat can significantly reduce the magnetization.

First, it is motivated that temperature plays an important role in applications. The
current political and environmental focus on electrified vehicles is an illustrative
example. An electric motor in an electrified vehicle is considered. It does not matter
if it is a car, truck, train or airplane. One requirement for such vehicles is usability
within a wide temperature spectrum. After all, the function must be ensured both
at night in winter months and in the blazing midday sun in high summer.

But even in various situations of application, such a motor must remain within
its allowed parameters. One example is the strong acceleration of a vehicle from
standstill. At standstill and very slow speeds, cooling methods such as external
airflow or fans driven by the motor itself may not be sufficient. However, especially
with a desired strong acceleration, one wants to exert as much force as possible
through the motor and one uses an accordingly high current and thus also generates
corresponding losses. An even more extreme example is the blocking of an electric
motor in case of overload. Depending on the design, this is comparable to an electrical
short circuit and can mean the destruction of the motor with accompanying risk of
fire. This is for example a reason why the stepper motor from Section 2.4 is current
controlled and not voltage controlled.

For product development, but also to ensure operational safety, studies of heat
generation in various application scenarios and environmental conditions are therefore
necessary. For electric motors, for example, there are standards1 that classify
whether these motors are approved for continuous operation or only specific partial
operation.

Now, after that it have been motivated that temperature can be significant in
applications, the consequences on numerical simulations are explained. It always
remains a question which effects and accuracy one wants to include in a simulation.

1international IEC 60034-1, european EN 60034-1



4.1. Loss Model

Using the example of temperature and losses, a brief outlook is given and then
the central questions for this chapter are developed. If one allows a temperature
change within the simulation, one faces a whole new set of phenomena and challenges.
Materials change their density and their spatial expansion, in extreme cases even
their aggregate state. Non-uniform heating causes stresses in solid materials or flows
in liquid and gaseous materials. Temperature differences create a heat flow and heat
exchange takes place between different materials.

Furthermore, numerical difficulties may arise if the effects act on different time scales.
For example, the control of electric currents by pulse width modulation may be in
the range of 10kHz, the motor rotates 50 times per second and the temperature
changes rather in the range of several seconds.

These examples represent only a small sample of the consequences. One can roughly
summarize that with the consideration of the temperature and losses, one ends very
easily with a multi physical and multi scale simulation.

With respect to this dissertation, it is restricted to the influence of temperature on
ferromagnetic materials. The central questions are:

I Where do losses occur, i.e., where does it get warmer?

To answer this question, a hysteresis loss model is presented that is – not exclusively
but optimized – to be combined with Tellinen’s model in Section 4.1. The model
is based on the enclosed area of a simple closed hysteresis loop. In Section 3.2
conditions have already been worked out, such that in a stable state a suitable simple
closed hysteresis loop always arises. In a second step, the loss model is extended by
an approximation on nearly closed curves.

I How does the magnetic field react to a change of the temperature?

A proposal to answer this question is given in Section 4.2. Tellinen’s original model
defines an ODE that describe the change of b in relation to h. The thermal extension
additionally defines another ODE to describe the change of b w.r.t. temperature T .
Both ODEs are constructed similarly but still have differences. The new ODE is
examined using similar approaches as in Chapter 3. It turns out that the model is
mathematically well-defined and converges to a stable state for certain excitations in
a well-behaved manner similar to the original Tellinen model.

4.1. Loss Model

For many of the known hysteresis models there already exist loss models (examples:
[15, 23, 26]). An overview and comparison of different approaches is given in [33,
44].

In [54], Tellinen presented an approach for calculating losses. Within this approach
the losses are splitted up into hysteresis and eddy-current losses. It is also possible
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to select excess losses or other approaches as separate sources of losses [18, 33]. In
the scope of this thesis, focus lies solely on the hysteresis losses.

This section is based on [38, 39, 54]. However, a closer look at Tellinen’s model is
taken, especially under the aspect of integration into a simulation. Thus, a model
and an algorithm will be developed, which approximates the hysteresis losses based
on the enclosed area.

Motivation and Idea

A minimalistic motivation for the approach was given by Albert Einstein:

“Energy loss during a hysteresis cycle is represented by the area enclosed
by the loop. The energy is converted to heat.” [4]

This idea is taken and the enclosed area is used to determine the hysteresis losses.
This approach was also used by Tellinen [54]. However, several other sources [18, 21]
refer to this approach.

In Section 3.2 it was already examined that Tellinen’s model tends to closed or stable
loops. The goal is to calculate this enclosed area without knowing a-priorily the
total loop. As mentioned in Remarks 3.5 and 2.16, it should be prevented that the
whole history must be stored. Instead only the current state is to be saved. The
hysteresis model is applied backwards, such that the return path is predicted.

Using the SI unit system, h is in the unit of A/m and b in the unit of T. The enclosed
area in the bh-plane is in the unit of J/m3. The specific volumetric heat capacity is
material dependent and has the unit of J/(K m3). Thus, the enclosed area can be
converted directly into a temperature difference. However, it is also possible to use
the enclosed area as a source term within a heat simulation.

First, the loss model is presented for the steady-state, i.e., the hysteresis loop is
closed. Second, this condition is relaxed and also nearly closed curves are feasible.

Care is taken that the scope of the loss model fits to the approaches of Tellinen’s model.
This refers on the one hand to the mathematical complexity and computational effort
at runtime. The loss model should be well understandable, easy to implement and
fast to calculate. Furthermore, as few new prerequisites and input data as possible
should be required. On the other hand, high accuracy or applicability on complex
waveforms (compare to [33]) is not demanded. A phenomenological justification of
the approach is sufficient for the purpose of this dissertation.

4.1.1. Definitions for the Steady-state Case

Basically the same basic conditions apply as described in Section 3.2. These are
only briefly summarized here. A simple periodic excitation in h is assumed. There
exists a unique steady-state as stated in Remark 3.60. This is defined by the turning
points (h0, b0), (h1, b1) ∈ I with h0 < h1 and paths p+ and p−. h is increased from
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p+

p−

(h0, b0)

(h1, b1)

h

b

(a) A general overview of the steady-state
and the defining entities.

p+

p−

(h0, b0)

(h1, b1)

h

b

(b) Approach for evaluating the enclosed
area at intermediate steps.

Figure 4.1.: Idea of the loss model. Comparable with figures from [38, 39].

h0 to h1. The paths p+ and p− form a closed hysteresis loop with p+(h) ≤ p−(h) for
all h ∈ [h0, h1].

Only half a cycle is considered (h from h0 to h1). A graphical illustration is given
in Figure 4.1(a). Without loss of generality only this case is discussed here. The
situation for decreasing values of h is to deduce analogously by symmetry arguments.
Whole or several cycles can then be performed one after the other and summed up.

There are no further requirements for the Tellinen model and its input parameter,
i.e., this loss model fits without any restrictions.

At this point h is chosen as the independent variable and b = b(h) as the depen-
dent one. This choice will later have an influence on the selected intermediate
steps. However, the overall result remains the same. An investigation follows in
Section 4.1.4.

The enclosed area A can be expressed mathematically by the integral

A =
∮

b dh . (4.1)

However, the area – not only for a complete loop, but also for any intermediate
points – shall be available. The function A+(h) describes a partial area, which is
created when it is started from h0 and let the magnetic field increase to the value
h. And analogously A− for a decrease from h1 to h. One possibility to define such
A±(h) for h ∈ [h0, h1] is

A+(h) = 1
2

∫ h

h0
p−(h)− p+(h) dh ≥ 0 , A−(h) = 1

2

∫ h

h1
p+(h)− p−(h) dh ≥ 0 . (4.2)

This allows the “so far” enclosed area to be specified proportionally to each inter-
mediate step, as shown in Figure 4.1(b). The total area can be easily calculated by
A = A+(h1) + A−(h0) ≥ 0.

Remark 4.1. For a better understanding it should be mentioned at this point that
this is especially useful later in conjunction with a heat simulation. This intermediate
evaluation allows one to transfer the loss information to the heat simulation at any
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(h0, b0)

(h∗, b∗) ≈ (h1, b1)

(a) h∗ ≈ h1

(h0, b0)

(h∗, b∗)

(h1, b1)

(b) h∗ < h1

(h0, b0)

(h∗, b∗)

(h1, b1)

(c) h1 < h∗

Figure 4.2.: (h0, b0) as starting point. (h1, b1) as actual turning point. (h∗, b∗) as
intersection of p+ and brev. Shown are the normal path p+ in red, the
actual return path p− in blue and the predicted reverse path brev in
green.

time. It is not necessary to pay attention, if the current state (h, b) is a turning point
or if a complete loop was processed.

Remark 4.2. By construction A, A+ and A− are not negative. This will be a firm
condition in the following. In the context of this thesis, possible negative oriented
areas are not considered.

4.1.2. Extension to the Nearly Steady-State

As already examined in Section 3.2, there is a convergent behavior towards the stable
state. But this means also in reverse, that there is a certain transient phase until
the stable state is reached. In this section, this nearly steady-state will be analyzed.
The possible errors and deviations are examined and shown. Also special features of
the numerical implementation are worked out in detail.

As in the previous section, it is assumed that start is at a turning point (h0, b0)
with a path p+ = p+(h). Then, this path is followed to the second turning point
(h1, b1). There the path p− = p−(h) leads back to h0. If there is no steady-state,
then p−(h0) 6= b0 holds.

Starting in (h0, b0) the predicted return path brev is calculated. The path brev is based
on µ−

diff w.r.t. the condition brev(h0) = b0. In steady-state as described in Section 4.1.1,
brev and p− are identical. This no longer holds in the nearly steady-state.

A visual overview is given in Figure 4.2. There are two possible situations. The
predicted return path brev intersects the path p+ before p+ joins p−. Or brev does not
intersect with p+ at all. In both cases, the area between p+ and p− is approximated
by the area between p+ and brev.

How to integrate this approach into a simulation with discretized values is described
in the following Section 4.1.3. At this point, it is examined if the loss model is
well-defined. Two important properties are investigated. First, how to define brev in
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a generally valid way. Second, under which conditions there is an enclosed, positively
oriented area between p+ and brev.

Definition of the Predicted Return Path brev

The path brev shall be based on p− w.r.t. (h0, b0) ∈ I. But in contrast to p−,(
h, brev(h)

)
∈ I should hold for all h of interest. As shown in Figure 3.10, the path

p− is not completely contained in I. Remark 3.26 does not apply, because p− is
based on µ−

diff and is adopted under the aspect of increasing h values. The path p− is
used in reverse. This leads to the result that there possibly exists ĥ ∈ R, such that(

h, p−(h)
)

/∈ I for all h > ĥ and p−(ĥ) = B+
sat(ĥ) (4.3)

holds. The idea for brev is now simple. It will use p− until it leaves the valid domain
I. Then brev is restricted to I. Hence the definition of brev : R→ R is

brev(h) =
p−(h) , if h ≤ ĥ

B+
sat(h) , if h > ĥ

. (4.4)

brev is continuous by construction and it holds
(
h, brev(h)

)
∈ I for all h ∈ R. Thus,

Tellinen’s model can always be applied onto the state
(
h, brev(h)

)
and brev is therefore

well defined.

Restriction to Positive Oriented Areas

First of all, it is examined, when a positive oriented surface can be obtained at
all. The geometrical arrangement of the paths p+ and p− was already analyzed in
Section 3.2. As stated in Remark 3.49 there exists at most a second intersection of
p+ and p−. Only if (h0, b0) ∈ I< applies, a positive oriented surface is obtained at
all. And a second intersection of p+ and brev at some (h∗, b∗) ∈ I> with h0 < h∗ is
guaranteed.

For (h0, b0) /∈ I<, the loss model cannot be applied. But the convergence towards
the stable loop guarantees, that after a finite number of loops, the turning point
(h0, b0) must be in I<. The existence and uniqueness of the stable loop was already
shown in Lemma 3.57.

Remark 4.3. It is concluded that the loss model is applicable after a transient phase.
By the condition of (h0, b0) ∈ I<, it can be easily checked, if the loss model can be
started in (h0, b0).

The further consideration puts the focus on the other turning point. Let (h∗, b∗) ∈ I
denote the other intersection of p+ and brev and let (h1, b1) ∈ I the actual turning
point of p+. As shown in Figures 4.2(b) and 4.2(c), two different types of errors are
possible. It can either hold h∗ < h1 or h∗ > h1.
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(a) First half cycle starting
from (0, 0) ∈ I=. The
loss model can not be ap-
plied, because of the geo-
metrical order of p+ and
brev. The path brev is re-
stricted to I.
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(b) The second half of the
first cycle. The loop is
clearly not closed prop-
erly, but the loss model
can already be applied on
most part of the intervall
[hmin, hmax].
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(c) First half of the second
cycle. The loop is ap-
proximately closed and
the loss model can be ap-
plied on the whole inter-
val [hmin, hmax].

Figure 4.3.: Starting from a demagnetized state, the material is excited until hmax =
300 kA/m, then remagnetized down to hmin = −300 kA/m and back to
hmax. Paths based on µ+

diff are in red, µ−
diff in blue and the prediction brev

in green.

For the case h∗ < h1, it holds p+(h) > brev(h) for all h > h∗, i.e., for these h values
the area between p+ and brev is negative oriented. According to Remark 4.2, the
subdomain (h∗, h1] is therefore excluded.

For the case h1 < h∗ the closed area is positive oriented and the loss model can be
applied without restrictions.

Summarizing the above, the conclusion of Remark 4.2 is to ignore all subdomains
with brev(h) < p+(h). The steady-state approach (4.2) can be extended to

A+(h) = 1
2

∫ h

h0
max

(
0, brev(h)− p+(h)

)
dh ≥ 0 , (4.5a)

A−(h) = 1
2

∫ h

h1
min

(
0, brev(h)− p−(h)

)
dh ≥ 0 . (4.5b)

Example

An example that shows both of the above problems, is a virgin material, i.e.,
(h0, b0) = (0, 0) ∈ I=. This means in particular (h0, b0) /∈ I< and thus one can
directly determine that the model is not yet applicable. The material is the same as
in Figure 3.19.
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Figure 4.4.: Visualization of the loss model for the case that b is assumed as the
independent variable. Comparable with figures from [38, 39].

The magnetic field strength h is increased to hmax = 300 kA/m. The resulting paths
for p+ and brev are shown in Figure 4.3(a). The restriction of brev to I and the wrong
geometrical order of p+ and brev are clearly visible.

Next, h is decreased to hmin = −300 kA/m. The paths p− and brev are calculated as
stated above and shown in Figure 4.3(b). The area enclosed between p− and brev
is only a very rough approximation. But the loss model can already be applied on
most of the interval [hmin, hmax].

Increasing h back to hmax = 300 kA/m, yields already an almost satisfactory approx-
imation of a closed loop, as shown in Figure 4.3(c). The loss model can be applied
on the whole interval [hmin, hmax].

In Figure 3.19 the convergence speed was already examined and after only a few
cycles, the curves were already almost stable. The loss model is applicable after only
half a cycle and after a small number of cycles it yields good approximation values.

4.1.3. Embedding Into a Simulation – a Discretized Version

Now, it is no longer regarded from a continuous observation, but from a discretized one.
It is assumed that from a magnetic field simulation the states (hj−1, bj−1), (hj, bj) ∈ I
are known. These corresponds to time steps tj−1, tj accordingly. The prediction of
the reverse path is introduced by the states (hj−1, bj−1

rev ), (hj, bj
rev) ∈ I.

Now, after another step of the magnetic field simulation, a new state (hj+1, bj+1) ∈ I
was calculated. Firstly, the goal is to analyze the progress of the simulation to
detect if there is a turning point at time tj. This is easily checked by the condition
(hj − hj−1) · (hj+1 − hj) < 0. If a turning point is detected, bj

rev = bj is set. If not,
nothing has to be modified.

Secondly, the new state of the reverse path (hj+1, bj+1
rev ) has to be calculated. But

since the direction of change is known by hj and hj+1, it can be solved by any
numerical solution methods for ODEs applied on (3.7). As a simple example the
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explicit Euler method can be used, i.e., as an update for brev,

bj+1
rev = bj

rev + µ±
diff · (hj+1 − hj) with µ±

diff =


µ+

diff

(
hj, bj

rev

)
, if hj+1 > hj

µ−
diff

(
hj, bj

rev

)
, if hj+1 < hj

(4.6)

would result.

At this point, however, one must note that it is not guaranteed that (hj+1, bj+1
rev ) ∈ I

holds true. For more complex ODE solution approaches, the intermediate steps may
already be outside of I. If this is the case, bj+1

rev can be just restricted to the valid
domain, by either setting bj+1

rev = B+
sat (hj+1) or bj+1

rev = B−
sat (hj+1), correspondingly.

This ensures (hj+1, bj+1
rev ) ∈ I and has no effect on the last phase of the algorithm.

Thirdly, the newly enclosed area has to be computed. The points (hj, bj), (hj+1, bj+1),
(hj+1, bj+1

rev ) and (hj, bj
rev) form a trapezoid, as seen in Figure 4.4. The mathematical

orientation of the area has to be taken into account. Furthermore, only positive
oriented areas are of interest. This yields

Aj+1 = max
(

0,
(
hj+1 − hj

) (bj
rev − bj) + (bj+1

rev − bj+1)
2

)
. (4.7)

Under the aspect of a multi rate approach – as it will be presented later in Section 5.6
– it shall be mentioned briefly that Aj+1 is not necessarily further evaluated in this
time step. But it can be easily stored by just summing up Aj+1

sum = Aj
sum + Aj+1. Asum

is reset to zero if an evaluation of the enclosed area was performed. Otherwise, it
holds the summed area for all time step since the last evaluation.

4.1.4. Further Properties

At this point a few more properties and comparisons to Tellinen’s hysteresis model
shall be made.

Computational Performance and Memory Considerations

The loss model, in its discrete form in the previous section, is very modest in terms
of needed memory. Only bj+1

rev and Aj+1
sum are stored additionally. From the previous

time steps only the values hj−1, hj, bj are necessary. The loss model uses a little
more memory than the pure hysteresis model. But overall, it is in the same order of
magnitude for the memory usage.

In terms of computational complexity, the user has some degrees of freedom. Similar
to the hysteresis model the user can choose the approach for solving the underlying
ODE (3.7). It makes sense to use approximately the same complexity levels in both
models.
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Exchanging the Roles of h and b

Similar to Remark 3.10 the loss model allows an alternative version, if b is assumed
as the independent variable and h = h(b) as the dependent one.

The whole loss model could be alternatively defined w.r.t. some hrev = hrev(b).
The overall approach is the same, but the intermediate steps differ. The resulting
trapezoids are vertical orientated, in contrast to Figure 4.4. Switching the independent
variable would make the trapezoids horizontal orientated. This of course results in
different values for the area at the intermediate values. The total area is calculated
identically with both approaches in steady state.

Combination with Other Hysteresis Models

Basically, the loss model can be decoupled from Tellinen’s model and used with
other hysteresis models. Tellinen’s model is just very well suited and can be easily
combined together.

Also, with Tellinen’s model it would be easy to use a higher quality interpolation
method instead of a piece wise linear approach for brev and the resulting trapezoids.
At the evaluation points µ±

diff provides the derivative.

If one want to combine the loss model with other hysteresis models, it must be
possible to apply them backwards. It must be possible to embed the model in the
magnetic field simulation and also predict the return path brev.

4.1.5. Interim Conclusion & Further Remarks

The presented loss model is based on the calculation of the enclosed area in the
bh-plane. For simple closed loops the loss model describes the surface analytically
correct. From a physical point of view this model is exact for simple closed loops.
For this application the model offers mainly the advantage that the evaluation of the
area can be done at any time and that the requirements in terms of memory and
computing time are moderate.

However, a great advantage of the model is that it can already work in the nearly
steady-state. The area between the actual paths p+ and p− is approximated. In
combination with the convergence property of Tellinen’s model, a valid model for
loss calculation is obtained after a transient phase.

The applicability for nearly steady-state will also become very important in the
further course of this thesis. As already mentioned in Chapter 2 and shown later in
Figure 4.5, the saturation curves B±

sat are temperature dependent, i.e., a change in
temperature disturbs the steady-state.

How exactly the model defines a materials reaction to a temperature change and
how a valid state can be ensured is described in the following section.
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Figure 4.5.: Example material roughly based on a measurement of NdFeB [27]. Com-
parable figures can be found in [37, 39].

To summarize this section, the loss model in the discrete form consists of three
major parts. First, an algorithm for detecting turning points and modifying brev, if
necessary. Second, an approach for imitating the change in h, b and apply them onto
the predicted return path brev. Third, a calculation of the enclosed area.

Thus, it is possible to specify the total power loss scaled with the volume in the unit
J/m3. This allows further calculations and forms the basis for a simulation with a
non-constant temperature.

4.2. Thermal Extension of Tellinen’s Model

Parts of the following considerations have already been published by the author of
this dissertation in [37, 39].

Until now, a constant temperature was assumed, so that the saturation curves B±
sat

were independent of temperature. However, as can be seen in Figure 4.5, there may
be a temperature dependence. In the example material presented, one can see clear
differences between roughly room temperature 27 ◦C, the range 60 ◦C to 120 ◦C and
200 ◦C. The tendency is that with increasing temperature the saturation curves B±

sat
become narrower and are equal in the limit to the Curie temperature.

Especially for Tellinen’s model from Chapter 3, the problem arises that a previously
valid state (h, b) is no longer necessarily still valid after a temperature change. So
keeping the current state (h, b) constant while the temperature T changes, may lead
to invalid states. The objective is therefore to define rules so that a valid state
remains valid even during a change in temperature. Here, the thermal model should
be understood as an extension of the original model.

To ensure that the thermal extension harmonizes as well as possible with the original
model, similar approaches are used as far as possible. But as can be seen in Figure 4.6,
there are differences for different h values. For example, the symmetry is broken.
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Figure 4.6.: Example curves B±
sat for constant h and varying T based on Figure 4.5.

Comparable figures can be found in [37, 39].

First, the thermal model is physically motivated in the following Section 4.2.1. The
detailed mathematical definition is given in Section 4.2.2. Sections 4.2.3 and 4.2.4
contain the mathematical investigations of the thermal model similar to Section 3.2.
In summary, it is discussed in Section 4.2.5 whether the model is consistent with the
physical motivation.

Even if the temperature-dependent saturation curves B±
sat are roughly based on real

measured data, unfortunately dedicated measurement results – to be able to confirm
the thermal model experimentally – are not available. Mathematical consideration
must suffice in the scope of this work, but the model can be checked for obvious
contradictions to the physics.

4.2.1. Physical Motivation

Before defining the thermal model mathematically in the following Section 4.2.2, it
is motivated – similarly to Section 3.1.2 – based on the physical facts presented in
Chapter 2, with which approaches and expectations the thermal model is addressed.

However, it must be briefly state up front that the thermal model will be comparable
in structure to the original Tellinen model. Changes of b caused by a change of
temperature T are described by a differential equation. The approach defines the
values on the saturation curves B±

sat and interpolates the intermediate values. It is
distinguished whether the temperature rises (∆T > 0) or falls (∆T < 0).

Increasing Temperature The basic assumption for the model is that an increase in
temperature represents an increase in energy in the system. As shown in Figure 2.6,
increased energy allows the use of more favorable states w.r.t. orientation of Bloch
walls and Weiß domains. This is interpreted to mean that increasing the temperature
causes the White domains and Bloch walls to align much more easily. However, easier
alignment of these also means less resistance to a change in the current state.

This view fits the limit of the Curie temperature TC. Once this temperature is
reached, the two saturation curves B±

sat lie on top of each other. The system contains
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such a high amount of energy that always the most favorable states can be reached
and the effect of hysteresis is nullified.

So for the case ∆T > 0 it can be summarized that – motivated by physics – an
increase of the willingness to change the current state can be observed and the
merging of the curves B±

sat is an important modeling aspect.

At no time may the current working point (h, b) be outside the curves B±
sat. It has

already been proven in Section 3.2 that ODE (3.7) ensures that the valid domain I is
not left. There, on the saturation curves B±

sat, the value µ0 is assigned one time, and
the value dB±

sat
dh

another time. No physically meaningful reason why a temperature
change ∆T should favor one of the magnetic directions ∆h ≶ 0 or rather ∆b ≶ 0 can
be stated. Thus, the influence of the upper saturation curve B−

sat should be equal to
that of the lower one B+

sat.

The case ∆T > 0 will be modeled such that the values on the saturation curves B±
sat

are given by ∂B±
sat

∂T
. If the current state w.r.t. h, b, T is maximally saturated, i.e., it lies

on B+
sat or B−

sat, then the maximum saturation is maintained when the temperature T
increases. Values between these extremes are defined by an interpolation. Graphically,
this means that the model follows the measured saturation curves B±

sat as closely as
possible.

Decreasing Temperature When the temperature T is reduced, it is again argued
about the energy in the system. If the energy is decreased, the white domains and
Bloch walls have less possibilities to change their orientation and position. They
are more or less frozen in their current state. Using only this reasoning, one would
define the approach ∂b

∂T
= 0 for ∆T < 0.

However, this simple approach leads to the fact that the valid area I can be left.
More precisely B±

sat can change so much if the temperature changes, such that a
formerly valid state (h, b) is no longer valid. Therefore, the chosen approach yields
that the model tries to keep b as constant as possible and that b is only changed
enough such that the saturation curves B±

sat are respected as boundaries.

Benchmarks and Objectives The goal of the thermal extension is to define rules
such that the extended model can handle changes in the saturation curves B±

sat,
regardless of the signs of ∂B±

sat
∂T

. That these are taken into account as boundaries is
the first benchmark. The allowed states I are extended by a temperature component
and it will be proven mathematically that the model cannot leave I.

If any valid path lies on or between the curves, the limit against the Curie temperature
is automatically covered. Therefore, this will not be investigated separately.

The thermal model is designed as an extension of the original model. Thus, if the
curves do not change due to temperature, i.e., ∂B±

sat
∂T

= 0 , the original model should
result. This is the second benchmark.
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From a physical point of view, the process of demagnetization is important. A
magnetized material should not magnetize more strongly by itself without some sort
of excitation (temperature T or h field), but demagnetize if at all. The special case
h = 0 will be examined as the third benchmark in more detail.

Unfortunately, corresponding measurements are not available, so that the thermal
model cannot be verified experimentally. Nevertheless, it is checked for basic physical
sense via the above benchmark problems.

Now follows first the mathematical definition of the thermal model and then the
investigation. Then in Section 4.2.5, it will be discussed whether the thermal model
behaves physically reasonable w.r.t. the above benchmarks.

4.2.2. Definition, Prerequisites and Input Parameters

The thermal model shall be very close to the original model. There shall be only B+
sat

as input parameters. But instead of a single curve (R→ R), it is now assumed as a
surface (R2 → R). The previous approaches should be able to be used further on,
only one new dimension, the temperature T , will be added. The partial derivative
w.r.t. h shall fulfill the previous conditions for each state, i.e.,

∂

∂h
B+

sat(h, T ) ≥ µ0 , lim
|h|→∞

∂

∂h
B+

sat(h, T ) = µ0 . (4.8)

Furthermore, the vertical order between B+
sat and B−

sat shall be ensured. Also the
limit behaviour w.r.t. h remains as before, i.e.,

B+
sat(h, T ) < B−

sat(h, T ) :=−B+
sat(−h, T ),

lim
|h|→∞

(
B−

sat(h, T )−B+
sat(h, T )

)
=0.

(4.9)

The observation of the temperature is limited to an interval [Tmin, Tmax]. This results
in the set of all valid states of

IT =
{
(h, b, T ) ∈ R2 × [Tmin, Tmax]

∣∣∣B+
sat(h, T ) ≤ b ≤ B−

sat(h, T )
}

. (4.10)

The relative vertical position λ within the limiting saturation surface is still needed
and given by

λ = λ(h, b, T ) = B−
sat(h, T )− b

B−
sat(h, T )−B+

sat(h, T ) ∈ [0, 1] . (4.11)

Remark 4.4. If the temperature is kept constant, the original model is obtained. The
definition is taken over and only the new dimension of the temperature T is added.
That means all previous properties from Chapter 3 are still valid, if you assume the
temperature T to be constant and restricts the consideration to the direction h.
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Figure 4.7.: Example for the resulting vector field of the thermal model. Note that
the starting point (T0, b0) is not necessarily identical with the end point
(T0, b2). Comparable figures can be found in [37, 39].

Remark 4.5. Similar approaches as in Chapter 3 are used. On the one hand, this
refers to the approach how the quantities T and b are coupled. b is chosen as the
dependent variable and the main part of the model consists of the partial derivative
∂b
∂T

. This is defined direction-dependent (∆T > 0 or ∆T < 0) as before. On the
other hand it is attempted to use similar examination methods as in Chapter 3. This
should give an impression how the model reacts to temperature changes.

Definition 4.6: The core of this thermal model is the definition of the directional
partial derivatives ∂b

∂T
, given by

∂b

∂T
= λ

∂

∂T
B+

sat(h, T ) + (1− λ) ∂

∂T
B−

sat(h, T ) for ∆T > 0 (4.12a)

and
∂b

∂T
=λ min

(
∂

∂T
B+

sat(h, T ), 0
)

+ (1−λ) max
(

∂
∂T

B−
sat(h, T ), 0

)
for ∆T < 0 . (4.12b)

4.2.3. Basic Properties

Like the original Tellinen model in Chapter 3, the thermal extension yields a vector
field. An example is given in Figure 4.7. Also again the derivatives of the limiting
saturation curves B±

sat are significantly important for the behavior inside of IT. The
following considerations refer to an investigation with constant values for h.
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The thermal model has no global symmetry. In Figure 4.6 the saturation curves B±
sat

are shown for different values of h for an example material. The case of h = 0 yields
symmetric properties and will be examined in Section 4.2.4. Furthermore it can be
seen that the derivative ∂B±

sat
∂T

is generally not bounded, in contrast to ∂B±
sat

∂h
.

Remark 4.7. In contrast to the saturation curves B±
sat(h) presented in Chapter 3, the

boundaries B±
sat(h, T )|h=const are not monotone in T , as seen in Figure 4.6.

Remark 4.8. The consideration for the temperature T is limited to an interval
[Tmin, Tmax] with Tmin < Tmax.

These altered basic assumptions – when examined B±
sat in the direction of T instead

of h – must of course be taken into account in further investigations.

The computational effort and memory requirements are similar to the original model.
The calculation of λ is equivalent and besides basic mathematical operations only
evaluations of B±

sat at the current working point (h0, b0, T0) ∈ IT are needed.

4.2.4. Definition of Paths and Convergence Behavior

In this section investigations similar to Section 3.2 shall be performed. For this
purpose again paths p± are defined as solutions to initial value problems and their
course is studied. Thereby the well-defined nature of the thermal model shall be
shown. This means especially that B±

sat are respected as boundaries of IT. Again, a
excitation in the form of sweeping will be investigated. The existence and uniqueness
of stable curves and the convergence behaviour to them will be considered.

Subdivision of the Interval [Tmin, Tmax]

In preparation for the mathematical investigation, (4.12b) is first examined in more
detail. The definition there is as compact as possible. For a illustrative consideration
an alternative formulation is useful.

Remark 4.9. Another possible formulation of (4.12b) is given by

∂b

∂T
=



λ
∂

∂T
B+

sat + (1− λ) ∂

∂T
B−

sat if ∂
∂T

B+
sat ≤ 0 and ∂

∂T
B−

sat ≥ 0

(1− λ) ∂

∂T
B−

sat if ∂
∂T

B+
sat > 0 and ∂

∂T
B−

sat ≥ 0

λ
∂

∂T
B+

sat if ∂
∂T

B+
sat ≤ 0 and ∂

∂T
B−

sat < 0

0 if ∂
∂T

B+
sat > 0 and ∂

∂T
B−

sat < 0

. (4.13)
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B−
sat

B+
sat

type I type II type III type IV

Figure 4.8.: Shown is the behavior of the thermal model for the four possible cases.
Boundaries B±

sat in black. The resulting values of d
dT

p+ in red and d
dT

p−

in blue for the different types defined in Definition 4.10.

Definition 4.10: Given non-empty interval A ⊆ [Tmin, Tmax]. A is called of type I,
II, III or IV if ∂B±

sat
∂T

fulfill the assigned inequalities given by (4.14) for all T ∈ A.

∂
∂T

B−
sat

< 0 ≥ 0
∂

∂T
B+

sat
> 0 I III
≤ 0 II IV

(4.14)

These types cover all possible configurations and are visualized in Figure 4.8.

Now that the basic definition of the four cases has been given, it is shown that the
interval [Tmin, Tmax] can always be divided into corresponding sub-intervals of the
four types.

Lemma 4.11: Given h = h0 ∈ R. It exists Tk (k = 0, . . . , n) with Tmin = T0 < T1 <
. . . < Tn = Tmax such that the intervals (Ti, Ti+1) (i = 0, . . . , n− 1) are of type I, II,
III or IV.

Proof. The functions B±
sat(h, T )|h=const are differentiable w.r.t. T by assumption and

therefore ∂B±
sat(h,T )
∂T

|h=h0 are continuous.

If ∂B+
sat(h,T )
∂T

|h=h0 > 0 holds for some T ∈ (Tmin, Tmax), this property is also true for
some open interval (T +

i , T +
i+1) with T ∈ (T +

i , T +
i+1). It is assumed that the intervals

(T +
i , T +

i+1) are chosen with maximal width. Then T +
> with

T +
> =

{
T ∈ (Tmin, Tmax)

∣∣∣∣ ∂B+
sat(h, T )
∂T

|h=h0 > 0
}

=
⋃

i=0,...,ni−1
(T +

2i , T +
2i+1) (4.15)

can be represented by ni distinct open intervals with Tmin ≤ T +
0 < . . . < T +

2ni−1 ≤
Tmax. The same holds true for

T −
< =

{
T ∈ (Tmin, Tmax)

∣∣∣∣ ∂B−
sat(h, T )
∂T

|h=h0 < 0
}

=
⋃

j=0,...,nj−1
(T −

2j , T −
2j+1) . (4.16)

Now combining the lists T +
i and T −

j , appending Tmin and Tmax, sort the entries and
remove duplicate values results in the desired list of Tk.
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30 60 90 120 150 180 210

−1

0

1

B+
sat

B−
sat

IV I

T [◦C]

b[
T
]

(a) h = 0 A/m.

30 60 90 120 150 180 210

0

1

2

B+
sat

B−
sat

I

III IV II I III

T [◦C]

b[
T
]

(b) h = 6 · 105 A/m.

Figure 4.9.: Two of the curves from Figure 4.6 are shown and marked according to
their type w.r.t. Definition 4.10.

Remark 4.12. An exemplary assignment of the individual types to given curves is
shown in Figure 4.9. As seen in Figure 4.9(b), all types can occur for a single set of
B±

sat.

Definition of Paths p± as Solutions of an IVP

Motivated by (4.12a), (4.12b) and Definition 3.12, now the paths p± shall be defined
in the scope of a constant value of h and w.r.t. T .

Definition 4.13: Let (h0, b0, T0) ∈ IT .

p+ = p+(T ) : [Tmin, Tmax] ⊆ R→ R is the solution of the initial value problem

dp+(T )
dT

=

=λ

B−
sat(h0, T )− p+(T )

B−
sat(h0, T )−B+

sat(h0, T )
∂B+

sat(h0, T )
∂T

+ p+(T )−B+
sat(h0, T )

B−
sat(h0, T )−B+

sat(h0, T )
=1−λ

∂B−
sat(h0, T )

∂T

(4.17)

with p+(T0) = b0.

p− = p−(T ) : [Tmin, T †] ⊆ [Tmin, Tmax] ⊆ R → R is the solution of the initial value
problem

dp−(T )
dT

= B−
sat(h0, T )− p−(T )

B−
sat(h0, T )−B+

sat(h0, T ) min
(

∂
∂T

B+
sat(h0, T ), 0

)

+ p−(T )−B+
sat(h0, T )

B−
sat(h0, T )−B+

sat(h0, T ) max
(

∂
∂T

B−
sat(h0, T ), 0

) (4.18)

First, it will be proven that Definition 4.13 is well defined. This concerns especially
the definition domain and the check if the paths p± stay in IT.
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Tk Tk+1

B+
sat

B−
sat

topl

botl

topr

botr

T

b(h∗, T )

Figure 4.10.: Sketch of the notation used in the proof of Lemma 4.17. The initial
values are marked with cycles. This example is of type I, so the resulting
paths are all constant.

Remark 4.14. In the following, any path denoted with p± is defined by Definition 4.13
with respect to some (h0, b0, T0) ∈ IT .

Remark 4.15. Lemmas 4.16 and 4.17 will define and prove the domain of paths p±

defined w.r.t. (h0, b0, T0) ∈ IT . Basic properties are also studied.

Lemma 4.16: Given (h0, b0, T0) ∈ IT and h = h0 is constant.

p+ = p+(T ) is defined on the whole interval [Tmin, Tmax] and fulfills B+
sat(h0, T ) ≤

p+(T ) ≤ B−
sat(h0, T ) for all T ∈ [Tmin, Tmax]. λ

(
h0, p+(T ), T

)
as defined in (4.11) is

constant for all T ∈ [Tmin, Tmax]. p+ is given by

p+(T ) = λ0B
+
sat(h0, T ) + (1− λ0)B−

sat(h0, T ) (4.19)

with

λ0 = B−
sat(h0, T0)− b0

B−
sat(h0, T0)−B+

sat(h0, T0)
∈ [0, 1] . (4.20)

Proof. Inserting (4.19) and its derivative

d
dT

p+(T ) = λ0
∂

∂T
B+

sat(h0, T ) + (1− λ0)
∂

∂T
B−

sat(h0, T ) (4.21)

into the IVP (4.17) results in an always true statement. The initial value is fulfilled
by (4.20). The right hand side of (4.17) is Lipschitz continuous w.r.t. p+ (it is
continuously differentiable w.r.t. p+). By the theorem of Picard-Lindelöf the solution
is unique. So the unique solution is given by the explicit formulation in (4.19).

The path p+ is a convex combination (linear combination with non-negative weights
and the sum of weights is equal to one) of B+

sat and B−
sat. Therefore it lies between

or on them. And since these function are defined on the interval [Tmin, Tmax], this is
also true for p+.

Inserting (4.19) into the definition of λ in (4.11) results in λ = λ0.
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type I type II type III type IV

(a) Starting on the left side.
type I type II type III type IV

(b) Starting on the right side.

Figure 4.11.: Shown are how paths p− can be continued on an interval [Tk, Tk+1] of
specific type. The initial values are marked with cycles. The upper
rows shows initial values at T = Tk and the lower row at T = Tk+1.

Lemma 4.17: Given (h∗, b∗, T ∗) ∈ IT . h = h∗ is constant.

p− = p−(T ) is defined on the interval [Tmin, T †] with T ∗ ≤ T † ≤ Tmax and fulfills
B+

sat(h∗, T ) ≤ p−(T ) ≤ B−
sat(h∗, T ) for all T ∈ [Tmin, T †].

Proof. Using Lemma 4.11 to subdivide [Tmin, Tmax] into intervals (Tk, Tk+1) with
k = 0, . . . , nk, such that these intervals are of type I, II, III or IV.

W.l.o.g. assume T ∗ = Tk for some k ∈ 0, . . . , nk + 1. If this is not fulfilled, add
another break at T ∗.

One of those intervals (Tk, Tk+1) is now regarded and the properties of p− are
investigated. It will be distinguished whether T ∗ = Tk or Tk+1 holds. In the first case,
the problem is artificially extended outside of the domain IT . Depending on b∗ the
resulting paths p− may leave IT , as shown in Figure 4.11(a). In the second case, the
resulting paths p− will stay inside of IT for any valid b∗, as shown in Figure 4.11(b).

I Idea: If this is shown, it can be concluded that a path p− defined w.r.t. (h∗, b∗, T ∗) ∈
IT can be continued up to the left boundary Tmin. But going to the right, it may exit
IT at some T † before it reaches Tmax. In each type, the resulting right hand side of the
underlying ODE (4.18) fulfills all requirements of Lemma A.1. If suitable boundary
solutions (top, bot) of the ODE are chosen, they can easily apply Lemma A.1.

I Notation: In each of the following cases an underlying ODE is defined. A sketch of
the notation is given in Figure 4.10. Let topl denote the solution of the corresponding
ODE with initial value topl(Tk) = B−

sat(h∗, Tk). Graphically it is the solution starting
at the top left corner. In the same way an index of r refers to an initial value at
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T = Tk+1, i.e., the right boundary. And if the starting value is on the lower limit
B+

sat, the solutions are called botl and botr.

I type II: The underlying ODE is given by dp−

dT
= λ

∂B+
sat

∂T
, which is extended to

dp−

dT
=

λ
∂B+

sat

∂T
if B+

sat ≤ p− ≤ B−
sat

0 if B−
sat < p−

. (4.22)

The right hand side of (4.22) is still continuous and Lipschitz-continuous in the
second variable. bot(T ) = B+

sat(h∗, T ) is a solution of (4.22) with initial values(
h∗, B+

sat(h∗, Tk), Tk

)
and

(
h∗, B+

sat(h∗, Tk+1), Tk+1
)

. (4.23)

Let topl denote the solution of (4.22) with initial value topl(Tk) = B−
sat(h∗, Tk). topl

is explicitly given by the constant solution, i.e., topl(T ) = b∗ for all T ∈ [Tk, Tk+1].

Using topl and bot with Lemma A.1 ensures existence and uniqueness of topr, which
is a solution of (4.22) for

(
h∗, B−

sat(h∗, Tk+1), Tk+1
)
. It holds bot < topr < topl

for all T ∈ [Tk, Tk+1]. It can be concluded, that for all initial values (Tk, b) with
b ∈

[
B+

sat(h∗, Tk), topr(Tk)
]

the resulting paths p− will stay inside on IT for the
whole domain [Tk, Tk+1]. The same is true for initial values (Tk+1, b) with b ∈[
B+

sat(h∗, Tk+1), B−
sat(h∗, Tk+1)

]
.

This also means, that any initial values with (Tk, b) with b ∈
(
topr(Tk), B+

sat(h∗, Tk)
]

will result in paths p− with p−(Tk+1) > B−
sat(h∗, Tk+1). These paths leave IT and

therefore cannot be continued in the next adjacent interval. The intersection of these
paths and B−

sat is at T †. All other paths will stay in IT and can be continued.

I type III: Analogous to the case of type II. It is only necessary to interchange the
consideration of the upper and lower boundaries.

I type I: This type is a combination of type I and II. Both top and bot must be
separated into left and right. And the ODE must be extended above and below of
IT .

I type IV: This case is already covered by Lemma 4.16, since the underlying ODE
is the same.

Remark 4.18. Analogous to Chapter 3 it can be stated, that every point (h, b, T ) ∈ IT
is hit by exactly one path p+ and one p−. A part of the following investigations
aims at making statements about further intersections of these paths. Or under
which conditions they do match completely. For this purpose, the terms stable and
reversible are introduced and investigated accordingly.
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Remark 4.19. With Lemmas 4.16 and 4.17, one can conclude, that if the paths p±

are applied in their intended use case (∆T > 0 or ∆T < 0), the resulting composite
path can not leave IT . The boundary curves B±

sat are thus respected as such by the
model and the approach is regarded as well defined.

Investigations on Reversibility of the Thermal Extension

Now that the basic definition of the paths has been completed and found to be well
defined, the behavior of the model for sweeping excitations w.r.t. T will be discussed.
Analogously to Chapter 3, it will be investigated under which conditions two paths
p± form a closed curve. In the case of a sweeping excitation this corresponds to a
stable state, i.e., in each new cycle the same paths result.

New in this section, however, is that the paths p± can also be identical. This means
that the closed curve has no enclosed area and the forward and backward motion
takes place on the same path. This is denoted as reversible. One focus of the
investigations will be the correlation between stable and reversible. It will be shown
that these properties are equivalent in some application scenarios.

The strategy can be roughly summarized as follows.

I First, h and T are held constant and the influence of b on the paths p± defined
w.r.t. (h, b, T ) ∈ IT is examined. The focus is on the derivatives dp±

dT
. This allows to

gain first insights into the different behavior of the paths p± or, conversely, when
they behave the same.

I Second, the definitions of stable and reversible will be introduced. From the
previous investigations direct statements about the existence and uniqueness of
reversible paths can be made.

I Then it is moved on to examinations on subintervals of only one type. There
conditions, when the definitions of stable and reversible are equivalent, can be
established.

I Afterwards, the convergence behavior for sweeping excitations is investigated and
it is shown that the model always tends towards stable or reversible states.

I The previous investigation will be restricted to subintervals of one type. For the
special case of h = 0 being constant, the examinations are extended to intervals
of any type. It will be proven, that for h = 0 only the types I and IV can occur.
Because of this, these types are examined in further detail. Also here a convergent
behavior of the model will be found.

Remark 4.20. The following investigation has the same approach as the partition of
I into I<, I=, I> in Section 3.2.3. The derivatives of p+ and p− are compared. This
information will be used in many of the upcoming proofs.
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Lemma 4.21: Given T0 ∈ [Tmin, Tmax] and h = h0 constant. Let p± be paths defined
w.r.t. (h0, b0, T0) ∈ IT . Depending on the signs of d

dT
B±

sat w.r.t. Definition 4.10 the
following statements hold true.

i) type I

It exists beq =
∂B−

sat
∂T

B+
sat−

∂B+
sat

∂T
B−

sat
∂B−

sat
∂T

−
∂B+

sat
∂T

∈
(
B+

sat(h0, T0), B−
sat(h0, T0)

)
such that

dp−

dT
(T0) = 0


> dp+

dT
(T0) , if b0 ∈

(
beq, B−

sat(h0, T0)
]

= dp+

dT
(T0) , if b0 = beq

< dp+

dT
(T0) , if b0 ∈

[
B+

sat(h0, T0), beq
) (4.24)

holds.

ii) type II

dp−

dT
(T0)

> dp+

dT
(T0) , if b0 ∈

(
B+

sat(h0, T0), B−
sat(h0, T0)

]
= dp+

dT
(T0) = ∂B+

sat
∂T

(h0, T0) , if b0 = B+
sat(h0, T0)

(4.25)

iii) type III

dp−

dT
(T0)

< dp+

dT
(T0) , if b0 ∈

[
B+

sat(h0, T0), B−
sat(h0, T0)

)
= dp+

dT
(T0) = ∂B−

sat
∂T

(h0, T0) , if b0 = B−
sat(h0, T0)

(4.26)

iv) type IV

dp−

dT
(T0) = dp+

dT
(T0) for all b0 ∈

[
B+

sat(h0, T0), B−
sat(h0, T0)

]
(4.27)

Proof. The proof is performed separately for each type.

i) Inserting the given beq into the definition of λ in (4.11) results in

λ =
∂B−

sat
∂T

∂B−
sat

∂T
− ∂B+

sat
∂T

and 1− λ =
∂B+

sat
∂T

∂B+
sat

∂T
− ∂B−

sat
∂T

. (4.28)

Inserting into

dp+

dT
= λ

∂B+
sat

∂T
>0

+(1− λ) ∂B−
sat

∂T
<0

(4.29)

results in dp+

dT
= 0 = dp−

dT
. (4.29) is strictly monotonously increasing w.r.t. λ,

which itself is strictly monotonously decreasing w.r.t. b. So overall (4.29) is strictly
monotonously decreasing w.r.t. b. This makes the used beq unique and proves the
statement (4.24).
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ii) Comparing the definitions of p± in this case yields

dp+

dT
= λ

∂B+
sat

∂T
+ (1− λ)

∈[0,1]

∂B−
sat

∂T
<0


= ∂B+

sat

∂T
= dp−

dT
if λ = 1

< λ
∂B+

sat

∂T
= dp−

dT
else

. (4.30)

The condition λ = 1 is equivalent to b0 = B+
sat(h0, T0) and (4.25) is proven.

iii) Comparing the definitions of p± in this case yields

dp+

dT
= λ

∈[0,1]

∂B+
sat

∂T
>0

+(1− λ)∂B−
sat

∂T


= ∂B−

sat

∂T
= dp−

dT
if λ = 0

> (1− λ)∂B−
sat

∂T
= dp−

dT
else

. (4.31)

The condition λ = 0 is equivalent to b0 = B−
sat(h0, T0) and (4.26) is proven.

iv) In this case, the definition of dp+

dT
and dp−

dT
are identical and (4.27) is proven.

Remark 4.22. A conclusion of Lemma 4.21 is that a partition of I as in Section 3.2.3
cannot be done analogously. Even if there is a unique beq in the case of type I, II,
III, this does not lead to a continuous function beq(T ). For example in case of a
transition from type II to type III, beq would jump from B+

sat to B−
sat. In case of type

IV there is no meaningful definition of beq, i.e., for the thermal model an adapted
analysis approach must be pursued.

Remark 4.23. It is to investigate the behaviour of the thermal model for a sweeping
excitation w.r.t. some interval [T0, T1] ⊆ [Tmin, Tmax]. For this purpose it will be first
defined what is meant by stable behavior. The examinations for this are first limited
to intervals with only one type.

Definition 4.24 (stable & reversible paths): Given [T0, T1] ⊆ [Tmin, Tmax] and paths
p± defined w.r.t. (h0, b0, T0) ∈ IT .

p± is called stable on [T0, T1], if p+(T1) = p−(T1) holds and reversible, if p+(T ) = p−(T )
for all T ∈ [T0, T1].

Remark 4.25. At this point the existence and uniqueness of reversible paths p± will
be proven. It will be shown, that reversible paths p± exist in intervals of type I only
under certain conditions. In intervals of type II and III unique reversible paths p±

exist. They lie on the saturation curves B±
sat. In the case of type IV, one common

point of p+ and p− is sufficient, such that the paths are identical and therefore
reversible.

Lemma 4.26: Given nonempty [T0, T1] ⊆ [Tmin, Tmax] of only one type. Let p± :
[T0, T1]→ R be defined w.r.t. (h0, b0, T0) ∈ IT .

p± are reversible if and only if one of the following conditions is true.
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I The interval [T0, T1] is of type I and b0 = λ0B
+
sat(h0, T0) + (1− λ0)B−

sat(h0, T0) and
∂B−

sat
∂T

= −λ0
1−λ0

∂B+
sat

∂T
for all T ∈ [T0, T1] with λ0 =

∂B−
sat

∂T

∂B−
sat

∂T
−

∂B+
sat

∂T

∣∣∣∣∣
h=h0
T =T0

holds.

I The interval [T0, T1] is of type II and b0 = B+
sat(h0, T0) holds.

I The interval [T0, T1] is of type III and b0 = B−
sat(h0, T0) holds.

I The interval [T0, T1] is of type IV.

Proof. p+(T ) = p−(T ) for all T ∈ [T0, T1] is true, if and only if dp+(T )
dT

= dp−(T )
dT

for
all T ∈ [T0, T1] and p+(T0) = p−(T0) holds. The second conditions is fulfilled by
construction of p±.

For type II, III and IV this is easily proven by Lemma 4.21.

For type I the value for b0 and λ0 are given by Lemma 4.21. It yields
dp+(T )

dT
= 0 = λ0

∂B+
sat(T )
∂T

+ (1− λ0)
∂B−

sat(T )
∂T

= dp−(T )
dT

(4.32)

for all T ∈ [T0, T1] only if ∂B−
sat(T )
∂T

= −λ0
1−λ0

∂B+
sat(T )
∂T

for all T ∈ [T0, T1] is true, since λ0
is a constant.

Remark 4.27. The next intermediate goal is to investigate the relationship between
stable and reversible curves. For this purpose the observation is limited to an interval
of one type. A focus will be on the conditions under which these definitions are
equivalent.

Lemma 4.28: Given nonempty [T0, T1] ⊆ [Tmin, Tmax] of only one type. Let p± :
[T0, T1]→ R be defined w.r.t. (h0, b0, T0) ∈ IT . The following statements are true.

I For type II, III and IV, the definition of stable and reversible are equivalent.

I For type I, the paths p± are stable iff b0 = λ0B
+
sat(h0, T0) + (1 − λ0)B−

sat(h0, T0)
with λ0 = B−

sat(h0,T0)−B−
sat(h0,T1)

B−
sat(h0,T0)−B−

sat(h0,T1)+B+
sat(h0,T1)−B+

sat(h0,T0) ∈ (0, 1) holds.

Proof.

I type IV: The paths p± are identical, thus in particular stable and reversible.

I type II and III: It needs to be proven, that there cannot exist stable paths p±

besides the reversible ones already investigated in Lemma 4.26. These reversible
paths are excluded from the current argumentation. If paths p± are stable, they
fulfill

p+(T1)− p−(T1) = p+(T0)− p−(T0)
=b0−b0=0

+
∫ T1

T0

dp+(τ)
dT

− dp−(τ)
dT

<0 in type II
>0 in type III

dτ = 0 . (4.33)

But – under these assumptions – the equation (4.33) is not valid as the integrand is
strictly positive or negative, as proven in Lemma 4.21. So stable but not reversible
paths p± cannot exists for intervals of type type II or III.
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T0 T1

Bi−1

Bi

Bi+1

p+
i−1

p+
i

p+
i+1

p−
i−1

p−
i

T

b

Figure 4.12.: Overview of the notation and sketch of Lemma 4.31.

I type I: In this case the path p− is constant. So the condition to show is reduced
to p+(T0) = p+(T1). By definition of p+ this results in

λB+
sat(h0, T0) + (1− λ)B−

sat(h0, T0) = λB+
sat(h0, T1) + (1− λ)B−

sat(h0, T1) . (4.34)

As proven in Lemma 4.16, the λ on both sides of (4.34) is identical. Solving this for
λ results in

λ =

>0

B−
sat(h0, T0)−B−

sat(h0, T1)
B−

sat(h0, T0)−B−
sat(h0, T1)

>0

+ B+
sat(h0, T1)−B+

sat(h0, T0)
>0

∈ (0, 1) . (4.35)

With B−
sat(h0, T0) > B−

sat(h0, T1) and B+
sat(h0, T0) < B+

sat(h0, T1), λ ∈ (0, 1) is shown.

Remark 4.29. In this subsection it has been shown that for all types only one unique
set of stable paths p± exists. Stable and reversible paths are identical for intervals of
type II, III and IV. For type I, conditions were formulated under which reversible
paths can occur.

Convergence to Stable Curves

Remark 4.30. After the existence and uniqueness of stable paths has been shown, in
this subsection the convergence towards stable paths will be investigated. Similar
approaches as in Section 3.2.6 are chosen. The used excitation is analog to Defini-
tion 3.52. The chosen h is arbitrary but constant. The temperature is sweeped in a
interval [T0, T1] ⊆ [Tmin, Tmax].

Lemma 4.31: Given [T0, T1] ⊆ [Tmin, Tmax] of only one type and (h0, b0, T0) ∈ IT .
Let p+

0 be defined w.r.t. (h0, b0, T0) and p−
0 w.r.t.

(
h0, p+

0 (T1), T1
)
. For any i ∈ N, let

p+
i be defined w.r.t.

(
h0, p−

i−1(T0), T0
)

and p−
i w.r.t.

(
h0, p+

i (T1), T1
)
. The sequence

Bi = p+
i (T0) = p−

i−1(T0) converges for i → ∞ to B∞ ∈
[
B−

sat(h0, T0), B+
sat(h0, T0)

]
.

An overview of the notation is given in Figure 4.12.

104



4.2. Thermal Extension of Tellinen’s Model

Proof.

I type IV:
In this case the paths p±

i are reversible and therefore all p±
i are identical.

I type III:
Using (4.31), it can be concluded that Bi < Bi+1 < B−

sat(h0, T0) holds for all i ∈ N0,
if B0 < B−

sat(h0, T0). If B0 = B−
sat(h0, T0), then Bi = B−

sat(h0, T0) for all I ∈ N0. So
the sequence (Bi)i∈N0 is strictly monotone increasing inside of IT and bounded from
top. So it must be convergent and B∞ is given by B−

sat(h0, T0).

I type II:
Analog to case III. The sequence is strictly monotone decreasing inside of IT and
B∞ is given by B+

sat(h0, T0).

I type I:
Define ϕ :

[
B−

sat(h0, T0), B+
sat(h0, T0)

]
→
[
B−

sat(h0, T0), B+
sat(h0, T0)

]
with

ϕ(b) = B−
sat(h0, T0)− b

B−
sat(h0, T0)−B+

sat(h0, T0)
=λ0

B+
sat(h0, T1)

+ b−B+
sat(h0, T0)

B−
sat(h0, T0)−B+

sat(h0, T0)
=1−λ0

B−
sat(h0, T1) .

(4.36)

B Claim: It holds Bi+1 = ϕ(Bi) for all i ∈ N0.
The path p+

i is defined w.r.t. (h0, Bi, T0) ∈ IT . As proven in Lemma 4.16 the path
p+

i has an explicit formulation given by (4.19) and (4.20). Comparing to (4.36), one
concludes that ϕ(Bi) = p+

i (T1) holds. For this type, the paths p−
i are constant and

are given by p−
i (T ) = p+

i (T1) for all T ∈ [T0, T1]. Overall, p−
i (T0) = Bi+1 is given by

ϕ(Bi).

B Claim: ϕ is a contraction with Lipschitz constant k = B−
sat(T1)−B+

sat(T1)
B−

sat(T0)−B+
sat(T0) ∈ (0, 1).

Let b1, b2 ∈
[
B−

sat(h0, T0), B+
sat(h0, T0)

]
. Using (4.36), it yields

|ϕ(b1)− ϕ(b2)| =
B−

sat(h0, T1)−B+
sat(h0, T1)

B−
sat(h0, T0)−B+

sat(h0, T0)
=k∈(0,1)

|b1 − b2| . (4.37)

For this type of interval, it holds B+
sat(h0, T0) < B+

sat(h0, T1) and B−
sat(h0, T0) >

B−
sat(h0, T1). Thus in particular B−

sat(h0, T1)−B+
sat(h0, T1) < B−

sat(h0, T0)−B+
sat(h0, T0)

holds. And with the global condition B−
sat(h0, T ) > B+

sat(h0, T ), it follows k ∈ (0, 1).

All prerequisites of the Banach fixed-point theorem are met, so convergence and a
unique fix point are guaranteed. The resulting stable paths are given in Lemma 4.28.
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Remark 4.32. Lemma 4.31 proves that, limited to an interval of one type, the thermal
model shows convergent behavior for a sweeping excitation. For type I the set of
stable paths lies inside of IT. In type II it is the lower boundary B+

sat and it is
strictly monotonically approaching this limit. In type III the model tends strictly
monotonically upwards to its limit B+

sat. And for type IV all paths are reversible.
This gives a rough impression of the model’s behavior.

Analysis of the Special Case h = 0

In this section the special case h = 0 is examined. This means that there are no
external excitations like currents.

Before proceeding to the detailed investigations, the expectations for the model are
first explained and the procedure is roughly outlined.

Physical motivation: Without excitation (h = 0) it is expect that the magnetic
flux density b at temperature T0 is not increased, if the material is heated up to T1
and cooled down again to T0. As motivated in Sections 2.2 and 4.2.1 an increase of
the temperature increases the total energy in the system. The movement of Bloch
walls are made easier by an increased temperature. In the limit, if the temperature
reaches the Curie temperature, the hysteresis, i.e., ferromagnetic properties of the
material are nullified. This is why one of the benchmarks for the thermal model
is that the material is demagnetized, when it is strongly heated. It is argued that
the Bloch walls have to overcome a potential maximum to actual achieve a smaller
energy level. In the model two different behavior can be seen.

I One is that the magnetic flux density b is not permanently altered, if the tem-
perature is increased and decreased back to starting temperature. This is identified
with the case, if the Bloch walls do not gain enough energy to actually overcome the
potential maximum. As the temperature decreases they get back to their starting
position. This behavior is reversible.

I The other behavior is observed, if the added energy actually made Bloch walls
move. These are now permanently in a more favorable state w.r.t. energy. This
result in a lower amplitude of b.

Sketch of the approach: The following examinations are structured as follows.

I First, it will be proven that only type I and IV can occur for h = 0.

I Second, the relative vertical position, i.e., λ, along paths p± in intervals of either
type I or type IV is examined.

I Third, an interval of mixed type is investigated. It will be proven that a sweeping
excitation w.r.t. temperature T converges to the solution b = 0.

106



4.2. Thermal Extension of Tellinen’s Model

I Forth, it will be discussed what consequences the results so far have. It is checked
whether this fits the physical motivation.

Lemma 4.33: For h = 0 only types I and IV can occur.

Proof. For h = 0 with (4.9), it yields

B+
sat(0, T ) = −B−

sat(0, T ) and ∂

∂T
B+

sat(0, T ) = − ∂

∂T
B−

sat(0, T ) . (4.38)

Thus by Definition 4.10, types II and III are not possible.

Remark 4.34. Since according to Lemma 4.33 only types I and IV can occur, the
following consideration is limited to those. First, an investigation is performed under
the condition that the considered interval is of one type and h = 0. There, the
focus is on the investigation of how λ, as defined in (4.11), changes along paths p±.
Second, an interval with arbitrary division of type I and IV will be examined. It will
be proven that there can only be one set of stable paths p± and that these are given
by p± = 0. Finally, it can be shown that the thermal model for h = 0 and sweeping
excitations w.r.t. T converges towards the solution b = p± = 0.

Lemma 4.35: Consider nonempty interval [TL, TR] ⊆ [Tmin, Tmax] of type IV. Use
λ(h, b, T ) as given in (4.11).

I For any path p+ defined w.r.t. (0, bl, TL) ∈ IT, the function

λ+(T ) = λ
(
0, p+(T ), T

)
= λ(0, bl, TL) (4.39)

is constant for T ∈ [TL, TR].
I For any path p− defined w.r.t. (0, br, TR) ∈ IT, the function

λ−(T ) = λ
(
0, p−(T ), T

)
= λ(0, br, TR) (4.40)

is constant for T ∈ [TL, TR].

Proof. The path p+ is defined w.r.t. the left boundary (0, bl, TL) and with Lemma 4.16
it is defined on the whole interval [TL, TR]. The same is true for p− defined w.r.t. the
right boundary (0, br, TR). Hence both paths are well defined on [TL, TR].

The first statement for p+ was already proven in Lemma 4.16. For intervals of type
IV the underlying ODE of the paths p± are equal, thus, the same proof yields the
second statement.

Lemma 4.36: Consider interval (TL, TR) ⊆ [Tmin, Tmax] of type I. Use λ as given in
(4.11).
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I For any path p+ defined w.r.t. (0, bl, TL) ∈ IT, the function

λ+(T ) = λ
(
0, p+(T ), T

)
= λ(0, bl, TL) (4.41)

is constant for T ∈ [Tmin, Tmin].
I Let path p− defined w.r.t. (0, br, TR) ∈ IT and define function λ−(T ) = λ

(
0, p−(T ), T

)
.

B If λ−(TR) ∈
[
0, 1

2

)
holds, λ− is strictly monotonously decreasing on the interval

[TL, TR] and λ−(T ) ∈
[
0, 1

2

)
holds for all T ∈ [TL, TR].

B If λ−(TR) ∈
(

1
2 , 1

]
holds, λ− is strictly monotonously increasing on the interval

[TL, TR] and λ−(T ) ∈
(

1
2 , 1

]
holds for all T ∈ [TL, TR].

B If λ−(TR) = 1
2 holds, λ− is constant on the interval [TL, TR].

Proof. The path p+ is defined w.r.t. the left boundary (0, bl, TL) and with Lemma 4.16
it is defined on the whole interval [TL, TR]. The same is true for p− defined w.r.t. the
right boundary (0, br, TR). Hence both paths are well defined on [TL, TR].

The first statement for p+ was already proven in Lemma 4.16.

The second statement is proven by examination of the derivative of λ−. By using
the definition of λ in (4.11), it yields

λ−(T ) = λ
(
0, p−(T ), T

)
= B−

sat(0, T )− p−(T )
B−

sat(0, T )−B+
sat(0, T ) . (4.42)

For the sake of short notation, B±
sat = B±

sat(0, T ), ∂B±
sat = ∂B−

sat(0,T )
∂T

, p− = p−(T ) and
dp− = dp−(T )

dT
are used as abbreviations.

In the case of type I, dp− = 0 and ∂B−
sat < 0 applies. The condition h = 0 yields

B−
sat = −B+

sat and ∂B−
sat = −∂B+

sat. Now, calculating the derivative of λ− and using
these properties result in

dλ−(T )
dT

=

(
∂B−

sat −
=0

dp−
) =2B−

sat(
B−

sat −B+
sat

)
−
(
B−

sat − p−
) =2∂B−

sat(
∂B−

sat − ∂B+
sat

)
(
B−

sat −B+
sat

)2

=4B−
sat

2

= p−

<0

∂B−
sat

2 B−
sat

2

>0


< 0 if p− > 0
= 0 if p− = 0
> 0 if p− < 0

.

(4.43)

In the special case of h = 0, it can be explicitly associated the sign of p− with values
of λ−, i.e.,

p− > 0⇔ λ− ∈
[
0,

1
2

)
, p− = 0⇔ λ− = 1

2 , p− < 0⇔ λ− ∈
(1

2 , 1
]

. (4.44)
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Since p− = 0 is a valid solution, no other path can cross it. Therefore, if p− > 0
holds for one specific T ∈ [TL, TR], it is automatically true on the whole interval.
Analogous statements follow for p− = and p− < 0. In conclusion, the statements of
the lemma are proven.

Remark 4.37. Lemmas 4.35 and 4.36 are proving that the relative position λ+ of
any path p+ stays constant. For a path p−, λ− is constant, if the interval is of type
IV. But for type I it is not constant. The path p− represent the way back, i.e.,
it is followed backwards. In this perspective, the path p− strives towards b = 0
respectively λ = 1

2 .

Lemma 4.38: Let h = 0. Considered is the interval [TL, TR] ⊆ [Tmin, Tmax] with
TL < TR.

All sets of stable paths p± are reversible. A set of stable paths is given by p± = 0. If
interval [TL, TR] is not solely of type IV, this is the only set of stable paths.

Proof. This proof is divided into three parts.

I First, it is assumed that interval [TL, TR] is solely of type IV.
I Second, if it is solely of type I.
I Third, if it is mixed of types I and IV.

As proven in Lemma 4.33, these are the only cases that can occur.

Let paths p± be defined w.r.t. (0, bL, TL) ∈ IT and defined on the whole interval
[TL, TR].

1) If [TL, TR] is solely of type IV, this was already proven in Lemma 4.28. In this
case is was already shown that stable and reversible are equivalent. And choosing
b0 = 0 yields the solution p± = 0.

2) For only type I it was already proven in Lemma 4.28, that only one unique set of
stable paths exists. It will be proven, that this stable paths fulfills the conditions in
Lemma 4.26 and therefore is reversible.

Inserting (4.38) into (4.35) results in λ = 0.5. Then, all conditions in Lemma 4.26
are true, if λ = 0.5 and (4.38) holds. The resulting paths are p± = 0.

3) Now, assume [TL, TR] is not of one type only. Using 1) and 2), it can be concluded
that the paths p± = 0 are also stable and reversible for this case. This case is
represented by a constant λ = 0.5. It will be shown that any other set of paths can
not be stable.

Due to symmetry, w.l.o.g. only paths p± > 0 , i.e., λ ∈ [0, 0.5), are investigated. Let
paths p± be defined w.r.t. (0, bL, TL) ∈ IT and bL > 0 be stable. It will be proven by
contradiction, that these do not exists.
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B−
sat

B+
sat

TL T0 T1 TR

type IV type I type IV

λ+(TL) = λ+(T0) λ+(T0) = λ+(T1) λ+(T1) = λ+(TR)

λ−(TL) = λ−(T0) λ−(T0) > λ−(T1) λ−(T1) = λ−(TR)
λ = 0

λ = 1

T

b(
0,

T
)

Figure 4.13.: Example of the progression of λ± for h = 0. The interval (T0, T1) is of
type I and the rest of type IV. λ± diverge in (T0, T1) and are constant
elsewhere.

Define λ± : [TL, TR]→ [0, 1] with λ±(T ) = B−
sat(0,T )−p±(T )

B−
sat(0,T )−B+

sat(0,T ) . Paths p± being stable is
equivalent to

λ+(TL) = λ−(TL) and λ+(TR) = λ−(TR) . (4.45)

The former is true, by using the same (0, bl, TL) ∈ IT as initial value for both paths.

The following procedure is illustrated in Figure 4.13. The interval [TL, TR] can
be partitioned into smaller subintervals with each being of one type only. With
Lemmas 4.35 and 4.36 the behavior of λ± in each of these subintervals has been proven.
The values of λ± is examined by successively running through these subintervals.

Regardless, whether the subinterval is of type I or IV, λ+ is constant. Thus, it holds
λ+(T ) = λ+(TL) for all T ∈ [TL, TR]. This implies that (4.45) can reformulated to
the condition λ−(TL) = λ−(TR). This statement will now be contradicted.

Per assumption, interval [TL, TR] is not of one type only. So it must exists a
T ∗ ∈ [TL, TR] of type I. Since the functions B±

sat are continuously differentiable and
type I is defined with strict inequalities w.r.t. ∂B±

sat
∂T

, there exists an open interval
(T0, T1) ⊂ [TL, TR] of type I. According to Lemma 4.36, λ−(T0) > λ−(T1) holds.

The exact division into type I and IV of [TL, T0] is not known. Even though,
Lemmas 4.35 and 4.36 can be used to get the inequalities λ−(TL) ≥ λ−(T0) and
λ−(T1) ≥ λ−(TR).

If the above inequalities are combined, the result is

mixed types

λ−(TL) ≥
type I only

λ−(T0) >

mixed types

λ−(T1) ≥ λ−(TR) . (4.46)

This contradicts (4.45) and so no set of stable paths besides p± = 0 can exist.
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B−
sat

TL T0 T1 TR

type IV type I type IV

λ = 0

λ = 1
2

B0
B1
B2

T

b(
0,

T
)

Figure 4.14.: Sketch of the convergence of paths p+
i (red) and p−

i (blue) for h = 0.
The interval (T0, T1) is of type I and the rest of type IV.

Remark 4.39. To conclude this subsection, the convergence properties of a sweeping
excitation is proven. Holding the temperature T constant and sweeping in h was
already examined in Section 3.2 by Lemma 3.59 and fig. 3.19. Next, h = 0 is fixed
and T will be sweeping. It will be shown that the thermal extension of the model,
behaves very similar to the original model. An example is given in Figure 4.14.

Lemma 4.40: Let h = 0. Given nonempty [TL, TR] ⊆ [Tmin, Tmax] and (0, B0, TL) ∈
IT . Define path p−

0 w.r.t. (0, b0, TL), i.e., it holds p−
0 (TL) = B0.

For any k ∈ N, let p+
k be defined w.r.t.

(
0, p−

k−1(TL), TL
)

and p−
k w.r.t.

(
0, p+

k (TR), TR
)
.

The sequence Bk = p+
k (TL) = p−

k−1(TL) is convergent with

lim
k→∞

Bk = B∞ ∈
[
B+

sat(0, TL), B−
sat(0, TL)

]
. (4.47)

If interval [TL, TR] is not solely of type IV, then B∞ = 0 holds.

Proof. If [TL, TR] is of type IV only, paths p+
k and p−

k are reversible and thus Bk = B0
for all k ∈ N holds.

Now, it is assumed that interval [TL, TR] is not solely of type IV. In Lemma 4.38
it was already proven, that B0 = 0 would also result in reversible paths and thus
Bk = B0 for all k ∈ N holds in this case. So it remains to show that convergence
occurs for start values B0 6= 0. W.l.o.g. it is assumed B0 > 0 using symmetry
arguments.

I First, it will be proven that the sequence Bk is strictly monotonically decreasing
for all B0 > 0. The reasoning is very similar to the proof of Lemma 4.38. Given any
Bk ∈

(
0, B−

sat(0, TL)
]
. As specified, path p+

k is defined w.r.t. (0, Bk, TL) and p−
k is

defined w.r.t.
(
0, p+

k (TR), TR
)
. By this definition it holds p+

k (TR) = p−
k (TR). Define

λ±
k : [TL, TR]→ [0, 1] with λ±

k (T ) = B−
sat(0,T )−p±

k
(T )

B−
sat(0,T )−B+

sat(0,T ) .
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30 60 90 120 150 180 210

−1

0

1

B+
sat

B−
sat

T [°C]

b[T
]

(a) Shown is the first cycle of heating (red)
and cooling (blue) for different values
of TR. Note that heating up to TR =
200 ◦C significantly reduces the magne-
tization.

0 1 2 3 4 5 6 7 8 9 10
10−9

10−6

10−3

100

k – # of cycles

|bk/b0|

TR = 125 °C TR = 150 °C
TR = 175 °C TR = 200 °C

(b) Shown is |bk/b0|. bk represent the mag-
netization at T = TL = 27 ◦C after k
cycles of heating and cooling.

Figure 4.15.: Shown are results for a sweeping excitation w.r.t. T ∈ [TL, TR] for
different values of TR.

Using already proven statements in the proof of Lemma 4.38, it can be concluded
that λ+

k is constant and λ−
k is strictly monotonically decreasing. Thus it yields

λ+
k

constant

λ+
k (TL) =

p+
k

(TR)=p−
k

(TR)

λ+
k (TR) =

λ−
k

decreasing

λ−
k (TR) < λ−

k (TL) . (4.48)

So finally

Bk = p+
k (TL) > p−

k (TL)
λ+

k
(TL)<λ−

k
(TL)

= Bk+1 (4.49)

applies.

I Second, it will be shown that Bk+1 > 0 holds. This results in convergence. The
above defined paths p±

k can not cross the paths p± = 0. And since they are defined
w.r.t. some Bk > 0, they are strictly positive on their whole definition domain.
Therefore Bk+1 > 0 holds.

Application example: aging of permanent magnets

To summarize the behavior of the thermal model, a concrete example is used. For
this purpose, different initial situations are used and simulated a sweeping excitation
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w.r.t. T and constant h = 0. As material the one already presented in Figures 4.5,
4.6 and 4.9(a) is used and it is shown again in Figure 4.15(a). This material is hard
ferromagnetic, i.e., among other applications suitable as a permanent magnet.

At this point it is emphasized again that only a mathematical analysis of the thermal
model is possible here. Unfortunately, there are no measured values available to check
the model against. Even though the model may not correspond to real measured
data, the comparison of the two approaches from the original and the thermal model
is interesting from a mathematical perspective.

The benchmark will initiate the material in the state (h, b, T ) = (0, b0, 27) ∈ IT and
then in a sweeping fashion increase the temperature to TR ∈ (27, 200] and decreasing
is back to TL = 27 ◦C. The values bk with k ∈ N0 denotes the magnetic flux density
at temperature TL after k cycles of excitation. This corresponds to the approach
taken in Lemmas 4.31 and 4.40. Now, the results for different combinations of b0
and TR will be shown.

1) For b0 = 0, Lemma 4.38 proves that bk = 0 for all k ∈ N0 holds, regardless of the
choice of TR. A demagnetized material does not gain any magnetization by changing
the temperature. This corresponds to the physical expectations.

2) b0 = 0.8 ·B−
sat(0, 27) is chosen. The material is therefore magnetized by 80 % of

its maximum value. Now depending on the choice of TR a different behavior occurs.
As seen in Figure 4.15(a), at the temperature of ≈ 88 ◦C the boundary curves B±

sat
are changing signs in their derivative. By Definition 4.10 the interval [27, 88] is of
type IV and the interval (88, 200] of type I.

In this benchmark TR ∈ (27, 88] is chosen. Because the resulting interval [TL, TR]
is of type IV, the paths p+ and p− are reversible, as proven in Lemma 4.26. By
Lemma 4.35 the relative vertical position λ is constant. Thus the thermal model
is holding the relative magnetization constant, i.e., b(0, T ) = 0.8 ·B−

sat(0, T ) for all
T ∈ [TL, TR]. This means that heating the material up to a temperature of 88 ◦C
does not reduce its (relative) magnetization and bk = b0 for all k ∈ N holds.

3) Choosing the same b0 as in 2), but TR ∈ (88, 200]. The interval [TL, TR] is now of
mixed type. By Lemma 4.40 the sequence bk is convergent with limk→∞ bk = 0. It
holds |bk+1| < |bk| for all k ∈ N0. So each cycle of heating and cooling reduces the
magnetization of the material, if the temperature exceed 88 ◦C. The rate of reduction
depends on TR. For values TR ∈ {125 ◦C, 150 ◦C, 175 ◦C, 200 ◦C}, the results are
shown in Figure 4.15(b). A decrease in the form of |bk+1| = α|bk| with α ∈ (0, 1) is
recognizable and the α is depending on the choice of TR. For the example shown in
Figure 4.15(b), the resulting values of α are presented in Table 4.1.

Table 4.1.: A decrease of the magnetization in the form |bk+1| = α|bk| can be observed.
For different value of TR the resulting α are listed. α is rounded to three
decimals.

TR [◦C] 125 150 175 200
α 0.873 0.668 0.401 0.099
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4.2. Thermal Extension of Tellinen’s Model

If the temperature is approaching the Curie temperature, the boundaries B±
sat are

getting narrower. The Curie temperature is the smallest temperature such that
B+

sat = B−
sat holds. This contradicts the definition of the thermal model, in particular

(4.9). Nevertheless, it can be concluded that the thermal model successfully reproduce
the behavior for heating up almost to the Curie temperature. The magnetization
is almost completely lost, if the saturation curves B±

sat are almost the same, see
Figure 4.15(b) and table 4.1 for an example.

Remark 4.41. In Lemma 4.40 it was proven that |bk+1| < |bk| holds. The numerical
example has shown a loss of magnetization in the form of |bk+1| = α|bk| with α ∈ (0, 1).
In the next step the decrease pattern is examined more closely. The goal is to derive
the factor α only from the saturation curves B±

sat, i.e., without the actual calculation
of any paths p+ and p−.

Analysis of the special case h = 0 – Part 2

As motivated in Remark 4.41, it will be proven that a sweeping excitation w.r.t.
T ∈ [TL, TR] and h = 0 results in a sequence (bk)k∈N0 with bk+1 = αbk with α ∈ (0, 1),
if the interval [TL, TR] is not solely of type IV. The following arguments are structured
as follows.

I A λ̂ is defined as an alternative to λ. λ̂ describes the relative vertical position
between the boundary curves B±

sat. Only the range is adjusted from λ ∈ [0, 1] to
λ̂ ∈ [−1, 1] and the orientation is reversed. Thus one can transfer previous statements
about λ simply to λ̂. The big advantage of λ̂ over λ is, however, that one can make
very simple statements in the case h = 0.

I This will exploited directly in the investigation of an interval of solely one type.

I Finally, a corresponding α can be explicitly specified for an interval that is not
exclusively type IV.

Definition 4.42: Based on λ from (4.11), λ̂ : IT → [−1, 1] is defined with

λ̂(h, b, T ) = −2λ(h, b, T ) + 1 . (4.50)

For the special case of h = 0, (4.50) is equivalent to

λ̂(0, b, T ) = b

B−
sat(0, T ) ∈ [−1, 1] . (4.51)

Remark 4.43. λ̂ is actually just another way to describe the relative position of a
point (h, b, T ) ∈ IT between the boundaries B±

sat. A sketch is given in Figure 4.16.

Remark 4.44. Since λ̂ can be derived linearly from λ, the previous statements can be
transferred with only minimal changes. In particular, if λ is constant along a path p,
this is also true for λ̂.
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Figure 4.16.: A sketch of the relation of λ and λ̂.

TL TR
0.0
0.2
0.4
0.6
0.8
1.0 B−

sat

λ̂ const

b const

bk,TL

bk,TRbk+1,TL

T

b(
0,

T
)

Figure 4.17.: A sketch of the proof of Lemma 4.45. The path p+ is shown in red and
p− in blue.

Lemma 4.45: Let [TL, TR] ⊆ [Tmin, Tmax] with TL < TR and (TL, TR) of type I. Hold
h = 0 constant. Starting in (0, b0, TL) ∈ IT and sweeping w.r.t. T ∈ [TL, TR] results
in the sequence (bk)k∈N0 with bk denoting the magnetic flux density b at temperature
TL after k cycles of heating and cooling. It holds bk+1 = αbk for all k ∈ N0 with
α = B−

sat(0,TR)
B−

sat(0,TL) ∈ (0, 1).

Proof. A sketch of the proof and the notation used is given in Figure 4.17.

First, a more precise notation is introduced. Let denote bk as bk,TL to emphasize the
evaluation at temperature TL. Sweeping w.r.t. T ∈ [TL, TR] results in two processes:
Initially the increase of the temperature from TL to TR and then the decrease back
to TL.

For any k ∈ N0, the starting point is given by (h, b, T ) = (0, bk, TL) ∈ IT and let p+

be defined w.r.t. this point. Along path p+, λ is constant as proven in Lemma 4.36.
It also follows directly that λ̂ is also constant along p+. Let bk,TR = p+(TR). Define
p− w.r.t. (0, bk,TR , TR). Path p− is constant on the interval [TL, TR] by Definition 4.6.
The overall result is thus:

λ̂(TL) = λ̂(TR) ⇔ bk,TL

B−
sat(0, TL) = bk,TR

B−
sat(0, TR)

⇔ B−
sat(0, TR)

B−
sat(0, TL) bk,TL = bk,TR = bk+1,TL .

(4.52)
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Figure 4.18.: A sketch of the proof of Lemma 4.47. Values based on path p+ are
shown in red and p− in blue and green.

Because interval [TL, TR] is of type I, B−
sat is strictly monotonously decreasing and

thus B−
sat(0, TL) > B−

sat(0, TR) holds. With h = 0, B−
sat is positive, i.e., B−

sat > 0. This
leads to the statements α = B−

sat(0,TR)
B−

sat(0,TL) ∈ (0, 1) and bk+1 = α · bk.

Remark 4.46. Lemma 4.45 is now to be extended for intervals of arbitrary mixed
type.

Lemma 4.47: Let [TL, TR] ⊆ [Tmin, Tmax] with TL < TR. Hold h = 0 constant.

Let TL = T0 < . . . < Tn = TR be a subdivision of [TL, TR] such that for all
j ∈ {0, . . . , n− 1} the interval (Tj, Tj+1) is of one type only.

Starting in (0, b0, TL) ∈ IT and sweeping w.r.t. T ∈ [TL, TR] results in the sequence
(bk)k∈N0 with bk denoting the magnetic flux density b at temperature TL after k cycles
of heating and cooling. It holds

bk+1 = α · bk for all k ∈ N0 with α =
∏

j∈{0,...,n−1}
(Tj ,Tj+1) type I

B−
sat(0, Tj+1)

B−
sat(0, Tj)

∈ (0, 1] . (4.53)

Proof. The approach is strongly based on the proof of Lemma 4.45. A sketch of the
proof is given in Figure 4.18 and an overview of the used statements is presented in
Table 4.2.

Let (h, b, T ) = (0, bk, TL) ∈ IT be given. Define path p+ w.r.t. (0, bk, TL) and path
p− w.r.t. (0, p+(TR), TR). These paths represent the forward and backward paths
through the entire interval [TL, TR]. It applies bk = p+(TL) and bk+1 = p−(TL). Let
λ̂±(T ) denote λ̂ along the paths p±, i.e., λ̂±(T ) = λ̂(0, p±(T ), T ).

The interval [TL, TR] is subdivided into (Tj, Tj+1) for j ∈ {0, . . . , n−1} like described
in Lemma 4.47. Existence of such a partition was proven in Lemma 4.11. Now,
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4.2. Thermal Extension of Tellinen’s Model

Table 4.2.: Summary of the behavior of paths p± and λ̂ for h = 0 on an interval
(Tj, Tj+1) of one type only.

type of (Tj, Tj+1) I IV

p+(T ) p+(Tj) = B−
sat(0,Tj)

B−
sat(0,Tj+1)p

+(Tj+1) p+(Tj) = B−
sat(0,Tj)

B−
sat(0,Tj+1)p

+(Tj+1)

λ̂+(T ) λ̂+(Tj) = λ̂+(Tj+1) λ̂+(Tj) = λ̂+(Tj+1)

p−(T ) p−(Tj) = p−(Tj+1) p−(Tj) = B−
sat(0,Tj)

B−
sat(0,Tj+1)p

−(Tj+1)

λ̂−(T ) λ̂−(Tj) = B−
sat(0,Tj+1)
B−

sat(0,Tj) λ̂−(Tj+1) λ̂−(Tj) = λ̂−(Tj+1)

it is iterated through the individual intervals (Tj, Tj+1) using the statements from
Table 4.2.

Starting at T = TL = T0 on path p+, λ̂+ is constant on the interval [T0, T1] regardless
whether it is type I or IV. The same is true on any interval [Tj, Tj+1]. If this is
repeated until Tn = TR is reached,

λ̂+(TL) =λ̂+(TR) (4.54)

is obtained.

Now, the intervals [Tj, Tj+1] are going through backwards. If the interval is of type I,
it holds

λ̂−(Tj) = B−
sat(0, Tj+1)

B−
sat(0, Tj)

=αj∈(0,1)

λ̂−(Tj+1) . (4.55)

For type I it holds 0 < B−
sat(0, Tj+1) < B−

sat(0, Tj).

If the interval [Tj, Tj+1] is of type IV, it holds

λ̂−(Tj) = λ̂−(Tj+1) . (4.56)

So in this case αj = 1 is defined.

Concatenating all the intervals [Tj, Tj+1] yields

λ̂−(TL) =
 ∏

j∈{0,...,n−1}
αj


=α

λ̂−(TR) = αλ̂+(TL) . (4.57)

An alternative formulation of α is given by

α =
∏

j∈{0,...,n−1}
(Tj ,Tj+1) type I

B−
sat(0, Tj+1)

B−
sat(0, Tj)

∈(0,1)

∈ (0, 1] . (4.58)
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If there is no interval (Tj, Tj+1) of type I, α is equal to one. If now the explicit
definitions of λ̂+ and λ̂− is used, it yields

λ̂+(TL) = p+(TL)
B−

sat(0, TL) = bk

B−
sat(0, TL) , λ̂−(TL) = p−(TL)

B−
sat(0, TL) = bk+1

B−
sat(0, TL) . (4.59)

Combining (4.57) and (4.59) gives

bk+1 = α · bk (4.60)

with α defined in (4.58).

4.2.5. Interim Conclusion & Further Remarks

At this point the thermal model is evaluated. In doing so, mathematical aspects are
addressed and the model is evaluated against the physical background.

I From a mathematical point of view, the model is very satisfactory because of the
following points.

B The thermal model is mathematically well-defined. For all valid states IT it is
defined and it was proven that analytical solutions cannot leave this domain. It is
important to note that this is only true if the model is applied in the correct direction
(paths p+ if ∆T > 0 and p− if ∆T < 0).

For analysis purposes, the model is deliberately applied backwards (paths p+ if
∆T < 0 and p− if ∆T > 0) and partially continued it outside of IT. In pure
application, however, this is not relevant.

B The approaches used are very similar to the original model. By making slight
adjustments, these can be applied to the thermal problem. From a mathematical
point of view, it is interesting to see how these changes affect the behavior of the
solutions (paths p±). More different versions could be created, studied and applied
to other problems.

B The result is a model that defines different behaviors for the four directions
∆h ≷ 0, ∆T ≷ 0. The thermal model is designed as an extension of the original one.
If the temperature is assumed to be constant, the original model results again.

B Using sweeping excitation to interact with the model, it was demonstrated that
convergent behavior is exhibited for h and T (with h = 0) directions. In general, the
model proves to be well-behaved and stable.

I From a physical point of view, the model was evaluated in such a way that it
roughly represents the physical conditions and benchmarks presented in Section 4.2.1.
But there are also aspects that would require further investigation and possible ad-
justments. In the context of the dissertation it was concentrated on the mathematical
aspects and these inconsistencies are accepted. Nevertheless, the analysis allows the
reader a critical look at the model. Finally, a few aspects shall be listed.
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B The model shown remains purely academic and it cannot be validated by means of
experimental measurements. However, it was possible to mathematically investigate
and evaluate the model to the extent that possibilities of a measurement arises.
Criteria has been developed by which it can be identified when reversible and non-
reversible behavior appears. For the special case of h = 0 and a sweeping excitation,
the modeled demagnetization can be quantified.

B The natural limit of the Curie temperature TC is covered by the model. Mathe-
matically, the model is defined up to but exclusive to this temperature. If the Curie
temperature is reached, B+

sat and B−
sat are identical and the model is no longer appli-

cable. For all lower temperatures, however, the model is applicable and analytical
solutions take into account increasingly narrower B±

sat. From a numerical point of
view, there could be problems if B±

sat are very close to each other. But this is already
true for the original model.

From a physical point of view, the thermal model reproduces the transition suitably.
If B±

sat are identical, the relation

b = f(h, T ) (4.61)

with a suitable function f can be applied. If a limit analysis T → TC is performed
whereby B±

sat converge to each other, the difference between the directional derivatives
∂b
∂T

for ∆T ≷ 0 converges to zero.

But if there is no difference whether ∆T < 0 or ∆T > 0 is considered, then

∂b

∂T
= ∂f

∂T
(4.62)

is a reasonable modeling approach. Thus, the thermal model reverts to a normal
definition based on a function f as shown in (4.61) in the limit T → TC.

B In the physical motivation it was mentioned that magnetic fields do not amplify
without excitation. Yet it is observed – although h = 0 holds – that the modeled b
field can increase in the absolute sense, if the temperature T is increased (type I).
The model take the assumption into account in a very special way and the b field
does not grow in the relative sense. It was proven that λ does not change in this
case. In the relative reference to the maximum possible magnetization (B±

sat), b does
not increase.

How exactly real materials behave in this situation could and would have to be
investigated by experimental measurements and compared with the model. At this
point, it remains open whether the model depicts this correctly.

B If there is no excitation, i.e., h = 0, and the temperature reaches approximately the
Curie temperature, a permanent magnet permanently loses part of its magnetization.
This is reflected in the model as far as it goes. It was proven, that sweeping w.r.t.
temperature with intervals of type IV converges to the solution b = 0.

So a one-time sweep cycle maps this. However, the model reduces the magnetization
by a percentage value in each cycle. This behavior may be in conflict with the
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given physical motivation. The basic motivation is based on energy levels and the
alignment of the Bloch walls and Weiß domain that can be achieved with them.

If the temperature is sweeped between T0 and T1, the same maximal energy level is
always reached at T1. According to the model, each cycle would change the orientation
toward one that is more favorable in terms of energy, resulting in a smaller b field.
No motivation – why in each new cycle an even more optimized orientation can be
found – could be stated. Since the maximum achievable energy, determined by T1,
does not change, it can be argued that the most optimal orientation must already be
reached after the first cycle.

The basic behavior of the model with w.r.t. h = 0 and changing the temperature
is considered to be suitable. But the fact that the weakening of the magnetization
shows up in each cycle of a sweeping excitation needs further investigation, which is
unfortunately not in the scope of this thesis.
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5 Simulation of a Benchmark
Problem with the Finite
Difference Method

In order to discuss the feasibility and aspects of the used implementation, a benchmark
problem consisting of two coupled simulations will be presented in this section. A
schematic overview of the structure of the benchmark problem is given in Figure 5.1.
This illustration already somewhat foreshadows the sections to come.

The first simulation is a magnetic field simulation. This simulation will use Tellinen’s
model from Section 3.1 for the integration of the hysteresis effect. At this point the
embedding of the model into the spatial simulation is of special interest. Secondly, a
heat simulation describes the diffusion process of the temperature T . The loss model
from Section 4.1 is applied. Analyzing the results of the magnetic simulation, it
integrates the magnetic hysteresis losses as source terms into the heat simulation. The
thermal extension of Tellinen’s model from Section 4.2 takes into account the resulting
temperature changes and ensures that a valid state is permanently guaranteed for
Tellinen’s model. The result is a coupled simulation covering the effects of hysteresis,
hysteresis losses and temperature diffusion.

For both simulations the respective fundamental equation is a parabolic partial
differential equation. The numerical approach in both cases is the method of finite
differences.

First the general benchmark problem is presented. Then the underlying grids are
defined as a preparation for the individual simulations. Next, all necessary steps and
equations for the magnetic field and heat simulations are presented. Other aspects
of the coupling of the simulations are also discussed. Finally, numerical results are
presented and discussed.

5.1. Overview of the Benchmark Problem

The benchmark problem basically consists of an infinite long copper conductor
encased in an iron cover, as shown in Figure 5.2. The materials copper and iron are
representative for materials without hysteresis and ferromagnetic with hysteresis,
respectively. The materials are numbered with I and II. Overall, the focus will be
put on an academic example. However, the chosen parameters are based as good as
possible on physically meaningful and real measurements.



5.1. Overview of the Benchmark Problem
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Figure 5.1.: Schematic structure of the benchmark problem.

Figure 5.2.: Left: Visual overview of the benchmark problem. The copper conductor
is shown in brown, the iron sheath in gray and the surrounding air in
blue. Right: The expected shape of the magnetic fields based on the
right hand rule. [3]
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magn.

heat

Radius0 rin rout

copper iron air

Figure 5.3.: Overview of the mathematical domains of the benchmark problem. Note
that the magnetic simulation is only applied on the interval [rin, rout].
The heat simulation covers the complete domain [0, rout].

The benchmark problem will be described in cylindrical coordinates (r, ϕ, z). Along
the z-axis all parameters and variables are assumed to be constant. The current
density j is restricted to the z-axis, i.e., ~j =

(
0 0 jz

)>
. Using the right-hand

rule determines that the fields #„

B and #„

H have no z component. Furthermore the
benchmark problem is assumed to be axis-symmetric w.r.t. the z-axis. This as-
sumption additionally eliminates the radial component of the fields. Overall, the
fields exhibit only an angular part, i.e., #„

B =
(
0 b 0

)>
and #„

H =
(
0 h 0

)>
. The

corresponding vector potential results in #„

A =
(
0 0 Az

)>
. Hence by the symmetry

w.r.t. the z-axis and the being constant along z, these variables and parameters
are only dependent on the radius r and time t. This allows to reduce the problem
to scalar quantities. For the application of Tellinen’s model this is an important
prerequisite. Also the heat equation can be reduced to a one dimensional problem.
Details are shown in the corresponding sections.

The interval [0, rout] is the complete computational domain. The magnetic simulation
is restricted to the domain of iron at [rin, rout] with 0 < rin < rout. Copper is allocated
at [0, rin]. The heat simulation is carried out on the whole domain, but has to take
into account the material transition at r = rin. An overview of the setting is given in
Figure 5.3.

5.2. Discretization Grids: Definition and Alignment

In this section, the grids used are defined first. A more detailed motivation and justi-
fication for the grids follow later in the corresponding sections. A visual illustration
of the grid alignment is shown in Figure 5.4.

For both – thermal and magnetic – simulations, an offset grid is used in addition
to the standard grid. The respective variables and parameters are each assigned
to one of the grids. The magnetic offset grid is aligned with the standard thermal
grid to ensure that both simulations are as perfectly matched as possible. Thus, all
temperature-dependent parameters of the magnetic simulation and the loss model
are superimposed with the temperature from the thermal simulation. This means
that no further steps (such as interpolation) need to be performed to couple these
two systems.
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Figure 5.4.: Visualization of the grid alignment. The standard grid is shown in red,
the offset grid in blue and ghost nodes marked explicitly. This example
is based on nh = 2 and nm = 3.

The magnetic simulation is only defined on the domain [rin, rout] while the thermal
one is defined on [0, rout]. The thermal simulation needs special grid point placements
at the origin r = 0 and at the material interface r = rin. To easily match these
conditions, two radial grid sizes ∆rI and ∆rII are introduced. Unfortunately, this
makes the material interface a bit more difficult because in addition to the non-
constant parameters, different grid sizes also occur. In terms of time, both simulations
are based on the same equidistant grid tj = j ·∆t.

Let nm + 1 be the number of standard grid points of the magnetic simulation and let
nh be the number of additional grid points of the thermal simulation on the domain
(0, rin). The standard grid of the thermal simulation has nm + nh grid points. This
results in the step sizes

∆rI = rin

nh + 1
2

, ∆rII = rout − rin

nm − 1 . (5.1)

Let the magnetic grid be defined by:

standard rm
i = rin +

(
i− 1

2

)
∆rII for i ∈ {0, . . . , nm} (5.2a)

offset rm
i+ 1

2
= rin + i∆rII for i ∈ {0, . . . , nm − 1} (5.2b)

And the thermal grid by:

standard rh
i =


(
i + 1

2

)
∆rI for i ∈ {0, . . . , nh − 1}

rin + (i− nh)∆rII for i ∈ {nh, . . . , nm + nh − 1}
(5.3a)

offset rh
i+ 1

2
=
(i + 1) ∆rI for i ∈ {0, . . . , nh − 1}

rin + (i + 1
2 − nh)∆rII for i ∈ {nh, . . . , nm + nh − 2}

(5.3b)
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5.3. Magnetic Field Simulation

Remark 5.1. The standard and the offset grid of the magnetic simulation are equidis-
tant with step size ∆rII. The thermal standard grid only has the grid sizes ∆rI and
∆rII. But the thermal offset grid has an irregular grid size of ∆rI+∆rII

2 between rh
nh− 1

2

and rh
nh+ 1

2
. Furthermore, rh

nh
is generally not centered between rh

nh− 1
2

and rh
nh+ 1

2
.

By construction all grid points rh
i and rh

i+ 1
2

are positive. The ghost nodes rh
−1 and

rh
− 1

2
are considered separately in Section 5.4.3. To ensure that rm

0 > 0 holds, the
condition

nm > 1 + 1
2

rout − rin

rin
(5.4)

must be fulfilled.

Remark 5.2. For ease of notation, a subscript of i will always denote the spatial
index and a superscript of j the time index, e.g. bj

i ≈ b(r = ri, t = tj).

In the following section the magnetic simulation and in the next but one section the
thermal simulation will be investigated in detail. The motivation and reasons for the
special choice of the grids are also discussed.

5.3. Magnetic Field Simulation

The magnetic field simulation is based on the Curl-Curl Equation in cylindrical
coordinates (2.13) with corresponding boundary conditions. The used grid rm with
grid size ∆r = ∆rII is already defined in the previous Section 5.2.

The unknowns Ai and σ are assigned to the standard grid rm
i . σ is assumed to be

constant with σ ∈ R+
0 . The quantities h and b on the other hand are placed on the

offset grid rm
i+ 1

2
. An overview is given in Figure 5.5. At this point the function ν

remains undefined. Approaches how to replace ν have already been presented in
Section 3.3.

The following applies by the method of finite difference with implicit backward
difference in time:

bj+1
i+ 1

2
= Aj+1

i − Aj+1
i+1

∆r
for i ∈ {0, . . . , nm − 1} , (5.5a)

hj+1
i+ 1

2
= νj+1

i+ 1
2

(
bj+1

i+ 1
2

)
for i ∈ {0, . . . , nm − 1} , (5.5b)

σ
Aj+1

i − Aj
i

∆t
+ 1

ri

ri+ 1
2
hj+1

i+ 1
2
− ri− 1

2
hj+1

i− 1
2

∆r

 = 0 for i ∈ {1, . . . , nm − 1} . (5.5c)
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rin rout

A [V s/m]

b [T]

h [A/m]

j [A/m2]

bk+ 1
2

= Ak−Ak+1
∆r

hk+ 1
2

= νk+ 1
2

(
bk+ 1

2

)
1
rk

(
r

k+ 1
2

·h
k+ 1

2
−r

k− 1
2

·h
k− 1

2
∆r

)

rm
0 rm

i−1 rm
i rm

i+1 rm
n

Figure 5.5.: Visualization of the grid used in the magnetic field simulation. The
primary grid is shown in red, the offset grid in blue and boundary
conditions marked in green. In addition, the associated quantities and
equations are assigned to the grids.

The resulting system is “tridiagonal”, i.e., solving (5.5) for i is only based on the
unknowns Ai−1, Ai, Ai+1. However, whether the resulting system is linear or non-
linear depends on the choice of ν.

In order for this to result in a well defined system, appropriate boundary conditions
need to be worked out. This is done in the following Section 5.3.1. But also there ν is
not determined in more detail and at first, it is still regarded as an unknown function.
To investigate this issue in more detail, different approaches from Section 3.3 for ν
are considered afterwards in Sections 5.3.2 and 5.3.3. Unfortunately, it will turn out
that not all approaches are successful.

5.3.1. Reducing the Computational Domain via Boundary
Conditions

As foreshadowed in Section 5.2, the magnetic field simulation shall not be performed
on the entire definition domain. Instead, the simulation is restricted in the spatial
sense to the interval [rin, rout], i.e., to the iron only. The embedding in the over-
all simulation is done by suitable boundary conditions, which are derived in this
section.

The specially constructed benchmark has already been transformed into cylindrical
coordinates and reduced to scalar quantities in Section 2.1.5. This resulted in the
partial differential equation (2.13), which is now extended by boundary conditions.

For this kind of problem at least one of the boundary conditions must be of Dirichlet
type to ensure a unique solution. The inner boundary at r = rin will take into
account the applied current in the copper domain. Therefore, the outer boundary
condition at r = rout is set as a homogeneous Dirichlet condition, i.e., A

∣∣∣
r=rout

= 0.

At first, a simplified example to illustrate the assumptions and relationships is
discussed. Then this insight is applied to the benchmark problem.
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0 rin 2rin 3rin

0 rin 2rin 3rin
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(a) µ constant

0 rin 2rin 3rin

0 rin 2rin 3rin

0 rin 2rin 3rin
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r
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r

h

r

µ
r

j

(b) µ piece wise constant

Figure 5.6.: Tangential components of the magnetic fields at a material interface.

One of the popular examples from the introductory literature for electromagnetism is
the magnetic field of a current-carrying conductor. This corresponds approximately
to the benchmark problem, if the iron sheath is omitted. The same derivation is
used for the cylindrical coordinates and reduction to scalar quantities as before. The
relation b = µ · h is assumed with µ as constant at first and second as piece wise
constant.

This segment works towards two different statements. First, which field results
from the current-carrying conductor and second, which conditions must apply at a
material transition.

For a simplified case, the solution of the magnetic field of a current-carrying conductor
is known analytically. In this simplified case, a static consideration is assumed, i.e.,
∂A
∂t

= 0. This can be alternatively simulated by using σ = 0. Furthermore, a uniform
distribution of the current is assumed and the current is restricted it to the area
of the copper, i.e., to [0, rin). Assuming µ = µ0 over the whole domain, an applied
current I (not current density j) creates the fields

btang(r) =


µ0I

2πr2
in

r , if r < rin

µ0I

2π

1
r

, if r ≥ rin

, htang(r) =


I

2πr2
in

r , if r < rin

I

2π

1
r

, if r ≥ rin

(5.6)
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with btang, htang being the tangential components and the other components are zero.
This example is visualized in Figure 5.6(a).

Now, a material transition is added. For this introductory example, µ is defined as

µ = µ(r) =
{

µ0 , if r < rin

2µ0 , if r ≥ rin
. (5.7)

In general, the fields #„

H, #„

B at a material transition behave differently. More precisely,
the tangential and normal components are subject to different calculations. Even
if in the example only tangential transitions are needed, both are briefly explained
based on [134, 137].

At a material transition the normal component of the #„

B field is continuous. Con-
versely, if the µ values of the materials differ, this means that the normal component
of the #„

H field is not continuous.

The consideration of the tangential component takes into account surface currents
along the interface. Assuming these surface currents to be zero, the tangential
component of the #„

H field is continuous and the tangential component of the #„

B field
is not.

The assumption of the surface currents to be zero is valid, because the current is
assumed to be equally distributed in the conductor. No current singularity at the
interface occurs. As stated in [134], this applies to almost all applications.

Figure 5.6 compares the differences and similarities between the constant µ example
and the piece wise constant µ one. From these relations, suitable boundary condition
for the benchmark problem can be derived.

The tangential component of the #„

H field is continuous as stated above and is
represented by h within the benchmark problem. Within the copper domain it
assumed that b = µ ·h with constant µ holds and therefore the introductory examples
can be used as reference and calculate h at the boundary r = rin via (5.6). Depending
on whether the current I in the SI unit of A or the current density j in A/m2 is
selected as the the specified value at time t, the result is denoted by href and given
by

h(r, t)|r=rin = I(t)
2πrin

= rinj(t)
2 = href(t) . (5.8)

This gives the boundary value problem that is to solve numerically:

σ
∂A

∂t
+ 1

r

∂

∂r

(
rν
(
− ∂

∂r
A
))

= 0 (5.9a)

with the boundary conditions

ν
(
− ∂

∂r
A
)∣∣∣

r=rin
= href(t) , A

∣∣∣
r=rout

= 0 (5.9b)

with constant σ ∈ R+
0 , functions ν and href on the interval r ∈ [rin, rout].
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Remark 5.3. The function ν remains unspecified for the last time. Various approaches
were already derived from Tellinen’s model in Section 3.3. In the following Sec-
tions 5.3.2 and 5.3.3, these approaches are combined with the benchmark problem
and their numerical solvability is investigated.

For general context and to evaluate the used approaches, it shall be briefly drawn
attention to the effects of the conditions at a material transition. In Section 2.2.2 it
has already mentioned that ferromagnetic materials differ from non-ferromagnetic
ones – among other things – in an amplification of the magnetic field by several
orders of magnitude. This is now specified in more detail and considered separately
to tangential and normal components. Due to these differences it can be emphasized
here once again how important the course of the fields is for a correct calculation.

Unfortunately, restrictions can be derived for the approaches from these circumstances.
Based on the above conditions, a refraction law can be derived similar to the refraction
of light. This is shown in more detail in [137], for example.

If the µ values differ by several orders of magnitude, this means that the field lines
move out of the ferromagnetic material almost normal to the interface. An example
calculation in [137] shows for example with µr values of 103 and 1, that with an angle
of 85◦ inside the ferromagnetic material nevertheless only an angle on the outside of
0.6◦ arises.

Remark 5.4. In the scope of this dissertation, this means two things.

I On the one hand, a steady transition of the fields cannot be observed at a material
transition in general. On the material interface, the fields reorient themselves
abruptly and a clear reference direction is needed for the used approach of reducing
the multidimensional fields to scalar quantities. This can lead to problems.

I On the other hand, the benchmark problem is constructed to have only tangential
components. With this background, it can only be emphasized again that this is
an academic benchmark problem. Already small normal components inside the
ferromagnetic material can dominantly influence the behavior outside the material.
For piece wise constant µ and the relation b = µ · h a corresponding refraction law
can be found in literature. But an investigation including hysteresis and in particular
Tellinen’s model exceeds the scope of this dissertation. The specially constructed
benchmark problem is found to be sufficient and only tangential transitions are used.
This again shows the complexity of including hysteresis in a simulation.

5.3.2. Replacing ν and Solving the System – Unsuccessful
Approaches

Now, the previously unknown function ν is to be replaced by a suitable approach
based on Tellinen’s hysteresis model. It is investigated how the resulting system can
be solved numerically.
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5.3. Magnetic Field Simulation

Not only the working approach shall be presented to the reader, but also failed ones.
This is to illustrate the influence of the choice of modeling ν on the overall simulation.
Numerical but also modeling aspects will be addressed.

A Simple Approach

At first the approach (3.78) is analyzed. In short, this approach is characterized by
the core idea that the decision whether to use µ+

diff or µ−
diff follows from the previous

time step. Thus this decision lags behind one time step. As an advantage, the ν
simplifies to a polynomial of first order, if µ±

diff is evaluated at the current and known
state. This comes with the tradeoff that the reversal points within the hysteresis
loop are no longer resolved cleanly, as discussed in Section 3.3.2.

With αi =
r

i− 1
2

ri
, βi =

r
i+ 1

2
ri

and γ = ∆t
∆r2 the system (5.5) can be represented by the

linear system


− αiγ

µ
i− 1

2

σ + γ

(
αi

µ
i− 1

2

+ βi

µ
i+ 1

2

)
− βiγ

µ
i+ 1

2



>Aj+1
i−1

Aj+1
i

Aj+1
i+1

 =

σAj
i + γ

αi

hj

i− 1
2
−

bj

i− 1
2

µi− 1
2

+ βi

 bj

i+ 1
2

µi+ 1
2

− hj

i+ 1
2


 . (5.10a)

The boundary conditions are given by

Aj+1
0 − Aj+1

1 = ∆rµ 1
2

(
href(tj)− hj

1
2

)
, Aj+1

nm
= 0 . (5.10b)

The resulting system (5.10) is weak diagonally dominant ensuring analytical solvabil-
ity and efficient numerically solvers. For a single time step, this approach is very
promising. But in the benchmark problem, problems arise when several time steps
are performed in succession. As already predicted in Figure 3.21, a certain amount
of imprecision is expected at turning points of the hysteresis loops.

Unfortunately, this phenomenon seems to worsen dramatically in the spatial sim-
ulation in the benchmark problem. Instead of calculating only one time step with
the wrong µ±

diff value, the simulation oscillates over a larger time range between µ+
diff

and µ−
diff after a turning point was passed. The new values for hj+1 and bj+1 are

iteratively dependent on hj and bj. There are no meaningful values resulting from
the long lasting wrong choice of µ±

diff.

The reasons for this undesireable behavior are not suspected in the numerical solution
of the system (5.10), because it can be solved with sufficient accuracy. The problems
are justified by the simplified modeling of the detection of the reversal points. The
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effect is stronger the larger the difference of µ+
diff and µ−

diff and the time step size ∆t
is. The first aspect is given by the material and thus not a direct choice of the user.
The second aspect is up to the user to decide, but even a small chosen ∆t has not
been a guarantee that it worked out.

Because it is planned to simulate a longer overall period – such that effects of the
slower changing temperature can be identified – ∆t shall not be chosen too small due
to increasing computational time. However, tests with very small ∆t have not been
successful either. The very simple detection of the direction by directly comparing
bj+1 with bj is prone to noise when the values are very close to each other. So if
the values do not differ sufficiently – which can happen with a small ∆t – there are
problems as well.

At this point, a small aspect should be mentioned, that will be taken up later in the
discussion of the numerical results. Provided that σ > 0 holds, there is a limited
propagation speed of the magnetic fields. This means that depending on the radius
the respective turning points in the hysteresis loop are reached at different times and
destabilizes the system additionally.

Overall, a configuration of parameters – that allowed to solve (5.10) securely without
significant oscillation at the turning points – is not found.

A More Complex Approach

To improve this situation, the more complex approach (3.77b) from Section 3.3.1 is
investigated next. If the time delayed decision – whether to use µ+

diff or µ−
diff – does

not work, this decision is shifted back to the current time step and incorporated into
the approach for ν. This results in a piecewise linear function ν that looks like a V
as shown in Figure 3.20, which is continuous but not differentiable at the current
values.

Inserting (3.77b) into (5.5) and using the boundary conditions (5.10b) results in a
non-linear system of equations. This system is continuous but not differentiable,
since the functions νi+ 1

2
are not differentiable. Via construction the searched new

solution Aj+1 is unfortunately also nearby the current working point, for which the
νi+ 1

2
are not differentiable.

A typical approach to solve systems coming from finite differences is for example the
Newton Rhapson method. This approach was tested, but difficulties with convergence
arose. The single points of non-differentiability of νi+ 1

2
therefore are disturbing the

system so much that a reliable solution process is not possible with this kind of
solver strategies. If one uses this special approach how the ν can be replaced by
Tellinen’s model, one can no longer use solver methods based on the derivative. Thus
only derivative-free solvers for non-linear systems can be used with this approach.
The better and more up-to-date representation of the turning points is traded for a
numerically more difficult system to solve. In general, suitable solvers exist [12], but
significantly increased complexity and computational costs are expected.
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Figure 5.7.: Idea of the solution approach. Notice the direction of flow represented
by the arrows.

However, the special properties of the benchmark problem are to be used and the
above system shall be reduced complexity wise from a non-linear system to a non-
linear scalar problem. Derivative-free methods for solving scalar non-linear problems
are much more common. Such a reduction is presented in the next section.

5.3.3. Replacing ν and Solving the System – Successful Approach

As before, (3.77a) and (3.77b) are used to model the link between the fields b and h.
But instead of a system of non-linear equations as in the previous Section 5.3.2, this
approach aims at a single non-linear equation.

Let the last time step be tj and assume all variables are known for this time step.
The variable are to be calculated for the new time tj+1. The current values of
µ±

i+ 1
2

= µ±
diff

(
hj

i+ 1
2
, bj

i+ 1
2

)
are calculated.

The boundary condition ν
(
− ∂

∂r
A
)∣∣∣

r=rin
= href(t) can be solved for Aj+1

1 and results
in

Aj+1
1 = Aj+1

0 −∆r

bj
1
2

+


µ+

1
2

max
(

0, href(tj+1)− hj
1
2

)
µ−

1
2

min
(

0, href(tj+1)− hj
1
2

)
 . (5.11)

Now, the value of Aj+1
i+1 is determined iteratively from the known values Aj+1

i and
Aj+1

i−1 . A visual overview is given in Figure 5.7. At first hj+1
i− 1

2
is calculated by

hj+1
i− 1

2
= hj

i− 1
2

+



1
µ+

i− 1
2

max
(

0,
Aj+1

i−1 − Aj+1
i

∆r
− bj

i− 1
2

)

1
µ−

i− 1
2

min
(

0,
Aj+1

i−1 − Aj+1
i

∆r
− bj

i− 1
2

) . (5.12)
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Equation (5.5) can be solved for hj+1
i+ 1

2
by

hj+1
i+ 1

2
=

ri− 1
2

ri+ 1
2

hj+1
i− 1

2
− σ

ri

ri+ 1
2

∆r

∆t

(
Aj+1

i − Aj
i

)
. (5.13)

Analog to (5.11) Aj+1
k+1 can be calculated by

Aj+1
i+1 = Aj+1

i −∆r

bj

i+ 1
2

+


µ+

i+ 1
2

max
(

0, hj+1
i+ 1

2
− hj

i+ 1
2

)
µ−

i+ 1
2

min
(

0, hj+1
i+ 1

2
− hj

i+ 1
2

)
 . (5.14)

If this procedure is continued iteratively, the value for Aj+1
n can be calculated. This

calculation can be aggregated to a well defined function f with f
(
Aj+1

0

)
= Aj+1

n .

Remark 5.5. Within this approach both fields and conversion directions – b = µ(h)
and h = ν(b) – are needed. Hence more complex modelations for ν may not be valid
for this approach because µ = ν−1 is not well defined or easily computable.

With (3.77a) and (3.77b) as the chosen method to embed Tellinen’s model, the
resulting function f is continuous but not differentiable.

The remaining boundary condition from (5.9b) is satisfied by f(A0) != 0. Thus overall,
the root of a continuous function f is being looked for. For the numerical determi-
nation of roots, derivative-free methods like bisection or other bracketing methods
[159–164] are valid. The start interval can be searched in a small neighborhood
around Aj

0.

Lemma 5.6: The above defined function f is strictly monotone increasing, has a
definition domain and range of R and thus has a unique solution to f(A0) = 0.

Proof. All values for the time step tj are considered already calculated and those at
time step tj+1 as unknown. It will be proven that for all Ǎj+1

0 and Âj+1
0 with Ǎj+1

0 <

Âj+1
0 the estimate f

(
Ǎj+1

0

)
< f

(
Âj+1

0

)
holds. The function f is defined iteratively

over all grid points, so the intermediate points Ǎj+1
i and Âj+1

i for i = 0, . . . , n are
obtained. The approach is to show that

Âj+1
i = Ǎj+1

i + εi (5.15a)

for all i ∈ {0, . . . , n} and

0 < ε0 = ε1 < ε2 < . . . < εn (5.15b)

holds using induction.
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I Initial case: i ∈ {0, 1, 2}
By assumption Ǎj+1

0 < Âj+1
0 a ε0 ∈ R>0 exists, such that

Âj+1
0 = Ǎj+1

0 + ε0 (5.16a)

holds. Inserting this into (5.11) yields

Âj+1
1 = Ǎj+1

1 + ε1 with ε0 = ε1 (5.16b)

because all other variables are constant. Equations (5.16a) and (5.16b) imply

Ǎj+1
0 − Ǎj+1

1 = Âj+1
0 − Âj+1

1 (5.16c)

and using (5.12) with i = 1 results in

ȟj+1
1
2

= ĥj+1
1
2

. (5.16d)

Starting with the definition of ĥj+1
3
2

in (5.13) with i = 1 and using (5.16b) and (5.16d)
provides

ȟj+1
3
2

> ĥj+1
3
2

. (5.16e)

The implementation of ν is strictly monotone increasing and thus (5.14) in combina-
tion with (5.16b) and (5.16e) gives

Âj+1
2 > Ǎj+1

2 + ε1 . (5.16f)

So there is a ε2 > ε1 such that

Âj+1
2 = Ǎj+1

2 + ε2 (5.16g)

holds.

I Induction step: i− 1, i→ i + 1 with i ≥ 2
It is presumed

Âj+1
i−1 = Ǎj+1

i−1 + εi−1 , Âj+1
i = Ǎj+1

i + εi (5.17a)

with εi−1 < εi and want to show that a εi+1 with εi < εi+1 and

Âj+1
i+1 = Ǎj+1

i+1 + εi+1 (5.17b)

exists. First, (5.17a) is used to obtain the estimate

Âj+1
i−1 − Âj+1

i < Ǎj+1
i−1 − Ǎj+1

i (5.17c)

and combining with (5.12) yields

ĥj+1
i− 1

2
< ȟj+1

i− 1
2

. (5.17d)
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The rest follows very similar to the initial case. By utilization of (5.13)

ĥj+1
i+ 1

2
< ȟj+1

i+ 1
2

(5.17e)

is obtained and finally by (5.14)

Âj+1
i+1 > Ǎj+1

i+1 + εi . (5.17f)

It follows that an εi+1 exists with all the required properties.

I Is was shown that for all Âj+1
0 = Ǎj+1

0 + ε0 the relation Âj+1
n = Ǎj+1

n + εn with
0 < ε0 < εn follows. The n-th entry is equal to the function evaluation of f at Aj+1

0 ,
strict monotonicity was thus shown.

I None of the computational steps has produced any constraints on the argument
of f , which is why the domain of f is whole R.

I In addition, it was shown that for all ε > 0 and Aj+1
0 , it holds

ε = Aj+1
0 + ε− Aj+1

0 < f
(
Aj+1

0 + ε
)
− f

(
Aj+1

0

)
. (5.18)

So for any two values Ǎj+1
0 , Âj+1

0 ∈ R with Ǎj+1
0 < Âj+1

0 or respectively Âj+1
0 =

Ǎj+1
0 + ε for some ε > 0, the secant slope is

f
(
Âj+1

0

)
− f

(
Ǎj+1

0

)
Âj+1

0 − Ǎj+1
0

=
f
(
Ǎj+1

0 + ε
)
− f

(
Ǎj+1

0

)
ε

> 1 . (5.19)

Using the information that

B f is continuous,
B f has a domain of R,
B f is strictly monotonously increasing on the whole R,
B the secant slope is bounded from below by 1,

it can be concluded that the range of f must not be bounded and thus is the whole
R.

I A scalar function that has a domain and range of R, is continuous and strictly
monotonously is invertible for any argument and thus the problem f(A0) = 0 is well
defined in the sense that a solution A0 exists and is unique.

5.3.4. Interim Conclusion

Tellinen’s hysteresis model allows different approaches to replace ν in the Curl-Curl
Equation, which are having a strong influences on the properties of the resulting
system. Three different approaches are presented and the resulting system are
examined in terms of numerical solvability.
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In general, it can be stated that Tellinen’s model is docile, if examined isolated, but
the integration into a spatially resolved simulation poses a challenge. Two aspects
can be isolated, that are relevant. Tellinen’s model is direction dependent and the
direction is not known in advance. These aspect can be mitigated through certain
compromises. Nevertheless, there are difficulties to achieve a working simulation for
two of the three approaches. Only if the solving strategy is adapted very closely to
the benchmark problem, a numerically stable solvable problem is achieved, which at
the same time meets the physical expectations.

In the benchmark problem, the system of equations is reduced to a scalar equivalent
and more standard derivative-free methods are applied. But there are numerical
methods for solving non-linear systems, where the system does not have to be
differentiable [12].

The limitation in the choice of algorithms is certainly a disadvantage, but since there
are suitable approaches, this is not a critical aspect. This problem is not exclusive to
Tellinen’s model, but applies generally to the effect of hysteresis, which is directional
in essence and thus, not differentiable.

In turn, however, it is possible to show that Tellinen’s model can be applied flexibly,
allowing a certain degree of adaption to user needs.

5.4. Thermal Simulation

A standard example of parabolic PDE is the heat or diffusion equation

∂T

∂t
= ∂2T

∂x2 . (5.20)

There is extensive basic literature on this problem, which deals with the mathematical
[101–103] aspects, but also with the physical [99] ones. An important aspect of this
thesis is the balance between mathematical simplifications and physical modeling.
The above approach (5.20) is not sufficient to model a material transition within the
simulation area. The steps required to physically model and mathematically solve
the benchmark problem are described.

The basic structure of the subsequent sections is as follows. First, a general form of
the heat diffusion equation is presented. Nevertheless, the chosen formulation has
some prerequisites. These are presented second.

Then the general approach using finite differences is presented. For discretizing the
heat equation the general θ-scheme [100, 101, 144] will be used. The advantage
is that by varying θ one can choose between the approaches of forward (θ = 0)
and backward (θ = 1) difference and the Crank-Nicolson [142] method (θ = 0.5).
A discussion of advantages and disadvantages of the methods with respect to the
benchmark problem follows in Section 5.4.7.
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Table 5.1.: An overview of the variables of the heat equation (5.21) and (5.22) and
their physical units and descriptions.

Variable Unit Description
T K or ◦C temperature
r m radius
k W/(m K) thermal conductivity
qV W/m3 = J/(s m3) generated energy per second and unit volume
ρ kg/m3 density
cρ J/(kg K) specific heat capacity
cV J/(m3 K) volumetric heat capacity

After that, special parts of the simulation domain are investigated. For parts with
constant parameter the general approach is simplified. Furthermore the radii of r = 0
and r = rout are examined more closely under the aspect of boundary conditions and
r = rin is analyzed separately with the material interface between copper and iron.

5.4.1. Heat/Diffusion Equation

A more general formulation of the heat equation is given by

∂

∂x

(
k

∂T

∂x

)
+ qV = ρcρ

cV

∂T

∂t
. (5.21)

An overview of the involved variables and parameters is given in Table 5.1. For ease
of notation cV = ρcρ is used.

The general structure, geometric design and symmetry of the benchmark problem
reduces the dimension to one. As before the coordinate transformation from cartesian
(5.21) to cylindrical (5.22) coordinates results in additional occurrence of r and 1

r

terms.

1
r

∂

∂r

(
rk

∂T

∂r

)
+ qV = cV

∂T

∂t
(5.22)

With minor changes, similar assumptions as in [104] are made. Since the benchmark
problem consists of two different materials, the parameters cV = cV (r) and k = k(r)
must be modeled as dependent from the radius. To be more precise the parameters are
assumed to be piece wise constant. Furthermore, it is assumed that the parameters
are independent of time and temperature. In the general case the parameter k = k(r)
must be inside of the derivative and can not easily be extracted from it.

An ideal heat coupling between the materials is presumed. A closer look at the
material interface follows in Section 5.4.4. In addition, heat transport by convection
is neglected.
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In this section it is assumed that qj+1
V,i is already known from the magnetic field sim-

ulation and the evaluation of the loss model. This will be discussed in Section 5.5.

The variables and parameters T, qV , cV are allocated on the standard grid and k on
the offset grid. The radius r occurs on both grids. The numbering of the grids was
already introduced in Section 5.2. The number of unknowns in the standard grid is
given by n + 1 = nh + nm.

At this point the general case is discussed first. More detailed investigations for
the critical points (r = 0 and material interface at r = rin) will follow in the next
sections.

Rearranging (5.22) yields

∂T

∂t
= qV

cV

+ 1
cV r

∂

∂r

(
rk

∂T

∂r

)
. (5.23)

For the spatial discretization central differences and the offset grid are used (as before
for the magnetic simulation in Section 5.3). The time discretization is using the
θ-scheme. To show the different numbering of the radii, a superscript of h is used
here to clarify that it is the heat numbering. This results in

T j+1
i − T j

i

∆t
=

θqj+1
V,i + (1− θ)qj

V,i

cV,i

+ θ

 1
cV,irh

i

rh
i+ 1

2
ki+ 1

2

T j+1
i+1 −T j+1

i

rh
i+1−rh

i
− rh

i− 1
2
ki− 1

2

T j+1
i −T j+1

i−1
rh

i −rh
i−1

rh
i+ 1

2
− rh

i− 1
2



+ (1− θ)

 1
cV,irh

i

rh
i+ 1

2
ki+ 1

2

T j
i+1−T j

i

rh
i+1−rh

i
− rh

i− 1
2
ki− 1

2

T j
i −T j

i−1
rh

i −rh
i−1

rh
i+ 1

2
− rh

i− 1
2

 (5.24)

Using

αi =
rh

i− 1
2

rh
i

ki− 1
2(

rh
i − rh

i−1

)γi , βi =
rh

i+ 1
2

rh
i

ki+ 1
2(

rh
i+1 − rh

i

)γi ,

γi = ∆t

cV,i

(
rh

i+ 1
2
− rh

i− 1
2

) , δi =
θqj+1

V,i + (1− θ)qj
V,i

cV,i

(5.25a)

the system (5.24) can be displayed with i = 1, . . . , n− 1 as

 −θαi

1 + θ(αi + βi)
−θβi


>

·

T j+1
i−1

T j+1
i

T j+1
i+1

 = δi +

 (1− θ)αi

1− (1− θ)(αi + βi)
(1− θ)βi


>

·

T j
i−1
T j

i

T j
i+1

 . (5.25b)

This system yields only n−1 equation for n+1 unknowns. The missing two equations
are derived in the following sections by considering the boundary conditions at r = 0
and r = rout.
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5.4.2. Finite Differences with Piece-wise Constant Material
Parameters and Piece-wise Equidistant Grid

The benchmark problem consists of two domains [0, rin) and (rin, rout]. They will be
labeled with an index of I or II accordingly. Within each the material parameters
k, cv are constant and the grid is equidistant. As defined in Section 5.2 the material
interface is at r = rin = rh

nh
. An analysis of the material interface at r = rin is given

in Section 5.4.4.

So at this point the index ranges of i ∈ {1, . . . , nh − 1} and i ∈ {nh + 1, . . . , n− 1}
are of interest. Within these ranges the grid is equidistant, such that

rh
i − rh

i−1 = rh
i+1 − rh

i = rh
i+ 1

2
− rh

i− 1
2

=
∆rI for i ∈ {1, . . . , nh − 1}

∆rII for i ∈ {nh + 1, . . . , n− 1}
(5.26)

holds. And with marking the values of cV and k accordingly, it yields

cV,i =
cV,I for i ∈ {0, . . . , nh − 1}

cV,II for i ∈ {nh + 1, . . . , n}
, (5.27a)

ki± 1
2

=
kI for i ∈ {1, . . . , nh − 1}

kII for i ∈ {nh + 1, . . . , n− 1}
. (5.27b)

5.4.3. Finite Differences in Cylindrical Coordinates at r = 0

To deal with the singularity around r = 0 – introduced by the cylindrical coordinate
transformation – at least two common approaches are available by literature. One
possible approach for constant parameter k is based on applying the chain rule on
the spatial derivative.

k

r

∂

∂r

(
r

∂T

∂r

)
= k

∂2T

∂r2 + k

r

∂T

∂r
. (5.28)

Next apply L’Hospital’s rule on the second part.

lim
r→0

k

r

∂T

∂r
= k

∂2T

∂r2 (5.29)

The heat equation is represented by the modified terms for r = 0 and can be solved
with the usual approaches of finite differences. Details about this approach can be
found in literature, for example [101].

For this thesis an approach based on a special placed grid and ghost nodes is used
[105]. The grid introduced in Section 5.2 already satisfies the requirements. It is
constructed in such way, that rh

0 = 1
2∆rI and rh

1
2

= ∆rI holds. If the numbering is
artificially extended to the ghost nodes rh

−1 and rh
− 1

2
, it would result in rh

− 1
2

= 0 and
due to symmetry in rh

−1 = rh
0 . A visual overview is given in Figure 5.8. With these
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r = 0
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2
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− 1

2
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rh
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∆rI

∆rI

Figure 5.8.: Grid of the heat simulation around r = 0. The standard grid is shown
in red and the offset grid in blue. Additionally the ghost nodes rh

−1 and
rh

− 1
2

are marked.

ghost nodes the same approach as for inner grid points (5.24) can be used. For the
sake of uniform notation and clarity, the same format as (5.25a) and (5.25b) is used.
This results in(

1 + θ(α0 + β0)
−θβ0

)>

·
(

T j+1
0

T j+1
1

)
= δ0 +

(
1− (1− θ)(α0 + β0)

(1− θ)β0

)>

·
(

T j
0

T j
1

)
. (5.30a)

δi from (5.25a) can be naturally extend to include i = 0 and the other parameters
for i = 0 are given by

α0 = 0 , β0 =
rh

1
2

rh
0
·

k 1
2

∆rh
I

γ0 , γ0 = ∆t

cV,I ·∆rh
I

. (5.30b)

5.4.4. Finite Differences at Material Interface at r = rin with
Different Grid Sizes

At the material interface of ideal coupled materials the temperature and heat flux
are continuous [104]. So for any fixed time t it holds

TI(t, r)
∣∣∣∣
r=rin

= TII(t, r)
∣∣∣∣
r=rin

, kI
∂TI(t, r)

∂r

∣∣∣∣
r=rin

= kII
∂TII(t, r)

∂r

∣∣∣∣
r=rin

. (5.31)

The material interface is at r = rin = rh
nh

, so i = nh is considered. As stated in
Remark 5.1 the standard grid changes the grid size without an intermediate step.
The offset grid, on the other hand, has an averaged step at the transition. An
overview is given in Figure 5.9. In specific terms the step sizes result in

rnh
− rnh−1 = ∆rI , rnh+ 1

2
− rnh− 1

2
= ∆rI + ∆rII

2 , rnh+1 − rnh
= ∆rII . (5.32)

The grid sizes and k can therefore be assigned precisely in each case. The parameter
cV does not. It is located on the standard grid and therefore cannot be clearly
assigned to material I or II at the transition. A weighted average, i.e.,

cV,nh
= ∆rI · cV,I + ∆rII · cV,II

∆rI + ∆rII
, (5.33)
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ri−2 ri−1 ri ri+1 ri+2

∆rI ∆rI ∆rII ∆rII

∆rI ∆rI+∆rII
2

∆rII

Figure 5.9.: Overview of the grid sizes at the material interface at ri = rin. The
standard grid is shown in red and the offset grid in blue.

is used [98]. This gives the parameters

αnh
=

rh
nh− 1

2

rh
nh

kI

∆rI
γnh

, βnh
=

rh
nh+ 1

2

rh
nh

kII

∆rII
γnh

,

γnh
= ∆t

∆rI·cV,I+∆rII·cV,II
∆rI+∆rII

· ∆rI+∆rII
2

, δnh
=

θqj+1
V,nh

+ (1− θ)qj
V,nh

∆rI·cV,I+∆rII·cV,II
∆rI+∆rII

.

(5.34)

5.4.5. Boundary Condition at r = rout

At r = rout a boundary condition is needed. Typically, three different types of
boundary conditions are discussed in the literature [99, 101, 103]. Dirichlet boundary
conditions apply to the solution itself, while Neumann conditions apply to the
derivative of the solution. Robin boundary conditions combines the two approaches
in a weighted combination.

In the context of this thesis Dirichlet boundary conditions are used, i.e.,

T (t, r = rout) = 27 ◦C for all t ∈ [0, tmax] . (5.35)

The outside of the iron sheath is cooled by the air, which is assumed to be of constant
temperature. As a condition a perfect material interface is assumed. Therefore a
constant surface temperature at r = rout is considered.

Embedded in the former notation and with n = nh + nm − 1, this results in(
−θαn

1 + θ(αn + βn)

)>

·
(

T j+1
n−1

T j+1
n

)
= δn +

(
(1− θ)αn

1− (1− θ)(αn + βn)

)>

·
(

T j
n−1
T j

n

)
(5.36a)

with

αn = βn = γn = δn = 0 . (5.36b)

Because (5.36a) reduces to T j+1
n = T j

n, the starting temperature T 0
n defines the

surface temperature for all time steps.
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5.4.6. Overview of the Resulting System of Equations

Now, when the previous sections are combined, the following definitions of the
parameters result from (5.25a), (5.30b), (5.34) and (5.36b).

αi =
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(5.37a)

βi =
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(5.37b)

γi =



∆t
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(5.37c)

δi =


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θqj+1
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V,i
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(5.37d)

For ease of notation matrix A is defined by

A =



α0 + β0 −β0
−α1 α1 + β1 −β1

. . . . . . . . .
−αn−1 αn−1 + βn−1 −βn−1

−αn αn + βn

 ∈ R
(n+1)×(n+1) . (5.38)

The equations (5.25b), (5.30a) and (5.36a) can be combined into the linear system
of equations (

1 + θA
)

#„

T j+1 = #„

δ +
(
1− (1− θ)A

)
#„

T j . (5.39)

Here 1 describes the unit matrix and #„

T j+1, #„

T j, #„

δ ∈ Rn+1 the vectors for index
i = 0, . . . , n.
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0 rin rout

not simulated

output of loss model

r

q V

Figure 5.10.: Expected results for qv for fixed t. Of special importance is the discon-
tinuous jump at r = rin.

Remark 5.7. The matrix (1 + θA) is tridiagonal and strictly diagonal dominant.
From this it follows directly that the matrix (1 + θA) is invertible and the system of
equations (5.39) has a unique solution.

5.4.7. Further Remarks

The previous sections allow the application of different numerical methods by choosing
θ ∈ [0, 1] accordingly. The choice of θ = 0.5 is of special interest because the resulting
Crank-Nicolson method [142] is of second order in time and is unconditionally stable
[141, 143, 144]. Other θ values result in only first order w.r.t. time.

But the Crank-Nicolson method (θ = 0.5) shows an oscillating and overshooting
behavior, if the problem has non-continuous properties [141, 143, 144]. Although the
start temperature is chosen as constant, i.e., T (t = 0, r) = 27 for all r ∈ [0, rout], the
resulting benchmark problem has a discontinuous jump in qV . Only hysteresis losses
of the iron are considered. And these losses are mainly dependent on the magnitude
change of the field. With the expected radial decline of the magnetic fields, the
largest values for qV are expected at rin. But since the copper is modeled without
hysteresis losses, it holds qV (t, r) = 0 for all t ∈ [0, tmax], r ∈ [0, rin). Figure 5.10
shows the expected curve for qV at a fixed time t. This is later confirmed by the
simulation and discussed in Section 5.6.

Although there are more advanced methods and approaches to reduce oscillation (e.g.
[141, 143, 144]), all further simulations of this thesis are performed with θ = 1. This
result in the backwards difference scheme for the time derivative. This approach is
also unconditionally stable and has no tendency to the above mentioned oscillations
[143, 144]. But is only of first order in time.

The choice of θ = 0 is not of interest for this benchmark problem. It would yield the
oscillation as a negative characteristic and is additionally only conditionally stable
[103]. In some cases this explicit approach has advantages w.r.t. computational
costs. But for the benchmark the resulting system of equation for implicit approaches
is tridiagonal and diagonal dominant. For this kind of problem algorithms with
O(n) and advanced solvers exists (e.g. [154–158]). So the explicit approach has no
advantages and is therefore not pursued further.
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5.5. Co-Simulation and Multirate

In this section the interaction of the individual components is to be regarded. These
components are

I the original Tellinen scalar hysteresis model (Chapter 3),
I the thermal extension to it (Section 4.2),
I the loss model (Section 4.1),
I the magnetic field simulation (Section 5.3),
I the heat simulation (Section 5.4).

Up to now, each of these components have been analyzed individually. In many
places, comments have already been made on how to put these components together
and where the connecting links are. Now it will be shown how the overall simulation
is designed. The overall result is a coupled simulation, which includes both the
magnetic field and the thermal aspects as shown in Figure 5.1.

There are two major simulation approaches – based on corresponding PDE’s –
describing once the magnetic and once the thermal properties. There are some
common variables such as the temperature T , such that a simultaneous solving is
not trivially possible. The two simulations are performed separately, i.e., decoupled
as much as possible. The models play the role of links between these two simulations.
This presents a few important issues that are discuss below.

I In what order are the individual steps performed?
I Which variables are changed in each step and which remain constant?
I How is it ensured that the respective model’s definition domains are respected?

It is initially assumed that the magnetic field simulation operates on a faster time
scale than the heat simulation. This will be investigated in the second half of this
section under the aspect of multirate approaches. This assumption is also confirmed
and discussed by numerical results in Section 5.6. So in the consideration it is not
only a thematic decoupling, but also one regarding the time scales involved.

As a starting point for a new time step the magnetic simulation is chosen, so it is a
fastest-first approach. This means that the magnetic field simulation is carried out
first, while assuming the temperature to be constant. Information that influences
the temperature is picked up by the loss model and stored temporarily for later
processing.

Second, the results of the magnetic field simulation are coupled into the heat
simulation, which is then solved. Third, the thermal result are fed back onto
the magnetic domain. Applying the thermal extension of Tellinen’s model ensure a
valid state after these steps. So, the used approach does not solve both simulations
simultaneously but one after the other. It is therefore a co-simulation. How exactly
the simulations and models are coupled and which data is exchanged is described
next.
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I Tellinen’s model _ magnetic simulation
How Tellinen’s model can be integrated into the magnetic field simulation and
what effects this has, has already been discussed in Section 5.3. The ν is replaced
by a suitable approach and the approaches to solve the magnetic simulation are
chosen accordingly. For the reduced and adjusted benchmark problem, appropriate
procedures were already presented. However, it must be ensured that all states are
valid, i.e., (h, b, T ) ∈ IT for all spatial coordinates and at all time steps.

I magnetic simulation
Withing this step the temperature T is assumed to be constant and so are B±

sat
w.r.t. T . Thus, the original Tellinen model can be applied. For the discrete time
step increment from tj to tj+1, the magnetic simulation is solved as described in
Section 5.3. From the freshly calculated Aj+1

k the values of hj+1
k+ 1

2
and bj+1

k+ 1
2

are derived.

I magnetic simulation _ loss model
After the time step update, the variables hj

k+ 1
2
, hj+1

k+ 1
2
, bj

k+ 1
2

and bj+1
k+ 1

2
are available.

I loss model
With these updated values of h and b, a new step for brev can be calculated as defined
in Section 4.1. A new trapeziod can be calculated and its enclosed area is added
to the corresponding summed up area, now denoted by qV (individually for each
spatial coordinate). At this point, the option arises to make another time step in
the magnetic simulation or to switch over to the thermal simulation.

I loss model _ heat simulation
The summed up enclosed areas of the trapezoids are integrated into the heat simu-
lation as source terms qV . After they have been used in the heat simulation, these
are reset to zero. Only after at least one step in the magnetic simulation has been
performed, there are hysteresis losses again.

I heat simulation
Within the heat simulation the magnetic variables are assumed to be constant. The
heat simulation is solved as described in Section 5.4. This is done by standard
procedures and is only somewhat complicated by the material transition. New values
T j+1

k are obtained. Depending on whether the magnetic simulation was performed
only once or several times, a different ∆t for the heat simulation than in the magnetic
one may result.

I heat simulation _ thermal extension
The new T j+1

k and old T j
k values are available.

I thermal extension
The temperature T j+1

k is analyzed at each spatial coordinate and the values of bj+1
k+ 1

2

and bj+1
rev,k+ 1

2
are adjusted as defined in Section 4.2.

I thermal extension _ magnetic simulation
The current states

(
hj+1

k+ 1
2
, bj+1

k+ 1
2
, T j+1

k+ 1
2

)
∈ IT and

(
hj+1

k+ 1
2
, bj+1

rev,k+ 1
2
, T j+1

k+ 1
2

)
∈ IT are

ensured to be valid.
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This closes the circle of one time step and this procedure can now be applied
iteratively, as previously shown in Figure 5.1.

The procedure described above allows to use one of the simplest multi rate procedures
and that is that the fast part is executed several times compared to the slow part.
Due to its structure, the loss model can cache the summed up enclosed area and
then be integrated into the heat simulation as needed. Thus, both simulations can
be performed asynchronously from each other. Of course, it is up to the user to
decide whether such an approximation is sufficient and what calculation time is
acceptable.

In the presented benchmark problem, no multi scale option is used. In each run,
both the magnetic and heat simulation is performed. There are two main reasons for
this.

First, that in the context of this thesis the used computational resources are only
secondary. The focus is on the modeling of the physical features and the embedding
of these in a multiphysics simulation. The used approaches still have a lot of potential
to improve the numerical speed. This remains open for further research. The short
insight and the evaluation that the models basically offer possibilities is sufficient at
this point.

Second,it is investigated and demonstrated in the benchmark that the effects are
indeed on different time scales. For this purpose numerical investigations follow in
the next Section 5.6.

Further literature on Co-Simulation and multirate is given by [145–149, 152, 153] for
example.

5.6. Numerical Results

In this section, numerical results are presented. With these it is tried to validate
the model and prove its technical feasibility. Based on the observations, positive but
also restricting features are pointed out. In addition, contradictions to the physical
principles are looked for.

This section is designed as follows.

I First, the parameters of the simulation are discussed. Unless otherwise stated,
all results in this section are based on these parameters. An opinion is given which
parameters are close to real material properties and which are more academic.

I Second, results of numerical simulation are presented. The reader is given an
overview of how the models perform. In doing so, examples are provided that
demonstrate that the model works as theoretically studied. But also new aspects will
be taken up, which have arisen during the numerical implementation. In this way
the reader is enabled to form an informed opinion about the approaches and models.
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Table 5.2.: Parameters of the benchmark problem
Description Value
numerical method for calculation of brev RK3
spatial base unit meter
rin 0.05 m = 5 cm
rout 0.15 m = 15 cm
nm 60
nh 20
∆rI ≈0.2439 cm
∆rII ≈0.1695 cm
time base unit second
t0 0 s
tmax 480 s = 8 min
∆t 1

50·256s = 78.125 µs
magnetic parameters
σ 10 1/(kW m)
href(t) 60 kA/m · sin(50 Hz · 2π · t)
thermal parameters
kI 385 W/(m K)
kII 79.5 W/(m K)
cV,I 3.450 MJ/(m3 K)
cV,II 3.537 MJ/(m3 K)
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Figure 5.11.: (bih)–curves of the benchmark material at different temperatures T .

5.6.1. Parameters

It is tried to choose the parameters realistically, but in some aspects no real values
are available and in other places certain effects are to be shown. Therefore the
parameters are to be understood as academic examples. As a result, there is no
specific application for which the parameters could be optimized for. The parameters
are chosen such that as many effects as possible are strongly pronounced and can be
discussed.

An overview of the parameters is listed in Table 5.2. This includes the typical values
for spatial and temporal resolution and defining details of the benchmark problem.
The thermal properties can also be briefly described using the constants cV and k for
the two different materials. The magnetic properties can not be summarized so easily
and therefore a description of the magnetic material used follows next section.

Magnetic Material Parameters

The material used has a significant influence on the simulation and one material
has already been presented in Figure 4.5. However, this material belongs to the
hard ferromagnetic materials and is therefore not a useful material in combination
with the benchmark problem. The application problem is more suitable for softer
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Figure 5.12.: (biT )–curves of the benchmark material at different values of h.

ferromagnetic materials. The material at hand is adapted by reducing Hc by a factor
of 50. This has made the material curves narrower by this factor. The resulting
material is shown in Figures 5.11 and 5.12.

In the benchmark problem a maximum temperature of about 50 ◦C is reached and
27 ◦C is set as the initial and ambient temperature. Measurements (academic/con-
structed) of the saturation curves B±

sat are available for temperatures 27 ◦C and 60 ◦C.
Linear interpolation is used to obtain the saturation curves B±

sat for all T ∈ [27, 60],
i.e.,

B±
sat(h, T ) = 60− T

33 B±,27 ◦C
sat (h) + T − 27

33 B±,60 ◦C
sat (h) . (5.40)

The saturation curves B±,27 ◦C
sat , B±,60 ◦C

sat fulfill all the required properties of the
original Tellinen model and thus (5.40) fulfills all the conditions of the thermal
extension. This results in the intermediate values as presented in Figure 5.11(b).

Reasons for the Choice of Parameters

The combination of the amplitude of the excitation href and the width of the saturation
curves B±

sat is chosen to almost reach saturation in the simulation. This allows to
investigate some effects most efficient.

If the saturation curves B±
sat would be narrower and/or the excitation href higher,

the solutions would be almost exclusively the saturation curves B±
sat themselves.

This would maximize the enclosed area in the loss calculation, but it would be hard
studying the curves in the interior.

On the other hand, if the excitation href is too small and/or the saturation curves
B±

sat are very wide, there would hardly be any difference between µ+
diff and µ−

diff. The
enclosed area would be very small and barely a temperature change would result.
The forward and backward paths of Tellinen’s model would be nearly identical and
difficult to see.
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The parameters k and cV are roughly based on the values of copper and iron. The
exact values of the material parameters vary somewhat depending on the literature,
see [99, 132, 11] for example. The value of σ is intentionally chosen much smaller
than the value of iron. It is just integrated to prove that the simulation works with
a σ > 0. But a σ in the order of iron would make the discussion of the results much
more complex, because the effects overlap with those of the hysteresis. Comments
on that will follow.

The chosen parameters are a compromise and purely academic in nature, but thereby
show all the effects. The paths coming from of Tellinen’s model shall be visually far
enough apart, such that a typical hysteresis loop results. The areas enclosed in each
case should be large enough so that there is a noticeable increase in temperature T
and thus change in B±

sat. At the same time, however, the main activity should take
place inside the curves B±

sat.

5.6.2. Results

Now, the numerical results are processed and discussed. If not stated otherwise,
all of the following result are based on the parameters presented in the previous
Section 5.6.1. Results of different chapters of this thesis will be presented and
discussed. A list with rough information, motivations and questions follows.

I magnetic simulation
The magnetic simulation as in Section 5.3 in combination with Tellinen’s model from
Chapter 3 is of special importance for this dissertation. The previous investigations
on the hysteresis model have so far been isolated and the question remains how
the model behaves in a spatially resolved simulation. That there can be numerical
problems, depending on how exactly the model is integrated, has already been
mentioned. It will be shown that the chosen approaches work in the sense that
the hysteresis model behaves the same as when considered in isolation. Critical
aspects are for example if the B±

sat boundaries are kept and if the turning points
in the hysteresis loops are recognized cleanly, i.e., if the change between µ+

diff and
µ−

diff works. The magnetic behavior is checked physical reasonableness, this concerns
especially the starting phase (t ≈ 0) and the steady state (t� 0). The influence of
the parameter σ is briefly discussed.

I heat simulation
The results of the heat simulation introduced in Section 5.4 are checked for reason-
ableness and fulfillment of the requirements. Aspects are for example the boundary
conditions, the material transition at rin and the transition to a steady state. The
heat flux is calculated from the temperature distribution and checked to see if it is
continuous.

I loss model
In the theoretical consideration in Section 4.1 some properties were attributed to
the loss model which will now be verified numerically. First, the starting phase is
examined. How fast does the model take hold and provide an approximation of the
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Figure 5.13.: Results of b for the first 100 ms of the simulation.

return path by brev? Second, the saturation phase is analyzed. How closely do the
actual return path and its prediction brev match?

I involved time scales
The magnetic and thermal effects are expected to act on different time scales, as
described earlier in Section 5.5. This expectation is checked and the effects are
compared with each other. For this purpose, among other things, an analysis in the
frequency spectrum – by means of Fourier transformation – is performed.

Magnetic Simulation and Tellinen’s Model

In this paragraph, the numerical results concerning the magnetic simulation from
Section 5.3 and Tellinen’s model Chapter 3 are presented. Using these data, it
is checked whether the simulation produces physically meaningful values and if
Tellinen’s model still works in conjunction with this spatially resolved simulation.

First, a rough overview is given. The Figure 5.13 shows the first 100 ms of the b field.
The 50 Hz excitation, i.e., period of 20 ms, can be clearly seen and also the drop with
increasing radius. In this overview, it looks very regular and already very periodic.
So the magnetic simulation seems to reach a steady state quickly.

For the radii 6 cm and 14 cm a more detailed illustration can be found in Figure 5.14.
Since the h field is predefined by the boundary condition at a radius of 5 cm, the
evaluation is deliberately chosen not to be at this boundary.

If the two radii are compared, roughly the same pattern results. The b field is slightly
lagging behind the h field. While the maxima and minima are synchronous in time,
the zero crossings are not.

This corresponds to the expectations. Tellinen’s model couples the direction of
change of h and b directly, such that there can be no deviation there. However, one
can see in the extrema that the h field behaves nicely smooth (matching the sine of
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Figure 5.14.: Values of h and b for the first 60 ms of the simulation at radius r = 6 cm
(solid) and r = 14 cm (dashed).

the excitation), but the b field contains a bend. There, such a change of direction
happened and it was switched from µ+

diff to µ−
diff or vice versa. What kind of hysteresis

loop results from this, will be examined in a moment.

Furthermore, it can be seen in Figure 5.14 that a steady state is indeed established
very quickly. As early as the second cycle, there is actually no longer any visible
difference between the cycles. Another small detail can be seen in this figure. If
the curves of the different radii are compared, a small phase shift can be identified,
which can be seen particularly well between the zero crossings.

This is caused by the parameter σ, which is the electrical conductivity and affects
the temporal component of the underlying PDE. An increase in the value causes this
phase offset to increase. This allows a quick intermediate check with the physical
background of a perfect conductor. Such a perfect conductor is defined by its non-
existing resistance R or its infinitely large σ. This has the consequence that in a
perfect conductor the magnetic field can not change, the time lag is so to speak
infinitely large.

The simulation including Tellinen’s model thus shows this desired behavior to some
extent. However, a small σ is chosen deliberately, such that this effect is not too
strong. The focus lies on Tellinen’s model and another significant effects with a
time delay are undesired. Otherwise, it would not be distinguishable which effect
are responsible for these superimposed lags. It is good that it can be shown that
the approaches also work with a σ > 0 and that the physical trend is correctly
reproduced. But in the further course, the influence of σ is regarded as small and
therefore neglected.

Instead, it is investigated whether the implementation results in a reasonable hys-
teresis loop. For this sake, the first 60 ms of the h and b values from Figure 5.14 at a
radius of 6 cm are taken and displayed in bh coordinates, resulting in Figure 5.15. The
general course looks good and as expected. The curves approaches the boundaries
B±

sat, but do not reach them, as desired. The first cycle is clearly different from the
other two because this one starts at point (0, 0). But the other two are visually very
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Figure 5.16.: Result of the benchmark problem: temperature T .

similar. Here, it can be clearly seen that the steady state is already established after
actually one cycle.

In Figure 5.15(b), it is shown that the chosen approaches correctly resolve the
hysteresis loop turning points. The actual calculation points result in a sharp tip at
the turning point and also the change between µ+

diff and µ−
diff works without delay.

The fact – that these critical aspects are presented correctly – proves that the
chosen approaches are successful. Tellinen’s model is successfully integrated into the
Curl-Curl Equation, such that the characteristic properties of the model are also
evident in the spatially resolved simulation.

Heat Simulation

This paragraph focuses on the numerical results of the thermal simulation, in
particular on the rough time scale. Further investigations on the finer time scale will
follow in the section on the involved time scales. The overview of the temperature is
given in Figure 5.16 and so far complies with the expectations. Individual aspects
will now be discussed in more detail.
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The temperature rises most rapidly at a radius of slightly less than 6 cm. Two effects
overlap here. On the one hand, the magnetic fields are strongest at a radius of 5 cm
and thus generate the greatest power loss there. For radii larger than 5 cm this
drops slowly. On the other hand, for a radius of less than 5 cm, no losses have been
simulated, such that the heat can diffuse there easily.

The Figure 5.16(c) show that the generated heat at a radius around 5 cm to 6 cm
diffuses towards the center of the simulation (r = 0 cm). The boundary condition
there is fulfilled with a slope of zero. In the same way, the boundary condition at
the outer edge (r = 15 cm) of the simulation is kept correctly fixed at a temperature
of 27 ◦C.

Between these limits, continuous but not differentiable values for the temperature
T are obtained. This is in line with expectations and physical requirements. It is
required that k ∂T

∂r
is continuous, which is fulfilled according to Figure 5.17.

The ending in the temporal sense of the simulation is also found to be satisfactory.
For the radii below 5 cm, the temperature is constant and outside there is a drop
towards the outer edge. Since the magnetic fields are in stable state, the loss model
also gives consistent thermal excitations and the thermal simulation also transitions
to a stable state. The maximal temperature reached is about 48 ◦C and is securely
in the defined temperature range of the material used, which is 27 ◦C to 60 ◦C.
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Figure 5.18.: For a fixed radius r = 7.5 cm the benchmark results of b (red) and
brev (green) are shown. The saturation curves B±

sat are marked with
dashed lines. The subplots are showing different time intervals. Fig-
ures 5.18(a) to 5.18(c) are directly consecutive and form the starting
phase. For comparison, Figure 5.18(d) shows the curves at the end of
the simulation.

In summary, no problems with the heat simulation are detected and the prerequisites
are rated as fulfilled.

Loss Model – Starting Phase

The basis of the loss model is the prediction of the return path brev. In Figure 5.18
the path of b and brev at different times are shown. The simulation is started with
an unmagnetized material, i.e., at t = 0 it holds (h, b) = (0, 0) ∈ I. The excitation is
sinusoidal.

In the first quarter of a cycle of the sinus, the value of h increases until the first
turning point. In Figure 5.18(a) it can be seen that the loss model can not yet be
applied, in the sense that it outputs an energy of zero. While h is increasing the
path of b lies above of brev. This means the enclosed area is negative orientated and
therefore ignored.

In the next phase h is decreased until the second turning point is reached, as shown
in Figure 5.18(b). The loss model begins to take effect. The approximation of
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Figure 5.19.: Analysis of the influence of the time step size on the loss model. The
simulation is run several times and only ∆t was changed. The excitation
is a 50 Hz sine wave and the evaluation is done at a radius of 5 cm.
The red and blue paths are the actual forward and backward paths in
steady state (t� 0, last cycle of the simulation) and the orange path
is the predicted path brev.

the enclosed area is not yet good, but already a rough approximation. As seen in
Figures 5.18(a) and 5.18(b) the restriction of brev to I is simple and effective.

The next plot Figure 5.18(c) shows the next phase. h is again increased. The loss
model is already in nearly steady-state. The loop formed by b and brev is almost
closed. After only one cycle of the sinusoidal excitation, the approximation of the
enclosed loop is already quite good. The difference to the steady-state is small, as
compared in Figures 5.18(c) and 5.18(d).

One aspect, which cannot be read from the result in Figure 5.18, is the change
in temperature T . If the temperature T changes sufficiently during one cycle, it
is quite possible that no closed curves result, i.e., brev and the actual return path
differ significantly. An examination of the various time scales involved is coming up.
However, it should be noted in advance that the temperature changes sufficiently
slowly that this effect can be neglected.

In Sections 3.2 and 4.1.2 the convergence of Tellinen’s hysteresis model and the
loss model was already discussed. The numerical benchmark problem now supports
the assumption, that the convergent behavior remains even after an embedding
in an overall simulation. Already a few cycles are sufficient to get into nearly
steady-state.

Loss Model – Influence of Time Step Size in Steady State

This investigation takes place in steady state, i.e., the simulation has already run
through very many cycles of the periodic excitation and t� 0 holds. In this state, the
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temperature T is considered constant. The excitation is of sweeping type, such the
situation is the same as in Section 4.1 in which the loss model without temperature
dependence was presented. Ideally, the predicted return path brev should match the
actual return path. However, as can be seen in Figure 5.19, this is not the case and
there are deviations.

Figure 5.19 shows the last cycle of the simulation. Starting from the turning point
at the bottom left, the simulation calculates the course in the (bh)–plane along the
red path. At the same time, the return path brev is predicted using the loss model
and is shown in orange. For comparison, the actual return path is drawn in blue.
The red and the blue path thus result in exactly one cycle of the hysteresis loop and
for a simple notation these are denoted with p+ and p−.

The simulation is performed with 64, 128 and 256 intermediate time steps for each
cycle. The temporal resolution has a direct impact on the simulation and the loss
model seems to be particularly affected. This will now be investigated.

For the coarsest resolution, the largest deviation results, in the sense that the
enclosed area is estimated to be too large. With finer resolution the approximation
brev becomes better. This results in different temperatures T . In concrete terms, the
values are 49.91 ◦C, 48.86 ◦C and 48.33 ◦C. As a result, the hysteresis loops (p+ +
p−) are slightly different in the three simulations.

The investigation does not focus on the exact numerical values of the deviation and
also in general it is well known that an increased resolution provides an improved
approximation when solving differential equations numerically.

Instead, it is focused on the fact that the magnetic field computation of the paths p±

is based on an adjusted explicit Euler and thus is only of order one. The prediction
of the return path brev in the benchmark is performed by using a third order Runge
Kutta method. Despite the worse order, a closed hysteresis loop results for the normal
paths p±, while that is not the case for brev. This is attributed to the properties of
the original Tellinen model and will now be discussed.

The big difference between p± and brev is that Tellinen’s model is applied backwards,
so to speak, with the roles of µ+

diff and µ−
diff reversed.

For the paths p±, it was found in Chapter 3 that they behave in a well-behaved
manner. This includes convergent behavior. By implication, this means that brev
tends to behave divergently in the sense that it is error amplifying. While p± converge
to the stable state, so it is an attractor for them, the stable state is a repeller for
brev. Deviations from the stable state are thus amplified.

This means that the backward application of Tellinen’s model turns out to be
numerically much more difficult. For brev to approximate the path p− sufficiently
well, the numerical methods for computing brev must be of higher order than the
ones for p±. Although it is not preferred for computational time technical reasons,
using implicit methods to compute brev can be useful here.
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Figure 5.20.: Magnetic flux density b and temperature T for the first and last 100 ms
of the simulation at a fixed radius of 5 cm.

Unfortunately, these properties of the loss model make it an important aspect in
determining the required temporal resolution. The loss model requires finer temporal
resolution than the original Tellinen model. This can be partly counteracted by
using higher order and implicit methods for the calculation of brev. Unfortunately,
this results in higher computational effort.

This problem could also be reduced by a more intelligent or dynamic use of the loss
model. In this section, the steady state, i.e., p+ and p− already form a closed curve,
is considered. In this case, the loss model offers no advantages but only the above
disadvantages. The enclosed area could be determined by p±. One possibility would
be to use the loss model only if the paths p± are not yet closed. As soon as the
stable state is almost reached, the loss model is switched off and the method of the
area calculation is changed.

Comparison of the Time Scales

To provide further justification why such a multiphysics simulation is numerically
demanding, the involved time scales are presented. No approaches from the field
of numerical multi scale methods are applied within the simulation and thus the
temperature is resolved as finely in time as the magnetic fields. The time scales of
the magnetic fields h, b and the temperature T shall now be compared. An overview
of these quantities has already been given in Figures 5.14 and 5.16.

The Figure 5.20 shows the first and last 100 ms of the simulation for the quantities b
and T at a radius of 5 cm. This radius was chosen because the strongest magnetic
fields occur there and therefore also rather high temperature changes.
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Figure 5.21.: Results of the discrete Fast Fourier Transformation (FFT) for b and T .

As expected, the magnetic field is dominated by the 50 Hz excitation (period of
20 ms). The temperature T seems to be influenced by two different effects.

On the one hand, there is always a short-term increase in temperature, synchronous
with the timing when b changes rapidly. At this time the state (h, b) is at the widest
point of the hysteresis loop and the loss model calculates the largest partial areas.
This happens on the forward and backward direction of the hysteresis loop, resulting
in a doubled frequency of 100 Hz. So this fits the expectations.

On the other hand, a short-term drop of the temperature T is seen in the areas
where the state (h, b) is near to the reversal points within the hysteresis loop. There,
the loss model provides only small subareas and accordingly only a small increase
of the temperature T . In this case, the temperature T is diffused spatially and the
boundary conditions result in an overall tendency to cool to room temperature of
27 ◦C. So also here the simulation shows a suitable behavior to the expectations.

Both effects together do not exactly cancel each other out in the simulation. The
result is a slight slow increase of the temperature T . This effect is stronger at the
start of the simulation and decreases towards the end. If the simulation is continued
in time, an equilibrium and a steady state is expected.

In order to analyze if the optical detected frequencies are correct and to check if
there are other frequencies of importance, a discrete Fast Fourier Transformation1

(FFT) with normalization is performed on the simulation results for b and T .

The results of the FFT are shown in Figure 5.21. The flux density b clearly shows
the dominant frequency of 50 Hz. In addition, there are further harmonics of odd
order. The temperature T is mainly characterized by frequencies < 1 Hz. There is
also a small peak at 100 Hz and an even smaller resonance at 200 Hz.

1https://docs.scipy.org/doc/scipy/reference/tutorial/fft.html
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Figure 5.23.: Theoretically temperature change ∆T by hysteresis losses for the last
cycle of the hysteresis loop.

All occurring frequencies can be explained by the conditions of the simulation and
the models. No unexpected frequencies are recognized and thus, these simulation
results are considered to be in agreement with the expectations and models. By
using the FFT method, the difference in the time scales of b and T is clearly seen.

Now, the influence of a single pass of the hysteresis loop is investigated. The time
domain is set to the last cycle in the simulation. Depending on the radius different
hysteresis loop occur, as shown in Figure 5.22. To determine the influence of a single
cycle, the enclosed area is calculated, the material constant cV is considered and the
temperature difference ∆T is obtained. Results are shown in Figure 5.23. Without
scaling the values with cV this corresponds to the source term qV and are consistent
with the expectation in Figure 5.10.

For radius r = 5 cm, a value of roughly ∆T ≈ 3 m◦C is obtained. With this number
and a period of 20 ms, a rise of 1 ◦C would need more than 6 s. But as one can see
in Figure 5.20, only a fraction of this is achieved as an actual increase. Thus, it
remains that the temperature T and the magnetic field b differ by several orders of
magnitude with respect to the time scale.
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5.6. Numerical Results

At this point another time scale is motivated, that of the current j. By clever and
simplified assumptions, the current j is built into the simulation via appropriate
boundary conditions. If one would like to extend the simulation by a more complex
consideration of the current j, a further time scale in the range of kHz appears very
easily. An application could be a noisy current signal or that the current is controlled
by a pulse width modulation (PWM). An example: depending on the motor type, a
measurement of the current motor position and a coupled electronically regulated
control of the involved currents is necessary for varying the speed of the motor. Such
a simulation must cover time scales in the range of mHz to kHz. So even though
in the benchmark simulation the multi scale capability of the loss model was not
exploited, it is a clear positive feature.
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6 Conclusions and Outlook

In general, the goal of this thesis is achieved. A multiphysics simulation is imple-
mented, which includes both the thermal and magnetic aspects including hysteresis.
The results are mostly in line with the presented physically motivated expectations.
It must be acknowledged that the numerical methods are strongly tailored to the
benchmark problem and can not be unmodified applied to general problems.

The investigations reveal detailed reasons and in many places the problem is not
the specifically chosen hysteresis model, but the general phenomenon of dependence
on direction of magnetic hysteresis. Not only working but also non-functioning
approaches are presented and their influence on the other aspects is shown.

It must be admitted that the used approaches are not the most complex and that if
the individual components are considered in isolation, higher quality approaches are
possible. The complexity in the scope of this dissertation results from the fact that
the main focus is not the isolated consideration, but the simultaneous integration of
the components into a multiphysics simulation. It is illustrated in Figure 5.1, how
the individual components interact with each other.

Through the self-performed implementation, it is proven that the collected approaches
can indeed be combined into a multiphysics simulation. All the necessary steps to
perform such a simulation are listed. Problems and approaches to solutions from
different areas are addressed. The thought process starting with the isolated modeling
of a phenomenon, the investigation of which behavior is expected from the physical
contexts, the development of suitable analysis methods and finally the holistic
implementation in a complex simulation environment is portrayed. Methods from
different areas of applied and pure mathematics as well as fundamental knowledge of
physics are utilized and combined.

Each of the individual components models a physical aspect. A partially simplified
representation of the physical principles at the beginning of this dissertation allows
the models to be checked for reasonableness. No gross violations are found and good
agreement between expectation and analysis is shown in many areas. For further
research there is the possibility to elaborate the physical phenomena more profoundly
and evaluate the presented models in more detail.

Suitable investigation methods are developed for analyses and evaluations. The used
approaches prove to be suitable and flexible enough to be applied – not only to the
original Tellinen’s model – but also to the derived extensions. These approaches may
also prove useful for other models based on directional differential equations and
interpolation between two boundaries.



In summary, it is proven that the models have docile properties. The stability and
convergence of the models in particular are of significant importance. The models
are well-defined and analytical solutions stay within the definition domain. They can
be applied without restriction and strive towards a stable solution. These studies go
beyond those already published and cover a significant part of the field of application.
Nevertheless, there are still opportunities to intensify the investigations.

The claim of the original Tellinen model to be a simple, easy to understand and fast
hysteresis model is confirmed and also the extensions preserve this claim. Thus, in
the context of this dissertation, it is perfectly fine to have more complex hysteresis
models that have a different focus.

While there are several comparisons between hysteresis models, these mainly focus
on the isolated view. Demonstrations of how to embed these models into a spatially
and temporally resolved simulations are much rarer. One of these gaps is filled by
this dissertation.

One way to improve the original Tellinen model can be achieved in conjunction with
the first order reversal curves. Tellinen’s model is based on interpolation between
boundary curves and does not include measured information in the interior. The
measured inner curves can be integrated into the interpolation, resulting in a stepwise
interpolation. A measurement of such inner curves is interesting under different
view points. If the investigated material indeed behaves very linearly – as in the
interpolation of the original model – this is a confirmation that this material is
well approximated. If the result is that the material does not behave linearly, a
justification is found, why there are differences between a theoretical simulation and
real experiment. After different materials are examined this way, perhaps patterns
can be identified as to which types of materials are particularly well or poorly modeled
by Tellinen’s model.

One point, that is only briefly addressed in this dissertation, is the processing of
measured data points so that the interpolated data is a valid input for Tellinen’s
model. It is assured that appropriate mathematical methods exist, but not that
they are optimized for this use case. One-dimensional monotonicity-preserving
interpolation has already been extensively researched. This can easily be adapted
for the needs of the original model. The two-dimensional input data in the extended
model, requires analogous properties in one dimension, which is more complex to
achieve. Also, the research and extensions of the original model have produced an
increased requirement for smoothness of the input data. A further discussion and
analysis, which methods are particularly suitable or can be adapted and optimized,
is still pending.
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Part I.

Appendix





A Theoretical Background:
Ordinary Differential Equations

In the context of this dissertation, solutions of ordinary differential equations (ODEs)
are considered at various points. The core definition (3.7) of the Tellinen’s hysteresis
model is particularly noteworthy. But also in the further analysis, ODEs with
adapted right-hand sides are frequently used in Chapters 3 and 4.

Initial value problems in the form

y′ = f(t, y)
y(t0) = y0

(A.1)

with y : R → R are considered. Since in the course of this thesis many different
right hand sides f are considered, an analysis approach adapted particularly to these
f is presented here. The focus is on the definition range of the solution y. As simple
criteria as possible are detailed, so that the solution y exists on an interval [tmin, tmax]
with tmin ≤ t0 ≤ tmax. Often the goal is to show that y is defined on the whole
domain of the real numbers R.

At this point, the focus will be on argumentation by using commonly known proposi-
tions and lemmas from literature such as [92, 93, 95, 97].

The basis for the Picard-Lindelöf theorem is the Lipschitz continuity w.r.t. the
second argument of f . For any (x, y) and (x, z) of interest and arbitrary norm ‖·‖, a
constant L > 0 exists, such that

‖f(x, y)− f(x, z)‖ ≤ L · ‖y − z‖ (A.2)

holds. The exact numerical value of L is not of interest. As a sufficient condition
for the existence of such L, boundedness of the partial derivative ∂f

∂y
is used. In the

considered f this is an easy property to check.

The theorem of Picard-Lindelöf ensures existence and uniqueness of the solution y of
(A.1) for any suitable initial value (t0, y0) on a domain [t0− ε, t0 + ε] with ε > 0. Thus
solutions y0(t) and y1(t), respectively defined to initial values (t0, y0) and (t0, y1)
with y0 6= y1, are without common points.

Global variants of Picard Lindelöf’s theorem extend the domain of definition to an
interval (α, β) with t0 ∈ (α, β). Here α = −∞ and β =∞ are feasible. In the later
case, the definition range is already maximal.



tmin t0 tmax

top

bot

M

t

y(t)

Figure A.1.: Illustration of Lemma A.1. Shown is the set M , the boundaries top
(red), bot (blue) and some solutions in between (black).

What is interesting now is the case of β <∞. The case −∞ < α follows analogously
and is not explained explicitly. If β < ∞ holds, it means that the solution y is
unbounded at β, i.e., it yields

lim
t→β−
|y(t)| =∞ . (A.3)

Simple criteria for the f are introduced such that the case (A.3) cannot occur on
an interval [tmin, tmax]. If there exist a β < ∞, tmax < β would have to hold. The
argument also works for tmax →∞, such that the entire range R is also covered.

Lemma A.1: Given a non-empty T = [tmin, tmax] and differentiable functions
top, bot : T → R with top(t) > bot(t) for all t ∈ T . Let

M =
{
(t, y) ∈ T ×R | bot(t) ≤ y ≤ top(t)

}
. (A.4)

Given continuous function f : M ⊂ R×R→ R being globally Lipschitz-continuous
w.r.t. the second variable. Let top and bot be solutions of the initial value problem

y′ = f(t, y) (A.5)

with
(
t0, top(t0)

)
,
(
t0, bot(t0)

)
∈M as initial values.

Then any solution y : R → R of (A.5) with y(t0) = y0 and (t0, y0) ∈ M is defined
on the domain T and fulfills bot(t) ≤ y(t) ≤ top(t) for all t ∈ T . This statement is
also valid for T = R.

Proof. An overview of the involved quantities is given in Figure A.1. Based on the
global version of the Picard Lindelhöf’s theroem a maximal interval (α, β) exists,
within all solutions y are well defined and unique. If (α, β) = R holds, all properties
follow directly from the existence and uniqueness of the solutions. For the case
(α, β) 6= R, it will be proven by contradiction that [tmin, tmax] ⊂ (α, β) holds.

Assuming that either β ≤ tmax or tmin ≤ α holds, a contradiction for the former case
is shown. The later case follows analogously.
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β is assumed to be maximal, such that β can not be chosen greater because the
solution y is unbounded, i.e., (A.3) holds. But it exists solutions top, bot that are
defined on the closed interval [tmin, tmax], which implies that they are bounded. top
and bot are the most upper and lower boundary of M . An unbounded solution y
must therefore cross the bounded boundaries top or bot. This is a contradiction to
the uniqueness of solutions. Hence it is concluded that tmax < β must apply.

In summary, either (α, β) = R is valid or at least [tmin, tmax] ⊂ (α, β). On the interval
[tmin, tmax] all solutions are well-defined and unique.

Remark A.2. Thus, in order to apply Lemma A.1, it is sufficient to check the partial
derivative ∂f

∂y
for boundedness for a given inital value problem (A.1) and to specify

upper and lower bounds top, bot.
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