
Parallel-in-Time integration with
application to eddy current

simulations

Dissertation

Bergische Universität Wuppertal
Fakultät für Mathematik und Naturwissenschaften

eingereicht von
Jens Hahne, M. Sc.

zur Erlangung des Grades eines Doktors der Naturwissenschaften

Betreut durch Dr. Stephanie Friedhoff und Prof. Dr. Matthias Bolten

Wuppertal, 25.04.2023

Acknowledgments

First, I would like to thank my supervisors Stephanie Friedhoff and Matthias
Bolten for raising my interest in parallel-in-time methods and giving me the op-
portunity to work on interesting projects in this research area; as well as for the
guidance and all the fruitful discussions during the last years. Thank you for
the always pleasant working atmosphere and the encouragement and support to
present my work at many different conferences.

Many thanks to everyone I have had the pleasure of working and discussing with
over the years, especially my colleagues at TU Darmstadt, Los Alamos National
Lab, TU Hamburg, University of New Mexico, and Sandia National Labs. Many
thanks to Jacob Schroder for making my stay at UNM possible and for the great
support during my time in New Mexico. It was a great experience and I learned
a lot. Thanks also to Eric Cyr for his support and for giving me the opportunity
to work on an exciting project.

I also wish to thank all my current and former colleagues in the Scientific Com-
puting and High Performance Computing group, many of whom have become
friends over the years. I have always enjoyed the discussions, lunches, cakes, and
activities during and after work. A special thanks goes to Marcel for proofreading
this thesis.

A huge thank you to my family and friends for their love and constant support.
And finally, a special thanks to Kim for her patience, support and entertainment
over the past years.

I

Foreword

The work presented in this thesis is partly based on the following publications:

• M. Bolten, S. Friedhoff, J. Hahne, and S. Schöps, Parallel-in-
time simulation of an electrical machine using MGRIT, Computing and
Visualization in Science, 23 (2020), pp. Paper No. 14, 14.

Parts of this publication are incorporated in Chapters 4 and 7.

• J. Hahne, S. Friedhoff, and M. Bolten, Algorithm 1016: PyMGRIT:
A Python Package for the Parallel-in-Time Method MGRIT, ACM Trans-
actions on Mathematical Software, 47 (2021).

Parts of this publication are incorporated in Chapter 5.

• J. Hahne, B. S. Southworth, and S. Friedhoff, Asynchronous trun-
cated multigrid-reduction-in-time, SIAM Journal on Scientific Computing,
(2022), pp. S281–S306.

Parts of this publication incorporated in Chapters 4, 6, and 7.

• J. Hahne, B. Polenz, I. Kulchytska-Ruchka, S. Friedhoff, S. Ul-
brich, and S. Schöps, Parallel-in-time optimization of induction motors,
2022 (Submitted).

Parts of this publication are incorporated in Chapters 3 and 7.

• M. Bolten, S. Friedhoff, and J. Hahne, Task Graph-Based Perfor-
mance Analysis of Parallel-in-Time Methods. Available at SSRN: https:
//ssrn.com/abstract=4201056, 2022 (Submitted).

Parts of this publication are incorporated in Chapters 4 and 8.

III

Contents

Acknowledgments I

Foreword III

Contents V

1 Introduction 1

2 Review of basic material 5

2.1 Differential equations . 5

2.1.1 Ordinary differential equations 6

2.1.2 Differential-algebraic equations 6

2.1.3 Partial differential equations 8

2.2 Discretization . 9

2.2.1 Spatial discretization . 9

2.2.2 Temporal discretization . 13

2.3 Solvers . 15

2.3.1 Iterative methods . 15

2.3.2 Newton method . 18

V

CONTENTS

3 Governing application 21

3.1 The Maxwell equations . 21

3.1.1 Magnetoquasistatic approximation 23

3.2 Electric circuit theory . 26

3.3 PWM signals . 29

3.4 Induction motors . 30

4 Parallel-in-time integration 35

4.1 Parareal . 37

4.2 PFASST . 39

4.3 MGRIT . 41

4.3.1 Two-level MGRIT . 43

4.3.2 Multilevel FAS MGRIT 45

4.3.3 Error propagation . 48

4.3.4 Convergence bounds . 51

4.4 AT-MGRIT . 52

4.4.1 Two-level AT-MGRIT . 53

4.4.2 Multilevel FAS AT-MGRIT 54

4.4.3 Error propagation . 55

4.4.4 Convergence bounds . 62

4.5 Convergence criterion . 65

5 Implementation 67

5.1 PyMGRIT . 67

6 Numerical experiments: AT-MGRIT investigations 73

6.1 Heat equation . 73

6.2 Gray-Scott problem . 77

6.3 Discussion of spatial parallelism 81

VI

CONTENTS

7 Numerical experiments: Induction machine 83

7.1 Numerical model . 84

7.2 PWM voltage source . 86

7.2.1 Linear material model . 88

7.2.2 Nonlinear material model 90

7.3 Sinusoidal voltage source . 92

7.3.1 AT-MGRIT . 94

7.3.2 PinT optimization . 95

8 Performance Model 99

8.1 Performance analysis . 101

8.1.1 Creating task graphs from PinT algorithms 102

8.1.2 Adoption of typical PinT scheduling 104

8.1.3 Discussion about appropriate weighting of task 105

8.2 Results . 107

8.2.1 PFASST . 108

8.2.2 MGRIT . 111

9 Conclusions & Outlook 119

List of Figures 121

List of Tables 123

List of Notations 125

Bibliography 127

VII

Chapter 1
Introduction

Computational Science and Engineering has established itself in many natural
science and engineering disciplines as a simulation science that encompasses and
closely links the development of models, algorithms and software. In many appli-
cations, numerical simulation complements the two principles of theory and exper-
iment and, in particular, allows for a reduction of costly experiments. In order to
draw conclusions about real-world problems through computer-aided simulations,
increasingly complex mathematical models are required, leading to an exponen-
tially growing computational effort. The effective use of modern supercomputers
therefore plays a crucial role in performing these elaborate simulations. To effec-
tively use such modern supercomputers, the development of parallel algorithms
and methods is essential. In the field of numerical simulation of time-dependent
processes, the classical approach is to parallelize the spatial dimension and con-
sider the temporal dimension completely sequentially. However, available spatial
parallelization can eventually become exhausted on large scale machines, even
though additional resources are available. Moreover, the sequential nature of the
temporal dimension often becomes a bottleneck in such simulations. A promising
approach to further reduce simulation times for time-dependent problems with
these resources is using parallel-in-time (PinT) methods.

The development of PinT methods goes back at least 50 years [82], with the
majority of PinT methods being multilevel and iterative. They use a type of
multilevel hierarchy, with the finest level representing the mathematical model of
interest discretized to the desired accuracy. The coarser levels represent simplified
models, e. g., by choosing coarser (space-)time grids and/or reduced mathemat-
ical models. PinT methods then parallelize all but the coarsest level in time by
considering multiple time slices simultaneously. Since the initial conditions for
each of these time slices, except the first, are not available at the beginning of

1

1 Introduction

the method, a correction procedure and the multilevel hierarchy are used to iter-
atively correct the solution at the finest level. Examples of such PinT methods
include Parareal [71], the parallel full approximation scheme in space and time
(PFASST) [29], and multigrid-reduction-in-time (MGRIT) [30]. An example of
an alternative strategy is exponential integrators, which allow one to parallelize
the work within each time step. An excellent overview of many different PinT
methods is provided in the review articles [39, 83].

Electromechanical energy converters such as electrical machines can be found in
a wide range of devices, e. g., in industrial automation, household devices or as
drives or components in the automotive industry. The simulation of electrical
machines, e. g., synchronous or induction machines, transformers and cables, is
therefore an established method in industry. In the design process, computer-
aided simulations can be used to investigate many different geometries and opti-
mize them with respect to various criteria such as efficiency, performance, and also
reduced resource consumption (e. g., rare earths). For low-frequency devices, the
magnetoquasistatic equation, also called the eddy current problem, is usually used
for the numerical simulation of electromagnetic fields. The eddy current prob-
lem is a simplification of Maxwell’s equations in which the displacement current
is neglected with respect to the source currents. When simulating the start-up
phase of an electrical machine, i. e., the phase needed until the machine reaches
its steady state, the system behavior has to be simulated for a large time inter-
val. In addition, machines are usually driven by pulse-width modulated (PWM)
excitations. PWM signals are fast switching pulses whose width is controlled so
that the time average corresponds to a specific waveform, usually a sine wave.
To resolve these discontinuous and highly oscillatory signals, a very small time
step is required, which, in combination with large time intervals, leads to high
simulation costs.

In this thesis, we apply the MGRIT framework to a numerical model of an induc-
tion machine to reduce the simulation time by parallelizing the time dimension.
We consider different parameters for the numerical model and investigate different
effects, such as the application of the MGRIT method for a discontinuous prob-
lem and the effect of spatial coarsening. Motivated by observed limitations of the
temporal grid hierarchy when applying the MGRIT algorithm to the induction
machine model and processor-local multigrid hierarchies used in geometric and
algebraic multigrid for elliptic problems [7, 77, 78], we introduce a new variant
of the MGRIT algorithm, called asynchronous truncated MGRIT (AT-MGRIT),
study it theoretically, and embed the method in an optimization workflow for
geometry optimization of an induction machine. The appropriate choice of the
multilevel hierarchy and other parameters within MGRIT (and other PinT meth-
ods) plays an important role for the efficiency of the method, and to this end we
present a performance model for PinT methods that can help in choosing these

2

parameters.

The structure of this thesis is as follows: In Chapter 2 we introduce various fun-
damentals on which the further chapters build, with the aim of making this thesis
as self-contained as possible. To this end, we first introduce the concept of dif-
ferential equations and then consider three particular classes, more specifically
ordinary differential equations (ODEs), differential-algebraic equations (DAEs),
and partial differential equations (PDEs). Afterwards, we examine discretization
methods, first considering discretization of the space dimension using finite dif-
ference and finite element methods, and then methods for discretizing the time
domain. The discretization of a differential equation leads to a system of algebraic
equations, and we present methods for solving these potentially nonlinear equa-
tions. In Chapter 3 we describe the modeling of an induction motor. Therefore,
we first introduce Maxwell’s equations and the magnetoquasistatic approxima-
tion of the equations. Then we give a brief introduction to electrical network
modulation and PWM signals. Subsequently, the modeling of an induction motor
is illustrated using the individual components. Chapter 4 introduces some iter-
ative PinT methods and theoretically examines the MGRIT algorithm and the
AT-MGRIT algorithm. The framework PyMGRIT, which implements the MGRIT
and AT-MGRIT algorithms and is used in the numerical simulations that follow,
is presented in Chapter 5. Both Chapter 6 and Chapter 7 present numerical
experiments, with Chapter 6 exploring properties of the AT-MGRIT algorithm
for a model problem and a chemical reaction. Chapter 7 contains several experi-
ments on time-parallel simulation of an induction motor. In particular, we study
here the effect of a discontinuous source on the MGRIT algorithm, the effect of
spatial coarsening within the MGRIT algorithm for this model, and embed the
AT-MGRIT algorithm in an optimization procedure for the geometry optimiza-
tion of an induction motor model. In the subsequent Chapter 8, we present a new
general performance model for iterative PinT methods and compare the predic-
tions of the model with parallel simulations using four PinT libraries. Finally, we
discuss the results of this work in Chapter 9 and provide an outlook for future
research.

3

Chapter 2
Review of basic material

This chapter provides an overview of basic material used in the remainder of
this thesis. First, three different classes of differential equations are introduced,
namely ordinary differential equations, differential-algebraic equations, and par-
tial differential equations. Second, we give a brief insight into the discretization,
i. e., the replacement of the continuous problem by a discrete representation, of
differential equations, yielding a system of algebraic equations. We then give a
brief overview of how such linear and nonlinear systems of algebraic equations
can be solved.

The individual sections of this overview chapter do not claim to be a full intro-
duction to the various fields, but serve to introduce notations and concepts that
will be used throughout this thesis.

2.1 Differential equations

A differential equation is an equation that establishes a relationship between one
or more unknown functions and their derivatives. They play an important role
in many disciplines such as engineering, physics, and biology, where the functions
usually represent physical quantities, the derivatives indicate the rate of change
of these quantities, and the differential equation defines a relationship between
these two components. Differential equations are usually divided into classes
based on their properties, such as ODEs, DAEs, or PDEs. An ODE contains
one or more functions of an unknown variable, while a PDE contains partial
derivatives. A DAE is a system of equations that contains both differential and
algebraic equations.

5

2 Review of basic material

2.1.1 Ordinary differential equations

An ODE is an equation of the form

F
(
t, u(t), u′(t), . . . , u(n−1)(t), u(n)(t)

)
= 0, t ∈ (0, T], (2.1)

where t ∈ R is an independent variable, u(t) is an unknown function, F is a
given function and T > 0. The variable n ≥ 1, given by the highest order of the
derivative in (2.1), determines the order of the ODE. If (2.1) satisfies n initial
conditions

u(i)(0) = ui,0, i = 0, ..., n− 1, (2.2)

then (2.1) together with (2.2) is called initial value problem. The form (2.1) of
an ODE is called implicit, while an ODE solved explicitly for the highest-order
derivative, i. e.,

u(n)(t) = f
(
t, u(t), u′(t), . . . , u(n−1)(t)

)
,

is called explicit.

Any ODE of order n can be transformed into a system of first-order ODEs [103].
Considering a system of d explicit first-order ODEs, the general form of an initial
value problem can be written as

u′(t) = f (t,u(t)) , t ∈ (0, T], (2.3)

u(0) = u0, (2.4)

where u(t) = [u1(t), ..., ud(t)]
> ∈ Rd denotes a d-dimensional vector, u0 ∈ Rd is

the initial condition and f : [0, T]× Rd → Rd is a d-dimensional function.

The Picard-Lindelöf theorem [103, Theorem 7.1.1] assures the existence of a
unique solution of the initial value problem (2.3)-(2.4) if the function f is Lipschitz
continuous with Lipschitz constant L, i. e., if f satisfies

||f(t,x)− f(t,y)|| ≤ L||x− y||, for all t ∈ [0, T], x,y ∈ Rd,

where || · || denotes some suitable norm.

2.1.2 Differential-algebraic equations

Consider a system

F (t,u(t),u′(t)) = 0, t ∈ (0, T], (2.5)

with function F : [0, T] × Rd × Rd → Rd and unknown u : [0, T] → Rd, d ≥ 2.
If ∂F

∂u′
is nonsingular, (2.5) is a system of ODEs. If, though, ∂F

∂u′
is singular, then

(2.5) is a system of DAEs. DAEs can thus be viewed as a generalization of ODEs,

6

2.1 Differential equations

although DAEs have different properties and are usually more difficult to solve [4].
An important class of DAEs are semi-explicit DAEs or ODEs with constraints,
given by

u′d(t) = f (t,ud(t),ua(t)) , (2.6)

0 = g (t,ud(t),ua(t)) , (2.7)

where ud(t) ∈ Rdd , ua(t) ∈ Rda , f : Rdd+da+1 → Rdd and g : Rdd+da+1 → Rda , i. e.,
the unknowns are divided into differential variables ud and algebraic variables ua.

Various measures have been introduced to classify DAEs, such as the differen-
tiation index or the pertubation index; for further details and index concepts,
we refer to [91]. In this work, we only consider the differentiation index, here-
after simply called index, which indicates how many transformations must be
performed to convert a DAE into an ODE. This index can be defined as follows.

Definition 2.1 ([57, Definition VII.1.2]). The system (2.5) has index m if m is
the minimal number of analytical differentiations

F (t,u(t),u′(t)) = 0,
dF (t,u(t),u′(t))

dt
= 0, . . . ,

dmF (t,u(t),u′(t))

dtm
= 0, (2.8)

such that equations (2.8) allow us to extract an explicit ODE system u(t)′ =
ϕ (t,u(t)) by using only algebraic manipulations.

It follows that a system of ODEs can be classified as a system of DAEs with
index m = 0. An example of an index-1 DAE is given by (2.6)-(2.7) if ∂g

∂ua
is

nonsingular.

An important component to consider when solving a DAE is the correct treatment
of the initial conditions. Considering the previous example of an index-1 DAE,
only the initial condition for the differential variables ud(0) = ud,0 can be freely
chosen, but not the initial condition for the algebraic variables ua(0) = ua,0. This
initial condition must be calculated based on the algebraic constraint

0 = g(0,ud,0,ua,0).

When considering higher indices, these constraints increase further [57]. In the
following thesis, we consider only index-1 DAEs, which behave essentially like
ODEs.

7

2 Review of basic material

2.1.3 Partial differential equations

So far we have only considered differential equations with derivatives with respect
to one variable. In this section, we will briefly introduce PDEs which contain
partial derivatives. In the following we call an open and connected subset of
Rd, d ∈ N, a domain, denoted by Ω and its boundaries by ∂Ω. A general form of
a PDE is given by

F

(
x, u(x),

∂u(x)

∂x1

, . . . ,
∂u(x)

∂xd
,
∂2u(x)

∂x1∂x1

, . . . ,
∂2u(x)

∂x1∂xd
, . . .

)
= 0, (2.9)

with x ∈ Rd, the unknown function u(x), and where F depends on x, the value
of u(x), and the partial derivatives of u(x) at x.

Since there is no general theory for PDEs of the form (2.9), it is common to clas-
sify PDEs based on their properties and characteristics. Similar to an ODE (cf.
Section 2.1.1), the order n of a PDE is given by the highest order derivative in
the equation. Furthermore, the equation can be classified according to its linear-
ity, typically distinguishing between linear, semilinear, quasilinear, and nonlinear
PDEs. A PDE is called linear if F depends only linearly on u and all partial
derivatives, i. e., the coefficient functions depend only on variables x. Semilinear
PDEs, on the other hand, depend only linearly on the highest order partial deriva-
tives, and a PDE is called quasilinear if the coefficient functions of the highest
order partial derivatives depend only on x, u, or lower order derivatives. If a PDE
cannot be classified into one of these groups, it is called nonlinear.

Many physical problems can be classified as second-order linear PDEs. This class
can be written as

Au(x) = −
d∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
u(x)+

d∑
j=1

bj(x)
∂

∂xj
u(x)+c(x)u(x) = f(x). (2.10)

For this particular and important class, there are further classifications based on
the eigenvalues of the coefficient matrix A = (ai,j)

d
i,j=1 in (2.10). Within this

class, PDEs are called elliptic if all eigenvalues of A have the same sign. If all
eigenvalues of A have the same sign, except for one vanishing eigenvalue, the
PDEs are called parabolic, and hyperbolic if all eigenvalues of A have the same
sign, except for one eigenvalue which has the opposite sign.

To obtain a unique solution of a PDE, we need predescribed boundary conditions
at the boundaries ∂Ω, i. e., given values at the boundaries of the domain. Many
different boundary conditions can be found in the literature, e. g., Dirichlet, Neu-
man, or periodic. More precisely, we speak of Dirichlet boundary conditions if
the values of u at the boundaries are prescribed, i. e.,

u(x) = d1(x), x ∈ ∂Ω,

8

2.2 Discretization

where d1 : ∂Ω→ R is a given function. Neumann boundary conditions are given
when values of the derivative (instead of values of the function) are specified at
the boundaries, i. e.,

∂u

∂n
(x) = d2(x), x ∈ ∂Ω,

where d2 : ∂Ω → R is a given function, and ∂u
∂n

is the partial derivate of u with
respect to the unit outward normal n of ∂Ω. If the PDE is defined on a periodic
domain, e. g., a torus, one does not need boundary conditions, in which case we
speak of periodic boundaries.

A formally correct treatment of a PDE includes the proof of the existence and
uniqueness of the solution, for which some basics of functional analysis are re-
quired. For further literature see [15, 17]. For more complex systems, the proof
is not always straightforward, especially when nonlinear systems are considered.
Since only well-known problems are considered in this thesis and this part is not
the focus of this dissertation, we assume the existence of a unique solution of the
PDEs considered in this thesis.

2.2 Discretization

The first step to numerically solve a differential equation is to find a discrete
representation of the continuous problem. A typical approach for the discretiza-
tion of time-dependent PDEs is the method of lines [56]. In the first step of the
method, all dimensions except the time dimension, i. e., the spatial dimensions,
are discretized. As a result, we obtain a system of ODEs or DAEs that depends
only on the time dimension and is called a semi-discrete system. In a second
step, we discretize the semi-discrete system in the time dimension using a time
integration method and obtain a fully discrete system of algebraic equations. In
the following, we first present methods for discretizing the spatial dimensions and
then time integration methods.

2.2.1 Spatial discretization

There are several discretization methods for discretizing the space dimensions,
e. g., finite differences, finite volumes, or finite elements, all of which have different
approaches. In the following, we focus on the finite difference method and the
finite element method, which will be used later in this thesis.

9

2 Review of basic material

2.2.1.1 Finite differences

The basic idea of the finite difference scheme is to replace the derivatives in the
differential operator equation, i. e.,

u′(x) := lim
h→0

u(x+ h)− u(x)

h
,

for a function u at a point x ∈ R, by difference quotients. Obviously, the smaller
h is, the better the approximation becomes. It is possible to measure the dis-
cretization error of the approximation using the Taylor expansion

u(x+ h) = u(x) + hu′(x) +O(h2), (2.11)

where the O-notation denotes the difference between the original function and
the Taylor polynomial. From (2.11) we obtain the so-called forward difference
approximation of u′, given by

u′(x) =
u(x+ h)− u(x)

h
+O(h). (2.12)

Equation (2.12) states that the error of the approximation of the derivative is
of order h. In the same way, we can define other approximations, e. g., we can
consider a point x − h and obtain the backward difference approximation given
by

u′(x) =
u(x)− u(x− h)

h
+O(h).

To improve the order of accuracy, we can consider, for example, both x + h and
x− h, which gives us

u(x+ h) = u(x) + hu′(x) + h2u
′′(x)

2!
+ h3u

′′′(x)

3!
+O(h4),

and

u(x− h) = u(x)− hu′(x) + h2u
′′(x)

2!
− h3u

′′′(x)

3!
+O(h4).

By simple calculations we obtain the approximations for the first and second
derivatives, given by

u′(x) =
u(x+ h)− u(x− h)

2h
+O(h2),

and

u′′(x) =
u(x+ h) + u(x− h)− 2u(x)

h2
+O(h2),

respectively. These approximations are called second-order central differences
approximation of the first and second derivate. Based on the same strategy, but
considering additional points, even higher-order approximations can be created.
Furthermore, the method can be extended to higher dimensions following the
same approach.

10

2.2 Discretization

2.2.1.2 Finite element method

The finite element method is a flexible strategy for discretizing arbitrary domains
based on basis functions and the variational (or weak) formulation of a PDE. The
idea is to divide the entire domain Ω into small elements, e. g., triangles for a two-
dimensional (2D) domain, and approximate the PDE locally on these elements.
These approximations can then be combined to form a global system of equations
that is the discrete representation of the problem. We begin by defining some
standard function spaces and then demonstrate the methods with an example.

Ck(Ω): the set of k times continuously differentiable functions on Ω,

Ck
0 (Ω): the set of functions φ ∈ Ck(Ω) having compact support in Ω,

Ck
0 (Ω)′: the dual space of Ck

0 (Ω),

Lp(Ω), 1 ≤ p < ∞: the set of functions φ on Ω for which |φ|p is Lebesgue
integrable.

The fundamental Sobolev spaces are given by

W s,p(Ω) := {φ ∈ Lp(Ω) : ∂αφ ∈ Lp(Ω) for all |α| ≤ s} ,

with s ∈ Z+ and 1 ≤ p <∞. Fixing p = 2 and using the L2-inner product

〈u, v〉 :=

∫
Ω

uv dx,

we obtain Hilbert spaces given by

Hs(Ω) :=
{
u ∈ C∞0 (Ω)′ : u = U |Ω for some U ∈ W s,2

(
Rd
)}
,

where s ∈ Z+.

We illustrate the finite element method based on a simple example PDE, the
Poisson equation

−∇2u(x) = f(x), x ∈ Ω, (2.13)

u(x) = 0, x on ∂Ω,

with unknown function u = u(x), given function f = f(x), and ∇2 the Laplace
operator. Further, we assume the solution u is in V := H1(Ω). We define a set
of functions v ∈ V , called test functions, which vanish at the boundaries where
Dirichlet conditions are imposed, i. e., v = 0 on ∂Ω. Multiplying (2.13) with v
and integrating throughout Ω results in

−
∫

Ω

(∇2u)v dx =

∫
Ω

fv dx.

11

2 Review of basic material

Using Green’s first identity

−
∫

Ω

(∇2u)v dx =

∫
Ω

∇u · ∇v dx−
∫
∂Ω

∂u

∂n
v ds, (2.14)

where ∂u
∂n

= ∇u · n is the derivate of u in the outward normal direction n on the
boundary, we obtain the weak formulation of the Poisson equation∫

Ω

∇u · ∇v dx =

∫
Ω

fv dx for all v ∈ V. (2.15)

Note that the second term on the right-hand side of (2.14) vanishes on the bound-
aries due to our choice of the test functions. We can rewrite (2.15) as

a(u, v) = l(v), u, v ∈ V, (2.16)

where a and l are the bilinear form and linear form given by

a(u, v) :=

∫
Ω

∇u · ∇v dx, and l(v) :=

∫
Ω

fv dx,

respectively. The finite element method discretizes the weak formulation by in-
troducting a finite-dimensional space Vh ⊂ V with basis φi, i = 1, ..., N, where
dim(Vh) = N . Thereby, the idea is to use basis functions with a small support in
the computational domain so that the final result is a sparse system matrix, i. e.,
a matrix with many zero entries. For this purpose, the domain is decomposed into
elements and the basis functions are chosen as relatively low order polynomials on
each of these elements, e. g., piecewise linear functions that are one at one node
of an element and zero elsewhere. Similar to the finite difference method, better
approximations can then be achieved by reducing the size of these elements. We
can express the approximation ũ of u and the test function v as a finite sum using
the chosen basis of Vh, i. e.,

ũ(x) =
N∑
i=1

αiφi(x), and v(x) =
N∑
j=1

vjφj(x), (2.17)

respectively. Plugging (2.17) into (2.16) yields

a

(
N∑
i=1

αiφi(x),
N∑
j=1

vjφj(x)

)
= l

(
N∑
j=1

vjφj(x)

)
,

which can be transformed to

N∑
j=1

vj

N∑
i=1

a(φi(x), φj(x))αi =
N∑
j=1

vjl (φj(x)) . (2.18)

12

2.2 Discretization

Finally, equation (2.18) can be rewritten in matrix form v>Au = v>f , where

v> = (v1, ..., vN), u> = (α1, ..., αN), f> = (l(φ1(x)), ..., l (φN(x))) ,

and

A =

a(φ1(x), φ1(x)) . . . a(φ1(x), φN(x))
...

...
a(φN(x), φ1(x)) . . . a(φN(x), φN(x))

 .

Since we force this for all v ∈ V (see (2.15)), we can rewrite v>Au = v>f as
Au = f .

2.2.2 Temporal discretization

Consider an initial value problem of the form (2.3)-(2.4), which occurs, for exam-
ple, after the spatial discretization of a space-time PDE. For simplicity, consider
a uniformly distributed grid

T := {n∆t : n = 0, 1, . . . , Nt} (2.19)

with constant time step size ∆t andNt time steps, and let un be the approximation
of the solution at time tn = n∆t. The local truncation error [18], given by

ln = u(tn)− un,

defines the difference between the exact solution u(tn) and the approximated
solution un. The order of a time integration method is a number q ≥ 1 for which
ln = O(∆tq+1) holds. For the uniformly distributed grid (2.19), the θ-method [56,
Section II.7] is given by

un+1 = un + θ∆tfn + (1− θ)∆tfn+1, n = 0, ..., Nt − 1, (2.20)

where 0 ≤ θ ≤ 1 and fn = f(tn, un). Different choices for θ lead to different one-
step time integration schemes, of which the following three are the most common

θ =

0, for explicit Euler,

0.5, for trapezoidal rule,

1, for implicit Euler.

The explicit and implicit Euler methods are of order one and the trapezoidal rule is
of order two. Note that the methods are finite difference methods (Section 2.2.1.1),
and that they belong to the family of Runge-Kutta methods, which also include
higher-order time integration schemes. For more information on Runge-Kutta
methods, we refer to [57].

13

2 Review of basic material

In the following, we investigate stability properties of time integration methods.
For this we consider Dahlquist’s test equation

u′(t) = λu, λ ∈ C. (2.21)

A general one-step method for the problem (2.21) on a temporal grid (2.19) is
given by

un = R(z)un−1, (2.22)

where z = λ∆t.

Definition 2.2 ([57], Section IV.2). The function R(z) in (2.22) is called stability
function. The set

Sd := {z ∈ C : |R(z)| ≤ 1}

is called the stability domain of the method.

The stability function for the θ-method (2.20) is given by

R(z) =
1 + z(1− θ)

1− zθ
,

thus, in particular

R1(z) = 1 + z, R2(z) =
1 + 0.5z

1− 0.5z
, R3(z) =

1

1− z
,

for the explicit Euler method, the trapezoidal rule and the implicit Euler method,
respectively. Time integration methods can be classified based on their stability
properties; for further literature we refer to [25]. In the following, we present two
classifications.

Definition 2.3 ([57], Section IV.3). A time-integration method, whose stability
domain satisfies

C− := {z ∈ C : Re(z) ≤ 0} ⊂ Sd,

is called A-stable.

Definition 2.4 ([57], Section IV.3). A method is called L-stable if it is A-stable
and

lim
z→∞

R(z) = 0.

14

2.3 Solvers

It follows from the definitions that the explicit Euler method is not A-stable and
therefore not L-stable. Both the implicit Euler method and the trapezoidal rule
are A-stable, while the implicit Euler method is also L-stable, but the trapezoidal
rule is not.

Another important concept when considering ODEs is the notion of stiffness,
although there is no strict mathematical definition of this term. Vaguely, the
term can be described as an ODE being stiff if explicit numerical methods for
solving an equation are unstable, as long as the time step size is not chosen to be
extremely small. Implicit methods, on the other hand, provide a stable solution
to stiff problems regardless of the time step size. An example of a stiff problem
including the study of numerical methods can be found in [57]. In the following
thesis, only implicit methods suitable for solving stiff problems are used.

2.3 Solvers

The discretization of differential equations leads to a system of algebraic equations
that must be solved to obtain the numerical solution of the problem. We first
consider linear systems of the form

Au = f .

Depending on the properties of the system matrix A, the choice of the optimal
solution strategy may vary. We typically distinguish between direct and iterative
methods for solving the equation. Direct methods, such as Gaussian elimination,
solve the system of equations exactly (up to rounding errors), but for large sys-
tems they have the disadvantage that they are very computationally intensive
and require a lot of memory [107]. Iterative methods, on the other hand, im-
prove a given initial guess u0 stepwise by computing a new approximation uk in
each iteration k until a certain solution quality is reached. In the following, we
first introduce iterative methods and their properties. Subsequently, we consider
Newton’s method for solving nonlinear systems of equations.

2.3.1 Iterative methods

Consider a linear system
Au = f ,

with system matrix A ∈ Rd×d, solution vector u ∈ Rd and vector f ∈ Rd. Now let
û be an approximation of the solution, then we define the error, e, to the exact
solution u = A−1f as

e := u− û. (2.23)

15

2 Review of basic material

However, the error is usually not computable because the exact solution u is
unknown. Therefore, we introduce another measure to determine the quality of
the approximation compared to the exact solution, the so-called residual, given
by

r := f − Aû. (2.24)

Using the definitions (2.23) and (2.24), we can derive the following relationship
between the two measures,

Ae = r. (2.25)

Equation (2.25) is called residual equation and allows to calculate the solution u
based on the approximation û by the update

u = û + e = û + A−1r. (2.26)

To solve equation (2.26), A must be inverted, which is essentially the same prob-
lem as solving u = A−1f . Instead of inverting A directly, iterative methods are
based on an approximation of the inverse of A, i. e., Ã ≈ A−1. Based on this, a
new and improved approximation ûk+1 can be obtained from an approximation
ûk by the update

ûk+1 = ûk + Ãr = ûk + Ã(f − Aûk) = (I − ÃA)ûk + Ãf .

If we define S = I − ÃA as iteration matrix, the general form of a stationary
iterative procedure can be written as

ûk+1 = Sûk + C(f), (2.27)

where C(f) represents a set of operations on f . The iterative procedure is called
stationary because neither S nor C(f) depend on the iteration. Since the solution
u is a fixed point of the iteration, there is a relation between the errors of two
successive iterations given by

ek+1 = Sek.

Furthermore, it can be shown by a simple induction that

ek = Ske0, k ≥ 0, (2.28)

where e0 is the error of the initial guess û0. The choice of the iteration matrix
S is crucial for the iterative method, and not all choices of S lead to a conver-
gent method. From (2.28) we know that the method converges if limk→∞ S

k = 0.
Therefore, we can determine a necessary and sufficient condition for the conver-
gence of a method based on the spectral radius of S, defined in the following.

Theorem 2.5 ([103, Section 8.2]). The stationary iterative method (2.27) is con-
vergent, i. e., limk→∞ S

k = 0, iff the condition

ρ(S) < 1

16

2.3 Solvers

holds, where
ρ(S) := max {|λ| : λ eigenvalue of S}

denotes the spectral radius of the iteration matrix S.

Many iteration matrices are based on a splitting of the matrix A of the form

A = D − L− U, (2.29)

where D is the diagonal of A, and −L and −U are the strictly lower and upper
triangular parts of A, respectively. A common example of this splitting is the
Jacobi method, which approximates the inverse of the matrix A by the inverse
of the matrix D, i. e., Ã = D−1 ≈ A−1. Thus, a new approximation can be
calculated by

ûk+1 = ûk +D−1rk = D−1(L+ U)ûk +D−1f , (2.30)

which yields the iteration matrix S = D−1(L + U) for the Jacobi method. By
introducing a weighting factor ω ∈ R, ω > 0, we obtain the ω-Jacobi method

ûk+1 = ûk + ωD−1rk =
(
(1− ω)I + ωD−1(L+ U)

)
ûk + ωD−1f .

In contrast to the Jacobi method, the Gauss-Seidel method uses the components
of the new approximation as soon as they have been calculated. We thus obtain

ûk+1 = ûk + (D − L)−1rk = (I − (D − L)−1A)ûk + (D − L)−1f .

Again, weighting can be introduced so that we obtain the ω-Gauss-Seidel method,
usually referred to as successive over-relaxation (SOR), which is given by

ûk+1 = ûk
(

1

ω
D − L

)−1

rk =

(
I −

(
1

ω
D − L

)−1

A

)
ûk +

(
1

ω
D − L

)−1

f .

Block iterative methods

The discretization of differential equations often leads to a natural block structure
of the system matrix A, i. e.,

A =

A11 . . . A1N
...

...
AN1 . . . ANN

 ,
where Aii, i = 1, ..., N are square matrices. If all diagonal block matrices Aii are
nonsingular, the iterative methods previously considered for individual points can

17

2 Review of basic material

be extended to block versions. Let π be a given partition of A into blocks, we
obtain a splitting relative to the partition π analogous to (2.29),

A = Dπ − Lπ − Uπ,

where Dπ contains the block diagonal of A, and −Lπ and −Dπ are the strictly
lower and upper block triangular parts of A, respectively.

Then, analogously to (2.30), the block Jacobi method for solving a linear system
of the form Au = f can be defined as

ûk+1 = D−1
π (Lπ + Uπ)ûk +D−1

π f .

In the same way, the block Gauss-Seidel method and the block SOR method can
be constructed.

2.3.2 Newton method

Consider a scalar nonlinear equation of the form

F (u) = 0,

where F is a continuously differentiable function. Furthermore, let û0 be an initial
approximation of the unknown solution u. Expanding F in a Taylor series at the
initial approximation û0, we obtain

0 = F (u) = F (û0) + (u− û0)F ′(û0) +O(|u− û0|2).

Neglecting the higher-order terms and assuming F ′(û0) 6= 0, we obtain the update

û1 = û0 − F (û0)

F ′(û0)
(2.31)

for the first correction of the initial approximation. The Newton method is ob-
tained by iterating (2.31) and is given by

ûk+1 = ûk − F (ûk)

F ′(ûk)
, k = 0, 1,

Further generalization of Newton’s method for a system of d nonlinear equations
is straightforward, and we derive

ûk+1 = ûk − J(ûk)−1F(ûk), k = 0, 1, ... ,

where û ∈ Rd, F is a vector-valued function, and J(û)−1 is the inverse of the
Jacobian matrix.

18

2.3 Solvers

The method can be extended by a damping factor 0 < ω < 1, resulting in
Newton’s method with damping given by

ûk+1 = ûk − ωJ(ûk)−1F(ûk), k = 0, 1,

Newton’s method converges quadratically if the initial guess û0 is sufficiently
close to the solution [24]. However, if the initial approximation is too far from
the solution, Newton’s method as well as Newton’s method with damping may
not converge.

19

Chapter 3
Governing application

In this chapter, we present the modeling of the governing application used for most
of the numerical results in this thesis. More specifically, we present the modeling
of a three-phase induction motor (also called an asynchronous motor), which is
a common type of electrical machine used in many devices. Before presenting
the model of an induction motor in Section 3.4, we first discuss the individual
components used in this model. In Section 3.1 we introduce the fundamental laws
of electromagnetism described by Maxwell’s equations and the coupling of the
equation by constitutive relations. We also introduce a simplification of Maxwell’s
equations called the magnetoquasistatic approximation, which is often used in
the simulation of low-frequency devices. The fundamentals of electrical networks,
which are an important part of many electromagnetic field models, are presented
in Section 3.2. A special class of voltage sources within an electrical network are
PWM sources, and their properties are briefly introduced in Section 3.3. This
chapter is mainly based on the exposition in [66].

3.1 The Maxwell equations

Maxwell’s equation, presented in its original form by J. C. Maxwell in 1864 [74],
is a set of coupled differential equations describing the phenomena of electromag-
netism. Maxwell’s work combines and extends the work of many other well-known
scientists such as Coulomb, Faraday, and others. A historical overview of the de-
velopment of Maxwell’s equations is given in [89].

21

3 Governing application

For media at rest, the equations are given in integral form by∫
∂S

E · ds = −
∫
S

∂B

∂t
· dS, (3.1)

∫
∂S

H · ds =

∫
S

(
∂D

∂t
+ J

)
· dS, (3.2)

∫
∂V

D · dS =

∫
V

% dV, (3.3)

∫
∂V

B · dS = 0, (3.4)

where E is the electric field strength, B is the magnetic flux density, H is the
magnetic field strength, D is the electric flux density, J is the electric current
density, and % is the electric charge density. All fields are functions of space
x ∈ R3 and time t ∈ R. Moreover, V ⊂ R3 is a connected volume with closed
boundary surface ∂V and S ⊂ R2 is a connected surface with closed boundary
curve ∂S. The curve element ds can be written as ds = τ ds, oriented in the
direction of the unit vector τ and tangent to ∂S. Similarly, the surface element
dS can be written as dS = n dS oriented in the direction of the outward unit
vector n and normal to the surface S. If S = ∂V is the enclosed surface bounding
a volume V , then n points outward from the enclosed volume V .

Using Stokes’ theorem and Gauss’ theorem given by∫
∂S

F · ds =

∫
S

∇× F · dS,

and ∫
∂V

F · dS =

∫
V

∇ · F dV,

respectively, the integral form of Maxwell’s equations (3.1)-(3.4) can be converted
to their differential form given by

∇× E = −∂B

∂t
, (3.5)

∇×H =
∂D

∂t
+ J, (3.6)

∇ ·D = %, (3.7)

∇ ·B = 0. (3.8)

The equations (3.1) and (3.5) are called Faraday’s law or law of electromagnetic
induction and state that electric fields are generated by alternating magnetic

22

3.1 The Maxwell equations

fields. The second equation, Maxwell-Ampère’s law given by (3.2) and (3.6), states
that circulating magnetic fields are generated by alternating electric fields and by
electric currents. The electric Gauss law, given by (3.3) and (3.7), describes that
electric fields diverge from electric charge, and the magnetic Gauss law, given
by (3.4) and (3.8), that there are no magnetic monopoles. Although the four
equations hold for the whole space (x, t) ∈ R3 × R, in the following we restrict
ourselves to a finite space-time domain Ω × [0, T] with T > 0, with an open,
bounded and connected domain Ω ⊂ R3.

Maxwell’s equations are completed by the following constitutive relations

D = εE, (3.9)

J = σE + Js, (3.10)

H = νB, (3.11)

where ε > 0 is the electric permittivity, σ ≥ 0 is the electric conductivity, ν > 0 is
the magnetic reluctivity, and Js is the source current density. The source current
density can be written as

Js(x, t) =
ns∑
j=1

χj(x)ij(t), (3.12)

using winding functions χj(x) ∈ R3 [96] that spatially distribute the currents
ij(t) ∈ R flowing through ns stranded conductors. For the electrical permittivity
and electrical conductivity, we assume linear dependencies, i. e., ε = ε(x) and
σ = σ(x), while due to magnetic saturation in ferromagnetic materials, we assume
nonlinear behavior of the magnetic reluctivity, i. e., ν = ν(x, |B|). The properties
of the reluctivity function are usually described by the relation of the magnetic
flux density B on the magnetic field strength H, also called BH-curve. Figure 3.1
shows an example of such a BH-curve for iron [35]. For further details and theory
on BH-curves we refer to [85, 86].

Note that in practice the domain Ω usually consists of different materials and
that the material properties depend on the domain. In Figure 3.2, the domain Ω
consists of three subdomains ΩFe, ΩCu and ΩAir, which represents areas of iron,
copper and air, respectively, and Ω = ΩFe ∪ ΩCu ∪ ΩAir.

3.1.1 Magnetoquasistatic approximation

In low-frequency applications, such as electric motors, it is often sufficient to con-
sider an approximation of Maxwell’s equations, the so-called magnetoquasistatic

23

3 Governing application

0 0.5 1 1.5 2

0

20,000

40,000

60,000

80,000

100,000

B [T]

H
[A
/m

]

Figure 3.1: BH-curve of iron [35].

ΩCu

ΩAir

ΩFe

Figure 3.2: Multi material domain.

approximation, since in this regime the displacement currents are negligible com-
pared to the source currents [63], i. e.,∣∣∣∣∂D

∂t

∣∣∣∣� |J| . (3.13)

Using (3.13) to neglect the displacement current in Maxwell-Ampère’s law (3.6),
and then applying the constitutive relations (3.10) and (3.11), we obtain

∇× (νB) = σE + Js. (3.14)

For the unique definition of electromagnetic fields in the domain Ω we impose con-
ditions at the boundary Γ = ∂Ω. Two typical choices for the boundary conditions
are the electric and the magnetic boundary conditions [1], given by

n× E = 0 on ΓE, and n×H = 0 on ΓM , (3.15)

respectively, where the boundary consists of two parts ΓE and ΓM with ΓE∪ΓM =
Γ and ΓE ∩ ΓM = ∅ and n denotes the outward normal vector to Γ.

24

3.1 The Maxwell equations

Since the divergence of the curl operator in the magnetic Gauss law (3.8) is zero,
we conclude the existence of the magnetic vector potential A = A(x, t) [47], such
that

B = ∇×A. (3.16)

Using that the curl of any gradient field is zero and substituting (3.16) into Fara-
day’s law (3.5), we obtain

E = −∂A
∂t
−∇φ, (3.17)

where φ = φ(x, t) is the electric scalar potential. Note that (3.16) does not define
the magnetic vector potential uniquely, since arbitrary curl-free components can
be added to the magnetic potential without changing the observed magnetic field
[1]. Therefore, in order to ensure the uniqueness of the solution, the concept of
gauge is introduced. One possibility is to use the Coulomb gauge [1], given by
the gauge condition ∇ ·A = 0. For further literature on gauging, see for example
[1]. Plugging (3.16) and (3.17) into (3.14), we get the A-φ-formulation

∇× (ν∇×A) = −σ∂A

∂t
− σ∇φ+ Js.

Introducing

A∗ = A +

t∫
0

∇φ ds, t ∈ [0, T],

we obtain the A∗-formulation, also called eddy current equation, given by

∇× (ν∇×A∗) = −σ∂A∗

∂t
+ Js. (3.18)

The boundary conditions (3.15) for each time t ∈ [0, T], T > 0 are now given in
terms of the magnetic vector potential by

n×A∗ = 0 on ΓE, and n(ν∇×A∗) = 0 on ΓM ,

which corresponds to homogeneous Dirichlet and homogeneous Neumann bound-
ary conditions, respectively. Further, an initial condition

A∗(x, 0) = A∗0, x ∈ Ω,

is required for the unique solvability. In the following, we abuse notation and
denote the magnetic vector potential in the A∗-formulation by A.

In many applications the three-dimensional (3D) problem is reduced to a 2D
problem given by a cross section, assuming that the model is invariant in the axial
x3-direction. We get B(x, t) = [B1(x1, x2, t),B2(x1, x2, t), 0]> and thus Js(x, t) =

25

3 Governing application

[0, 0,Js,3(x1, x2, t)]
> and A(x, t) = [0, 0,A3(x1, x2, t)]

>. Based on this assumption,
we can reformulate equation (3.18) to

σ
∂A3

∂t
−∇ · (ν∇A3) = Js,3, (x, t) ∈ Ω× (0, T], (3.19)

where Ω ∈ R2 is an open, bounded and connected 2D domain, and T > 0. Note
that in 2D the gauge ∇ ·A = 0 is automatically satisfied. Abusing notations for
the case that (3.19) is nonlinear, the equation is of parabolic type for σ > 0 and
of elliptic type if σ = 0 [66].

Considering homogeneous Dirichlet boundary conditions

A3(x, t) = 0, (x, t) ∈ ∂Ω× [0, T], (3.20)

at the boundaries ∂Ω of Ω and an initial condition

A3(x, 0) = A3,0(x), x ∈ Ω, (3.21)

at initial time t = 0, we obtain the 2D eddy current initial value problem (3.19)-
(3.21).

3.2 Electric circuit theory

Electrical networks are an important component of many applications, such as
power converters or microprocessors. Electrical networks consist of circuit ele-
ments, branches given by two-pole circuit elements, and nodes connecting two or
more circuit elements (branches) (see Figure 3.3(b)). The connection conditions
of electrical networks are given by Kirchhoff’s laws, more specifically Kirchoff’s
current law and Kirchoff’s voltage law. Kirchhoff’s current law is given by

Nb∑
j=1

±ij = 0, (3.22)

and states that the sum of the currents flowing into any node must be zero [88].
In (3.22), Nb defines the number of branches entering the node, where the sign
depends on whether the current enters or leaves the node. Figure 3.3(a) shows an
example with Nb = 4. Note that (3.22) can be derived from Maxwell-Ampère’s
law (3.2) [90].

Kirchhof’s voltage law states that the sum of the voltage drops across each element
along a closed loop must be zero [88] and is given by

Nl∑
j=1

±vj = 0, (3.23)

26

3.2 Electric circuit theory

where Nl denotes the number of branches forming a loop. Again, the signs are
determined by the orientation of the branches. Figure 3.3(b) shows an illustration
of Kirchhoff’s voltage law for Nl = 5 branches. Note that (3.23) can be derived
by Faraday’s law (3.1) [90].

i1

i2

i3

i4

(a) Kirchhoff’s current law.

v1

v2

v3

v4v5

node branch

(b) Kirchhoff’s voltage law.

Figure 3.3: Visualization of Kirchhoff’s current and voltage laws.

I vI

iI

(a) Direct current
source.

VvV

iV

(b) Direct voltage
source.

VsinvV

iV

(c) Sinusoidal voltage
source.

VpwmvV

iV

(d) PWM voltage
source.

R vR

iR

(e) Resistor.

L vL

iL

(f) Inductor.

C vC

iC

(g) Capacitor.

Figure 3.4: Graphical representation of the various circuit components. The upper four
are active elements, while the lower three represent passive elements.

Electrical networks consist of elements, such as current or voltage sources, resistors
or inductors, which are represented in Figure 3.4. We distinguish between active
and passive elements. Active circuit elements supply the circuit with energy and
are usually provided by voltage or current sources. Four different active elements
are illustrated in Figure 3.4(a) - Figure 3.4(d). Figure 3.4(a) and Figure 3.4(b)
show constant current or direct current (DC) and constant voltage sources. In

27

3 Governing application

contrast, Figure 3.4(b) and Figure 3.4(c) show elements with time-dependent
input power provided by sinusoidal and PWM voltage sources, respectively. Time-
dependent sinusoidal current or alternating current (AC) and PWM elements look
analogously.

Circuit elements that do not contain an active source, such as resistors (Fig-
ure 3.4(e)), inductors (Figure 3.4(f)), or capacitors (Figure 3.4(g)), are called
passive elements. These elements define time-dependent constitutive relations of
voltages and currents, given by

vR(t) = RiR(t), (3.24)

vL(t) = L
d

dt
iL(t), (3.25)

iC(t) = C
d

dt
vC(t), (3.26)

for a resistor, an inductor and a capacitor, respectively. In the equations (3.24)-
(3.26), R is the resistance, L is the inductance, and C is the capacitance. These
relations, which may also be nonlinear, can be derived from Maxwell’s equations
(3.5)-(3.8) and the constitutive relations (3.9)-(3.11) [90].

i1 i2

(a) Serial connection.

v1

v2

(b) Parallel connection.

Figure 3.5: Two connections types of two elements in a circuit.

Circuit elements can be connected either in series, in parallel, or in any combina-
tion of these two ways, see Figure 3.5. In Figure 3.5(a) a resistor and an inductor
are connected in series, and it follows from Kirchhoff’s rules that the current is
the same for all elements. In Figure 3.5(b) the same components are connected
in parallel, and it follows from Kirchhoff’s law that the voltage is the same for all
elements.

Using the modified node analysis [60] or the modified loop analysis [90] and the
previously described laws and relations, a mathematical model can be created
for any given circuit. This mathematical model usually consists of (a system of)
ODEs or DAEs.

28

3.3 PWM signals

3.3 PWM signals

Pulse-width modulation is a technique that produces a square wave signal that
oscillates between different states. In electronic devices, such as power converters,
this discontinuous signal has technical advantages and can be realized by switching
semiconductors on and off. While there are various forms of PWM signals [11], we
consider PWM signals generated by comparing a reference signal with a carrier
signal, i. e., we consider signals with constant switching frequency fs of the form

b(t) = sgn [r(t)− c(t)] , t ∈ R,

where r(t) denotes a reference signal and c(t) denotes a carrier signal. Note that
the constant switching frequency fs is part of the carrier signal.

−1

−0.5

0

0.5

1

0 0.005 0.01 0.015 0.02

−1

−0.5

0

0.5

1

Time t [s]

th
ro

u
gh

p
u
t

r(t) c(t) b(t)

Figure 3.6: Illustration of a PWM signal (green, lower plot), generated by a sine wave
reference signal (blue, upper plot) and a sawtooth carrier signal (orange, upper plot).

The exact choice of switching frequency, reference signal, and carrier signal de-
pends on the application, with, for example, constant or sinusoidal signals being
a typical choice for the reference signal [109], and the sawtooth carrier, inverted
sawtooth carrier, and triangle carrier being typical variants for the carrier signal
[109]. Figure 3.6 shows an example of a PWM signal for t ∈ [0, 0.02], with the
reference signal (blue dashed line) and carrier signal (orange solid line) in the top

29

3 Governing application

subplot and the resulting PWM signal (green solid line) in the bottom subplot.
The reference signal is given by a sinusoidal reference signal of 50 Hz, and the
carrier signal is modeled by a sawtooth carrier of 500 Hz. The resulting PWM
signal of fs = 500 Hz alternates between 1 and -1, corresponding to the on and off
states of an electrical device. It can be seen that the switching between the two
states of the PWM signal occurs exactly at the intersection points of the reference
and carrier signals.

Note that when a discontinuous PWM signal is used as the right-hand side of
an ODE, the standard Picard-Lindelöf theory for existence and uniqueness of the
solution cannot be applied. However, the unique solvability of such a system can
be shown using the theory of Carathéodory’s differential equations; we refer for
more details to [3, 66].

3.4 Induction motors

Electric machines are electrical devices that convert electrical energy into me-
chanical energy. Here, we introduce a specific type of electric motors, namely
three-phase induction motors. This class of motors is the most widespread type
of electric motors in the power range below 500 kW.

Three-phase induction motors, as the name implies, are powered by a three-phase
current or voltage source. A three-phase voltage source vj is given by

vj(t) = V̂ sin
(
2πft− (j − 1) · 2π/3

)
, j = 1, 2, 3,

where f is the frequency and V̂ is the amplitude of the voltage source. Note that
the three phases have the same amplitude and frequency, but differ in time phase.
An example of such a three-phase voltage source with f = 50 Hz and amplitude
V̂ = 311.1 V in the time interval [0, 0.02] is shown in Figure 3.7. In the same way,
a three-phase current source ij(t) can be defined.

Figure 3.8 shows the model of a 2D induction motor. The motor consists of a
rotor (inner part), a stator (outer part) and an air gap between the stator and
the rotor. As rotor, we consider a squirrel cage rotor consisting of solid conductor
bars inserted into the rotor slots and connected at both ends by conductive end
rings. The stator contains stator slots that contain the windings that carry the
three-phase voltage. In Figure 3.8, each phase is arranged on three consecutive
slots, so that each pair of three of the same phase occurs four times in the stator.
This arrangement results in the magnetic flux distributed on four poles, i. e.,
p = 2 north-south pole pairs. Typically, the windings carrying the three-phase
current are star or delta connected (see Figure 3.9). When a three-phase current
is applied to these specially connected windings, a uniformly rotating magnetic

30

3.4 Induction motors

0 0.005 0.01 0.015 0.02

−300

−150

0

150

300

Time t [s]

V
ol

ta
ge
v
(t

)
[V

]

v1(t) v2(t) v3(t)

Figure 3.7: Example of a three-phase voltage source for a frequency of f = 50 Hz and
an amplitude of V̂ = 311.1 V

field with synchronous speed ωsync is generated. The air gap between the rotor
and stator is traversed by the magnetic flux, allowing current to flow in the rotor
bars. This results in the Lorentz force acting on the cage, causing the rotor to
rotate at mechanical speed ωmech. Finally, the generated electromagnetic torque
TEM is transmitted to the mechanical load via a shaft inside the motor.

Characteristic for induction motors is that the synchronous speed ωsync and the
mechanical speed ωmech are slightly different, with the mechanical speed being
smaller than the synchronous speed. Note that induction motors are also called
asynchronous motors because of this asynchrony. The relative difference between
the two speeds is called slip and is given by

s =
ωsync − ωmech

ωsync

= 1− ωmech

ωsync

.

From this, in addition to the asynchronous case, i. e., 0 < s < 1, two special cases
can be derived. In the case of s = 0 the rotor rotates with synchronous speed,
i. e., under no-load conditions. In the case of s = 1 we speak of a stationary rotor,
i. e., under locked rotor operation. For a more detailed description of three-phase
induction motors, we refer to [66].

The electromagnetic torque TEM can be calculated using the formula [2]

TEM =

∫
S

r× σ · dS =

∫
S

r× (σ · n)dS, (3.27)

31

3 Governing application

stator

stator slot

air gap

rotor

rotor slot

shaft

Figure 3.8: Cross section of the four-pole squirrel cage induction motor “im 3 kw” of
[48].

(a) Star connection. (b) Delta connection.

Figure 3.9: Connections in three-phase windings.

where S is the surface enclosing the rotor, r is the position vector connecting the
rotor origin to S, n is the unit normal vector to S, and σ is the Maxwell stress
tensor [95, Section 6.3], given by

σij = ν0(BiBj − 0.5|B|2δij), i, j = 1, 2, 3,

with the reluctivity in vacuum ν0, the magnetic flux density B, and the Kronecker
delta δij. Note that the product of the generated torque and the speed defines
the mechanical power Pmech, i. e.,

Pmech = TEMωmech. (3.28)

32

3.4 Induction motors

Part of the power supplied is lost as heat, which can be calculated using Joule
losses. For the 2D-setting from Section 3.1.1 and the length `3 of the motor in
axial x3-direction these losses are given by

Ploss =

∫
Ω2D

σ

(
∂A3

∂t

)2

`3 dΩ2D, (3.29)

where A3 denotes the x3-component.

Finally, we obtain a mathematical model for the simulation of induction motors.
The electromagnetic phenomena inside the machine are described by the eddy
current problem (3.19)-(3.21), which for (x, t) ∈ Ω× (0, T], Ω ∈ R3 and T > 0 is
given by

σ(x)
∂A

∂t
+∇× (ν(|x,∇×A|)∇×A) =

3∑
j=1

χj(x)ij(t), (3.30)

n×A = 0, on ∂Ω× (0, T], (3.31)

A(x, 0) = A0(x), x ∈ Ω, (3.32)

where the definition of the winding functions (3.12) is used. For the connected
electrical network we obtain

vj(t) = Rjij(t) +

∫
Ω

χj(x) · ∂A(x, t)

∂t
dΩ, j = 1, 2, 3 , (3.33)

where Rj denotes the resistance of the stator stranded conductors. The motion
of the rotor can be described by the mechanical equation

Jω′mech(t) + Cωmech(t) = TEM(t, θ(t),A)− Tload, (3.34)

θ′(t) = ωmech(t), (3.35)

where J is the moment of inertia, C is the coefficient of friction, θ is the rotor
angle, and Tload is the shaft torque.

Reducing the 3D problem to a 2D problem as described in Section 3.1.1, and
discretizing (3.30)-(3.32) using finite elements with da degrees of freedom together
with (3.33)-(3.35), we obtain a semi-discrete system of equations of the form

Mu′(t) +K(u(t))u(t) = f(t), t ∈ [0, T], (3.36)

u(t0) = u0, (3.37)

with unknowns u> = [a>, i>, θ, ωmech]> : [0, T] → Rd and initial condition u0 ∈
Rd. The solution u(t) ∈ Rd consists of the magnetic vector potential a(t) ∈
Rda at time t ∈ (0, T], the currents of the three phases i(t), the rotor angle θ,

33

3 Governing application

and ωmech(t) ∈ R (d = da + 5). The right-hand side f(t) contains the given
voltages v(t) ∈ R3 and the mechanical excitation. Note that the problem (3.36)
is in general a system of index-1 DAEs, since the matrix M is singular when
considering regions with non-conducting materials. Integrating the semi-discrete
system (3.36)-(3.37) using implicit Euler yields a system of the form(

1

∆t
M +K (ui)

)
ui = fi +

1

∆t
Mui−1,

u0 = u(0).

34

Chapter 4
Parallel-in-time integration

In the following, we present methods for solving the initial value problem

u′(t) = f(t,u(t)), u(0) = u0, t ∈ (0, T]. (4.1)

The classical approach for solving a problem of the form (4.1) is based on dis-
cretizing the equation on a temporal grid with Nt time steps, followed by time
stepping, the sequential application of a time integrator. Time stepping yields the
discrete solution after exactly Nt application of the time integrator, but is com-
pletely sequential in the time domain. In contrast to this sequential approach,
PinT methods allow parallelization in the time domain. Based on the review
article [39], PinT methods can be divided into the following classes:

• Shooting-type time parallel methods,

• domain decomposition methods in space-time,

• multigrid methods in space-time,

• direct solvers in space-time.

Each category consists of many different methods, which often allow various vari-
ations and modifications. Probably the best known and most studied method
is Parareal [71], which can be interpreted in a variety of frameworks of numer-
ical schemes, e. g., as a multiple-shooting method or as a multigrid method in
time. PFASST [29] is based on spectral deferred correction (SDC) [28] and allows
parallelization in space-time using SDC on a space-time hierarchy. The MGRIT
algorithm [30] applies the principles of multigrid reduction in the time domain.
Other examples of PinT methods include waveform relaxation [21, 34], space-time
multigrid [61], or revisionist integral deferred correction [20]. For a comprehensive
overview, we refer to [39, 83].

35

4 Parallel-in-time integration

In more detail, the idea of the MGRIT algorithm is based on a multilevel hierarchy,
with the finest level representing the mathematical model of interest discretized
to the desired accuracy. At the coarser levels, simplified models are considered,
with the MGRIT algorithm typically considering coarser temporal grids to re-
duce the complexity of the problem, but (additional) coarsening in space and/or
the use of simplified mathematical models is also possible. Thereby, each level is
characterized by a time integrator defining a time step on the respective grid. At
the coarsest level of the multilevel hierarchy, the entire temporal domain is con-
sidered, while at all other levels temporal subdomains are considered in parallel.
A key property of the MGRIT algorithm is its non-intrusiveness, i. e., existing
time integrators can be integrated into the MGRIT framework without making
too many changes to the existing code. The algorithm has been theoretically
studied in [26, 59, 99] and successfully applied to various problems, e. g., linear
and nonlinear parabolic problems [30, 33], compressible fluid dynamics [31], power
systems [69, 98], linear advection [23, 62], and machine learning [49, 79, 97]. The
use of spatial coarsening in MGRIT was investigated for the p-Laplacian [33] and
for the Burgers equation [62].

The structure of the multilevel hierarchy, i. e., the choice of the number of levels
and the choice of the coarsest grid, within the MGRIT algorithm is both critical
and challenging. The typical choice of the coarse grid in the two-level setting is
based on the number of processes, choosing as many points on the coarse grid as
there are processes available [71]. With this strategy, the fine level can be perfectly
parallelized, but for a large number of processes, the serial work on the coarsest
level dominates the runtime. Using more than two grid levels can significantly
reduce the serial work by using a coarsest grid with only a few time points, but the
resulting very large time steps can be very expensive, if not infeasible, to compute
for some applications [13] and/or may affect the convergence of the algorithm
[22]. In [55] we have introduced a new way to define the coarsest level in MGRIT,
emphasizing reducing the serial work while avoiding large time steps. Instead of
solving the entire time interval serially on the coarsest grid, we define multiple
independent local coarse grids each consisting of w coarse-grid time points that
can be propagated independently and simultaneously. Due to the asynchronous
nature of computing the truncated coarsest grids, we refer to the new algorithm
as “asynchronous truncated MGRIT” (AT-MGRIT).

In the following, the established PinT methods Parareal, PFASST, MGRIT are
first presented based on the review of published literature. Thereupon, the new
method AT-MGRIT, which was developed in the context of this thesis, is pre-
sented. The focus of this work is on the last two methods, which are therefore
described in more detail. Finally, we briefly present various convergence crite-
ria used in the different methods to determine the quality of the solution and
terminate the iteration process when the quality of the solution is sufficient.

36

4.1 Parareal

4.1 Parareal

Let
0 = t0 < t1 < ... < tNt = T (4.2)

be a decomposition of the time domain (0, T] of the initial value problem (4.1) into
Nt non-overlapping time intervals (tn−1, tn], n = 1, ..., Nt. The Parareal algorithm
is based on two propagators, a fine but expensive operator F(tn, tn−1,un−1) and
a coarse, but cheap operator G(tn, tn−1,un−1). Here, a propagator is an operator
which, based on an initial value un−1 at time tn−1, provides an approximate
solution to the initial value problem at time tn. The idea of the iterative Parareal
algorithm is to alternately apply the fine and the coarse propagator and improve
the solution step by step. Let ukn be the approximation for the time points tn, n =
0, ..., Nt in the k-th Parareal iteration, and u0

0, ...,u
0
Nt

be a given initial guess for
the algorithm. Typically, this initial guess is obtained by applying the coarse
operator as predictor

u0
0 = u0, (4.3)

u0
n = G(tn, tn−1,u

0
n−1) for n = 1, ..., Nt, (4.4)

but other choices are also possible.

Then, a Parareal iteration is given for n = 1, ..., Nt by the following rule

uk+1
0 = u0, (4.5)

uk+1
n = F(tn, tn−1,u

k
n−1) + G(tn, tn−1,u

k+1
n−1)− G(tn, tn−1,u

k
n−1). (4.6)

Figure 4.1 sketches the functioning of Parareal for Nt = 4. First, the predictor
(4.3)-(4.4) is used to obtain the initial values u0

n, n = 1, ...Nt, see Figure 4.1(a).
Starting from these initial values, the fine operator F is applied (Figure 4.1(b),
green triangles) to compute intermediate approximations of the solution. The
next step is to serially apply the coarse operator to provide another intermediate
approximation, which can be seen for the first two time points t1 and t2 by the
pentagons in Figure 4.1(c) and Figure 4.1(d). The intermediate approximations
are then used to correct the approximation using (4.6), resulting in a new approxi-
mation of the solution after the first iteration given by the squares in Figure 4.1(c)
and Figure 4.1(d) for the first two time points. Note that after the first iteration,
the fine solution of the propagator F is obtained for the first subinterval [t0, t1].
This is a special property of Parareal, which is mathematically reflected in the
following convergence result [40].

Theorem 4.1 ([40, Theorem 1]). Let the partition (4.2) be uniformly distributed,
i. e., all temporal subdomains have exactly the same size ∆t = T/Nt, and let

37

4 Parallel-in-time integration

Initial condition Exact solution Prediction

F(tn, tn−1,u
0
n−1) G(tn, tn−1,u

1
n−1) u1

n

t0 t1 t2 t3 t4 t

u(t)

(a) Predictor.

t0 t1 t2 t3 t4 t

u(t)

(b) Fine propagator.

t0 t1 t2 t3 t4 t

u(t)

(c) Coarse propagator and correction at t1.

t0 t1 t2 t3 t4 t

u(t)

(d) Coarse propagator and correction at t2.

Figure 4.1: Visualization of the Parareal method. Starting from an initial guess (top
left), the fine operator can be applied to all time intervals simultaneously (top right),
leading to an intermediate approximation (green triangles). Then, each time point is
successively corrected based on another intermediate solution (red dot), leading to a
new approximation (purple square) (bottom left and right for the first two time points).

the right-hand side f in (4.1) be sufficiently smooth. Furthermore, assume that
F(tn, tn−1,un−1) and G(tn, tn−1,un−1) are an exact solution and an approximate
solution for a subinterval [tn−1, tn], where the local truncation error is bounded by
C3∆tq+1 with q ≥ 1 and can be expanded for small ∆t and an initial value u as

F(tn, tn−1,u)− G(tn, tn−1,u) = cq+1(u)∆tq+1 + cq+2(u)∆tq+2 + ...,

where the functions cj, j = q+1, q+2, ... are continuously differentiable. Further-
more, we assume that G satisfies the Lipschitz condition

||G(t+ ∆t, t,u)− G(t+ ∆t, t,v)|| ≤ (1 + C2∆t)||u− v||,

for t ∈ [0, T], for all u,v, and a constant C2. Then, at iteration k of Parareal

38

4.2 PFASST

(4.5)-(4.6) for a constant C1 > 0, we have the bound

||u(tn)− ukn|| ≤
C3

C1

(C1∆tq+1)k+1

(k + 1)!
(1 + C2∆t)n−k−1

k∏
j=0

(n− j). (4.7)

In Equation (4.7) the previously described property can be observed, more pre-
cisely one can see that the error of Parareal vanishes at a time tn in iteration
k = n for n = 1, ..., Nt. Thus, in each iteration, the exact solutions given by the
fine operator are propagated exactly one time subdomain further, so that after
k = Nt iterations one obtains the same solution as in the sequential application
of the fine propagator. In practice, we assume that only K � Nt iterations are
necessary to obtain a certain quality of the solution. Note that this assumption
is crucial for reducing simulation times compared to sequential time stepping.
Various convergence criteria are briefly discussed in Section 4.5.

The Parareal algorithm (4.5)-(4.6), including the computation of an initial guess
(4.3)-(4.4), can be written in a data-driven formulation as in Algorithm 4.1. Note
that the loops in lines 6 and 8 depend on the current iteration of the algorithm.
This ensures that the propagators are only applied to time subintervals where
the solution does not match the solution of the sequential application of the fine
propagator.

Algorithm 4.1: Parareal

1 u0
0 ← u0

2 for n← 1 to Nt do
3 ũ0

n ← G(tn, tn−1,u
0
n−1)

4 u0
n ← ũ0

n

5 for k ← 1 to Nt do
6 foreach n ∈ {k, k + 1, . . . , Nt} do
7 ûk−1

n ← F(tn, tn−1,u
k−1
n−1)

8 for n← k to Nt do

9 ũkn ← G(tn, tn−1,u
min(k,n−1)
n−1)

10 ukn ← ũkn + ûk−1
n − ũk−1

n

11 if convergence criterion is reached then
12 break

4.2 PFASST

Let (4.2) be again a decomposition of the time domain (0, T] of the initial value
problem (4.1). The idea of the PFASST algorithm consists of a combination of the

39

4 Parallel-in-time integration

SDC time integration and multigrid algorithms. Here, we briefly describe SDC
for a single time interval and then introduce the time-parallel PFASST method.
For a single time step from tn−1 to tn, the Picard formulation for (4.1) is given by

u(t) = u0 +

∫ t

tNt−1

f(u(s)) ds, t ∈ [tn−1, tn].

Considering M + 1 quadrature nodes τn,(0), τn,(1), ..., τn,(M) with tn−1 = τn,(0) and
tn = τn,(M), we can formulate the linear or nonlinear collocation problem

(I −∆tQF̂)(un) = un,0,

where ∆t = tn− tn−1, un = (un,(0), ...,un,(M))
T ≈ (u(τn,(0)), ...,u(τn,(M)))

T , un,0 =

(un,(0), ...,un,(0))
T , the function F̂(un) = ((f(un,(0), τn,(0)), ..., f(un,(M), τn,(M)))

T

represents the right-hand side of the problem evaluated at each collocation node,
and Q is an integration matrix. The SDC method solves this dense and potentially
nonlinear system of equations with a fixed-point iteration, where the matrix Q
is preconditioned by applying a low-order time integration scheme, such as back-
ward or forward Euler. One iteration of the SDC method is called “sweep” and
can be written as

uk+1
n , f

k+1

n = SDCSweep(ukn, f
k

n, tn, tn−1),

where fn = F̂(un) and the first entry un,(0) of ukn is used to form un,0.

Considering all Nt time steps simultaneously, we can formulate the so-called com-
posite collocation problem, given as

I −∆tQF̂
−H I −∆tQF̂

.

−H I −∆tQF̂

u1

u2
...

uNt

 =

u0,0

0
...
0

 , (4.8)

where the matrix H copies the information from one time step to the next, see
[14] for more details.

PFASST solves problem (4.8) using multigrid techniques and SDC. Thereby,
PFASST typically uses a two-level strategy, which we also use for the follow-
ing description, but note that the method is not limited to two levels. The coarse
level contains a simplified version of the problem, which can be given, for example,
by a reduction of the spatial problem, a reduction of the quadrature nodes, or a
simplified representation of the problem. The two-level PFASST method can be
described as follows: First, PFASST smoothes the problem at the fine level using
a block Jacobi preconditioner, which is equivalent to applying one sweep per time
point based on known values of the last iteration. Then, the fine approximation

40

4.3 MGRIT

is transported to the coarse level using an operator Rp. Note that Rp depends on
the coarsening strategy. Using the full approximation storage (FAS) framework
[16], the τ -correction is computed. The coarse system is relaxed using a block
Gauss-Seidel preconditioner, where the τ -correction is added to the problem. The
error correction is computed based on the FAS formulation, transported to the
fine level using an interpolation operator Pp, and then added to the fine approx-
imation. The multilevel PFASST method for L levels and K iterations can be
written in a data-driven formulation as in Algorithm 4.2. The presented PFASST
algorithm corresponds to the newer multilevel view of the algorithm. The clas-
sical view of the PFASST method consists of individual multilevel SDC sweeps
that exchange information at specific points. This classical view can be achieved
by merging and moving the loops in lines 10, 18, and 24 outside of the loops for
the levels (after line 8). Also, the classical view has a slightly different data flow;
a good comparison between the two views can be found in [102]. The PFASST
algorithm provides many different options for computing an initial guess, com-
monly referred to as prediction phase, such as a fine-level sweep for all time points
or a burn-in at the coarsest level [29]. In Algorithm 4.2, we omit the prediction
phase for simplicity. Other variations of the method include a variable number of
sweeps at each level and/or skipping the first or last fine-level sweep within each
iteration.

4.3 MGRIT

We discretize (4.1) on a uniformly-spaced temporal grid T = {n∆t : n =
0, 1, . . . , Nt}, with time points tn = n∆t and constant step size ∆t = T/Nt,
and let un ≈ u(tn) for i = 0, . . . , Nt with u0 = u(0). A general form of a single
step time integration method for the time-discrete initial value problem is

un = Φn(un−1) + gn, n = 1, 2, . . . , Nt, (4.9)

where Φn is a one-step time integrator, propagating a solution un−1 from a time
point tn−1 to time point tn, and gn contains forcing terms. Equation (4.9) can be
written as a semi-linear matrix equation

A(u) ≡

I

−Φ1(·) I
.

−ΦNt(·) I

u0

u1
...

uNt

 =

g0

g1
...

gNt

 ≡ g, (4.10)

where Φn(·) indicates that Φn is nonlinearly evaluated at the corresponding
(block) vector entry. This system can be solved by a (linear) sequential block

41

4 Parallel-in-time integration

Algorithm 4.2: PFASST-multigrid

1 foreach i ∈ {1, 2, . . . , Nt} do . Initialize points

2 u0,0
i,0 ← u0

3 for m← 1 to M0 do

4 u0,0
i,m ← 0

5 f
0,0

i ← FEvalAll(u0,0
i)

6 for k ← 1 to K + 1 do . PFASST iterations

7 foreach i ∈ {1, 2, . . . , Nt} do

8 τ k,0i ← 0
9 for `← 0 to L− 2 do . Down cycle

10 foreach i ∈ {1, 2, . . . , Nt} do
11 if i > 1 then

12 uk−1,`
i,0 ← uk−1,`

i−1,M`

13 f
k−1,`

i,0 ← FEvalSingle(uk−1,`
i,0)

14 uk,`i , f
k,`

i ← SDCSweep(uk−1,`
i , f

k−1,`

i , τ k,`i , ti, ti−1)

15 uk−1,`+1
i ← RestrictAll(uk,`i)

16 f
k−1,`+1

i ← FEvalAll(uk−1,`+1
i)

17 τ k,`+1
i ← FAS(f

k,`

i , f
k−1,`+1

i , τ k,`i)

18 for i← 1 to Nt do . Coarsest level

19 if i > 1 then

20 uk−1,L−1
i,0 ← uk,L−1

i−1,ML−1

21 f
k−1,L−1

i,0 ← FEvalSingle(uk−1,L−1
i,0)

22 uk,L−1
i , f

k,L−1

i ← SDCSweep(uk−1,L−1
i , f

k−1,L−1

i , τ k,L−1
i , ti, ti−1)

23 for `← L− 2 to 0 do . Up cycle

24 foreach i ∈ {1, 2, . . . , Nt} do

25 vk,`i ← uk,`i + InterpolateAll(uk,`+1
i − uk−1,`+1

i)

26 f
k,`

i ← FEvalAll(vk,`i)
27 if i > 1 then

28 vk,`i,0 ← vk,`
i−1,M`

29 f
k,`

i,0 ← FEvalSingle(vk,`i,0)

30 uk,`i , f
k,`

i ← SDCSweep(vk,`i , f
k,`

i , τ k,`i , ti, ti−1)

31 if convergence criterion is reached then
32 break

forward solve. Note that the notation here has changed slightly from the previous
two sections, although the underlying problem and idea is the same. We follow
here the typical notation for the MGRIT algorithm, which offers some advantages

42

4.3 MGRIT

for the theoretical study of the algorithm.

In the following, we first present the linear two-level MGRIT method for solving
linear problems of form (4.10). Thereupon, we extend the two-level method to the
multilevel case using the FAS scheme to solve both nonlinear and linear problems.
We also present some extensions of the method. We then present a convergence
analysis of the linear two-level MGRIT method based on [26, 99].

4.3.1 Two-level MGRIT

For a given fine temporal grid T (0) = {n∆t(0) : n = 0, 1, . . . , N
(0)
t }, and a given

integer coarsening factor m > 1, we define a splitting of the fine grid points into
F - and C-points, where every m-th point is a C-point and all other points are
F -points. Note that non-uniform coarsening is also possible; uniform coarsening
is used here to simplify the presentation. Looking only at the C-points, we obtain
a global coarse grid T (1) = {n∆t(1) : n = 0, 1, . . . , N

(1)
t }, with N

(1)
t = N

(0)
t /m and

time step ∆t(1) = m∆t(0), as shown in Figure 4.2.

Fine level T (0)

t
(0)
0 t

(0)
1
· · · t(0)

m
t
(0)

N
(0)
t

∆t(0)

Coarse level T (1)

t
(1)
0 t

(1)
1

· · · t
(1)

N
(1)
t∆t(1) = m∆t(0)

Figure 4.2: Uniform coarsening strategy of the MGRIT algorithm. The fine grid T (0)

is based on a coarsening factor m divided into C-points (long markers) and F -points
(short markers), where the C-points form the coarse grid T (1).

The linear two-level MGRIT algorithm uses this time-grid hierarchy to solve time-
dependent problems of the form (4.10), where we first consider the linear case,
i. e., a space-time system of equations of the form Au = g. The algorithm can
be described as follows: Given an initial fine approximation u(0) and the right-
hand side g(0), the first step of the algorithm is to apply a block relaxation to
the fine space-time equation system A(0)u(0) = g(0). The exact block relaxation
is based on two relaxation schemes and combinations of the two. The so-called
F -relaxation performs a relaxation of all F -points by propagating the solution
from one C-point to all following F -points until the next C-point. The relax-
ation of each interval of F -points can be performed in parallel and consists of
m− 1 sequential applications of the time integrator. The second scheme, the C-
relaxation, analogously performs a relaxation of all C-points by propagating the
solution from the preceding F -point to a C-point. Again, all intervals of C-points

43

4 Parallel-in-time integration

can be updated simultaneously. Both relaxations are depicted in Figure 4.3. The
FCF -relaxation, i. e., an F -relaxation followed by a C- and another F -relaxation,
is the typical choice for the MGRIT algorithm, but other choices are also possible.
Note that the use of FCF -relaxation is required for multilevel MGRIT to be opti-
mal in the sense that it can obtain convergence for a discrete problem regardless of
the spatial or temporal grid spacing and problem size [30]. In the two-level case,
F -relaxation is sufficient to obtain this optimality. In the next step, the global
residual vector r(0) is computed and restricted to the coarse grid by injection
(RI). The global coarse grid system A(1)u(1) = r(1), where r(1) is the restricted
residual vector, is then solved by the sequential application of a coarse integrator
Φ(1). For the coarse operator, we choose a rediscretization of the problem with
step size ∆t(1), but other choices such as coarsening in space [62, 73, 93] or order
of discretization [32, 81] can also be used. Subsequently, the fine approximation
is corrected using the “ideal” prolongation P , which is defined as a transpose of
an injection followed by an F -relaxation. The attribute “ideal” originates from
the theory of algebraic multigrid as presented in [104], since for this choice the
Galerkin coarse grid operator is the Schur complement after reordering the sys-
tem matrix according to the C/F -splitting (see Section 4.3.3). The steps are
applied iteratively until a desired solution quality is achieved. Two-level MGRIT
is summarized in Algorithm 4.3.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Φ1 Φ2 Φ4 Φ5 Φ7 Φ8

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Φ3 Φ6 Φ9

F -relaxation. C-relaxation.

Figure 4.3: Schematic representation of the F - and C-relaxation for a temporal grid with
10 time points and a coarsening factor of three. In both relaxations, the independent
intervals (gray) can be updated simultaneously

Algorithm 4.3: Two-level MGRIT

1 repeat
2 Apply F -relaxation to A(0)u(0) = g(0)

3 Apply ν times CF -relaxation to A(0)u(0) = g(0)

4 Compute residual r(0) ← g(0) − Au(0)

5 Restrict residual r(1) ← RIr
(0)

6 Solve the coarse system A(1)u(1) = r(1)

7 Correct using u(0) ← u(0) + Pu(1)

8 until convergence criterion is reached

The relaxation scheme can be controlled by the parameter ν, where at least one
F -relaxation is performed per iteration and then ν subsequent CF -relaxations

44

4.3 MGRIT

are performed. We follow the typical MGRIT notation here and therefore specify
the F -relaxation in line 2. Starting with the second iteration, this F -relaxation
can be skipped since the updates are already performed as part of the ideal
interpolation of the previous iteration. Note that the two-level variant with F -
relaxation is equivalent to the Parareal method [30]. MGRIT yields the same

solution as the sequential application of the fine propagator after N
(0)
t /m and

N
(0)
t /(2m) iterations for F -relaxation and FCF -relaxation [30], respectively.

4.3.2 Multilevel FAS MGRIT

In the following, we generalize the linear two-level MGRIT for the multilevel case
and use the FAS scheme to solve both linear and nonlinear problems. Analogous
to the two-level case, we construct a hierarchy of time grids for L levels based on
the coarsening factors m(`), ` = 0, ..., L − 2. For uniform coarsening factors, i. e.,
if the coarsening factor is the same for each level, we use the simplified notation
m = m(`). Figure 4.4 shows a non-uniform coarsened hierarchy of time grids for
L = 3 and coarsening factors m(0) = 3,m(1) = 2.

Level 0 -

Level 1 -

Level 2 -

Figure 4.4: Example of a three-level time grid hierarchy with a non-uniform coarsening
strategy with coarsening factors m(0) = 3 and m(1) = 2.

In the following, we assume that all problem-dependent forcing terms are included
in the time integrator. Then, the multilevel FAS MGRIT V -cycle algorithm is
given in Algorithm 4.4, where A(`)u(`) = g(`) specifies the space-time equation
system at levels ` = 0, 1, . . . , L−1. At all levels except the coarsest, ` = 0, ..., L−2,
we use restriction by injection (R

(`)
I), “ideal” interpolation (P (`)), and F (CF)ν

(`)
-

relaxation. The MGRIT variant in Algorithm 4.4 defines a V -cycle, but with
minor modifications other multigrid cycles, such as F -cycles (Figure 4.5), can
be implemented. The MGRIT-FAS algorithm is based on an initial guess. This
initial guess can be chosen arbitrarily; however, a good initial guess provides
natural advantages for the convergence of the algorithm. If the solution is already
known, it should be chosen as the initial guess. If nothing is known, an improved
initial guess can be computed using the nested iteration strategy [64, 65]. The
idea of nested iteration is to compute an initial approximation at the coarsest
level and interpolate the approximation to the finer levels performing one V -cycle
per level, see Figure 4.6.

45

4 Parallel-in-time integration

Algorithm 4.4: FAS MGRIT(`)

1 repeat
2 if ` is the coarsest level then
3 Solve coarse-grid system A(`)(u(`)) = g(`)

4 else
5 Apply F -relaxation to A(`)(u(`)) = g(`)

6 Apply ν(`) times CF -relaxation to A(`)(u(`)) = g(`)

7 Inject the approximation and its residual to the coarse grid

8 u(`+1) ← R
(`)
I (u(`))

9 v(`+1) ← u(`+1)

10 g(`+1) ← R
(`)
I (g(`) −A(`)u(`))

11 if spatial coarsening on level ` then

12 u(`+1) ← R
(`)
S (u(`+1))

13 v(`+1) ← u(`+1)

14 g(`+1) ← R
(`)
S (g(`+1))

15 Compute right-hand side g(`+1) ← A(`+1)(v(`+1)) + g(`+1)

16 Solve on next level: MGRIT(`+ 1)

17 Compute the error approximation: e← u(`+1) − v(`+1)

18 if spatial coarsening on level ` then

19 e← P
(`)
S (e)

20 Correct using ideal interpolation: u(`) ← u(`) + P (`)(e)

21 until convergence criterion is reached

Level 0 -

Level 1 -

Level 2 -

Level 3 -

Level 0 -

Level 1 -

Level 2 -

Level 3 -

V -cycle. F -cycle.

Figure 4.5: Structure of V - and F -cycles for four grid levels.

Level 0 -

Level 1 -

Level 2 -

Level 3 -

Figure 4.6: Visualization of the nested iteration strategy for a four-level MGRIT algo-
rithm.

46

4.3 MGRIT

In addition, the MGRIT variant in Algorithm 4.4 allows for spatial coarsening
between individual levels, where spatial coarsening and spatial interpolation are
given by R

(`)
S and P

(`)
S , respectively, for ` = 0, ..., L − 2. Note that spatial coars-

ening is optional and can be applied after temporal semi coarsening and therefore
does not affect the non-intrusive nature of the algorithm. Thus, both operators
must be specified manually, but are independent of the time integration scheme.
Clearly, the spatial grid transfer operators have a direct impact on the convergence
behavior of the algorithm and should therefore be chosen wisely.

In a multilevel setting, multiple coarsening strategies can be chosen depending
on the number of available grids in time and space. Both coarsening dimensions
are independent of each other and, therefore, can be applied in different ways.
Assuming that more temporal grids than spatial grids are available, the most
cost efficient approach is to use a direct spatial coarsening strategy, starting with
spatial coarsening as early as possible. This strategy would reduce the computa-
tional costs per iteration for all spatial coarse level problems, but studies [33] have
demonstrated that this direct strategy can degrade the convergence behavior of
the MGRIT algorithm for linear and nonlinear problems. To overcome the degra-
dation in MGRIT convergence, in [33] a delayed spatial coarsening strategy was
proposed. This strategy applies spatial coarsening as late as possible, i. e., only on
the coarsest time grids. Figure 4.7 illustrates the different coarsening strategies
for a five-level V -cycle for the case of three spatial grids, characterized by spa-
tial grid spacings of ∆x, 2∆x, and 4∆x, i. e., assuming factor-two coarsening in
space. The temporal coarsening factor is chosen to be m = 4, i. e., the time step
on each temporal grid is given by 4`−1∆t, ` > 0. The left V -cycle represents the
MGRIT algorithm with coarsening only in the time dimension. In the middle, the
direct spatial coarsening strategy is shown, where spatial coarsening is applied on
the first and second time levels. Finally, the right V -cycle illustrates the delayed
strategy, with spatial coarsening starting on the third level to make use of the
coarsest space grid on the coarsest level.

256∆t,∆x
64∆t,∆x

16∆t,∆x
4∆t,∆x
∆t,∆x

256∆t, 4∆x
64∆t, 4∆x

16∆t,4∆x
4∆t,2∆x

∆t,∆x

256∆t,4∆x
64∆t,2∆x
16∆t,∆x
4∆t,∆x
∆t,∆x

Only temporal. Direct. Delayed.

Figure 4.7: Five-level MGRIT V -cycle algorithm with three spatial grids and different
space-time coarsening strategies. The left figure shows the MGRIT algorithm with only
temporal coarsening, the middle illustrates direct spatial coarsening, and the right uses
the delayed spatial coarsening strategy.

47

4 Parallel-in-time integration

4.3.3 Error propagation

In the following, we consider the convergence of the linear two-level MGRIT
algorithm (Section 4.3.1), first deriving the error propagator based on [30] and
then giving a convergence bound for two-level MGRIT based on [26, 99]. In the
analysis we restrict ourselves to the linear two-level MGRIT algorithm with F -
relaxation, for an investigation of FCF -relaxation we refer to [26, 99]. An analysis
of multilevel MGRIT can be found in [59]. Furthermore, we assume without loss

of generality that N
(0)
t is evenly divisible by m.

We consider a reordering of the system matrix A(0) so that the entries are arranged
that the F -points come first, followed by the C-points. Furthermore, we use the
indices c and f to denote the two sets of points. We getA(0)

ff A
(0)
fc

A
(0)
cf A

(0)
cc

u
(0)
f

u
(0)
c

 =

g
(0)
f

g
(0)
c

 .
Based on this structure, the Schur complement decomposition can be formed

A(0) =

[
If 0

A
(0)
cf (A

(0)
ff)−1 Ic

][
A

(0)
ff 0

0 A
(0)
cc − A(0)

cf (A
(0)
ff)−1A

(0)
fc

] [
If (A

(0)
ff)−1A

(0)
fc

0 Ic

]
,

where Ic and If represent identity matrices. This representation directly implies
the restriction R and the interpolation P , known as the ideal restriction and
interpolation, respectively, and of S, given by

R =
[
−A(0)

cf (A
(0)
ff)−1 Ic

]
, P =

[
(−A(0)

ff)−1Afc
Ic

]
, S =

[
If
0

]
.

Since STA(0)S = A
(0)
ff and RA(0)P = A

(0)
cc − A(0)

cf (A
(0)
ff)−1A

(0)
fc , we obtain

(A(0))−1 = P (RA(0)P)−1R + S(STA(0)S)−1ST ,

and, thus, the error propagator for the exact two-level method is given by

0 = I − (A(0))−1A(0) = (I − P (RA(0)P)−1RA(0))(I − S(STA(0)S)−1STA(0)),

where equality holds since RA(0)S = 0. The two terms represent the error prop-
agators of the different components, where the first term is the error propagator
of the coarse-grid correction and the second part is the error propagator of the
F -relaxation. Note that RA(0)P = RIA

(0)P , where RI =
[
0 Ic

]
represents

the restriction by injection. We use the computationally cheaper RI in Algo-
rithm 4.4 and in the rest of the convergence study. Note that the second term
(I − S(STA(0)S)−1STA(0)) is equivalent to PRI [30], which we will use in the

48

4.3 MGRIT

following. Defining A(1) = RIA
(0)P , we can write the error propagator for the

exact two-level method as

Je = (I − P (A(1))−1RIA
(0))PRI . (4.11)

However, inverting the coarse-grid operator A(1) is roughly as expensive as invert-
ing the original fine-grid problem A(0). Multigrid reduction methods are based
on approximating individual components of the exact two-level method (4.11).

Here, we replace the coarse-grid operator by an approximation, i. e., Ã(1) ≈ A(1).
Thus, the error propagator for two-level MGRIT with F -relaxation using an ap-
proximated coarse-grid problem is given by

Ja = (I − P (Ã(1))−1RIA
(0))PRI . (4.12)

In the next step, we consider the actual matrices instead of the previous abstract
construct. For this, we consider again the original order of F - and C-points. The
exact coarse-grid problem A(1) and the approximated coarse-grid problem Ã(1)

are given by

A(1) =

I
−Φm I

.

−Φm I

 , Ã(1) =

I
−Ψ I

.

−Ψ I

 , (4.13)

the restriction by injection RI is defined as

RI =

I

0 · · · 0 I
. . .

0 · · · 0 I

 , (4.14)

and the ideal interpolation as

P =

I
Φ
...

Φm−1

I
Φ
...

Φm−1

. . .

I

. (4.15)

49

4 Parallel-in-time integration

When comparing the exact and approximated coarse systems (4.13), the approxi-
mated system replaces the powers Φm corresponding to m applications of the fine
operator Φ with a coarse operator Ψ. The operator RI (4.14) injects the C-points
and the operator P defined in (4.15) injects from the coarse to the fine grid and
then applies an F -relaxation.

In the following, we substitute the matrices stepwise in the error propagation
(4.12). First, we obtain

P (Ã(1))−1RIA
(0) =

S
Ṽ0 S
Ṽ1 Ṽ0 S
...

.

Ṽ
N

(1)
t −1

. . . Ṽ1 Ṽ0 S˜̄V
N

(1)
t

˜̄V
N

(1)
t −1

. . . ˜̄V1
˜̄V0 S̄

.

with m×m submatrices

Ṽj =

Φ0Ψ(j+1) 0 . . . 0 −Φ0ΨjΦ
Φ1Ψ(j+1) 0 . . . 0 −Φ1ΨjΦ

...
...

...
...

Φm−1Ψ(j+1) 0 . . . 0 −Φm−1ΨjΦ

 , S =

I 0 . . . 0

Φ
...

...
...

...
...

Φm−1 0 . . . 0

 , (4.16)

and 1×m submatrices˜̄Vj =
[
Φ0Ψ(j+1) 0 . . . 0 −Φ0ΨjΦ

]
, S̄ =

[
I 0 . . . 0

]
. (4.17)

The m × m matrices represent an interval of one C-point and m − 1 F -points,
and the 1×m matrices represent the last C-point. Note that the structure of the
matrix representing the single C-point is the same as the row in them×mmatrices
representing a C-point. For the error propagation PRI of the F -relaxation we
obtain

PRI =

S

. . .

S
S̄

 , (4.18)

with S and S̄ from (4.16) and (4.17), respectively. Finally, the error propagator
(4.12) is given by

Ja =

0 . . . 0
Z0 0 . . . 0
Z1 Z0 0 . . . 0
...

.
...

Z
N

(1)
t −2

. . . Z1 Z0 0 0

Z̄
N

(1)
t −1

Z̄
N

(1)
t −2

. . . Z̄1 Z̄0 0

, (4.19)

50

4.3 MGRIT

with

Zj =

Φ0Ψj(Φm −Ψ) 0 . . . 0
Φ1Ψj(Φm −Ψ) 0 . . . 0

...
...

...
...

Φm−1Ψj(Φm −Ψ) 0 . . . 0

 , (4.20)

and
Z̄j =

[
Φ0Ψj(Φm −Ψ) 0 . . . 0

]
. (4.21)

4.3.4 Convergence bounds

To avoid multiple subscripts, we omit the subscript a of Ja from (4.19) in the
sequel. Using f and c subscripts to denote F - and C-points, respectively, J from
(4.19) can be reordered and partitioned into 2 × 2 block form. Moreover, notice
that F -points columns of Zj from (4.20) and Z̄j from (4.21) (and therefore also
of Ja from (4.19)) are all zero. If we then consider powers of the matrix, which
correspond to several iterations, we get

J ` :=

Jff Jfc
Jcf Jcc

` =

0 Jfc
0 Jcc

` =

0 JfcJ `−1
cc

0 J `
cc

 .
It follows from above that for multiple iterations, convergence is fully determined

by Jcc ∈ RN
(1)
t +1×N(1)

t +1, that is, J ` will be convergent in some norm, that is,
‖J `‖ < 1, if and only if J `

cc is as well. To that end, we consider analyzing the
C-C principle submatrix of (4.19),

Jcc = (Φm −Ψ)

0 . . . 0
1 0 . . . 0

Ψ1 1 0 . . . 0
...

.
...

ΨN
(1)
t −1 . . . Ψ1 1 0

 .

Now consider the case of Φ and Ψ being simultaneously diagonalizable, as would
occur if the same (diagonalizable) spatial matrix is used on the fine and coarse
grid. Note that this property is equivalent to assuming that Φ and Ψ commute
and are both diagonalizable. Commutativity of both operators holds for almost all
standard time integration methods, including all one-step Runge-Kutta methods,
when the same method is used at the fine and coarse levels [58, Section 4.3].
Diagonalizability holds for most parabolic PDEs [36, 99]. Let U denote the shared
eigenvector matrix of Φ and Ψ, with eigenvalues µ ∈ σ(Ψ) and λ ∈ σ(Φ), where
σ(Ψ) and σ(Φ) denote the spectrum of Ψ and Φ, respectively. Following the

51

4 Parallel-in-time integration

frameworks developed in [26, 99], let Ũ denote a block-diagonal matrix, with
diagonal blocks given by eigenvectors U . Then,

‖Jcc‖(ŨŨ∗)−1 = max
{µ,λ}
‖J̃cc‖,

where ‖ · ‖ corresponds to the `2-norm, and J̃cc is defined as follows for a fixed
pair of eigenvalues {µ, λ}:

J̃cc := (λm − µ)

0 . . . 0
1 0 . . . 0
µ1 1 0 . . . 0
...

.
...

µN
(1)
t −1 . . . µ1 1 0

 .

If the spatial matrix is normal, then (Ũ Ũ∗)−1 = I. In general, bounding J̃cc
in the `2-norm for each eigenvalue pair guarantees convergence of Jcc in a cer-
tain eigenvector induced norm, where “convergence” corresponds to a guaranteed
reduction in error every iteration (in contrast to, e. g., nilpotency, where conver-
gence is eventually guaranteed, but error could in principle diverge significantly
for many iterations before sudden convergence to the exact solution).

Recall the inequality ‖J̃cc‖2 ≤ ‖J̃cc‖1‖J̃cc‖∞. Given that J̃cc is Toeplitz, the max-
imum row and column sums are equal, yielding the bound for two-level MGRIT
with F -relaxation

‖J̃cc‖ ≤ ‖J̃cc‖1 = |λm − µ|
N

(1)
t −1∑
`=0

|µ`|

=
|λm − µ|(1− |µ|N

(1)
t)

1− |µ|
. (4.22)

4.4 AT-MGRIT

The AT-MGRIT algorithm is a variant of the MGRIT algorithm in which the
global time grid at the coarsest level is replaced by several local grids, each of
which contains only temporal subdomains. This idea was originally motivated
by similar processor-local multigrid hierarchies used in geometric and algebraic
multigrid for elliptic problems [7, 77, 78]. The structure of the section follows
that of the previous section.

52

4.4 AT-MGRIT

4.4.1 Two-level AT-MGRIT

For the two-level case, we again assume that the forcing term is no longer in the
time integrator. Equivalent to the two-level MGRIT algorithm (see Section 4.3.1),

we form a global coarse grid T (1) = {n∆t(1) : n = 0, 1, . . . , N
(1)
t } based on a fine

temporal grid T (0) = {n∆t(0) : n = 0, 1, . . . , N
(0)
t }, a coarsening factor m, and

a partition into F - and C-points. Based on this global coarse grid, we define
N

(1)
t + 1 overlapping local coarse grids. For a given local grid size w, the pth local

coarse grid, T (1,p) for p = 0, ..., N
(1)
t , is given by

T (1,p) =
{
n∆t(0) : n ∈ [max(0, p− w + 1), p]

}
,

with time step size ∆t(1) = m∆t(0), as depicted in Figure 4.8.

t
(0)
0 t

(0)
1 t

(0)
2 t

(0)
3 t

(0)
4 t

(0)
5 t

(0)
6 t

(0)
7 t

(0)
8 t

(0)
9 t

(0)
10 t

(0)
11 t

(0)
12 t

(0)
13 t

(0)
14

t
(1)
0 t

(1)
1 t

(1)
2 t

(1)
3 t

(1)
4 t

(1)
5 t

(1)
6 t

(1)
7

T (1,0)

T (1,1)

T (1,2)

T (1,3)

T (1,4)

T (1,5)

T (1,6)

T (1,7)

Figure 4.8: Two-level temporal grid-hierarchy example for the AT-MGRIT algorithm

with N
(0)
t = 14, m = 2 and w = 4. The C-points (long markers) define the global

coarse grid. For each point p = 0, . . . , 7 on the global coarse grid, a local coarse grid
T (1,p) is created.

Then, the AT-MGRIT algorithm works as follow: Given an initial approximation
u(0) and the right-hand side g(0), a block relaxation consisting of a combination
of F - and C-relaxation is applied to the fine problem. In the next step, the
global residual vector r(0) is computed and restricted to all local coarse grids
by injecton using operators R

(p)
I . For each local coarse grid, the coarse system

A(1,p)u(1,p) = r(1,p) is solved, which consists of w − 1 sequential applications of
the coarse time integrator. Since the coarse grid problems are independent of
each other, they can be solved simultaneously. Then, the global solution vector
is corrected by selective ideal interpolation P

(p)
S . Selective ideal interpolation is

the transpose of an injection followed by an F -relaxation starting from exactly

53

4 Parallel-in-time integration

one time point. More precisely, the approximation of the solution at the last
time point of each local coarse grid is interpolated to the fine grid, and then an
F -relaxation is performed using these interpolated points. Again, these steps are
performed iteratively until the desired quality of the solution is achieved. The
two-level AT-MGRIT algorithm is summarized in Algorithm 4.5.

Algorithm 4.5: Two-level AT-MGRIT

1 repeat
2 Apply F -relaxation to A(0)u(0) = g(0)

3 Apply ν times CF -relaxation to A(0)u(0) = g(0)

4 Compute residual r(0) ← g(0) − Au(0)

5 for p = 0 to N
(1)
t do

6 Restrict residual, r(1,p) ← R
(p)
I r(0)

7 Solve local system A(1,p)u(1,p) = r(1,p)

8 Correct using u(0) ← u(0) + P
(p)
S u(1,p)

9 until convergence criterion is reached

Note that the AT-MGRIT algorithm solves for the exact solution in N
(1)
t itera-

tions if w > 1. Furthermore, the algorithm is equivalent to the two-level MGRIT
method if w = N

(0)
t + 1, i. e., if all local coarse grids contain all C-points before

in time. All components of the AT-MGRIT algorithm are highly parallel. The
only communication needed is for the residual computation and the distribution
of the residual (performed by the matrix-vector product r(1,p) = R

(p)
I r(0) in Al-

gorithm 4.5). Moreover, the coarse-level solve is communication-free (except for
any communication that arises in spatial parallelism). This is particularly rele-
vant for emerging heterogeneous computing architectures, where communication
to and from GPU nodes can be quite expensive, and high efficiency is obtained
with a low communication to computation ratio.

4.4.2 Multilevel FAS AT-MGRIT

Analogously to MGRIT, we can easily generalize the two-level algorithm to the
multilevel case and use the FAS scheme for solving nonlinear problems. We first
construct a multilevel hierarchy of temporal grids recursively using a uniform or
non-uniform coarsening strategy. AT-MGRIT uses the same levels, coarsening, re-
laxation, and transfer operators as MGRIT on all finer levels in the hierarchy, but
on the coarsest level the global grid is replaced by multiple local grids. Figure 4.9
shows an example grid hierarchy for three-level AT-MGRIT with N

(0)
t = 20,

m = 2, and w = 4. While MGRIT utilizes the global coarse grid on level 2,
AT-MGRIT uses local grids T (2,p), p = 0, . . . , 5.

54

4.4 AT-MGRIT

Level 0

Level 1

Level 2

T (2,0)

T (2,1)

T (2,2)

T (2,3)

T (2,4)

T (2,5)

Figure 4.9: Example of a three-level time grid hierarchy for the AT-MGRIT algorithm
for a fine grid with 21 time points, m = 2 and w = 4. At the coarsest level, a local
coarse grid is generated for each C-point of the global coarse grid (gray box). These
local grids (T (2,p), p = 0, . . . , 5) replace the global coarse grid used in the classical
MGRIT algorithm.

In the following, we assume again that all problem-dependent forcing terms are
included in the time integrator. Then, the multilevel FAS AT-MGRIT V -cycle al-
gorithm is given in Algorithm 4.6, where N

(`)
t denotes the number of time points,

and A(`)u(`) = g(`) and A(`,p)u(`,p) = g(`,p) specifies the space-time system of equa-
tions on levels ` = 0, 1, . . . , L− 1 and on the local coarse grids p = 0, 1, . . . , N

(`)
t ,

respectively. Further, we use restriction by injection (R
(`)
I), “ideal” interpolation

(P (`)), and F (CF)ν
(`)

-relaxation on levels ` = 0, ..., L − 2. At the coarsest level,
restriction and interpolation to and from the local coarse grids is done by in-
jection, denoted by R

(`,p)
I and P

(`,p)
I , respectively. Note that the residual is first

transferred to the global coarse grid of the coarsest level and then to the local
coarse grids, which allows for a simpler notation of the algorithm. AT-MGRIT
can also be used with other common multigrid cycle types, such as F -cycles or
nested iterations. For all cycle types, the standard MGRIT coarsest level can be
replaced by local coarse grids, but hybrid versions are also possible, where either
the global problem or the local problems are solved at the coarsest level. Indepen-
dent of the initial guess, the AT-MGRIT algorithm solves for the exact discrete
solution after N

(0)
t /(2m) iterations for FCF -relaxation if w > 1. AT-MGRIT is

equivalent to MGRIT if w = N
(L−1)
t + 1.

4.4.3 Error propagation

This section presents the convergence theory for AT-MGRIT in the linear two-
level setting, which we developed in [55]. The analysis builds on the two-level

55

4 Parallel-in-time integration

Algorithm 4.6: FAS AT-MGRIT(`)

1 repeat
2 if ` is the coarsest level then

3 for i = 0 to N
(`)
t do

4 Restrict to local grids

5 u(`,p) ← R
(`,p)
I (u(`))

6 v(`,p) ← u(`,p)

7 g(`,p) ← R
(`,p)
I (g(`))

8 Solve local problem A(l,p)(u(`,p)) = A(`,p)(v(`,p)) + g(`,p)

9 Update u(`) ← P
(`,i)
I u(`,i)

10 else
11 Apply F -relaxation to A(`)(u(`)) = g(`)

12 Apply ν(`) times CF -relaxation to A(`)(u(`)) = g(`)

13 Inject the approximation and its residual to the coarse grid

14 u(`+1) ← R
(`)
I (u(`))

15 v(`+1) ← u(`+1)

16 g(`+1) ← R
(`)
I (g(`) −A(`)u(`))

17 Compute right-hand side g(`+1) ← A(`+1)(v(`+1)) + g(`+1)

18 Solve on next level: MGRIT(`+ 1)

19 Compute the error approximation: e← u(`+1) − v(`+1)

20 Correct using ideal interpolation: u(`) ← u(`) + P (`)(e)

21 until convergence criterion is reached

theory from Section 4.3.3, and provides insight into the effects of truncating the
coarse time grid. We begin by introducing the error propagation operator for exact
solves on the truncated coarse grids and then show results for inexact coarse grid
solves. Afterwards, formal two-level convergence bounds are provided.

Following (4.11), the two-level error propagation operator for linear AT-MGRIT
with an exact coarse-grid solve is given by

E :=

I − N
(1)
t∑
p=0

P
(p)
S (A(1,p))−1R

(p)
I A(0)

PRI , (4.23)

where A(1,p) represents the local coarse grid systems, R
(p)
I is the restriction oper-

ator to the local coarse grids, and P
(p)
S defines the interpolation from the local

coarse grids that updates the fine grid using selective ideal interpolation, i. e., for
one specific C-point, this C-point and the following interval of F -points are up-
dated. We see that (4.23) is analogous to (4.11), but here we must sum over all
C-points, as each C-point is updated by a unique local coarse-grid.

56

4.4 AT-MGRIT

The operators P and RI , corresponding to ideal interpolation and restriction by
injection, are the same operators as described in (4.14) and (4.15), respectively.
The selective ideal interpolation from the local coarse grid to the fine grid is given
by

I

Φ
...

Φm−1

P

(p)
S := .

pm

m

N
(0)
t +1−(p+1)m

min(p,w−1)

Note that the exact dimension and structure of the operator depends on the con-
sidered local coarse grid. Recall that the fine-grid operator has block dimension
(N

(0)
t + 1) × (N

(0)
t + 1), with each block being a square operator the size of Φ.

Letting N
(0)
t = mN

(1)
t for coarse-grid points 0, ..., N

(1)
t , the fine-grid size can be

written as (mN
(1)
t + 1)× (mN

(1)
t + 1), which we will use to express error propa-

gation largely in terms of m ×m coarse blocks. Each of these blocks represents
a block of one C-point and m − 1 following F -points. At the end, there is a
single block containing only one C-point. Note that the structure for this block is
always a submatrix of the m×m blocks, containing only the part corresponding
to the C-point.

Exact local coarse grid solve

First, we consider the effect of the local coarse grids using exact solves on the
coarse time steps. For this purpose, we define the local coarse-grid problem as

A(1,p) := R
(p)
I A(0)P (p),

where P (p) and R
(p)
I define the transfer between the fine grid and the local coarse

grids and are submatrices of P and RI . For P (p), only columns of P associated
to points lying on this local coarse grid are considered. Equivalently, only the
associated rows are considered for the restriction. Then, the coarse-grid problems

57

4 Parallel-in-time integration

are given by

I

−Φm I

−Φm I
.
−Φm I

A(1,p) = min(p+1,w)

min(p+1,w)

. (4.24)

Here, it is important to note that all local coarse-grid systems A(1,p) have the same
structure, but consider different time intervals. In fact, the exact local coarse-grid
systems are principal submatrices of the Schur complement corresponding to a
standard MGRIT coarse-grid with exact solves (see (4.13)).

We consider the error propagation Ee for one C-point p = 0, . . . , N
(1)
t using the

ideal local coarse-grid problem (i. e., exact coarse grid and inverses). The structure
of the matrices for the first w C-points differs from all other C-points, since the
local coarse grids corresponding to the first w C-points contain all C-points prior
in time. Here, we want to study the effect of local coarse grids that do not
extend back to t = 0. Therefore, we start by considering all local coarse grids
N

(1)
t > p ≥ w and subsequently discuss the structure for p < w. Note that the

structure of the matrices of p = N
(1)
t is always a submatrix of N

(1)
t > p ≥ w and

therefore is not explicitly stated. For N
(1)
t > p ≥ w the matrix R

(p)
I A(0) is given

by

01×(m−1) −Φ I 01×(m−1)

.

01×(m−1) −Φ I 01×(m−1)

 ,w

(p−w)m m wm N
(0)
t +1−(p+1)m

(4.25)
which initially contains (p − w)m + m columns corresponding to the omitted
points on the local coarse grid. The following wm columns correspond to the C-
points present on the local coarse grid and their corresponding following interval

58

4.4 AT-MGRIT

of F -points. Next, we consider

Φ(w−1)m . . . Φ2m Φm I

Φ(w−1)m+1 . . . Φ2m+1 Φm+1 Φ
...

...
...

...
Φwm−1 . . . Φ3m−1 Φ2m−1 Φm−1

P

(p)
S (A(1,p))−1 = ,

pm

m

N
(0)
t +1−(p+1)m

w

with A(1,p) as in (4.24), which defines the effect of selective ideal interpolation
multiplied by the inverse of the coarse-grid problem. Due to the selective ideal
interpolation operator, exactly m points are considered, namely the C-point to
be updated and the following F -interval consisting of m − 1 points. All other
points are not changed by the update of one p and the corresponding rows are
therefore zero. As a consequence, the product P

(p)
S (A(1,p))−1R

(p)
I A(0) also has only

m nonzero rows. Furthermore, we have exactly w + 1 blocks of m ×m matrices
which are not equal to zero. The matrix P

(p)
S (A(1,p))−1R

(p)
I A(0) in block form is

given by

D Vw−2 . . . V0 S

,

pm

m

N
(0)
t +1−(p+1)m

(p−w)m m (w−1)m m N
(0)
t +1−(p+1)m

(4.26)
with block m×m inner matrices

0 . . . 0 −Φ(w−1)m+1

0 . . . 0 −Φ(w−1)m+2

...
...

...
0 . . . 0 −Φwm

D = ,

Φ(j+1)m 0 . . . 0 −Φjm+1

Φ(j+1)m+1 0 . . . 0 −Φjm+2

...
...

...
...

Φ(j+2)m−1 0 . . . 0 −Φ(j+1)m

Vj = ,

and S as given in (4.16). Here, D comes from the truncated coarse-grid points,
Vw−2, . . . ,V0 represent the first w− 1 local coarse-grid points, and S corresponds
to the last point of the local coarse grid. Note that the S-block is a diagonal
block of the matrix. The operator PRI , which is equivalent to an F -relaxation,
is given by (4.18).

59

4 Parallel-in-time integration

We can now calculate the error propagation (I−
∑N

(1)
t

p=0 P
(p)
S (A(1,p))−1R

(p)
I A(0))PRI

by exploiting the structure of the matrices P
(p)
S (A(1,p))−1R

(p)
I A and PRI . Instead

of computing the complete matrix, we can compute the blocks −DS,−VjS for
j = w − 2, . . . , 0, and (I − S)S. Note that the identity term is added to −S
because S is the diagonal block of P

(p)
S (A(1,p))−1R

(p)
I A(0). Working through the

algebra yields −VjS = 0 for j = w − 2, . . . , 0, (I − S)S = S2 − S = 0, and the
block m×m matrix

Φwm 0 . . . 0

Φwm+1 0 . . . 0
...

...
...

...
Φwm+m−1 0 . . . 0

−DS = .

Note that for the case p < w in matrix (4.26) the operator D is omitted, since for
these C-points all previous C-points are contained in the local coarse grid.

We can now examine the error propagator Ee using exact solves on the local coarse
grids. In forming Ee by summing over p = 0, . . . , N

(1)
t , we obtain a block lower

triangular matrix, whereby each p updates m rows of Ee, and the error propagator
using ideal local coarse grids can be written in block form as

0 . . . 0
...
.

0 . . . 0

C 0 . . . 0

0
...

0 0 C 0 . . . 0

0 0 0 C̄ 0 . . . 0

Ee =

m

(k−1)m

(N
(1)
t −k)m

1

m m(N
(1)
t −2) m+1

,

where C = −DS and C̄ is identical to the first row of C and represents the
additional block consisting of one C-point. Note that the error propagator Ee is
nonzero, so unlike two-level MGRIT, AT-MGRIT using exact local coarse-grid
inverses is not a direct method. For all p > w, we have some error perturbation
that results from truncating the exact (Schur-complement) coarse grid.

Approximate local coarse grid solve

Again, we do not invert R
(p)
I A(0)P (p) exactly, but approximate R

(p)
I A(0)P (p) ≈

Ã(1,p). Specifically, we approximate again the powers Φm, which correspond to m

60

4.4 AT-MGRIT

applications of the fine time integrator Φ, with a coarse operator Ψ. This results
in the approximation Ã(1,p) given by

I

−Ψ I
.
−Ψ I

Ãc
(1,p)

:= min(p+1,w)

min(p+1,w)

.

Using this approximation, we can formulate the error propagation Ea using the
approximated local coarse-grid inverse.

The definition of R
(p)
I A(0) is the same as in (4.25), but now

Φ0Ψw−1 . . . Φ0Ψ2 Φ0Ψ Φ0

...
...

...
...

Φm−1Ψw−1 . . . Φm−1Ψ2 Φm−1Ψ Φm−1

P
(p)
S Ã(1,p) =

pm

m

N
(0)
t +1−(p+1)m

w

.

As a result, we get a block matrix equivalent to (4.26), but this time with m×m
block matrices Ṽj and D̃ given by

Φ0Ψ(j+1) 0 . . . 0 −Φ0ΨjΦ
...

...
...

...
Φm−1Ψ(j+1) 0 . . . 0 −Φm−1ΨjΦ

Ṽj =

0 . . . 0 −Φ0Ψw−1Φ
...

...
...

0 . . . 0 −Φm−1Ψw−1Φ

, D̃ = ,

instead of V and D, respectively. Note that S (as well as Ṽj) is the same as given
in (4.16). Again, we use the structure of the matrices and calculate m×m block

submatrices of P
(p)
S (Ã(1,p))−1R

(p)
I A(0)PRI given by

Φ0Ψj(Φm −Ψ) 0 . . . 0
...

...
...

...
Φm−1Ψj(Φm −Ψ) 0 . . . 0

−ṼjS =

Φ0Ψw−1Φm 0 . . . 0
...

...
...

...
Φm−1Ψw−1Φm 0 . . . 0

,−D̃S = .

Note that −ṼjS is identical to (4.20). The error propagation operator with ap-

61

4 Parallel-in-time integration

proximate coarse grid, Ea, is then given by

0 . . . 0

Z0 0 . . . 0
...

. 0

Zw−2 . . . Z0 0 . . . 0

W Zw−2 . . . Z0 0 . . . 0

0
...

.
...

0 . . . W Zw−2 . . . Z0 0 0

0 . . . 0 W̄ Z̄w−2
. . . Z̄0 0

Ea = ,

m

(w−1)m

(N
(1)
t −w)m

1

m(N
(1)
t −1)m 1

(4.27)

with block matrices Zj = −ṼjS andW = −D̃S and W̄ and Z̄j are again identical
to first row of W and Zj, respectively.

4.4.4 Convergence bounds

We follow the framework from Section 4.3.4, drop the subscript a of Ea, and
analyze again the C-C principle submatrix of (4.27) given by

Ecc =

0
(Φm −Ψ) 0

... (Φm −Ψ)
. . .

Ψw−2(Φm −Ψ)
...

. . . 0
Ψw−1Φm Ψw−2(Φm −Ψ) . . . (Φm −Ψ) 0

.
...

.

Ψw−1Φm Ψw−2(Φm −Ψ) . . . (Φm −Ψ) 0

.

Consider the case of Φ and Ψ being simultaneously diagonalizable. Let U again
denote the shared eigenvector matrix of Φ and Ψ, with eigenvalues µ ∈ σ(Ψ) and
λ ∈ σ(Φ), where σ(Ψ) and σ(Φ) denote the spectrum of Ψ and Φ, respectively.

62

4.4 AT-MGRIT

Then Ẽcc is defined for a fixed pair of eigenvalues {µ, λ}:

Ẽcc :=

0
(λm − µ) 0

... (λm − µ)
. . .

µw−2(λm − µ)
...

. . . 0
µw−1λm µw−2(λm − µ) . . . (λm − µ) 0

.
...

.

µw−1λm µw−2(λm − µ) . . . (λm − µ) 0

.

Following the strategy from Section 4.3.4, we obtain the bound for two-level AT-
MGRIT with F -relaxation given by

‖Ẽcc‖ ≤ ‖Ẽcc‖1 = |λm − µ|
w−2∑
`=0

|µ`|+ |λmµw−1|

=
|λm − µ|(1− |µ|w−1)

1− |µ|
+ |λmµw−1|. (4.28)

Results are summarized in the following theorem.

Theorem 4.2 (Two-level convergence). Let Φ and Ψ be simultaneously diago-
nalizable with eigenvectors U , and consider two-level AT-MGRIT with coarsening
factor m and local coarse-grid size w. For a given CF-splitting of time points,
error propagation takes the form

E ` :=

[
Eff Efc
Ecf Ecc

]`
=

[
0 EfcE `−1

cc

0 E `cc

]
.

Further, assume Φ and Ψ are stable in an eigenvalue sense, that is, |µ|, |λ| < 1
for all µ ∈ σ(Ψ), λ ∈ σ(Φ), and define

ϕtg(µ, λ) :=
|λm − µ|
1− |µ|

for eigenvalue pairs (with shared eigenvector) {µ, λ}. Then,

‖Ecc‖(ŨŨ∗)−1 ≤ max
{µ,λ}

(
ϕtg(µ, λ) + |µw−1| (|λm| − ϕtg(µ, λ))

)
. (4.29)

Proof. The proof follows from a simple expansion of (4.28).

63

4 Parallel-in-time integration

Corollary 4.3. Under the same assumptions as in Theorem 4.2,

‖Ecc‖(ŨŨ∗)−1 ≤ max
{µ,λ}

(ϕtg(µ, λ) + |µw| (1− ϕtg(µ, λ))) . (4.30)

Proof. Note that

|λm − µ|(1− |µ|w−1)

1− |µ|
=
|λm − µ|(1− |µ|w)

1− |µ|
− |µw−1||λm − µ|.

In addition, we have |λmµw−1| = |µw−1(λm − µ) + µw| ≤ |µw−1||λm − µ| + |µw|.
Plugging these two results into (4.28) yields an upper bound

‖Ecc‖(ŨŨ∗)−1 ≤ max
{µ,λ}

(
|λm − µ|(1− |µ|w)

1− |µ|
+ |µw|

)
.

An analogous expansion as used in Theorem 4.2 completes the proof.

Note that the first term, ϕtg, in (4.29) and (4.30), toO(1/N
(1)
t), provides necessary

and sufficient conditions for convergence of two-level MGRIT (4.22), while the
second term introduces an error perturbation that results from truncating the
coarse grid. Although Corollary 4.3 is less tight than Theorem 4.2, it provides a
more intuitive description of convergence. Note that error modes which converge
fast for traditional MGRIT, ϕtg(µ, λ) ≈ 0, lead to the largest perturbation of
convergence for AT-MGRIT, ≈ |µk| (this also suggests convergence will be better
for a more “diffusive” coarse solver, that is, a coarse solver with generally smaller
eigenvalues). In contrast, there will be much less degradation in convergence for
modes that are relatively slow to converge for traditional two-level MGRIT.

This leads to a further important observation on convergence of AT-MGRIT: with
some algebra,1 one can show that the “error” subdiagonal, that is, the subdiagonal
of Ẽcc that lacks a λm − µ scaling, is propagated out of the matrix after d(N (1)

t +
1)/we iterations (i. e., all matrix entries then have at least one power of λm − µ).
This suggests a natural heuristic to choose w:

Choice of w: choose w at least large enough so that d(N (1)
t + 1)/we

approximates the number of iterations to converge for traditional two-level
MGRIT.

1There are various ways to show this; perhaps the most formal is in noting that multiplication
of Toeplitz matrices such as Ẽ`cc corresponds to finite discrete convolutions. One can also

simply expand Ẽpcc = (Êcc + µw−1λmI−w)p, where I−w is a diagonal of ones on the wth
subdiagonal.

64

4.5 Convergence criterion

The number of iterations for two-level MGRIT convergence is determined by the
slowest converging modes, which are in turn the least affected in convergence of
AT-MGRIT by the perturbation term in (4.29) and (4.30) (i. e., we expect these
modes to converge in a roughly similar number of iterations for AT-MGRIT).
As mentioned previously, the fastest-converging modes for MGRIT, however, can
suffer significant degradation of convergence in AT-MGRIT. Thus, we choose w
so that the error perturbation for these terms is eliminated via nilpotency at
(approximately) the same number of iterations as the slowest converging modes
for standard MGRIT will have converged. After this nilpotency is achieved, these
“fast” modes will rapidly converge (if they have not already) due to ϕtg(µ, λ)� 1.

Last, it is important to remember that theory developed in this section is for two-
level AT-MGRIT applied to linear problems. The resulting heuristic for choosing
w provides a good starting point, but multilevel AT-MGRIT or application to
nonlinear problems may require larger w.

4.5 Convergence criterion

All PinT methods presented are iterative methods that measure the quality of
the solution at a certain point within the algorithm. Typically, the quality is
expressed by an integer quantity, e. g., an arbitrary norm over the residual, where
the lower the value, the better the quality. When this quality of the solution is
good enough, i. e., the corresponding quantity is below a chosen threshold κ, the
algorithm stops. The choice of the convergence criterion is a complex issue, and
there are several approaches, e. g., the jump of the approximation between two
iterations [41], determining convergence using finest-level information [70], the
residual at single time points [46], or the space-time residual [30]. Unfortunately,
however, there is no detailed study of the different convergence criteria. Here, we
categorize the different criteria at a very high level into two groups: local and
global criteria.

Local criteria measure the quality of the solution at a set of time points, consid-
ering each point individually and determining for each point whether the approx-
imation is sufficient or not. Thus, local criteria may result in the convergence
criterion already being met for some points, but not for others. Subsequent iter-
ations of the iterative method have the option to consider only the time points
that have not yet converged. The quality of the solution can be determined, for
example, by the jump between two iterations or the residual, each measured in
an arbitrary norm. If the measured result for a time point is below κ, the ap-
proximation is sufficient for this time point. Due to the evolutionary nature, an
additional condition is often added, namely that the point immediately before the

65

4 Parallel-in-time integration

point under consideration must also have fallen below the threshold. This ensures
that there is a dependence of the local criterion on the initial value.

A global criterion builds on a local criterion. First, the local criterion is deter-
mined for each time point and then a global measure is formed over all local
criteria, e. g., using an arbitrary norm. If this global measure is smaller than κ,
the algorithm terminates for all points simultaneously.

In the remainder of this thesis, we use global convergence criteria (unless otherwise
stated), which is the typical choice for the MGRIT algorithm [30].

66

Chapter 5
Implementation

In the following chapter, we present the Python implementation PyMGRIT [53] of
MGRIT, which was used for all of the following numerical experiments in Chap-
ter 6 and Chapter 7, and was developed in the context of this thesis. The PyMGRIT
framework includes many different variants of the MGRIT algorithm, ranging
from different multigrid cycle types and relaxation schemes, various coarsening
strategies, including time-only and space-time coarsening, and the ability to uti-
lize different time integrators on different levels in the multigrid hierachy. It also
includes an implementation of the AT-MGRIT algorithm. PyMGRIT supports both
serial runs, suitable for prototyping and testing new approaches, as well as paral-
lel runs using the Message Passing Interface (MPI). The code of the package can
be found in the GitHub repository [52].

5.1 PyMGRIT

PyMGRIT is based on different classes, each of which specifies different required
components; more precisely, the framework is based on four different class types:

• Solver: the solver class provides implementations of the solver, for example,
MGRIT or AT-MGRIT.

• Vector: vector classes contain the solution at a single point in time. Every
vector class must inherit from PyMGRIT’s core Vector class.

• Application: application classes contain information about the problem we
want to solve. Every application class must inherit from PyMGRIT’s core
Application class.

67

5 Implementation

• GridTransfer: grid transfer classes contain information about the transfer of
spatial grids between consecutive MGRIT levels. Every grid transfer class
must inherit from PyMGRIT’s core GridTransfer class.

The three types of classes Vector, Application and GridTransfer are all based on
abstract super classes. These classes independently create some structures that
are valid for each type of class and also ensure that all necessary member variables
and member functions exist in the respective child classes. A developer who wants
to create and solve a problem that is not included in the PyMGRIT package usually
only has to specify parts of the four classes. In most cases it is sufficient to write
a vector class and an application class. The grid transfer class is primarily needed
for the additional feature of spatial coarsening, and if spatial coarsening is not
used, it is automatically handled by the framework and nothing needs to be done.
In genereal, the solver classes can be used without modifications.

In the following, we demonstrate how an existing time stepping code for solving a
time-dependent problem can easily be transformed for the usage in the PyMGRIT

framework. Then, we show a typical main routine of an application code that
uses a PyMGRIT solver to solve the problem. As an example, we consider a simple
example of a scalar ODE. More specifically, our goal is to solve the Dahlquist test
problem,

u′ = λu in (0, 5], (5.1)

with u(0) = 1 and λ = −1.

Listing 5.1 shows a typical time stepping code for solving problem (5.1) discretized
by implicit Euler on a temporal mesh with 101 points. The code consists of three
components: first, the initial condition value = 1 is set in line 2. The variable
value is further used to store the propagated solution at the current time. The
second component consists of the time information in lines 3 and 4. The temporal
grid contains nt = 101 points in the time interval [0, 5] and is created using the
Numpy [108] function linspace. In the last step, we iterate over all points in
time and apply the time integration in form of implicit Euler. In summary, we
have as components a variable that contains the solution at a point in time, time
information belonging to the problem, and the time-integration loop.

To implement these components in PyMGRIT, the first step is to write a vector
class VectorDahlquist, which stores the solution at a point in time and inherits
from the PyMGRIT core class Vector. The member variable value contains the
solution of a point in time. Furthermore, the following member functions have to
be implemented:

• set values: receives data values and overwrites the values of the vector
data.

68

5.1 PyMGRIT

1 constant_lambda = −1 # set lambda to -1

2 value = 1 # initial solution value

3 nt = 101 # number of time points

4 t = np . linspace (0 , 5 , nt) # nt evenly spaced numbers in interval [0,5]

5 # implicit Euler time integration

6 for i in range (1 , nt) :
7 value = 1 / (1 − (t [i] − t [i − 1]) ∗ constant_lambda) ∗ value

Listing 5.1: Example time stepping code for problem (5.1), discretized by implicit Euler
on a temporal mesh with 101 points.

1 class VectorDahlquist (Vector) :
2 def __init__ (self , value) :
3 super () . __init__ ()
4 self . value = value

5

6 def __add__ (self , other) :
7 return VectorDahlquist (self . get_values () + other . get_values ())
8

9 def __sub__ (self , other) :
10 return VectorDahlquist (self . get_values () − other . get_values ())

Listing 5.2: Vector class for Dahlquist’s test equation. Note that the definition of the
class is not complete, the member functions set values, get values, mul , clone,
clone zero, clone rand, norm, pack, and unpack are not shown.

• get values: returns the vector data.

• clone: clones the object.

• clone zero: returns a vector object initialized with zeros.

• clone rand: returns a vector object initialized with random data.

• add : addition of two vector objects.

• sub : subtraction of two vector objects.

• norm: norm of a vector object.

• mul : multiplies a vector object by a float.

• pack: packs the vector data into a communicable object.

• unpack: reverse operation of pack.

The definition of the class VectorDahlquist with implementations of the con-
structor and of the functions add , sub is shown in Listing 5.2. The im-
plementation of the other functions is straightforward and not specified in detail
here.

Second, we write an application class Dahlquist which contains information
about the problem we want to solve. This class contains information about the

69

5 Implementation

1 class Dahlquist (Application) :
2 def __init__ (self , constant_lambda = −1, ∗args , ∗∗ kwargs) :
3 super () . __init__ ()
4 self . c_lambda = constant_lambda

5 self . vector_template = VectorDahlquist (0) # Data structure for any time

point

6 self . vector_t_start = VectorDahlquist (1) # Set the initial condition

7

8 # Time integration routine

9 def step (self ,
10 u_start : VectorDahlquist ,
11 t_start : float ,
12 t_stop : float) −> VectorDahlquist :
13 tmp = 1/(1−(t_stop−t_start) ∗self . c_lambda) ∗u_start . get_values ()
14 return VectorDahlquist (tmp)

Listing 5.3: Application class for Dahlquist’s test equation.

time grid and the step function and is shown in Listing 5.3. The time information
is automatically provided by the PyMGRIT core class Application, from which
every PyMGRIT application must inherit. The function step must be defined and
contains the time integration routine, which is the same as in Listing 5.1 ex-
cept for names and accesses. To compute the new solution, the function receives
as parameters the solution of the previous time point, u start, as well as the
start point and the end point of the time integration step, t start and t stop,
respectively. Furthermore, two mandatory member variables, vector template

and vector t start, must be created in the application class. The variable
vector template stores an instance of the corresponding Vector class, i. e., the
DahlquistVector class, and vector t start defines the initial condition using
the same class. This is all we need for our test problem. The application class is
used in the following to solve the problem using PyMGRIT.

The main routine of an application code that uses PyMGRIT to solve Dahlquist’s
test problem is presented in Listing 5.4. The program uses a two-level MGRIT
algorithm to solve the same problem as the time stepping code in Listing 5.1.
The 101 time points are composed of one point for the start time t = 0 and 100
other time points. Note that one point for the start time is always included in the
time interval in PyMGRIT. The structure of a main routine usually consists of three
steps. First, the problem is created. Then, a multigrid hierarchy is constructed for
this problem. Finally, the problem is solved using the MGRIT algorithm. In our
example, for the first step, an instance of PyMGRIT’s class Dahlquist is created in
line 2 that describes the fine problem. The time domain is passed to the problem
class by using the parameters t start and t stop for specifying the time interval
bounds and the parameter nt for the number of time steps. Afterwards, for the
second step, a multilevel hierarchy is constructed in line 5, based on the problem
instance dahlquist. Here, the auxiliary function simple setup problem is used
and a two-level hierarchy with a coarsening factor of two is chosen. The result is

70

5.1 PyMGRIT

1 # Create Dahlquist ’s test problem with 101 time steps in the interval [0, 5]

2 dahlquist_level_0 = Dahlquist (t_start=0, t_stop=5, nt=101)
3

4 # Construct a two -level multigrid hierarchy for the test problem using a

coarsening factor of 2

5 dahlquist_multilevel_structure = simple_setup_problem (problem=dahlquist ,
6 level=2,
7 coarsening=2)
8

9 # Set up the MGRIT solver for the test problem and set the solver tolerance

to 1e-10

10 mgrit = Mgrit (problem=dahlquist_multilevel_structure)
11

12 # Solve the test problem

13 info = mgrit . solve ()

Listing 5.4: Typical main routine of an application code that uses PyMGRIT.

a coarse level with 51 time points. Note that PyMGRIT provides several ways to
pass the time domain information to a problem class and to create a multilevel
hierarchy so that any kind of uniform or non-uniform coarsening strategy can be
applied. For the third step, the MGRIT solver for the test problem is set up in
line 10 as an instance of PyMGRIT’s core class Mgrit using the multilevel object
dahlquist multilevel structure. Note that here only the problem hierarchy
is passed to the constructor and all other settings of the MGRIT algorithm are set
by default variables, but they can easily be set explicitly in the constructor. For
example, the following parameters can be set: maximum number of iterations,
convergence tolerance, usage of nested iteration strategy, relaxation scheme, cycle
type, and others. For a complete list we refer to the documentation of PyMGRIT

[51]. Finally, the problem is solved by calling the solve routine of the solver
mgrit in line 13. The solver returns some statistical information about the run
in the dictionary info.

The parallelization of the time dimension is handled completely automatically in
the solver, so the user does not have to care about parallelization details. We will
not go into implementation details here, but refer to Section 8.1.2 for the typical
strategy of parallelization within PinT methods, which is also used in PyMGRIT,
and to [52, 53] for more information about the package.

71

Chapter 6
Numerical experiments: AT-MGRIT
investigations

In this chapter, we show numerical results presented in [55] for the AT-MGRIT
algorithm for two problems. First, we consider a simple model problem, the
one-dimensional (1D) heat equation, and investigate the numerical behavior of
the algorithm for the new parameter w, the size of the local coarse grids. We
also compare the theoretical results from Section 4.4.4 with the numerical results.
The second problem, the 2D Gray-Scott example of a chemical reaction of two
substances, presents a more challenging nonlinear problem. In particular, we
consider the runtime results of the AT-MGRIT algorithm and compare them
with the runtime results of the corresponding MGRIT variants. Finally, we briefly
discuss the effect of spatial parallelism for different methods.

All simulations were performed on an Intel Xeon Phi Cluster consisting of four
1.4 GHz Intel Xeon Phi processors. The code for all experiments can be found in
the PyMGRIT repository [52]. For all experiments, we use all possible resources for
temporal parallelization, i. e., we do not use spatial parallelization (largely due to
limited resources). For a brief discussion on the effect of spatial parallelism for
the different algorithms, see Section 6.3.

6.1 Heat equation

The parameter w defines the size of the local coarse grids and, thus, the number
of sequential solves needed on the coarse grid. In the following, we consider the

73

6 Numerical experiments: AT-MGRIT investigations

influence of the parameter w on the convergence of AT-MGRIT applied to a
standard model problem for PinT methods, the 1D heat equation,

ut − auxx = b(x, t) in [0, 3]× [0, π], (6.1)

where a is the thermal conductivity, and subject to the initial condition u(x, 0) =
sin(πx), 0 ≤ x ≤ 3 and homogeneous Dirichlet boundary conditions in space. The
forcing term is chosen as b(x, t) = − sin(πx)(sin(t) − π2 cos(t)), 0 ≤ x ≤ 3, 0 ≤
t ≤ π, such that the exact solution is given by u(x, t) = sin(πx) cos(t) for a = 1.
We first examine the behavior of w for a = 1 and a = 0.01, and then choose a = 1
for more detailed results.

We discretize (6.1) using second-order central finite differences with 1,025 degrees
of freedom in space and on an equidistant time grid with 16,384 time points using
implicit Euler. We investigate the behavior of the AT-MGRIT algorithm for the
two-level case with F -relaxation, and choose different coarsening factors m and
local grid sizes w. We restrict ourselves to the two-level case, since we want to
study the effect of using local coarse grids of various sizes w. For all simulations,
the convergence criterion is based on the discrete 2-norm of the absolute space-
time residual with a tolerance of 10−7 and a random initial guess is chosen for
all time points except for the initial condition. This choice guarantees that no
knowledge of the right-hand side is used that could affect the convergence. Note
that this is only a good choice for investigating the behavior of the algorithm and
is not recommended in practice.

0 20 40 60 80 100 120

20

30

40

w

it
er

at
io

n
s

a=1; 2-level, F , m=128
a=0.01; 2-level, F , m=128

(a) Iterations to convergence as a function of
w.

0.05 0.1 0.15 0.2

20

40

60

80

w/(#C-points)

it
er

at
io

n
s

a=1; 2-level, F , m=64
a=1; 2-level, F , m=128
a=1; 2-level, F , m=256

(b) Iterations to convergence as a function of
w divided by the number of C-points.

Figure 6.1: Required iterations for AT-MGRIT variants for the 1D heat equation.

Figure 6.1(a) shows the required number of iterations to reach the convergence
criterion for a two-level AT-MGRIT variant with F -relaxation and a coarsening
factor of m = 128 as a function of size w for the two choices of the thermal

74

6.1 Heat equation

conductivity. Note that while the variant with w = 128, which is equivalent to
two-level MGRIT, performs 127 sequential time steps on the coarse level, equiva-
lent convergence can be obtained with w = 12, which means 10× less coarse-grid
solves. Note that the behavior is similar for both choices of a. Figure 6.1(b)
presents iterations to convergence as a function of the ratio of local to global
coarse-grid points. For three different coarsening factors, we see that convergence
does not improve beyond the same ratio of w/(#C-points), in this case about
0.08. Although this parameter is likely problem specific, Figure 6.1 does suggest
the choice of w is relatively agnostic to that of the coarsening factor by posing it
relative to the global coarse-grid size.

10−4

10−2

100

co
n
ve

rg
en

ce
b

ou
n
d

Two-level AT-MGRIT (4.30)
ϕtg(µ, λ)

0 100 200 300 400 500 600 700 800 900 1,000

10−4

10−2

100

eigenvalue index

ei
ge

n
va

lu
es

Fine level (λ)
Coarse level (µ)

Figure 6.2: Theoretical bound on convergence rate based on (4.30), ϕtg, and eigenvalues
sorted by ϕtg, for m = 128, w = 12 and a = 1.

To better understand the convergence behavior described in Section 4.4.4, for
each spatial eigenvalue Figure 6.2 plots the theoretical convergence rate (4.30),

the (asymptotic in N
(1)
t) two-grid rate ϕtg, and the corresponding eigenvalues

for the coarse- and fine-propagator for two-level AT-MGRIT with m = 128 and
w = 12. Notice that on an eigenvector basis, theoretical convergence of AT-
MGRIT almost exactly matches that of two-level MGRIT, with (in this case) two
exceptions, given by the blue dots with convergence ≈ 1. Each of these spatial
eigenmodes correspond to a coarse-propagator eigenvalue |µ| ≈ 1 and ϕtg � 1,
which (see Corollary 4.3) leads to a significant degradation in convergence (in a
single-iteration sense). Figure 6.3 plots observed convergence behavior for two-
level AT-MGRIT with coarsening factor m = 128 and various choices for w. The

75

6 Numerical experiments: AT-MGRIT investigations

variant with w = 128 (i. e., two-level MGRIT) has uniform convergence behavior,
while convergence for smaller w is split into three parts. Initially, convergence is
much slower than for w = 128, due to the spatial eigenmodes with |µk| ≈ 1 and
ϕtg � 1 discussed above. The smaller w is chosen, the slower is the convergence,
since the convergence perturbation of |µk|(1 − ϕtg) in Corollary 4.3 decreases

with increased w. However, after almost exactly (N
(1)
t + 1)/w iterations (see

Theorem 4.2 and surrounding discussion), once the initial condition has been
implicitly propagated over all local coarse grids, these problematic modes are
eliminated via nilpotency and a drastic improvement in convergence can be seen
for all three variants; e. g., for w = 8, one iteration suddenly reduces the residual
norm almost four orders of magnitude. This rapid convergence lasts until the
residual norm matches that of two-level MGRIT, and convergence rates thereafter
follow two-level MGRIT. Comparing the theoretical and numerical results for
m = 12, the theoretical bound (see Figure 6.2) is given by 0.94987 and the
maximum numerical convergence factor between two iterations for the equivalent
setting (see Figure 6.3) is given by 0.7418. Note, observed convergence is better
than the theoretical bound due to many modes being rapidly attenuated. Only
a few modes are very slow to converge, with rates likely close to the theoretical
bound, but these modes degrade the average (across all error modes) convergence
rate.

0 2 4 6 8 10 12 14 16 18 20 22

10−9

10−7

10−5

10−3

10−1

101

iterations

re
si

d
u
al

n
or

m

2-level, F , w = 8
2-level, F , w = 12
2-level, F , w = 16
2-level, F , w = 128

Figure 6.3: Residual norm as a function of iterations for two-level AT-MGRIT with
coarsening factor m = 128 and a = 1.

76

6.2 Gray-Scott problem

6.2 Gray-Scott problem

We consider the 2D Gray-Scott problem [84] of a chemical reaction of two com-
ponents Uc and Vc, given by

ut = Du∆u− uv2 + Fr (1− u) ,

vt = Dv∆v + uv2 − (Kr + Fr) u,

where u = u (x,y, t) and v = v (x,y, t) are the concentration of Uc and Vc,
respectively, Du and Dv are the diffusion rates, Fr is the feed rate, and Kr is the
removal rate. For our simulations, we choose the spatial domain [0, 2.5]2 with
periodic boundary conditions, and the time interval [0, 256]. Further, we choose
the parameters Fr = 0.024, Kr = 0.06, Du = 8 × 10−5, and Dv = 4 × 10−5, and
we consider the initial value

u (x, y, 0) = 1− 2
(
0.25 sin (4πx)2 sin (4πy)2) , (x, y) ∈ [1, 1.5]2,

v (x, y, 0) = 0.25 sin (4πx)2 sin (4πy)2 , (x, y) ∈ [1, 1.5]2,

and u (x, y, 0) = 1 and v (x, y, 0) = 0 otherwise. The problem is discretized using
central finite differences with 1282 points in space and on an equidistant time grid
with 16,384 points using implicit Euler. We solve the resulting nonlinear problem
using Newton’s method of PETSc [6] with a relative and absolute tolerance of
10−10.

We apply two-level and three-level AT-MGRIT variants, and compare the vari-
ants with the corresponding variants of the MGRIT algorithm. For the two-level
variants, we apply F -relaxation and we choose the coarsening factor such that
the number of coarse-grid points is equal to the number of processes used for the
simulation enabling perfect parallelization on the fine level. For the three-level
algorithms, we apply FCF -relaxation, non-uniform coarsening strategies with a
coarsening factor of m(0) = 64 between the fine and the intermediate level, and
different factors between the intermediate and the coarse level. This choice allows
perfect fine level parallelization when 256 processes are used, since there is exactly
one interval of FC-points on each process. Furthermore, we use nested iterations
to compute an improved initial guess. In the nested iteration strategy, MGRIT
solves the global coarse-grid problem at the coarsest level, while AT-MGRIT uses
the local coarse grids instead of the global grid. The convergence criterion for all
variants is based on the discrete 2-norm of the space-time residual with a tolerance
of 10−7.

Table 6.1 shows the number of iterations and runtimes of the setup and solve
phases of two-level AT-MGRIT and two-level MGRIT variants using NP pro-
cesses. The setup time consists of computing an improved initial guess and the
solve time consists of applying the algorithm. The results show that iteration

77

6 Numerical experiments: AT-MGRIT investigations

Method m w NP # Iters
Setup
time

Solve
time

Speedup
w.r.t

MGRIT

Two-level
MGRIT

512 - 32 12 1,338 s 172,068 s -

256 - 64 10 2,308 s 89,288 s -

128 - 128 9 3,958 s 66,485 s -

64 - 256 7 7,646 s 66,272 s -

Two-level
AT-MGRIT

512 16 32 12 701 s 165,351 s 1.04

256 32 64 10 1,167 s 78,230 s 1.15

128 64 128 9 2,022 s 48,675 s 1.39

64 128 256 7 3,812 s 39,895 s 1.69

Table 6.1: Iteration counts, setup times (for computing an improved initial guess), and
runtimes of the solve phase of two-level AT-MGRIT and two-level MGRIT variants
applied to the 2D Gray-Scott problem for various numbers of processes NP .

counts of AT-MGRIT are equal to iteration counts of MGRIT with the same
coarsening strategy. Furthermore, a finer coarse grid significantly reduces the
number of iterations required. While 12 iterations are needed for the two-level
variants with a coarse grid of only 32 points, this number is reduced to seven
iterations for the variants with 256 coarse-grid points. However, this reduction in
iterations is accompanied by significantly more expensive sequential coarse-grid
solves, reflected in increasing setup times with increasing points on the coarse
grid. However, if the number of points on the coarse grid doubles, the setup
time does not double. This is because a smaller time step requires fewer Newton
iterations and, thus, affects the duration of the application of each time integra-
tion. The setup time of each AT-MGRIT variant is about half as long as that
of the corresponding two-level MGRIT variant due to the choice of w. Looking
at the runtimes of the solve phase, we see that AT-MGRIT is always faster than
the corresponding MGRIT variant, achieving a speedup of up to a factor of 1.69.
Furthermore, we see that while the two-level MGRIT algorithm does not scale
for more than 128 processes, since the serial part of the algorithm dominates the
benefit of the additional parallelization of the fine level, the AT-MGRIT algo-
rithm shows good parallel scaling up to 256 processes. Note that the selected
coarsening factor was chosen to use a maximum of 256 processes, which is the
maximum number of processes that can be utilized on the used cluster. To use
more processes effectively, a different coarsening strategy must be applied. In
this case, we expect that the work on the fine levels can be better parallelized,

78

6.2 Gray-Scott problem

making the work on the coarsest level even more dominant and further increasing
the advantage of AT-MGRIT compared to MGRIT.

Method m w # Iters
Setup
time

Solve
time

Speedup
w.r.t

MGRIT

MGRIT

(64,16) - 7 3,525 s 43,604 s -

(64,8) - 7 3,498 s 38,420 s -

(64,4) - 7 4,980 s 42,285 s -

(64,2) - 6 8,075 s 45,131 s -

AT-MGRIT

(64,16) 8 7 2,864 s 41,054 s 1.07

(64,8) 16 7 2,174 s 33,688 s 1.17

(64,4) 32 7 2,713 s 34,063 s 1.29

(64,2) 64 7 4,247 s 38,571 s 1.24

Table 6.2: Iteration counts and runtimes of the setup and solve phase on 256 processes
of three-level AT-MGRIT and MGRIT variants with FCF -relaxation and different
non-uniform coarsening strategies applied to the 2D Gray-Scott problem.

Table 6.2 presents similar results to Table 6.1 for four different three-level variants
of AT-MGRIT and MGRIT with FCF -relaxation on 256 processes. The number
of iterations here does not depend as much on the coarsest grid as in the two-
level case, but we still see that the MGRIT variant with the coarsening strategy
(64, 2), i. e., the variant with the most points on the second level, requires the
fewest iterations. The corresponding AT-MGRIT variant needs one additional
iteration, but after the sixth iteration the convergence criterion is slightly missed.
A minimal increase in w would likely eliminate this extra iteration. In terms of
solve times, we see that all variants of the AT-MGRIT algorithm are faster than
the corresponding MGRIT variants, even the variant that requires an additional
iteration. Again, the more points on the coarsest level, the higher the speedup of
AT-MGRIT over MGRIT.

Note that for this problem, adding a coarser level to the three-level MGRIT
variants does not guarantee further reduction of the runtime. Rather, adding
a level may increase the runtime. For example, the four-level MGRIT with the
coarsening strategy (64, 8, 2), which adds another level with a coarsening factor of
two to the variant with the coarsening factor (64, 8) from Table 6.2, requires eight
iterations and the overall runtime (setup and solve) is 52,370 s. This observed
behavior resulting from the additional coarse grid is probably due to two reasons:

79

6 Numerical experiments: AT-MGRIT investigations

First, the nonlinear solver converges more slowly on the coarsest level due to
the larger time step size, which significantly increases the runtime of each time
integration on the coarsest level. Due to this increase and the additional work
on the new intermediate level, the additional level of the four-level variant does
not contribute to a runtime reduction compared to the three-level variant, but
increases the runtime. In addition, the coarser discretization at the new level
affects the convergence of the method, so that an additional iteration is required
to reach the stopping criterion. Note that this behavior is problem dependent
and may behave differently with other problems.

Method m w # Iters
Setup
time

Solve
time

Speedup
w.r.t

MGRIT

AT-MGRIT

(64,8) 4 10 1,140 s 42,063 s 0.97

(64,8) 6 9 1,357 s 38,978 s 1.04

(64,8) 8 8 1,543 s 35,767 s 1.12

(64,8) 10 8 1,716 s 36,509 s 1.10

(64,8) 12 8 1,877 s 37,060 s 1.08

(64,8) 14 8 2,047 s 37,786 s 1.05

(64,8) 16 7 2,174 s 33,688 s 1.17

Table 6.3: Iteration counts and runtimes of the setup and solve phase on 256 processes
of three-level AT-MGRIT with FCF -relaxation, coarsening factor (64, 8), and different
choices of w applied to the 2D Gray-Scott problem.

Table 6.3 extends the results from Table 6.2 and shows the effect of different
choices of w for the three-level AT-MGRIT with coarsening factor (64, 8). We
see that the number of iterations increases slightly as w decreases. Despite the
increasing number of iterations, the runtime for all w ≥ 6 is smaller than the
runtime of the corresponding MGRIT variant from Table 6.2. For smaller w,
the runtime is larger compared to the MGRIT variant because the cost of the
additional iterations is more expensive than the cost reduction due to the local
coarse grids.

Figure 6.4 shows the overall runtime for one AT-MGRIT variant (blue line) and
the corresponding MGRIT variant (orange line) as a function of the number of
processes and the runtime of time stepping using only one process (black dashed
line) which is about four days. For reference, the green dotted line indicates
the behavior of perfect scaling based on the runtime of time stepping. While the
runtime almost halves when going from 32 to 64 processes, the scaling curve starts

80

6.3 Discussion of spatial parallelism

32 64 128 256

210

212

214

216

218

processes

ru
n
ti

m
e

[s
]

Perfect scaling
Time-stepping on one process
3-level AT-MGRIT, m=(64,8), w = 16
3-level MGRIT, m=(64,8)

Figure 6.4: Strong scaling results for one three-level AT-MGRIT variant, the corre-
sponding MGRIT variant, and sequential time stepping on one process applied to the
2D Gray-Scott problem. The green dotted line indicates the perfect scaling based on
the runtime of time stepping.

to flatten slightly with a higher number of processes. This is mainly because only
the fine level computations have an additional benefit from more processes due to
the chosen coarsening strategy, and the runtime of the coarser levels becomes more
and more dominant. However, compared to the corresponding MGRIT variant,
the AT-MGRIT variant scales better due to its reduced work at the coarsest level.

6.3 Discussion of spatial parallelism

Here we demonstrate that the use of spatial parallelism has comparable effects
on sequential time stepping (before saturation) as it does on MGRIT and AT-
MGRIT. In particular, we emphasize that when spatial parallelism saturates, the
observed near-perfect speedup obtained by spatial parallelism before saturation
will extend to AT-MGRIT. To show this, we consider the same problem as for
the experiments in Section 6.2.

Table 6.4 presents overall runtimes for using one and four processes in space
for time stepping, two-level MGRIT, and two-level AT-MGRIT, the last two
using 64 processes in time (same variants as in Table 6.1). We see that for all
algorithms we get a speedup of about 3.8 by using four spatial processes compared
to one process. Note that this problem scales well with spatial parallelization, and

81

6 Numerical experiments: AT-MGRIT investigations

spatial parallelism (as in most cases) should be the first choice. However, spatial
parallelization is exhausted at some point and temporal parallelization can then
provide additional speedups.

Space
processes

Time stepping
one time
process

Two-level
MGRIT

64 time processes

Two-level
AT-MGRIT

64 time processes

1 347,666 s 91,596 s 79,397 s

4 92,473 s 23,708 s 20,411 s

Table 6.4: Total runtimes using one and four processes in space for time stepping,
MGRIT, and AT-MGRIT with w = 32, the latter two using a coarsening factor of 256
and 64 processes in time, applied to the 2D Gray-Scott problem.

82

Chapter 7
Numerical experiments: Induction
machine

In this chapter, we present several numerical results [13, 54, 55] for the application
of different MGRIT variants to eddy current simulations of an induction motor.
First, we introduce the used model “im 3 kw” of an induction motor and present
a variety of parameters that can be chosen in the model, such as different types
of voltage sources. The solution of a dynamic system such as an induction motor
excited with a periodic signal typically consists of a transient part followed by
a (periodic) steady state that occurs when the transients are finally damped,
see for example the time-domain torque evolution of the induction motor model
“im 3 kw” in Figure 7.1.

In Section 7.2, we consider an induction motor driven by a PWM voltage source.
When using a pulsed input signal, very small time steps are required to resolve
the high frequency pulses. Therefore, we focus here mainly on simulating parts
of the initial transient behavior of the machine, since considering a larger time
interval would lead to very high computational costs due to the small time steps.
For the simulations, we use the MGRIT algorithm and investigate the effect of
spatial coarsening inside the method for the induction motor.

In Section 7.3 we consider the initial behavior of the machine until a periodic
solution is reached. Therefore, we consider the induction motor driven by the
sinusoidal voltage source, which allows us to consider larger time step sizes com-
pared to the PWM voltage source. We first apply the MGRIT algorithm and
the AT-MGRIT algorithm and compare them in Section 7.3.1. We then inte-
grate the AT-MGRIT algorithm into an optimization algorithm that optimizes
the height and width of the rotor bars with respect to the efficiency of the motor
in Section 7.3.2.

83

7 Numerical experiments: Induction machine

0 0.05 0.1 0.15 0.2

−400

−200

0

200

steady state

Time t [s]

T
or

q
u
e

T
E

M
(t

)
[N

m
]

Figure 7.1: Time-domain evolution of the torque in the time interval [0,0.2] for the
induction motor model “in 3 kw” with linear material properties, supplied by a three-
phase voltage source with frequency f = 50 Hz and amplitude V̂ = 311.1 V.

Note that instead of solving the initial value problem up to a point where periodic
behavior is achieved, a problem with time-periodic boundary conditions instead
of initial value conditions can also be considered. However, the consideration of
time-periodic problems is beyond the scope of this thesis. For more information
on time-periodic problems and PinT methods for dealing with them, we refer to
[38], and to [8, 67] for the application of these methods to eddy current simula-
tions. Furthermore, various other approaches have been proposed to accelerate
the transient simulation of electrical machines, e. g., the time-periodic explicit
error correction method [105, 106] or the extraction of a circuit model [9].

Again, all simulations were performed on an Intel Xeon Phi cluster consisting
of four 1.4 GHz Intel Xeon Phi processors, and the code for all experiments is
available at [52].

7.1 Numerical model

We model the semi-discrete eddy-current problem (3.36)-(3.37), supplied by a
three-phase PWM voltage source, using the multi-slice finite element model
“im 3 kw” of an electrical machine first presented in [48] and modified in [41]
for the usage of a PWM voltage source. Specifically, the model “im 3 kw”, de-
picted in Figure 3.8, models a 2D four-pole 3 kW squirrel-cage induction machine.
Further, as typical for this kind of symmetric models, we consider only a quarter
of the machine with periodic boundaries (Figure 7.3) to reduce simulation costs.

84

7.1 Numerical model

The induction motor is driven by either a sinusoidal or a PWM voltage source.
More precisely, the sinusoidal voltage source is given by

vsin,j(t) = V̂ sin
(
2πfsint− (j − 1) · 2π/3

)
, j = 1, 2, 3, (7.1)

with fsin = 50 Hz, which corresponds to an electric period of 0.02 s. The PWM
voltage source is given by

vpwm,j(t) = V̂ sgn [v̄sin,j(t)− c(t)] , j = 1, 2, 3, (7.2)

with reference signals

v̄sin,j(t) = mfvsin,j(t), j = 1, 2, 3, (7.3)

with modulation factor mf = 0.8 and carrier signal c(t). The carrier signal, given
by a bipolar trailing-edge modulation using a sawtooth carrier, is defined by

c(t) = V̂ (2(fst− bfstc)− 1), (7.4)

with fs = 20 kHz. The peak voltage V̂ is chosen to be 311.1 V for (7.1)-(7.4). The
model provides a setting with linear material properties, i. e., in particular the
reluctivity is modeled linearly, and a setting with nonlinear material properties.
In the setting with nonlinear material properties the equations (7.1)-(7.4) are
multiplied by a time-dependent factor

z (t) =

{
0.5
(
1− cos

(
π t

2

))
, t ∈ (0, 0.04],

1, else,
(7.5)

which reduces the initial transient behavior of the motor and allows to reach
steady state faster [48]. Figure 7.2 shows the reference signal v̄sin,j, j = 1, 2, 3 and
one resulting PWM voltage source vpwm,1(t) for a switching frequency of fs = 5 Hz
in the time interval [0, 0.02]. Figure 7.2(a) shows the four signals without applying
the time-dependent factor and Figure 7.2(b) with applying the time-dependent
factor (7.5).

The time integration is performed using the external library GetDP [27, 43], which
implements the implicit Euler method and Newton’s method with damping. In
addition, GetDP computes several quantities of the machine after each application
of the time integrator, e. g., the Joule losses (3.29) and the torque (3.27).

Gmsh [44, 45] is used to generate grid representations of the model. We consider
a hierarchy of three nested spatial grids. The coarsest grid Ω3 with da = 4449
degrees of freedom is represented in Figure 7.3(a). Two more precise discretiza-
tions are defined by the grids Ω2 and Ω1, which are obtained by refining the
coarsest grid Ω3 and yield grids with da = 17,496 and da = 69,384 degrees of
freedom, respectively. The grid view of the intermediate spatial grid Ω2 is shown
in Figure 7.3(b).

85

7 Numerical experiments: Induction machine

0 0.005 0.01 0.015 0.02

−200

0

200

Time t [s]

V
ol

ta
ge
v
(t

)
[V

]

upwm,1(t) ūsin,1(t)
ūsin,2(t) ūsin,3(t)

(a) No relaxation.

0 0.005 0.01 0.015 0.02

−100

0

100

Time t [s]

V
ol

ta
ge
v
(t

)
[V

]

upwm,1(t) ūsin,1(t)
ūsin,2(t) ūsin,3(t)

(b) Relaxation.

Figure 7.2: Visualization of one phase of the PWM voltage source (7.2) and the three
phases of the sinusoidal reference signal (7.3) in the time interval [0, 0.02]. In the right
plot, the time-dependent factor (7.5) is applied.

(a) Grid view of Ω3. (b) Grid view of Ω2.

Figure 7.3: Two of the three spatial discretizations generated by Gmsh. The finer grid
Ω2 shown in the right subplot is generated by refining the coarse grid Ω3 depicted in
the left subplot.

7.2 PWM voltage source

In the following, we present the numerical results of applying the MGRIT algo-
rithm to the 2D induction machine model “im 3 kw” driven by the PWM voltage
source (7.2) under no-load condition. In addition to the general convergence be-
havior and runtime results, we present the effects of spatial coarsening within
MGRIT for the problem. For this purpose, we divide the numerical results into

86

7.2 PWM voltage source

two sections: First, we investigate different coarsening strategies for spatial coars-
ening in Section 7.2.1 based on the model with linear material properties to save
computational resources. Then, we apply the MGRIT algorithm based on the
results to the induction motor model with nonlinear material properties.

For the transfer between the spatial grids, we use standard finite element interpo-
lation or nodal interpolation. To avoid numerical instabilities at the boundaries
between the stator and the rotor, we apply standard finite element interpola-
tion for both regions separately. Recall from Section 3.4 that only the magnetic
vector potential is a function that depends on space, and therefore only the mag-
netic vector potential is discretized on the different spatial meshes, and the other
unknows are functions that are independent of space. Therefore, we define the
spatial interpolation and restriction operators as block operators with two blocks
as follows: We use standard finite element interpolation to interpolate the grid-
dependent unknowns while injecting the grid-independent unknowns. Note that
the resulting spatial transfer operators need to be computed only once.

For the MGRIT algorithm, we consider two- and five-level MGRIT variants and
use both V - and F -cycles with different relaxation schemes. For the two-level
variants, we use a coarsening strategy such that there are as many time steps at
the coarse level as there are processes. In the multilevel case, we choose a non-
uniform coarsening strategy. At the fine level we choose the same coarsening factor
as in the two-level setting and then coarsening factor m(`) = 4, ` = 1, 2, 3 at the
other levels. Furthermore, we consider and compare the direct and delayed spatial
coarsening strategy presented in Section 4.3.2. In addition, the nested iteration
strategy is used to generate an improved initial guess. For this prediction step,
we use the reference signal (7.3) as a voltage source, based on the idea in [41].
For the iterations of the MGRIT algorithm, the discontinuous signal (7.2) is used
at each grid level.

To resolve the pulses of the PWM voltage source, very fine time steps are re-
quired. More precisely, we choose a time step size of ∆t = 2−20 for the follow-
ing numerical experiments. In Section 7.2.1, we consider the space-time domain
Ω1 × [0, 0.03125], resulting in 215 time steps. Moreover, we consider the space-
time residual, measured in the discrete L2-norm, as a convergence criterion for the
MGRIT algorithm and choose a convergence tolerance of 10−4. In Section 7.2.2
we consider 10,752 time steps, resulting in a final time T ≈ 0.01, and use the
spatial grid Ω2 as fine spatial grid. Moreover, we use a less stringent convergence
criterion, and the MGRIT algorithm stops when the relative difference of two suc-
cessive iterates at the C-points of the finest level is smaller than 10−2, i. e., when
the maximum relative change in Joule losses for all C-points is smaller than 1%.
Note that the considered time intervals are not sufficient to reach the steady-state
of the machine.

87

7 Numerical experiments: Induction machine

7.2.1 Linear material model

Table 7.1 shows the number of iterations, setup time, solution time, and total
time in seconds for the different MGRIT variants without spatial coarsening.
The setup time consists of setting up the algorithm and generating an improved
initial guess through nested iterations. Note that the same relaxation scheme is
used for nested iterations as for the algorithm itself, i. e., the setup for the five-
level F -cycle with F -relaxation is faster than that for the five-level F -cycle with
FCF -relaxation. The two-level algorithm with F -relaxation reaches the desired
tolerance after 12 MGRIT iterations. While FCF -relaxation is beneficial in the
two-level setting, reducing both the number of iterations and the runtime, F -
relaxation performs better than FCF -relaxation for F -cycles. This is due to the
fact that in the two-level variant the stronger relaxation is applied only to the
finest level, while in the multi-level variant the stronger relaxation is applied to
multiple levels, which increases the amount of work within the multi-level variant
more than in the two-level variant. However, the gain of the additional work in
terms of the number of iterations required is the same in both cases. Comparing
the total runtimes, the multilevel variants are faster than the two-level methods,
with the five-level V -cycle being the fastest.

L Cycle Relax. m # Iters
Setup
time

Solve
time

Total
time

2 V F (256) 12 9,523 s 166,265 s 175,788 s

2 V FCF (256) 7 9,515 s 125,149 s 134,664 s

5 V FCF (256,4,4,4) 8 3,293 s 77,146 s 80,439 s

5 F F (256,4,4,4) 12 2,396 s 85,117 s 87,513 s

5 F FCF (256,4,4,4) 7 3,291 s 87,660 s 90,951 s

Table 7.1: Results for the linear induction machine discretized on a space-time grid of
size 69,384 × 215 in terms of iterations, setup, and solve time on 256 processes for the
different MGRIT variants without spatial coarsening.

Table 7.2 shows the effects of adding spatial coarsening to the MGRIT variants
considered in Table 7.1. Note that for the five-level MGRIT variants, direct
spatial coarsening means that Ω1 is used at the finest level, Ω2 at the second
level, and Ω3 at all remaining coarse levels. In delayed spatial coarsening, Ω3 is
used only at the coarsest level, Ω2 at the second coarsest level, and Ω1 at the
three finest levels. In the two-level methods, Ω2 or Ω3 is used on the coarse grid.
All variants with FCF -relaxation converge to the solution in the same number of
iterations as the variants without spatial coarsening. Specifically for this problem,

88

7.2 PWM voltage source

direct and delayed spatial coarsening do not differ in terms of iterations required.
The situation is different for all variants with F -relaxation. Neither the two-level
method with spatial coarsening converges to the desired tolerance in significantly
fewer than N

(0)
t /m iterations, nor does the five-level F -cycle.

L Cycle Relax. m
SC

strategy
Iters Total

time

Speedup
w.r.t.
no SC

2 V F (256) direct (Ω2) 7 - -

2 V FCF (256) direct (Ω2) 7 76,157 s 1.77

2 V FCF (256) direct (Ω3) 7 49,551 s 2.72

5 V FCF (256,4,4,4)
delayed 8 74,686 s 1.08

direct 8 66,549 s 1.21

5 F F (256,4,4,4)
delayed 7 - -

direct 7 - -

5 F FCF (256,4,4,4)
delayed 7 75,881 s 1.20

direct 7 60,689 s 1.50

Table 7.2: Results similar to those of Table 7.1 but with spatial coarsening; 7 indicates

no convergence to the desired tolerance in less than N
(0)
t /m = 256 iterations and

speedup is measured relative to the same MGRIT variant without spatial coarsening.

To better understand the degradation of convergence when using F -relaxation,
Figure 7.4 details the convergence behavior for all F -cycle variants considered in
Table 7.2. Shown are the space-time residual norms over the first ten MGRIT
iterations for all F -cycle variants. The dashed lines show the results of direct spa-
tial coarsening and the solid lines show the application of the delayed approach.
The FCF -relaxation variants show linear convergence behavior, and there is vir-
tually no difference between the two spatial coarsening strategies. In contrast,
the convergence of MGRIT with F -relaxation stagnates after five iterations. This
effect most likely comes from the fact that certain information is not sufficiently
transferred between the spatial grids. The overlap effect of the FCF -relaxation
automatically fixes this insufficient transfer between spatial grids.

In terms of runtime, the results show that using a coarser spatial grid on the
coarse levels can lead to a significant reduction in runtime. As expected, the
more aggressive the spatial coarsening strategy and the more work on the coarse
grids, the higher the gain of spatial coarsening. As a consequence, the two-level
method benefits the most from spatial coarsening in these experiments.

89

7 Numerical experiments: Induction machine

2 4 6 8 10

10−5

10−3

10−1

101

103

iterations

re
si

d
u
al

n
or

m

F , direct
F , delayed
FCF , direct
FCF , delayed

Figure 7.4: Convergence results for the different five-level F -cycle variants with direct
(dashed lines) and delayed (solid lines) spatial coarsening.

7.2.2 Nonlinear material model

Based on the experiments in the previous chapter, we apply only the direct coars-
ening strategy in the following. Moreover, we consider (with one exception) only
variants with FCF -relaxation, i. e., variants where the MGRIT algorithm con-
verges within a reasonable number of iterations in the linear setting.

Table 7.3 shows iteration counts and runtimes of the different MGRIT variants,
with timings split up again into setup and solve times. No results are given for the
two-level method with FCF -relaxation and with spatial coarsening, since during
the F -relaxation step of the first MGRIT iteration, the Newton solver failed to
converge for at least one time step and, thus, the algorithm cannot be applied
in this setting. Consequently, in the two-level case we consider only the version
without spatial coarsening and there the version with only F -relaxation. Look-
ing at the total runtimes of the different variants without spatial coarsening, the
five-level V -cycle algorithm is fastest, followed by the five-level F -cycle variant
which is about a factor of 1.5 times slower than considering V -cycles. Further-
more, five-level F -cycles are already about twice as fast as the two-level method.
Adding spatial coarsening in the multilevel schemes, we can benefit over the two-
level algorithm even more. Considering five-level V - and F -cycles with spatial
coarsening, the factor in comparison with the runtime of the two-level method
can be increased from 1.9 or 2.8 when applying F - or V -cycles without spatial
coarsening, respectively, to a factor of about 3.8 or 4.4 when spatial coarsening is
added.

Figure 7.5 shows total runtimes of the five convergent MGRIT variants considered

90

7.2 PWM voltage source

L Cycle Relax. m SC # Iters
Setup
time

Solve
time

Total
time

2 V F (256) no 4 15,054 s 74,150 s 89,204 s

2 V FCF (256) yes 7 - - -

5 V FCF (256, 4, 4, 4)
no 3 5,870 s 25,509 s 31,379 s

yes 3 1,297 s 18,763 s 20,060 s

5 F FCF (256, 4, 4, 4)
no 3 5,861 s 41,138 s 46,999 s

yes 3 1,301 s 22,430 s 23,731 s

Table 7.3: Number of iterations, setup, solve and total time on 256 processes of various
MGRIT variants applied to the full nonlinear model of the induction machine “im 3 kw”
discretized on a space-time grid of size 17,496 × 10,753. 7 indicates no convergence of
at least one nonlinear spatial solve within GetDP.

8 16 32 64 128 256

210

212

214

216

218

processes

R
u
n
ti

m
e

[s
]

Time stepping on one process
Perfect scaling
2-level, V -Cycle, F
5-level, V -Cycle, FCF
5-level, F -Cycle, FCF

Figure 7.5: Total time-to-solution for the nonlinear induction machine “im 3 kw” using
different MGRIT variants and sequential time stepping. Solid lines are runtimes without
spatial coarsening, and dashed lines represent results with spatial coarsening. The
dotted line shows the runtime of time stepping on one process, and the dashed dotted
line indicates perfect scaling.

in Table 7.3 as a function of the number of processes, as well as the time-to-
solution of the sequential block forward solve for reference purposes. For the
multilevel variants, runtimes are shown for using spatial coarsening (dashed lines)

91

7 Numerical experiments: Induction machine

and without spatial coarsening (solid lines). The runtime of all multilevel variants
using eight processes as well as the time-to-solution of sequential time stepping is
about five to six days, while using eight-way parallelism in the two-level method
results in a runtime of only about four days. However, the multilevel variants show
better strong parallel scaling and, thus, lead to faster time-to-solution at large
process counts than the two-level method. Increasing the number of processes to
256, the total runtime can be reduced to about 8.72 hours or 5.57 hours, when
considering MGRIT V -cycles without or with spatial coarsening, respectively.
While F -cycles with spatial coarsening allow for a similar reduction, F -cycles
without spatial coarsening using 256-way parallelism already take about half a
day. The two-level variant reduces the runtime to about one day.

Table 7.4 details speedups and parallel efficiencies for the MGRIT variants. The
speedup is computed relative to sequential time stepping, representing the al-
gorithm with the minimum runtime on one process, i. e., the speedup using NP

processes is given by SNP
= TTS/TMGRIT(NP). The parallel efficiency is measured

as SNP
/NP for NP processes. Using multilevel variants, we can benefit more over

sequential time stepping at larger process counts than with the two-level variant.
For example, while on 16 processes the speedup is similar for all methods, using
32 processes results in a speedup of up to a factor of 3.6 for a five-level variant,
whereas the two-level method yields only a speedup of a factor of 2.8. Increasing
the number of processes to 256, with the two-level method we achieve a speedup
of a factor of about 5. In contrast, multilevel variants at least double the speedup
factor. Considering spatial coarsening leads to the best speedup with the V -cycle
algorithm being nearly 22 times faster than the sequential time stepping method.
Moreover, the use of spatial coarsening in MGRIT F -cycle is crucial for improving
the parallel scalability for more than 64 processes, since this allows reducing com-
putations on coarse levels. While speedups and efficiencies degrade for F -cycles
without spatial coarsening, the degredation is only modest when adding spatial
coarsening. Note that we bind the temporal coarsening strategy to the maximum
number of available processes and, thus, faster runtimes on eight to 128 processes
may be possible by adjusting the temporal coarsening strategy to the number of
processes.

7.3 Sinusoidal voltage source

In the following, we consider numerical results for the 2D induction machine with
constant speed ωmech = 1,420 rpm and nonlinear material properties, using the
sinusoidal voltage source (7.1) to cover a larger time interval. More specifically,
we consider a time grid with Nt = 16,384 time points and a time step size ∆t ≈
1.2 · 10−5 s, leading to a final time T = 0.2 s. In the spatial dimension, we consider

92

7.3 Sinusoidal voltage source

NP 8 16 32 64 126 256
two-level cycle with F -relax.

Speedup 1.22 1.90 2.80 3.59 4.39 4.93
Efficiency 15.22% 11.85% 8.74% 5.60% 3.43% 1.93%

five-level V -cycle with FCF -relax.
Speedup 0.96 1.74 3.22 5.43 9.19 14.02
Efficiency 11.94% 10.86% 10.07% 8.48% 7.18% 5.48%

five-level F -cycle with FCF -relax.
Speedup 0.89 1.60 2.86 4.54 6.92 9.36
Efficiency 11.14% 10.02% 8.93% 7.10% 5.41% 3.66%

five-level V -cycle with FCF -relax. and SC
Speedup 1.04 1.90 3.62 6.40 12.01 21.93
Efficiency 12.96% 11.86% 11.31% 9.99% 9.44% 8.57%

five-level F -cycle with FCF -relax. and SC
Speedup 1.02 1.86 3.51 6.08 11.06 18.54
Efficiency 12.74% 11.63% 10.96% 9.50% 8.64% 7.24%

Table 7.4: Speedup and efficiency of different MGRIT variants using various number of
processes. The speedup is given relative to the time-to-solution for the sequential time
stepping on one process. Parallel efficiency is measured as SNP

/NP , where SNP
is the

speedup for NP processes.

the grid Ω3. Within this setting, the steady state is reached at the electric period
q = 10 up to the tolerance of < 5 · 10−4 in terms of the relative error

ε(q − 1) =

∣∣T (q)
EM,avg − T

(q−1)
EM,avg

∣∣∣∣T (q)
EM,avg

∣∣ , with T
(q)
EM,avg =

1

Nq

qNq∑
i=1+(q−1)Nq

TEM(ti)

denoting the average torque at the period q and Nq = bN (0)
t /qc being the number

of time steps per period.

As seen in Section 7.2.2, a potential problem is that a nonlinear solve within GetDP

does not converge due to a poor initial guess for the Newton method. When con-
sidering the larger time interval, this is also a problem; more specifically, when
simulating the electric machine in the time-parallel setting, using too large time
steps at the coarse level(s) may cause at least one nonlinear solution within GetDP

not to converge. As a result, the time step size at the coarsest level cannot be
chosen arbitrarily. Moreover, if we consider a coarsening strategy formed based
on the available resources, the use of multilevel variants is limited. Therefore,
we mainly use two-level methods in the following. If more resources were avail-
able, possibly more intermediate level would provide a further runtime advantage.
Again, we use a coarsening strategy such that we have as many coarse grid points

93

7 Numerical experiments: Induction machine

as processes. We terminate the method once the maximum change in Joule losses
between two successive iterations is less than 1%.

7.3.1 AT-MGRIT

In the following, we present results for a two-level MGRIT variant and several two-
level AT-MGRIT variants. For all experiments, we use an improved initial guess
given by a global coarse-grid solve. For the following experiments 64 processes
are used, which results in a coarsening factor of m = 256 for the MGRIT and
AT-MGRIT variants. However, the resulting time step size on the coarse level
results in at least one nonlinear solve to fail. To overcome this problem, we apply
subcycling at the coarse level, i. e., we apply three smaller steps per time step at
the coarse level, reducing the time step size and improving the accuracy of the
solution.

Method w # Iters
Total time
(Setup +

Solve)

Speedup
w.r.t

MGRIT

Speedup w.r.t
time stepping
on one process

Two-level
MGRIT

- 5 40,544 s - 4.64

Two-level
AT-MGRIT

12 8 39,480 s 1.03 4.77

14 7 36,188 s 1.12 5.2

16 6 32,710 s 1.24 5.75

18 6 33,337 s 1.22 5.64

20 6 33,996 s 1.19 5.53

22 6 34,626 s 1.17 5.43

24 5 30,582 s 1.33 6.15

Table 7.5: Iteration counts and total runtimes on 64 processes of two-level MGRIT and
various two-level AT-MGRIT variants with a coarsening factor of 256 for the simulation
of the induction machine.

Table 7.5 shows the number of iterations, total runtimes, and the speedup com-
pared to sequential time stepping on one process for different AT-MGRIT vari-
ants and one MGRIT variant. Furthermore, the speedup compared to MGRIT
is shown for all AT-MGRIT variants. Comparing the number of iterations, the
two-level MGRIT and AT-MGRIT algorithm with w = 24 both require five iter-
ations to convergence. For 16 ≥ k ≥ 22, six iterations are needed to reach the

94

7.3 Sinusoidal voltage source

convergence criterion, and for w = 14 and w = 16, seven and eight iterations,
respectively. Despite the increased number of iterations for some variants, the
total runtime of all AT-MGRIT variants is smaller than that of MGRIT, with
the largest speedup by a factor of approximately 1.33. Note that the time for the
setup phase is the same for all variants and is about 2,891 s. Note also that both
algorithms treat the fine level identically, and the improvement comes only from
using local coarse grids instead of one global coarse grid. For comparison, the
simulation time using serial time stepping on one process is 188,123 s, which is
more than two days. The fastest AT-MGRIT variant needs less than nine hours,
which corresponds to a speedup of a factor of 6.15.

7.3.2 PinT optimization

In the following we incorporate the AT-MGRIT algorithm into a derivative-free
constrained optimization procedure. More precisely, we consider the height ĥ
and the width ŵ of the rotor bars as optimization variables and parameterize the
domain Ω = Ω(p̂) with these two parameters p̂ = (ĥ, ŵ). Our goal is to find the
optimal width and height of the rotor bars, such that our objective function J is
minimal under the constraint that the design variables lie in a set of admissible
designs Dad. Additionally, we require that the state equations (3.30)-(3.35) are
fulfilled. As objective function we consider:

min
A3,p̂

J(A3, p̂) := −Pout(A3, p̂)

Pin(A3, p̂)
, (7.6)

with

Pout(A3, p̂) =

qTq∫
(q−1)Tq

Pmech(A3, p̂)dt,

Pin(A3, p̂) =

qTq∫
(q−1)Tq

[
Pmech(A3, p̂) + Ploss(A3, p̂)

]
dt,

where q ∈ N represents the period at which the steady state is reached and Tq > 0
is the length of the period. The objective J can be seen as a negative measure
of efficiency, as it is given by the quotient of the output and the input power
on the right-hand side in (7.6). Since Pmech and Ploss involve integrals over the
parametrized domain (see (3.27)-(3.29)), they depend on the design p̂. They both
depend on the solution A3 of the state equation, which depends on the design
p̂ itself. In the optimization, we know that for every admissible design p̂, there

95

7 Numerical experiments: Induction machine

is a unique solution to our state equation, which we call A3(p̂) and consider the
reduced problem

min
p̂
Ĵ(p̂) := J(A3(p̂), p̂) subject to p̂ ∈ Dad, (7.8)

which does not involve the state equation as a constraint anymore and where

Dad := {p̂ = (ĥ, ŵ) ∈ R2 : ĥl ≤ ĥ ≤ ĥu, ŵl ≤ ŵ ≤ ŵu}, (7.9)

with ĥl, ĥu, ŵl, ŵu ∈ R.

To solve the optimization problem, we use the derivative-free optimization algo-
rithm Py-BOBYQA [19], which is a Python implementation of BOBYQA [87].
The idea of this algorithm is to use a model for the objective function and im-
prove the model in every iteration to make it approximate the minimum of the
objective function sufficiently accurately. Specifically, the algorithm solves the
optimization problem using a trust region method that forms a quadratic inter-
polation model with m̂ = 2n̂ + 1 degrees of freedom. For a detailed description,
we refer to [54, 87].

Based on the steady-state behavior of the induction motor, our goal is to optimize
the size of the rotor bars, in particularly, their width and height using the objective
function (7.8). By describing the geometry of the rotor bars with n̂ = 2 design
variables, we have to simulate the behavior of the induction machine for m̂ = 5
different designs to compute an initial interpolation model and once in every
optimization iteration. We set

ĥl = 0.007, ĥu = 0.015, ŵl = 0.0015, ŵu = 0.0035

as the admissible design bounds in (7.9), choose ĥ(0) = 0.01425 and ŵ(0) = 0.002 as
an initial design depicted in Figure 7.3 (left) and set the initial trust-region radius
to 10−4. The optimization algorithm terminates when the trust region is smaller
than our chosen tolerance of 10−6. For each objective function evaluation, we
generate a mesh representation of the current geometry using Gmsh, where each
mesh, depending on the geometry, consists of approximately 4,500 degrees of
freedom. Then, a two-level AT-MGRIT with m = 64, w = 100, and F -relaxation
is used to solve the problem.

The implementation uses a master/worker strategy for the optimization and the
simulations, using one process for the optimization and 256 processes for each
simulation, where all resources are used for temporal parallelization.

Optimization results

Figure 7.6 shows the negative values of the objective function evaluated during the
optimization procedure on the left and an overview of the geometries considered

96

7.3 Sinusoidal voltage source

0 5 10 15 20 25 30

0.871

0.872

0.873

0.874

0.875

Objective function evaluation

V
al

u
e

-
Ĵ

(p̂
(k

))
·1

00
%

Intermediate
Initial
Optimal

1.8 2 2.2 2.4 2.6

12

12.5

13

13.5

14

Width ŵ [mm]

H
ei

gh
t
ĥ

[m
m

]

Intermediate
Initial
Optimal

Figure 7.6: Optimization process over iterations: negative objective function values
(left) and geometries (right).

on the right. In the 26 optimization iterations a total of 31 function evaluations
were required: one evaluation in every iteration and an additional five in the first
iteration for building the initial quadratic interpolation model. The optimal ge-
ometry p̄ with w̄ = 0.00254 and h̄ = 0.01226 was found in the 18th iteration. In
the following iterations, no better design was found, so the trust region was gradu-
ally reduced until it fell below the chosen termination criterion. Figure 7.7 shows
the two geometries for the initial design (left) and the optimal design (right).
Different structures of the geometry of the rotor bars (orange) can be seen: the
bars in the optimal design are less high and significantly wider than those in the
initial design. Overall, the optimal design increases the negative of the objective
function and thus the efficiency of the electrical machine from 87.22% to 87.57%.
Figure 7.8 gives a detailed comparison of the torque (left) and the Joule losses
(right) between the initial and the optimal design in the steady state. Compared
to the original design, both values were increased, with an average increase of
16.25% in torque and 20.03% in Joule losses for the optimal design.

Figure 7.7: Grid view of the initial design (left) and the optimal design (right).

97

7 Numerical experiments: Induction machine

0.18 0.185 0.19 0.195 0.2

15

20

25

Time t [s]

T
or

q
u

e
T

E
M

(t
)

[N
m

]
Initial geometry Optimal geometry

0.18 0.185 0.19 0.195 0.2
200

300

400

500

Time t [s]

J
ou

le
lo

ss
es
P

lo
ss

(t
)

[W
]

Initial geometry Optimal geometry

Figure 7.8: Torque (left) and Joule losses (right) for the initial and the optimal designs
of a nonlinear “im 3 kw” induction machine model.

In each step of the optimization algorithm we use the AT-MGRIT algorithm
to simulate the corresponding geometry. To determine the effect of the time-
parallel method compared to sequential time stepping for solving the problem,
we count the calls of the time integrator for both methods. In each iteration of
the optimization algorithm, we achieve a theoretical speedup of up to 11.67 by
using AT-MGRIT compared to the standard sequential time stepping. Note that
for this application, counting the serial solves of the AT-MGRIT algorithm is a
reasonable measure to determine the theoretical speedup, since the computational
cost dominates the runtime cost of the algorithm and the communication cost is
negligible compared to the computational cost.

98

Chapter 8
Performance Model

In the last two chapters, various numerical results were presented using different
parameter settings for the MGRIT algorithm based on personal experience. It
could be observed that for the MGRIT algorithm, the parameter space of the
parameters to be chosen is very large and, moreover, the correct choice of the
parameters has a great influence on both the convergence and the parallelizability
of the method. Both factors have a significant impact on the runtime of the
method, and ultimately reducing the runtime using parallel resources is the main
goal of PinT methods. Here, we present an approach that can simplify the choice
of parameters, more specifically, we describe a performance model [12] that can
be used for different PinT methods and is able to cover the larger parameter
space of the methods to predict the runtime for a given method and setting. In
this way, parameter choices can be predicted theoretically without the need for
time-consuming and costly parallel simulations. In the performance analysis, we
focus on Parareal, PFASST, and MGRIT.

Various performance models exist for the different algorithms. In [5], several task-
based implementations of the Parareal method are presented and performance
models for the different implementations are established. The performance of
the most common pipeline-based implementation of the Parareal algorithm was
further investigated in [76, 94] and elsewhere. An event-based implementation
with brief performance analysis was presented in [10]. The performance of the
two-level PFASST algorithm was studied in [29, 76] and an extension for the
multilevel case in [80]. For the MGRIT algorithm, there is a performance model
based on the XBRAID framework [72] in [37] that uses the model to select the “best”
configuration for the distribution of spatial and temporal parallelization. For
the PETSc implementation of the MGRIT method, the performance of the linear
MGRIT algorithm was investigated in [75] using a matrix-based model. However,
all of these models rely on an explicit implementation of the algorithms. These

99

8 Performance Model

implementations are very effectively chosen, but they only reflect the potential of
the implementation and not the algorithm.

Algorithm 8.1: FAS MGRIT data driven formulation

1 foreach i ∈ {C-points on level 0} do . Initialize points

2 u0
i ← 0

3 g0
i ← 0

4 u0
0 ← u0 . Set initial condition

5 for k ← 1 to K + 1 do
6 for `← 0 to L-2 do
7 foreach F -interval on level ` do . F-relax
8 for i← first interval point to last interval point do

9 u
(`)
i ← Φ(u

(`)
i−1, T

(`)
i−1, T

(`)
i) + g

(`)
i

10 repeat ν(`) times
11 foreach i ∈ {C-points on level `} \ {0} do . C-relax

12 u
(`)
i ← Φ(u

(`)
i−1, T

(`)
i−1, T

(`)
i) + g

(`)
i

13 foreach F -interval on level ` do . F-relax
14 for i← first interval point to last interval point do

15 u
(`)
i ← Φ(u

(`)
i−1, T

(`)
i−1, T

(`)
i) + g

(`)
i

16 foreach i ∈ {C-points on level `} do . Spatial transfer

17 u
(`+1)

ζ(`)(i)
← R

(`)
s (u

(`)
i)

18 v
(`+1)

ζ(`)(i)
← R

(`)
s (u

(`)
i)

19 foreach i ∈ {C-points on level `} \ {0} do . FAS rhs

20 rli ← g
(`)
i + Φ(u

(`)
i−1, T

(`)
i−1, T

(`)
i)− u

(`)
i

21 g
(`+1)

ζ(`)(i)
← R

(`)
s (rli)−Φ(u

(`+1)

ζ(`)(i)−1
, T

(`+1)

ζ(`)(i)−1
, T

(`+1)

ζ(`)(i)
) + u

(`+1)
i

22 for i← 1 to N
(L−1)
t do . Solve coarse system

23 u
(L−1)
i ← Φ(u

(L−1)
i , T

(L−1)
i−1 , T

(L−1)
i) + g

(L−1)
i

24 for `← L-2 to 0 do
25 foreach i ∈ {C-points on level `} \ {0} do . Correct

26 u
(`)
i ← u

(`)
i + P

(`)
s (u

(`−1)

ζ(`)(i)
− v

(`−1)

ζ(`)(i)
)

27 foreach F -interval on level ` do . F-relax
28 for i← first interval point to last interval point do

29 u
(`)
i ← Φ(u

(`)
i−1, T

(`)
i−1, T

(`)
i) + g

(`)
i

30 if convergence criterion is reached then
31 break

Our performance model is based on task graphs and on a data-driven formulation
of the algorithms, which is already given for Parareal in Algorithm 4.1 and for
PFASST in Algorithm 4.2. A data-driven formulation of the MGRIT algorithm

100

8.1 Performance analysis

can be found in Algorithm 8.1. Note that the notation for the time integrator in
Algorithm 8.1 is slightly different than in Section 4.3, and additionally expects
the respective start and end points as parameters. Also, as in Section 4.3.2,
it is assumed that all problem-dependent terms are inside the time integrator.
Furthermore, the function ζ(`) : R+

0 → R+
0 , ` = 0, ..., L− 2 in Algorithm 8.1 maps

between the indices of the time points of the different levels. For more details we
refer to [12]. Similarly, the local and global convergence criteria from Section 4.5
can be formulated in a data-driven formulation [12]. In the following, we first
introduce the model and show how a task graph can be created from a data-driven
formulation of a PinT method. The prediction is then based on schedulings, i. e.,
the assignment of tasks to start times, based on typical parallelization strategies
of PinT methods. Finally, we compare our predictions of the model with parallel
simulation using four different PinT libraries.

8.1 Performance analysis

Our performance analysis of PinT algorithms is based on task graphs created
for individual settings of the algorithms. An explicit task graph created in this
way can be independently examined to determine a minimum lower bound on the
runtime of the setting for the selected algorithm. We can also perform runtime
analysis based on the task graph by assigning tasks with a specific starting point
to the processes. This procedure is known as scheduling. Instead of solving the
scheduling problem, i. e., finding a scheduling with minimal runtime, we present
here a scheduling based on a known and typical distribution of time points among
processes and implementations of PinT algorithms. This scheduling provides us
with a runtime analysis for these typical implementation choices.

A task graph with communication costs included is a directed acyclic graph (DAG)
G = (V,E, ω, c) [92], where V = {v1, ..., vn} represents the set of tasks and the
directed edges E ⊆ V × V represent the dependencies of the tasks, i. e., an edge
(vi, vj) means that vj cannot be executed until vi is completed. The weighting
function ω : V → R+

0 assigns a weight to each task and represents the com-
putational cost incurred by the task. The cost function c : E → R+

0 assigns
a weight to each edge representing the communication cost between tasks. Let
P = {p1, . . . , pNP

} be the set of NP available processes and A : V → P be
an allocation function that assigns each task in V to a process. Note that the
communication cost function depends on an explicit assignment of tasks to pro-
cesses, where the cost c(vi, vj) for an edge (vi, vj) ∈ E is 0 if A(vi) = A(vj) and
otherwise represents the communication cost between processes A(vi) and A(vj)
based on the application and tasks vi and vj. A schedule is defined as a function

101

8 Performance Model

S : V → R+
0 that assigns a starting point, i. e., a point in time when a processor

starts executing that task, to each task subject to the following constraints:

1. For all (vi, vj) ∈ E, S(vj) ≥ S(vi) + ω(vi) + c(vi, vj)

2. For all vi, vj ∈ V, vi 6= vj, A(vi) = A(vj)⇒ S(vi) ≥ S(vj) + ω(vj) ∨ S(vj) ≥
S(vi) + ω(vi).

The first constraint guarantees that the dependencies of the tasks are respected.
The second constraint restricts the use of resources and enforces that no process
is assigned more than one task at a time. The makespan or runtime of a given
allocation and schedule is defined by maxv∈V (S(v) + ω(v)). Setting the commu-
nication cost for each edge to zero, the minimum possible makespan for NP =∞
can be calculated by computing the longest path within a DAG.

In the following, we first describe how the data-driven algorithms and a fixed pa-
rameter setting can be used to construct a task graph. We then describe how typi-
cal parallelization strategies for PinT methods are implemented. These strategies
can be transformed into a method for scheduling tasks, and finally this schedule
can be used for runtime prediction.

8.1.1 Creating task graphs from PinT algorithms

We construct task graphs based on the PinT methods Parareal, PFASST, and
MGRIT, with the procedure being the same for each of the three algorithms.
Starting with an initial task that represents the information for the initial value,
we run through the chosen algorithm and add a task at each point where com-
putations occur. More precisely, if the same operation is performed at different
time points or at the same time point in different iterations, a task is created for
each computation. Also, for each task, we add edges to all tasks on which the
computations within the task are based. Note that we do not model temporal
parameters, i. e., G(ui−1, ti−1, ti) is equivalent to G(ui−1) since these are fixed at
the beginning and generally do not change thereafter.

Figure 8.1 shows an example of a DAG for the Parareal Algorithm 4.1 with Nt = 3
and without considering a convergence criterion. To keep the example simple, no
edge costs are given. Tasks are specified by nodes, where the upper part of a
node gives the description of the task and the lower part gives the cost. For the
description, we use a left superscript that numbers and individualizes the nodes,
and a right subscript that specifies the index of the time point processed by the
task. The initial node is denoted by I, the coarse propagator by G, the fine
propagator by F , the copy by C, and the correction by +. The cost of the fine
propagator is chosen as two and all other costs are one. Note that these costs are

102

8.1 Performance analysis

not representative, but were chosen for illustrative purposes. A discussion of the
appropriate weighting of these costs for PinT methods follows in Section 8.1.3.

A closer look at the graph shows the structure of the algorithm. Starting from left
to right, first the initial value is copied, then an initial guess is computed based
on the copied value, and then, three iterations of the algorithm are performed.
Examining the subgraph that models the calculation of the initial guess, it is
clear that for each time point the coarse operator is called and then the value is
copied, with each call of the propagator depending on the copy of the previous
time point. The longest path within the graph and, thus, the minimal achievable
parallel runtime is ten and is given by {0I → 1C0 → 8F1 → 12+1 → 17F2 →
20+2 → 23F3 → 25+3}.

0I
0

1C0

1

2G1
1

3C1

1

4G2
1

5C2

1

6G3
1

7C3

1

8F1
2

9F2
2

10F3
2

11G1
1

12+1

1

13G2
1

14+2

1

15G3
1

16+3

1

17F2
2

18F3
2

19G2
1

20+2

1

21G3
1

22+3

1

23F3
2

24G3
1

25+3

1

Initial guess First iteration Second iteration Third iteration

Figure 8.1: Example of the DAG for the Parareal method for Nt = 3. The nodes
represent the individual tasks and, thus, the computations within the algorithm, with
the upper part describing the task and the lower part giving the cost. The edge costs
have been omitted for simplicity (the costs are zero everywhere).

103

8 Performance Model

Process 1

Process 2

Process 3t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 8.2: Example of a standard distribution of time points to processes in PinT
algorithms for Nt = 9 and NP = 3.

8.1.2 Adoption of typical PinT scheduling

PinT algorithms typically coordinate temporal processes by assigning time points
to processes on a block-by-block basis, with each block consisting of approximately
the same number of time points. This exploits the evolutionary nature of the
underlying initial value problem, as information is only ever transported forward
in time, keeping the number of required communications low. Figure 8.2 shows an
example of such a distribution for Nt = 9 and NP = 3. Note that the solution is
given at time t0, so each process must propagate the solution to the same number
of time points. In multilevel algorithms, typically the distribution of the grid on
the finest level also determines the distribution on the coarser grids. Thus, the
distribution of time points at each level depends on the distribution at the finest
level.

Window 1

Window 2

Window 3
Process 1

Process 2

Process 3

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Figure 8.3: Example of the windowing strategy for Nt = 9, NP = 3 and three windows.
The windows are considered sequentially and the solution of the previous window is used
as initial condition for the next window. In each window, the standard distribution is
used.

Another approach is the so-called windowing strategy. Here, the entire time in-
terval is first divided into windows, i. e., into time subintervals, which are then
processed one after the other. The solution of the previous window always serves
as initial condition for the next window. Each window is considered indepen-
dently and within this window the blockwise distribution described above is used.
Figure 8.3 shows an example for Nt = 9, NP = 3 and three windows. However,

104

8.1 Performance analysis

the windowing strategy applies the corresponding PinT method several times in
a row, so here, we focus on scheduling for the typical distribution. To adapt this
strategy for windowing, the DAGs for each window must be properly connected
and the scheduling has to be adjusted slightly.

Based on the common distribution, the following procedure can be used to deter-
mine a schedule: We run the chosen algorithm to maintain the order of operations,
and assign a process to each task based on the distribution of time points. We
also assign an earliest possible start time to the task based on the tasks already
scheduled and their weights. If at a certain point within the algorithm there
is no execution order for multiple tasks, e. g., in a foreach-loop, and multiple
tasks are assigned to the same process, the task that satisfies all conditions and
has the highest index, i. e., belongs to the latest time point, is always considered
first. This strategy ensures that information about that task is available as early
as possible. Due to the evolutionary nature of the underlying problem and the
blockwise distribution of time points across processes, this strategy allows tasks
to be processed first whose subsequent tasks may be on another process. In addi-
tion, because the points are distributed in blocks, the prerequisites for this task
are often on the same process and the process can start without communication.

Figure 8.4 shows the example of a typical schedule based on this strategy for
the Parareal example with Nt = 3 from Figure 8.1 and NP = 3 processes. This
scheduling for three processes requires a makespan of 19.

0 5 10 15 20

P1

P2

P3

1C0
2G1 3C1

8F1
11G1 12+1

4G2 5C2
9F 13G2 14C2

17F2
19G2 20+2

6G3 7C3
10F3

15G3 16+3
18F3

21G3 22+3
23F3

24G3 25+3

runtime

p
ro

ce
ss

es

Figure 8.4: Schedule based on the typical distribution of time points across processes
for PinT algorithms and for the Parareal example with Nt = 3 from Figure 8.1 and
NP = 3.

8.1.3 Discussion about appropriate weighting of task

All PinT algorithms presented here consider only the temporal dimension and
are capable of solving various problems of the form (4.1), such as the heat equa-

105

8 Performance Model

tion or the advection equation. Up to this point, the spatial dimension has been
considered as a black box, since the algorithms presented here operate relatively
independently of the spatial problem. However, if we want to determine the cost
of the required operations and communication of a given problem for the perfor-
mance analysis, we need to consider the spatial problem. Both computation and
communication in the temporal dimension depend, at least in part, on the size of
the problem, the method used to solve the problem, and the spatial parallelization
(including spatial communication). Since the model is based precisely on these
costs and only works if these quantities can be predicted well, it is important to
discuss how these costs can be determined.

There are generally two ways to determine the required costs for the operations
and communication within the algorithms: The first way is to use a theoretical
model to calculate the cost and the second way is to measure the runtimes. The
advantage of a theoretical model is that one sets up an exact analysis for a given
problem and, thus, has a model that is completely independent of actual calcu-
lations. Depending on the size, method of solving the problem, parallelization in
space, etc., one can set up a very accurate estimate and even test the real im-
plementation against the model. Therefore, the big disadvantage is also obvious:
The effort needed to build the model and determine the cost is high. And this
immense effort has to be made for every single problem, possibly even for different
parameter settings of the same problem.

The other option that requires measuring of runtimes has the disadvantage that
one has to perform the measurements for each type of operation within the al-
gorithms. However, the algorithms presented here consist of only a few types of
operations, and the runtime of some operations, such as a simple copy of data or
an addition, do not necessarily need to be measured as well, since the runtime
is very small and negligible. If we consider the Parareal Algorithm 4.1 as an ex-
ample, we only need to determine the runtime of the fine propagator F and the
coarse propagator G. We assume that the runtime for an operator is the same
for each time step, which means that we only need to make one measurement
per type of operation, i. e., two time measurements for the Parareal algorithm.
Note that this is generally not true for nonlinear problems, where the cost of each
time step can vary significantly. Theoretically, the model can handle this varying
cost per solution, although it makes it much more difficult to obtain the cost
per task. For nonlinear problems, therefore, performance analysis is much more
difficult and a challenge for future work. Moreover, the use of runtimes allows
us to continue to consider the underlying spatial problem as a black box and it
avoids many details such as implementation, spatial communication, etc., mak-
ing it possible to cover a large number of different problems without much effort.
Nevertheless, it is possible to make predictions for different distributions of spatial
and temporal parallelization, since spatial parallelization is implicitly captured in

106

8.2 Results

the measurement. For example, in [37], a least squares problem based on mea-
sured runtimes for a varying number of processes in space was used to partition
the cost of the spatial solve into computations and communications. The results
were further used to optimize the distribution of all available processes across the
space and time dimensions for the MGRIT method. Finally, both methods of
determining the cost for the task diagram are possible, and both have advantages
and disadvantages. There is nothing left but to differentiate depending on the
use case.

8.2 Results

In the following, we compare the schedule-based performance analysis for PinT
methods with four different PinT libraries. For the PFASST algorithm, we choose
the Fortran library LibPFASST [68] and the Pyton library pySDC [100, 101], and for
the MGRIT algorithm we choose the C implementation XBRAID and the Python
implementation PyMGRIT. Although there are some implementations for Parareal,
such as a Fortran implementation [94], these are often specialized for particular
problems and therefore somewhat harder to access. In addition, the Parareal
algorithm is the least complicated compared to the other two algorithms, so it
is reasonable to assume that if the predictions for PFASST and MGRIT are
accurate, the predictions for Parareal will also be accurate. Therefore, we limit
our results to the PFASST and MGRIT methods.

One major challenge in comparing the different libraries with the model is the
large parameter space. In Chapter 4, we focused on the basic forms of the algo-
rithms, with brief comments on variations and extensions, although the libraries
often offer further variations and extensions for the algorithms. At this point,
however, we limit ourselves to the basic functionality of the methods. Table 8.1
gives an overview of all parameters that can currently be used for the model.
Note that not all parameters are required for every variant of the algorithm, or
that some combinations are not possible and/or useful.

Another major challenge in comparing the model with the different libraries is
the underlying spatial problem, since all libraries are written in different pro-
gramming languages and the different methods are typically used for different
types of initial value problems. Depending on the spatial problem and the exact
parameterization, the convergence behavior and, thus, the required number of it-
erations of the methods can vary significantly. However, this number of iterations
is an important parameter for the model. Coupling the model with some sort of
framework for method convergence is a possible direction for future work. To get
around these problems and still be able to compare the performance model to the
libraries, we implement a pseudo-problem for each library that does not solve a

107

8 Performance Model

real problem, but simply sleeps for a period of time in the methods to be imple-
mented for the algorithms. This choice allows us to have very large variability
in comparing settings to the performance model, so we can cover a much larger
test set and, thus, demonstrate the variability of the performance model without
running the risk of making an inappropriate choice of parameters for the problem.
The convergence and functionality of the methods have already been presented
in this thesis and in many other publications.

The procedure is the same for all libraries: For each problem, all functions required
for the pseudo-problem are implemented. The runtimes of the various functions
are then measured. The measured costs are used as parameters for the model
to predict the runtime of a complete run of a method. This predicted runtime
is then compared to the actual parallel simulation times of the libraries. Note
that the procedure for determining the runtime can be applied to other problems
without much effort. Also note that the runtime for each call may change slightly
even in this pseudo-problem, so there may be some overhead associated with each
function call. This is likely to be larger for a real problem than for our pseudo-
problem, so the discrepancy between model and runtime may be slightly larger
for real problems.

The model was implemented in Python and is available on GitHub [50], along
with the pseudo-problems for the four libraries. All experiments were performed
on an Intel Xeon Phi cluster consisting of four 1.4 GHz Intel Xeon Phi processors.

8.2.1 PFASST

In this section, we compare the prediction of our model with the runtime of paral-
lel computations using LibPFASST and pySDC for our pseudo-problem. The library
LibPFASST implements the classical view of the PFASST algorithm. Among other
things, the library provides a large parameter space for variations of the PFASST
algorithm, several types of sweepers, and several variants of the prediction phase
that computes an improved initial guess before the actual PFASST iterations
begin. The pySDC library implements the multigrid view of the PFASST algo-
rithm in Python. The library also provides a large parameter space, many pre-
implemented components and spatial problems, and many other features. Both
libraries use the windowing strategy when the number of time steps is greater
than the number of processes in the time dimension, but the typical choice for
the PFASST method is to use the same number of time steps and processes in
time. In addition, both libraries use a local convergence criterion based on the
residual computed in PFASST, taking into account both the residual at a given
time point and the time point before it.

108

8.2 Results

Type Option Parameter/Settings

General Number of time intervals Nt

Number of processes in the time dimension NP

Number of levels L

Number of iterations K

Convergence criterion global or local

Communication cost in time dimension at level ` σ`C

Time required for convergence criterion σ`CC

PFASST Number of sweeps on level ` µ`

Collocation nodes on level ` M `

Predictor type Fine sweep or burn-in

Skip fine-level sweep at start/end of iteration True or False

Time required for Sweep on level ` σ`S

Time required for FEvalAll on level ` σ`FA

Time required for FEvalSingle on level ` σ`FS

Time required for RestrictAll on level ` σ`RA

Time required for RestrictSingle on level ` σ`RS

Time required for InterpolateAll on level ` σ`IA

Time required for InterpolateSingle on level ` σ`IS

Time required for FAS on level ` σ`FAS

MGRIT Coarsening factor from level ` to level `+ 1 m`

Cycle type V or F

Nested iterations True or False

Skip down True or False

Number of CF -relaxations on level ` ν`

Time required for operator Φ on level ` σiΦ

Time required for spatial restriction on level ` σiSR

Time required for spatial interpolation on level ` σiSI

Table 8.1: List of parameters that can currently be passed to the model to predict run
times. Not all parameters are required for every run.

For the following experiments with LibPFASST and pySDC, we use an implicit SDC
sweeper pre-implemented in both libraries and vary the number of collocation
nodes. The implicit sweeper requires a function for an implicit time integration
step, which we use to embed a level-dependent sleep period. Note that the perfor-

109

8 Performance Model

mance model is not limited to this choice. To determine the runtime, the sweeper
is called on a per-level basis, which is independent of the type of sweeper. In ad-
dition, we have implemented functions for the evaluation of the right-hand side,
spatial interpolation, and spatial restriction, among others, for both libraries. All
functions allow to control the period of sleep at all levels.

In the experiments, we restrict ourselves to the most common use cases of PFASST.
Therefore, we choose four two-level settings and five four-level PFASST settings.
For the two-level settings, we consider 16 time steps, 16 processes in time, and
apply ten iterations of PFASST. We consider two settings with one sweep per level
and different numbers of collocation nodes, and two settings with two sweeps at
the fine level and only one at the coarse level, again with different numbers of
collocation nodes per level. For the four-level PFASST variants, we use 32 time
steps, 32 processes in time, and simulate ten iterations as well. Again, we use
coarsening in time between the levels, with seven collocation nodes at the fine
level, five at the next level, then three and two collocation nodes at the coarsest
level per run, and vary the number of sweeps per level. For both libraries, we
use a prediction phase before the actual algorithm starts. For pySDC we choose a
variant that performs a fine sweep, and for LibPFASST we use the default variant
of the prediction phase, which is a version with burn-in. For all other parameters,
we choose the default setting of the respective libraries. Note that even with the
same settings in terms of the number of sweeps and the number of collocation
nodes per library, the runs differ due to the different prediction phase, PFASST
algorithm views, and possible other parameters.

We also use the most typical use case for PFASST when we choose the cost
of the pseudo-problem, i. e., the sleep period within the required functions. In
most use cases, the costs for the spatial transfer operators and the evaluation
are very small. Therefore, we set the sleep period for these three functions to
zero and the cost per implicit solve to 0.05 s. Note that these are parameters for
the pseudo-problem; we obtain the actual runtimes for the model by measuring
the runtimes of the corresponding functions. This allows us to incorporate the
minimum overhead incurred by each function call into our model and improve the
predictions. We also set the communication cost and the cost of computing the
convergence criterion for the model to zero, since both costs are negligible.

Table 8.2 and Figure 8.5 show the predicted runtimes of the performance model,
the theoretical lower bound (L.b.) based on the task graph, and the runtime re-
sults of LibPFASST for the different settings and ten PFASST iterations, as well as
the prediction phase. An array represents the selection of sweeps and collocation
nodes at the different levels, where the first entry in the array represents the fine
level, the next entry the next level, and so on. In all comparisons, we observe
that the model predicts the runtimes of the parallel computation with minimal
deviation. If we additionally consider the lower bound given by the shortest path

110

8.2 Results

within the DAG, we see that both the runtime of LibPFASST and the model reach
this lower bound, i. e., the chosen parallelization strategy for the algorithm comes
very close to the theoretical bound.

Table 8.3 and Figure 8.6 show the same results for the comparison with pySDC.
Again, the parallel runtimes include the calculation of the ten PFASST iterations
as well as the prediction phase. Actual runtimes of pySDC differ from the perfor-
mance model by no more than 5%. While the predictions of the model for the
two-level settings are very close to the theoretical lower bound, there are slight
deviations for certain settings in the four-level settings. This is likely due to
the multigrid view implemented in pySDC. It should be noted, however, that the
lower bound generally assumes an infinite number of processes, so the comparison
is based on potentially different processor counts. Moreover, an implementation
to achieve the lower bound can be very challenging.

8.2.2 MGRIT

For the comparisons of the model with implementations of the MGRIT algorithm
we use the two libraries XBRAID and PyMGRIT. The C library XBRAID with interfaces
for C++, Fortran and Python allows covering many different variants of the
MGRIT algorithm with a large number of options. In addition to the application
of the MGRIT algorithm, it provides many examples and various spatial problems
and it has also been used for problems outside the classical application domain,
such as neural network training [49]. As a stopping criterion, XBRAID uses a
global convergence criterion measured in an arbitrary norm based on the residual
computed in the MGRIT algorithm. PyMGRIT is a software package in Python
that implements the MGRIT algorithm. Besides many settings for the MGRIT
algorithm, some examples of spatial problems and a prediction phase based on
the nested iteration strategy, PyMGRIT offers the option to choose both local and
global convergence criteria. In the library, the convergence criterion is computed
independently of calculations within the method at the end of each iteration and
can be based on the residual or the jump between iterations. Both libraries use
the standard distribution of time points on processes for the parallelization of
the MGRIT method. For both libraries, we have implemented a function for
time integration, as well as spatial interpolation and spatial restriction for the
pseudo-problem. For the three functions, the sleep period can be controlled per
level.

In the following experiments, we consider typical use cases for MGRIT. In more
detail, we consider 4,096 time steps, 256 temporal processes, and different five-
and six-level MGRIT variants. For the five-level variants, we choose a non-uniform
coarsening strategy, i. e., different coarsening factors per level. We choose a coars-
ening factor of 16 between the fine and the next coarser level and a factor of four

111

8 Performance Model

for all other levels. This choice allows us to consider exactly one interval of F -
points per process at the fine level, which optimizes parallelization at the fine
level. For the six-level variants, we choose a uniform coarsening strategy with
a coarsening factor of four at each level. We use both V - and F -cycles with
different relaxation schemes. For V -cycles, we use an FCF -relaxation scheme
typical for the MGRIT algorithm. For F -cycles, we use the simpler but cheaper
F -relaxation. For XBRAID, we use the skip down library option, which skips the
down cycle in the first MGRIT iteration. For PyMGRIT, we additionally use the
nested iteration strategy, a prediction phase to compute an improved initial guess
that is performed in addition to the MGRIT iterations. Furthermore, for PyMGRIT,
we consider both global and local convergence criteria.

We restrict ourselves to the choice of temporal coarsening, i. e., we set the sleep
periods for the spatial transfer operators equal to zero. For the sleep period
within each time integration, we choose 0.05 s at each level. Again, we measure the
runtimes of the functions independently of the sleep periods and use the measured
values as parameters for the model to increase the accuracy of the prediction. We
set the cost of computing the convergence criterion and the communication for
the model to zero.

Table 8.4 and Figure 8.7 show the runtimes of XBRAID for different MGRIT set-
tings for the pseudo-problem and prediction of the model, as well as the theoretical
lower bound based on the task graph. Level-dependent parameters, such as the
coarsening factor, are given as arrays of length L− 1, since these parameters are
given for all levels except the coarsest. The deviation of the measured runtime
from the predictions is at most 5% and in particular at most 1% in most cases.
More precisely, we have two settings, the five-level V - and F -cycles without skip-
down, respectively, where the deviation is slightly larger than in the other cases.
In these cases, there is an unexpected behavior of the cluster used, where the
first communication between two processes on different nodes within XBRAID is
extremely expensive, in particular much more expensive than when we test the
communication cost independently of libraries. Unfortunately, we have not found
a way to solve this problem. At this point, it is important to point out that this
is a cluster-related problem, not a library-related problem. In general, this unex-
pected behavior could also be represented by appropriate communication costs in
the model. However, from our point of view, a deviation of 5% is still very accept-
able, so for simplicity we do not include these unexpectedly high communication
costs in our model. Furthermore, it should be noted that this behavior probably
occurs in all parallel runs when multiple nodes are used, while in all other cases
the cost is hidden by an overlap of communication and computation.

A look at the lower bounds shows that for the five-level settings, the minimum the-
oretical runtime is slightly lower than the runtime of the model. This is probably

112

8.2 Results

primarily due to the global convergence criterion in XBRAID, which is typically im-
plemented as collective communication and, thus, blocking communication. The
difference is slightly larger for the six-level settings, but this was to be expected
given the choice of parameters. The chosen coarsening factor of four allows the
effective utilization of more than 256 processes in the time dimension at the fine
level, which would reduce the runtime.

Table 8.5 and Figure 8.8 show the results for predicted and parallel PyMGRIT run-
times. Comparing the two values, the actual runtimes differ from the predicted
runtimes by at most 5%. It can be seen that the runtimes for the local conver-
gence criterion are slightly better than for the global convergence criteria. Global
convergence criteria are typically determined by collective communication, which
incurs additional communication costs that we have omitted in the predictions.
Again, the measured runtimes contain the same unexpected communication costs
between nodes as described in the results of XBRAID.

Comparing the difference between the predictions and the lower bound for the
five-level settings, we find that the difference is smaller when a local criterion is
used than when a global criterion is used. For the six-level cases, the difference is
again slightly larger, but this is again due to the fact that the selected number of
processes in time does not exploit the full parallelization potential of the method.
Another interesting result is that the lower bound for the same variants with and
without nested iterations is more or less the same, which means that the predic-
tion phase with nested iterations can theoretically be achieved without additional
visible costs. However, this would require a suitable implementation. Investigat-
ing specific strategies that could enable more parallelization and implementing
them accordingly are part of future work.

113

8 Performance Model

Nt NP L K # Sweeps collocation
nodes

LibPFASST

runtime
Model

L. b.
(NP =∞)

16 16 2 10 (1, 1) (5, 3) 5.06 5.05 5.04

16 16 2 10 (1, 1) (7, 5) 8.88 8.87 8.86

16 16 2 10 (2, 1) (5, 3) 7.07 7.04 7.03

16 16 2 10 (2, 1) (7, 5) 11.9 11.89 11.88

32 32 4 10 (1, 1, 1, 1) (7, 5, 3, 2) 12.16 12.12 12.11

32 32 4 10 (2, 1, 1, 1) (7, 5, 3, 2) 15.17 15.13 15.12

32 32 4 10 (1, 2, 1, 1) (7, 5, 3, 2) 16.17 16.14 16.13

32 32 4 10 (1, 1, 2, 1) (7, 5, 3, 2) 14.17 14.14 14.13

32 32 4 10 (1, 2, 2, 1) (7, 5, 3, 2) 18.18 18.14 18.13

Table 8.2: Predictions of the model and measured runtimes for the LibPFASST library
for the pseudo-problem, with a sleep period of 0.05 s for each implicit solve and zero
for all others. For the graphical view of the results, see Figure 8.5.

5

10

15

20

ru
n
ti

m
e

[s
]

LibPFASST runtime
Model
Lower bound (NP =∞)

16

16

2

10

(1,1)

(5,3)

16

16

2

10

(1,1)

(7,5)

16

16

2

10

(2,1)

(5,3)

16

16

2

10

(2,1)

(7,5)

32

32

4

10

(1,1,1,1)

(7,5,3,2)

32

32

4

10

(2,1,1,1)

(7,5,3,2)

32

32

4

10

(1,2,1,1)

(7,5,3,2)

32

32

4

10

(1,1,2,1)

(7,5,3,2)

32

32

4

10

(1,2,2,1)

(7,5,3,2)

N

Np

L

K

Sweeps

collocation nodes

Figure 8.5: Graphical representation of the predictions of the model and measured
runtimes for the LibPFASST library for the pseudo-problem, with a sleep period of 0.05
s for each implicit solve and zero for all others. For a tabular view of the results, see
Table 8.2.

114

8.2 Results

Nt NP L K # Sweeps collocation
nodes

pySDC

runtime
Model

L. b.
(NP =∞)

16 16 2 10 (1, 1) (5, 3) 5.22 5.00 5.00

16 16 2 10 (1, 1) (7, 5) 9.45 8.99 8.99

16 16 2 10 (2, 1) (5, 3) 7.38 7.07 7.07

16 16 2 10 (2, 1) (7, 5) 12.78 12.23 12.23

32 32 4 10 (1, 1, 1, 1) (7, 5, 3, 2) 12.82 12.34 12.34

32 32 4 10 (2, 1, 1, 1) (7, 5, 3, 2) 16.23 15.57 15.56

32 32 4 10 (1, 2, 1, 1) (7, 5, 3, 2) 17.16 16.41 16.30

32 32 4 10 (1, 1, 2, 1) (7, 5, 3, 2) 14.96 14.26 13.22

32 32 4 10 (1, 2, 2, 1) (7, 5, 3, 2) 19.38 18.57 15.43

Table 8.3: Predictions of the model and measured runtimes for the pySDC library for
the pseudo-problem, with a sleep period of 0.05 s for each implicit solve and zero for
all others. For a graphical view of the results, see Figure 8.6.

5

10

15

20

ru
n
ti

m
e

[s
]

pySDC runtime
Model
Lower bound (NP =∞)

16

16

2

10

(1,1)

(5,3)

16

16

2

10

(1,1)

(7,5)

16

16

2

10

(2,1)

(5,3)

16

16

2

10

(2,1)

(7,5)

32

32

4

10

(1,1,1,1)

(7,5,3,2)

32

32

4

10

(2,1,1,1)

(7,5,3,2)

32

32

4

10

(1,2,1,1)

(7,5,3,2)

32

32

4

10

(1,1,2,1)

(7,5,3,2)

32

32

4

10

(1,2,2,1)

(7,5,3,2)

N

Np

L

K

Sweeps

collocation nodes

Figure 8.6: Graphical representation of the predictions of the model and measured
runtimes for the pySDC library for the pseudo-problem, with a sleep period of 0.05 s
for each implicit solve and zero for all others. For a tabular view of the results, see
Table 8.3.

115

8 Performance Model

Nt NP L K cyc. coarsening ν skip
down

XBRAID

runtime
Model

L.b.
(NP =∞)

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) True 19.02 18.93 15.61

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) False 22.79 21.83 17.91

4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) True 21.59 21.51 13.63

4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) False 23.90 23.01 14.99

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) True 22.81 22.66 11.88

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) False 26.38 26.16 13.43

4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) True 30.71 30.64 15.17

4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) False 32.61 32.49 16.04

Table 8.4: Predictions of the model and measured runtimes for the XBRAID library for
the pseudo-problem, with a sleep period of 0.05 s for each time integration and zero for
all others. For a graphical view of the results, see Figure 8.7.

5

10

15

20

25

30

35

ru
n
ti

m
e

[s
]

XBRAID runtime
Model
Lower bound (NP =∞)

4096

256

5

6

V

(16,4,4,4)

(1,1,1,1)

True

4096

256

5

6

V

(16,4,4,4)

(1,1,1,1)

False

4096

256

5

6

F

(16,4,4,4)

(0,0,0,0)

True

4096

256

5

6

F

(16,4,4,4)

(0,0,0,0)

False

4096

256

6

6

V

(4,4,4,4,4)

(1,1,1,1,1)

True

4096

256

6

6

V

(4,4,4,4,4)

(1,1,1,1,1)

False

4096

256

6

6

F

(4,4,4,4,4)

(0,0,0,0,0)

True

4096

256

6

6

F

(4,4,4,4,4)

(0,0,0,0,0)

False

N

Np

L

K

cycle

coarsening

ν

skip down

Figure 8.7: Graphical representation of the predictions of the model and measured
runtimes for the XBRAID library for the pseudo-problem, with a sleep period of 0.05 s
for each implicit solve and zero for all others. For a tabular view of the results, see
Table 8.4.

116

8.2 Results

Nt NP L K cyc. coarsening ν
nest.
iter.

conv.
crit.

PyMGRIT

runtime
Model

L.b.
(NP =∞)

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) T local 19.99 19.53 18.01

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) F local 18.87 18.43 18.02

4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) T local 17.69 17.17 15.09

4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) F local 16.98 16.66 15.09

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) T global 24.66 23.91 18.06

4096 256 5 6 V (16, 4, 4, 4) (1, 1, 1, 1) F global 23.28 21.94 18.01

4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) T global 25.08 24.04 15.07

4096 256 5 6 F (16, 4, 4, 4) (0, 0, 0, 0) F global 24.24 23.15 15.08

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) T local 25.82 25.36 13.52

4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) T local 26.06 25.43 16.13

4096 256 6 6 V (4, 4, 4, 4, 4) (1, 1, 1, 1, 1) T global 30.91 29.97 13.49

4096 256 6 6 F (4, 4, 4, 4, 4) (0, 0, 0, 0, 0) T global 35.93 34.82 16.14

Table 8.5: Predictions of the model and measured runtimes for the PyMGRIT library for
the pseudo-problem, with a sleep period of 0.05 s for each time integration and zero for
all others. For a graphical view of the results, see Figure 8.8.

5

10

15

20

25

30

35

40

ru
n
ti

m
e

[s
]

PyMGRIT runtime
Model
Lower bound (NP =∞)

4096

256

5

6

V

(16,4,4,4)

(1,1,1,1)

True

4096

256

5

6

V

(16,4,4,4)

(1,1,1,1)

False

4096

256

5

6

F

(16,4,4,4)

(0,0,0,0)

True

4096

256

5

6

F

(16,4,4,4)

(0,0,0,0)

False

4096

256

5

6

V

(16,4,4,4)

(1,1,1,1)

True

4096

256

5

6

V

(16,4,4,4)

(1,1,1,1)

False

4096

256

5

6

F

(16,4,4,4)

(0,0,0,0)

True

4096

256

5

6

F

(16,4,4,4)

(0,0,0,0)

False

4096

256

6

6

V

(4,4,4,4,4)

(1,1,1,1,1)

True

4096

256

6

6

F

(4,4,4,4,4)

(0,0,0,0,0)

True

4096

256

6

6

V

(4,4,4,4,4)

(1,1,1,1,1)

True

4096

256

6

6

F

(4,4,4,4,4)

(0,0,0,0,0)

True

N

Np

L

K

cycle

coarsening

ν

skip down

Figure 8.8: Graphical representation of the predictions of the model and measured
runtimes for the PyMGRIT library for the pseudo-problem, with a sleep period of 0.05
s for each implicit solve and zero for all others. For a tabular view of the results, see
Table 8.5.

117

Chapter 9
Conclusions & Outlook

In this work, we applied the time-parallel MGRIT algorithm to the simulation of
an induction machine. The main results of this work are the extension of the scope
of PinT methods, the development of a new variant of the MGRIT algorithm,
and the provision of a new library that implements the MGRIT framework. In
addition, a new performance model for PinT methods is presented.

Applying the MGRIT algorithm to the model “im 3 kW” of a three-phase induc-
tion machine driven by a PWM voltage source reduced the required simulation
runtime by a factor of up to 14 compared to the traditional sequential time step-
ping using 256 processes for temporal parallelization. The use of spatial coars-
ening between levels of the MGRIT algorithm allows for a further reduction in
runtime, resulting in a speedup by a factor of up to 21.9 compared to the se-
quential time stepping. This shows that parallelization of the time dimension is
a promising approach to reduce the runtime of time-dependent simulations for
complex problems, especially when spatial parallelization is exhausted.

By incorporating the AT-MGRIT algorithm into a geometry optimization of the
induction motor, an improved geometry in terms of motor efficiency was achieved,
and the time-parallel simulation in each optimization step provided a shorter time
to solution compared to the classical time stepping method.

The release of the PyMGRIT package, which contains the code for all numerical
experiments in this work, makes the work accessible to the PinT community
and provides an easy entry point for researchers interested in using the MGRIT
algorithm for time-dependent simulations.

A challenge in using the MGRIT algorithm, as with other PinT methods, is the
large parameter space that allows for different variations of the method, with
the right choice of parameters having a significant impact on the efficiency of

119

9 Conclusions & Outlook

the method. The presented task-based performance model for the three PinT
methods Parareal, PFASST, and MGRIT provides runtime prediction for a given
setting and can therefore help to choose appropriate parameters without perform-
ing expensive simulations. We used the model to predict runtimes for simulations
and compared these predictions to actual parallel runtimes using four different
PinT libraries. In all test cases for all libraries, the actual runtime deviated from
the expected value only by a maximum of 5%.

In future work, it would be interesting to further explore the task-based view of
PinT methods. For example, the model can be used to find the optimal parameter
setting for a given problem in terms of the expected simulation time and to
choose the distribution of processes over spatial and temporal dimensions. A
future challenge is certainly the additional prediction of the required number of
iterations of the method for particular problems and settings, but coupling the
model with the generalized convergence study tool for PinT methods [42] could be
promising. In addition, the task graph gives us many other possibilities that are
independent of predictions. First, if we look at the lower bounds of the algorithms,
we can see that for some settings, especially for the MGRIT algorithm, there is
still some gap between the achieved runtimes and the lower bound. A task-
based implementation of the algorithm could potentially close this gap. Such an
implementation also has the potential to take into account not only static load
balancing, but also dynamic load balancing, which may be necessary to avoid
idle times on more complicated problems. In addition, this global view of task
graphs could be an approach to create a framework that combines multiple PinT
methods. This would make the proper selection of an appropriate PinT method,
as well as the application of temporal parallelization to complex problems, such
as the induction motor model studied, even more accessible to academia and
industry.

120

List of Figures

3.1 Example of a BH-curve. 24

3.2 Multi material domain. 24

3.3 Visualization of Kirchhoff’s current and voltage laws. 27

3.4 Circuit components. 27

3.5 Connection types in an electric circuit. 28

3.6 Example of a PWM signal. 29

3.7 Example of a three-phase voltage source. 31

3.8 Cross section of a four-pole squirrel cage induction motor. 32

3.9 Star and delta connection. 32

4.1 Illustration of Parareal. 38

4.2 MGRIT strategy for coarsening in the temporal dimension. 43

4.3 MGRIT relaxation schemes. 44

4.4 Temporal grid hierarchy using a non-uniform coarsening strategy. 45

4.5 Structure of V - and F -cycle. 46

4.6 Structure of nested iterations. 46

4.7 MGRIT spatial coarsening strategies. 47

4.8 Example of a two-level temporal grid hierarchy of AT-MGRIT. . . 53

4.9 Example of a three-level temporal grid hierarchy of AT-MGRIT. . 55

121

LIST OF FIGURES

6.1 Required AT-MGRIT iterations for the 1D heat equation. 74

6.2 Theoretical convergence bound for AT-MGRIT. 75

6.3 Residual norm as a function of iterations for two-level AT-MGRIT. 76

6.4 Strong scaling results for the 2D Gray-Scott problem. 81

7.1 Time-domain evolution of the torque. 84

7.2 Illustration of the PWM voltage source used for the “im 3 kw”
model. 86

7.3 Two grid representations of an induction machine. 86

7.4 Convergence results for different F -cycle MGRIT variants using
spatial coarsening. 90

7.5 Strong scaling results for the induction machine model. 91

7.6 Optimization process over iterations. 97

7.7 Initial and optimized design. 97

7.8 Time evolution of Torque and Joule losses for two designs. 98

8.1 Example of a DAG for Parareal. 103

8.2 Example of the standard blockwise distribution of time points. . . 104

8.3 Example of the windowing strategy. 104

8.4 Illustration of a schedule for Parareal. 105

8.5 Comparison of predicted and measured runtimes for LibPFASST. . 114

8.6 Comparison of predicted and measured runtimes for pySDC. 115

8.7 Comparison of predicted and measured runtimes for XBRAID. . . . 116

8.8 Comparison of predicted and measured runtimes for PyMGRIT. . . 117

122

List of Tables

6.1 Two-level results of MGRIT and AT-MGRIT for the 2D Gray-Scott
problem. 78

6.2 Three-level results of MGRIT and AT-MGRIT for the 2D Gray-
Scott problem. 79

6.3 Detailed effects of local coarse grid sizes for AT-MGRIT for the 2D
Gray-Scott problem. 80

6.4 Investigation of spatial parallelization within MGRIT variants. . . 82

7.1 Results for the linear induction machine model. 88

7.2 Results for the linear induction machine model with spatial coars-
ening. 89

7.3 Results for the induction machine model. 91

7.4 Speedup and efficiency of the simulations with MGRIT. 93

7.5 Two-level MGRIT and AT-MGRIT results for the induction machine. 94

8.1 Overview of parameters of PinT methods 109

8.2 Comparison of predicted and measured runtimes for LibPFASST. . 114

8.3 Comparison of predicted and measured runtimes for pySDC. 115

8.4 Comparison of predicted and measured runtimes for XBRAID. . . . 116

8.5 Comparison of predicted and measured runtimes for PyMGRIT. . . 117

123

List of Algorithms

4.1 Parareal . 39

4.2 PFASST-multigrid . 42

4.3 Two-level MGRIT . 44

4.4 FAS MGRIT(`) . 46

4.5 Two-level AT-MGRIT . 54

4.6 FAS AT-MGRIT(`) . 56

8.1 FAS MGRIT data driven formulation 100

124

List of Notations

Throughout this thesis, scalars are denoted by lower-case letters, vectors are de-
noted by bold lower-case letter and matrices and constants are denoted by upper-
case letters. In addition, the following abbreviations and notations are used across
all chapters:

Governing application

B Magnetic flux density
H Magnetic field strength
D Electric flux density
E Electric field strength
J Electric current density
Js Electric source current density
A Magnetic vector potential
φ Electric scalar potential
% Electric charge density
ε Electric permittivity
σ Electric conductivity
R Resistance
L Inductance
C Capacitance
v Voltage
i Current
ωsync Synchronous speed
ωmech Mechanical speed
s Slip
TEM Electromagnetic torque
Pmech Mechanical power
Ploss Joule losses
J Moment of inertia
θ Rotor angle

125

List of Notations

Mathematical notation

R Set of real numbers
Rd d-dimensional Euclidean space
R+

0 The set of positive real numbers with zero
Z The set of integer numbers
Z+ = N The set of positive integer numbers
C The set of complex numbers
C− The set of complex numbers with negative real part
Ω Domain
∂Ω Boundaries of the domain Ω
Ck(Ω) The set of k times continuously differentiable functions on Ω
Ck(Ω)0 The set of functions φ ∈ Ck(Ω) having compact support in Ω
Ck(Ω)′0 The dual space of Ck(Ω)0

Lp(Ω), 1 ≤ p <∞ The set of functions φ on Ω for which |φ|p is Lebesgue integrable
W s,p(Ω) The fundamental Sobolev spaces
Hs(Ω) Hilbert spaces

Acronyms

1D one-dimensional
2D two-dimensional
3D three-dimensional
AC alternating current
AT-MGRIT asynchronous truncated multigrid-reduction-in-time
DAE differential-algebraic equation
DC direct current
FAS full aproximation storage
MGRIT multigrid-reduction-in-time
ODE ordinary differential equation
PDE partial differential equation
PFASST parallel full approximation scheme in space and time
PinT parallel-in-time
PWM pulse-width modulation
SOR successive over-relaxation
DAG directed acyclic graph

126

Bibliography

[1] A. Alonso Rodŕıguez and A. Valli, Eddy Current Approximation
of Maxwell Equations, vol. 4 of Modeling, Simulation and Applications,
Springer.

[2] A. Arkkio, Analysis of induction motors based on the numerical solution
of the magnetic field and circuit equations, PhD thesis, Helsinki University
of Technology, 1987.

[3] F. Arscott and A. Filippov, Differential Equations with Discontinu-
ous Righthand Sides: Control Systems, Mathematics and its Applications,
Springer Netherlands, 2013.

[4] U. M. Ascher and L. R. Petzold, Computer Methods for Ordinary
Differential Equations and Differential-Algebraic Equations, Society for In-
dustrial and Applied Mathematics, USA, 1st ed., 1998.

[5] E. Aubanel, Scheduling of Tasks in the Parareal Algorithm, Parallel Com-
puting, 37 (2011), p. 172–182.

[6] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune,
K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp,
D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C.
McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F.
Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc users manual,
Technical Report, Argonne National Laboratory, 2020.

[7] R. Bank, R. Falgout, T. Jones, T. A. Manteuffel, S. F. Mc-
Cormick, and J. W. Ruge, Algebraic multigrid domain and range de-
composition (AMG-DD/AMG-RD), SIAM Journal on Scientific Computing,
37 (2015), pp. S113–S136.

127

BIBLIOGRAPHY

[8] D. Bast, I. Kulchytska-Ruchka, S. Schöps, and O. Rain, Ac-
celerated Steady-State Torque Computation for Induction Machines using
Parallel-In-Time Algorithms, IEEE Transactions on Magnetics, (2019).

[9] A. Bermúdez, D. Gómez, M. Piñeiro, and P. Salgado, A novel
numerical method for accelerating the computation of the steady-state in in-
duction machines, Computers and Mathematics with Applications, (2019).

[10] L. Berry, W. Elwasif, J. Reynolds-Barredo, D. Samaddar,
R. Sanchez, and D. Newman, Event-based parareal: A data-flow based
implementation of parareal, Journal of Computational Physics, 231 (2012),
pp. 5945–5954.

[11] H. Black, Modulation theory, Bell Telephone Laboratories series, Van Nos-
trand, 1953.

[12] M. Bolten, S. Friedhoff, and J. Hahne, Task Graph-Based Perfor-
mance Analysis of Parallel-in-Time Methods. Available at SSRN: https:
//ssrn.com/abstract=4201056, 2022 (Submitted).

[13] M. Bolten, S. Friedhoff, J. Hahne, and S. Schöps, Parallel-in-
time simulation of an electrical machine using MGRIT, Computing and
Visualization in Science, 23 (2020), pp. Paper No. 14, 14.

[14] M. Bolten, D. Moser, and R. Speck, A multigrid perspective on the
parallel full approximation scheme in space and time, Numerical Linear Al-
gebra with Applications, 24 (2017).

[15] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in
Solid Mechanics, Cambridge University Press, 2007.

[16] A. Brandt, Multi-level adaptive solutions to boundary-value problems,
Mathematics of Computation, 31 (1977), pp. 333–390.

[17] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential
Equations, Universitext, Springer New York, 2010.

[18] K. Burrage, Parallel and Sequential Methods for Ordinary Differential
Equations, Clarendon Press, USA, 1995.

[19] C. Cartis, J. Fiala, B. Marteau, and L. Roberts, Improving the
Flexibility and Robustness of Model-Based Derivative-Free Optimization
Solvers, ACM Transactions on Mathematical Software, 45 (2019).

[20] A. J. Christlieb, C. B. Macdonald, and B. W. Ong, Parallel
High-Order Integrators, SIAM Journal on Scientific Computing, 32 (2010),
pp. 818–835.

128

https://ssrn.com/abstract=4201056
https://ssrn.com/abstract=4201056

BIBLIOGRAPHY

[21] J. Cortial and C. Farhat, A time-parallel implicit method for acceler-
ating the solution of non-linear structural dynamics problems, International
Journal for Numerical Methods in Engineering, 77 (2009), pp. 451–470.

[22] F. Danieli and S. MacLachlan, Multigrid Reduction in Time for non-
linear hyperbolic equations, 2021.

[23] H. De Sterck, R. D. Falgout, S. Friedhoff, O. A. Krzysik, and
S. P. MacLachlan, Optimizing multigrid reduction-in-time and Parareal
coarse-grid operators for linear advection, Numerical Linear Algebra with
Applications, 28 (2021).

[24] P. Deuflhard, Newton methods for nonlinear problems: affine invariance
and adaptive algorithms, Springer, 2004.

[25] P. Deuflhard, W. Rheinboldt, and F. Bornemann, Scientific Com-
puting with Ordinary Differential Equations, Texts in Applied Mathematics,
Springer New York, 2012.

[26] V. A. Dobrev, T. Kolev, N. A. Petersson, and J. B. Schroder,
Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT),
SIAM Journal on Scientific Computing, 39 (2017), pp. S501–S527.

[27] P. Dular and C. Geuzaine, GetDP: A General Environment for the
Treatment of Discrete Problems. http://www.getdp.info, Online; accessed
December 27, 2022.

[28] A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction
methods for ordinary differential equations, BIT Numerical Mathematics, 40
(2000), pp. 241–266.

[29] M. Emmett and M. Minion, Toward an efficient parallel in time method
for partial differential equations, Communications in Applied Mathematics
and Computational Science, 7 (2012), pp. 105 – 132.

[30] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan,
and J. B. Schroder, Parallel time integration with multigrid, SIAM Jour-
nal on Scientific Computing, 36 (2014), pp. C635–C661.

[31] R. D. Falgout, A. Katz, T. V. Kolev, J. B. Schroder,
A. Wissink, and U. M. Yang, Parallel Time Integration with Multi-
grid Reduction for a Compressible Fluid Dynamics Application, Technical
Report, Lawrence Livermore National Laboratory, 2015.

[32] R. D. Falgout, M. Lecouvez, and C. S. Woodward, A parallel-in-
time algorithm for variable step multistep methods, Journal of Computa-
tional Science, 37 (2019).

129

http://www.getdp.info

BIBLIOGRAPHY

[33] R. D. Falgout, T. A. Manteuffel, B. O’Neill, and J. B.
Schroder, Multigrid Reduction in Time for Nonlinear Parabolic Prob-
lems: A Case Study, SIAM Journal on Scientific Computing, 39 (2017),
pp. S298–S322.

[34] C. Farhat, J. Cortial, C. Dastillung, and H. Bavestrello, Time-
parallel implicit integrators for the near-real-time prediction of linear struc-
tural dynamic responses, International Journal for Numerical Methods in
Engineering, 67 (2006), pp. 697–724.

[35] S. Friedhoff, J. Hahne, I. Kulchytska-Ruchka, and S. Schöps,
Exploring Parallel-in-Time Approaches for Eddy Current Problems, in
Progress in Industrial Mathematics at ECMI 2018, vol. 30 of The Euro-
pean Consortium for Mathematics in Industry, Springer, 2020.

[36] S. Friedhoff and B. S. Southworth, On ”optimal” h-independent
convergence of parareal and multigrid-reduction-in-time using runge-kutta
time integration, Numerical Linear Algebra with Applications, 28 (2021).

[37] H. Gahvari, V. A. Dobrev, R. D. Falgout, T. V. Kolev, J. B.
Schroder, M. Schulz, and U. M. Yang, A Performance Model for Al-
locating the Parallelism in a Multigrid-in-Time Solver, in 2016 7th Interna-
tional Workshop on Performance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS), 2016, pp. 22–31.

[38] M. Gander, Y.-L. Jiang, B. Song, and H. Zhang, Analysis of Two
Parareal Algorithms for Time-Periodic Problems, SIAM Journal on Scien-
tific Computing, 35 (2013).

[39] M. J. Gander, 50 years of Time Parallel Time Integration, in Multiple
Shooting and Time Domain Decomposition, Springer, 2015, pp. 69–113.

[40] M. J. Gander and E. Hairer, Nonlinear Convergence Analysis for
the Parareal Algorithm, in Domain Decomposition Methods in Science and
Engineering XVII, Berlin, Heidelberg, 2008, Springer Berlin Heidelberg,
pp. 45–56.

[41] M. J. Gander, I. Kulchytska-Ruchka, I. Niyonzima, and
S. Schöps, A New Parareal Algorithm for Problems with Discontinuous
Sources, SIAM Journal on Scientific Computing, 41 (2019), pp. B375–B395.

[42] M. J. Gander, T. Lunet, D. Ruprecht, and R. Speck, A unified
analysis framework for iterative parallel-in-time algorithms, 2022.

[43] C. Geuzaine, GetDP: a general finite-element solver for the de Rham
complex, PAMM, 7 (2007).

130

BIBLIOGRAPHY

[44] C. Geuzaine and J.-F. Remacle, Gmsh: A three-dimensional finite
element mesh generator with built-in pre- and post-processing facilities.
http://www.gmsh.info, Online; accessed December 27, 2022.

[45] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh gen-
erator with built-in pre- and post-processing facilities, International Journal
for Numerical Methods in Engineering, 79 (2009), pp. 1309–1331.

[46] S. Götschel and M. L. Minion, Parallel-in-Time for Parabolic Opti-
mal Control Problems Using PFASST, in Domain Decomposition Methods
in Science and Engineering XXIV, Cham, 2018, Springer International Pub-
lishing, pp. 363–371.

[47] D. Griffiths, P. Griffiths, and R. College, Introduction to Elec-
trodynamics, Prentice Hall, 1999.

[48] J. Gyselinck, L. Vandevelde, and J. Melkebeek, Multi-slice FE
modeling of electrical machines with skewed slots-the skew discretization er-
ror, Magnetics, IEEE Transactions on, 37 (2001), pp. 3233 – 3237.

[49] S. Günther, L. Ruthotto, J. B. Schroder, E. C. Cyr, and N. R.
Gauger, Layer-Parallel Training of Deep Residual Neural Networks, SIAM
Journal on Mathematics of Data Science, 2 (2020), pp. 1–23.

[50] J. Hahne, Github repository for the PinT performance model. https:

//github.com/pymgrit/performance_model, Online; accessed December
27, 2022.

[51] J. Hahne and S. Friedhoff, Documentation for PyMGRIT. https://

pymgrit.github.io/pymgrit/, Online; accessed December 27, 2022.

[52] , Github repository for PyMGRIT. https://github.com/pymgrit/

pymgrit, Online; accessed December 27, 2022.

[53] J. Hahne, S. Friedhoff, and M. Bolten, Algorithm 1016: PyMGRIT:
A Python Package for the Parallel-in-Time Method MGRIT, ACM Trans-
actions on Mathematical Software, 47 (2021).

[54] J. Hahne, B. Polenz, I. Kulchytska-Ruchka, S. Friedhoff,
S. Ulbrich, and S. Schöps, Parallel-in-time optimization of induction
motors, 2022 (Submitted).

[55] J. Hahne, B. S. Southworth, and S. Friedhoff, Asynchronous trun-
cated multigrid-reduction-in-time, SIAM Journal on Scientific Computing,
(2022), pp. S281–S306.

131

http://www.gmsh.info
https://github.com/pymgrit/performance_model
https://github.com/pymgrit/performance_model
https://pymgrit.github.io/pymgrit/
https://pymgrit.github.io/pymgrit/
https://github.com/pymgrit/pymgrit
https://github.com/pymgrit/pymgrit

BIBLIOGRAPHY

[56] E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential
Equations I: Nonstiff problems, Springer, Berlin, 2nd ed., 2000.

[57] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Dif-
ferential Equations II: Stiff and Differential-Algebraic Problems, Springer
Series in Computational Mathematics, Springer, 2 ed., 2002.

[58] A. Hessenthaler, Multilevel convergence analysis : parallel-in-time inte-
gration for fluid-structure interaction problems with applications in cardiac
flow modeling, PhD thesis, Universität Stuttgart, 2018.

[59] A. Hessenthaler, B. S. Southworth, D. Nordsletten,
O. Röhrle, R. D. Falgout, and J. B. Schroder, Multilevel Conver-
gence Analysis of Multigrid-Reduction-in-Time, SIAM Journal on Scientific
Computing, 42 (2020), pp. A771–A796.

[60] C.-W. Ho, A. Ruehli, and P. Brennan, The Modified Nodal Ap-
proach to Network Analysis, Circuits and Systems, IEEE Transactions on,
22 (1975), pp. 504 – 509.

[61] G. Horton and S. Vandewalle, A Space-Time Multigrid Method for
Parabolic Partial Differential Equations, SIAM Journal on Scientific Com-
puting, 16 (1995), pp. 848–864.

[62] A. Howse, H. De Sterck, R. D. Falgout, S. MacLachlan, and
J. B. Schroder, Parallel-In-Time Multigrid with Adaptive Spatial Coars-
ening for The Linear Advection and Inviscid Burgers Equations, SIAM Jour-
nal on Scientific Computing, 41 (2019), pp. A538–A565.

[63] N. Ida and J. P. A. Bastos, Electromagnetics and calculation of fields,
Springer, 2 ed., 1997.

[64] L. Kronsjö, A note on the “nested iterations” methods, Nordisk Tidskrift
for Informationsbehandling, 15 (1975), pp. 107–110.

[65] L. Kronsjö and G. Dahlquist, On the design of nested iterations for
elliptic difference equations, Nordisk Tidskrift for Informationsbehandling,
12 (1972), pp. 63–71.

[66] I. Kulchytska-Ruchka, Parallel-in-Time Simulation of Electromagnetic
Energy Converters, PhD thesis, Technische Universität Darmstadt, 2021.

[67] I. Kulchytska-Ruchka and S. Schöps, Efficient Parallel-in-Time So-
lution of Time-Periodic Problems Using a MultiHarmonic Coarse Grid Cor-
rection, SIAM Journal on Scientific Computing, 43 (2021), pp. C61–C88.

132

BIBLIOGRAPHY

[68] LBNL, Github repository for LibPFASST. https://github.com/

libpfasst/LibPFASST, Online; accessed December 27, 2022.

[69] M. Lecouvez, R. D. Falgout, C. S. Woodward, and P. Top, A
parallel multigrid reduction in time method for power systems, in 2016 IEEE
Power and Energy Society General Meeting (PESGM), 2016, pp. 1–5.

[70] B. Lepsa and A. Sandu, An Efficient Error Control Mechanism for the
Adaptive ’parareal’ Time Discretization Algorithm, in Proceedings of the
2010 Spring Simulation Multiconference, SpringSim ’10, Society for Com-
puter Simulation International, 2010.

[71] J.-L. Lions, Y. Maday, and G. Turinici, Résolution d’EDP par un
schéma en temps “pararéel”, Comptes Rendus de l’Académie des Sciences.
Série I. Mathématique, 332 (2001), pp. 661–668.

[72] LLNL, Website for XBraid. https://www.llnl.gov/casc/xbraid, On-
line; accessed December 27, 2022.

[73] T. Lunet, J. Bodart, S. Gratton, and X. Vasseur, Time-parallel
simulation of the decay of homogeneous turbulence using Parareal with spa-
tial coarsening, Computing and Visualization in Science, 19 (2018), pp. 31–
44.

[74] J. C. Maxwell, A dynamical theory of the electromagnetic field, Philo-
sophical Transactions of the Royal Society of London, 155 (1865), pp. 459–
512.

[75] V. Mele, E. M. Constantinescu, L. Carracciuolo, and
L. D’Amore, A PETSc parallel-in-time solver based on MGRIT algorithm,
Concurrency and Computation: Practice and Experience, 30 (2018).

[76] M. Minion, A hybrid parareal spectral deferred corrections method, Com-
munications in Applied Mathematics and Computational Science, 5 (2010),
pp. 265 – 301.

[77] W. Mitchell and T. Manteuffel, Advances in implementation, theo-
retical motivation, and numerical results for the nested iteration with range
decomposition algorithm, Numerical Linear Algebra with Applications, 25
(2018).

[78] W. B. Mitchell, R. Strzodka, and R. D. Falgout, Parallel per-
formance of algebraic multigrid domain decomposition, Numerical Linear
Algebra with Applications, 28 (2021).

133

https://github.com/libpfasst/LibPFASST
https://github.com/libpfasst/LibPFASST
https://www.llnl.gov/casc/xbraid

BIBLIOGRAPHY

[79] E. Moon and E. C. Cyr, Parallel Training of GRU Networks with a
Multi-Grid Solver for Long Sequences, in International Conference on Learn-
ing Representations, 2022.

[80] D. Moser, A multigrid perspective on the parallel full approximation
scheme in space and time, PhD thesis, Universität Kassel, 2018.

[81] A. S. Nielsen, G. Brunner, and J. S. Hesthaven, Communication-
aware adaptive Parareal with application to a nonlinear hyperbolic system of
partial differential equations, Journal of Computational Physics, 371 (2018),
pp. 483–505.

[82] J. Nievergelt, Parallel Methods for Integrating Ordinary Differential
Equations, Communications ACM, 7 (1964), p. 731–733.

[83] B. Ong and J. Schroder, Applications of time parallelization, Comput-
ing and Visualization in Science, 23 (2020).

[84] J. E. Pearson, Complex Patterns in a Simple System, Science, 261 (1993),
pp. 189–192.

[85] C. Pechstein, Multigrid-Newton-Methods for Nonlinear Magnetostatic
Problems, Master’s thesis, Universität Linz, 2004.

[86] C. Pechstein and B. Jüttler, Monotonicity-preserving interproxima-
tion of b–h-curves, Journal of Computational and Applied Mathematics,
196 (2006), pp. 45–57.

[87] M. J. D. Powell, The BOBYQA algorithm for bound constrained opti-
mization without derivatives, Cambridge NA Report NA2009/06, University
of Cambridge, Cambridge, (2009), pp. 26–46.

[88] A. Preumont, Mechatronics: Dynamics of Electromechanical and Piezo-
electric Systems, Solid Mechanics and Its Applications, Springer Nether-
lands, 2006.

[89] J. C. Rautio, The Long Road to Maxwell’s Equations, IEEE Spectrum,
51 (2014), pp. 36–56.

[90] T. Reis, Mathematical Modeling and Analysis of Nonlinear Time-invariant
RLC Circuits, Hamburger Beiträge zur angewandten Mathematik, 2013.

[91] R. Riaza, Differential-algebraic Systems: Analytical Aspects And Circuit
Applications, World Scientific Publishing Company, 2008.

[92] Y. Robert, Task Graph Scheduling, in Encyclopedia of Parallel Comput-
ing, D. Padua, ed., Springer US, 2011, pp. 2013–2025.

134

BIBLIOGRAPHY

[93] D. Ruprecht, Convergence of Parareal with spatial coarsening, PAMM,
14 (2014), pp. 1031–1034.

[94] , Shared Memory Pipelined Parareal, in Euro-Par 2017: Parallel Pro-
cessing, Springer International Publishing, 2017, pp. 669–681.

[95] S. J. Salon, Finite Element Analysis of Electrical Machines, Kluwer, 1995.

[96] S. Schöps, H. De Gersem, and T. Weiland, Winding Functions
in Transient Magnetoquasistatic Field-Circuit Coupled Simulations, COM-
PEL: The International Journal for Computation and Mathematics in Elec-
trical and Electronic Engineering, 32 (2013), pp. 2063–2083.

[97] J. B. Schroder, Parallelizing Over Artificial Neural Network Training
Runs with Multigrid, Technical Report, Lawrence Livermore National Lab-
oratory, 2017.

[98] J. B. Schroder, R. D. Falgout, C. S. Woodward, P. Top, and
M. Lecouvez, Parallel-in-Time Solution of Power Systems with Scheduled
Events, in 2018 IEEE Power Energy Society General Meeting (PESGM),
2018, pp. 1–5.

[99] B. S. Southworth, Necessary Conditions and Tight Two-level Conver-
gence Bounds for Parareal and Multigrid Reduction in Time, SIAM Journal
on Matrix Analysis and Applications, 40 (2019), pp. 564–608.

[100] R. Speck, Github repository for pySDC. https://github.com/

Parallel-in-Time/pySDC, Online; accessed December 27, 2022.

[101] , Algorithm 997: PySDC—Prototyping Spectral Deferred Corrections,
ACM Transactions on Mathematical Software, 45 (2019).

[102] R. Speck, M. Knobloch, S. Lührs, and A. Gocht, Using Perfor-
mance Analysis Tools for a Parallel-in-Time Integrator, in Parallel-in-Time
Integration Methods, Springer International Publishing, 2021, pp. 51–80.

[103] J. Stoer, R. Bartels, W. Gautschi, R. Bulirsch, and C. Witz-
gall, Introduction to Numerical Analysis, Texts in Applied Mathematics,
Springer New York, 2013.

[104] K. Stüben, An introduction to algebraic multigrid, in Multigrid, Academic
press, 2001, pp. 413–523.

[105] Y. Takahashi, K. Fujiwara, T. Iwashita, and H. Nakashima, Par-
allel Finite-Element Method Based on Space-Time Domain Decomposition
for Magnetic Field Analysis of Electric Machines, IEEE Transactions on
Magnetics, 55 (2019), pp. 1–4.

135

https://github.com/Parallel-in-Time/pySDC
https://github.com/Parallel-in-Time/pySDC

BIBLIOGRAPHY

[106] Y. Takahashi, T. Tokumasu, K. Fujiwara, T. Iwashita, and
H. Nakashima, Parallel TP-EEC Method Based on Phase Conversion for
Time-periodic Nonlinear Magnetic Field Problems, IEEE Transactions on
Magnetics, 51 (2015).

[107] L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, 1997.

[108] S. van der Walt, S. C. Colbert, and G. Varoquaux, The NumPy
Array: A Structure for Efficient Numerical Computation, Computing in
Science Engineering, 13 (2011), pp. 22–30.

[109] F. Vasca and L. Iannelli, Dynamics and Control of Switched Electronic
Systems: Advanced Perspectives for Modeling, Simulation and Control of
Power Converters, Advances in Industrial Control, Springer London, 2012.

136

	Acknowledgments
	Foreword
	Contents
	Introduction
	Review of basic material
	Differential equations
	Ordinary differential equations
	Differential-algebraic equations
	Partial differential equations

	Discretization
	Spatial discretization
	Temporal discretization

	Solvers
	Iterative methods
	Newton method

	Governing application
	The Maxwell equations
	Magnetoquasistatic approximation

	Electric circuit theory
	PWM signals
	Induction motors

	Parallel-in-time integration
	Parareal
	PFASST
	MGRIT
	Two-level MGRIT
	Multilevel FAS MGRIT
	Error propagation
	Convergence bounds

	AT-MGRIT
	Two-level AT-MGRIT
	Multilevel FAS AT-MGRIT
	Error propagation
	Convergence bounds

	Convergence criterion

	Implementation
	PyMGRIT

	Numerical experiments: AT-MGRIT investigations
	Heat equation
	Gray-Scott problem
	Discussion of spatial parallelism

	Numerical experiments: Induction machine
	Numerical model
	PWM voltage source
	Linear material model
	Nonlinear material model

	Sinusoidal voltage source
	AT-MGRIT
	PinT optimization

	Performance Model
	Performance analysis
	Creating task graphs from PinT algorithms
	Adoption of typical PinT scheduling
	Discussion about appropriate weighting of task

	Results
	PFASST
	MGRIT

	Conclusions & Outlook
	List of Figures
	List of Tables
	List of Notations
	Bibliography

