
Ordinal Costs in
Multi-objective Combinatorial Optimization

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)

Fakultät für Mathematik und Naturwissenschaften

Bergische Universität Wuppertal

vorgelegt von

Julia Sudhoff

Erstgutachterin: Prof. Dr. Kathrin Klamroth

Zweitgutachter: Prof. Dr. Alexander Engau

Drittgutachter: Prof. Dr. Stefan Ruzika

Wuppertal, September 2022

Acknowledgements

This thesis would not exist without the support of many people. First of all, I like to thank
my supervisor Kathrin Klamroth for her support and her willingness to listen whenever
I had any difficulties. Especially, I like to thank her for her encouragement regarding
conferences and further training opportunities.
Furthermore, I like to thank her as well as Jochen Gorski and Michael Stiglmayr for

the excellent cooperation during the writing process of our joint paper. Thank you for
teaching me how to write a good scientific article in proper English and for many tips for
the usage of LATEX.

Moreover, my thanks go to the Working Group of Optimization at the University of
Wuppertal. Unfortunately, we did not spend much time in the office together due to the
Corona pandemic, but nevertheless we had a great time and some wonderful events (like,
e.g., Christmas parties or seminar trips) together. I would like to thank you all especially
for helpful discussions and feedback to my work, like, e.g., presentations or this thesis.
I also like to thank everyone else who supported and inspired me. Sometimes the little

things are the most important ones, but unfortunately I tend to forget them, so I can
not list them all. I like to thank my family and friends for supporting me and also some
students for inspiring me by asking questions or for infecting me with their motivation.
Finally, I like to thank the Deutsche Forschungsgemeinschaft for the partial financial

support through project number KL 1076/11-1.

3

Contents

1. Introduction 7

2. Basic Concepts and Notation 11
2.1. Binary Relations and Cones . 11

2.2. Optimization Problems and Optimality Concepts 13

2.3. Scalarizations . 17

2.4. Graphs . 27

2.5. Matroids . 33

2.6. Single-objective Matroid Optimization and Multi-objective Minimum Span-
ning Tree Problem . 36

2.7. Single-objective Shortest Path Problem . 42

2.8. Single-objective Matroid Intersection Problem 50

2.9. Multi-objective Knapsack Problem . 54

2.10. Multi-objective Assignment Problem . 56

3. Bi-objective Matroid Optimization Problems with Binary Costs 59
3.1. Problem Formulation . 60

3.2. Theoretical Results . 62

3.3. Efficient Swap Algorithm . 69

3.4. Numerical Results . 74

3.5. Conclusion and Further Ideas . 80

4. Single- and Multi-objective Matroid Optimization Problems with Ordinal Costs 83
4.1. Single-objective Matroid Optimization with Ordinal Costs 84

4.2. Bi-objective Matroid Optimization with Ordinal Costs 90

4.3. Matroid Intersection Algorithm for Ordinal Constraints 93

4.4. Multi-objective Matroid Optimization with Ordinal Costs 98

4.5. Numerical Results . 100

4.6. Conclusion and Further Ideas . 104

5. Single- and Multi-objective Combinatorial Optimization Problems with Ordi-
nal Costs 107
5.1. Single-objective Combinatorial Optimization with Ordinal Costs 108

5.2. Ordinal Optimality versus Pareto Optimality: An Interpretation based on
Ordering Cones . 118

5.3. Solution Strategies . 124

5.4. Excursus: Olympic Medals and Ordinal Weight Space Decomposition . . . 128

5.5. Numerical Results . 130

5.6. Multi-objective Combinatorial Optimization with Ordinal Costs 136

5

Contents

5.7. Conclusion and Further Ideas . 139

6. Conclusion and Further Ideas 141

Bibliography 143

A. A Story About Ordinal Optimization Through Multi-objective Reformulation 153

6

1. Introduction

Optimization appears in many aspects of our every day live. For example, we want to
find the shortest path to work in the morning, at work we make decisions to improve the
corporate profit, and after work we search for the cheapest products to buy. Often, we
actually have more than one optimization goal. Consider, for example, the selection of the
best bicycle path to work. Then, we are interested in finding short and safe paths. Also,
the company has, besides economical interests, additional ecological goals as customers
are more and more concerned about environmentally friendly products. And even if we
go shopping, we want to buy cheap products but they should also be of good quality.

Obviously, it is in general not possible to realize the best value in several objectives at
the same time. For example, the cheapest product often does not have the highest quality.
Nevertheless, there may exist a company that produces a particular product at a better
price and a higher quality than another company. In this case, we say that the product
of the first company dominates the product of the second company. In general, a solution
dominates another solution if it is at least as good in all objectives and strictly better in
at least one objective. We are interested in those solutions for which there exist no other
solutions which dominate them.

In this thesis we particularly focus on ordinal objective functions. Ordinal costs are
used for objectives which cannot be measured by numerical values but which can be
associated with ordered categories. As an example, we consider the shortest path problem
for cyclists. Cyclists often want to find a short path to their destination, but they are
also concerned about its safety, the inclines in the path and the smoothness of the surface.
So they usually prefer, in terms of safety, roads with bicycle lanes over roads without
bicycle lanes and a high traffic volume. In terms of the incline, cyclists prefer flat over
hilly paths and, in terms of the surface conditions, they usually prefer asphalt over gravel,
which is again preferred over sand. Rather than directly using an ordinal objective, Raith
et al., 2009 suggests a method to quantify the attractiveness of a route for cyclists. This is
determined by, e.g., the safety and the incline of a path. The quantified attractiveness is
then used as a second objective function besides the travel time in a bi-objective shortest
path problem. Raith et al., 2009 applies the resulting route-choice model to a case study
in New Zealand. Furthermore, this method is used in Raith et al., 2011 for a new demand
forecast methodology. This methodology is part of a prioritizing strategy to decide in which
order infrastructure projects for bicycles are to be executed in Auckland, New Zealand. In
this thesis we suggest solution methods for directly handling ordinal objective functions
such that it is not necessary to replace the ordinal categories by numerical values.

Problems, like, e.g., the shortest path problem, that have feasible solutions defined on a
discrete set, are called combinatorial optimization problems. In this thesis we investigate
such problems with several objective functions, the so called multi-objective combinatorial
optimization (MOCO) problems.

MOCO problems are known to be notoriously hard. We refer to Figueira et al., 2017 for

7

Chapter 1 Introduction

a recent discussion of the prevalent difficulties in MOCO problems. Even when considering
“simple” problems like matroid optimization, where an optimal solution can be found with
the greedy algorithm, the multi-objective variants tend to be very difficult. The decision
problem associated with multi-objective matroid optimization problems is proven to be
NP-complete in general, see Ehrgott, 1996. A survey on multi-objective combinatorial
optimization is given in Ehrgott and Gandibleux, 2000.

Due to the hardness of MOCO problems, many authors suggest heuristics or approx-
imation methods as an alternative to exact algorithms to solve, or at least to compute
feasible solutions, for those problems. Exact algorithms compute at least one efficient
solution. Often, the complete non-dominated set, and one efficient solution for every
non-dominated outcome vector are computed. In contrast, approximation methods return
solutions that approximate optimal solutions and the returned solutions often satisfy a
given error-bound, i.e., the outcome vectors found lie with in a certain distance to the
non-dominated points. Heuristics cannot give this guarantee in general and hence, we
often only know that the returned solution is feasible, but we don’t know how close the
solution is to the non-dominated set. Nevertheless, the huge advantage of heuristics is
that they often need significantly less running time than exact or approximation methods.
An example for exact solution strategies are branch and bound algorithms, which can

be used to solve MOCO problems, see, for example, Stidsen et al., 2014, Jesus et al., 2021
or for a survey Przybylski and Gandibleux, 2017. For a review of exact solution methods,
see Ehrgott et al., 2016 and for a survey on approximation methods for MOCO problems,
see Ehrgott and Gandibleux, 2004.
There exist different heuristic methods for MOCO problems. For a survey on genetic

algorithms for multi-objective optimization, see Coello, 1998. Evolutionary algorithms
have been presented, like the genetic local search algorithm from Jaszkiewicz, 2002 and the
particle swarm algorithm from Roy et al., 2011. A frequently used evolutionary algorithm
is the non-dominated sorting genetic algorithm (NSGA-II). Verma et al., 2021 give a review
on different results of other researchers, who used the NSGA-II to solve MOCO problems.
Other heuristic strategies are local search techniques, see Blot et al., 2018 for a survey.
Moreover, there exist some methods that combine heuristics and exact methods. Such

hybrid methods for MOCO problems are presented in Ehrgott and Gandibleux, 2008.
At the beginning of this thesis, we focus on multi-objective optimization problems on

matroids, which are a special case of MOCO problems. The multi-objective spanning
tree problem is a prominent special case of multi-objective optimization problems on ma-
troids. For multi-objective spanning tree problems it was shown in Hamacher and Ruhe,
1994 that already in the bi-objective case the cardinality of the non-dominated set may
grow exponentially with the size of the instance. This result holds analogously for general
multi-objective optimization problems on matroids. As a consequence, for such instances
the complete enumeration of the non-dominated set is often too time consuming since it
requires an exponential amount of time in the problem size in the worst case. To distin-
guish algorithms by their efficiency for problems with exponentially large non-dominated
sets, Bökler et al., 2017 recently suggested to consider the concept of output sensitive com-
plexity in the context of MOCO problems and analyzed various problem classes. In the
dissertation of Bökler, 2018 the output sensitive complexity of the bi-objective spanning
tree problem is related to that of bi-objective unconstrained combinatorial optimization

8

(BUCO) which is, however, also still open. Despite the general intractability of multi-
objective spanning tree problems, it is shown in the dissertation of Seipp, 2013 that the
number of extreme supported non-dominated outcome vectors grows only polynomially
with the size of the instance.

Outline of this thesis

MOCO problems are, in general, very hard to solve. In this thesis we focus on special
cases of MOCO problems that allow for efficient, i.e., polynomial time solution methods
despite these general difficulties. Decisive for the problem complexity are, on the one
hand, the objective functions, and on the other hand the problem structure. We consider
the novel and practically relevant class of ordinal objective functions, with binary (0-1)
objectives being an important special case, and derive efficient solution methods that take
advantage of the close relation to associated MOCO problems. For multi-objective matroid
optimization problems with ordinal costs we derive a polynomial time algorithm based on
matroid intersection. When considering a binary objective function instead of an ordinal
objective function in bi-objective matroid problems, then a particularly efficient algorithm
with a linear number of iterations is derived which allows the exact solution of even large
instances within seconds.

From an overall perspective, we first consider a specific case of combinatorial opti-
mization problems with a lot of structure and derive a very efficient solution algorithm.
Afterwards, we relax the special structure step by step and present efficient algorithms
for more and more general cases. Hence, we first consider matroids with binary costs,
then matroids with ordinal costs, and finally we omit the restriction to matroids and
consider general combinatorial optimization problems with ordinal costs. While investi-
gating one problem type, we often start with the single-objective case and move on to the
multi-objective case.

Chapter 2 We review some basic mathematical structures like graphs, matroids, bi-
nary relations and cones that are relevant for this thesis. Furthermore, we introduce a
general optimization problem and possible optimality concepts for multi-objective prob-
lems. Moreover, we introduce scalarization techniques, which generate solutions of multi-
objective problems by solving one, or a series of, associated single-objective optimization
problems. The single-objective optimization problems are usually easier to solve and can
be used to find solutions of the corresponding multi-objective problem. After considering
such general strategies, we introduce different combinatorial optimization problems with
special structures and some solution methods. Thereby, we focus on those problem types
and solution strategies, that are used throughout this thesis.

Chapter 3 We consider bi-objective optimization problems on matroids where one of the
objective functions is restricted to binary cost coefficients. We show that in this case the
problem has a connected efficient set with respect to a natural definition of a neighborhood
structure. This is, to the best of our knowledge, the first non-trivial problem on matroids
where connectedness of the efficient set can be established. Due to the connectedness of the

9

Chapter 1 Introduction

efficient set, we can formulate a polynomial time algorithm based on a neighborhood search
approach. The algorithm computes the complete non-dominated set in a linear number of
iterations. The theoretical results are validated by numerical experiments for bi-objective
minimum spanning tree problems (graphic matroids) and bi-objective knapsack problems
with a cardinality constraint (uniform matroids).

Chapter 4 In the context of matroid optimization, we consider ordinal, i.e., non-additive,
objective functions with more than two categories. We introduce several problem variants
that can be distinguished w.r.t. their respective optimization goals, analyze their interrela-
tions, and derive a polynomial time solution method that is based on the repeated solution
of matroid intersection problems. Numerical tests on minimum spanning tree problems
and on partition matroids confirm the efficiency of the approach.

Chapter 5 We analyze combinatorial optimization problems with ordinal objective func-
tions that assign categories (like good, medium and bad) rather than cost coefficients to
the elements of feasible solutions. We review different optimality concepts for ordinal
optimization problems and discuss their similarities and differences. We then focus on
two prevalent optimality concepts that are shown to be equivalent. Our main result is a
bijective linear transformation that transforms ordinal optimization problems into associ-
ated standard multi-objective optimization problems with binary cost coefficients. Since
this transformation preserves all properties of the underlying problem, problem-specific
solution methods remain applicable. A prominent example is dynamic programming and
Bellman’s principle of optimality, that can be applied, e.g., to ordinal shortest path and or-
dinal knapsack problems. We extend our results to multi-objective optimization problems
that combine ordinal and real-valued objective functions.

Chapter 6 The thesis concludes with a brief summary of the main results.

Contribution

Parts of the results of this thesis were already published in Gorski et al., 2022, Klamroth
et al., 2022a and Klamroth et al., 2022b (note that, as common in this field, the authors
are listed in alphabetical order). Chapter 1 and Chapter 2 contain parts from all three
articles, while Chapter 3 is mainly based on Gorski et al., 2022. Chapter 4 and Chapter 5
are based on the articles Klamroth et al., 2022a and Klamroth et al., 2022b, respectively.

10

2. Basic Concepts and Notation

In this chapter we introduce some basic mathematical structures, starting with binary
relations and cones in Section 2.1. These structures are used to define different optimal-
ity concepts for multi-objective optimization problems in Section 2.2, after providing a
short general introduction to single-objective and multi-objective combinatorial optimiza-
tion problems. Multi-objective optimization problems are often solved by generating and
solving many corresponding single-objective optimization problems. The single-objective
problems are constructed with scalarization techniques, see Section 2.3, which, for ex-
ample, combine several objective functions to one new objective function or transform
one or several objective functions into constraints. Combinatorial optimization problems
are often defined on objects with specific structures, like graphs or matroids, which are
introduced in Sections 2.4 and 2.5.

In the remaining sections, we consider specific combinatorial optimization problems
and provide a short literature review regarding properties and solution strategies for those
problems. Algorithms that are used throughout this thesis are explained in more detail
and illustrated at small examples. We start with single-objective matroid optimization
problems in Section 2.6 and recall the greedy algorithm, which solves such problems effi-
ciently. As minimum spanning tree problems are a special case of matroid optimization
problems we illustrate the greedy algorithm at this example. Then, we investigate the
more difficult multi-objective minimum spanning tree problem. In Section 2.7 we recall
two algorithms that solve the single-objective shortest path problem. These algorithms
are used in a method, which solves single-objective matroid intersection problems, see
Section 2.8. Finally, we review some literature regarding solution strategies for the multi-
objective knapsack problem in Section 2.9 and the multi-objective assignment problem in
Section 2.10.

2.1. Binary Relations and Cones

In this section we formally introduce binary relations as well as some orders and their
properties, see, e.g., Ehrgott, 2005. Furthermore, we repeat the definition of cones and
their properties as well as the interrelations between cones and binary relations.

A binary relation on a set R is a subset R of R×R. The following properties of binary
relations are needed throughout this thesis. For a more comprehensive overview, see, e.g.,
Ehrgott, 2005. A binary relation R on R is called

• reflexive, if (u, u) ∈ R for all u ∈ R,

• irreflexive, if (u, u) /∈ R for all u ∈ R,

• transitive, if (u, v) ∈ R and (v, w) ∈ R =⇒ (u,w) ∈ R for all u, v, w ∈ R,

• asymmetric, if (u, v) ∈ R =⇒ (v, u) /∈ R for all u, v ∈ R,

11

Chapter 2 Basic Concepts and Notation

• antisymmetric, if (u, v) ∈ R and (v, u) ∈ R =⇒ u = v for all u, v ∈ R,

• connected, if (u, v) ∈ R or (v, u) ∈ R for all u, v ∈ R with u ̸= v.

A reflexive and transitive binary relation is called a preorder. A preorder which is also
antisymmetric is called a partial order. An irreflexive and transitive binary relation is
called strict partial order, which is always also asymmetric by definition. A connected
preorder is called total preorder and a connected partial order, i.e., a reflexive, transitive,
antisymmetric and connected binary relation, is called total order.

In the following we consider, among others, binary relations on the real-valued vec-
torspace Rp. In this case, we call a binary relation R compatible with addition if (u, v) ∈ R
implies (u+w, v+w) ∈ R for all u, v, w ∈ Rp and compatible with scalar multiplication if
(u, v) ∈ R implies (λu, λv) ∈ R for all u, v ∈ Rp and λ > 0.

Some of the most common binary relations on Rp are the (weak (2.1), strict (2.3))
componentwise orders:

y′ ≦ ŷ : ⇐⇒ y′i ≤ ŷi, i = 1, . . . , p, (2.1)

y′ ⩽ ŷ : ⇐⇒ y′i ≤ ŷi, i = 1, . . . , p and y′ ̸= ŷ, (2.2)

y′ < ŷ : ⇐⇒ y′i < ŷi, i = 1, . . . , p. (2.3)

Here we use the notation uRv for u, v ∈ Rp instead of (u, v) ∈ R for R ∈ {≦,⩽, <}. In
the following, we use both notations equivalently for all binary relations. We define ≧, ⩾
and > on Rp analogously. Note that ≦ defines a partial order on Rp while ⩽ as well as
< define strict partial orders on Rp. It is easy to see that all three orders (2.1), (2.2) and
(2.3) are compatible with scalar multiplication and addition.

We denote the positive orthant of Rp by Rp
≧ := {x ∈ Rp : x ≧ 0} when zero is included

and by Rp
⩾ := {x ∈ Rp : x ⩾ 0} otherwise. Furthermore, we also consider the set of all

rational numbers Q, the set of all integers Z, the set of all non-negative integers including
zero Z≥ := {x ∈ Z : x ≥ 0}. The set of all strictly positive integers is denoted by
Z> := {x ∈ Z : x > 0} and the set of all p-dimensional vectors with integer values greater
or equal zero is denoted by Zp

≧ := {x ∈ Zp : x ≧ 0}.
Other common orders on Rp are the (weak (2.5)) lexicographic orders:

y′ <lex ŷ : ⇐⇒ y′ ̸= ŷ and y′k∗ < ŷk∗ with k∗ := min{k : y′k ̸= ŷk}, (2.4)

y′ ≦lex ŷ : ⇐⇒ y′ <lex ŷ or y′ = ŷ. (2.5)

We define>lex and≧lex analogously. It is easy to show, that the relation<lex is a connected
strict partial order while the relation ≦lex is a total order.

Orders and cones are closely related. The following review of basic concepts regarding
cones relevant in our context is based on Ehrgott, 2005; Engau, 2007; Ziegler, 1995.

A cone in Rp is a subset C ⊆ Rp such that λu ∈ C for all u ∈ C and for all λ ∈ R with
λ > 0. A cone C ∈ Rp is called pointed if u ∈ C implies that (−u) ̸∈ C for all u ̸= 0.

Moreover, a cone C ⊆ Rp is called a polyhedral cone if there exists a matrix A ∈ Rm×p

such that C = hcone(A) := {y ∈ Rp : Ay ≧ 0}. The rows of the matrix A are normal
vectors of hyperplanes, and thus a polyhedral cone can be seen as the finite intersection
of m (closed and linear) halfspaces. In general, see, for example, the textbook Matoušek,

12

2.2 Optimization Problems and Optimality Concepts

2002, a hyperplane is a set H ⊂ Rp and is defined as H = H(a, b) = {y ∈ Rp : a⊤ y = b},
with the normal vector a ∈ Rp \ {0} and b ∈ R. Furthermore, the closed upper halfspace
induced by H is defined as H+ := {y ∈ Rp : a⊤ y ≥ b}. A face of a polyhedral cone C
is a subset of C of the form C ∩H, with H a hyperplane such that C ⊆ H+. A face of
dimension 1 is called extreme ray. A set S ⊆ Rp is called convex set if for all e1, e2 ∈ S
and for every λ ∈ [0, 1] it holds that λe1 + (1− λ)e2 ∈ S. It can be easily seen that every
polyhedral cone is a convex set and hence also a convex cone.
Polyhedral cones can also be described by their extreme rays. This property is an

immediate consequence of the well-known Weyl-Minkowski-Theorem:

Theorem 2.1 (Weyl-Minkowski-Theorem, cf. Ziegler 1995). A cone C ⊆ Rp is finitely
generated by n vectors in Rp, i.e.,

C = vcone(B) :=
{
Bλ : λ ∈ Rn, λ ≧ 0

}
for some B ∈ Rp×n

if and only if it is a finite intersection of m halfspaces in Rp, i.e.,

C = hcone(A) =
{
y ∈ Rp : Ay ≧ 0

}
for some A ∈ Rm×p.

Now let C ⊂ Rp be a cone. Then the sets

C∗ := {d ∈ Rp : d⊤c ≥ 0 for all c ∈ C} and

C∗
s := {d ∈ Rp : d⊤c > 0 for all c ∈ C \ {0}}

are called the dual cone and the strict dual cone of C, respectively.
Every cone C ⊆ Rp induces a binary relation R ⊆ Rp × Rp by defining that (u, v) ∈ R

if and only if (v − u) ∈ C. Binary relations induced by cones are always compatible with
addition and scalar multiplication.
Conversely, binary relations that are compatible with scalar multiplication induce cones

that represent the respective relation. The following result is particularly useful in Chap-
ter 5.

Lemma 2.2 (see, e.g., Ehrgott 2005). Let R ⊆ Rp ×Rp be a binary relation on Rp which
is compatible with scalar multiplication. Then CR := {(v−u) ∈ Rp : (u, v) ∈ R} is a cone,
and CR induces the binary relation R. We call CR ordering cone. If R is additionally
compatible with addition, then the following statements hold:

1. 0 ∈ CR if and only if R is reflexive.

2. CR is pointed if and only if R is antisymmetric.

3. CR is convex if and only if R is transitive.

2.2. Optimization Problems and Optimality Concepts

To introduce different optimality concepts, we consider first a general optimization prob-
lem:

“minimize ” f(x) = (f1(x), . . . , fp(x))
⊤

s. t. x ∈ X.
(OP)

13

Chapter 2 Basic Concepts and Notation

We consider throughout this thesis only combinatorial optimization problems. Hence we
assume that the feasible set X is a subset of the power set of a finite discrete ground set
E, i.e., X ⊆ 2E . We call f the objective function of problem (OP), which usually maps
feasible solutions x ∈ X to an outcome space, which is often the Rp. In the case of ordinal
objective functions we have a different outcome space, see Chapter 4 and 5. In this section
we assume f : X → Rp. For combinatorial optimization problems some weights w(e) are
often assigned to every element e of the ground set E, i.e., w : E → Rp or w : E → Zp

≧, and

the objective function is defined as the sum over all weights of the elements of a feasible
solution x ∈ X, i.e., f(x) =

∑
e∈xw(e). In this case we often denote the objective function

f : X → Rp as w : X → Rp, in slight abuse of the notation, and we call it sum objective
function or weight function.

If p = 1, we call the problem (OP) a single-objective optimization problem and the term
“minimize ” means minimization in R. For p > 1 the problem (OP) is a multi-objective
optimization problem and there are different possibilities to define “minimize ”. In the
following, we introduce some optimality concepts for minimization problems. However,
all of the presented concepts can be defined analogously for maximization problems. For
an introduction into the field of multi-objective optimization, see, e.g., Ehrgott, 2005 and
Miettinen, 1999.

Cone Optimality Due to the close relation between orders and cones, see Section 2.1,
it is possible to define a general optimality concept based on cones. Lemma 2.2 implies
that binary relations R that are compatible with scalar multiplications can be equivalently
represented by associated ordering cones CR. This interrelation was used, among others,
in Engau, 2007 to define the concept of cone-efficiency (or CR-efficiency). For a general
introduction to ordering cones in the context of vector optimization see, e.g., Tammer and
Göpfert, 2003; Jahn, 2011.

Definition 2.3 (c.f. Engau 2007). Let Y ⊂ Rp be a nonempty set and let CR ⊂ Rp be a
cone induced by a strict partial order R ⊂ Rp × Rp (i.e., R is irreflexive and transitive).
Then the sets

N(Y,CR) := {y ∈ Y : ({y} ⊕ (−CR)) ∩ Y = ∅}
Nw(Y,CR) := {y ∈ Y : ({y} ⊕ (− int(CR))) ∩ Y = ∅}

are called the CR-non-dominated set and the weakly CR-non-dominated set of Y , re-
spectively. The corresponding pre-images x ∈ X are called CR-efficient and weakly CR-
efficient, respectively. Thereby, int(CR) denotes the interior of CR and the Minkowski
sum for two sets S1, S2 ⊆ Rp is denoted by S1 ⊕ S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.

Furthermore, we say that y′ CR-dominates ŷ for y′, ŷ ∈ Y if y′ ∈ ({ŷ} ⊕ (−CR)), and
that y′ strongly CR-dominates ŷ if y′ ∈ ({ŷ} ⊕ (− int(CR))).

If cone optimality is used with a cone CR, we write minCR instead of “minimize ” in the
optimization problem (OP).

Cone dominance is visualized in Figure 2.1 for the cone C⩾ induced by the component-
wise order defined in (2.2).

14

2.2 Optimization Problems and Optimality Concepts

Y

C⩾

ŷ

C⩾

ȳ

Figure 2.1.: Visualization of cone dominance for the cone C⩾. The outcome vector ȳ is
C⩾-dominated while ŷ is C⩾-non-dominated.

Pareto Optimality One of the most common concepts for multi-objective optimization
is the Pareto concept of optimality (see again, e.g., Ehrgott, 2005). Pareto optimality
is based on the componentwise orders (2.1), (2.2) and (2.3) and a special case of cone
optimality with the corresponding cones to the componentwise orders. The component-
wise order (2.2) induces the Pareto cone, which is given by

CP := Rp
⩾ = {(v − u) ∈ Rp : u ⩽ v} = {y ∈ Rp : y ⩾ 0}.

Similarly, the weak component-wise order (2.1) induces the closure of the Pareto cone
given by Rp

≧ = {y ∈ Rp : y ≧ 0} = CP ∪ {0}, which is a proper, pointed and convex cone

(see Lemma 2.2). Moreover, it is a polyhedral cone that is defined by the identity matrix,
i.e., CP ∪ {0} = hcone(I) = vcone(I) (where I is the p × p identity matrix). Note also
that the Pareto cone is self dual, i.e., CP

∗ = CP .

Efficient solutions and non-dominated points can be defined due to Definition 2.3 with
respect to the Pareto cone, i.e., N(Y,CP) is the non-dominated set (or Pareto set) of Y ,
and Nw(Y,CP) is the weakly non-dominated set of Y . Equivalently, Pareto dominance
can be defined by the underlying relation of the Pareto cone. As the definition based on
the componentwise order is in some cases more useful we add this definition here. Hence,
let x′, x̂ ∈ X be two feasible solutions and y′ := f(x′), ŷ := f(x̂) ∈ Rp be the corresponding
outcome vectors. Then we say

• y′ (x′) dominates ŷ (x̂) if and only if y′ ⩽ ŷ,

• y′ (x′) strongly dominates ŷ (x̂) if and only if y′ < ŷ,

• x̂ ∈ X is efficient or Pareto optimal if there does not exist another feasible solution
x′ ∈ X that dominates x̂, i.e., ∄x′ ∈ X : f(x′) ⩽ f(x̂),

• x̂ ∈ X is called weakly efficient or weakly Pareto optimal if there does not exist
x′ ∈ X that strongly dominates x̂, i.e., for which f(x′) < f(x̂),

• the image f(x̂) of an efficient solution x̂ is the non-dominated outcome vector or
non-dominated point,

15

Chapter 2 Basic Concepts and Notation

Y

Figure 2.2.: Illustration of Pareto dominance.

• an efficient solution x is supported efficient if it is a minimizer of the non-trivial
weighted sum problem min{∑p

i=1 λifi(x), x ∈ X} for some λi ∈ [0, 1], i = 1, . . . , p
and

∑p
i=1 λi = 1, see Section 2.3,

• the image f(x) of a supported efficient solution x is a supported non-dominated
outcome vector or point (it lies on the boundary of the convex hull conv(Y) of the
set Y = f(X) of feasible outcome vectors in the objective space),

• f(x) is an extreme supported non-dominated outcome vector or point if f(x) is an
supported non-dominated point and if f(x) is an extreme point of conv(Y).

In Figure 2.2 a light gray set Y of feasible outcome vectors and its convex hull, depicted
by the dark gray line, is given. The black points are extreme supported non-dominated
outcome vectors, the black points together with the dark gray point and all points on solid
black lines are supported non-dominated points. The supported non-dominated points
together with the points on the dashed black lines are non-dominated outcome vectors
and all non-dominated outcome vectors together with the white points and all points on
the dotted lines are weakly non-dominated points.

In the following we also write “Pareto-efficient”, “Pareto-dominates” and “Pareto-non-
dominated” to make clear, that we consider the Pareto concept of optimality. If it is
apparent from the context that Pareto optimality is meant, we omit the additional use of
“Pareto”. If we use the Pareto concept of optimality, we write min instead of “minimize”
in the optimization problem (OP). As the Pareto optimality can be interpreted as a
special case of cone optimality, we sometimes also write minCP

to emphasize that Pareto
optimality is used.

Lexicographic Optimality The concept of lexicographic optimality assumes a specific
ordering among the components of the given outcome vectors, i.e., the first component
is more important than the second, and so on. We refer again to Ehrgott, 2005 for a
more general introduction. Lexicographic optimality is based on the lexicographic orders
2.4 and 2.5, see Section 2.1. Let x′, x̂ ∈ X and y′ := f(x′), ŷ := f(x̂) ∈ Rp. We say
y′ lexicographically dominates ŷ if and only if y′ <lex ŷ. Consequently, we call a feasible
solution x̂ ∈ X of problem (OP) lexicographically optimal if f(x̂) ≦lex f(x) for all x ∈ X.

16

2.3 Scalarizations

Note that the lexicographically optimal solutions of a problem are a subset of the Pareto
efficient solutions of the same problem, see Ehrgott, 2005. To distinguish lexicographic
optimization from other optimality concepts we write lexmin (and lexmax in the case of
maximization problems, respectively).

Combined Orderings Some optimization problems have an objective function that maps
feasible solutions to outcome vectors on which several of the above orderings are combined.
This may be the case when, for example, the first p components of an outcome vector
represent sum objective functions that are ordered w.r.t. Pareto dominance, while the
following q objective values have to be minimized due to cone optimality with a different
cone than the Pareto cone.We say that a feasible solution x′ dominates a feasible solution x̂,
if all objective function values of x′ are “at least as good” w.r.t. all components and if there
exists at least one strict inequality in one of the respective ordering concepts. Similarly,
we say x′ strongly dominates a feasible solution x̂ if and only if all objective function values
of x′ strongly dominate all objective function values of x̂ w.r.t. the respective optimality
concept.

We are interested in finding the efficient set (or the weakly efficient set) of problem
(OP), possibly with combined orderings, given by

XE := {x ∈ X : there exists no x′ ∈ X with f(x′) dominates f(x)} and

XwE := {x ∈ X : there exists no x′ ∈ X with f(x′) strongly dominates f(x)},

respectively. GivenXE andXwE, the images of these two sets under the objective function
f are called non-dominated set and weakly non-dominated set, respectively:

YN := f(XE)

YwN := f(XwE)

If we consider efficient and non-dominated sets of different optimization problems, we
indicate by superscripts to which problem the efficient or non-dominated set belong. A
subset XcE ⊆ XE satisfying f(XcE) = YN is called a complete set of efficient solutions.
Note that in general XcE ⊊ XE. If in addition |f(XcE)| = |YN| holds true, we say that the
set XcE is of minimal cardinality or just minimal, for short. Here and in the following, |S|
denotes the cardinality of a set S. Note that in this case, XcE contains exactly one efficient
solution for each vector in the non-dominated set. Algorithms often aim to compute YN
and XcE rather than YN and XE.

2.3. Scalarizations

In the following we review several frequently used scalarization techniques for a multi-
objective optimization problem (MOP) where CR ⊆ Rp is an ordering cone, i.e.,

minCR f(x) = (f1(x), . . . , fp(x))
⊤

s. t. x ∈ X.
(MOP)

17

Chapter 2 Basic Concepts and Notation

All scalarization techniques presented in the following transform the multi-objective prob-
lem (MOP) into a single-objective problem to which single-objective solution methods and
available solvers can be applied. As the concept of Pareto optimality is mostly used, we
investigate this specific case afterwards.

First, we introduce the Pascoletti-Serafini scalarization and show that the weighted
Tchebycheff scalarization as well as a hybrid scalarization for (MOP) with Pareto opti-
mality can be deduced from the Pascoletti-Serafini scalarization by an appropriate choice
of the parameters. Moreover, from the hybrid scalarization we deduce the Benson scalar-
ization, the ε-constrained scalarization and the weighted sum scalarization as special cases.

We refer to, e.g., Miettinen, 1999, Ehrgott, 2005 or Dächert, 2014 for a thorough in-
troduction to scalarization techniques for Pareto optimality, covering also some additional
scalarization methods like compromise programming. Some of the techniques are explained
for general cones, for example, in Engau, 2007. Another scalariaztion technique for general
cones is also, for example, described in Göpfert et al., 2003. Further references are given
for each technique individually in the corresponding paragraph.

Pascoletti-Serafini Scalarization The Pascoletti-Serafini scalarization is introduced by
Pascoletti and Serafini, 1984 for maximization problems w.r.t. cone optimality for closed
convex cones. They formulate the scalarization for the general case where the objective
space is any finite-dimensional real linear space.

The underlying idea is to start a search in the objective space from a reference point
z into a search direction d ∈ int(C), which points into the interior of a general convex
cone C. The aim is to find the smallest possible step length t ∈ R such that a feasible
outcome vector of problem (MOP), which corresponds to a weakly CR-efficient solution,
is obtained. Since t can also be negative, a feasible reference point can be improved.

In the following, we assume that the objective space is Rp and that the ordering cone CR
is pointed, closed and convex, i.e., the underlying relation R has to be antisymmetric and
transitive. Furthermore, we assume that the interior of the ordering cone is non-empty,
i.e., int(CR) ̸= ∅. This case was investigated, e.g., by Eichfelder, 2007.

Now, let z ∈ Rp be the reference point and d ∈ int(CR) be a search direction pointing
into the interior of the cone CR. Then the Pascoletti-Serafini scalarization is defined as

min t
s. t. z + t d− f(x) ∈ CR

t ∈ R
x ∈ X.

(PSMOP(z,d))

An illustration of the Pascoletti-Serafini scalarization is given in Figure 2.3. The following
result states that every optimal solution t∗, x∗ of the Pascoletti-Serafini scalarization leads
to a weakly CR-efficient solution x∗ for the corresponding multi-objective problem (MOP).
Moreover, every weakly CR-efficient solution of the multi-objective problem (MOP) can
be computed with the Pascoletti-Serafini scalarization for an appropriate choice of the
parameters z and d.

18

2.3 Scalarizations

Y

CP

z

t∗d

t∗d

f(x∗)

f1(x)

f2(x)

1 2 3 4 5

1

2

3

4

5

Y
z + t∗d− f(x∗)

CP

z t∗d

f(x∗) z + t∗d− f(x∗)

f1(x)

f2(x)

1 2 3 4 5

1

2

3

4

5

Y

CP

z

d

t∗d

f(x∗)

f1(x)

f2(x)

1 2 3 4 5

1

2

3

4

5

Y

CPz
dt∗d

f(x∗)

z + t∗d− f(x∗)

f1(x)

f2(x)

1 2 3 4 5

1

2

3

4

5

Figure 2.3.: Illustration of the Pascoletti-Serafini scalarization for the closure of the Pareto
cone CP and different choices of the reference point z ∈ R2 and the search
direction d ∈ R2

>.

19

Chapter 2 Basic Concepts and Notation

Theorem 2.4 (see, e.g., Eichfelder, 2008). Let a problem (MOP) be given with a pointed,
convex and closed cone CR and a set of feasible outcome vectors Y .

• If t∗ and x∗ are optimal for (PSMOP(z,d)) with z ∈ Rp and d ∈ int(CR), then x∗ is
weakly CR-efficient for problem (MOP).

• If x∗ is a CR-efficient solution of problem (MOP), then t = 0 and x = x∗ is an opti-
mal solution of problem (PSMOP(z,d)) with z := f(x∗) and arbitrary d ∈ CR \ {0}.

• If x∗ is a weakly CR-efficient solution of problem (MOP), then t = 0 and x = x∗

is an optimal solution of problem (PSMOP(z,d)) with z := f(x∗) and arbitrary
d ∈ int(CR).

All scalarization techniques we present below for the Pareto cone can be interpreted as a
special case of the Pascoletti-Serafini scalarization, as shown in Eichfelder, 2007.

Weighted Tchebycheff Scalarization The Tchebycheff scalaraziation is a special case of
compromise programming, see, e.g., Ehrgott, 2005 for more details. The idea of compro-
mise programming is to find a feasible point, that has the smallest possible distance to
the ideal point zI . The ideal point is given by

zIi := min{fi(x) : x ∈ X} for all i = 1, . . . , p

and is in most applications infeasible, i.e., zI /∈ Y . Thereby, the distance between two
points is often measured by a ℓp-norm with p ∈ [1,∞]. If the ℓ∞-norm is used, we call
this method Tchebycheff scalarization.

Bowman, 1976 developed this method further by including weights λ ∈ Zp
≥ in the

distance measure, resulting in the following weighted Tchebycheff scalarization of (MOP)
with Pareto optimality:

min maxi=1,...,p{λi · |fi(x)− zUi |}
s. t. x ∈ X.

(2.6)

Note that here an utopian point zU ∈ Rp, given by zU < zI , is used instead of the ideal
point zI . Otherwise it is not possible to compute the lexicographically optimal solutions
with strictly positive weights λi > 0 for i = 1, . . . , p. The weighted Tchebycheff scalariza-
tion is illustrated in Figure 2.4(a). Every solution of problem (2.6) is weakly CR-efficient
for the corresponding problem (MOP) with Pareto optimality. It is CR-efficient if the so-
lution is unique, see Bowman, 1976. Steuer and Choo, 1983 investigated this scalarization
technique in detail and they introduced two variants of this scalarization technique. The
first variant is a two-stage method and the second variant includes augmentation terms.

Above we consider the case of Pareto optimality, but we are also interested in multi-
objective optimization problems under general cone optimality. Thus, we want to find
the weighted Tchebycheff scalarization for the general case. Towards this end, we need a
reformulation of problem (2.6). First, we recognize that zUi < fi(x) for all i = 1, . . . , p and
for all x ∈ X. Hence, we can omit the absolute value sign | · |. Furthermore, we introduce

20

2.3 Scalarizations

Y

zU

f(x∗)

f1(x)

f2(x)

1 2 3 4 5

1

2

3

4

5

(a) Illustration of problem (2.6).

Y

CP

zU
t∗d

f(x∗)
z + t∗d− f(x∗)

f1(x)

f2(x)

1 2 3 4 5

1

2

3

4

5

(b) Illustration of prob-
lem (WTMOP(λ, zU)).

Figure 2.4.: Illustration of the weighted Tchebycheff scalarization w.r.t. the Pareto
cone CP for an utopian point zU ∈ R2 and the weight λ = (1, 2)⊤.

a new variable t ∈ R to replace the objective function by adding some inequalities:

min t
s. t. t ≥ λi(fi(x)− zUi) i = 1, . . . , p

t ∈ R
x ∈ X.

(2.7)

For strictly positive weights λi > 0 this formulation is equivalent to

min t
s. t. zUi + 1

λi
t− fi(x) ≥ 0 i = 1, . . . , p

t ∈ R
x ∈ X.

(2.8)

This was shown, for example, in Dächert, 2014. Finally, we can formulate the equivalent
weighted Tchebycheff scalarization for general cones and with strictly positive weights
λ ∈ Rp

> as:

min t
s. t. zU + t (1

λ1
, . . . , 1

λp
)⊤ − f(x) ∈ CR

t ∈ R
x ∈ X.

(WTMOP(λ, zU))

This formulation can be interpreted as a special case of the Pascoletti-Serafini scalariza-
tion with reference point zU and search direction d := (1

λ1
, . . . , 1

λp
)⊤, see Figure 2.4(b)

for an illustration. Due to Theorem 2.4 every weakly CR-efficient solution of prob-
lem (MOP) can be computed with the weighted Tchebycheff scalarization, as long as
(1
λ1
, . . . , 1

λp
)⊤ ∈ int(CR) and CR is a pointed, closed and convex cone.

21

Chapter 2 Basic Concepts and Notation

Hybrid Scalarization Let Y ⊆ Rp be the set of feasible outcome vectors and let CR ⊆ Rp

be a convex ordering cone of problem (MOP). Furthermore, let λ ∈ (CR)∗\{0} and ε ∈ Rp.
Then the hybrid scalarization of problem (MOP), see, e.g., Engau, 2007, is defined as

min
∑p

i=1 λifi(x)
s. t. ε− f(x) ∈ CR

x ∈ X.
(HSMOP(λ, ε))

In the following, we review a result on the connection between the solutions of prob-
lem (HSMOP(λ, ε)) and problem (MOP). Here we only need that the cone CR is convex.
The proof is included for the sake of completeness and to explain which assumptions have
to be made at the ordering cone CR in case of the weighted sum scalarization.

Theorem 2.5 (see, e.g., Engau, 2007). Let y′ ∈ Y be an optimal outcome vector for the hy-
brid scalarization of problem (MOP) with a convex ordering cone CR, λ ∈ (CR)∗ \{0} and
ε ∈ Rp. Then it holds that y′ is weakly CR-efficient for the corresponding problem (MOP),
i.e., y′ ∈ Nw(Y,CR). If λ ∈ (CR)∗s, then y′ is CR-efficient for the corresponding prob-
lem (MOP), i.e., y′ ∈ N(Y,CR).

Proof. We first show that λ ∈ (CR)∗s implies y′ ∈ N(Y,CR) by contradiction. Hence, we
assume y′ ∈ Y is optimal for (HSMOP(λ, ε)), λ ∈ (CR)∗s and y′ /∈ N(Y,CR). Then there
exists a y ∈ Y that dominates y′, i.e., y′ = y+c for some c ∈ CR\{0}. The outcome vector
y is feasible for (HSMOP(λ, ε)), i.e., ε−y = ε−y′+ c ∈ CR, due to the feasibility of y′ for
(HSMOP(λ, ε)) and the convexity of CR. Furthermore, it holds that λ y′ = λ y+λ c > λ y
as λ ∈ (CR)∗s. This contradicts the optimality of y′ for (HSMOP(λ, ε)).

It is left to show that for all λ ∈ (CR)∗ \ {0} with an optimal outcome vector y′ ∈ Y for
(HSMOP(λ, ε)) it holds that y′ ∈ Nw(Y,CR). First, we observe that the assumption

λ ∈ (CR)∗ \ {0} = {d ∈ Rp : d⊤c ≥ 0 for all c ∈ CR} \ {0}

is equivalent to

λ ∈ (int(CR))∗s = {d ∈ Rp : d⊤c > 0 for all c ∈ int(CR) \ {0}}

as linear functions in Rp are continuous. Hence, it follows that y′ ∈ N(Y, int(CR)) which
is equivalent to y′ ∈ Nw(Y,CR).

We emphasize that we need a convex cone to guarantee the above optimality results. This
means that the underlying binary relation R has to be transitive, see Lemma 2.2.

Guddat et al., 1985 have proven this result for the special case of the Pareto cone
CR = CP , with the bound ε = f(x̂) and with some feasible x̂ ∈ X. Note that in case of
the Pareto cone λ ∈ (CP)

∗
s is equivalent to λi > 0 for all i = 1, . . . , p and ε− f(x) ∈ CP is

equivalent to f(x) ⩽ ε.

In the case of the Pareto cone, sometimes only some of the constraints fi(x) ≤ εi,
i = 1 . . . , p, from problem (HSMOP(λ, ε)) are used. Let Q ⫅ {1, . . . , p} denote the set of

22

2.3 Scalarizations

Y

ε1

f(x∗)

λ

f1(x)

f2(x)

1 2 3 4 5

1

2

3

4

5

(a) Illustration of prob-
lem (HSMOP(λ, ε,Q)) with
λ = (0.2, 1)⊤, ε1 = 3.5 and
Q = {1}.

Y

ε1

Cλ
z

d

t∗d

f(x∗)

λ

z + t∗d− f(x∗)
f1(x)

f2(x)

1 2 3 4 5

1

2

3

4

5

(b) Illustration of problem (2.9) with
λ = (0.2, 1)⊤, z = (3.5, 4.5) and
d = (0, 1)⊤.

Figure 2.5.: Illustration of the hybrid scalarization.

indices of the constraints that are present in (HSMOP(λ, ε)). Then we get the following
variant of the hybrid scalarization

min
∑p

i=1 λifi(x)
s. t. fi(x) ≤ εi, ∀i ∈ Q

x ∈ X.
(HSMOP(λ, ε,Q))

An illustration of the hybrid scalarization with λ = (1, 5)⊤, ε = 3.5 and Q = {1}
is given in Figure 2.5(a). Note that problem (HSMOP(λ, ε,Q)) is equivalent to prob-
lem (HSMOP(λ, ε)) with the Pareto cone, i.e., CR = CP , if Q = {1, . . . , p}. If this is
not the case, i.e., if Q ⫋ {1, . . . , p}, then the hybrid scalarization (HSMOP(λ, ε,Q)) is a
special case of the Pascoletti-Serafini scalarization with the reference point z = ε and a
search direction d with di = 0 for all i ∈ Q and di = 1 for all i ∈ {1, . . . , p} \ Q under a
specific ordering cone which depends on λ. Furthermore, if Q contains all indices except
for one, i.e., Q = {1, . . . , j− 1, j+1, . . . , p} with j ∈ {1, . . . , p}, then d is equal to the j-th
unit vector, i.e., d = ej . The following theorem shows the correspondence between the
hybrid scalarization and the Pascoletti-Serafini scalarization, see, e.g., Eichfelder, 2007.

Theorem 2.6 (see, e.g., Eichfelder, 2007). Let Q ⫋ {1, . . . , p} and λ ∈ Rp such that∑
i/∈Q λi > 0. Then a solution x∗ ∈ X is an optimal solution of problem (HSMOP(λ, ε,Q))

if and only if there is a t∗ such that (t∗, x∗) is an optimal solution of problem (PSMOP(z,d))
with zi = εi for i ∈ Q, zi arbitrary for i ∈ {1, . . . , p} \Q, di = 0 for all i ∈ Q, di = 1 for
all i ∈ {1, . . . , p} \Q and the cone Cλ := {y ∈ Rp : yi ≥ 0,∀i ∈ Q, λ⊤y ≥ 0}, i.e., of

min t
s. t. z + t d− f(x) ∈ Cλ

t ∈ R
x ∈ X.

(2.9)

23

Chapter 2 Basic Concepts and Notation

Y

f(x∗)

z

z2 − f2(x
∗)

z1 − f1(x
∗)

f1(x)

f2(x)

1 2 3 4 5

1

2

3

4

5

(a) Illustration of problem (BMOP(z))
with z = (3, 4.5)⊤.

Y

f(x∗)

z

λ = (1, 1)⊤

z1 − f1(x
∗)

f1(x)

f2(x)

1 2 3 4 5

1

2

3

4

5

(b) Illustration of problem (2.10) with
z = (3, 4.5)⊤.

Figure 2.6.: Illustration of the Benson scalarization for the Pareto cone CP .

The Pascoletti-Serafini scalarization, which corresponds to the hybrid scalarization in Fig-
ure 2.5(a), is illustrated in Figure 2.5(b).

Benson Scalarization If we choose λ = (1, . . . , 1)⊤ and z ∈ Y in the hybrid scalarization,
we get the Benson scalarization, see, e.g., Engau, 2007:

min
∑p

i=1 fi(x)
s. t. z − f(x) ∈ CR ∪ {0}

x ∈ X.
(2.10)

Usually, the Benson scalarization is formulated slightly differently to better emphasize the
idea of this technique. The idea is to choose some feasible solution x′ ∈ X and maximize
the sum of non-negative deviation variables ci = fi(x

′)− fi(x) over the feasible set. Here,
we denote the objective function value of x′ by z := f(x′) ∈ Y . If x′ is already an optimal
solution, then the optimal objective function value is zero. Hence, we get the following
version of the Benson scalarization

max
∑p

i=1 zi − fi(x)
s. t. z − f(x) ∈ CR ∪ {0}

x ∈ X,
(BMOP(z))

that is equivalent to (2.10) since z is constant. From Theorem 2.5 it follows that an optimal
solution x∗ of problem (BMOP(z)) with a convex cone CR and λ = (1, . . . , 1)⊤ ∈ (CR)∗

is weakly CR-efficient for problem (MOP). If even λ = (1, . . . , 1)⊤ ∈ (CR)∗s holds, then x∗

is CR-efficient for problem (MOP).
This method is first introduced by Benson, 1978 for Pareto optimality. In this case

the constraints can be equivalently formulated as z − f(x) = f(x′) − f(x) ≧ 0. In Fig-
ure 2.6(a) is the Benson scalarization in the version of problem (BMOP(z)) illustrated.
The corresponding version of the hybrid scalarization is given in Figure 2.6(b).

24

2.3 Scalarizations

Y

ya

εa1

yb

εb1

yc
εc2

f1(x)

f2(x)

1 2 3 4 5

1

2

3

4

5

Figure 2.7.: Illustration of the ε-constraint scalarization for three different choices of ε,
i.e., εa1 = 4.5, εb1 = 1.5 and εc2 = 4.5, with the corresponding optimal outcome
vectors ya = (4, 1)⊤, yb = (1.5, 3)⊤ and yc = (1, 4)⊤.

The ε-Constraint Scalarization If we choose λ = ej the j-th unit vector, j ∈ {1, . . . , p},
together with ε ∈ Rp in the hybrid scalarization, we get the ε-constraint scalarization, see,
e.g., Engau, 2007. Let CR be a convex cone, ej ∈ (CR)∗ and ε ∈ Rp. Then

min fj(x)
s. t. ε− f(x) ∈ CR

x ∈ X.
(ε-MOP)

From Theorem 2.5 it follows that an optimal solution x∗ of problem (ε-MOP) with a
convex cone CR and λ = ej ∈ (CR)∗ is weakly CR-efficient for problem (MOP). If it even
holds that λ = ej ∈ (CR)∗s, then x∗ is CR-efficient for problem (MOP).

If Pareto optimality is considered, then the constraint on fj(x), which defines the ob-
jective function, is often dropped. This is equivalent to choosing λ = ej , ε ∈ Rp and
Q = {1, . . . , j− 1, j+1, . . . , p} in problem (HSMOP(λ, ε,Q)). Hence, we get the following
version for Pareto optimality:

min fj(x)
s. t. fi(x) ≤ εi, i = 1, . . . , p, i ̸= j

x ∈ X.
(2.11)

This version was introduced by Haimes et al., 1971 for a bi-objective optimization problem
and further investigated, for example, by Chankong and Haimes, 1983. An illustration of
the ε-constraint scalarization is given in Figure 2.7.

25

Chapter 2 Basic Concepts and Notation

Yya
λa

yb

λb

f1(x)

f2(x)

1 2 3 4 5

1

2

3

4

5

Figure 2.8.: Illustration of the weighted sum scalarization under the Pareto cone CP for
λa = (1, 0.25)⊤ and λb = (0.2, 1)⊤ with optimal outcome vectors ya = (1, 4)⊤

and yb = (4, 1)⊤.

Weighted Sum Scalarization If we drop the constraint ε − f(x) ∈ CR in the hybrid
method, we get the weighted sum scalarization of problem (MOP):

min
∑p

i=1 λifi(x)
s. t. x ∈ X.

(WSMOP(λ))

An illustration of the weighted sum scalarization of a problem (MOP) w.r.t Pareto opti-
mality for λa = (1, 0.25)⊤ and λb = (0.2, 1)⊤ is given in Figure 2.8. From Theorem 2.5 it
follows that an optimal solution x∗ of problem (WSMOP(λ)) with a convex cone CR and
λ ∈ (CR)∗ is weakly CR-efficient for problem (MOP). If it even holds that λ ∈ (CR)∗s,
then x∗ is CR-efficient for problem (MOP).
A similar result for closed convex cones can be found in Gearhart, 1983, Jahn, 1984 and

Sawaragi et al., 1985, among others. In the proof of Theorem 2.5 the convexity of CR is
only needed to show that the outcome vector y satisfies the constraint ε− f(x) ∈ CR. As
we dropped this constraint to obtain problem (WSMOP(λ)), Theorem 2.5 even holds for
non-convex cones in the case of the weighted sum scalarization.
In the case of the Pareto cone, i.e., CR = CP , it holds that only supported non-

dominated outcome vectors can be found with the weighted sum scalarization. If the set
of all feasible outcome vectors Y is convex, then all non-dominated points are supported
and hence can be found by a weighted sum scalarization with an appropriate choice of
λ ∈ Rp

⩾. Furthermore, λ ∈ (CP)
∗ holds if and only if λ ⩾ 0 and λ ∈ (CP)

∗
s holds if and

only if λ > 0. We call the set of all appropriate values of λ for the computation of an
Pareto efficient solution for problem (MOP) the weight space Rp

> := {λ ∈ Rp : λ > 0}.
Obviously, the optimal solution of problem (WSMOP(λ)) does not change, if λ is mul-

tiplied with a positive scalar. Hence, we can restrict the space of possible values of λ
to the vectors of length one. This leads to the definition of the normalized weight space
W̃ := {λ ∈ Rp

> :
∑p

i=1 λi = 1}, see, e.g., Schulze, 2017. As the sum over all weights

26

2.4 Graphs

λi is fixed, we can compute λp := 1 − ∑p−1
i=1 λi from the values of the other weights.

Hence, every λ ∈ W̃ can be identified with exactly one vector in the projected weight
space W := {(λ1, . . . , λp−1) ∈ Rp−1

> :
∑p−1

i=1 λi < 1}, see, e.g., Schulze, 2017. This pro-
jected weight space can be divided into subsets such that each subset has a one-to-one
correspondence to supported non-dominated outcome vectors for multi-objective linear
programming problems. This is shown by Benson and Sun, 2000. The subdivided pro-
jected weight space is called weight space decomposition. For more details on weight space
decompositions, see, for example, Przybylski et al., 2010 or Schulze, 2017.

2.4. Graphs

In the following we give a brief introduction to graphs, which is based on Harris et al.,
2008, Pitsoulis, 2014, Hamacher and Klamroth, 2006, Schrijver, 2003 and Ahuja et al.,
1993. Note that in the literature some definitions might differ, as we see in the following.
A graph consists of a set of vertices, sometimes also referred to as nodes, V = {v1, . . . , vn}
and a set of edges E = {e1, . . . , em}. In this thesis we always consider graphs with a finite
number n = |V | of vertices and a finite number m = |E| of edges. Graphs can either be
undirected, then we write for an edge e = [vi, vj] ∈ E or e = [i, j] with vi, vj ∈ V and it
holds [vi, vj] = [vj , vi] or the graph is directed, then we denote an edge by e = (vi, vj) ∈ E
or e = (i, j) for vi, vj ∈ V and call the graph digraph.

If there are multiple edges between two nodes, we call the graph a multigraph. Techni-
cally, we need to replace the set E by a multiset in this case. A loop is an edge that connects
a vertex with itself. A graph is called simple, if it is no multigraph and does not contain
loops. A subgraph G′ = (V ′, E′) of a graph G = (V,E) contains as set of vertices a subset
of V , i.e., V ′ ⊆ V , and as edge set a subset of the edges of G on V ′, i.e., for directed graphs
E′ ⊆ {(vi, vj) ∈ E : vi, vj ∈ V ′} and for undirected graphs E′ ⊆ {[vi, vj] ∈ E : vi, vj ∈ V ′}.
For directed and undirected graphs the vertices vi and vj of an edge [i, j] ∈ E, (i, j) ∈ E

or (j, i) ∈ E are called end-vertices. For an edge e = (i, j) ∈ E in a directed graph vi
is called tail t(e) of e and vj is called head h(e) of e. Two vertices vi, vj ∈ V are called
adjacent if there is an edge e ∈ E from vi to vj , i.e., e = [i, j] or e ∈ {(i, j), (j, i)},
respectively. Furthermore, we say an edge e is incident to a vertex v if v is an end-
vertex of e. Moreover, deg(v) denotes the number of edges incident to node v. We
define the adjacency matrix MAD(G) = (mAD

ij) ∈ {0, 1}n×n and the incidence matrix

M IN (G) = (mIN
ij) ∈ {−1, 0, 1}n×m for a simple and directed graph G = (V,E) with

V = {v1, . . . , vn} and E = {e1, . . . , em} as follows:

mAD
ij =

{
1 if (i, j) ∈ E

0 otherwise

mIN
ij =


1 if vi = t(ej)

−1 if vi = h(ej)

0 otherwise

27

Chapter 2 Basic Concepts and Notation

Undirected graph Gu

1

2

3 4

5

6

Directed graph Gd

1

2

3 4

5

6

Adjacency matrix MAD(Gu)

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0



Adjacency matrix MAD(Gd)

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0


Incidence matrix M IN (Gu)

1 1 0 0 0 0 0
1 0 1 0 0 0 0
0 1 1 1 0 0 0
0 0 0 1 1 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 1



Incidence matrix M IN (Gd)

1 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 −1 −1 −1 0 0 0
0 0 0 1 1 −1 0
0 0 0 0 −1 0 1
0 0 0 0 0 1 −1


Laplacian matrix ML(Gu)

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 3 −1 0 0
0 0 −1 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2



Figure 2.9.: An undirected graph Gu and a directed graph Gd with six vertices and seven
edges. Their adjacency matrices, incidence matrices and the Laplacian matrix
of Gu is given.

Similarly, the adjacency matrix MAD(G) = (mAD
ij) ∈ {0, 1}n×n and the incidence matrix

M IN (G) = (mIN
ij) ∈ {0, 1}n×m can be defined for a simple, undirected graph G = (V,E)

with V = {v1, . . . , vn} and E = {e1, . . . , em}:

mAD
ij =

{
1 if [i, j] ∈ E

0 otherwise

mIN
ij =

{
1 if vi is an end-vertex of ej

0 otherwise

28

2.4 Graphs

Furthermore, we define the Laplacian matrix ML(G) = (mL
ij)i,j=1,...,n of a simple, undi-

rected graph G = (V,E) with V = {v1, . . . , vn} and E = {e1, . . . , em} as follows, see, for
example, Stanley, 2013:

mL
ij =

{
−mAD

ij if i ̸= j and

deg(vi) if i = j

We usually visualize undirected edges by line segments, while we depict directed edges by
an arrow. For example, consider a graph with six vertices, which are identified by the num-
bers 1, . . . , 6 and seven undirected edges [1, 2], [1, 3], [2, 3], [3, 4], [4, 5], [4, 6] and [5, 6] and a
directed graph on the same set of vertices with the edges (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (4, 6)
and (5, 6). The corresponding illustrations for the undirected graph and the directed graph,
as well as their adjacency matrices, incidence matrices and the Laplacian matrix of the
undirected graph are shown in Figure 2.9.

1

2

3

45

(a) Undirected graph

1

2

3

45

(b) Walk
(1, 2, 5, 1, 3, 4, 5, 2)

1

2

3

45

(c) Trail (1, 5, 2, 1, 3, 4)

1

2

3

45

(d) Path (1, 2, 5, 3, 4)

1

2

3

45

(e) Cycle/Circuit
(1, 2, 4, 5, 1)

Figure 2.10.: An undirected graph and examples for a walk, a path, a trail and a cy-
cle/circuit.

In the following we introduce some concepts, first for undirected graphs and afterwards
for directed graphs. A sequence of vertices (vi1 , . . . , viℓ) is called a walk if [vij , vij+1] ∈ E
for all j = 1 . . . , ℓ− 1. We call ℓ the length of the walk. A walk with distinct vertices, i.e.,
vij ̸= vik for all 1 ≤ j < k ≤ ℓ, is called a path, while a walk with distinct edges is called
a trail, see Harris et al., 2008. A path (vi1 , . . . , viℓ), which starts at vi1 and ends at viℓ is
sometimes also called vi1 − viℓ path. In general, every path is a trail but not every trail is
a path. By adding the edge [viℓ , vi1] ∈ E to a path (vi1 , . . . , viℓ) we get a cycle, see Harris

29

Chapter 2 Basic Concepts and Notation

et al., 2008. Similarly, a trail (vi1 , . . . , viℓ) with vi1 = viℓ is called a circuit, see Harris
et al., 2008. In the following, we use the terms cycle and circuit both for closed paths
as in Schrijver, 20031. An example of a walk, a trail, a path and a cycle/circuit is given
in Figure 2.10. We use arrows to show in which direction an edge is used. A walk can
use edges multiple times, see Figure 2.10(b). A trail can use vertices multiple times but
not edges, see Figure 2.10(c). Moreover, a path can use every edge and every vertex only
once, see Figure 2.10(d). This path cannot be extended to a cycle/circuit, because the
edge [4, 1] is not in E. But we give an other example for a cycle/circuit in Figure 2.10(e).

1

2

3

45

(a) Directed graph

1

2

3

45

(b) Path
P = (1, 3, 5, 2, 4)
P+ = {(3, 5), (2, 4)}
P− = {(3, 1), (2, 5)}

1

2

3

45

(c) Dipath
P = (1, 2, 5, 4, 3)

1

2

3

45

(d) Cycle
C = (5, 4, 2, 5)
C+ = {(5, 4), (2, 5)}
C− = {(2, 4)}

1

2

3

45

(e) Dicycle
C = (5, 1, 2, 5)

Figure 2.11.: A directed graph and examples for a path, a dipath, a cycle and a dicycle.

Now, we consider a directed graph. A first possibility is to ignore the directions and
then we can define walks, paths, trails and cycles as in undirected graphs. For such a
path or cycle P = (vi1 , . . . , viℓ), which uses the edges (vij , vij+1) ∈ E or (vij+1 , vij) ∈ E,
j = 1, . . . , ℓ− 1, we define in a directed graph the set of positive edges in the path or cycle
by P+ := {(vij , vij+1) ∈ P : (vij , vij+1) ∈ E} and similarly we define the set of negative
edges in the path or cycle by P− := {(vij , vij+1) ∈ P : (vij , vij+1) /∈ E and (vij+1 , vij) ∈ E}.
1In other books only path and cycles are defined, see, e.g., Ahuja et al., 1993 and Pitsoulis, 2014. In
Hamacher and Klamroth, 2006 a path is defined as a walk, which cannot use an edge and return on
the same edge immediately after but in general the usage of edges multiple times is allowed. Moreover,
a simple path is defined as a path and a cycle is defined as a circuit in Harris et al., 2008.

30

2.4 Graphs

1

2

3

45

Figure 2.12.: An undirected graph with the connected components G1 = ({2, 4}, {[2, 4]})
and G1 = ({1, 3, 5}, {[1, 3], [1, 5], [3, 5]}).

If P− = ∅, we call the path or cycle a dipath or dicycle, respectively. In Figure 2.11 an
example for a path and a dipath as well as a cycle and a dicycle is given.

A graph is connected if there exists a path from every vertex to all other vertices. For an
unconnected graph G every maximal connected subgraph is called connected component.
For an example consider the graph in Figure 2.12.

1

2

3

45

(a) Undirected graph

1

2

3

45

(b) Spanning Subgraph

1

2

3

4

(c) Forest

1

2

3

4

(d) Tree

1

2

3

45

(e) Spanning Tree

Figure 2.13.: An undirected graph and examples for a spanning subgraph, a forest, a tree
and a spanning tree.

The following definitions are given only for undirected graphs. There are similar defini-
tions for directed graphs, but we omit them here, as we do not need them throughout this
thesis. A subgraph G′ = (V ′, E′) of an undirected graph G = (V,E) is called spanning if
V ′ = V . Every subgraph without cycles is called a forest and if it is also connected it is
called a tree. A tree which is a spanning subgraph is called a spanning tree. Obviously,
spanning trees exist if and only if the graph is connected, and every spanning tree T has
n− 1 edges, where n is the number of vertices in G, i.e., |V | = n, see Ahuja et al., 1993.

31

Chapter 2 Basic Concepts and Notation

The number of spanning trees is called complexity of G and denoted by κ(G). If a graph
is not connected, then we call the union of spanning trees of all connected components
a spanning forest, see Pitsoulis, 20142. In Figure 2.13 a graph and some examples for a
spanning subgraph, a forest, a tree and a spanning tree are given.

1

2

3 4

5

6

(a) Undirected graph

1

2

3 4

5

6

(b) Matching

1

2

3 4

5

6

(c) Perfect matching

Figure 2.14.: An undirected graph and examples for a matching and a perfect matching.
The edges of the matching are depicted by solid lines and all other edges of
the graph are depicted by dotted lines.

Furthermore, we define a matching M ⊆ E in a graph as a set of edges, such that no
two edges in M have a common end-vertex, see Harris et al., 2008. A matching divides
the set of vertices into two sets, first the set of M-saturated vertices which are the end-
vertices of edges in M and second all other vertices, which form the set of M-unsaturated
vertices. We call a matching maximum matching if it has the largest possible cardinality
and we call it a maximal matching if it is not possible to add another edge to enlarge
the matching. A matching M is called a perfect matching, if all vertices of the graph are
M -saturated. An example for a matching and a perfect matching is given in Figure 2.14.
The matching M in Figure 2.14(b) defines the set of M -saturated vertices {1, 3, 5, 6} and
the set of M -unsaturated vertices {2, 4}.
In the following, we give some examples for special types of graphs, see Harris et al., 2008.

We call a graph complete, if there exists an edge between all pairs of nodes. A complete
Graph with n vertices is denoted as Kn. Some examples are given in Figures 2.15(a),
2.15(b) and 2.15(c). An other type of graphs are the bipartite graphs. In this case the set
of nodes V can be divided into two disjoint subsets, i.e., V = V1∪V2 and V1∩V2 = ∅ such
that there exist only edges with one end-vertex in V1 and the other end-vertex in V2, i.e.,
it holds for every edge e = [vi, vj] ∈ E that vi ∈ V1 and vj ∈ V2. Such a graph is called
complete bipartite graph if there exists an edge from every vertex in V1 to all vertices in V2.
We denote complete bipartite graphs by Kn1,n2 with n1 = |V1| and n2 = |V2|. An example
of a bipartite graph is given in Figure 2.15(d), the corresponding complete bipartite graph
is given in Figure 2.15(e) and an other complete bipartite graph is given in Figure 2.15(f).

2In contrast in Hamacher and Klamroth, 2006 a spanning forest is defined as a spanning subgraph without
cycles, but we do not use this definition in the following.

32

2.5 Matroids

1 2

(a) K2

1

2

3

(b) K3

1 2

34

(c) K4

2 2′

1′1

(d) Bipartite graph

2 2′

1′1

(e) K2,2

1 2′

1′

3′

(f) K1,3

Figure 2.15.: Complete graphs and (complete) bipartite graphs.

2.5. Matroids

In the following, we summarize some basic definitions and results of matroid theory (for a
self-contained introduction to matroid theory see, for example, Kung, 1986; Oxley, 2011;
Schrijver, 2003; Edmonds, 1971; Schrijver, 2017). The whole section is a recombination of
parts from the articles Gorski et al., 2022 and Klamroth et al., 2022a.
Let E = {e1, . . . , en} be a finite ground set with n ∈ Z> elements and let I be a subset

of the power set 2E of E. The ordered pair M = (E, I) is called a matroid if the following
three conditions are satisfied:

∅ ∈ I (M1)

(I ∈ I ∧ I ′ ⊆ I) ⇒ I ′ ∈ I (M2)

∀I1, I2∈ I with |I1|< |I2| ∃ e∈I2 \ I1 : I1 ∪ {e} ∈ I. (M3)

Moreover, if the tuple (E, I) satisfies the conditions (M1) and (M2), then it is called an
independence system. If M = (E, I) is a matroid or an independence system, then all sets
I ∈ I are called independent sets. Conversely, a subset of E is called dependent if it is not
contained in I.
An independent set I ∈ I is called maximal if I ∪ {e} ̸∈ I for all e ∈ E \ I. Similarly,

a dependent set D ∈ 2E \ I is called minimal if D \ {e} ∈ I for all e ∈ D. Maximal
independent sets are called bases of the matroid, and minimal dependent sets are called
circuits of the matroid. To simplify the discussion, we use the following notation for set
operations throughout this thesis: Let S denote a subset of a finite ground set E and let
e, f ∈ E. We write S + e to denote the set S ∪ {e} and S − f to denote the set S \ {f}.
Furthermore, let Sc := E \ S denote the complement of S in E. To further simplify the
notation we assume that set operations are executed from left to right.
In the following, we write X := {B ∈ I : (∄I ∈ I : I ⊋ B)} for the set of all bases of a

matroid. All bases of a matroid have the same cardinality which is referred to as the rank
of the matroid, see, for example, Oxley, 2011. Note, that this property does not hold in
general for independence systems.

33

Chapter 2 Basic Concepts and Notation

Given a matroid M = (E, I), a basis B ∈ X , and an element e ∈ E \ B, then B ∪ {e}
contains a uniquely determined circuit C(e,B) containing e. This circuit is also called the
fundamental circuit of e w.r.t. B. An important property of matroids is the basis exchange
property :

∀B1,B2∈ X ∀b1∈B1 \ B2 ∃ b2∈B2 \ B1 : (B1 ∪ {b2}) \ {b1} ∈ X . (B)

The following stronger version of the basis exchange property was proven in Brualdi,
1969.

Lemma 2.7 (Brualdi, 1969). Let B1,B2 ∈ X . For all b1 ∈ B1 \ B2 there exists b2 ∈ B2 \ B1

such that both (B1 ∪ {b2}) \ {b1} and (B2 \ {b2}) ∪ {b1} are bases in X .

In this context, two bases of a matroid are called adjacent if they have r − 1 elements
in common, assuming that the matroid is of rank r. According to the basis exchange
property (B) and Lemma 2.7, a given basis can be transformed into an adjacent basis by
exactly one basis exchange. We refer to this as a swap operation in Chapter 3.

If a subset S ⊆ E of the ground set E is deleted from E, we obtain the restriction of M
to E \S. The ground set of this matroid is the set E \S and its independent sets are those
independent sets of M that are completely contained in E \ S, i.e., that do not contain
any elements from S. We write M−S for short. Note that the independent sets of M−S
correspond to the projection of all independent sets of M to E \ S due to property (M2).

Moreover, if an independent set I of M is contracted we obtain the contraction of M
to I denoted by M/I. The ground set of M/I is given by E \ I, and its independent sets
are the sets I ′ ⊆ (E \ I) such that I ′ ∪ I is an independent set of M.

A visualization for restriction and contraction can be found in Example 2.8, which is
given after the introduction of some typical matroids.

For an extensive list of examples of matroids we refer to Oxley, 2011. The following
matroids are frequently considered and are used for illustrations and numerical tests in
this thesis.

• graphic matroid: Let G = (V,E) be an undirected graph with finitely many edges
and vertices, then M(G) = (E, I) with I := {I ⊆ E : (V, I) contains no circuit} is a
matroid. The independent sets of M(G) are all forests in G, and the bases of M(G)
are all spanning forests, if we use the definition of spanning forests from Pitsoulis,
2014. If G is connected, then X is the set of all spanning trees of G. In context of
graphic matroids we use the terms circuits and cycles equivalently.

• uniform matroid: Let E be a finite set and r ∈ Z≥, then M = (E, I) with
I := {I ⊆ E : |I| ≤ r} is a matroid with rank r, denoted by Ur,n. The independent
sets of Ur,n are all subsets of E = {e1, . . . , en} that have at most r elements, and the
bases of Ur,n are all subsets of the set of edges E that have exactly r elements. A
subset of E is a circuit of Ur,n if it contains exactly r + 1 elements of E.

• partition matroid: Let E = E1 ∪ E2 ∪ . . . ∪ Ep be the disjoint union of p finite
sets and let u1, . . . , up ≥ 0 be non-negative integers. Then M = (E, I) with the set
I := {I ⊆ E : |I ∩Ei| ≤ ui ∀1 ≤ i ≤ p} is a matroid. Note that the uniform matroid
is a special case of the partition matroid with p = 1 and u1 = r.

34

2.5 Matroids

• matching matroid: Let G = (V,E) be a finite undirected graph. The ground set
F of the matching matroid M = (F, I) is a subset of the vertices of G, i.e., F ⊆ V ,
and all subsets of F that can be covered by a matching of G are independent. Note,
that in this case the ground set of the matroid M is not equal to the set of edges E
of the graph. Hence, we use in this case F to denote the ground set of the matroid.

• transversal matroid: A special case of the matching matroid is the transversal
matroid, that is a matching matroid on a bipartite graph G = (V1 ∪ V2, E) with
bipartition V = V1 ∪ V2, where the ground set F of the matroid equals V1 or V2.

Example 2.8. Now, we can visualize the concepts of restriction and contraction at the
graphic matroid M given in Figure 2.16(a). Let S = {[1, 2], [1, 3], [2, 3], [4, 5]}. The result-
ing restriction M− S is given in Figure 2.16(b). In this case, the set {[4, 6], [5, 6]} is an
independent set of M− S. Now, we consider the independent set I = {[1, 2], [1, 3], [4, 5]}
to get the contracted matroid M/I, which is given in Figure 2.16(c). Nodes 1, 2 and 3 of
M are contracted into node 3′ and nodes 4 and 5 of M are contracted into node 4′. In
this case, the set {[4, 6], [5, 6]} is not an independent set of M/I as {[4, 6], [5, 6]} ∪ I is a
dependent set of M. Note, that the contraction of a graphic matroid may be a multigraph
with loops.

1

2

3 4

5

6

(a)

1

2

3 4

5

6

(b)

3′ 4′

6

(c)

Figure 2.16.: Consider the graphic matroid M on the graph given in (a). The restriction
M−{[1, 2], [1, 3], [2, 3], [4, 5]} and the contraction M/{[1, 2], [1, 3], [4, 5]} are
given in (b) and (c), respectively.

An important concept that is very useful in Chapter 4 is the intersection of two matroids.
Consider two matroids M1 = (E, I1) and M2 = (E, I2) over the same ground set E.
Then the matroid intersection of M1 and M2 is defined as the independence system
M1 ∩M2 := (E, I1 ∩ I2).
It is important to note that a matroid intersection is not necessarily a matroid itself.

A counter example is given in Figure 2.17. Let G = (V,E1 ∪ E2) be a graph with an
edge set E = E1 ∪ E2 that is partitioned into two subsets E1, E2 (e.g., green-dotted and
red-solid edges, respectively). Moreover, let M1 = (E, I1) be the graphic matroid on G
and let M2 = (E, I2) be a partition matroid with E1 := {[1, 2], [4, 5], [4, 6]} the set of
all green-dotted edges, E2 := {[1, 3], [2, 3], [3, 4], [5, 6]} the set of all red-solid edges and
I2 := {I ⊆ E : |I ∩E1| ≤ 3, |I ∩E2| ≤ 2}. Then the set I := {[1, 3], [2, 3], [4, 5], [4, 6]} is an
inclusion-wise maximal independent set of M1 ∩M2 since every additional edge e ∈ E \ I
makes I ∪ {e} dependent w.r.t. either M1 or M2. However, the maximal independent
set J := {[1, 2], [1, 3], [3, 4], [4, 5], [4, 6]} of M1 ∩M2 has larger cardinality, i.e., |J | > |I|.
Thus, M1∩M2 is not a matroid because all maximal independent sets of a matroid must

35

Chapter 2 Basic Concepts and Notation

have the same cardinality. However, if at least one of the intersected matroids is a uniform
matroid then the intersection is again a matroid, see Oxley, 2011.

1

2

3 4

5

6

(a)

1

2

3 4

5

6

(b)

1

2

3 4

5

6

(c)

Figure 2.17.: The edges E = E1 ∪ E2 of the graph G = (V,E) in (a) are the ground
set of a graphic matroid M1 and of a partition matroid M2 (where E1 is
the set of all green-dotted edges and E2 is the set of all red-solid edges).
The independent set of edges I illustrated in (b) is inclusion-wise maximal
for M1 ∩M2, however, the alternative independent set J shown in (c) has
larger cardinality.

2.6. Single-objective Matroid Optimization and Multi-objective
Minimum Spanning Tree Problem

A specific type of combinatorial optimization problems are matroid optimization problems.
In this case, the feasible set is the set of all bases of a matroid M denoted by X , see
Section 2.5. Hence, a matroid optimization problem (MaO) with p sum objective functions
can be written as

minCP
w(B) = (w1(B), . . . , wp(B))

s. t. B ∈ X .
(MaO)

Note that we write in the special case of matroid optimization problems X instead of X
for the set of the feasible solutions and Y instead of Y for the set of feasible points in the
outcome space. Similarly, we adapt the notation of the (weak) efficient and (weak) non-
dominated sets. In general, all matroid optimization problems are feasible, since the basis
is only empty if the set of independent sets consist only of the empty set, i.e., I ≠ {∅}.

One specific property of matroids is the basis exchange property, see Lemma 2.7, which
allows us to show connectedness of the efficient solutions of bi-objective matroid optimiza-
tion problems with ordinal costs, see Chapter 3. This connectedness is used in the Efficient
Swap Algorithm presented in Chapter 3, which solves the problem in polynomial time.
To define connectedness of the efficient set, we recall that two bases are called adjacent, if
they have r−1 elements in common for a matroid of rank r. Now, we define the adjacency
graph G = (V,E) of efficient bases of problem (MaO), see Gorski et al., 2011. The node
set V of the adjacency graph consists of all efficient bases of (MaO). An (undirected)
edge is introduced between all pairs of vertices corresponding to adjacent bases of the
underlying problem. These edges form the set E. The set XE is said to be connected if
its corresponding adjacency graph G is connected, i.e., if every pair of vertices in V is
connected by a path. As shown in Gorski, 2010, the adjacency graph G is not connected

36

2.6 Matroid Optimization and Minimum Spanning Tree Problem

Algorithm 1: Greedy Algorithm for Single-objective Matroid Optimization
Problems with a Sum Objective Function (see, e.g., Pitsoulis, 2014)

Input: A matroid M = (E, I) and a function w : E → R.
Output: Optimal basis B ∈ X .

1 Sort E such that w(e1) ≤ w(e2) ≤ · · · ≤ w(e|E|).
2 X := ∅.
3 for i = 1, . . . , |E| do
4 if X ∪ {ei} ∈ I then
5 X := X ∪ {ei}.

6 return B := X.

in general, even if it is extended to include weakly efficient bases. Nevertheless, the ad-
jacency graph always contains a connected component given by the supported efficient
bases of (MaO), see Ehrgott, 1996. Although the adjacency graph is not connected in
general, many solution methods make use of the adjacency structure of matroids or of the
adjacency structure of more general combinatorial optimization problems. Some examples
for such solution strategies are described in Loera et al., 2010.

Single-objective matroid optimization problems, i.e., problems (MaO) with p = 1, with,
for example, a sum objective function can be solved efficiently by the greedy algorithm,
see Pitsoulis, 2014. The idea of the greedy algorithm is to sort the elements of the ground
set E of a matroid by its weights in non-decreasing order and to start with the empty set,
i.e., X := ∅. Then the next element of the sorted list is added to the set X, if the set X
does not become dependent by the addition of this element. This is repeated until a basis
of the matroid is generated. The greedy algorithm for minimization matroid problems is
given in Algorithm 1. An example of this algorithm applied to an optimization problem
on graphic matroids is given in Example 2.9. In this case the algorithm is the well-known
Kruskal-Algorithm. The correctness of the greedy algorithm follows immediately from
condition (M2) of matroids and line 4 of the algorithm. The runtime of the algorithm
depends on the type of matroid, as the computationally expensive part is in most cases in
line 4, where we have to check whether a set is dependent or independent, see Pitsoulis,
2014. In some cases, like, e.g., the matroid optimization problem on graphic matroids,
the check whether a set is independent or not does not need much time and hence, the
computationally expensive part is in this case the sorting of the elements in line 1.

The specific matroid optimization problem defined on graphic matroids is the minimum
spanning tree problem (MST). The bases of graphic matroids are spanning trees and the
minimum spanning tree problem is looking for the spanning tree with smallest costs, i.e.,
we consider a single-objective matroid optimization problem with a sum objective function.
Hence, this problem can be solved by the greedy algorithm, which is known as algorithm
of Kruskal for the minimum spanning tree problem.

Example 2.9. We consider the graph given in Figure 2.18(a) and identify the edges by
their weights. Then in line 1 of Algorithm 1 we get the sorted edge list 1, 2, 3, 4, 5, 6, 10
and in line 2 we initialize X = ∅. The following steps are visualized in the Figures 2.18(b)

37

Chapter 2 Basic Concepts and Notation

1

2

3
6

4

10

5

(a) Undirected Graph
with costs w(e)
denoted next to all
edges e ∈ E.

1

(b) First iteration:
edge 1 is added
to X.

1

2

(c) Second iteration:
edge 2 is added to
X.

1

2

(d) Third iteration:
edge 3 is not
added to X, as
this would leed
to a circuit.

1

2

4

(e) Fourth iteration:
edge 4 is added to
X.

1

2

4

5

(f) Fifth iteration:
edge 5 is added to
X.

1

2
6

4

5

(g) Sixth iteration:
edge 6 is added to
X - the spanning
tree is found.

Figure 2.18.: Visualization of the algorithm of Kruskal (Algorithm 1 applied to a graphic
matroid).

to 2.18(g). In the first two iterations of the for-loop the edges 1 and 2 are added to X,
because {1, 2} does not contain a circuit. In the third iteration edge 3 is not added to X
as this would lead to a circuit. In the following the edges 4, 5 and 6 are added. Then we
have found a spanning tree and the algorithm could be stopped. Therefore, we could add
to the algorithm the test whether |X| = n − 1. If this holds, we can stop the algorithm,
otherwise we need to consider the next edge from the for loop. If we omit this additional
test, then the algorithm would test all remaining edges, whether they can be added to X
without generating a circuit. In our example, the edge 10 would be tested and then the
algorithm of Kruskal returns the spanning tree {1, 2, 4, 5, 6}.

For the minimum spanning tree problem exist also other strategies to solve it, like, e.g.,
the algorithm of Sollin or the algorithm of Prim, see, for example, Ahuja et al., 1993. As
we do not need those algorithms in the following we do not investigate them any further.

If we consider multi-objective spanning tree problems, we can not apply the greedy
algorithm any more as we can not sort the edges in non-decreasing order with respect
to the Pareto order. The greedy algorithm can only be applied if the underlying or-
der is a total order, like, e.g., the lexicographic order. Nevertheless, the multi-objective

38

2.6 Matroid Optimization and Minimum Spanning Tree Problem

spanning tree problem with respect to the Pareto order has been investigated and there
exist different solution approaches. For example, Hamacher and Ruhe, 1994 suggest a
two phase algorithm, which computes first the extreme supported points and afterwards
applies neighborhood search to determine a sequence non-supported outcome vectors such
that the distance between two consecutive outcome vectors is bounded by a given accuracy.
Some solutions strategies are designed to find only supported efficient solutions by using
the connectedness of the solutions and a weight space decomposition, see Correia et al.,
2021. Furthermore, see, for example, Ruzika and Hamacher, 2009 for a survey concerning
solution strategies for multi-objective spanning tree problems and Benabbou and Perny,
2015 for a more recent reference on this topic. Evolutionary methods for multi-objective
spanning tree problems were suggested, among others, in Zhou and Gen, 1999, Knowles
and Corne, 2001, Neumann and Witt, 2010 and Bossek et al., 2019 as well as references
therein. Loera et al., 2010 describe heuristic approaches to general multi-objective ma-
troid optimization problems that rely on adjacency relations and nonlinear scalarizations.
The methods are implemented in the MOCHA software package Loera et al., 2009. Ap-
proximation schemes were suggested, for example, in Grandoni et al., 2014 and Bazgan
et al., 2019.

From a theoretical perspective exhaustive search is also a possible, however very time
consuming, approach to solve multi-objective spanning trees problems. Exhaustive search
generates all possible spanning trees, evaluates their objective function vector and filters
them to obtain the non-dominated set. Such an strategy is, for example, presented in
Shioura et al., 1997. In this thesis we use an algorithm, which is presented in Knuth,
2012, to compute all spanning trees of a graph G. The algorithm is based on very early
results by Feussner, 1902 and we explain it in the following. We assume that G has n
vertices and is a connected graph, because otherwise there do not exist any spanning trees.
Furthermore, we assume w.l.o.g. that the graph does not contain any loops, because loops
can not be part of spanning trees. Feussner’s idea is to use a recursion to find all spanning
trees. Let e be an edge of G then either e is contained in a spanning tree or it is not. All
spanning trees that contain e can be computed by calculating all spanning trees of the
contracted graph G/e, which contain n−2 edges, and add to them the edge e. Illustrative
the contracted graph G/e is obtained by shrinking the edge e to one vertex. To compute
all spanning trees without e it is sufficient to compute all spanning trees of the smaller
graph G \ e. We denote by ST(G) the set of spanning trees in G. Then the recursion is
given by

ST(G) = ({e} ⊔ ST(G/e)) ∪ ST(G \ e). (2.12)

Here {e} ⊔ ST(G/e) denotes that we add to every tree T = {e1, . . . , en−2} ∈ ST(G/e) the
edge e, i.e., {e} ⊔ ST(G/e) := {T ∪ {e} : T ∈ ST(G/e)}.

Knuth, 2012 refers to Malcolm J. Smith, who introduced in his Master’s thesis at the
University of Victoria from 1997 a strategy to compute the recursion (2.12), which we
explain in the following and which is given in Algorithm 2. To simplify we slightly abuse
the notation and consider ST(G) to be a sorted list, referring by ST(G)[end] to the last
element of this list. We assume that new elements of this list get added to the end of the
list. The key point of the strategy of Smith is, that every new spanning tree is computed
from its predecessor by removing one edge and replacing it by another in an efficient way.

39

Chapter 2 Basic Concepts and Notation

Algorithm 2: Generation of all Spanning Trees STG(G,Tnear)

Input: A connected graph G = (V,E) without loops and a corresponding near
tree Tnear = {e1, . . . , en−2}, n = |V |.

Output: The set of spanning trees ST(G) in G
1 ST(G) = ∅;
2 if n = 2 then
3 return ST(G) = E
4 else
5 Call STG(G/e1, {e2, . . . , en−2}).
6 foreach T ∈ STG(G/e1, {e2, . . . , en−2}) do
7 ST(G)[end + 1] = T ∪ {e1}.
8 if e1 is not a bridge then
9 Call STG(G \ e1,ST(G/e1)[end]).

Smith’s Algorithm starts to compute ST(G) with a spanning tree, that includes a given
near tree, i.e., a set of n − 2 edges without circuits. For n = 2 we only have to list all
edges between those two nodes to get all spanning trees.
Now, we consider n > 2 and a given near tree {e1, . . . , en−2}. First we compute G/e1 and

all of its spanning trees. If we add to those the edge e1, spanning trees of G are the result.
We compute the spanning trees of G/e1 by recursion with the near tree {e2, . . . , en−2}.
To compute the spanning trees ofG\e1 we use the last spanning tree found forG/e1, let’s

denote it by {ê1, . . . , ên−2}, as near tree, which should be contained in the first spanning
tree constructed for G \ e1. If e1 is a bridge, i.e., the graph G would become disconnected
by removing e1, then we do not investigate G \ e1 any further. For more details regarding
the implementation of this algorithm see Knuth, 2012. Therein is also explained how the
algorithm can be improved even further. The algorithm without further improvements
can be downloaded from Hotz, 2016.
In the following, we give an example for this algorithm, which is similar to the example

in Knuth, 2012.

Example 2.10. Consider the graph at the top of Figure 2.19, which consists of n = 4
vertices and 4 edges, which we identify by their number. We start with the near tree {1, 2}.
Then we consider in the recursion first the graph G′ := G/{1}, visualized as the left child
of G in Figure 2.19. This graph consists of n = 3 nodes, and hence we need to do the
recursion once again to compute its spanning trees. Therefore, we compute G′/{2}, i.e.,
we consider the contraction over the second edge of the near tree from the beginning. This
graph has only two nodes and hence its spanning trees are all edges between those nodes,
i.e., the spanning trees of G′/{2} are {3} and {4}. To get the spanning trees of G′ and G
we have to add the edges {1} and {1, 2}, respectively, which were used for the contraction of
the graphs. Therefore, we get the spanning trees {2, 3} and {2, 4} of G′ as well as {1, 2, 3}
and {1, 2, 4} of G. Now, we consider the graph G′′ := G′ \{2} to complete the computation
of all spanning trees of G′. The corresponding graph can be found in Figure 2.19 as the
right child of G′. To compute all its spanning trees, we need a near tree, which is given by

40

2.6 Matroid Optimization and Minimum Spanning Tree Problem

G

1

2

4

3

Near tree: {1, 2}

G′ := G/{1}

2

4

3

Near tree: {2}

G′/{2}
3

4

Spanning trees of G′/{2}: {3}, {4}
Spanning trees of G: {1, 2, 3}, {1, 2, 4}

G′′ := G′ \ {2}

4

3

Near tree: {4} (last spanning
tree found for G′/{2})

G′′/{4}
3

Spanning trees of G′′/{4}: {3}
Spanning tree of G: {1, 4, 3}

G′′ \ {4}
Stop, because

edge 4 is a bridge

G \ {1}
Stop, because

edge 1 is a bridge

Figure 2.19.: Visualization of the recursion ST.

41

Chapter 2 Basic Concepts and Notation

the last spanning tree found for G′/{2}, i.e., the near tree {4}. We apply again a recursion
and compute G′′/{4} and as the resulting graph has only two nodes we can easily identify
all of its spanning trees, which is here the edge 3. Hence we found {3, 4} as spanning tree
of G′ and G′′ as well as {1, 4, 3} as spanning tree of G. It is left to compute G′′ \ {4}, but
the algorithm would recognize that the edge 4 is a bridge, and hence the algorithm stops
the recursion here. As a result, we know that we have found all spanning trees of G′′ and
G′. Therefore, we go back to the graph G and have to investigate G \ {1}, but the edge 1
is again a bridge, hence the algorithm stops and returns all spanning trees of G, namely
{1, 2, 3}, {1, 2, 4} and {1, 3, 4}. We see, that the spanning trees are generated in such a
way that we always have only swapped one element in a tree against another element to
get a new spanning tree, which is the advantage of the strategy of Malcolm J. Smith.

The computation of all possible spanning trees is costly for large graphs, because the
number of spanning trees grows exponentially in n, e.g., for complete graphs with n nodes.
The exact number of spanning trees of a graph G, i.e., κ(G), can be computed easily by
Kirchhoff’s Matrix-Tree-Theorem, see, e.g., the textbook Stanley, 2013.

Theorem 2.11 (Kirchhoff’s Matrix-Tree Theorem, see, e.g., Stanley, 2013). Let G be a
finite connected graph without loops and with Laplacian matrix ML(G). We denote by
ML

i (G) the matrix that results from matrix ML(G) by removing the i-th row and col-
umn, i ∈ {1, . . . , n}. Then the determinant of ML

i (G) equals the complexity κ(G) for all
i ∈ {1, . . . , n}.

The complexity κ(G) grows exponentially, in particular κ(G) ∈ O(nn), and it can be
computed by the determinant of ML

i (G), which results from the Laplacian matrix ML(G)
by removing the i-th row and column for any i ∈ {1, . . . , n}.

2.7. Single-objective Shortest Path Problem

In this section we consider single-objective shortest path problems, see, for example, Ahuja
et al., 1993. We assume that a directed, connected graph G = (V,E) is given together
with a weight function w : E → R. There exist different types of this problem, depending
whether we are interested in finding a path with minimal total weight from a given start
node s to an other node t or if we are interested in finding minimal paths from s to all
other nodes or if we are even interested in finding shortest paths from all nodes to all other
nodes. Furthermore, there exist different algorithms for non-negative weights and general
weights. In the first case label-setting algorithms can be applied, which iteratively assign
distance labels to nodes and in each iteration one label is fixed. Label-setting algorithms
can also be applied, if there exist edges with negative weights, but there does not exist
a dicycle. In the case, that there exist no dicycle the nodes of the graph can be ordered
in linear time such that i < j for every (i, j) ∈ E. This is called a topological ordering,
which is used to solve the shortest path problem on graphs without dicycles. If all edges
have non-negative weight, then the algorithm of Dijkstra can be applied. It is a typical
label-setting algorithm and finds all shortest paths from a node s to all other nodes in
the graph. To solve shortest path problems on graphs with dicycles and negative weights,
there also exist label-correcting algorithms that do not fix any labels until the last iteration.

42

2.7 Single-objective Shortest Path Problem

Algorithm 3: Dijkstra’s Algorithm

Input: A digraph G = (V ;E), costs w(e) ≥ 0 for all e ∈ E, start node s ∈ V .
Output: Shortest paths from start node s to all other nodes V \ {s}.

1 L := ∅, L̄ := V .
2 d(i) := ∞ for all i ∈ V \ {s} and d(s) := 0.
3 pred(i) := 0 for all i ∈ V .
4 while |L| < n do
5 i′ := argmini∈L̄ d(i).
6 L := L ∪ {i′}, L̄ := L̄ \ {i′}.
7 foreach j ∈ L̄ : (i′, j) ∈ E do
8 if dj > di′ + w((i′, j)) then
9 dj := di′ + w((i′, j)).

10 pred(j) := i′.

11 return di,pred(i) for all i ∈ V .

In the following, we introduce the algorithm of Floyd-Warshall, which finds all shortest
paths between all nodes in a digraph with negative weights or returns a negative dicycle
if it exists. There exist different implementation strategies of the algorithms we present
here based on the data structures to store the current labels of the edges. Details on
the different data structures as well as more label-setting algorithms and label-correcting
algorithms are, for example, given in Ahuja et al., 1993.

First, we assume that a connected digraph G = (V,E) with a non-negative weight
function w : E → Z≥ and a start node s is given. Furthermore, we assume that there
exists a path from s to all other nodes. Then Dijkstra’s algorithm (Algorithm 3) computes
all shortest paths from start node s to all other nodes. In each iteration we update

• a set L of permanently labeled vertices, a set L̄ of all other vertices,

• the actual distance d(i) for all nodes i ∈ V and

• the predecessor pred(i) for every node i ∈ V .

The predecessor labels pred(i), i ∈ V , are used for the reconstruction of the shortest
paths. In the initialization step, we set L := ∅, L̄ := V , d(i) := ∞ for all i ∈ V \ {s},
d(s) := 0 and pred(s) := 0. As long as not all nodes are labeled permanently, we choose
a not permanently labeled node i′ with smallest distance d(i′) and mark this node as
permanently labeled. Then we update the distance labels of all not permanently labeled
nodes j, if there exist an edge (i′, j) ∈ E and if the costs d(i′)+w((i′, j)) are smaller than
the current distance of node j. In this case we also update the predecessor label of node j
and set it to pred(j) := i′. For a proof of the correctness of the algorithm see, for example,
Ahuja et al., 1993.

In Figure 2.20 we illustrate Dijkstra’s algorithm using a small example. Next to each
edge e the weight w(e) is given, and next to each node we denoted first the actual distance
with the update and second the actual predecessor with the update. Grey nodes are the
permanently labeled nodes, which are in set L, and all other nodes are colored in white.

43

Chapter 2 Basic Concepts and Notation

1
0
0

2

∞ → 2
0 → 1

3

∞ → 7
0 → 1

4
∞
0

5

∞
0

i

d(i)
pred(i)

j

d(j)
pred(j)w((i, j))

2

7

0

5
1

6
1

3

(a) Initialization and 1. Iteration

1
0
0

2

2
1

3

7
1

4
∞ → 7
0 → 2

5

∞ → 3
0 → 2

2

7

0

5
1

6
1

3

(b) 2. Iteration

1
0
0

2

2
1

3

7
1

4
7 → 6
2 → 5

5

3
2

2

7

0

5
1

6
1

3

(c) 3. Iteration

1
0
0

2

2
1

3

7
1

4
6
5

5

3
2

2

7

0

5
1

6
1

3

(d) 4. Iteration

1
0
0

2

2
1

3

7
1

4
6
5

5

3
2

2

7

0

5
1

6
1

3

(e) 5. Iteration

Paths from s to i:
i = 2 : P2 = (1, 2), c(P2) = d(2) = 2
i = 3 : P3 = (1, 3), c(P3) = d(3) = 7
i = 4 : P4 = (1, 2, 5, 4), c(P4) = d(4) = 6
i = 5 : P5 = (1, 2, 5), c(P5) = d(5) = 3

(f) Shortest paths

Figure 2.20.: An illustration of Dijkstra’s algorithm.

Now, we explain the algorithm of Floyd-Warshall (Algorithm 4) as an example for a
label-correcting algorithm. It computes shortest paths between all pairs of nodes or detects
a negative dicycle. We assume that a connected digraph G = (V,E) with |V | = n and an
arbitrary weight function w : E → Z is given. The algorithm updates iteratively a matrix

44

2.7 Single-objective Shortest Path Problem

Algorithm 4: Algorithm of Floyd-Warshall

Input: digraph G = (V,E), edge weights w(e) for all e ∈ E (n = |V |, m = |E|)
Output: shortest path for all pairs of nodes

1 foreach (i, j) ∈ V × V do

2 dij :=


w((i, j)) if (i, j) ∈ E

0 if i = j

∞ otherwise

, predij :=

{
i if (i, j) ∈ E

0 otherwise

3 for k := 1, . . . , n do
4 for i := 1, . . . , n do
5 for j := 1, . . . , n do
6 if dij > dik + dkj then
7 dij := dik + dkj
8 predij := predkj

9 if i = j and dii < 0 then
10 return G = (V,E) contains a negative dicycle

11 return distance matrix dij and predecessor labels predij ∀i, j ∈ V

D = (dij)i,j=1,...,n with all pairwise distances and a matrix Pred = (predij)i,j=1,...,n, which
saves the predecessors of node j of the path from i to j. The matrix D gets initialized
with dij = w((i, j)) if (i, j) ∈ E, dij = 0 if i = j and dij = ∞ if i ̸= j and (i, j) /∈ E. The
matrix Pred gets initialized with predij = i if (i, j) ∈ E and predij = 0 if (i, j) /∈ E. Then
we consider iteratively the kth row and column of D, k = 1, . . . , n. If dij > dik + dkj for
i, j = 1, . . . , n (which can only happen for i, j ̸= k), we update the distance of the path
from i to j, i.e., dij := dik + dkj , and the predecessor of j in the corresponding path, i.e.,
predij := predkj . This update implies that it is shorter to use the path from i to j passing
node k, instead of taking the direct path from i to j. The algorithm stops immediately,
if one of the diagonal entries of D turn negative, i.e., if dii < 0 for some i ∈ {1, . . . , n},
because then a negative dicycle has been found. For a proof of the correctness of the
algorithm see, for example, Ahuja et al., 1993.

To illustrate how the Algorithm of Floyd-Warshall (Algorithm 4) works, we consider
the digraph in Figure 2.21, which contains a negative dicycle, and the digraph without a
negative dicycle in Figure 2.22.

In the next section we present an algorithm to solve weighted matroid intersection
problems. As a subproblem a shortest path problem with respect to node weights has to
be solved. This can be done by constructing a corresponding extended graph with edge
weights. As the graph gets much larger, this solution method can be computationally
expansive. Hence we use an adapted version of the Floyd-Warshall algorithm, see Algo-
rithm 5. When we consider node weights instead of edge weights, the main differences are
the following: We need to adapt the initialization, because for every edge (i, j) ∈ E we get
the distance dij = w(i)+w(j). Furthermore, every node by itself has a weight, and hence
we get entries on the diagonal of D. This requires to change the condition to identify

45

Chapter 2 Basic Concepts and Notation

Algorithm 5: Algorithm of Floyd-Warshall for node weights

Input: digraph G = (V,E), node weights w(i) for all i ∈ V (n = |V |, m = |E|)
Output: shortest path for all pairs of nodes

1 foreach (i, j) ∈ V × V do

2 dij :=


w(i) + w(j) if (i, j) ∈ E

w(i) if i = j

∞ otherwise

, predij :=

{
i if (i, j) ∈ E or i = j

0 otherwise

3 for k := 1, . . . , n do
4 for i := 1, . . . , n do
5 for j := 1, . . . , n do
6 if dij > dik + dkj − w(k) then
7 dij := dik + dkj − w(k)
8 predij := predkj

9 if i = j and dii < w(i) then
10 return G = (V,E) contains a negative dicycle

11 return distance matrix dij and predecessor labels predij ∀i, j ∈ V

negative dicycles, because as we allow negative node weights, it can happen that there
are negative entries on the diagonal of D. However, we can identify a negative dicycle, if
we update an entry on the diagonal, because then we have found a cycle that reduces the
costs. Furthermore, if we compare the length of the paths from i to j or from i to j via
node k, we have to subtract once the node weight w(k) of node k. Otherwise, we would
count node k twice, because it is contained in the path from i to k and in the path from
k to j. An illustration of Algorithm 5 is given in Figure 2.23.

46

2.7 Single-objective Shortest Path Problem

1

2

3

45

i j
w((i, j))

1

3

0

2−2

−1
4

1

D =


0 1 ∞ ∞ ∞
∞ 0 ∞ 2 −2
3 ∞ 0 ∞ 4
∞ ∞ −1 0 ∞
0 ∞ ∞ 1 0

 Pred =


0 1 0 0 0
0 0 0 2 2
3 0 0 0 3
0 0 4 0 0
5 0 0 5 0



k = 1 D =


0 1 ∞ ∞ ∞
∞ 0 ∞ 2 −2
3 4 0 ∞ 4
∞ ∞ −1 0 ∞
0 1 ∞ 1 0

 Pred =


0 1 0 0 0
0 0 0 2 2
3 1 0 0 3
0 0 4 0 0
5 1 0 5 0



k = 2 D =


0 1 ∞ 3 −1
∞ 0 ∞ 2 −2
3 4 0 6 2
∞ ∞ −1 0 ∞
0 1 ∞ 1 −1

 Pred =


0 1 0 2 2
0 0 0 2 2
3 1 0 2 2
0 0 4 0 0
5 1 0 5 2



Figure 2.21.: An illustration of the algorithm of Floyd-Warshall. The algorithm stops for
k = 2 and i = j = 5, because d55 = −1 < 0. The algorithm has found the
negative dicycle (5, 1, 2, 5).

47

Chapter 2 Basic Concepts and Notation

1

2

3

45

i j
w((i, j))

1

3

5

2−2

−1
4

1

D =


0 1 ∞ ∞ ∞
∞ 0 ∞ 2 −2
3 ∞ 0 ∞ 4
∞ ∞ −1 0 ∞
5 ∞ ∞ 1 0

 Pred =


0 1 0 0 0
0 0 0 2 2
3 0 0 0 3
0 0 4 0 0
5 0 0 5 0



k = 1 D =


0 1 ∞ ∞ ∞
∞ 0 ∞ 2 −2
3 4 0 ∞ 4
∞ ∞ −1 0 ∞
5 6 ∞ 1 0

 Pred =


0 1 0 0 0
0 0 0 2 2
3 1 0 0 3
0 0 4 0 0
5 1 0 5 0



k = 2 D =


0 1 ∞ 3 −1
∞ 0 ∞ 2 −2
3 4 0 6 2
∞ ∞ −1 0 ∞
5 6 ∞ 1 0

 Pred =


0 1 0 2 2
0 0 0 2 2
3 1 0 2 2
0 0 4 0 0
5 1 0 5 0



k = 3 D =


0 1 ∞ 3 −1
∞ 0 ∞ 2 −2
3 4 0 6 2
2 3 −1 0 1
5 6 ∞ 1 0

 Pred =


0 1 0 2 2
0 0 0 2 2
3 1 0 2 2
3 1 4 0 2
5 1 0 5 0



k = 4 D =


0 1 2 3 −1
4 0 1 2 −2
3 4 0 6 2
2 3 −1 0 1
3 4 0 1 0

 Pred =


0 1 4 2 2
3 0 4 2 2
3 1 0 2 2
3 1 4 0 2
3 1 4 5 0



k = 5 D =


0 1 −1 0 −1
1 0 −2 −1 −2
3 4 0 3 2
2 3 −1 0 1
3 4 0 1 0

 Pred =


0 1 4 5 2
3 0 4 5 2
3 1 0 5 2
3 1 4 0 2
3 1 4 5 0



Figure 2.22.: An illustration of the algorithm of Floyd-Warshall for edge weights.

48

2.7 Single-objective Shortest Path Problem

14

2

−1

3

2

4 35

−2

i

w(i)

j

w(j)

D =


4 3 ∞ ∞ ∞
∞ −1 ∞ 2 −3
6 ∞ 2 ∞ 0
∞ ∞ 5 3 ∞
2 ∞ ∞ 1 −2

 Pred =


0 1 0 0 0
0 0 0 2 2
3 0 0 0 3
0 0 4 0 0
5 0 0 5 0



k = 1 D =


4 3 ∞ ∞ ∞
∞ −1 ∞ 2 −3
6 5 2 ∞ 0
∞ ∞ 5 3 ∞
2 1 ∞ 1 −2

 Pred =


0 1 0 0 0
0 0 0 2 2
3 1 0 0 3
0 0 4 0 0
5 1 0 5 0



k = 2 D =


4 3 ∞ 6 1
∞ −1 ∞ 2 −3
6 5 2 8 0
∞ ∞ 5 3 ∞
2 1 ∞ 1 −2

 Pred =


0 1 0 2 2
0 0 0 2 2
3 1 0 2 3
0 0 4 0 0
5 1 0 5 0



k = 3 D =


4 3 ∞ 6 1
∞ −1 ∞ 2 −3
6 5 2 8 0
9 8 5 3 3
2 1 ∞ 1 −2

 Pred =


0 1 0 2 2
0 0 0 2 2
3 1 0 2 3
3 1 4 0 3
5 1 0 5 0



k = 4 D =


4 3 8 6 1
8 −1 4 2 −3
6 5 2 8 0
9 8 5 3 3
2 1 3 1 −2

 Pred =


0 1 4 2 2
3 0 4 2 2
3 1 0 2 3
3 1 4 0 3
5 1 4 5 0



k = 5 D =


4 3 6 4 1
1 −1 2 0 −3
4 3 2 3 0
7 6 5 3 3
2 1 3 1 −2

 Pred =


0 1 4 5 2
5 0 4 5 2
5 1 0 5 3
5 1 4 0 3
5 1 4 5 0



Figure 2.23.: An illustration of the algorithm of Floyd-Warshall for node weights.

49

Chapter 2 Basic Concepts and Notation

2.8. Single-objective Matroid Intersection Problem

For the matroid intersection problem, we assume that two matroids M1 = (E, I1) and
M2 = (E, I2) with the same ground set are given. Furthermore, let w : E → Q be a
weight function assigning to each element of the ground set a weight. We are looking for
an independent set of the independence system, resulting from the intersection of those two
matroids, which has maximal cardinality and minimal total weight. Hence, the weighted
matroid intersection problem (MaIP) is defined as:

min w(I)
s. t. I ∈ I1 ∩ I2

|I| = max{|J | : J ∈ I1 ∩ I2}.
(MaIP)

This problem can be solved by the matroid intersection algorithm (MI) of Edmonds, 1971.
This algorithm is originally formulated for maximization problems, but it can also be
applied to minimization problems by multiplying all weights w(e) by −1, e ∈ E, and
hence maximizing −w(e) rather than minimizing w(e).

The idea of the algorithm is to start with an extreme common independent set, which
is defined as follows:

Definition 2.12. Let two matroids M1 = (E, I1) and M2 = (E, I2) over the same ground
set be given and let w : E → Q be a weight function. Then a common independent set
I ∈ I1 ∩ I2 is denoted as extreme (for minimization problems) if w(I) ≤ w(J) for each
J ∈ I1 ∩ I2 with |J | = |I|.

Note that we can start with I = ∅ ∈ I1∩I2. The matroid intersection algorithm iteratively
extends the cardinality of extreme independent sets. For this purpose a directed graph
is constructed, in which the nodes correspond to the elements of the matroid. Then, the
nodes are divided into different, not necessarily disjoint subsets. The edges in the graph
are chosen such that every path from a node in one subset to a node in an other subset
defines an augmenting path of swaps increasing the cardinality of the common independent
set by one. The precise definition is as follows:

Definition 2.13. Let two matroids M1 = (E, I1) and M2 = (E, I2) over the same ground
set be given and let w : E → Q be a weight function. Furthermore, let I ∈ I1 ∩ I2 be a set
that is independent w.r.t. both matroids M1 and M2. Then we define the directed graph
GM1,M2,I = (E,AM1,M2,I) with

(i, j) ∈ AM1,M2,I ⇐⇒ (I \ {i}) ∪ {j} ∈ I1
(j, i) ∈ AM1,M2,I ⇐⇒ (I \ {i}) ∪ {j} ∈ I2

for i ∈ I and j ∈ E \ I. Each node of the graph has a weight v given by

v(i) :=

{
−w(i) i ∈ I

w(i) i ∈ E \ I.

We define the sets S := {x ∈ E \ I : I ∪ {x} ∈ I1} and T := {x ∈ E \ I : I ∪ {x} ∈ I2}.

50

2.8 Single-objective Matroid Intersection Problem

Algorithm 6: Matroid Intersection Algorithm (MI(M1,M2, w, I))

Input: M1 = (E, I1) and M2 = (E, I2), w : E → Q and an extreme common
independent set I

Output: I∗ = argmin{∑i∈I w(i) : I ∈ I1 ∩ I2 with |I| = max{|J | : J ∈ I1 ∩ I2}}
1 Construct graph GM1,M2,I = (E,AM1,M2,I)
2 S := {x ∈ E \ I : I ∪ {x} ∈ I1}
3 T := {x ∈ E \ I : I ∪ {x} ∈ I2}
4 while ∃ a S − T dipath in GM1,M2,I do
5 Determine a dipath P such that v(P) =

∑
i∈P v(i) (counting multiplicities) is

minimal and so that it has a minimum number of arcs among all minimum
length S − T paths, with

v(i) :=

{
−w(i) i ∈ I

w(i) i ∈ E \ I.

I := I△P
6 update GM1,M2,I , S and T

7 return I

The set S contains those elements of E that can be added to the common independent set
I, such that I + e is still independent with respect to the matroid M1. Analogously, the
set T contains the same information for matroid M2. Every edge in the graph GM1,M2,I

either starts or ends in a node in I. Therefore, every path alternates between nodes in I
and E \ I.
If a path starts in a node e ∈ S, then I + e ∈ I1. Nevertheless, I + e ∈ I2 is only true if

e is also in T . In this case I + e would be a common independent set additional with one
more element. If e /∈ T , then we have to follow an edge to a node i in I. If there exists
such a node, we know that I + e − i ∈ I1, because I + e ∈ I1 and I + e − i ∈ I2 due to
the definition of AM1,M2,I . So, we found the new common independent set I + e− i with
the same cardinality as I. If we use further edges, for example, from i in I to ẽ ∈ S, we
can apply the same argumentation and get an other swap. Hence, the result is an other
common independent set with the same cardinality as I. But finally the path terminates
in a node f ∈ T . For easier notation we consider the case that the path is P = {e, i, f}.
Then we know as explained above, that I + e ∈ S and I + e − i ∈ I2. Furthermore from
(i, f) ∈ AM1,M2,I follows that ((I + e) − i + f) ∈ I1 and from f ∈ T we conclude that
((I + e− i) + f) ∈ I2. Overall, we have found the common independent set I + e− i+ f
with one more element than I.

Consequently, every S-T path in GM1,M2,I = (E,AM1,M2,I) corresponds to a sequence
of swaps such that the result is again a common independent set. Since vice versa every
augmentation of the extreme common independent set I is represented by a S-T path
and the shortest path with minimal weight is chosen, we obtain an extreme common
independent set.

The matroid intersection algorithm (Algorithm 6) repeats this for every updated graph

51

Chapter 2 Basic Concepts and Notation

GM1,M2,I as long as there are paths from a node in S to a node in T . To formalize, we
denote the augmentation of a common independent set I by swaps along a path P by
I△P .

We refer to Schrijver, 2017 for a proof of its correctness and of its polynomial run time.
Note that in Schrijver, 2017 a maximization problem is considered, while we consider a
minimization problem.

In our implementation of the matroid intersection algorithm (Algorithm 6) we use a
variant of the Floyd-Warshall algorithm (see Section 2.7) to compute the required shortest
path. Note that, alternatively, the weights could be further transformed such that non-
negative weight coefficients are obtained. Then, the algorithm of Dijkstra (see Section 2.7)
could be applied for the relevant distance computations, see Frank, 1981 and Brezovec et
al., 1986 for more details.

We illustrate the matroid intersection algorithm with the following example.

Example 2.14.
Input: Let M1 = (E, V) a graphic matroid, given by the following graph:

1

2

3 4

5

6

i j

1

2

3
7

4

5

6

w([i, j])

Let M2 a partition matroid on the edges of the graph above and every subset of E with at
most two red edges is an independent set.
A possible extreme common independent set as input for the algorithm is I = {1, 2}, where
the edges are identified by their costs w([i, j]), [i, j] ∈ V .

1. Iteration:

−1

−2

3

4

5

67

The nodes in I are colored in yellow, nodes in S are colored in green and nodes in T
are colored in blue. Some nodes are both green and blue, when they belong to S and T
simultaneously. In the nodes the weight v(i) is written. The arcs of GM1,M2,I are missing,
because the shortest path can be identified without them. The shortest path is obviously
P = (4), because every path in GM1,M2,I alternates between nodes in E/I and nodes in

52

2.8 Single-objective Matroid Intersection Problem

I. We notice that the costs of the nodes in E/I are larger than the negative costs of the
nodes in I. Therefore, every path starting from a green node and ending in a blue one is
longer than the path P = (4). Hence, we get I := I△P = {1, 2, 4}.

2. Iteration:

−1

−2

3

−4

5

67

Here are the edges again missing, because we don’t need them to identify the shortest path
P = (5). The only shorter path starting from a green node and ending with a blue node,
with alternating nodes in I and in E/I would be the path (5,−4, 3), but this is not a pos-
sible path, because (5,−4) /∈ AM1,M2,I . Hence, we get I := I△P = {1, 2, 4, 5}.

3. Iteration:

−1

−2

3

−4

−5

67

Now the graph GM1,M2,I is given with its edges. The shortest path is P = (7,−2, 3).
Hence, we get I := I△P = {1, 3, 4, 5, 7}.

4. Iteration:

−1

2

−3

−4

−5

6−7

1

2

3 4

5

6

1

3
7

4

5

We finally get GM1,M2,I as above on the left with S = T = ∅ and therefore, the algorithm
terminates and we have found the optimal solution I = {1, 3, 4, 5, 7}, which leads to the
spanning tree on the right.

53

Chapter 2 Basic Concepts and Notation

2.9. Multi-objective Knapsack Problem

We first formally introduce the knapsack problem and review some solution methods
afterwards. Thereby, we explain a dynamic programming approach in more detail, because
it is used in some numerical tests of this thesis.

Problem Formulation In a knapsack problem we consider a set of n items or elements
E = {e1, . . . , en} associated with non-negative weights a(ei) ∈ Z≥ for all i = 1, . . . , n.
Additionally, every item ei has a profit vector w(ei) ∈ Zp

≧, i = 1, . . . , n. Then, we aim

to select items for our knapsack in order to maximize the total value vector w.r.t. Pareto
optimality. Thereby, the total weight of the selected items must not exceed a given bound
Ω ∈ Z≥. For every item ei ∈ E, i = 1, . . . , n, we introduce a variable xi ∈ {0, 1} (or
xi ∈ Z≥, respectively) that indicates whether we select item ei (or even several copies of
item ei) or not. Depending on whether the variables are integer or binary, we obtain the
integer multi-objective knapsack problem

maxCP

∑n
i=1w(ei) · xi

s. t.
∑n

i=1 a(ei) · xi ≤ Ω
x ∈ Zn

≧

or the binary multi-objective knapsack problem

maxCP

∑n
i=1w(ei) · xi

s. t.
∑n

i=1 a(ei) · xi ≤ Ω
x ∈ {0, 1}n.

Example 2.15. We consider the following integer multi-objective knapsack problem with
three items, i.e., n = 3, and two objective functions, i.e., p = 2:

E = {e1, e2, e3}
w(e1) = (1, 5)⊤, w(e2) = (6, 3)⊤, w(e3) = (2, 2)⊤,

a(e1) = 3, a(e2) = 3, a(e3) = 2 and Ω = 7.

In the following all feasible solutions are specified, for which it holds that the addition of
another item would make them infeasible:

x1 = (2, 0, 0)⊤, x2 = (1, 1, 0)⊤, x3 = (1, 0, 2)⊤,

x4 = (0, 2, 0)⊤, x5 = (0, 1, 2)⊤ and x6 = (0, 0, 3)⊤.

The corresponding outcome vectors are

w(x1) = (2, 10)⊤, w(x2) = (7, 8)⊤, w(x3) = (5, 9)⊤,

w(x4) = (12, 6)⊤, w(x5) = (10, 7)⊤ and w(x6) = (6, 6)⊤.

Outcome vector w(x6) is dominated by outcome vector w(x5) and all other outcome vectors
do not dominate each other. Hence, the non-dominated set is YN = {w(x1), . . . , w(x5)}.

54

2.9 Multi-objective Knapsack Problem

Solution Methods The decision problem associated with the knapsack problem is NP-
complete, see, for example, Kellerer et al., 2004. Nevertheless, knapsack problems can be
solved in pseudopolynomial time by dynamic programming, which is a method based on
Bellman’s Principle of Optimality, see, for example, Lew and Mauch, 2007. The idea is to
solve the original problem by iteratively solving subproblems. The principle says that, for
appropriately defined subproblems, subsolutions of an optimal solution must be optimal
for the associated subproblems. There exist different dynamic programming strategies
for multi-objective knapsack problems, see, for example, Klamroth and Wiecek, 2000.
We explain Model III from Klamroth and Wiecek, 2000 for the integer multi-objective
knapsack problem since we use this method in Chapter 5. The model was developed
for the single-objective knapsack problem by Garfinkel and Nemhauser, 1972 as well as
Ibaraki, 1987 and for the multi-objective knapsack problem by Villarreal and Karwan,
1981. Eben-Chaime, 1996 proposed a similar model, which calculates all supported non-
dominated outcome vectors for the multi-objective knapsack problem.
This dynamic programming strategy uses the set of states Q:

Q := {q(k, j) : k = 0, 1, . . . ,Ω, j = 0, 1, . . . , n}
with

q(k, j) := {x ∈ Zn
≧ :

j∑
i=1

a(ei) · xi = k, xj+1, . . . , xn = 0},

i.e., in state q(k, j) we assume that the total weight of the selected items has to be exactly
k and assume that only the first j items can be considered. We define stage j as the union
of all states q(k, j) for k = 0, . . . ,Ω. Hence, stage j consists of all feasible solutions for
which only the first j variables are considered.

We define the initial stage 0 by the states q(k, 0) = {0} for k = 0, . . . ,Ω. We want
to compute the final stage n with the states q(k, n) for k = 0, . . . ,Ω. If we make the
decision to fix variable xj to the value α ∈ Z≥ in state q(k, j − 1), we move to the state
q(k + a(ej) · α, j), since we fix one more variable and the total weight of the chosen items
is increased by a(ej) · α. We denote by YN(q(k, j)) the set of all non-dominated outcome
vectors of the multi-objective knapsack problem where the total weight of the chosen items
is exactly k and xj+1, . . . , xn = 0. With the following recursive formula we can compute
YN(q(k, j)) for all k = 0, . . . ,Ω and for all j = 0, . . . , n:

YN(q(k, 0)) = {0}, for all k = 0, . . . ,Ω,

YN(q(k, j)) = max
CP

{YN(q(k − a(ej)xj , j − 1)) + xj w(ej) : xj ∈ Z≥, k − a(ej)xj ≥ 0},

for all k = 0, . . . ,Ω, and for all j = 1, . . . , n where

YN(q(k−a(ej)xj , j−1))+xj w(ej) := {v+xj w(ej) : v ∈ YN(q(k−a(ej)xj , j−1))} ⊆ Zn
≧.

Finally, the set of non-dominated outcome vectors YN of the original multi-objective knap-
sack problem is given as the set of Pareto non-dominated outcome vectors of the union of
the sets YN(q(k, n)), k = 0, . . . ,Ω, i.e.,

YN = maxCP

⋃Ω
k=0 YN(q(k, n)).

55

Chapter 2 Basic Concepts and Notation

Example 2.16. We consider the knapsack problem defined in Example 2.15. We initialize
q(k, 0) = {(0, 0, 0)⊤} for k = 0, . . . , 7. If we are only allowed to choose the first item, we
can select it either once, twice or not at all as it has the weight a(e1) = 3. Hence, we get

q(k, 1) =


{(1, 0, 0)⊤} if k = 3,

{(2, 0, 0)⊤} if k = 6,

{(0, 0, 0)⊤} if k ∈ {1, 2, 4, 5, 7}.

Suppose that we want to compute state q(6, 2). The weight of item e2 is a(e2) = 3. Thus,
we have the following options:

• move from state q(0, 1) = {(0, 0, 0)⊤} to state q(6, 2) by choosing element e2 twice

• move from state q(3, 1) = {(1, 0, 0)⊤} to state q(6, 2) by choosing element e2 once

• move from state q(6, 1) = {(2, 0, 0)⊤} to state q(6, 2) by deciding not to choose ele-
ment e2

Hence, we get q(6, 2) = {(0, 2, 0)⊤, (1, 1, 0)⊤, (2, 0, 0)⊤}. The corresponding outcome vec-
tors are

w((0, 2, 0)⊤) = (12, 6)⊤, w((1, 1, 0)⊤) = (7, 8)⊤ and w((2, 0, 0)⊤) = (2, 10)⊤.

Those vectors do not dominate each other and we can conclude

YN(q(6, 2)) = {(12, 6)⊤, (7, 8)⊤, (2, 10)⊤}.

Similarly, all other states have to be computed.

There exist some improvements of standard dynamic programming algorithms for the bi-
objective binary knapsack problem based on lower and upper bounds, see, for example,
Figueira et al., 2013. Furthermore, Bazgan et al., 2009 improved a dynamic programming
algorithm for binary multi-objective knapsack problems by using several complementary
dominance relations to discard partial solutions that cannot result in a new non-dominated
outcome vector. There exist also other solution strategies like the one proposed by Yuan
and Li, 2021 for binary multi-objective knapsack problem, which modifies infeasible solu-
tions such that they get feasible and improves feasible solutions by a greedy strategy. In
some studies, evolutionary methods are applied to the multi-objective knapsack problem,
see, for example, Mansour et al., 2018. In Schulze, 2017 efficient algorithms are pre-
sented to solve multi-objective unconstrained combinatorial optimization problems and
multi-objective knapsack problems. Moreover, the special case of rectangular knapsack
problems is investigated.

2.10. Multi-objective Assignment Problem

In this section we first formally introduce assignment problems and afterwards, we review
some solution methods. We explain a generic objective space algorithm for general multi-
objective optimization problems, which we use in this thesis to solve assignment problems.
Nevertheless, the algorithm can solve all classes of MOCO problems.

56

2.10 Multi-objective Assignment Problem

Problem Formulation We consider a bipartite directed graph G = (V1 ∪ V2, E) with
|V1| = |V2| ≥ 1 and with edges that have tails in V1 and heads in V2, i.e., i ∈ V1, j ∈ V2 for
all (i, j) ∈ E. As we want to formulate a multi-objective assignment problem, we assume
that a weight vector w(e) ∈ Rp is associated with every edge e ∈ E. The feasible set
is given by all perfect matchings of the assignment problem. For the objective function
we consider the minimization of the total weight vectors (w.r.t. Pareto optimality). The
multi-objective assignment problem is NP-complete, see, for example, Ehrgott, 2005.

2

1

3

5

4

6

e w(e)

(1, 4) (6, 2)⊤

(1, 5) (5, 1)⊤

(2, 4) (2, 2)⊤

(2, 5) (4, 1)⊤

(2, 6) (0, 2)⊤

(3, 5) (7, 3)⊤

(3, 6) (1, 6)⊤

Figure 2.24.: Example of a bi-objective assignment problem with the disjoint node sets
V1 = {1, 2, 3} and V2 = {4, 5, 6}.

Example 2.17. We consider the bi-objective assignment problem defined by the graph in
Figure 2.24. In the table next to the graph the edge weights are specified. The perfect
matchings are

• {(1, 4), (2, 5), (3, 6)} with outcome vector (11, 9)⊤,

• {(1, 4), (2, 6), (3, 5)} with outcome vector (13, 7)⊤ and

• {(1, 5), (2, 4), (3, 6)} with outcome vector (8, 9)⊤.

The third matching dominates the first one and thus, the resulting non-dominated set is
YN = {(13, 7)⊤, (8, 9)⊤}.

Solution Methods We consider multi-objective assignment problems in Chapter 5 and
solve them with a generic objective space algorithm presented in Klamroth et al., 2015.
This algorithm is not restricted to solve multi-objective assignment problems and can also
be used to solve general multi-objective optimization problems. The algorithm assumes
that an upper bound and a lower bound for the outcome set is given. This is obviously
the case for assignment problems on finite graphs. Then the whole volume between the
lower and upper bound is seen as initial search region in the objective space. In this search
region a non-dominated point is computed by an appropriate scalarization technique, e.g.,
the ε-constraint scalarization. The search region is updated and new local upper bounds
are computed such that the search region corresponds exactly to the region where possibly
further non-dominated points can exist. The search region consists of non-disjoint boxes,
called search zones, each of which is defined by a local upper bound. Iteratively, the boxes
are investigated to find new non-dominated points. If there is no non-dominated point in
a search zone, the zone is discarded. Otherwise, if a new point is found, the overall search

57

Chapter 2 Basic Concepts and Notation

region, i.e., the set of local upper bounds which define the search zones, is updated. See
also Dächert et al., 2017 and Tamby and Vanderpooten, 2021 for variants of this method.

There exist a large variety of other exact and heuristic solution approaches like, e.g.,
heuristics based on evolutionary algorithms or two phase algorithms. For example, in
Cubukcuoglu et al., 2019 a memetic algorithm, which is an evolutionary algorithm that
uses a local search technique for bi-objective quadratic assignment problems, is presented.
In Przybylski et al., 2008 two phase algorithms for the bi-objective assignment problems
are presented and compared w.r.t. their computational performance.
In some references, e.g., a more general variant of the assignment problem is considered,

the so called generalized assignment problem. In the generalized assignment problem every
edge has, in addition to its weight, some costs, and every node of the first vertex set V1

has a budget. In this case we are not looking for a perfect matching. Instead we want
to maximize the total weight of chosen edges under the constraint that for every vertex
in V1 it has to hold that the total sum of the costs of the chosen incident edges is less or
equal to the budget of this vertex. If all budgets and all costs are equal to 1, then we
get the standard assignment problem (as a maximization problem). For the bi-objective
generalized assignment problem Zhang and Ong, 2007 presented a heuristic based on linear
programming methods.
There exist many results on other variants of the multi-objective assignment problem,

see, for example, Mosheiov and Sarig, 2008 and Pramanik and Biswas, 2012. For a survey
on variations of the single-objective and multi-objective assignment problem we refer to
Pentico, 2007.

58

3. Bi-objective Matroid Optimization
Problems with Binary Costs

The hardness results mentioned in Chapter 1 usually refer to MOCO instances with ’large’
cost coefficients that may grow exponentially with the instance size. For problems with
’small’ cost coefficients the situation is different. When coefficients are small, then the
ranges of possible outcome values are bounded, which limits the size of the non-dominated
set. For example, the bi-objective minimum spanning tree problem has only supported
efficient solutions when all cost coefficients take only values from the set {0, 1, 2}, see
Seipp, 2013. This implies that all efficient solutions of this problem are connected, i.e.,
the complete efficient set can be generated by only performing simple swap operations
(e.g., pivot operations in an associated linear programming formulation) among efficient
solutions. In the same work, Seipp, 2013 shows that tri-objective optimization problems
on uniform matroids with one general cost function and two binary cost functions have
a connected efficient set. However, in general even comparably simple problems like bi-
objective unconstrained combinatorial optimization problems may possess a non-connected
efficient set, see Gorski et al., 2011.

In this chapter we focus on bi-objective optimization problems on matroids that have
binary coefficients in one of the objectives. While the first objective may take arbitrary
non-negative integer values, we assume that the second objective takes only values from the
set {0, 1}. The specific structure of this problem allows us to solve the problem efficiently,
as the number of feasible outcome vectors is bounded. Note that binary coefficients allow
for an alternative interpretation of the problem: When associating a cost of 0, for example,
with the color ’green’, and a cost of 1 with the color ’red’, then we are interested in the
simultaneous minimization of the cost of a solution (w.r.t. the first objective) and of the
number of its red elements.

A related problem is the multicolor matroid problem that was discussed by Rendl and
Leclerc, 1988-1989 and by Brezovec et al., 1988. In this problem, a minimum cost solution
is sought that does not exceed a given bound on the number of elements from different
colors. Srinivas, 1995 extended the results from Brezovec et al., 1988 to the case that the
number of elements of different colors is constrained by linear inequalities. Hamacher and
Rendl, 1991 generalized the multicolor matroid problem to combinatorial optimization
problems, now allowing for elements having more than one color. Similar to Brezovec
et al., 1988 the goal is to find minimum cost solutions not exceeding given bounds on the
number of elements in each color. A different optimization objective was considered in
Climaco et al., 2010, who discussed a bi-objective minimum cost / minimum label spanning
tree problem in a graph where each edge is associated with a cost value and a label (i.e.,
a color). While the first objective is a classical cost objective that is to be minimized,
the second objective is to find a solution with a minimal number of different labels (i.e.,
colors). Since it is already NP-hard to determine the minimum label spanning tree on a

59

Chapter 3 Bi-objective Matroid Optimization Problems with Binary Costs

given graph due to a result of Chang and Leu, 1997, this problem is also NP-hard.

From an application point of view, MOCO problems with one general objective function
and one (or several) binary objectives are closely related to k −max optimization where
the kth largest cost coefficient of an outcome vector is to be minimized. Such problems
can be translated into a series of problems with binary sum objectives in a thresholding
framework, see, Gorski and Ruzika, 2009 for more details.

Contribution. This work was motivated by discussions with Stefan Ruzika on spanning
tree problems with two binary objective functions, which were presented at the 23rd
European Conference on Operational Research, see Ruzika, 2009. The results of this
chapter are published in Gorski et al., 2022. Parts of the results can be seen as an
extension and generalization of Chapter 10 of the dissertation of Gorski, 2010. We show
that the non-dominated set of bi-objective optimization problems on matroids with one
general and one binary objective function contains only supported efficient solutions and
is connected. This is the basis for an efficient exact algorithm, which has polynomial
runtime, that enumerates the non-dominated set using a neighborhood search approach,
i.e., using simple swaps between elements contained in different (efficient) bases of the
problem. This Efficient Swap Algorithm ESA can be interpreted as an extension of the
algorithm of Gabow and Tarjan, 1984 for a constrained version of the problem that is
guaranteed to generate the complete non-dominated set. To the best of our knowledge,
this is the first non-trivial optimization problem on matroids for which connectedness of
the efficient set is established.

Organization of the chapter. The remainder of this chapter is organized as follows. The
bi-objective matroid optimization problem with one general and one binary cost objective
is introduced in Section 3.1. In Section 3.2 we present some theoretical results, that are
needed to prove the correctness of the algorithm and to prove the connectedness of the
efficient set. The neighborhood search algorithm ESA is presented in Section 3.3. The
numerical results presented in Section 3.4 confirm the efficiency of the algorithm ESA.
The chapter is concluded in Section 3.5 with some ideas for future research.

3.1. Problem Formulation

Let M = (E, I) be a matroid and let X denote the set of all bases of M. We assume
that rank(M) = r > 0, i.e., the cardinality |B| of all bases B ∈ X is equal to r. In the
following we consider two different types of cost functions on the ground set E. While
the first function w : E → Z≥ is given by arbitrary non-negative integer coefficients, we
assume that the second cost function b : E → {0, 1} only takes binary values. According
to these definitions the two different costs of a basis B ∈ X are given by w(B) = ∑

e∈B w(e)
and b(B) = ∑

e∈B b(e), respectively. The related bi-objective matroid problem with binary
costs (BBMP) is given by

min (w(B), b(B))
s. t. B ∈ X .

(BBMP)

60

3.1 Problem Formulation

Since the second cost function b has binary coefficients for all elements e ∈ E, the
corresponding objective function values of feasible bases B ∈ X are lower bounded by zero
and upper bounded by r. In other words, b(X) := {b(B) : B ∈ X} ⊆ {0, . . . , r} is of size
O(r), and thus the same bound also holds for YN.

For solving problem (BBMP) we introduce the following two associated ε-constraint
versions of the problem. The first is given by

min w(B)
s. t. b(B) ≤ ε

B ∈ X ,
(BMP≤)

where ε ∈ {0, . . . , r} is a fixed integer bound on the binary cost function b. From the theory
of multiple criteria optimization (see, e.g., Chankong and Haimes, 1983) we know that each
optimal solution of problem (BMP≤) is at least weakly efficient for problem (BBMP).
Note that this is not true in general when the inequality constraint in problem (BMP≤)
is replaced by an equality constraint. Indeed, given an optimal solution of the equality
constrained problem

min w(B)
s. t. b(B) = ε

B ∈ X ,
(BMP=)

this solution may be dominated in problem (BBMP). An example for this situation
can be seen in Figure 3.3. There, each basis B ∈ X that maps to the outcome vector
(w(B), b(B)) = (18, 5) is optimal for problem (BMP=) with ε = 5, while it is dominated
by all bases that map to the outcome vector (17, 4) for the bi-objective problem. Never-
theless, we use problem (BMP=) to generate a sequence of optimal solutions by varying
ε ∈ {0, . . . , r} and show that there exists a critical index j such that for all ε ≤ j all
generated bases that are optimal for problem (BMP=) correspond to efficient bases of
problem (BBMP).

Note that the binary cost function b introduced above also allows for another inter-
pretation as used, for example, in Gabow and Tarjan, 1984 and Gusfield, 1984: Given a
matroid M = (E, I) and a (first) cost function w : E → Z≥, one of the two colors red
and green is assigned to each element of E. In Gabow and Tarjan, 1984 and Gusfield,
1984 algorithms are presented that determine a minimum cost basis B ∈ X that contains
exactly ε red elements from E (here, ε is a predetermined parameter). To establish a
connection between the problem discussed in Gabow and Tarjan, 1984 and Gusfield, 1984
and the problems considered here, we simply identify the red elements e ∈ E from the
ground set E with the binary costs b(e) = 1, while all green elements f ∈ E are considered
to have binary cost b(f) = 0. Hence, determining a minimum cost basis B ∈ X contain-
ing at most or exactly ε red elements from E corresponds to solving problem (BMP≤)
and (BMP=), respectively. In this context, especially problem (BMP=) can be seen as a
generalized version of a single-objective matroid problem with an additional constraint,
where the original problem is obtained when E only consists of red elements and ε = r.
Note that for a better illustration, we make use of the idea of red and green elements in
the further sections.

Given an instance of problem (BBMP), we denote by E0 := {e ∈ E : b(e) = 0} the

61

Chapter 3 Bi-objective Matroid Optimization Problems with Binary Costs

subset of E containing all elements with binary cost 0 (green elements) while the set
E1 := {e ∈ E : b(e) = 1} = E0

c contains all elements with binary cost 1 (red elements).
By definition, E0 and E1 form a partition of E.
For this purpose, let i ∈ {0, . . . , r} and Xi := {B ∈ X : |B ∩ E0| = i} be the set of all

bases with exactly i green elements. Note that Xi might be empty for low or high values
of i, respectively. Furthermore, let

Si := {B ∈ Xi : w(B) ≤ w(B′) ∀B′ ∈ Xi}

denote the set of all bases with minimal costs containing exactly i green elements from
E0. By construction, B ∈ Si is an optimal basis of problem (BMP=) with right hand side
value ε = r − i.

3.2. Theoretical Results

In this section we present the general steps of an algorithm that computes the complete
non-dominated set of problem (BBMP) in polynomial time. The algorithm is discussed
in detail in Section 3.3. The method is based on the ideas stated in Gabow and Tarjan,
1984 and can be used to establish a connectedness result for the adjacency graph of prob-
lem (BBMP). In more detail, the algorithm generates a sequence of optimal solutions of
problem (BMP=) for decreasing right-hand side values ε. In Subsection 3.2.1 we formu-
late the theoretical results that are needed to prove the correctness of the method, and in
Subsection 3.2.2 we show the connectedness of the efficient set.
Throughout this section, we consider problem (BBMP) on a given matroid M = (E, I)

with the set of feasible bases X .

3.2.1. Preliminaries

The idea of our approach to generate the complete non-dominated set of problem (BBMP)
is based on the stronger version of the basis exchange property for matroids stated in
Lemma 2.7 in Section 2.5. Given this property we define swaps between elements from
E0 and E1.

Definition 3.1. Let B ∈ X . Then the swap (e, f) w.r.t. B is an ordered pair of elements
such that e ∈ E1 ∩ B, f ∈ E0 \ B and B − e + f ∈ X is a basis. The cost of the swap
(e, f) is defined as w(e, f) := w(f) − w(e). A swap (e, f) is called minimal w.r.t. B if
w(e, f) ≤ w(e′, f ′) for all e′ ∈ E1 ∩ B and f ′ ∈ E0 \ B with B − e′ + f ′ ∈ X .

By definition, a swap always improves the binary cost function by one unit since a red
element from E1 is replaced by a green element from E0. The idea of the efficient swap
algorithm (ESA) is to generate a sequence of minimal swaps that yields all non-dominated
outcome vectors of problem (BBMP), as outlined in Algorithm 7.

A detailed description of this approach is given in Algorithm 8 in Section 3.3, after a
thorough analysis of the individual steps.
From Gabow and Tarjan, 1984 we recall that given an optimal solution B ∈ Si−1, a

minimal swap can be used to generate an optimal solution contained in Si whenever Si is
non-empty.

62

3.2 Theoretical Results

Algorithm 7: Outline of the Efficient Swap Algorithm (ESA) for Bi-objective
Matroid Problems with one Binary Cost Function

Input: An instance ((M,X , (c, b)) of problem (BBMP).
Output: YN and a complete set XcE of efficient solutions.

1 Determine a basis Bj , which is optimal with respect to w, and a basis Bu, which
is optimal with respect to b, such that both bases have as many elements as
possible in common.

2 Compute a sequence of minimal swaps, which describes the necessary swaps to
get from basis Bj to basis Bu.

3 Sort the swaps in non-decreasing order with respect to their costs.
4 Compute from the sorted swap sequence a complete set XcE of efficient solutions

and the corresponding outcome vectors YN.
5 return XcE and YN.

1 2 3

4 5 6

7

1 2

4
2

8

9

3

7
5

4

6

Figure 3.1.: Graph G = (V,E) with costs w(e), e ∈ E, for the graphic matroid considered
in Example 3.4. Dashed green lines correspond to edges e ∈ E with b(e) = 0
and solid red lines correspond to edges with b(e) = 1, respectively.

Theorem 3.2 (see Gabow and Tarjan, 1984, Augmentation Theorem 3.1). Let B ∈ Si−1

for an i ∈ {1, . . . , r} and assume that Si ̸= ∅. If the swap (e, f) is minimal w.r.t. B, then
B − e+ f is contained in Si.

The following result is an immediate consequence of Theorem 3.2.

Corollary 3.3. Let l, u ∈ Z≥ with 0 ≤ l < u ≤ r such that Sl ̸= ∅ ≠ Su. Then Si ̸= ∅ for
all i ∈ {l, . . . , u}.

Note that Corollary 3.3 does not state that problem (BMP=) is feasible for all right-hand
side values ε ∈ {0, . . . , r}. However, it implies that there exist fixed lower and upper
bounds l, u ∈ Z≥ (satisfying 0 ≤ l ≤ u ≤ r) such that Si ̸= ∅ for all i ∈ {l, . . . , u} while
Sj = ∅ for all j ∈ {0, . . . , r} \ {l, . . . , u}.
The results of Theorem 3.2 and Corollary 3.3 imply a simple algorithm that allows to

generate a superset of the non-dominated set for a given instance of problem (BBMP) by
swapping between the optimal bases contained in Si for i = {l, . . . , u}. In this method, a
sequence of minimal swaps has to be generated. The algorithm presented in Gabow and
Tarjan, 1984 uses a recursive procedure to generate this sequence. Further details on the

63

Chapter 3 Bi-objective Matroid Optimization Problems with Binary Costs

generation of minimal swaps are given in Section 3.3 below. Example 3.4 illustrates the
idea of sequential minimal swaps at a graphic matroid.

Example 3.4. We consider the graphic matroid induced by the graph G = (V,E) given
in Figure 3.1. Note that X is the set of all spanning trees of G, and that the matroid has
rank r = 6. The objective coefficients of the first objective function w are depicted next to
each edge. For the second objective b, a solid red edge is used to indicate a cost of 1, while
a dashed green edge indicates a cost of 0.

The spanning trees T1, . . . , T5 given in Figure 3.2 correspond to optimal solutions for
problem (BMP=) for the right-hand side values ε ∈ {1, . . . , 5}. We have that Ti ∈ Si,
i ∈ {1, . . . , 5} while S0 = S6 = ∅, i.e., l = 1 and u = 5. The objective vector (w(Ti), b(Ti))
of tree Ti, i = 1, . . . , 5, is stated in the first column, below the name of the respective
tree. The corresponding trees are shown in the second column. The tables in the right-
most column list relevant swaps w.r.t. the tree Ti, i = 1, . . . , 5, together with the respective
cost, where minimal swaps are highlighted in bold. Here, the “in”-column goes through
the list of all dashed green edges that are not yet contained in Ti and that may hence
potentially be included. Adding the respective edges induces a unique cycle, and the best
possible outgoing edge is shown in the “out”-column. It is selected as a solid red edge in
this cycle with maximum cost. Since we exchange a red against a green edge, the swap
with minimal cost w(e, f) w.r.t. Ti leads to an optimal spanning tree Ti+1 ∈ Si+1. While
the spanning tree T1 is dominated by T2 (the implemented swap decreases each objective by
one unit), the remaining trees form a complete set of efficient solutions and we conclude
that YN = {(17, 4), (22, 3), (27, 2), (34, 1)}.

Note that the procedure that is used to iteratively determine minimal swaps in Example 3.4
originates from Gusfield, 1984. In the following, we present an improved procedure that
avoids the computation of many unnecessary swaps. Example 3.4 further shows that
not all optimal spanning trees for problem (BMP=) result in an efficient solution for
problem (BBMP). However, we show in the following that there exists a fixed index
j ∈ {l, . . . , u} such that B ∈ Si is efficient whenever i ≥ j. Having a closer look at
the example, it can be recognized that the minimal swaps that lead from T1 to T5 have
non-decreasing costs. To prove that this property holds in general, we need the following
lemma from Gabow and Tarjan, 1984.

Lemma 3.5 (see Gabow and Tarjan, 1984, Lemma 3.2). Let B be a basis containing the
element e ∈ E1 ∩ B. Let (e, f) be a swap w.r.t. B that has minimal cost among all swaps
w.r.t. B involving e, and set B′ = B− e+ f . Given ẽ ∈ E1 ∩ (B− e) arbitrary but fixed, let
(ẽ, f̃) and (ẽ, f ′) denote swaps w.r.t. B and B′, respectively, that have minimal costs w.r.t.
B and B′, respectively, and that involve ẽ. Then it holds that w(ẽ, f̃) ≤ w(ẽ, f ′).

Using Lemma 3.5 it can now be shown that the sequence of costs induced by a sequence
of minimal swaps is non-decreasing for increasing i ∈ {l, . . . , u}.

Theorem 3.6. Let u ≥ l + 2. For i ∈ {l, . . . , u − 1} let Bi ∈ Si and let (ei, fi) denote
a minimal swap w.r.t. Bi leading to Bi+1. Then the sequence of costs of minimal swaps
{w(ei, fi)}u−1

i=l is non-decreasing, i.e., w(ei, fi) ≤ w(ei+1, fi+1) for all i ∈ {l, . . . , u− 2}.

64

3.2 Theoretical Results

T1

(18, 5)

1 2 3

4 5 6

7

1 2

2

3

4

6

in out w(e, f)

[2, 5] [6, 7] 3
[2, 6] [6, 7] 1
[3,6] [6,7] −1
[4, 5] [6, 7] 2

T2

(17, 4)

1 2 3

4 5 6

7

1 2

2

3

5

4
in out w(e, f)

[2, 5] [5, 6] 6
[2,6] [2,3] 5
[4, 5] [5, 6] 5

T3

(22, 3)

1 2 3

4 5 6

7

1

2

3

7 5

4 in out w(e, f)

[2, 5] [5, 6] 6
[4,5] [5,6] 5

T4

(27, 2)

1 2 3

4 5 6

7

1

2

8

7 5

4
in out w(e, f)

[2,5] [2,4] 7

T5

(34, 1)

1 2 3

4 5 6

7

1

8

9 7 5

4
in out w(e, f)

Figure 3.2.: Sequence of optimal spanning trees {T1, . . . , T5} for (BMP=) for the graphic
matroid defined in Example 3.4. Left column: tree Ti and corresponding
objective vector. Center column: associated tree. Right column: computation
of a minimal swap w(e, f) w.r.t. Ti, i = 1, . . . , 5.

65

Chapter 3 Bi-objective Matroid Optimization Problems with Binary Costs

Proof. Let {w(ei, fi)}u−1
i=l be a cost sequence of minimal swaps and let i ∈ {l, . . . , u − 2}

arbitrary but fixed. Note that ei ̸= ei+1 since ei ∈ Bi \ Bi+1. Moreover, ei+1 ∈ Bi ∩ Bi+1

since otherwise ei+1 would be contained in Bi+1 \ Bi, i.e., ei+1 = fi. But since ei+1 is a
red element of E while fi is a green element, this is impossible.
Now consider a swap (ei+1, f) w.r.t. Bi that has minimal cost among all swaps w.r.t.

Bi that involve ei+1. Note that the existence of a swap w.r.t. Bi involving the edge ei+1

follows from the basis exchange property (B), see Section 2.5: For the two bases Bi,Bi+2

we have ei+1 ∈ Bi \ Bi+2 and hence there exists an element f ∈ Bi+2 \ Bi such that
Bi − ei+1 + f ∈ X . Hence, (ei+1, f) is a feasible swap w.r.t. Bi involving ei+1 and with
f ∈ Bi+2 \ Bi = {fi, fi+1}.
Since (ei, fi) is a minimal swap w.r.t. Bi it follows that w(ei, fi) ≤ w(ei+1, f). If

f = fi+1, we are done. Otherwise, we conclude from Lemma 3.5 that the inequality
w(ei+1, f) ≤ w(ei+1, fi+1) holds, since the swap (ei+1, fi+1) is minimal w.r.t. Bi+1. Com-
bining these results we get w(ei, fi) ≤ w(ei+1, fi+1), which completes the proof.

Since we have that

w(Bi+1)− w(Bi) = w(fi)− w(ei) = w(ei, fi), (3.1)

Theorem 3.6 implies that the minimum costs of bases B ∈ Si define a convex function for
i = |B ∩ E0| ∈ {l, . . . , u}. Furthermore, if w and b are conflicting, then there must exist
an index j ∈ {l, . . . , u} such that, starting from this index, all subsequent bases contained
in the sequence {Bi}ui=j correspond to efficient solutions of problem (BBMP). This holds
since the value of the binary objective function b is decreased by one unit when a swap
from Bi to Bi+1 is performed, while the corresponding value of the cost function w remains
constant or is increased. By construction, the index j is the first index from {l, . . . , u− 1}
for which w(ei, fi) > 0 holds true. This implies the following result.

Theorem 3.7. Let {Bi}ui=l denote the sequence of minimum cost bases such that Bi ∈ Si

for i ∈ {l, . . . , u}. Assume that u ≥ l + 2. If there exists an index j ∈ {l + 1, . . . , u} such
that w(Bj−1) < w(Bj), then w(Bi) < w(Bi+1) holds true for all i ∈ {j − 1, . . . , u− 1}.

Proof. Let j ∈ {l + 1, . . . , u} denote the index where w(Bj−1) < w(Bj) holds true for the
first time. If j = u, then there is nothing to show. So, let j < u. It suffices to prove
that w(Bj) < w(Bj+1) holds true. From equation (3.1) it follows that w(ej−1, fj−1) > 0.
Furthermore, Theorem 3.6 implies that

w(Bj+1)− w(Bj) = w(ej , fj) ≥ w(ej−1, fj−1) > 0,

which shows that w(Bj) < w(Bj+1) is valid.

Note that the basis Bj , where j is the index such that w(ej , fj) > 0 holds true for the first
time, is lexicographically optimal w.r.t. w (with secondary optimization w.r.t. b). This
means that Bj is optimal w.r.t. w and additionally satisfies b(Bj) ≤ b(B) for all B ∈ X
with w(B) = w(Bj). A lexicographically optimal basis Bj can be computed efficiently
using a greedy algorithm, see Subsection 2.6, by computing an optimal basis w.r.t. the
costs w̃(e) = (r + 1) · w(e) + b(e) for all e ∈ E, where r is the rank of M.

66

3.2 Theoretical Results

Theorem 3.7 induces a method that generates a minimal complete set XcE of efficient
bases. Starting from a lexicographically optimal basis contained in Sj , we compute a
sequence of minimal swaps {(ei, fi)}u−1

i=j , which is called swap sequence in the following.
By construction, we have that each of the generated bases Bi is contained in Si for all
i ∈ {j + 1, . . . , u}. The basis Bj as well as all subsequently generated bases correspond to
efficient solutions of problem (BBMP). Note that starting with basis Bj rather than with
Bl has the advantage that all generated bases are efficient. For example, for the graphic
matroid from Example 3.4 the basis Bl corresponds to T1 in Figure 3.2 while basis Bj is
given by T2. Therefore, one unnecessary swap is omitted. Nevertheless, in the worst case
Bl = Bj holds and all swaps have to be calculated.

Since the binary objective b decreases by one unit in each iteration of this procedure,
it is ensured that no non-dominated outcome vector is missed in the objective space and
hence Bj , . . . ,Bu form a minimal complete set of efficient bases. Hence, we have proven
the following result:

Theorem 3.8. Let {Bi}ui=j denote a sequence of bases generated by a swap sequence.
Then XcE = {Bj , . . . ,Bu} forms a minimal complete set of efficient solutions and the
non-dominated set is given by YN = {(w(Bi), b(Bi)), i = j, . . . , u}.

3.2.2. Connectedness

In the following we show that the set of efficient bases XE for problem (BBMP) is always
connected. We recall from Section 2.5 that the set XE is said to be connected if its
corresponding adjacency graph is connected. Recall also that two efficient bases of a
matroid of rank r are called adjacent if they have r − 1 elements in common. Our proof
is based on the fact that the set of supported efficient bases is always connected. For
more details on this topic we refer to Ehrgott, 1996. In the following we show that every
efficient basis of problem (BBMP) is a supported efficient solution which implies that the
adjacency graph of the problem is always connected.

To do so, we first state a sufficient condition that guarantees that the non-dominated set
of a general bi-objective combinatorial minimization problem only consists of supported
non-dominated outcome vectors. Given the non-dominated set YN = {z1, . . . , zn} ⊂ R2 of
the problem, where n ≥ 3 and zi = (xi, yi) ∈ R2, with x1 < . . . < xn and y1 > . . . > yn,
we define the sequence of slopes {mi}n−1

i=1 of subsequent points of YN by setting

mi =
yi+1 − yi
xi+1 − xi

, i = 1, . . . , n− 1.

Note that mi ∈ (−∞, 0) holds for all i ∈ {1, . . . , n− 1}.

Lemma 3.9. Consider a bi-objective combinatorial minimization problem and suppose
that the sequence of slopes {mi}n−1

i=1 is non-decreasing. Then all non-dominated outcome
vectors in the set YN are supported.

Proof. Suppose that, to the contrary, there is a non-supported non-dominated outcome
vector zt ∈ YN, t ∈ {2, . . . , n− 1}. Since a non-dominated outcome vector is supported if

67

Chapter 3 Bi-objective Matroid Optimization Problems with Binary Costs

and only if it is an element of the convex hull of Y, it follows that there exist supported
non-dominated outcome vectors zi, zj ∈ YN and a weight λ ∈ (0, 1) such that the point
zλ = (xλ, yλ) := λzi + (1 − λ)zj ∈ R2 strongly dominates zt, where 1 ≤ i < t < j ≤ n
holds. Note that zλ can not be an element of YN since otherwise it would dominate zt.
Without loss of generality we may assume that i = 1 and t = 2. Since x1 < xλ < x2 and
yλ < y2 < y1 holds, it follows that

(yλ − y1) · (x2 − x1) < (y2 − y1) · (x2 − x1) < (y2 − y1) · (xλ − x1) < 0.

Since zλ is an element of the straight line connecting z1 and zj , it follows that

m⋆ :=
yj − y1
xj − x1

=
yλ − y1
xλ − x1

<
y2 − y1
x2 − x1

= m1.

This is impossible, since by assumption m1 ≤ mi for all i ∈ {1, . . . , n}, and hence

yj = y1 +

j−1∑
i=1

(yi+1 − yi) = y1 +

j−1∑
i=1

mi · (xi+1 − xi)

≥ y1 +m1 ·
j−1∑
i=1

(xi+1 − xi) = y1 +m1 · (xj − x1).

Therefore, it has to hold that m⋆ ≥ m1, which is a contradiction.

We combine the results of Theorem 3.7, Theorem 3.8 and Lemma 3.9 to conclude that all
non-dominated outcome vectors of bi-objective optimization problems on matroids with
one binary objective function are supported.

Lemma 3.10. Consider a feasible instance of problem (BBMP), i.e., assume that Y ̸= ∅.
Then the non-dominated set YN consists only of supported non-dominated outcome vectors.

Proof. Using the notation introduced in Section 3.3, we denote by {(ei, fi)}u−1
i=j a swap

sequence starting from a lexicographically optimal basis Bj that induces a set of efficient
bases Bi ∈ Si for problem (BBMP), i = j, . . . , u. According to Theorem 3.8 we have that
YN = {(w(Bi), b(Bi)), i = j, . . . , u}.
Note that the result is trivial when |YN| ≤ 2. When |YN| ≥ 3 we know from Lemma 3.9

that it suffices to show that the sequence of slopes {mi}u−1
i=j , where

mi =
b(Bi+1)− b(Bi)

w(Bi+1)− w(Bi)
=

−1

w(Bi+1)− w(Bi)

is non-decreasing. Since in this case |YN| ≥ 3 we have that j ≤ u − 2. For an arbitrary
but fixed index i ∈ {j, . . . , u− 2} it follows from Theorem 3.6 and Theorem 3.7 that

w(Bi+2)− w(Bi+1) = w(ei+1, fi+1) ≥ w(ei, fi) = w(Bi+1)− w(Bi) > 0.

This implies that

mi+1 =
−1

w(Bi+2)− w(Bi+1)
≥ −1

w(Bi+1)− w(Bi)
= mi,

and hence the sequence of slopes {mi}u−1
i=j is non-decreasing. This implies that YN contains

only supported non-dominated outcome vectors.

68

3.3 Efficient Swap Algorithm

y2

y3

y4
y5

y1

w

b

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

0

1

2

3

4

5

6

Figure 3.3.: Non-dominated set of the graphic matroid introduced in Figure 3.1. Non-
dominated outcome vectors are shown in black and weakly non-dominated
points are shown in grey. The remaining (white) points are all dominated
outcome vectors. Note that the points y2, y4 and y5 are extreme supported
non-dominated outcome vectors while y3 is a non-extreme supported non-
dominated outcome vector. The nodes yi correspond to the trees Ti from
Figure 3.2.

Note that not every supported non-dominated outcome vector must be extreme supported.
Indeed, when the costs of two consecutive swaps (ei, fi) and (ei+1, fi+1) in a swap sequence
are equal, then the point (w(Bi+1), b(Bi+1)) is not an extreme point of conv(Y). To see
this we consider again the graphic matroid introduced in Figure 3.1, c.f. Example 3.4. The
set of feasible outcome vectors Y in the objective space is shown in Figure 3.3. In this
example, the supported non-dominated point y3 (which is the image of the spanning tree
T3 from Figure 3.2) is not an extreme point of conv(Y) and thus not extreme supported.

We finally conclude that the set of efficient bases is connected.

Theorem 3.11. Consider a feasible instance of problem (BBMP). Then the set of efficient
solutions XE is connected.

Proof. Lemma 3.10 implies that all non-dominated outcome vectors in YN are supported,
and hence all efficient solutions in XE are supported. Using the fact that the (sub)graph
of all supported efficient solutions is always connected (see Ehrgott, 1996) implies the
result.

3.3. Efficient Swap Algorithm

The Efficient Swap Algorithm ESA presented in this section utilizes swap sequences to
efficiently generate a minimal complete set of efficient solutions for problem (BBMP). Note
that ESA can be interpreted as an extension of the algorithm stated in Gabow and Tarjan,
1984 for the solution of problem (BMP=) for fixed ε. Indeed, it was shown in Gabow and
Tarjan, 1984 that this algorithm generates a complete swap sequence {(ei, fi)}ε−1

i=l starting
from Bl ∈ Sl and leading to Bε ∈ Sε. Setting ε = u and starting from a lexicographically
optimal basis Bj thus induces ESA, and hence we omit detailed proofs for the correctness

69

Chapter 3 Bi-objective Matroid Optimization Problems with Binary Costs

of this part of the algorithm. We rather focus on explaining how a complete swap sequence
is generated without calculating a multiplicity of unnecessary swaps that do not lead to
new efficient bases of the bi-objective problem (BBMP). At the end of this subsection we
apply our algorithm to the graphic matroid from Example 3.4 to show how ESA works in
practice.

We use the ideas from Theorem 3.2 and Corollary 3.3 to avoid the calculation of unnec-
essary swaps. In a first step, we generate bases Bj ∈ Sj and Bu ∈ Su such that these two
bases have as many elements as possible in common. The following two properties hold if
and only if Bj and Bu coincide in a maximal number of elements:

(a) Bj ∩ E0 ⊆ Bu, i.e., Bu contains all green elements from Bj .

(b) Bu ∩ E1 ⊆ Bj , i.e., Bj contains all red elements from Bu.

Note that properties (a) and (b) imply that U := Bu \Bj ⊆ E0 and that J := Bj \Bu ⊆ E1,
respectively, and that |U | = |J |.

If both properties (a) and (b) hold, then all elements of the matroid that are neither
contained in Bj nor in Bu are redundant for ESA and can be removed from the ground
set of the problem, i.e., we continue by considering the restriction M− (Bj ∪ Bu)

c. Fur-
thermore, only those elements have to be swapped that are not contained in both bases
simultaneously (see Gabow and Tarjan, 1984 for a detailed proof of this fact). This means
that it is sufficient to consider the contraction of the matroid w.r.t. all elements that are
contained in both bases. ESA works on this reduced problem (M− (Bj ∪Bu)

c)/(Bj ∩Bu)
and uses a recursive swap sequence generation procedure (SSG) to generate a swap se-
quence. We illustrate the main aspects of this procedure in the following, assuming that
Bj and Bu satisfy properties (a) and (b) above and that we start from Bj .

If we add a green element f from Bu \ Bj ⊆ E0 with minimal costs to Bj , then a
uniquely defined circuit C(f,Bj) is generated. Note that all elements of this circuit, with
the only exception of f , are elements of Bj . If these elements are all red, then a minimal
swap (e∗, f) w.r.t. Bj containing f , where e∗ ∈ C(f,Bj) \ f and w(e∗, f) ≤ w(e, f) for all
e ∈ C(f,Bj) \ f , has to be contained in the swap sequence. The reason for this is that no
other element of this circuit leads to a better swap than the swap (e, f) does, when f is
added to Bj . Otherwise, if the circuit C(f,Bj) contains red and green elements from Bj ,
then a minimal swap w.r.t. Bj containing f that is contained in a swap sequence cannot
be deduced immediately. The idea in this case is to generate two smaller subproblems
by contraction that do not intersect on the original ground set E. The reduction to two
subproblems is repeated until adding f leads to a circuit with only red edges besides f .

As we explain in the following, problem splitting can be realised such that all swaps
that are already guaranteed to be contained in a final swap sequence by the criterion
given above are preserved (see Gabow and Tarjan, 1984 for further details). Moreover,
the problem can be split until adding f leads to a circuit with only red edges besides
f . Note that this is always satisfied when the respective ground sets of the contracted
matroids consist of two elements e ∈ Bj and f ∈ Bu only. In this case, the swap (e, f)
must be contained in a final swap sequence since this swap is minimal.

More formally, the split of the reduced matroid (M− (Bj ∪Bu)
c)/(Bj ∩Bu) into smaller

parts is induced by a bisection of the sets U = Bu \ Bj ⊆ E0 and J = Bj \ Bu ⊆ E1. At
first, the sets U and J are partitioned into two subsets U1, U2 and J1, J2 satisfying the

70

3.3 Efficient Swap Algorithm

Algorithm 8: Efficient Swap Algorithm (ESA) for Bi-objective Matroid Prob-
lems with one Binary Cost Function

Input: An instance ((M,X , (c, b)) of problem (BBMP).
Output: YN and a complete set XcE of efficient solutions.

1 XcE = ∅, YN = ∅.
2 Determine a lexicographically optimal basis Bj .
3 Determine a minimum basis Bu with respect to w such that Bu contains a

maximal number of elements from E0, all elements from Bj ∩ E0 and only those
elements from E1 that are also contained in Bj .

4 Call SSG((M− (Bj ∪ Bu)
c)/(Bj ∩ Bu),Bj \ Bu,Bu \ Bj) to generate a swap

sequence.

5 Let {(ei, fi)}u−1
i=j denote the swap sequence found by Procedure SSG, where the

swaps are sorted in non-decreasing order with respect to their costs.
6 Set B = Bj , γ = w(Bj) and β = b(Bj).
7 XcE = {B} and YN = {(γ, β)}.
8 for i = j to u− 1 do
9 Set B = B − ei + fi, γ = γ + w(ei, fi) and β = β − 1.

10 Set XcE = XcE ∪ {B} and YN = YN ∪ {(γ, β)}.
11 return XcE and YN.

following two conditions:

1. The set U1 ⊆ E0 consists of the ⌊|U |/2⌋ smallest elements of U with respect to w.

2. The set B = J1 ∪ U1 is a minimum basis for M w.r.t. w satisfying B ∩ E0 = U1.

In a second step, the given problem is split into two different subproblems and the proce-
dures SSG((M− U2)/J1, J2, U1) and SSG((M− J2)/U1, J1, U2) are executed.

Applying this procedure, it can be shown (cf. Gabow and Tarjan, 1984) that all in-
volved matroid problems remain feasible and that all swaps contained in the final swap
sequence are preserved. Furthermore, if a subproblem consists of exactly one red element
e ∈ J ⊆ (Bj \ Bu) ∩ E1 and one green element f ∈ U ⊆ (Bu \ Bj) ∩ E0, it is guaranteed
that the swap (e, f) is in the swap sequence.

The Efficient Swap Algorithm (ESA) for the solution of problem (BBMP) is summarized
in Algorithm 8. The associated bisection procedure SSG that is recursively called during
the course of ESA is outlined in Algorithm 9. At the beginning of Algorithm 8 the
two bases Bj and Bu are calculated. Then, using Algorithm 9, a swap sequence for the
(contracted) matroid (M− (Bj ∪ Bu)

c)/(Bj ∩ Bu)) with ground set (Bj ∪ Bu) \ (Bj ∩ Bu)
is generated recursively. Finally, the generated swaps are sorted in non-decreasing order
of their costs and, based on the result of Theorem 3.8, the non-dominated set YN as well
as a minimal complete set XcE of efficient solutions are determined.

Note that during the course of Algorithm 9 it may happen that swaps (or elements) with
the same cost occur. So, a rule how to cope with ties in Line 4 of Algorithm 9 has to be
given. We follow the approach suggested in Gabow and Tarjan, 1984: First assume that
the elements of E0 are sorted and indexed according to their costs w in non-decreasing

71

Chapter 3 Bi-objective Matroid Optimization Problems with Binary Costs

Algorithm 9: Swap Sequence Generation SSG(M, J, U) (Gabow and Tarjan,
1984)

Input: A matroid M and two sets of elements J ⊆ Bj \ Bu and U ⊆ Bu \ Bj ,
|J | = |U |.

Output: A minimal swap (e, f) or two recursive calls of the procedure SSG.
1 if |U | = 1 then
2 return the swap (e, f), where J = {e} and U = {f}.
3 else
4 Let U1 be the set of ⌊|U |/2⌋ smallest elements with respect to w (contained in

E0) and set U2 = U \ U1.
5 Determine J1 such that B = J1 ∪ U1 forms a minimal basis for M with

respect to w satisfying B ∩ E0 = U1 and set J2 = J \ J1.
6 Call SSG((M− U2)/J1, J2, U1) to find the swaps for the elements in U1.
7 Call SSG((M− J2)/U1, J1, U2) to find the swaps for the elements in U2.

order. Then, in Line 4 of Algorithm 9 we always choose the first ⌊|U |/2⌋ elements from
U . When there are ties in the costs of the swap sequence, then the affected swaps are
arranged in increasing order of the indices with respect to the elements that are contained
in E0. The following theorem summarizes the results.

Theorem 3.12. Algorithm 8 is correct and returns the non-dominated set and a minimal
complete set of efficient solutions.

Proof. The correctness of the algorithm follows from Theorem 3.8 and from the correctness
of the algorithm for solving problem (BMP=) stated in Gabow and Tarjan, 1984.

Note that the complexity of Algorithm 8 depends on the considered matroid problem. For
graphic matroids with G = (V,E), for example, it is shown in Gabow and Tarjan, 1984
that their basic algorithm solves problem (BMP=) within O(m log log(2+m/n) n+n·log(n))
time, where |V | = n and |E| = m. Hence, Algorithm 8 has the same time bound in this
case, since the additional construction of XcE and YN takes at most O(m) time. For a
matching matroid and a transversal matroid the time bound is O(n log n + mℓ), which
follows again from a corresponding result in Gabow and Tarjan, 1984, where n is the
number of vertices of a graph, ℓ is the number of edges in a maximum matching and m is
the number of edges in the graph. Again, Algorithm 8 has the same time bound, since the
additional construction of XcE and YN takes at most O(ℓ) time. Furthermore, it is proven
in Gabow and Tarjan, 1984 that the problem (BMP=) can be solved in linear time, i.e.,
O(n), for a partition matroid (and therefore also for a uniform matroid) on a ground set
E which consists of n elements. In this case the construction of XcE and YN takes at most
O(n) time and hence Algorithm 8 has the same time bound.

Example 3.13. We apply ESA to the graphic matroid introduced in Example 3.4. To
simplify the notation, the edges of the graph G (see Figure 3.1) are identified by their
associated costs w rather than by their respective end nodes. This only induces ambiguity
in the case of the edges [2, 3] and [2, 4] which both have cost 2, and in the case of the edges

72

3.3 Efficient Swap Algorithm

M1

M2
M3

2

8

9 7

3

2’

2’

7

8

2
9 3

Figure 3.4.: Contracted graphic matroids M1, M2 and M3 from Example 3.13. Solid
red lines correspond to edges e with b(e) = 1 while the green dashed lines
correspond to edges with b(e) = 0. The edges are identified by their associated
cost value w, where ambiguities are resolved by using the notation 2 and 2′

to refer to the edges [2, 4] and [2, 3], respectively.

[1, 4] and [3, 7] which both have cost 4. We refer to the edge [2, 3] by writing 2′ and to the
edge [1, 4] by writing 4′ in the following to distinguish between these edges.

In a first step the optimal bases Bj and Bu are determined. This leads to the span-
ning trees T2 and T5, respectively, shown in Figure 3.2, i.e., Bj = {1, 2, 2′, 3, 4, 5} and
Bu = {1, 4, 5, 7, 8, 9}. Hence, U = Bu \ Bj = {7, 8, 9} ⊆ E0, J = Bj \ Bu = {2, 2′, 3} ⊆ E1,
and Bj ∩ Bu = {1, 4, 5}. This implies that the edges 1, 4 and 5, i.e., the edges [1, 2], [3, 6]
and [3, 7], are contained in every efficient spanning tree in the set XcE generated by ESA,
and the edges 4′ and 6, i.e., the edges [1, 4] and [6, 7], can be removed from the problem since
they are not contained in Bj∪Bu. The contracted matroid M1 := (M−(Bj∪Bu)

c)/(Bj∩Bu)
is shown in Figure 3.4. From now on, we enumerate (contracted) matroids and their re-
spective subsets by superscripts, while referring to the corresponding subsets U1, U2, J1, J2
by subscripts, as before.

Then the procedure SSG is called with SSG(M1, J1, U1), where J1 := J = {2, 2′, 3}
and U1 := U = {7, 8, 9}. Since |U1| = 3 > 1, the matroid M1 has to be split into two
smaller matroids. We first determine the ⌊|U1|/2⌋ smallest elements of U1 as U1

1 = {7}
and set U1

2 := U1 \ U1
1 = {8, 9}. Now we determine J1

1 such that B1 = J1
1 ∪ U1

1 is
a minimum basis for M1 with respect to w satisfying B1 ∩ E0 = U1

1 . This implies
that J1

1 = {2, 3}, J1
2 := J1 \ J1

1 = {2′} and B1 = {2, 3, 7}. Now the procedure SSG
is called recursively with SSG(M2, J2, U2) and SSG(M3, J3, U3), respectively, where M2

and M3 correspond to the contracted matroids shown in Figure 3.4, and J2 = J1
2, J

3 = J1
1,

U2 = U1
1 and U3 := U1 \ U1

1 = {8, 9}. SSG(M2, J2, U2) returns immediately the swap
(2′, 7) while SSG(M3, J3, U3) needs another recursion to compute the swaps (3, 8) and
(2, 9). Sorting these swaps in non-decreasing order of their costs leads to the swap se-
quence {(2′, 7), (3, 8), (2, 9)} with costs 5, 5, 7. This immediately leads to the final result
YN = {(17, 4), (22, 3), (27, 2), (34, 1)} and XcE = {T2, T3, T4, T5}, see also Figure 3.2.

73

Chapter 3 Bi-objective Matroid Optimization Problems with Binary Costs

3.4. Numerical Results

The main advantage of ESA is its computational efficiency. In this section we present
numerical results that validate this statement for the examples of graphic and uniform
matroids. In addition we address the question whether, and if yes, how far the results
on the connectedness of the efficient set can be extended to more general cases. Towards
this end, we randomly generated instances of uniform matroids with more than two (in-
teger) values for the coefficients in the second objective. For all instances we compute the
complete efficient set XE and count the number of instances for which XE is non-connected.

We note that other generalizations have been investigated for specific matroids. Seipp,
2013, for example, analyzes uniform matroids with one general cost function and two
binary cost functions in a tri-criteria model. They suggest an exact solution method that
is, similar to ESA, based on neighborhood search. In contrast to ESA their algorithm may
generate dominated solutions. Nevertheless, they show that a complete set of efficient
solutions can be generated in polynomial time with this method and that the efficient set
consists only of supported solutions and is thus connected.

3.4.1. Performance of the Efficient Swap Algorithm

In this section, we present numerical results on randomly generated instances of graphic
matroids and of uniform matroids to validate the efficiency of ESA.

3.4.1.1. Graphic Matroids

For graphic matroids on undirected connected graphs G = (V,E), i.e., for bi-objective
minimum spanning tree problems with one general and one binary cost function, we eval-
uate the computational time needed by ESA to compute the non-dominated set YN. To
set this time in relation to the combinatorial complexity of the respective instances, we
also provide the total number of feasible solutions, i.e., of spanning trees of the graph,
and evaluate the time needed to determine all efficient trees from this set by total enu-
meration. This complete enumeration approach (CE) is implemented by using the matlab
code by Hotz, 2016 for the generation of all spanning trees that is based on an algorithm
described in Knuth, 2012, see Subsection 2.6. For a recent survey and numerical compar-
ison of exact algorithms for general multi-objective minimum spanning tree problems we
refer to Fernandes et al., 2020. Note that the problem could also be solved by n = |V |
restarts of the method of Gabow and Tarjan Gabow and Tarjan, 1984 with appropriately
chosen constraints on the number of green edges. ESA avoids these restarts as well as the
computation of dominated solutions by initializing the swap sequence with a lexicograph-
ically optimal basis. The induced savings depend on the considered instance and are most
significant when the non-dominated set is rather small compared to |V |.
Note also that since ESA exploits the fact that the non-dominated set YN solely consists

of supported non-dominated outcome vectors when one of the objective functions has
binary coefficients only (c.f. Lemma 3.10), a numerical comparison with general solvers
for bi- and multi-objective minimum spanning tree problems is not meaningful. In two-
phase methods, for example, the search for unsupported non-dominated outcome vectors

74

3.4 Numerical Results

could be omitted, leading to an implementation that is somewhat similar to ESA. On the
other hand, algorithms that generalize classical methods for the single-objective minimum
spanning tree problem to the multi-objective case cannot be expected to be competitive
with ESA since they generally enumerate far too many irrelevant trees.
The efficiency tests are run on a computer with an Intel(R) Core(TM) i7-8700 CPU @

3.20GHz processor, 12MB Cache and 32 GB RAM. Both algorithms are implemented in
MATLAB Version R2020a.
Recall from Section 3.1 that the objective values of the binary objective b can only take

values between 0 and r, i.e., b(B) ∈ {0, 1, . . . , r} where r is the rank of the underlying
matroid and B is an arbitrary basis. As a consequence, we have that |YN| = O(r). For an
instance of the graphic matroid on a connected graph G = (V,E) with n vertices and m
edges, this implies that b(T) ∈ {0, 1, . . . , n − 1} for all spanning trees T of G. Note that
due to the common notation that |V | = n and |E| = m for graphic matroids, the rank of
a graphic matroid is thus n− 1. The CE approach determines all efficient spanning trees
by maintaining a list with n entries, one for each potential value of b(T) ∈ {0, 1, . . . , n−1}
that stores the currently best cost value w(T) together with all corresponding trees that
were enumerated so far.
Tables 3.1 and 3.2 summarizes the times needed to compute all non-dominated outcome

vectors with ESA for instances with up to n = 1000 nodes and m = 45 000 edges. To
randomly generate connected graphs, we use a code from Schnepper et al., 2021 that first
constructs a random spanning tree for the required number of nodes and that afterwards
adds randomly the remaining edges. For all instances, the cost coefficients of the first
objective were uniformly distributed random integers between 1 and 50 000 that were
linearly transformed such that the smallest cost value is always equal to zero. For the
second objective, the cost coefficients were uniformly distributed random integers from
the set {0, 1}. To reduce the effect of fluctuations due to varying processor loads, all
times are averaged over ten runs on the same instance. Despite the exponentially growing
cardinality |X | of the feasible set, which was computed using Kirchhoff’s matrix tree
theorem (see, e.g., Merris, 1994) for instances up to n = 100, the computational time of
ESA always remains below one minute. For the very large instances in Table 3.2 it was
not possible to compute |X |. The CE approach took even for smaller instances to long,
denoted by −. In this case, we also do not know |XE|. It can be observed that both the
number |YN| of non-dominated outcome vectors as well as the computational time needed
by ESA grow mainly with n, and only marginally with m and with the number |E1| of
red edges, i.e., which are in the set E1 = {e ∈ E : b(e) = 1}.
The numerical results shown in Tables 3.1 and 3.2 confirm the expected efficiency of

ESA. Indeed, since ESA computes the set of non-dominated outcome vectors YN (which
has at most n elements) rather than the set of all efficient solutions XE, the number
of iterations of ESA is bounded by n. Moreover, each iteration requires a simple swap
operation that can be implemented very efficiently.
Note that ESA generates only one pre-image, i.e., one feasible tree for each non-

dominated outcome vector, while the number of efficient trees may be substantially larger.
As an example, consider an instance where all edges have the same coefficients in both
objectives. Then all spanning trees map to the same outcome vector in the objective
space, i.e., |YN| = 1, and are thus efficient, i.e., |XE| = |X |. In order to test whether this

75

Chapter 3 Bi-objective Matroid Optimization Problems with Binary Costs

(n, m) |E1| |YN| |XE| |X | ESA [s] CE [s]

(7, 10) 2 1 1 76 0.065 0.010
(7, 10) 4 4 4 66 0.032 0.001
(7, 15) 8 2 2 1 615 0.010 0.013
(7, 15) 12 3 3 1 807 0.014 0.015
(7, 20) 8 4 4 12 005 0.019 0.080
(7, 20) 11 5 5 12 005 0.023 0.081
(7, 20) 12 5 5 12 005 0.022 0.081
(10, 20) 10 6 6 26 646 0.027 0.203
(10, 20) 11 5 5 21 560 0.023 0.167
(10, 20) 15 2 2 18 956 0.011 0.139
(10, 30) 15 3 3 1.85 · 106 0.016 11.808
(10, 30) 17 2 2 1.62 · 106 0.012 10.215
(10, 30) 20 5 5 1.60 · 106 0.021 10.202
(10, 40) 17 6 6 3.06 · 107 0.029 172.213
(10, 40) 18 7 7 3.01 · 107 0.032 171.100
(10, 40) 20 3 3 3.01 · 107 0.016 168.403
(15, 30) 13 5 5 5.35 · 106 0.025 38.684
(15, 30) 15 5 5 4.11 · 106 0.023 29.293
(15, 30) 16 5 5 4.66 · 106 0.024 33.935
(15, 60) 27 5 - 2.97 · 1011 0.028 -
(15, 60) 28 7 - 3.95 · 1011 0.034 -
(15, 60) 34 10 - 2.86 · 1011 0.034 -
(15, 100) 46 6 - 9.46 · 1014 0.034 -
(15, 100) 48 8 - 9.35 · 1014 0.040 -
(15, 100) 51 7 - 9.35 · 1014 0.036 -
(20, 40) 19 7 - 1.18 · 109 0.034 8 663.920
(20, 40) 20 10 - 7.42 · 108 0.044 5 419.526
(20, 100) 47 12 - 5.76 · 1017 0.058 -
(20, 100) 48 13 - 4.43 · 1017 0.062 -
(20, 100) 52 13 - 4.15 · 1017 0.059 -
(20, 180) 83 7 - 8.91 · 1022 0.047 -
(20, 180) 84 10 - 8.89 · 1022 0.057 -
(20, 180) 103 11 - 8.94 · 1022 0.057 -
(100, 200) 93 36 - 4.94 · 1044 0.198 -
(100, 200) 101 32 - 5.06 · 1045 0.179 -
(100, 200) 102 36 - 1.06 · 1045 0.193 -
(100, 1 000) 476 39 - 2.20 · 10125 0.296 -
(100, 1 000) 488 48 - 5.74 · 10125 0.341 -
(100, 1 000) 494 50 - 2.14 · 10125 0.345 -
(100, 2 000) 981 48 - 3.00 · 10156 0.452 -
(100, 2 000) 988 43 - 3.00 · 10156 0.427 -
(100, 2 000) 1 047 52 - 2.32 · 10156 0.457 -
(100, 4 000) 1 960 49 - 5.39 · 10186 0.700 -
(100, 4 000) 1 976 46 - 5.43 · 10186 0.681 -
(100, 4 000) 1 998 55 - 5.53 · 10186 0.723 -

Table 3.1.: Computational results for randomly generated graphs with n vertices, m edges,
and |E1| edges with cost 1 in the binary cost function b. The last two columns
give the time in seconds for ESA and for CE, respectively.

76

3.4 Numerical Results

(n, m) |E1| |YN| ESA [s]

(1 000, 2 000) 970 355 3.695
(1 000, 2 000) 976 320 3.445
(1 000, 2 000) 1 008 353 3.695
(1 000, 15 000) 7 419 489 8.101
(1 000, 15 000) 7 441 478 7.999
(1 000, 15 000) 7 541 511 8.325
(1 000, 30 000) 14 894 494 12.805
(1 000, 30 000) 14 947 482 12.416
(1 000, 30 000) 14 988 510 12.708
(1 000, 45 000) 22 430 470 17.375
(1 000, 45 000) 22 548 514 17.996
(1 000, 45 000) 22 632 517 18.011

Table 3.2.: Computational results for randomly generated graphs with n vertices, m edges,
and |E1| edges with cost 1 in the binary cost function b. The last column give
the time in seconds for ESA.

is a common situation also in randomly generated instances, we computed the complete
set XE with the CE approach for the smaller instances from Table 3.1. It turns out that
this is not the case for randomly generated instances on small graphs with a rather large
range for the objective coefficients.

3.4.1.2. Uniform matroids

As a second test case we consider uniform matroids Ur,n on the ground set E = {e1, . . . , en},
from which exactly r elements have to be selected in a basis. Rather than minimizing the
cost of a basis we aim at maximizing its profit w.r.t. one general and one binary cost
function to reflect the similarity of this problem to bi-objective knapsack problems with
bounded cardinality.

To determine the profit vectors of each element ei ∈ E, we generated n uniformly
distributed random values from the set {0, 1, . . . , 10n} (for the first objective) and n values
from the set {0, 1} (for the second objective). After sorting the values for the first objective
in non-decreasing order and the values of the binary objective in non-increasing order, the
coefficients were combined into profit vectors for the elements e1, . . . , en.

For each instance on n elements, Table 3.3 shows the accumulated results over all
values of r ∈ {1, . . . , n2 }. In order to analyse the relation between |YN| and |XE|, we
applied a simple implementation of a dynamic programming algorithm (DP) for multi-
objective knapsack problems as described, for example, in Klamroth and Wiecek, 2000 and
in Section 2.9. Different from the bi-objective minimum spanning tree instances described
above, we consistently observe that the number of efficient solutions exceeds the number
of non-dominated outcome vectors, however, not by very much. As was to be expected,
ESA easily solves larger instances within fractions of a second, while the computational
time required by DP grows significantly with the size of the instance. The efficency tests
are run on a computer with an Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz processor
and 8 GB RAM. The algoithms are implemented in MATLAB, Version R2019b.

77

Chapter 3 Bi-objective Matroid Optimization Problems with Binary Costs

n |E1| |YN| |XE| ESA [s] DP [s]

20 9 64 83 0.02 0.08
20 10 65 65 0.02 0.06
20 11 64 74 0.03 0.06
30 12 129 129 0.03 0.44
30 15 135 166 0.03 0.50
30 16 134 134 0.02 0.30
50 21 340 364 0.06 35.33
50 21 340 340 0.07 27.29
50 29 340 413 0.06 14.43
60 27 489 523 0.09 131.83
60 30 495 627 0.09 130.62
60 32 492 502 0.09 80.36
70 34 664 690 0.12 327.33
70 35 665 716 0.12 336.23
70 38 659 705 0.12 248.97
80 38 857 935 0.21 > 600
80 44 850 899 0.27 > 600
80 50 805 860 0.21 > 600
90 45 1 080 1 181 0.20 > 600
90 46 1 079 1 213 0.21 > 600
90 47 1 077 1 159 0.19 > 600

100 46 1 315 1 361 0.25 > 600
100 50 1 325 1 483 0.46 > 600
100 51 1 324 1 441 0.27 > 600

Table 3.3.: Computational results for randomly generated instances of uniform matroids
Ur,n. The two last columns show the accumulated average computation time
over all r = 1, . . . , n/2 in seconds, rounded over 10 repetitions for each instance,
for ESA (for the computation of YN) and for DP (for the computation of XE),
respectively. For instances with 80 or more elements DP needs more than 600
seconds.

78

3.4 Numerical Results

b̂ 2 3 4 5 6 7 8 9 11 13 15 20 25 30

nc-instances 0 0 0 0 0 0 2 4 3 2 8 10 12 13

Table 3.4.: Number of observed nc-instances in 300 000 randomly generated instances of
Ur,20, cumulated for all r ∈ {1, . . . , 10}, for different values of b̂.

3.4.2. Connectedness for more General Cost Functions

The proof of the connectedness of the efficient set of problem (BBMP) (c.f. Theorem 3.11)
relies on two basic properties: On one hand, this is the matroid structure of the considered
problem, and on the other hand it is the fact that one of the two objective functions has
only binary cost coefficients. While the first property ensures the feasibility of elementary
swap operations, the latter implies that two adjacent non-dominated outcome vectors
always differ by exactly one unit in the binary objective function.

In general, i.e., when the objective coefficients can be chosen freely, bi-objective op-
timization problems on uniform matroids may have non-connected efficient sets. Corre-
sponding examples are provided in Gorski et al., 2011 indicating that such non-connected
instances (nc-instances) are very rare in randomly generated instances. The question
remains whether non-connected instances already exist when the cost coefficients in the
second objective are restricted to {0, 1, 2} (rather than {0, 1}), or, more generally, to
{0, 1, . . . , b̂} with b̂ ≥ 2.

The frequency in which nc-instances occurred for different values of b̂ in a large numerical
study are reported in Table 3.4. For each value of b̂ ∈ {2, . . . , 9, 11, 13, 15, 20, 25, 30} we
randomly generated 300 000 instances of uniform matroids Ur,n with n = 20 elements. The
profit vectors were chosen as described in Section 3.4.1 above, where the coefficients for
the second objective were now drawn from the set {0, 1, . . . , b̂}. All instances were solved
for all r ∈ {1, . . . , n2 } using a DP approach for multi-objective knapsack problems, see
Klamroth and Wiecek, 2000.

Table 3.4 indicates that it seems to become more likely to find nc-instances the larger
the range for the coefficients in the second objective function is, i.e., the larger the value of
b̂ is. Nevertheless, we suspect that nc-instances also exist for smaller values of b̂ but that
such instances are extremely rare. While nc-instances may be more likely for larger values
of n, analysing large data sets becomes more and more challenging since this requires the
exact computation of the complete efficient set for each instance (without the possibility
of using ESA). We note that preliminary tests with n = 30 and n = 50 did not provide
further insight on this topic.

An other approach was to look after an example where the efficient set is not connected
by using additionally to the first arbitrary objective function more than one binary ob-
jective function. So we first investigate in the case of two binary objective functions and
an arbitrary one. Therefore, we generated for n = 20 8 000 000, for n = 50 600 000, for
n = 80 180 000 and for n = 100 60 000 instances but we did not find an example. In the
case of three binary objective functions and an arbitrary objective function we generated
for n = 20 500 000, for n = 50 50 000 and for n = 80 5 000 instances and did not find an
example. It seems that there are no such examples, so it would be interesting to try to

79

Chapter 3 Bi-objective Matroid Optimization Problems with Binary Costs

e w(e) b(e)

e1 6 0
e2 5 0
e3 2 0
e4 2 1
e5 2 2
e6 0 2

B w(B) b(B)

{e1, e2, e3} 13 0
{e1, e2, e4} 13 1
{e1, e2, e5} 13 2
{e1, e4, e5} 10 3
{e1, e5, e6} 8 4
{e4, e5, e6} 4 5

Table 3.5.: Left: Elements ei, i = 1, . . . , r, of a knapsack U3,6 with their weights with

b̂ = 2. Right: Weakly efficient bases for the knapsack.

find a proof for this theory in further research.

A necessary condition for the existence of nc-instances is the existence of non-dominated
non-supported outcome vectors. But in contrast to nc-instances it is quite easy to generate
knapsack problems with such outcome vectors. An example is given in Table 3.5. In the
first column of the left table the number of an item, in the second column the first weight
and in the third column the second weight with b̂ = 2 is given. In the right table, the
efficient bases for r = 3 are given with their outcome vectors. Recall that we interpret
the uniform matroid as a special case of a knapsack problem with bounded cardinality
and thus consider both objective functions as maximization objectives. As can be seen in
Figure 3.5, the basis {e1, e4, e5} is non-dominated and non-supported. Nevertheless, the
efficient set of this instance is connected.

y0
y1
y2

y3
y4

y5

w

b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

Figure 3.5.: Non-dominated set of the uniform matroid introduced in Table 3.5. Non-
dominated outcome vectors are shown in black and weakly non-dominated
points shown in grey. The point y3 corresponds to a non-dominated and
non-supported outcome vector.

3.5. Conclusion and Further Ideas

In this chapter we investigate bi-objective matroid problems involving one binary cost
objective. We present the Efficient Swap Algorithm (ESA) that solves this special kind
of bi-objective matroid problem in polynomial time, although the decision problem of the
general version of this problem is known to be NP-complete (cf. Ehrgott, 1996). The

80

3.5 Conclusion and Further Ideas

idea of ESA is based on a method of Gabow and Tarjan, 1984 for a constrained version of
single-objective matroid optimization problems. The complexity of ESA depends on the
matroid type. For a graphic matroid on a graph G = (V,E), for example, it is given by
O(m log log(2+m/n) n + n · log(n)), where |V | = n and |E| = m. Numerical experiments
confirm the efficiency of this approach.

The efficient swap algorithm can be interpreted as a neighborhood search approach
with an efficient strategy for the identification of relevant swaps. The correctness of this
approach is based on the proof of the connectedness of the efficient set in this special case,
which is in turn based on the insight that the non-dominated set consists only of supported
non-dominated outcome vectors. This is surprising since it was shown in Gorski, 2010 that
the efficient set of bi-objective matroid problems is in general non-connected. To the best
of our knowledge this is the first class of problems where connectedness of XE can be
established even though the non-dominated set is not contained in a hyperplane.

In future research we should investigate further, whether there exist non-connected
efficient sets of matroid optimization problems with one sum objective function and either
several bi-objective function or with a second objective function with non-negative integer
costs, which are smaller or equal to 8 for each element of the ground set.

The binary objective function can be seen as a special case of an ordinal objective
function. For an ordinal objective function we identify every element with one of K
ordered categories. This is equivalent to the binary objective function if K = 2 categories
are considered. Hence, we investigate in the next chapter matroid optimization problems
with ordinal costs and introduce an efficient solution strategy even for this more general
case.

81

4. Single- and Multi-objective Matroid
Optimization Problems with Ordinal
Costs

In this chapter, we consider multi-objective matroid optimization problems where, in ad-
dition to one sum objective function (with arbitrary non-negative integer coefficients), one
or more ordinal objective functions are to be considered. This problem can be interpreted
as a generalization of the bi-objective matroid optimization problem with binary costs,
which was the topic of Chapter 3.

(a) Good category (b) Medium category (c) Bad category

Figure 4.1.: Illustration of different edge or road categories for building new power lines
or telephone cables.

Ordinal coefficients occur whenever there is no numerical value to reflect the quality or
cost of an element. Consider, for example, the minimum spanning tree problem where
we aim at finding connected networks with small overall costs. In addition to the (non-
negative integer-valued and additive) length of an edge that directly represents the cost of,
e.g., a telephone cable, the construction may involve major work that affects road traffic
or even public transportation systems like tramways or trains. Roads that have already
a cable canal allow for a cheap and easy addition of another cable. But if it is necessary
to build a new cable canal under a street, this could lead to perturbations of the traffic
or even affect public transportation systems. In this situation, it is useful to categorize
each possible connection as “easy to build” (good), “leads to little problems with traffic
jams” (medium), and “leads to major problems for public transportation” (bad), for the
time of construction. For an illustration of these categories see Figure 4.1. It is then hard
to compare, for example, a solution with two medium edges with a solution with one bad
edge, since in general these categories can not be translated into monetary values.

Ordinal weights and ordinal objective functions have been, for example, introduced in
Schäfer et al., 2020 for shortest path problems. Motivated by applications in civil security,
edges are categorized, for example, as “secure”, “neutral”, or “insecure”. Schäfer et al.,
2020 introduce an ordinal preorder based on ordinal weights, analyze the complexity of

83

Chapter 4 Matroid Optimization Problems with Ordinal Costs

the problem, and suggest a polynomial time labeling algorithm for its solution. Knapsack
problems with ordinal weights are analyzed in Schäfer et al., 2021. They consider a general
vector dominance and two lexicographic dominance concepts and suggest a dynamic pro-
gramming based solution strategy and efficient greedy methods, respectively. Moreover,
an outlook to multi-objective versions of ordinal problems is provided.

In this chapter we extend this concept by considering multi-objective problems that
combine one “classical” sum objective function with possibly several additional ordinal
objectives. We focus on multi-objective optimization problems with ordinal weights on
matroids and relate the multi-objective formulation to a series of single-objective opti-
mization problems on intersections of matroids. The latter can be efficiently solved by an
algorithm from Edmonds, 2003. For the special case of bi-objective problems and only
two ordinal categories, we compare this approach to the Efficient Swap Algorithm (ESA)
presented in Chapter 3 which is even more efficient in this case since it exploits the specific
problem structure of two ordinal categories (i.e., 0 and 1) more efficiently.

Contribution. The results of this chapter are published in Klamroth et al., 2022a. The
algorithm we present in the following uses repeatedly the Matroid Intersection Algorithm
from Edmonds, see Edmonds, 2003 and Section 2.8.

Organization of the chapter. Ordinal matroid optimization problems with only one or-
dinal objective function are discussed in Section 4.1. We show that ordinal matroid opti-
mization problems can be solved by a greedy strategy that exploits their specific structure.
Bi-objective matroid optimization problems with one sum objective and one ordinal ob-
jective are introduced in Section 4.2. Their relation to matroid intersection problems is
analyzed in Section 4.3, yielding efficient polynomial time solution strategies for all con-
sidered problem variants. In Section 4.4 the results are extended to matroid optimization
problems with several ordinal objective functions. The algorithms are numerically tested
and compared at randomly generated instances of graphic matroids and of partition ma-
troids in Section 4.5, and the chapter is concluded with a short outlook on future research
topics in Section 4.6.

4.1. Single-objective Matroid Optimization with Ordinal Costs

First, we introduce an ordinal optimality concept that can be applied, whenever all solu-
tions have the same cardinality. Hence, we assume that all solutions in the feasible set Xr

have the same cardinality, i. e. |x| = r∈ Z> for all x ∈ Xr. This is, for example, satisfied
in the case of a matroid optimization problem. Then an ordinal optimization problem with
feasible solutions of length r (OOPr) can be formulated as

“ ordinally minimize ” o(x)
s. t. x ∈ Xr.

(OOPr)

Intuitively, the ordinal objective function o assigns one out of K ordered categories to
each element of the ground set E, and hence the ordinal objective of x is given by an r-
dimensional ordinal vector. For example, in the case K = 3 we may think of good (green),

84

4.1 Single-objective Matroid Optimization with Ordinal Costs

1

2

3 4

5

6

(a)

1

2

3 4

5

6

(b)

Figure 4.2.: The edges of the graph in (a) are categorized w.r.t. two categories(green-dotted
and red-solid), c. f. Figure 2.17(a) above, while the edges of the same graph
are categorized w.r.t. three categories in (b) (green-dotted, orange-dashed,
and red-solid).

medium (orange) and bad (red) elements, where we prefer good over medium and medium
over bad. Figure 4.2 shows two examples of the ground set E of a graphic matroid. While
the edges in Figure 4.2(a) are assigned to only two categories (where green-dotted is better
than red-solid), Figure 4.2(b) shows an example with three categories (where green-dotted
is better than orange-dashed which is again better than red-solid).
Throughout this chapter we assume that the components of the ordinal vectors of feasible

solutions are sorted in non-decreasing order w.r.t. the quality of the respective categories,
see Figure 4.3 for an illustration. This sorting is useful when comparing different solutions
in the following.
More formally, let C = {η1, . . . , ηK} be an ordinal space consisting of K ordered cate-

gories, and let o : E → C assign one ordinal category to each element of the ground set
E. Moreover, (by slightly abusing the notation) let o : Xr → Cr be a function mapping
each feasible solution to an r-dimensional ordinal vector. We assume that category ηi with
i ∈ {1, . . . ,K − 1} is strictly preferred over all categories ηj with i < j, which is denoted
by ηi ≺ ηj . Similarly, we write ηi ⪯ ηj whenever i ≤ j. Moreover, the components of
the objective vector o(x) of a feasible solution x ∈ Xr are sorted in non-decreasing order,
which is denoted by o(x) := sort(o(x1), . . . , o(xr)).
In order to define meaningful optimality concepts for problem (OOPr), we need to

compare ordinal vectors in Cr. The following definition is based on the concept first
introduced in Schäfer et al., 2020. Let y′, ŷ ∈ Cr be two ordinal vectors. Then we write

y′ ≺=o
ŷ : ⇐⇒ y′i ⪯ ŷi, i = 1, . . . , r,

y′ ⪯o ŷ : ⇐⇒ y′i ⪯ ŷi, i = 1, . . . , r and y′ ̸= ŷ,

y′ ≺o ŷ : ⇐⇒ y′i ≺ ŷi, i = 1, . . . , r.

When y′ = o(x′) and ŷ = o(x̂) are outcome vectors of problem (OOPr), then their com-
ponents are sorted in non-decreasing order.

Definition 4.1. Let x′, x̂ ∈ Xr and y′ = o(x′) and ŷ = o(x̂) outcome vectors of prob-
lem (OOPr), i.e., their components are sorted in non-decreasing order. We say that y′

ordinally dominates ŷ whenever y′ ⪯o ŷ.

We write “min⪯o”, for example, instead of “ordinally minimize” in problem (OOPr), to
clarify that this optimality concept is used.

85

Chapter 4 Matroid Optimization Problems with Ordinal Costs

Note that what we consider here is a special case of the concept of ordinal dominance
introduced in Schäfer et al., 2020 who considered the more general case when feasible
solutions – and hence their outcome vectors – may differ w.r.t. their number of elements.
Schäfer et al., 2020 showed that in this more general case, the binary relation ≺

=o
is a

preorder on the set of sorted outcome vectors of an ordinal optimization problem, i.e.,
it is reflexive and transitive. In the special case when all feasible solutions have the
same number of elements, as considered in this paper, the binary relation ≺

=o
is also

antisymmetric and thus a partial order. See also Schäfer et al., 2021 for yet another
perspective on ordinal efficiency for solutions with arbitrary length, which we investigate
later in Chapter 5. If we restrict the definition of ordinal optimality by Schäfer et al., 2021,
see Defintion 5.2, to solutions with the same length, then these concepts are equivalent, see
Theorem 5.13. Moreover, the binary relation ⪯o is a strict partial order in our case, i. e.,
it is irreflexive, transitive and asymmetric. Thus, the concepts of (weak) ordinal efficiency
and (weak) ordinal dominance can be defined in a similar way as for the case of Pareto
optimality, see Section 2.2, by replacing ⩽ with ⪯o and < with ≺o, respectively.

As a first step towards multi-objective ordinal optimization problems we investigate
matroid optimization problems with only one ordinal objective function and show that
such problems can be solved using a greedy algorithm. In slight abuse of the standard
notation, we refer to the resulting problems as “single-objective optimization problems”,
even though their objective functions are vector-valued. Similar results were obtained by
Schäfer et al., 2020 and Schäfer et al., 2021 for shortest path and knapsack problems,
respectively, however, for the case that a lexicographic optimization is employed on the
ordinal outcome vectors. We show in the following that in the case of matroids, ordinal
optimality actually coincides with lexicographic optimality, and hence a greedy algorithm
always yields the ordinally non-dominated set in this case.

4.1.1. Ordinal and Lexicographic Optimality and their Interrelation

Let a matroid M1 = (E, I1) with rank r be given and denote the set of its bases by X1.
As a first special case, consider the situation of only two categories, i.e., K = 2. W.l.o.g.
we set η1 = 0 (green) and η2 = 1 (red). It is easy to see that in this case problem (OOPr)
is equivalent to a matroid optimization problem with a “classical” sum objective function
with binary coefficients b : E → {0, 1} where the cost of a basis B is the aggregated cost
of all of its elements, i. e. b(B) := ∑

e∈B b(e). Indeed, a basis B1 ∈ X1 ordinally dominates
a basis B2 ∈ X1 whenever the number of one-entries in o(B1) (i.e., red elements in B1)
is smaller than that in o(B2). This leads to a matroid problem with a binary objective
function (BMP)

min b(B)
s. t. B ∈ X1

(BMP)

as a particularly simple special case of problem (OOPr). When K > 2, i.e., when more
than two ordinal categories have to be considered, a simple aggregation of all categories
into one single aggregated objective value is no longer meaningful. However, we discuss
two related optimization problems that are based on partial aggregation in the following.
Towards this end, let problem (OOPr) for the special case of matroid optimization be

86

4.1 Single-objective Matroid Optimization with Ordinal Costs

defined as a matroid problem with ordinal costs, given by

min⪯o o(B)
s. t. B ∈ X1.

(MPO)

Now consider a feasible basis B ∈ X1. Then the information contained in the objective
vector o(B) ∈ Cr can equivalently be stored in an aggregated vector c(B) ∈ ZK

≧ with

components cj(B) := |{e ∈ B : o(e) = ηj}| for j = 1, . . . ,K that count the number
of elements in each category in B. Indeed, there is a simple one-to-one correspondence
between o(B) and c(B). We refer to c as a counting objective function in the following. This
representation is often advantageous since in general K, i. e., the number of categories, is
constant and much smaller than the dimension r, i. e., the number of elements in a basis.
Note that since all bases have the same number of elements we have that

∑K
j=1 cj(B) = r,

and hence all outcome vectors c(B), B ∈ X1, lie on the same hyperplane in RK . Moreover,
one of the components of c can be omitted without loosing any information.
This reformulation suggests two related lexicographic optimization problems: On the

one hand, we may aim at lexicographically maximizing the number of elements in the
“good” categories, and on the other hand, we may want to lexicographically minimize the
number of elements in the “bad” categories. In order to clearly distinguish between these
two optimization goals, we introduce two separate variants of the counting objective c
denoted as cmax and cmin, respectively.

Maximizing the Number of Good Elements When aiming at the maximization of the
number of elements in good categories, we can apply a lexicographic maximization to
the counting objective c. Thus, in this case we set cmax(B) := c(B) for B ∈ X1 with
cmax
j (B) := |{e ∈ B : o(e) = ηj}| for j = 1, . . . ,K as defined above, and formulate problem
(MPCmax) as

lexmax cmax(B)
s. t. B ∈ X1.

(MPCmax)

Minimizing the Number of Bad Elements In order to lexicographically minimize the
number of elements in bad categories, we first have to bring the corresponding entries of
the counting objective c that represent the bad categories into the leading positions (which
are considered first in lexicographic optimization). We hence define cmin

j (B) := cK−j+1(B)
for j = 1, . . . ,K and for B ∈ X1, i. e., c

min
j (B) := |{e ∈ B : o(e) = ηK−j+1}|, and consider

problem (MPCmin) given by
lexmin cmin(B)
s. t. B ∈ X1.

(MPCmin)

Figure 4.3 shows an example of a graphic matroid with all of its feasible bases and their
respective objective vectors o, cmax and cmin, see also Example 4.7 below.

4.1.2. Interrelation Between (MPO), (MPCmin) and (MPCmax)

In general, the ordinally non-dominated set of problem (MPO) is different from the sets of
lexicographically optimal outcome vectors of the associated formulations (MPCmin) and

87

Chapter 4 Matroid Optimization Problems with Ordinal Costs

(MPCmax), respectively. This can be seen, for example, at the cases of ordinal shortest
path problems (see Schäfer et al., 2020) and ordinal knapsack problems (see Schäfer et al.,
2021). In the special case of matroids, however, these three concepts are closely related
and their respective efficient and non-dominated sets coincide.

Theorem 4.2. Let M1 = (E, I1) be a matroid, let X1 denote the set of bases of M1, and
let the functions o, cmin and cmax be given and defined as above. Moreover, let B1,B2 ∈ X1

be two bases of M1. Then(
o(B1) ⪯o o(B2)

)
⇒

(
cmin(B1) <lex cmin(B2) and cmax(B1) >lex cmax(B2)

)
,

i. e., if o(B1) ordinally dominates o(B2), then cmin(B1) lexicographically dominates cmin(B2)
and cmax(B1) lexicographically dominates cmax(B2).

Proof. We prove the result for cmin. The corresponding result for cmax follows analogously,
noting that (MPCmin) involves lexicographic minimization while (MPCmax) involves lex-
icographic maximization.
Now let o(B1) ⪯o o(B2) and assume that cmin(B1) does not lexicographically dom-

inate cmin(B2). First note that o(B1) ⪯o o(B2) implies o(B1) ̸= o(B2) and hence it
holds that cmin(B1) ̸= cmin(B2). Let τ := min{i : cmin

i (B1) ̸= cmin
i (B2)} be the small-

est index where cmin(B1) and cmin(B2) differ. Since we assumed that cmin(B1) does not
lexicographically dominate cmin(B2), it follows that cmin

τ (B1) > cmin
τ (B2). Thus, the vec-

tors o(B1) and o(B2) are equal in the last ℓ :=
∑τ−1

i=1 cmin
i (B1) =

∑τ−1
i=1 cmin

i (B2) com-
ponents, i.e., oj(B1) = oj(B2) for all j = K − ℓ + 1, . . . ,K. Furthermore, it holds that
oK−ℓ(B1) ≻ oK−ℓ(B2), which contradicts the assumption that o(B1) ordinally dominates
o(B2).

Note that while the proof of Theorem 4.2 relies on the fact that all feasible solutions have
the same number of elements (and hence all outcome vectors have the same length), the
matroid property is not used. Hence, Theorem 4.2 generalizes to all ordinal optimization
problems with fixed length solutions. The following Corollary 4.3, that also follows from
the results in Schäfer et al., 2020, is an immediate consequence of Theorem 4.2.

Corollary 4.3. The set of efficient bases of (MPO) is a superset of the set of efficient
bases of (MPCmin) and of (MPCmax).

Proof. Theorem 4.2 implies that the efficient set of (MPCmin) can not contain any bases
that are ordinally dominated w.r.t. o since this would imply that they are also lexico-
graphically dominated w.r.t. cmin. The same argument applies to (MPCmax).

Remark 4.4. The reverse implication of Theorem 4.2 does not hold in general, neither
for cmin nor for cmax. As a counter example consider the bases B4 and B6 from Figure 4.3.
We have that

cmin(B6) = cmax(B6) = (2, 1, 2)⊤, cmin(B4) = cmax(B4) = (1, 3, 1)⊤,

o(B6) = (1, 1, 2, 3, 3)⊤ and o(B4) = (1, 2, 2, 2, 3)⊤.

Hence, cmin(B4) lexicographically dominates cmin(B6) and cmax(B6) lexicographically dom-
inates cmax(B4), while o(B4) and o(B6) are ordinally incomparable.

88

4.1 Single-objective Matroid Optimization with Ordinal Costs

We show in the following that in the case of matroids Corollary 4.3 can be strength-
ened. Indeed, the following result shows that the respective ordinal and lexicographic
non-dominated sets are always equal and have cardinality one. This can also be observed
in Example 4.7 below, where all three problems (MPO), (MPCmin) and (MPCmax) have
the same efficient and non-dominated sets, namely the unique efficient basis is B9.
The result can be briefly summarized as follows: Corollary 4.2 states that the efficient

set of (MPO) is a superset of that of (MPCmin) and (MPCmax). If there were two non-
dominated bases B1, B2 for (MPO) and only one of them, say, basis B1, was optimal for
problem (MPCmin), then the basis exchange property would imply that basis B2 could
be improved w.r.t. cmin by an appropriate swap operation. However, this would lead to
a basis that also ordinally dominates B2, contradicting the ordinal efficiency of B2. This
leads to the following result:

Theorem 4.5. Let M1 = (E, I1) be a matroid, let X1 ̸= ∅ be the set of bases of
M1, and let the functions o, cmin and cmax be given as defined above. Then problems
(MPO), (MPCmin) and (MPCmax) have the same efficient set, and the corresponding
non-dominated sets have cardinality one.

Proof. We show the equality of the efficient sets of (MPO) and (MPCmin). The equality
of the efficient sets of (MPO) and (MPCmax) follows analogously.

First observe that the non-dominated set of problem (MPCmin) has cardinality one
since the lexicographical order is a total order. Moreover, Theorem 4.2 implies that every
efficient solution of (MPCmin) is also efficient for (MPO). Consequently, it is sufficient
to show that all efficient solutions of (MPO) map to a unique non-dominated outcome
vector. We prove this result by contradiction.

Suppose, to the contrary, that there are two efficient bases B1 and B2 for (MPO) with
o(B1) ̸= o(B2) and hence also cmin(B1) ̸= cmin(B2). W.l.o.g. assume that cmin(B1) lexico-
graphically dominates cmin(B2).
Let e ∈ B2 \ B1 be chosen such that o(ê) ⪯ o(e) for all ê ∈ B2 \ B1, i.e., e is an

element of highest category among all elements in B2 \ B1. Then the basis exchange
property (B), see Section 2.5, implies that there exists an element e′ ∈ B1 \ B2 such that
B∗ := (B2 ∪ {e′}) \ {e} ∈ X1, and the choice of e and the fact that cmin(B1) <lex cmin(B2)
imply that o(e′) ⪯ o(e). Now, if o(e′) ≺ o(e), then B∗ dominates B2 w.r.t. o, contradicting
the assumption. Otherwise, i.e., if o(e′) = o(e), then B∗ has one more element in common
with B1 than B2, and iterating this procedure at most r times eventually yields a swap
where o(e′) ≺ o(e).

Corollary 4.6. The ordinally non-dominated set of (MPO) can be computed by a greedy
algorithm.

Proof. This follows immediately from Theorem 4.5 and the matroid properties, see also
Hamacher and Ruhe, 1994.

Note that, while Theorem 4.5 states that the non-dominated sets of problems (MPO),
(MPCmin) and (MPCmax) have cardinality one, this does in general not transfer to the
respective efficient sets. Indeed, the size of the efficient sets may grow exponentially with
the problem size. As an example, consider instances with exponentially growing feasible

89

Chapter 4 Matroid Optimization Problems with Ordinal Costs

sets and assume that all elements of E are in the same ordinal category. Then, all feasible
solutions of a considered problem are both ordinally and lexicographically efficient.

4.2. Bi-objective Matroid Optimization with Ordinal Costs

We extend the settings of the previous section and consider bi-objective matroid opti-
mization problems (on a matroid M1 = (E, I1) with rank r and set of bases X1) where
we combine an ordinal objective with a sum objective function with non-negative integer
coefficients w : E → Z≥. The cost of a basis B ∈ X1 w.r.t. this sum objective is given by
w(B) := ∑

e∈B w(e).

4.2.1. Bi-objective Ordinal and Lexicographic Optimality and their
Interrelation

If we add a sum objective function to the problems described in Section 4.1.1 above, we
obtain the following four variants of bi-objective optimization problems involving additive
as well as ordinal objective coefficients:
The bi-objective matroid problem with a binary objective function (BBMP)

min (w(B), b(B))
s. t. B ∈ X1,

(BBMP)

the bi-objective matroid problem with an ordinal objective function (BMPO)

min (w(B), o(B))
s. t. B ∈ X1,

(BMPO)

and two bi-objective matroid optimization problems with a counting objective function
(BMPCmax) and (BMPCmin)

min w(B)
lexmax cmax(B)
s. t. B ∈ X1

(BMPCmax)

min w(B)
lexmin cmin(B)
s. t. B ∈ X1.

(BMPCmin)

The problem (BBMP) is investigated in detail in Gorski, 2010, Gorski et al., 2022 and
Chapter 3, where an efficient swap algorithm is presented that determines a minimal
complete representation of the non-dominated set (i. e., all non-dominated points and one
efficient solution for each of them) of (BBMP) in polynomial time. This assumes that an
oracle can determine in polynomial time if a given subset I ⊆ E is independent or not.
This is, e.g., the case for graphic matroids, uniform matroids and partition matroids, see
Gabow and Tarjan, 1984.
The similarities and differences between the bi-objective matroid problems (BMPO),

(BMPCmax) and (BMPCmin) are illustrated at the following example of a graphic ma-
troid:

90

4.2 Bi-objective Matroid Optimization with Ordinal Costs

Example 4.7. Consider the graphic matroid introduced in Figure 4.2(b). Its bases are
enumerated and illustrated with their weight functions w, o, cmin and cmax in Figure 4.3.
It is easy to see that, in accordance with Theorem 4.5, the unique efficient solution w.r.t.
all of the individual objective functions o, cmin and cmax is the basis B9.

The corresponding bi-objective problems that additionally consider the sum objective
function w all have larger non-dominated sets in this example. The respective non-
dominated outcome vectors of the bi-objective problems that combine w with the objective
functions o, cmin and cmax, respectively, are highlighted in Figure 4.3 by printing the latter
components, i.e., o, cmin and cmax, in bold. Note that the basis B1 is efficient in all three
cases since it is the unique minimizer of w.

4.2.2. Interrelation Between (BMPO), (BMPCmin) and (BMPCmax)

When moving from optimization problems with only one ordinal objective function to
bi-objective problems that additionally include a sum objective w, as in the bi-objective
problems (BMPO), (BMPCmin) and (BMPCmax), the situation is much more complex
than that described in Section 4.1.2 above. Indeed, while Corollary 4.3 can be adapted to
the new situation, Theorem 4.5 does not transfer to the bi-objective case. A corresponding
counter example is given below.

Theorem 4.8. The set of efficient bases of (BMPO) is a superset of the set of efficient
bases of (BMPCmin) and of (BMPCmax).

Proof. We prove the result for cmin. The corresponding result for cmax follows analogously,
noting that (BMPCmin) involves lexicographic minimization while (BMPCmax) involves
lexicographic maximization.

We prove this result by contradiction. Hence, let B̄ be an efficient basis for (BMPCmin)
but not for (BMPO). Then there exists a basis B∗ with w(B∗) ≤ w(B̄), o(B∗) ≺

=o
o(B̄),

and (w(B∗), o(B∗)) ̸= (w(B̄), o(B̄)). First note that o(B∗) ≺
=o

o(B̄) implies due to Theo-

rem 4.2 that cmin(B∗) ≦lex cmin(B̄). We distinguish two cases: Either w(B∗) < w(B̄) and
cmin(B∗) ≦lex cmin(B̄), or w(B∗) = w(B̄) and cmin(B∗) <lex cmin(B̄). However, both cases
are in contradiction with the efficiency of B̄ for problem (BMPCmin).

However, as was to be expected, Theorem 4.5 does not generalize to the bi-objective case
as is shown by the following counter example:

Example 4.9. Consider again the graphic matroid introduced in Example 4.7 and the set
of all of its bases illustrated in Figure 4.3. The efficient bases for problem (BMPO) are the
bases B1,B2,B4,B5,B6,B7,B9, while the efficient bases for the problem (BMPCmin) are
given by B1,B2,B4,B5,B7,B9, and the efficient bases for problem (BMPCmax) are given
by B1,B2,B6,B7,B9. Hence, basis B6 is efficient for (BMPO) but not for (BMPCmin),
and the two bases B4 and B5 are efficient for (BMPO) but not for (BMPCmax). Thus,
Theorem 4.5 does not generalize to the bi-objective problems (BMPO), (BMPCmin) and
(BMPCmax). Furthermore, it can be seen that neither (BMPCmax) is a superset of
(BMPCmin) nor the other way around.

91

Chapter 4 Matroid Optimization Problems with Ordinal Costs

basis B1 basis B2 basis B3

1

2
0

5

3

1

2
0

3

6

1

4
0

5

3

w(B1) = 11 cmax(B1) =

0
3
2

 w(B2) = 12 cmax(B2) =

1
2
2

 w(B3) = 13 cmax(B3) =

1
2
2



o(B1) =


η2

η2

η2

η3

η3

 cmin(B1) =

2
3
0

 o(B2) =


η1

η2

η2

η3

η3

 cmin(B2) =

2
2
1

 o(B3) =


η1
η2
η2
η3
η3

 cmin(B3) =

2
2
1



basis B4 basis B5 basis B6

1

2
0

5

6

2

4
0

5

3

1

4
0

3

6

w(B4) = 14 cmax(B4) =

1
3
1

 w(B5) = 14 cmax(B5) =

1
3
1

 w(B6) = 14 cmax(B6) =

2
1
2



o(B4) =


η1

η2

η2

η2

η3

 cmin(B4) =

1
3
1

 o(B5) =


η1

η2

η2

η2

η3

 cmin(B5) =

1
3
1

 o(B6) =


η1

η1

η2

η3

η3

 cmin(B6) =

2
1
2



basis B7 basis B8 basis B9

2

4
0

3

6

1

4
0

5

6

2

4
0

5

6

w(B7) = 15 cmax(B7) =

2
2
1

 w(B8) = 16 cmax(B8) =

2
2
1

 w(B9) = 17 cmax(B9) =

2
3
0



o(B7) =


η1

η1

η2

η2

η3

 cmin(B7) =

1
2
2

 o(B8) =


η1
η1
η2
η2
η3

 cmin(B8) =

1
2
2

 o(B9) =


η1

η1

η2

η2

η2

 cmin(B9) =

0
3
2



Figure 4.3.: All bases of the graphic matroid introduced in Figure 4.2(b) together with
the objective values w, o, cmin and cmax, where we write η1 for green-dotted,
η2 for orange-dashed, and η3 for red-solid edges. When only considering the
sum objective w, then B1 is optimal, and when only considering the objective
functions o, cmin or cmax, respectively, then B9 is the unique efficient basis.
For the problems (BMPO), (BMPCmin) and (BMPCmax) that combine w
with o, cmin and cmax, respectively, the non-dominated outcome vectors are
indicated by printing the partial objective vectors o, cmin and cmax in bold.

92

4.3 Matroid Intersection Algorithm for Ordinal Constraints

One could conjecture from Example 4.7 that every efficient basis for (BMPO) is efficient
for at least one of the problems (BMPCmin) or (BMPCmax). However, this also does not
hold in general as the following example shows.

Example 4.10. Consider the graphic matroid shown in Figure 4.4. We focus on all bases
B ∈ X1 that have an objective value of w(B) = 4 in the sum objective. Note that these
bases can only be dominated by other bases B̂ with w(B̂) ≤ w(B), and hence we restrict our
analysis on those bases in Figure 4.4. First observe that all bases B ∈ X1 with w(B) = 4
map to one of the following three feasible outcome vectors

o(B) ∈ {(η1, η1, η3, η3)⊤, (η1, η2, η2, η3)⊤, (η2, η2, η2, η2)⊤},

which are all non-dominated for (BMPO). Their corresponding counting vectors cmin are
(2, 0, 2)⊤, (1, 2, 1)⊤ and (0, 4, 0)⊤, where the last one is the only one that is lexicographically
non-dominated. For cmax the counting vectors are the same, but the first one is lexico-
graphically non-dominated. Consequently, the counting vector (1, 2, 1)⊤ is neither lexico-
graphically non-dominated for (BMPCmin) nor for (BMPCmax), but it is non-dominated
for (BMPO).

0

1

2

0

1

2

0

1

2

0

1

2

w = 0 w = 1 w = 2 w = 3 w = 4
η3
η3
η3
η3



η2
η3
η3
η3



η1
η3
η3
η3



η2
η2
η3
η3



η1
η2
η3
η3



η2
η2
η2
η3



η1
η1
η3
η3



η1
η2
η2
η3



η2
η2
η2
η2



Figure 4.4.: All feasible outcome vectors o(B) with w(B) ∈ {0, . . . , 4} for a graphic ma-
troid with non-negative integer-valued costs w and three categories (η1:green-
dotted, η2:orange-dashed and η3:red-solid).

4.3. Matroid Intersection Algorithm for Ordinal Constraints

In the following we show that the three problems (BMPO), (BMPCmin) and (BMPCmax)
can be solved using a series of matroid intersection problems. The approach is based on
variants of ε-constraint scalarizations of problem (BMPO) with appropriately selected
optimization objective and constraints. Furthermore, we show that matroid intersection
problems can be used to solve even problems with several ordinal objective functions and
one sum objective function.

93

Chapter 4 Matroid Optimization Problems with Ordinal Costs

4.3.1. Variants of ε-Constraint Scalarizations

We consider an equality-constrained scalarization of (BMPO) (where equality constraints
are used rather than inequality constraints as is commonly the case in ε-constraint scalar-
izations), given by

min w(B)
s. t. oi(B) = εi, i = 1, . . . , r

B ∈ X1

(4.1)

with right-hand side vector ε ∈ Cr. Intuitively, problem (4.1) specifies exactly how many
elements of each category must be chosen, and hence each feasible basis B ∈ X1 of (4.1)
maps to the same ordinal vector o(B). Depending on the choice of ε, problem (4.1) may be
infeasible (if there is no B ∈ X1 with o(B) = ε), yield an efficient solution B∗ for (BMPO) (if
there is no B ∈ X1 with w(B) = w(B∗) and o(B) ⪯o o(B∗)), or yield a dominated solution
B̂ for (BMPO) (if there is a B ∈ X1 with w(B) = w(B̂) and o(B) ⪯0 o(B̂)). Note that
suitable choices for ε satisfy ε1 ⪯ · · · ⪯ εr since the components of o(B) are always in non-
decreasing order and hence problem (4.1) is certainly infeasible otherwise. In the following,
we denote all such suitable right-hand-side vectors by Υ := {ε ∈ Cr : ε1 ⪯ · · · ⪯ εr}.
Since problem (4.1) can be interpreted as a variant of the “classical” ε-constraint scalar-

ization in multi-objective optimization, see, e.g., Ehrgott, 2005 and Section 2.3, the fol-
lowing result is not surprising and follows basically by the same arguments.

Theorem 4.11. The non-dominated set of problem (BMPO) can be determined by solving
problem (4.1) for all suitable right-hand side vectors ε ∈ Υ and filtering out all dominated
outcome vectors.

Proof. Let (w(B∗), o(B∗)) be a non-dominated outcome vector for (BMPO) with pre-
image B∗ ∈ X1. Then B∗ is optimal for problem (4.1) with ε := o(B∗) ∈ Υ. Thus,
every non-dominated outcome vector of problem (BMPO) can be determined by solving
an appropriate scalarization (4.1). The non-dominated set is then obtained by employing
a dominance filtering to the set of all obtained outcome vectors.

Now let a suitable constraint vector ε ∈ Υ be given, i.e., ε satisfies ε1 ⪯ · · · ⪯ εr. Then we
define an associated suitable counting vector u ∈ ZK

≧ by ui := |{j ∈ {1, . . . , r} : εj = ηi}|
for all i = 1, . . . ,K, where, by definition, we have that

∑K
i=1 ui = r. We denote by

U := {u ∈ ZK
≧ :

∑K
i=1 ui = r} the set of all suitable counting vectors.

Lemma 4.12. There is a one-to-one correspondence between suitable right-hand-side vec-
tors ε ∈ Υ and suitable counting vectors u ∈ U.

Proof. First consider the case that a suitable constraint vector ε ∈ Υ is given. Then an
associated suitable counting vector u ∈ U can be determined from ε as described above,
i.e., by setting ui := |{j ∈ {1, . . . , r} : εj = ηi}| for all i = 1, . . . ,K. Conversely, if a
suitable counting vector u ∈ U is given, then we can determine associated suitable values
for ε ∈ Υ by setting εj := ηi, where the ordinal level i ∈ {1, . . . ,K} is chosen such that∑i

l=1 ul ≤ j and
∑i−1

l=1 ul > j, for all j = 1, . . . , r.

94

4.3 Matroid Intersection Algorithm for Ordinal Constraints

Lemma 4.12 implies that problem (4.1) can be equivalently written as

min w(B)
s. t. ci(B) = ui, i = 1, . . . ,K

B ∈ X1,
(4.2)

where the right-hand side vector u ∈ U is chosen as a suitable counting vector, i.e.,
u ∈ ZK

≧ and
∑K

i=1 ui = r, and c is the counting objective introduced in Section 4.1.1.

Moreover, since
∑K

i=1 ci(B) = r =
∑K

i=1 ui for all feasible bases B ∈ X1, the equality
constraints in (4.2) can be replaced by inequality constraints without changing the feasible
set. Problem (4.2) is thus equivalent to the following variant of ε-constraint scalarization
that relates to problem (BMPCmin)

min w(B)
s. t. cmin

i (B) ≤ uK−i+1, i = 1, . . . ,K.
B ∈ X1.

(4.3)

Corollary 4.13. The non-dominated set of problem (BMPO) can be determined by solving
problem (4.2) (or problem (4.3)) for all suitable counting vectors u ∈ U, and filtering out
all dominated outcome vectors. The non-dominated sets of problems (BMPCmin) and
(BMPCmax) can be obtained from this set by further filtering out all lexicographically
dominated outcome vectors.

Proof. The result follows immediately from Theorems 4.8 and 4.11, using the equivalence
of the formulations (4.1), (4.2) and (4.3).

We emphasize that problem (4.3) remains meaningful when a non-suitable counting vector
u ∈ ZK

≧ with
∑K

i=1 ui > r is used as right-hand-side vector. Indeed, when considering a
suitable counting vector u ∈ U and a non-suitable counting vector û ⩾ u, then û yields a
relaxation of problem (4.3) with u as the right-hand-side vector. Nevertheless, the con-
straint B ∈ X1 guarantees that only bases ofM1 are returned, and hence

∑K
i=1 c

min
i (B) = r

remains satisfied also in this case. Moreover, using ū := (r, . . . , r)⊤ ∈ ZK
≧ yields a “com-

plete” relaxation in the sense that constraints cmin
i (B) ≤ ūK−i+1 = r, i = 1, . . . ,K, are

satisfied for all bases B ∈ X1 and hence redundant in this case.
Using the above results, the cardinality of the non-dominated set of problem (BMPO)

(and hence also of problems (BMPCmin) and (BMPCmax)) can be bounded. Note that
this is in analogy to the results obtained in Schäfer et al., 2020 and Schäfer et al., 2021 for
ordinal shortest path and ordinal knapsack problems, respectively. Indeed, the number of
equality-constraint scalarizations (4.2) that need to be solved in order to guarantee that all
non-dominated outcome vectors of problem (BMPO) are found is polynomially bounded.
This can be seen from the fact that the number of suitable counting vectors u ∈ U, i.e., the
number of K-dimensional non-negative integer vectors that satisfy

∑K
j=1 uj = r, is given

by
(
r+K−1
K−1

)
= O(rK−1) (assuming that K is constant), i. e., it is equal to the number of

multisets of cardinality K − 1 taken from a set of size r + 1. This number is also known
as occupancy number, see, e.g., Feller, 1968. We obtain the following result.

Theorem 4.14. The cardinality of the non-dominated set of problem (BMPO) is bounded
by O(rK−1), which is polynomial in r as long as K is constant.

95

Chapter 4 Matroid Optimization Problems with Ordinal Costs

4.3.2. Matroid Intersection

We focus on the ε-constraint scalarization-variant (4.3) in the following and show that it
can be equivalently formulated as a matroid intersection problem. Towards this end, let
an arbitrary but fixed, suitable counting vector u ∈ U be given as right-hand-side vector
in problem (4.3).

Now consider the partition E = E1 ∪ E2 ∪ . . . ∪ EK of the ground set E of M1, where
Ej := {e ∈ E : o(e) = ηj} for j = 1, . . . ,K, i.e., Ej contains all elements from E that are in
category ηj . Given this partition of E, let M2(u) = (E, I2(u)) be an associated partition
matroid with independent sets given by I2(u) := {J ⊆ E : |J ∩ Ej | ≤ uj , 1 ≤ j ≤ K}.
Then problem (4.3) can be solved using the matroid intersection problem

min w(I)
s. t. I ∈ I1 ∩ I2(u)

|I| = max{|J | : J ∈ I1 ∩ I2(u)}.
(4.4)

Note that the second constraint in (4.4) is needed since otherwise, B = ∅ would always be
optimal.

Theorem 4.15. Let u ∈ ZK
≧ be arbitrary but fixed. If problem (4.3) is feasible, then

problems (4.3) and (4.4) are equivalent. Moreover, if problem (4.3) is infeasible, then
every optimal solution B∗ of problem (4.4) satisfies |B∗| < r.

Proof. We first show that when problem (4.3) is feasible for the given suitable counting
vector u, then problems (4.3) and (4.4) have the same feasible sets. Indeed, in this case
there exists a basis B̂ ∈ X1 that satisfies c(B̂) ≦ u, and hence Î := B̂ with |Î| = r is feasible
for (4.4). This implies that all feasible solutions of (4.4) have cardinality r and are thus
bases of M1. In this situation, the constraints cmin

i (B) ≤ uK−i+1, i = 1, . . . ,K (for (4.3))
and I ∈ I2(u) (for (4.4)) are equivalent. Since both problems also have the same objective
function, they are clearly equivalent in this case. If, however, problem (4.3) is infeasible
for the current choice of u, then the matroid intersection problem (4.4) is still feasible, but
returns an optimal solution B∗ with |B∗| < r. This situation can be easily recognized.

The advantage of this reformulation is that the matroid intersection problem (4.4) can be
solved by the polynomial time matroid intersection algorithm (MI) of Edmonds, 1971, see
Section 2.8.

Note that the cardinality constraint in the general formulation (4.4) of the matroid
intersection problem can be omitted if I1 is replaced by X1, i.e., the set of all bases of the
matroid M1. Hence, we can alternatively solve the problem

min w(B)
s. t. B ∈ X1 ∩ I2(u). (4.5)

This is realized in Algorithm 10 by only considering optimal solutions of problem (4.4)
that are actually bases of M1, see lines 4 and 5 in Algorithm 10 below.

96

4.3 Matroid Intersection Algorithm for Ordinal Constraints

4.3.3. Algorithmic Consequences

Theorems 4.11 and 4.14 imply that all non-dominated points of (BMPO), i.e., Y O
N , can

be determined by a polynomial number of matroid intersections applied on (4.4). The
structure of this procedure is given in Algorithm 10. Note that this algorithm can be
easily adapted to solve (BMPCmin) or (BMPCmax). Since the non-dominated set of
(BMPO) is a superset of the corresponding non-dominated sets of (BMPCmin), i.e., Y Cmin

N ,

and (BMPCmax), i.e., Y Cmin
N , only a slight modification of the filtering step in line 6 is

necessary.

Algorithm 10: Matroid Intersection for Ordinal Constraints
(MIOC(M1, w, o))

Input: Matroid M1 = (E, I1), sum objective function w and ordinal objective
function o

Output: Non-dominated set of problem (BMPO)
1 X := ∅
2 foreach u ∈ U do
3 Solve (4.4) with (MI) and save the obtained independent set I∗

4 if |I∗| = r then
5 Set X = X ∪ {I∗}

6 Filter the efficient independent sets of X w.r.t. (BMPO) and save the
corresponding outcome vectors in Y O

N

7 return Y O
N

It is possible to improve the performance of Algorithm 10 by reducing the number of
considered bounds u ∈ U, i.e., the number of solved matroid intersections. This can be
achieved by initially solving (4.4) with u = (r, ..., r)⊤ ∈ RK , which returns a weakly
efficient basis B∗ (assuming X1 ̸= ∅) with the smallest possible cost w∗. Consequently,
only upper bounds u ∈ U such that (uK , . . . , u1)

⊤ ≤lex cmin(B∗) have to be considered.
Thus, we modify lines 1–2 in Algorithm 10 accordingly and obtain Algorithm 11.

Note that, in the worst case, this initialization yields no reduction of the running
time, since there might exists a basis B′ that minimizes w and for which it holds that
cmin(B′) = (r, 0, . . . , 0)⊤. However, in our numerical tests this procedure often leads to a
significant reduction of the number of iterations, as described in Section 4.5. Note that the
initial bound in Algorithm 11 is not a suitable counting vector as defined in Section 4.3.1,
i.e., u = (r, . . . , r)⊤ /∈ U. Since we consider in the following often relaxations of suitable
subproblems, we use the notation Ū := {u ∈ ZK

≧ :
∑K

i=1 ui ≥ r, ui ≤ r, i = 1, . . . ,K} to
denote the considered upper bound set.

Based on the fact that the lexicographic order is a total order, Algorithm 11 can be
further improved when applied on problem (BMPCmin). In this case, the considered upper
bound set can also be reduced during the course of the algorithm. The initialization of the
bound set U is analogous to Algorithm 11, i. e., we solve the matroid intersection problem
for u = (r, ..., r)⊤ ∈ RK . Let B∗ be the obtained weakly efficient basis of (BMPCmin)
minimizing the sum objective function w. Then, it is sufficient to solve subproblems with

97

Chapter 4 Matroid Optimization Problems with Ordinal Costs

Algorithm 11: Improved Initialization of Matroid Intersection for Ordinal Con-
straints (MIOCO(M1, w, o))

Input: Matroid M1 = (E, I1), sum objective function w and ordinal objective
function o

Output: Non-dominated set of problem (BMPO)
1 u = (r, ..., r)
2 Solve (4.4) with (MI) and save the obtained basis B∗

3 Set X = {B∗}
4 foreach u ∈ {v ∈ U : (vK , . . . , v1)

⊤ ≤lex cmin(B∗)} do
5 run lines 3–5 of Algorithm 10

6 Filter the efficient independent sets of X w.r.t. (BMPO) and save the
corresponding outcome vectors in Y O

N

7 return Y O
N

upper bounds u ∈ Ū such that (uK , . . . , u1)
⊤ ≤lex cmin(B∗). Due to the lexicographic order

we can explicitly enumerate the new upper bounds u to be considered as

(uK , . . . , u1)
⊤ ∈ {(cmin

1 (B∗)− 1, r, . . . , r)⊤, (cmin
1 (B∗), cmin

2 (B∗)− 1, r, . . . , r)⊤,

. . . , (cmin
1 (B∗), . . . , cmin

K−2(B∗), cmin
K−1(B∗)− 1, r)⊤}

such that u ⩾ 0. These upper bounds are added to the list Ū of open subproblems and
sorted in lexicographically increasing order. Whenever a new candidate for an efficient
basis is found, we update the list of open subproblems Ū and re-sort it. In Algorithm 12
this procedure is repeated until Ū = ∅. To simplify the notation we slightly abuse the
notation and consider Ū to be a sorted list, referring by Ū[1] to the first element of this
list. Note that an analogous solution algorithm can be formulated for the corresponding
lexicographic maximization problem (BMPCmax).

4.4. Multi-objective Matroid Optimization with Ordinal Costs

Problem (BMPO) can be generalized by considering p ≥ 2 objective functions with ordinal
weights. This can be illustrated at a graph whose edges are classified w.r.t. two types of
categories, for example, colors (e.g., green, orange, red) and letters (e.g., A, B). Then every
edge is in exactly one of the following categories: green-A, green-B, orange-A, orange-B,
red-A or red-B. These combinations of categories are a-priori not completely ordered,
since, in general, neither green-B is preferred over red-A, nor red-A is preferred over
green-B. However, such problems can be considered in the context of combined orderings
as introduced in Section 2.2.
Multi-objective matroid problems with one sum objective function and several ordinal

objective functions can be handled analogously to bi-objective matroid problems with one
ordinal objective function (BMPO). Without going much into detail, we shortly describe
the formulation of an associated weighted matroid intersection problem that generalizes
problem (4.4).

98

4.4 Multi-objective Matroid Optimization with Ordinal Costs

Algorithm 12: Matroid Intersection for Ordinal Constraints for (BMPCmin)
(MIOCCmin(M1, w, o))

Input: Matroid M1 = (E, I1), sum objective function w and an ordinal
objective function o

Output: Non-dominated set of problem (BMPCmin)
1 Ū := {u ∈ ZK

≧ :
∑K

i=1 ui ≥ r}, u = (r, ..., r)⊤ ∈ ZK
≧

2 Solve (4.4) with (MI) and save the obtained basis B∗

3 Set X = {B∗}
4 Ū := {u ∈ Ū : (uK , . . . , u1)

⊤ ≤lex cmin(B∗)}, sort Ū in lexicographically increasing
order

5 while Ū ̸= ∅ do
6 u := Ū[1] // pop lexicographically smallest bound

7 Ū := Ū[2, . . . , end]
8 Solve (4.4) with (MI) and save the obtained independent set I∗

9 if |I∗| = r then
10 Set X = X ∪ {I∗}
11 Ū := {u ∈ Ū : (uK , . . . , u1)

⊤ ≤lex cmin(I∗)}, sort Ū in lexicographically
increasing order

12 Filter the efficient independent sets of X with respect to the problem

(BMPCmin) and save the corresponding outcome vectors in Y Cmin
N

13 return Y Cmin
N

99

Chapter 4 Matroid Optimization Problems with Ordinal Costs

Let p denote the number of ordinal objective functions oi, i = 1, . . . , p, let Ki denote
the number of categories for the i-th ordinal objective, and let ηij ∈ C denote the j-th
category of the i-th ordinal objective, j = 1, . . . ,Ki, where ηij ≺ ηik whenever j < k. Then
we can define a partition matroid M3 (generalizing M2) by partitioning the ground set
E =

⋃p
i=1

⋃Ki
j=1Eij , where Eij := {e ∈ E : oi(e) = ηij} for j = 1, . . . ,Ki and i = 1, . . . , p.

The set of independent sets of M3 is given by

I3 := {J ⊆ E : |J ∩ Eij | ≤ uij , j = 1, . . . ,Ki and i = 1, . . . , p},

where uij denotes the number of elements that are allowed in category ηij in the ordinal
objective oi. Note that again 0 ≤ uij ≤ r for all j = 1, . . . ,Ki and i = 1, . . . , p, and that∑

j∈{1,...,Ki} uij = r for all i = 1, . . . , p. Therefore, it is possible to solve this problem by
solving all relevant weighted matroid intersection problems (4.4) (with M2 replaced by
M3) and filtering out all dominated outcome vectors w.r.t. the combined ordering relation.

In this case, the number of calls of problems (4.4) is bounded by O(p · rK̃−1), where r still
denotes the rank of the matroid M1 and K̃ = max{Ki : i = 1, . . . , p}. If p and Ki are
fixed, i = 1, . . . , p, then the number of scalarized subproblems is polynomially bounded in
the input size. Moreover, in this case every weighted matroid intersection problem can be
solved in polynomial time if we assume that an oracle can determine in polynomial time
whether a given subset I ⊆ E is independent or not.

4.5. Numerical Results

The Efficient Swap Algorithm suggested in Chapter 3 and in Gorski et al., 2022 as well
as the three versions of the Matroid Intersection Algorithm for Ordinal Constraints (Al-
gorithms 10, 11 and 12 with the algorithm of Floyd-Warshall for node weights, see Sec-
tion 2.7) are implemented and numerically tested. As test instances, we consider graphic
matroids and partition matroids for M1, where in the latter case the ground set is par-
titioned into three subsets. All computations were done on a computer with an Intel(R)
Core(TM) i7-7500U CPU 2.70GHz processor and 8GB RAM. The algorithms were im-
plemented and run in MATLAB, Version R2019b.

In the first experiment we compare the two types of algorithms on a graphic matroid
with one sum objective function and one binary objective function. The instances were
generated based on random connected undirected graphs G = (V,E) with n nodes and m
edges using the implementation of Schnepper et al., 2021. The weight coefficients w of the
sum objective are randomly chosen integer values in {1, . . . , 2m}, and the values of the
binary objective b are random binary values. In both cases we used a uniform distribution.
We solved the obtained instances of problem (BBMP) by the Efficient Swap Algorithm
and by Algorithm 11.

The numerical results can be found in Table 4.1. In the first two columns the instance
size is given by the number of nodes and edges (n,m) and the average number of non-
dominated outcome vectors |YN| over 100 random instances. The results show clearly that
the average running of Algorithm 11 increases much faster with the instance size compared
to the Efficient Swap Algorithm.

100

4.5 Numerical Results

Instanze Size MIOCO ESA
(n,m) |YN| iter [s] [s]

(7, 10) 2.39 3.26 0.08 0.03
(7, 15) 3.32 3.84 0.16 0.03
(7, 20) 3.87 3.97 0.24 0.03
(10, 20) 4.36 5.13 0.54 0.04
(10, 30) 5.17 5.44 0.97 0.05
(10, 40) 5.46 5.53 1.38 0.05
(15, 30) 6.05 6.94 2.43 0.05
(15, 60) 7.77 7.95 6.93 0.07
(15, 100) 7.90 7.99 12.57 0.07
(20, 40) 7.58 8.58 7.36 0.07
(20, 100) 10.49 10.60 30.26 0.10
(20, 180) 10.35 10.39 59.36 0.11

Table 4.1.: Average computation time in seconds to solve 100 instances of problem
(BBMP) on a graphic matroid with the Efficient Swap Algorithm (ESA) and
with Algorithm 11 (MIOCO).

(n,m) |YN| ESA[s]

(100, 200) 36.01 0.38
(100, 1 000) 51.01 0.60
(100, 2 000) 50.41 0.77
(100, 4 000) 49.72 1.15
(1 000, 2 000) 348.75 6.28
(1 000, 15 000) 499.08 13.31
(1 000, 30 000) 501.31 20.28
(1 000, 45 000) 501.68 28.49

Table 4.2.: Average computation time in seconds to solve 100 instances of prob-
lem (BBMP) with the Efficient Swap Algorithm.

Therefore, you find in Table 4.2 even larger problem instances that are only solved with
the Efficient Swap Algorithm. The largest instances with 1 000 nodes and 45 000 edges
can be solved with the Efficient Swap Algorithm in round about 29 seconds, which is less
then the mean time Algorithm 11 needs to solve instances with 20 nodes and 100 edges.

This huge difference in the computational time of the algorithms is not surprising,
because the Efficient Swap Algorithm utilizes the specific problem structure, in particular
the connectedness of the non-dominated set, as proven in Gorski et al., 2022 and in
Chapter 3. Nevertheless, the number of problems that are solved with Algorithm 11 (iter)
is quite close to the number of non-dominated outcome vectors (|YN|), which indicates
that only few redundant problems were solved.

The strength of all three matroid intersection algorithms for ordinal constraints is that
they can be applied to a broader class of problems than the Efficient Swap Algorithm,
which is restricted to two ordinal categories. In the following tests we use again randomly
generated graphs G = (V,E) with n nodes and m edges with objective function coefficients
w and o. The entries of w and o were generated randomly with uniform distribution in

101

Chapter 4 Matroid Optimization Problems with Ordinal Costs

Instance Size MIOC MIOCO MIOCCmin

(n,m) |Y O
N | |Y Cmin

N | |Y Cmax
N | iter [s] iter [s] iter [s]

(7, 10) 3.90 3.65 3.75 28 0.48 17.10 0.31 6.30 0.16
(7, 15) 7.30 6.05 6.40 28 1.02 18.55 0.77 9.75 0.45
(7, 20) 6.20 5.40 5.65 28 1.67 14.45 0.87 8.00 0.56
(10, 20) 9.10 7.65 7.85 55 5.03 32.50 2.87 12.55 1.47
(10, 30) 12.55 9.60 11.35 55 9.63 32.80 5.67 13.60 2.61
(10, 40) 15.90 11.75 12.95 55 13.56 31.90 8.00 15.25 3.94
(15, 30) 15.20 11.60 11.40 120 36.16 70.40 21.00 18.60 6.43
(15, 60) 27.20 18.40 20.65 120 101.30 69.00 58.97 24.30 21.07
(15, 100) 27.90 18.20 22.65 120 184.26 66.95 105.23 23.10 36.19
(20, 40) 20.95 14.65 15.40 210 158.48 113.85 85.85 23.95 20.53
(20, 100) 38.45 24.55 27.00 210 578.96 101.00 282.43 30.95 87.42
(20, 180) 46.55 27.20 33.45 210 1 162.27 115.35 648.08 33.70 190.49

Table 4.3.: Numerical results for a graphic matroid and K = 3 categories. For every
problem size 20 instances were solved to obtain average results.

{1, . . . , 2m} and in {1, . . . ,K} for w and o, respectively, were K ∈ {3, 4, 5}. The results
for K = 3, 4, 5 can be found in Tables 4.3, 4.4 and 4.5, respectively. We observe that the
number of solutions found for the different problems is quite similar for small problem
sizes, but for larger instances and more categories the number of non-dominated points
is much smaller for the lexicographic models as compared to the ordinal approach. The
running time depends obviously on the instance size. However, the effect of an increasing
number of edges m is rather limited. A significant influence can be seen by the number of
nodes n, which determines the rank of the matroid. Furthermore, the number of categories
K has an important effect on the running time.

As expected, reducing the number of considered upper bound vectors u for prob-
lem (BMPO) generally leads to fewer iterations. On average, only little more than half of
the iterations are needed in this case. Nevertheless, note that in the worst case this strat-
egy may not lead to an improvement. In the case of the lexicographic variant (BMPCmin)
the potential reduction is much more significant. Indeed, the required computation time
is drastically reduced in this case, especially for large K. For example, for K = 5 we have
a reduction of the running time by a factor of around 20 in all cases with n = 10.

We get similar results when testing with partition matroids rather than graphic ma-
troids. Here, we consider a ground set of n objects and restrict the analysis to partitions
of the ground set into three subsets. The upper bounds on the number of elements from
each subset are selected such that every basis consists of n

2 elements, and the problem is
feasible. After defining an instance of a partition matroid M1 in this way, the objective
functions are generated. Each object has an associated weight between 1 and 10 · n and
is assigned to one of K categories, where K ∈ {3, 4, 5}. The results for K = 3, 4, 5 can
be found in Tables 4.6, 4.7 and 4.8, respectively. Again, the improved choice of u leads to
significantly better running times. Moreover, the running time increases with the number
of elements n and the number of categories K.

Note that further speed-ups can be expected by parallel implementations of the matroid
intersection algorithms.

102

4.5 Numerical Results

Instance Size MIOC MIOCO MIOCCmin

(n,m) |Y O
N | |Y Cmin

N | |Y Cmax
N | iter [s] iter [s] iter [s]

(7, 10) 4.15 3.70 3.70 84 1.34 44.45 0.73 9.00 0.25
(7, 15) 7.50 5.85 6.25 84 2.83 43.85 1.61 12.10 0.56
(7, 20) 10.50 7.85 8.10 84 4.44 52.05 2.88 14.80 1.93
(10, 20) 12.15 8.65 8.60 220 18.15 120.25 9.38 18.75 2.01
(10, 30) 20.60 12.40 14.80 220 36.78 132.95 22.01 23.85 4.46
(10, 40) 23.70 14.35 17.35 220 53.79 118.00 28.27 23.90 5.95
(15, 30) 29.05 16.80 17.55 680 191.27 395.75 107.14 37.15 12.84
(15, 60) 56.00 24.95 34.10 680 560.72 350.15 291.72 42.40 35.97
(15, 100) 63.60 28.00 38.70 680 1 042.33 377.45 597.78 44.15 69.33
(20, 40) 44.80 21.80 23.50 1 540 1 073.17 708.20 502.36 43.80 37.32

Table 4.4.: Numerical results for a graphic matroid and K = 4 categories. For every
problem size 20 instances were solved to obtain average results.

Instance Size MIOC MIOCO MIOCCmin

(n,m) |Y O
N | |Y Cmin

N | |Y Cmax
N | iter [s] iter [s] iter [s]

(7, 10) 4.20 3.85 3.85 210 3.10 106.75 1.57 10.95 0.27
(7, 15) 10.75 7.55 8.10 210 6.65 121.75 3.88 18.05 0.81
(7, 20) 14.90 10.00 11.25 210 10.56 124.30 6.14 20.35 1.36
(10, 20) 22.85 11.75 12.65 715 57.29 429.80 33.25 30.30 3.19
(10, 30) 24.70 14.55 15.95 715 114.37 396.00 62.16 32.00 5.57
(10, 40) 30.10 15.65 19.80 715 175.93 410.75 98.27 32.80 8.22

Table 4.5.: Numerical results for a graphic matroid and K = 5 categories. For every
problem size 20 instances were solved to obtain average results.

Instance Size MIOC MIOCO MIOCCmin

n |Y O
N | |Y Cmin

N | |Y Cmax
N | iter [s] iter [s] iter [s]

10 2.55 2.50 2.50 21 0.23 11.20 0.10 4.60 0.08
20 4.75 4.40 4.45 66 3.26 35.45 1.83 8.40 0.63
30 9.90 8.00 8.40 136 20.26 76.50 11.43 13.45 2.68
40 16.85 12.55 12.75 231 81.26 127.25 45.14 20.40 8.92
50 24.05 17.60 15.90 351 229.91 201.90 131.29 26.30 21.43
60 34.00 21.10 21.75 496 552.54 284.20 318.62 32.80 46.41
70 39.70 24.50 25.40 666 1 177.52 375.90 662.34 37.30 83.06

Table 4.6.: Numerical results for a partition matroid with three subsets and K = 3 cat-
egories. For every problem size 20 instances were solved to obtain average
results.

103

Chapter 4 Matroid Optimization Problems with Ordinal Costs

Instance Size MIOC MIOCO MIOCCmin

n |Y O
N | |Y Cmin

N | |Y Cmax
N | iter [s] iter [s] iter [s]

10 2.55 2.45 2.40 56 0.41 31.10 0.23 6.15 0.10
20 7.10 5.80 5.85 286 12.60 173.90 7.43 14.05 0.94
30 15.15 9.75 10.05 816 117.69 451.70 62.22 22.85 4.33
40 40.40 20.95 21.25 1 771 594.17 967.80 317.36 42.25 18.51
50 44.90 22.50 22.20 3 276 2 081.56 1 946.25 1 191.88 49.70 41.17

Table 4.7.: Numerical results for a partition matroid with three subsets and K = 4 cat-
egories. For every problem size 20 instances were solved to obtain average
results.

Instance Size MIOC MIOCO MIOCCmin

n |Y O
N | |Y Cmin

N | |Y Cmax
N | iter [s] iter [s] iter [s]

10 3.65 3.15 3.25 126 0.84 71.55 0.47 8.20 0.14
20 10.65 8.20 7.75 1 001 43.34 539.15 22.62 23.20 1.67
30 28.25 15.35 16.35 3 876 534.59 2 293.50 308.62 41.50 7.83

Table 4.8.: Numerical results for a partition matroid with three subsets and K = 5 cat-
egories. For every problem size 20 instances were solved to obtain average
results.

4.6. Conclusion and Further Ideas

In this chapter we consider single- and multi-objective matroid optimization problems
that combine “classical” sum objective functions with one or several ordinal objective
functions. Besides the concept of ordinal optimality, we consider two variants of lexico-
graphic optimization that lexicographically maximize the number of “good” elements or
minimize the number of “bad” elements, respectively. In the case of (single-objective)
ordinal optimization, we show that these concepts are actually equivalent for matroids,
and that optimal solutions can be found by a simple and efficient greedy strategy. In
the bi-objective setting, we use variants of ε-constraint scalarizations to obtain a polyno-
mial number of matroid intersection problems, from which the non-dominated sets of the
respective problems can be derived by simple filtering operations. This yields an over-
all polynomial-time algorithm for multi-objective ordinal matroid optimization problems.
Numerical tests on graphic matroids and on partition matroids validate the efficiency of
this approach.

Future research should focus on a further analysis of the similarities and differences
between multi-objective optimization problems with classical sum objectives and with or-
dinal objectives. Moreover, alternative (partial) orderings may be considered and analyzed
in the light of different scalarization techniques.

In the next chapter we generalize the ordinal optimality concept to solutions with ar-
bitrary length and hence investigate general combinatorial optimization problems with
ordinal costs. Moreover, we describe the interrelation of ordinal combinatorial optimiza-
tion problems and multi-objective combinatorial optimization problems. The interrelation

104

4.6 Conclusion and Further Ideas

of those problems is based on the one to one correspondence between the objective func-
tions o and c. Due to this equivalence there has to exist an optimality concept for c
such that we get the same efficient set for both objective functions. We introduce the
corresponding optimality concept in the next chapter.

105

5. Single- and Multi-objective Combinatorial
Optimization Problems with Ordinal
Costs

We investigate in this chapter again optimization problems with ordinal costs, but in
contrast to Chapter 4, we do not restrict ourselves to matroid problems but consider
general combinatorial optimization problems. To motivate the consideration of ordinal
costs, we use an example of a shortest path problem with three categories. Note that in
this case, feasible solutions, i.e., paths may be of different lengths. This example is used
as an illustration throughout this chapter.
Consider the problem of finding optimized routes for cyclists in a road network: While

edges may be associated with different categories like asphalt, gravel or sand—or, when
related to safety considerations, very safe (there is a bicycle path), neutral (a quiet road)
or unsafe (a main road without bicycle path)—such categories do not immediately trans-
late into monetary or cost values. Bi-objective shortest path problems with route safety
criteria are addressed, for example, in the web application geovelo and in the associated
publications Kergosien et al., 2021; Sauvanet and Néron, 2010. In these references, only
two categories are considered (safe or unsafe edges), and the safety criterion is translated
into a cost function that evaluates the total length of unsafe route segments. In contrast,
an ordinal shortest path problem is investigated in Schäfer et al., 2020. A major difficulty
when considering ordinal objective functions is that “optimality” may be defined in many
different ways. Schäfer et al., 2020 suggests an optimality concept that is based on sorted
category vectors. A similar concept is used in Chapter 4, see also Klamroth et al., 2022a,
where matroid optimization problems with one real-valued and one ordinal objective func-
tion are investigated. A different perspective is proposed in Schäfer et al., 2021 who define
ordinal optimality for knapsack problems on the basis of numerical representations for the
categories. Ordinal costs are considered in the literature since many years, see e.g. Bartee,
1971. Ordinal preferences have been studied since then in several further publications like
e.g. Bossong and Schweigert, 1999, Bouveret and Endriss, 2010, Brams et al., 2003 and
Delort et al., 2011. In Delort et al., 2011 a multi-objective problem is used to solve a prob-
lem with ordinal costs. In this chapter, we use an equivalent multi-objective problem while
analyzing the interrelations and the transformation between ordinal and multi-objective
formulations in much more detail. Since our problem formulation and notation is closely
related to that of Schäfer et al., 2021, we mainly refer to this paper in the following.
In this chapter, we consider general combinatorial optimization problems and provide a

new cone-based interpretation of the optimality concept for ordinal objectives suggested,
for example, in Schäfer et al., 2021. In particular, we interrelate ordinal optimality with
the classical concept of Pareto optimality for an associated multi-objective optimization
problem. Since the underlying transformation of the objective function is linear and bijec-
tive and hence preserves the combinatorial structure of the respective problems, our results

107

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

immediately lead to efficient solution strategies as, for example, dynamic programming for
shortest path problems. Moreover, all algorithms for specific problems can be used and
thus, ordinal optimization problems with K categories can be solved in the same running
time as the associated multi-objective optimization problem with K objective functions.
The respective transformations are based on a representation of dominance relations by
cones.

Contribution. Parts of the results in this chapter are published in Klamroth et al.,
2022b. The work extends the discussion on optimality concepts for ordinal coefficients from
Schäfer et al., 2021. The main results of this chapter were also presented at the interna-
tional conference on Multicriteria Decision Making (MCDM) in June 2022 in Portsmouth
in form of a comic. It can be found in the appendix in Chapter A.

Organization of the chapter. In Section 5.1 we review three optimality concepts for
ordinal optimization. Two of them are based on Schäfer et al., 2021. These results
and optimality concepts are then extended and re-interpreted as a special case of cone-
optimality (see, e.g., Engau, 2007) in Section 5.2. A detailed analysis of the properties
of the corresponding ordering cones then leads to a linear transformation of ordinal op-
timization problems to associated multi-objective optimization problems with the Pareto
cone defining dominance and optimality. This transformation is used in Section 5.3 to
formulate a general algorithm for solving ordinal optimization problems. Furthermore,
we investigate the relation between the definition of ordinal optimality and the weight
space decomposition of the associated multi-objective problem. Moreover, we compare in
Section 5.4 the weight space decomposition for ordinal optimization problems in the con-
text of olympic rankings with another illustration suggested in the New York Times, see
Katz, 2022. In Section 5.5 we investigate the effect of the Pareto cone versus the ordering
cone for ordinal objective functions on some test instances. In Section 5.6 we extend our
results to more general problem types with additional real-valued objective functions. We
conclude in Section 5.7 with a summary and an outlook on future research.

5.1. Single-objective Combinatorial Optimization with Ordinal
Costs

In this section we describe two objective functions for ordinal optimization problems as
well as different optimality concepts. Furthermore, we investigate the interrelation between
those optimality concepts and the optimality concepts for ordinal optimization problems,
where all solutions have the same length from the last chapter.

5.1.1. Problem Definition

We consider combinatorial optimization problems with an ordinal objective function,
which is similar to the objective function introduced in Section 4.1. In general, an or-

108

5.1 Single-objective Combinatorial Optimization with Ordinal Costs

dinal optimization problem (OOP) can be formulated as

“ ordinally minimize ” o(x)
s. t. x ∈ X,

(OOP)

where X is the set of feasible solutions. We assume that X is a subset of the power set
of a finite discrete set E, i.e., X ⊆ 2E . The main difference to problem (OOPr) from
Section 4.1 is that the feasible solutions can have arbitrary length. Beside that we repeat
that every element of E is assigned to one of K ordered categories. This assignment is
encoded by a mapping o : E → C with C = {η1, . . . , ηK}. We assume again that category
ηi with i ∈ {1, . . . ,K − 1} is strictly preferred over category ηi+1, written as ηi ≺ ηi+1.
The objective function of a feasible solution x = {e1, . . . , en} is given by the ordinal vector
o(x) = sort(o(e1), . . . , o(en)), where the operator sort() means that the components of
o(x) are sorted w.r.t. non-decreasing preferences, i.e., o1(x) ≺

= o2(x) ≺
= · · · ≺

= on(x). Note,
that different feasible solutions may have different numbers of elements, and hence the
length of the ordinal vector o(x) may vary for different x ∈ X.

Instead of using the un-aggregated, ordered ordinal vector o(x) one can count the num-
ber of elements in a feasible solution per category. Accordingly, we recall the definition of
the counting vector c : X → ZK

≧ with ZK
≧ := {y ∈ ZK : yi ≥ 0 for all i = 1, . . . ,K}which

we already introduced in Section 4.1. Thereby, the i-th component of c(x) equals the
number of elements in x which are in category ηi, i. e., ci(x) = |{e ∈ x : o(e) = ηi}|. Obvi-
ously, there is a one to one correspondence between the vectors o ∈ Rn and c ∈ RK , since
the ordinal vector o can be determined from a given counting vector c by oi(x) = ηj with

j = argmin{j ∈ {1, . . . ,K} : i ≤ ∑j
l=1 cl(x)}. Note again that the number of elements n

of a feasible solution, and hence the length of the ordinal vectors o ∈ Rn, may vary while
the number of categories K and therefore the length of the counting vectors c ∈ RK is
fixed. Hence, we get the following formulation of an ordinal counting optimization problem
(OCOP)

“ ordinally optimize ” c(x)
s. t. x ∈ X,

(OCOP)

which will be shown to be equivalent to problem (OOP) for an appropriate definition of
“ordinal minimization” and “ordinal optimization”. As we define also a concept that max-
imizes c(x) in (OCOP), we use here the term “optimization” instead of “minimization”.

In the following, we also consider an incremental tail counting vector c̃ ∈ RK that
counts, in its i-th component, the number of elements of a feasible solution x which are
in category ηi or worse, i.e., c̃i(x) = |{e ∈ x : ηi ≺

= o(e)}| = ∑K
j=i cj(x). In particular,

the total number of elements of a solution x is given in the first component of c̃, i.e.,
|x| = c̃1(x) =

∑K
i=1 ci(x).

As an example, consider the shortest path problem shown in Figure 5.1 together with
the outcome vectors o(x) (for problem (OOP)) and c(x) (for problem (OCOP)) for all
feasible solutions x ∈ X. In addition, the incremental tail counting vector c̃(x) is given
for all x ∈ X.

109

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

o c c̃

x1 = {e1, e2, e5}

η1
η2
η3

 1
1
1

 3
2
1


x2 = {e4, e5}

(
η1
η3

) 1
0
1

 2
1
1


x3 = {e1, e3}

(
η2
η2

) 0
2
0

 2
2
0


x4 = {e6, e8}

(
η2
η2

) 0
2
0

 2
2
0


x5 = {e4, e7, e8}

η1
η1
η2

 2
1
0

 3
1
0



x6 = {e1, e2, e7, e8}


η1
η1
η2
η2


2
2
0

 4
2
0



s t

e1
e2

e3

e4 e5

e6
e7

e8

Figure 5.1.: Instance of an ordinal shortest path problem. A dotted-green edge is in the
best category η1, a dashed-orange edge is in category η2 and a solid-red edge
is in the worst category η3. All feasible s − t paths xi, i = 1, . . . , 6 and their
respective objective function vectors are given.

5.1.2. Optimality Concepts for Ordinal Objective Functions

In the following, we review three different concepts of optimality for ordinal optimization.
All of them try to answer the question what minimization could mean for the problems
(OOP) and (OCOP). The first concept is to use numerical representations that assign
a numerical value to every category such that the order of the categories is respected.
In this context, a numerical representation respects the order of the categories whenever
the numerical value of a better category is strictly smaller than the numerical value of
a less preferred category. If we take the sum over all numerical values of a vector o(x′)
for a feasible solution x′, we obtain a unique numerical value that can be compared to
the corresponding numerical value of another feasible solution x̂. A feasible solution x′ is
called efficient if there is no other feasible solution x̂ which is better w.r.t. all numerical
representations.

The second concept is to maximize the number of elements in the good categories, and
the third concept is to minimize the number of elements in the bad categories. After the
formal introduction of these three optimality concepts, we investigate their interrelation.

Optimality by Numerical Representations We consider the combinatorial optimization
problems (OOP) and (OCOP). The concept of optimality by numerical representation

110

5.1 Single-objective Combinatorial Optimization with Ordinal Costs

for ordinal objectives as introduced in Schäfer et al., 2021 is based on a previous and
more general work of Fishburn, 1999. It assigns an order preserving numerical value to
each category. Following Schäfer et al., 2021, we call a function ν : C → Z≥ a numerical
representation if

ηi ≺ ηj ⇐⇒ ν(ηi) < ν(ηj) for all i, j ∈ {1, . . . ,K}.
Note that we assume strictly ordered categories, i.e., there are no categories that are
indifferent. As a consequence, we do not allow ν(ηi) = ν(ηj) for i ̸= j since this would
make two different categories indistinguishable in the numerical representation. Let V
denote the set of all numerical representations for a given number of categories K.
For a given numerical representation ν, we define the numerical value of a feasible

solution x = {e1, . . . , en} ∈ X w.r.t. ν (cf. Schäfer et al., 2021) as

ν(x) :=
n∑

i=1

ν(o(ei)) =
K∑
i=1

ν(ηi) · ci(x).

The numerical value ν(x) of a feasible solution x ∈ X can be evaluated in different ways
by re-arranging the terms and using the counting vector c or the incremental tail counting
vector c̃, respectively:

ν(x) =
K∑
i=1

ν(ηi) · ci(x)

=
K−1∑
i=1

ν(ηi)

(K∑
j=i

cj(x)−
K∑

j=i+1

cj(x)

)
+ ν(ηK) cK(x)

= ν(η1) ·
K∑
i=1

ci(x) +
K∑
i=2

(
ν(ηi)− ν(ηi−1)

)
·

K∑
j=i

cj(x)

= ν(η1) · c̃1(x) +
K∑
i=2

(
ν(ηi)− ν(ηi−1)

)
· c̃i(x).

An illustration for different ways to evaluate ν(x) is given in Figure 5.2.

Example 5.1. We apply the concept of numerical representations to the shortest path
problem given in Figure 5.1. As a motivation, suppose that there are two decision mak-
ers A and B who have to select a most preferred path. They would agree, for example,
that path x1 is worse than path x2, because x1 has a dashed-orange edge more than x2

and, other than that, their outcome vectors are the same. But they do not agree on the
question whether x2 or x5 is preferred, because decision maker A chooses the numerical
representation νA(η1) = 1, νA(η2) = 2 and νA(η3) = 5, while decision maker B chooses
νB(η1) = 2, νB(η2) = 3 and νB(η3) = 4. Therefore, decision maker A would prefer path
x5 because νA(x

5) = 4 < 6 = νA(x
2) while decision maker B would prefer path x2 because

νB(x
2) = 6 < 7 = νB(x

5). Hence, the path x2 does not ordinally dominate the path x5,
i.e., x2 is not better than x5 for all numerical representations. Similarly, the path x5 does
not ordinally dominate the path x2 since also x5 is not better than x2 for all numerical
representations.

111

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

η1 η2 η2 η3 η4 η4 η4

ν(ηi)

1

2

3

4

5

6

7

8

(a) ν(x) =
7∑

i=1

ν(oi(x))

η1 η2 η2 η3 η4 η4 η4

ν(ηi)

1

2

3

4

5

6

7

8

(b) ν(x) =
4∑

i=1

ν(ηi) · ci(x)

η1 η2 η2 η3 η4 η4 η4

ν(ηi)

1

2

3

4

5

6

7

8

(c) ν(x) = ν(η1) · c̃1(x)+
4∑

i=2

(ν(ηi)− ν(ηi−1)) · c̃i(x)

Figure 5.2.: Consider an example with n = 7 and K = 4. Different ways to compute the
numerical value of a feasible solution x with o(x) = (η1, η2, η2, η3, η4, η4, η4)

⊤,
c(x) = (1, 2, 1, 3)⊤, ν(η1) = 2, ν(η2) = 4, ν(η3) = 7 and ν(η4) = 8 are
illustrated. The different colors represent the summands and visualize the
different slicing strategies.

Definition 5.2 (cf. Schäfer et al., 2021). Let x′, x̂ ∈ X be feasible solutions. Then,

1. x′ weakly ordinally dominates x̂, o(x′) weakly ordinally dominates o(x̂) and c(x′)
weakly ordinally dominates c(x̂), denoted by x′ ≺=ν

x̂, o(x′) ≺
=ν

o(x̂), c(x′) ≺
=ν

c(x̂),
respectively, if and only if for every ν ∈ V, it holds that ν(x′) ≤ ν(x̂).

2. x′ ordinally dominates x̂, o(x′) ordinally dominates o(x̂) and c(x′) ordinally domi-
nates c(x̂), denoted by x′ ⪯ν x̂, o(x′) ⪯ν o(x̂), c(x′) ⪯ν c(x̂), respectively, if and only
if x′ weakly ordinally dominates x̂ and there exists ν∗ ∈ V such that ν∗(x′) < ν∗(x̂).

3. x∗ ∈ X is called ordinally efficient, if there does not exist an x ∈ X such that
x ⪯ν x∗.

4. o(x∗) and c(x∗) are called ordinally non-dominated outcome vectors of the prob-
lems (OOP) and (OCOP), respectively, if x∗ is ordinally efficient.

We write “min⪯ν”, for example, instead of “ordinally minimize” in problems (OOP) and
(OCOP), to clarify that this optimality concept is used. Note that this concept of ordinal
optimality is defined for general combinatorial optimization problems, i.e., we do not
assume that all solutions have the same length as in Definition 4.1 of ordinal optimality
in the last chapter. However, both definitions of ordinal optimality are equivalent, if we
assume that all solutions have the same length, see Theorem 5.13.

Optimality by Maximization of Elements in Good Categories Another optimality con-
cept in ordinal optimization is to maximize the number of elements in good categories.
The intuition behind this concept is that solutions with many good elements are to be
preferred over solutions with few good elements. The drawback, however, is that this con-
cept rewards solutions with larger numbers of elements as long as these are in (relatively)

112

5.1 Single-objective Combinatorial Optimization with Ordinal Costs

good categories, which may not be wanted in practice. This optimality concept is defined
only for the problem (OCOP), as we need the counting vector c for its definition.

Definition 5.3. We say x′ weakly head-dominates x̂, denoted by x′ ≧h x̂ or c(x′) ≧h c(x̂),
if and only if

j∑
i=1

ci(x
′) ≥

j∑
i=1

ci(x̂) for all j = 1, . . . ,K. (5.1)

Furthermore, x′ head-dominates x̂, denoted by x′ ⩾h x̂ or c(x′) ⩾h c(x̂), if and only if
(5.1) holds and c(x′) ̸= c(x̂). Moreover, x∗ ∈ X is called head-efficient if there is no x ∈ X
such that x ⩾h x∗. The corresponding outcome vector c(x∗) is called head-non-dominated.

Optimality by Minimization of Elements in Bad Categories The drawback that longer
solutions may be preferred over shorter solutions, as long as the elements are in good
categories, can be avoided by taking the converse perspective, i.e., when minimizing the
number of elements in the bad categories. Again, this optimality concept is defined only
for the problem (OCOP).

Definition 5.4. We say x′ weakly tail-dominates x̂, denoted by x′ ≦t x̂ or c(x′) ≦t c(x̂),
if and only if

c̃j(x
′) =

K∑
i=j

ci(x
′) ≤

K∑
i=j

ci(x̂) = c̃j(x̂) for all j = 1, . . . ,K. (5.2)

Again, x′ tail-dominates x̂, denoted by x′ ⩽t x̂ or c(x′) ⩽t c(x̂), if and only if (5.2) holds
and c(x′) ̸= c(x̂). Moreover, x∗ ∈ X is called tail-efficient if there is no x ∈ X such that
x ⩽t x

∗. The corresponding outcome vector c(x∗) is called tail-non-dominated.

Remark 5.5. Note that head-dominance as well as tail-dominance are equivalently defined
on the feasible set X ⊆ 2E and on its image set c(X) ⊆ RK . The definitions immediately
extend to the complete RK .

5.1.3. Properties of and Interrelations between Optimality Concepts for
Ordinal Optimization

In addition to the concepts described above, there are further ways to define efficiency.
This has been done, for example, in Schäfer et al., 2020 for the ordinal shortest path
problem. Their definition has the disadvantage that Bellman’s principle of optimality (see
Bellman, 1957) does not hold in general, i.e., not every subpath of an efficient path is
necessarily efficient w.r.t. this optimality concept. The definition of head-optimality has
the same disadvantage, see Remark 5.10 below for more details. In contrast, the definitions
of ordinal optimality and tail-optimality can be proven to be equivalent. Moreover, they
are compliant with Bellman’s principle of optimality. Note that, for the special case of a
knapsack problem, this was shown in Schäfer et al., 2021.

Lemma 5.6. For feasible solutions x̄ = {ē1, . . . , ēn}, x′ = {e′1, . . . , e′m} ∈ X with n < m
and ci(x̄) ≤ ci(x

′) for all i = 1, . . . ,K it holds that x̄ ⪯ν x′.

113

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

Proof. First let ν ∈ V be an arbitrary numerical representation. Then it holds that
ν(x̄) =

∑K
i=1 ν(ηi) · ci(x̄) ≤ ∑K

i=1 ν(ηi) · ci(x′) = ν(x′), i.e., x̄ ≺
=ν

x′. Note that since
n < m, and due to the above assumptions, there must exist a category ηj , j ∈ {1, . . . ,K}
such that cj(x̄) < cj(x

′). Therefore, there exists a numerical representation ν∗ such that
ν∗(ηj) > 0 and thus ν∗(x̄) < ν∗(x′), which concludes the proof.

Note that the condition of Lemma 5.6 is always satisfied if x̄ = {ē1, . . . , ēn} ∈ X and
x′ = {e′1, . . . , e′m} ∈ X with {o(ē1), . . . , o(ēn)} ⊊ {o(e′1), . . . , o(e′m)}. Thus, in Example 5.1
the path x2 is always preferred over the path x1. This is also the case for tail-efficiency,
but not for head-efficiency, see Remark 5.10 below. In many application contexts this is a
meaningful property, since adding additional elements to a solution (no matter from which
category) does generally not improve the solution quality. As an example, we refer again
to paths representing bicycle routes as in the app geovelo, where we are not interested in
routes that are unnecessarily long.

Lemma 5.7 (Schäfer et al. 2021). The ordinal dominance relation ≺
=ν

defined on the
feasible set X is a preorder, i.e., it is reflexive and transitive.

Proof. Let x′, x̂, x̄ ∈ X. Obviously, ν(x′) ≤ ν(x′) holds for every ν ∈ V. Hence, the
relation ≺

=ν
is reflexive. If ν(x′) ≤ ν(x̂) and ν(x̂) ≤ ν(x̄) for every ν ∈ V, it follows that

ν(x′) ≤ ν(x̄) for every ν ∈ V by definition and therefore, we have shown transitivity.

Note that the ordinal dominance relation ≺
=ν

is in general not antisymmetric on the
feasible set X since two different feasible solutions may have the same number of elements
in each category like the paths x3 and x4 in Example 5.1.

The following results show that (weak) ordinal dominance and (weak) tail-dominance
are actually equivalent on the feasible set X.

Lemma 5.8 (Schäfer et al. 2021). Let x′, x̂ ∈ X be two feasible solutions. Then x′ weakly
ordinally dominates x̂, i.e., x′ ≺=ν

x̂ if and only if x′ ≦t x̂.

Proof. The proof is a simplified variant of the proof in Schäfer et al., 2021. Note, that
they consider maximization problems while we consider minimization problems.

First we show by contradiction that x′ ≺
=ν

x̂ implies x′ ≦t x̂. Let x′, x̂ ∈ X and let
j∗ ∈ {1, . . . ,K} with

K∑
i=j∗

ci(x
′) >

K∑
i=j∗

ci(x̂).

The idea of the proof is to make the bad categories ηj∗ , . . . , ηK very expensive, such that
an element of this category can not be replaced by elements of the lower categories. Hence,
we define the numerical representation

ν(ηi) =

{
i, if i < j∗

i+ 2 |x̂|K, if i ≥ j∗.

114

5.1 Single-objective Combinatorial Optimization with Ordinal Costs

This implies

ν(x′) ≥ 2 |x̂|K ·
K∑

i=j∗

ci(x
′) ≥ 2 |x̂|K ·

(
1 +

K∑
i=j∗

ci(x̂)

)

> |x̂|K + 2 |x̂|K ·
K∑

i=j∗

ci(x̂) ≥
K∑
i=1

i ci(x̂) + 2 |x̂|K ·
K∑

i=j∗

ci(x̂)

=

j∗−1∑
i=1

i ci(x̂) +
K∑

i=j∗

i ci(x̂) +
K∑

i=j∗

2 |x̂|K · ci(x̂) = ν(x̂).

For the other direction we use the reformulation of ν(x), which is visualized in Fig-
ure 5.2(c). It follows that for any ν ∈ V

ν(x′) = ν(η1) c̃1(x
′) +

K∑
i=2

(
ν(ηi)− ν(ηi−1)

)
c̃i(x

′)

≤ ν(η1) c̃1(x̂) +

K∑
i=2

(
ν(ηi)− ν(ηi−1)

)
c̃i(x̂) = ν(x̂).

The inequality holds because of the assumption c̃j(x
′) ≤ c̃j(x̂) for all j = 1, . . . ,K

and ν(ηi) − ν(ηi−1) > 0 for all ν ∈ V and i = 2, . . . ,K. Hence, we have shown
that

∑K
i=j ci(x

′) ≤ ∑K
i=j ci(x̂) for all j = 1, . . . ,K implies x′ ≺

=ν
x̂, which concludes the

proof.

Lemma 5.9. Let x′, x̂ ∈ X be two feasible solutions. Then x′ ordinally dominates x̂, i.e.,
x′ ⪯ν x̂ if and only if x′ ⩽t x̂.

Proof. We first show that x′ ⪯ν x̂ implies x′ ⩽t x̂. If x′ ordinally dominates x̂, then
x′ ≺=ν

x̂ which implies x′ ≦t x̂ due to Lemma 5.8. It remains to show that c(x′) ̸= c(x̂).
As x′ ordinally dominates x̂ it holds that there is a numerical representation ν∗ such that
ν∗(x′) < ν∗(x̂). Hence,

0 < ν∗(x̂)− ν∗(x′)

⇐⇒ 0 <
K∑
i=1

ν∗(ηi)
(
ci(x̂)− ci(x

′)
)
.

Since ν(ηi) > 0 for all i = 1, . . . ,K, it holds c(x′) ̸= c(x̂). Consequently, we have shown
that when x′ ordinally dominates x̂, then x′ ≦t x̂ holds and c(x′) ̸= c(x̂).
For the other direction it is sufficient to show that c(x′) ̸= c(x̂) implies that there exists

a numerical representation ν∗ ∈ V such that ν∗(x′) < ν∗(x̂). Let j∗ be the largest category
such that cj∗(x

′) ̸= cj∗(x̂). This implies

K∑
i=j∗

ci(x
′) <

K∑
i=j∗

ci(x̂).

Now the result follows analogously to the proof of Lemma 5.8 with exchanged roles of x′

and x̂.

115

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

Remark 5.10. Lemma 5.8 (and thus also Lemma 5.9) does not hold in general for the
relation ⩾h. As a counter example, consider the paths x1 and x2 with c(x1) = (1, 1, 1)⊤

and c(x2) = (1, 0, 1)⊤ from Figure 5.1. Obviously, x1 head-dominates x2. But for every
numerical representation it follows ν(x1) > ν(x2), which contradicts x1 ≺

=ν
x2.

Note that the crucial point in the counter example given in Remark 5.10 is the different
cardinality of the solutions, |x1| ≠ |x2|. For ordinal optimization problems with fixed
cardinality, for which matroid optimization problems as studied in Klamroth et al., 2022a
and in both last chapters are an example, it can be shown that head- and tail-dominance
are equivalent.

Lemma 5.11. If all feasible solutions have the same cardinality, i.e., if |x′| = |x̂| for all
x′, x̂ ∈ X, then head- and tail-dominance as defined in Definitions 5.3 and 5.4, respectively,
are equivalent.

Proof. First assume that x′ head-dominates x̂, i.e., inequality (5.1) is satisfied. We show
that then x′ also tail-dominates x̂, i.e., inequality (5.2) holds. Towards this end, let
j ∈ {2, . . . ,K}. Then

K∑
i=j

ci(x
′) =

K∑
i=1

ci(x
′)−

j−1∑
i=1

ci(x
′)

(5.1)

≤
K∑
i=1

ci(x
′)−

j−1∑
i=1

ci(x̂)

|x′|=|x̂|
=

K∑
i=1

ci(x̂)−
j−1∑
i=1

ci(x̂) =
K∑
i=j

ci(x̂),

which implies (5.2).

Now let x′ tail-dominate x̂, i.e., (5.2) is satisfied. We show that then also x′ head-
dominates x̂, i.e., (5.1) holds. Hence, let j ∈ {1, . . . ,K − 1}. Then

j∑
i=1

ci(x
′) =

K∑
i=1

ci(x
′)−

K∑
i=j+1

ci(x
′)

(5.2)

≥
K∑
i=1

ci(x
′)−

K∑
i=j+1

ci(x̂)

|x′|=|x̂|
=

K∑
i=1

ci(x̂)−
K∑

i=j+1

ci(x̂) =

j∑
i=1

ci(x̂),

which implies (5.1).

Now, we can easily show that ordinal dominance as defined in this chapter in Definition 5.2
is indeed equivalent to the ordinal dominance defined in Chapter 4 in Definition 4.1 if all
feasible solutions have the same cardinality.

Lemma 5.12. If all feasible solutions have the same cardinality, i.e., if |x| = r ∈ Z> for
all x ∈ X, then ordinal dominance and head-dominance as defined in Definitions 4.1 and
5.3, respectively, are equivalent.

Proof. Let x′, x̂ ∈ X and let r be the cardinality of all feasible solutions.

116

5.1 Single-objective Combinatorial Optimization with Ordinal Costs

We first show that x′ ⪯o x̂ implies x′ ⩾h x̂. By definition, x′ ⪯o x̂ is equiva-
lent to oi(x

′) ⪯ oi(x̂) for all i = 1, . . . , r and o(x′) ̸= o(x̂). Hence, it follows that
ν(x′) =

∑r
i=1 ν(oi(x

′)) <
∑r

i=1 ν(oi(x̂)) = ν(x̂) for all numerical representations ν ∈ V
as numerical representations preserve the order of the categories. We have shown that
x′ ⪯o x̂ implies x′ ⪯ν x̂ and due to Lemmas 5.9 and 5.11 x′ ⪯o x̂ implies x′ ⩾h x̂.
For the other direction we assume x′ ⩾h x̂ and we show that oi(x

′) ⪯ oi(x̂) for all
i = 1, . . . ,

∑j
k=1 ck(x

′) and for all j = 1, . . . ,K by induction on j. Note that
∑j

k=1 ck(x
′)

corresponds to the number of elements in category ηj or better and
∑K

k=1 ck(x
′) = r.

Moreover, note that this proposition relies on the fact that the vector o is sorted in non-
decreasing order w.r.t. the categories.

Initial case (j = 1): If x′ head-dominates x̂, it holds that c1(x
′) ≥ c1(x̂). Hence, it

holds that oi(x
′) = η1 and oi(x̂) ∈ C for all i = 1, . . . , c1(x

′). Thus, oi(x
′) ⪯ oi(x̂) for all

i = 1, . . . ,
∑1

k=1 ck(x
′) holds.

Induction step (j → j+1): We deduce from
∑j

k=1 ci(x
′) ≥ ∑j

k=1 ci(x̂) that oi(x
′) = ηj+1

and oi(x̂) ∈ {ηj+1, . . . , ηK} for all i =
(∑j

k=1 ck(x
′)
)
+ 1, . . . ,

∑j+1
k=1 ck(x

′). Together with

the induction hypothesis, i.e., oi(x
′) ⪯ oi(x̂) for all i = 1, . . . ,

∑j
k=1 ck(x

′), it follows that

oi(x
′) ⪯ oi(x̂) for all i = 1, . . . ,

∑j+1
k=1 ck(x

′).
Hence, we have shown that x′ ⩾h x̂ implies x′ ⪯o x̂.

Theorem 5.13. The definitions of ordinal dominance as well as head- and tail-dominance,
i.e., Definitions 4.1, 5.2, 5.3 and 5.4, respectively, are equivalent if the cardinality of
feasible solutions is fixed.

Proof. This follows immediately from Lemmas 5.9, 5.11 and 5.12.

Lemma 5.14. The relation ≦t is a partial order on RK , i.e., it is reflexive, transitive
and antisymmetric. Moreover, the relation ⩽t is a strict partial order on RK , i.e., it is
irreflexive and transitive.

Proof. Let u ∈ RK . Then u ≦t u, i.e., ≦t is reflexive. Furthermore, for u, v, w ∈ RK such
that u ≦t v and v ≦t w it follows that

∑K
i=j ui ≤

∑K
i=j vi ≤

∑K
i=j wi for all j = 1, . . . ,K,

i.e., u ≦t w which means ≦t is transitive. To show that the relation ≦t is antisymmetric,
consider two vectors u, v ∈ RK with u ≦t v and v ≦t u. Then

∑K
i=j ui =

∑K
i=j vi for all

j = 1, . . . ,K. This implies that u = v and hence ≦t is antisymmetric. Therefore, ≦t is a
partial order.
Now consider the relation ⩽t. Since u ⩽̸t u for all u ∈ RK , it holds that ⩽t is irreflex-

ive. It remains to show that ⩽t is transitive. Towards this end, consider three vectors
u, v, w ∈ RK such that u ⩽t v and v ⩽t w. This implies

∑K
i=j ui ≤

∑K
i=j vi ≤

∑K
i=j wi for

all j = 1, . . . ,K, and there exist indices s, t ∈ {1, . . . ,K} such that
∑K

i=s ui <
∑K

i=s vi and∑K
i=t vi <

∑K
i=twi. Hence, we can conclude that

∑K
i=j ui ≤

∑K
i=j wi for all j = 1, . . . ,K

and u ̸= w, i.e., u ⩽t w. Consequently, we have shown that ⩽t is irreflexive and transitive
which concludes the proof.

As a consequence of the discussion in Sections 5.1.2 and 5.1.3, we focus in the following on
the ordinal optimization problem (OOP) w.r.t. optimality by numerical representations,

117

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

or equivalently, on the ordinal counting optimization problem (OCOP) w.r.t. the concept
of tail-dominance.

5.2. Ordinal Optimality versus Pareto Optimality: An
Interpretation based on Ordering Cones

In this section we first introduce the cone which belongs to tail-dominance. Afterwards,
we use this cone to transform ordinal optimization problems into multi-objective combi-
natorial optimization problems with binary costs.

5.2.1. The Ordinal Cone

In the following we show that tail-dominance, represented by the binary relation ⩽t, is
induced by a polyhedral cone in RK . We refer to this cone as the ordinal cone. As a
first step towards this goal, we prove that ⩽t is compatible with scalar multiplication
and addition. As a second step, the associated ordinal cone is constructed and analyzed.
Afterwards, we can reinterpret problem (OCOP) based on cone optimality.

Lemma 5.15. The relation ⩽t on RK is compatible with scalar multiplication and with
addition.

Proof. To show that ⩽t is compatible with scalar multiplication, let λ > 0 and u, v ∈ RK

with u ⩽t v. It follows that λ
∑K

i=j ui ≤ λ
∑K

i=j vi which implies
∑K

i=j λui ≤
∑K

i=j λ vi
for all j = 1, . . . ,K. Furthermore, it holds that λu ̸= λ v, and hence λu ⩽t λ v, which
implies that ⩽t is compatible with scalar multiplication.
It remains to show that ⩽t is also compatible with addition. Let u, v, w ∈ RK with

u ⩽t v, i.e.,
∑K

i=j ui ≤ ∑K
i=j vi for all j = 1, . . . ,K and u ̸= v. This implies that∑K

i=j(ui+wi) ≤
∑K

i=j(vi+wi) for all j = 1, . . . ,K and (u+w) ̸= (v+w), i.e., u+w ⩽t v+w.
Hence we have proven the compatibility with addition.

It can be proven analogously that ≦t on RK is also compatible with scalar multiplication
and addition.
Due to Lemma 2.2 and Lemma 5.15 the ordering cone C⩽t

:= {(v − u) ∈ RK : u ⩽t v}
induced by the strict partial order ⩽t is pointed, convex and it does not contain 0. We call
this cone the ordinal cone to emphasize that C⩽t equivalently represents ordinal dominance
and show that its closure, the cone C⩽t ∪ {0}, is a polyhedral cone that can be described
as the intersection of K halfspaces.

Theorem 5.16. The closure of the ordinal cone is a polyhedral cone. In particular, it
holds that C⩽t ∪ {0} = hcone(A⩽t) with A⩽t ∈ RK×K given by

A⩽t = (aij)i,j=1,...,K with aij =

{
1, if i ≤ j

0, otherwise
, i.e., A⩽t =

1 1

0

0 0 1


 .

118

5.2 Ordinal vs. Pareto Optimality: An Interpretation based on Ordering Cones

Proof. First note that 0 ∈ (C⩽t ∪ {0}) ∩ hcone(A⩽t). It thus remains to show that for all
ũ ∈ RK \ {0}, it holds that ũ ∈ C⩽t if and only if A⩽t ũ ⩾ 0.

Now let ũ ∈ RK \ {0} with A⩽t ũ ⩾ 0. We define u := 0 ∈ RK and v := ũ. Hence, it
holds v − u = ũ and

A⩽t ũ ⩾ 0 and ũ ̸= 0

⇐⇒
K∑
i=j

ũi ≥ 0 for all j = 1, . . . ,K, and ũ ̸= 0

⇐⇒
K∑
i=j

vi ≥
K∑
i=j

ui for all j = 1, . . . ,K, and v ̸= u

⇐⇒ u ⩽t v

⇐⇒ ũ = v − u ∈ C⩽t .

Thus, we obtain hcone(A⩽t) \ {0} = C⩽t , which concludes the proof.

Theorem 2.1 implies that the closure of the ordinal cone C⩽t ∪ {0}, which is a polyhedral
cone by Theorem 5.16, must also have a description based on a finite number of extreme
rays. Indeed, the following result provides such a description based on exactly K extreme
rays.

Theorem 5.17. It holds that hcone(A⩽t) = vcone(B⩽t) for A⩽t defined according to
Theorem 5.16 and B⩽t ∈ RK×K given by B⩽t = (bij)i,j=1,...,K with

bij =


1, if i = j

−1, if i = j − 1

0, otherwise

, i.e., B⩽t =

1 −1 0 0

0

0

−1

0 0 1



 .

Proof. We first show that hcone(A⩽t) ⊆ vcone(B⩽t). Let d ∈ hcone(A⩽t). Hence, it holds
A⩽t d ≧ 0 which is equivalent to

∑K
i=j di ≥ 0 for all j = 1, . . . ,K. Set λj :=

∑K
i=j di ≥ 0

and let Bj• denote the j-th row of B⩽t , for j = 1, . . . ,K. Then Bj• λ = λj − λj+1 = dj
for j = 1, . . . ,K − 1 and BK• λ = λK = dK . Consequently, we have shown that d ∈
vcone(B⩽t).

For the other direction, let d ∈ vcone(B⩽t), i.e., d = B⩽t λ for some λ ≧ 0. The definition
of B⩽t implies that

∑K
i=j Bi• λ =

∑K−1
i=j (λi − λi+1) + λK = λj for all j = 1, . . . ,K − 1

and BK• λ = λK . Hence, it follows that A⩽t · d = A⩽t · (B⩽t λ) = λ ≧ 0 and thus
d ∈ hcone(A⩽t), which concludes the proof.

Note that these descriptions of the closure of the ordinal cone C⩽t ∪ {0} are not unique.
Indeed, both the normal vectors in A⩽t as well as the extreme rays in B⩽t could be
reordered, and they could be multiplied by arbitrary positive scalars without changing
the cone that they define. In the particular description given in Theorems 5.16 and

119

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

5.17, however, we observe that the matrix B⩽t is the inverse of the matrix A⩽t , i.e.,
(A⩽t)

−1 = B⩽t .

Remark 5.18. Obviously, it holds that (hcone(A⩽t))
∗ = hcone((B⩽t)

⊤) and, similarly,
that (vcone(B⩽t))

∗ = vcone((A⩽t)
⊤) since the normal vectors of the halfspaces given in

A⩽t are orthogonal to the extreme rays contained in B⩽t.

It is easy to see that the Pareto cone CP is a subset of the ordinal cone, C⩽t . Moreover,
the dual cone of the ordinal cone is a subset of the Pareto cone, i.e., (C⩽t)

∗ ⊆ CP ⊆ C⩽t .
This holds since z ∈ CP implies that z ⩾ 0 and hence A⩽t · z ⩾ 0, i.e., z ∈ C⩽t . Moreover,
z∗ ∈ (C⩽t)

∗ is equivalent to (z∗)⊤c ≥ 0 for all c ∈ C⩽t which implies z∗i ≥ 0, because the
i-th unit vector ei ∈ RK is contained in C⩽t for all i = 1, . . . ,K. These cones and their
duals are visualized in Figure 5.3.

Remark 5.19. Note that head-dominance (c.f. equation (5.1)), represented by the binary
relation ⩾h, also induces a polyhedral cone. For A⩾h

= (A⩽t)
⊤ and B⩾h

= (B⩽t)
⊤ we

have that C⩾h
∪ {0} = hcone(A⩾h

) = vcone(B⩾h
).

Now we can use the ordinal cone C⩽t as described in Definition 2.3 to reformulate the
optimization problem (OCOP) as follows:

minC⩽t
c(x)

s. t. x ∈ X.
(OCOP)

Here, minC⩽t
denotes the minimization in the sense of Definition 2.3 for the ordinal cone

C⩽t = hcone(A⩽t) \ {0}. In other words, the C⩽t-non-dominated set of problem (OCOP)
is given by N(Y,C⩽t), where Y = c(X). In the following, we use this notation to clearly
distinguish between the optimization w.r.t. different ordering cones.

5.2.2. Bijective Linear Transformation Between Ordinal and Pareto
Optimization

In the previous subsection we showed that tail-dominance, and hence also ordinal domi-
nance due to Lemma 5.9, can be equivalently described by the ordinal cone C⩽t . Moreover,
the closure C⩽t ∪ {0} of the ordinal cone is the polyhedral cone hcone(A⩽t) = vcone(B⩽t)
that is spanned by K linearly independent extreme rays in RK , c.f. Theorems 5.16 and
5.17. Since the closure of the Pareto cone CP ∪ {0} is also a polyhedral cone that is
spanned by K linearly independent extreme rays in RK (namely the K unit vectors in
RK), there exists a bijective linear transformation that maps the (closure of the) ordinal
cone onto the (closure of the) Pareto cone.

We thus define the following transformed Pareto cone optimization problem (TOP)

minCP
A⩽t · c(x)

s. t. x ∈ X,
(TOP)

where minCP
denotes the optimization w.r.t. the Pareto cone CP according to Definition

2.3. Note that the objective vector of problem (TOP) corresponds to the incremental tail
counting vector c̃(x) = A⩽t · c(x) ∈ RK introduced in Section 5.1.1, that counts in its jth

120

5.2 Ordinal vs. Pareto Optimality: An Interpretation based on Ordering Cones

(a) Pareto Cone 2D
(Minimization)

(b) hcone(A⩽t) 2D
(Minimization)

(c) hcone((A⩽t
)⊤) 2D

(Maximization)

(d) Dual Pareto Cone 2D
(Minimization)

(e) (hcone(A⩽t))
∗ 2D

(Minimization)
(f) (hcone((A⩽t

)⊤))∗ 2D
(Maximization)

−2

2−2

2

−2

2

(g) Pareto Cone 3D
(Minimization)

−2

2−2

2

−2

2

(h) hcone(A⩽t) 3D
(Minimization)

−2

2−2

2

−2

2

(i) hcone((A⩽t
)⊤) 3D

(Maximization)

−2

2−2

2

−2

2

(j) Dual Pareto Cone 3D
(Minimization)

−2

2−2

2

−2

2

(k) (hcone(A⩽t))
∗ 3D

(Minimization)

−2

2−2

2

−2

2

(l) (hcone((A⩽t
)⊤))∗ 3D

(Maximization)

Figure 5.3.: Cones and their dual cones

121

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

component the number of elements of x that are in category ηj or worse. Indeed, for a
feasible solution x = {e1, . . . , en} ∈ X we get c̃(x) =

∑n
i=1 c̃(ei), where

c̃j(ei) =

{
1, if ηj ≺

= o(ei)

0, otherwise
for all j = 1, . . . ,K.

Thus, problem (TOP) is actually a multi-objective optimization problem with K binary
objective functions c̃1, . . . , c̃K defined on the ground set E, and with feasible set X ⊆ 2E .
Recall from Section 5.1.1 that c̃1(e) = 1 for all e ∈ E and hence c̃1(x) simply counts
the number of elements in a feasible solution x ∈ X. Moreover, the vector c̃(e) has the
consecutive ones property in the sense that whenever a component of c̃(e) is zero, then all
subsequent components of c̃(e) are also zero.

As an example, consider the ordinal shortest path problem introduced in Example 5.1.
The path x1 consists of the green-dotted edge e2 with c̃(e2) = (1, 0, 0)⊤, the orange-dashed
edge e1 with c̃(e1) = (1, 1, 0)⊤, and the red-solid edge e5 with c̃(e5) = (1, 1, 1)⊤. Hence,
we compute c̃(x1) = c̃(e2) + c̃(e1) + c̃(e5) = (3, 2, 1)⊤, see also Figure 5.1.

In order to show that the ordinal counting optimization problem (OCOP) (and hence
the ordinal optimization problem (OOP)) can be solved by using the above transformation
to the “standard” multi-objective optimization problem (TOP), we use a classical non-
dominance mapping result for polyehdral cones. This result can be found in Engau, 2007
and the references therein among several others. We include a proof, which is similar to
the more general proof in Hunt and Wiecek, 2003, for the sake of completeness.

Theorem 5.20 (see, e.g., Engau, 2007). Let Y ⊂ RK be a nonempty set and let hcone(A)
be a cone induced by a matrix A ∈ Rm×K . Then it holds

A ·N(Y,hcone(A) \ {0}) ⊆ N(A · Y,CP).

If rank(A) = K, then equality holds, i.e., A · N(Y,hcone(A) \ {0}) = N(A · Y,CP). Here,
the multiplication of a matrix A with a set Y is defined as A · Y := {A · y : y ∈ Y }.

Proof. Suppose that ȳ ∈ Y such that ȳ ∈ N(Y,hcone(A) \ {0}) and A · ȳ /∈ N(A · Y,CP).
Then, by Definition 2.3, there exists a ŷ ∈ Y \{ȳ} such that A · ŷ ∈ (A · ȳ−CP), i.e., there
exists d ∈ CP such that A·ŷ = A·ȳ−d. Hence, it follows that d = A·ȳ−A·ŷ = A·(ȳ−ŷ) ⩾ 0
and thus d̄ := ȳ− ŷ ∈ hcone(A)\{0}. Finally, we can deduce that ŷ ∈ (ȳ−hcone(A)\{0}),
with ŷ ∈ Y . But then ȳ /∈ N(Y, hcone(A) \ {0}), which contradicts the assumption.

It remains to show that A·N(Y,hcone(A)\{0}) ⊇ N(A·Y,CP) if rank(A) = K. Towards
this end, suppose that ȳ ∈ Y such that A · ȳ ∈ N(A · Y,CP) and ȳ /∈ N(Y,hcone(A) \ {0}).
Hence, there exists a d ∈ hcone(A) \ {0} such that ŷ = ȳ − d ∈ Y . This implies that
A · ŷ = A · ȳ −A · d ∈ A · Y . From rank(A) = K and d ̸= 0 we deduce that A · d ̸= 0 and
thus A · d ⩾ 0. Consequently, (A · ȳ − CP) ∩A · Y ̸= ∅ which contradicts the assumption
that A · ȳ ∈ N(A · Y,CP).

Theorem 5.21. The set of ordinally efficient solutions for problem (OOP), the set of tail-
efficient (ordinally efficient) solutions of problem (OCOP) and the set of Pareto-efficient
solutions of problem (TOP) are equal.

122

5.2 Ordinal vs. Pareto Optimality: An Interpretation based on Ordering Cones

c1
c2
c3 c4

(a) Problem (OCOP)

c̃1c̃2
c̃3 c̃4

(b) Problem (TOP)

(c) Problem (OCOP) (d) Problem (TOP)

Figure 5.4.: Illustration of the tail-non-dominated outcome vectors of the instance of
(OCOP) introduced in Example 5.22 (left) and of the respective Pareto-non-
dominated outcome vectors of the transformed problem (TOP) (right). The
figures at the top are generated with tikz, while the lower figures are photos
of 3D-objects, which were generated by Rabea Freese during here bachelor
thesis, see Freese, 2022. The dominated areas are shown up to the reference
points (4, 4, 4)⊤ (left) and (5, 5, 5)⊤ (right).

Proof. This follows immediately from Lemma 5.9, the relation between orders and cones,
see Section 2.1, and Theorem 5.20.

Example 5.22. Consider an instance of problem (OCOP) with K = 3 categories that has
the following four feasible counting vectors c1 = (3, 1, 0)⊤, c2 = (0, 2, 1)⊤, c3 = (0, 0, 2)⊤

and c4 = (1, 0, 2)⊤. The transformation to problem (TOP) yields the corresponding in-
cremental tail counting vectors as c̃1 = (4, 1, 0)⊤, c̃2 = (3, 3, 1)⊤, c̃3 = (2, 2, 2)⊤ and
c̃4 = (3, 2, 2)⊤. The outcome spaces of both formulations are depicted in Figure 5.4 to-
gether with the ordering cones C⩽t and CP , respectively.

In Figure 5.4(c) and 5.4(d) photographs of the 3D-objects of the dominated areas of
Example 5.22 are given. The 3D-objects are printed by Rabea Freese during here bachelor
thesis, see Freese, 2022. She showed, that the dominated area of problems (OCOP) and
(TOP) with three categories can be printed with a 3D-printer, as the objects have three
dimensions and they can be transformed into finite objects by defining an appropriate
upper bound u ∈ R3. Freese, 2022 suggests to choose the same upper bound for the
corresponding problems (OCOP) and (TOP). Therefore, she computes first for every
component the maximal value of the non-dominated set of problems (OCOP) Y OCOP

N and
(TOP) Y TOP

N and increases the value by one, i.e., ui := (max{yi : y ∈ YOCOP
N ∪Y TOP

N })+1.
The addition of a positive value (here chosen as 1) is necessary as the upper bound has to
be strictly larger then the largest value of all non-dominated points in each component.
Moreover, for 3D-printing, the objects have to be transformed, such that the upper

bound u is turned into the origin and such that the object lies completely in the positive

123

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

orthant. This transformation is applied to all non-dominated points of problems (OCOP)
and (TOP). Let y ∈ YOCOP

N ∪Y TOP
N . Then the corresponding transformed point ŷ is given

by

ŷ :=

 0 −1 0
−1 0 0
0 0 −1

 · (y − u) ,

see Freese, 2022. This transformation has the advantage that the resulting object has no
overhang, a property that significantly simplifies the printing procedure. In this context,
we say that an object has an overhang whenever the angle α between the ground and an
outside wall of the object is less then 45 degrees, i.e., if α ≤ 45◦. Freese, 2022 shows that the
transformed dominated areas of problems (OCOP) and (TOP) have no overhang, which
has the advantage that no support structure is needed for printing. Support structure
is needed to print overhangs with a 3D-printer and it has to be removed after the print.
This would increase the costs for the print as additional material is needed for the support
structure. In Freese, 2022 a start manual for the 3D-printing of dominated areas of
problems (OCOP) and (TOP) is provided.

5.3. Solution Strategies

In this section, we discuss a generic algorithmic framework for ordinal optimization prob-
lems that takes advantage of the close relationship to multi-objective optimization prob-
lems. Since the weighted sum scalarization is a popular approach in multi-objective opti-
mization, the interpretation of weights in the context of ordinal optimization and Pareto
optimization is analyzed in more detail, and their relation to numerical representations is
discussed.

5.3.1. Ordinal Optimization by Pareto Transformation

From the theory above it follows that we can solve the problems (OCOP) and (OOP) by
solving the transformed problem (TOP), which is a standard multi-objective combinato-
rial problem w.r.t. Pareto optimality. After the computation of the Pareto-efficient set of
problem (TOP), or of a minimal complete Pareto-efficient set, respectively, it is necessary
to re-compute the corresponding outcome vectors of either problem (OCOP) or (OOP).
In this context, a minimal complete Pareto-efficient set of (TOP) is a subset of the Pareto-
efficient set that contains one Pareto-efficient solution for each Pareto-non-dominated out-
come vector. We refer to Serafini, 1987 for different solution concepts in multi-objective
optimization. The efficient sets of the problems (TOP), (OCOP) and (OOP) are equal and
they are denoted by XE in the following. The respective non-dominated sets are denoted
by Y TOP

N := N(c̃(X), CP), Y
OCOP
N := N(c(X), C⩽t) and Y OOP

N , respectively. A procedure
for the computation of the efficient set and the respective non-dominated sets based on
this Pareto transformation is outlined in Algorithm 13.

Note that the structural properties of the problems (OCOP) and (OOP) are preserved
by the transformation as we do not change the feasible set and as the transformation of the
objective function is linear and bijective. In particular, combinatorial solution strategies,

124

5.3 Solution Strategies

Algorithm 13: Ordinal optimization by Pareto transformation (OOPT)

Input: feasible set X ⊆ 2E and ordinal function o : E → C
Output: efficient set XE and non-dominated sets Y OCOP

N and Y OOP
N

1 Compute c(x) for all x ∈ X // compute counting objective c
2 XE := minCP

{A⩽t · c(x) : x ∈ X} // solve lin. transf. (TOP)
3 Y OCOP

N := c(XE) // map efficient set to ...

4 Y OOP
N := o(XE) // ... resp. obj. spaces

5 return efficient set XE and non-dominated sets Y OCOP
N and Y OOP

N

like, e.g., Bellman’s principle of optimality for knapsack problems, can be applied in step 2
of Algorithm 13 to efficiently compute XE. Ordinal optimization is thus in general no more
complex than standard multi-objective optimization.

5.3.2. Weighted Sum Scalarization and Ordinal Weight Space Decomposition

In the following we investigate the interrelation between weighted sum scalarizations, see
Section 2.3, for (TOP) and (OCOP) and numerical representations for (OOP). Thereby we
rely on the concept of weight space decompositions, which were introduced by Benson and
Sun, 2000 for multi-objective linear programming and extended to integer linear problems
in Przybylski et al., 2010.

The weighted sum scalarization for (TOP) is

min
K∑
i=1

λi c̃i(x)

s. t. x ∈ X

(WSTOP(λ))

with λi > 0 for i = 1, . . . ,K and
∑K

i=1 λi = 1. Analogously, the weighted sum scalarization
for (OCOP) can be formulated as

min
K∑
i=1

µi ci(x)

s. t. x ∈ X

(WSOCOP(µ))

with µ ∈ (C⩽t)
∗
s, where (C⩽t)

∗
s is the strict dual cone of the ordinal cone C⩽t , and∑K

i=1 µi = 1. Recall that the strict dual cone (C⩽t)
∗
s is the interior of the dual cone

(C⩽t)
∗, which is visualized in Figures 5.3(e) and 5.3(k).

It is a well-known fact that when considering a multi-objective optimization problem,
then optimal solutions of weighted sum scalarizations with weighting vectors λ ∈ RK

>

are always Pareto-efficient (see, e.g., Ehrgott, 2005) and Section 2.3. Recall that such
solutions are called supported efficient solutions. Thus, problem (WSTOP(λ)) always
yields Pareto-efficient solutions for problem (TOP). Since (OCOP) can be interpreted
as a multi-objective optimization problems w.r.t. the ordering cone C⩽t , every optimal
solution of the associated weighted sum problem (WSOCOP(µ)) with weights in the strict
dual cone (C⩽t)

∗
s of C⩽t is ordinally efficient for (OCOP) (see, e.g., Engau, 2007).

125

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

The supported efficient solutions of problems (TOP) and (OCOP) are the same, hence
there is a one-to-one correspondence between appropriate weighting vectors λ and µ. For
a given λ ∈ RK

> and x ∈ X we define µi =
∑i

j=1 λj for all i = 1, . . . ,K. Then it holds
that

K∑
i=1

λi c̃i(x) =
K∑
i=1

λi

K∑
j=i

cj(x) =
K∑
i=1

ci(x)
i∑

j=1

λj =
K∑
i=1

ci(x)µi,

which shows that problems (WSOCOP(µ)) and (WSTOP(λ)) have the same objective
functions in this case.
Note that µi =

∑i
j=1 λj and λi > 0 for all i = 1, . . . ,K implies that µi < µj for

all i < j, as required. Conversely, weighting vectors µ ∈ (C⩽t)
∗
s satisfy µi < µj for all

i < j and hence yield associated weighting vectors λ ∈ RK
> by setting λ1 := µ1 > 0 and

λi := µi − µi−1 > 0 for all i = 2, . . . ,K. Note also that while the values of µi =
∑i

j=1 λj ,

i = 1, . . . ,K (for given λ ∈ RK
>) are in general not normalized to satisfy

∑K
i=1 µi = 1, such

weighting vectors µ can be easily normalized by setting

µi :=

∑i
j=1 λj∑K

ℓ=1

∑ℓ
j=1 λj

=

∑i
j=1 λj∑K

j=1(K − j + 1)λj

.

Note that this normalization is applicable since (C⩽t)
∗
s ⊂ RK

> . As a consequence, a weight
space decomposition for the multi-objective problem (TOP) can be translated into an as-
sociated ordinal weight space decomposition for the ordinal counting optimization problem
(OCOP). In this context, a weight space decomposition subdivides the space of relevant
weighting vectors λ ∈ RK

> with
∑K

i=1 λi = 1 into polyhedral cells such that all weighting
vectors from the same cell generate the same efficient solution(s), see Section 2.3.

Example 5.23. In the shortest path problem of Example 5.1 the solutions x2, x3, x4 and
x5 are efficient. In Figure 5.5 the corresponding weight space decomposition is depicted
showing the values of λ and µ for which the respective efficient solution is obtained.

From yet another perspective, weighting vectors µ ∈ (C⩽t)
∗
s, i.e., weighting vectors µ ∈ RK

satisfying 0 < µi < µj for all i < j, are related to numerical representations as introduced
in Section 5.1.2. Indeed, numerical representations assign a numerical value ν(ηi) to every
ordinal category ηi, i = 1, . . . ,K, such that ν(ηi) < ν(ηj) whenever i < j. Hence we can
chose the values µi, i = 1, . . . ,K, equal to the values ν(ηi) of any numerical representation
that satisfies ν(η1) > 0. These values can again be normalized without changing the
optimal solutions of (WSOCOP(µ)) by setting

µi :=
ν(ηi)∑K
j=1 ν(ηj)

, i = 1, . . . ,K.

It is important to note that this does not imply that numerical representations and
weighted sum scalarizations are equivalent. Similarly, it is in general not possible to
compute all ordinally efficient solutions of problem (OOP) by solving (WSOCOP(µ)) for
an appropriate µ. To see this, recall that a solution x′ ∈ X is called ordinally efficient for
problem (OOP) if and only if there is no x̂ ∈ X that ordinally dominates x′, i.e., if for

126

5.3 Solution Strategies

λ1

λ2

1
6

1
3

1
2

2
3

5
6

1

1
6

1
3

1
2

2
3

5
6

1

(a) Weight space decomposition

µ1

µ2

1
6

1
3

1
2

2
3

5
6

1

1
6

1
3

1
2

2
3

5
6

1

(b) Ordinal weight space decomposition

Figure 5.5.: Weight space decomposition and corresponding ordinal weight space decom-
position for the shortest path problem given in Example 5.1. The efficient
solution x2 corresponds to the light grey triangle, both x3 and x4 correspond
to the middle grey triangle and x5 corresponds to the dark grey triangle.
The values on dashed lines may not be chosen for λ and µ, because for the
weight space decomposition we assume that λ ∈ RK

> and
∑3

i=1 λi = 1, and
for the ordinal weight space decomposition we require 0 < µ1 < µ2 < µ3 and∑3

i=1 µi = 1.

every x̂ ∈ X there exists a numerical representation νx̂ ∈ V such that νx̂(x′) ≤ νx̂(x̂). In
contrast, a solution x′ ∈ X is optimal for problem (WSOCOP(µ)) with appropriate µ if
and only if there exists a numerical representation ν∗ ∈ V such that ν∗(x′) ≤ ν∗(x̂) for
all x̂ ∈ X.

Remark 5.24. Ordinal optimization problems may have non-supported efficient solutions.
This is illustrated in Example 5.25. Hence, we can not expect to determine all efficient
solutions with the weighted sum method.

Example 5.25. Consider an instance with two categories and three efficient solutions
x′, x̂, x̄ with counting vectors c(x′) = (3, 1)⊤, c(x̂) = (5, 0)⊤ and c(x̄) = (0, 2)⊤. The
incremental tail counting vectors in the transformed problem (TOP) are c̃(x′) = (4, 1)⊤,
c̃(x̂) = (5, 0)⊤ and c̃(x̄) = (2, 2)⊤, respectively. Obviously, c̃(x′) is non-dominated in
(TOP) but unsupported, and thus x′ is not optimal for (WSTOP(λ)), irrespective of
the choice of λ ∈ RK

> . Similarly, there is no numerical representation such that x′ is
simultaneously better than x̂ and x̄, i.e., there is no numerical representation ν such
that ν(x′) ≤ ν(x̂) and ν(x′) ≤ ν(x̄). Indeed, the numerical values of the solutions are
ν(x′) = 3 ν(η1) + ν(η2), ν(x̂) = 5 ν(η1) and ν(x̄) = 2 ν(η2). ν(x′) ≤ ν(x̂) implies
ν(η2) ≤ 2 ν(η1) and ν(x′) ≤ ν(x̄) implies 3 ν(η1) ≤ ν(η2), which is a contradiction to
ν(η1) < ν(η2) and ν(ηi) ≥ 0 for i = 1, 2. However, neither x̂ nor x̄ ordinally dominate x′,
i.e., neither x̂ nor x̄ yield a better objective value for every numerical representation.

127

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

5.3.3. Other Scalarization Techniques

It is also possible to apply the Pascoletti-Serafini scalarization and the weighted Tcheby-
cheff scalarization directly to problem (OCOP). Both techniques require a pointed, closed
and convex cone and thus we have to consider the ordering cone C≦t

in problem (OCOP)
as the relation ≦t is reflexive, transitive and asymmetric while the relation ⩽t is irreflexive
and transitive, see Lemma 5.14. The Pascoletti-Serafini scalarization can be applied to
problem (OCOP) with the ordering cone C≦t

, because every weakly C≦t
-efficient solution

x∗ of problem (OCOP) can be computed by choosing z := f(x∗) and an arbitrary search
direction d ∈ int(C≦t

). In case of the weighted Tchebycheff scalarization this holds as

we can choose zU small enough in each component such that Y OCOP ⊆ {zU} ⊕ int(C≦t
).

This is only correct, because of the finiteness of the outcome set Y OCOP due to the finite
ground set E.

Note, that it is not possible to apply all scalarization techniques directly to prob-
lem (OCOP) which can be applied to problem (TOP). Consider, for example, the ε-con-
straint scalarization for general cones, see Section 2.3. There, the assumption is made that
the j-th unit vector ej is contained in the dual cone of the ordering cone. This does not hold
in the case of the ordinal ordering cone, i.e., ej /∈ (C⩽t)

∗ for j = 1, . . . ,K − 1. Similarly,
the hybrid scalarization cannot be applied to problem (OCOP). The Benson scalarization
can be applied to problem (OCOP) as C⩽t is a convex cone and (1, . . . , 1)⊤ ∈ (C⩽t)

∗

and thus, all weakly C⩽t-efficient solutions of problem (OCOP) can be computed. But
(1, . . . , 1)⊤ /∈ (C⩽t)

∗
s and therefore, it is not possible to compute all C⩽t-efficient solutions

of problem (OCOP).

Overall, the transformation of problem (OCOP) into problem (TOP) supports the ap-
plication of more scalarization techniques.

5.4. Excursus: Olympic Medals and Ordinal Weight Space
Decomposition

One example for ordinal categories are olympic medals. There is always the question how
to rank the different countries which take part at the olympic games. The following two
methods are commonly used in press and media:

The first is used by most countries and the International Olympic Commitee (IOC) and
it sorts the countries lexicographically, i.e., first only gold medals are considered, if two
countries have the same number of gold medals, then the silver medals are considered
and only if two countries have equally many gold and silver medals the bronze medals are
coming into account.

In contrast, in the United States most newspapers make the ranking according to the
total number of medals, i.e., it is assumed that gold medals have the same value as silver
and bronze medals.

Furthermore, there also have been used other ranking methods in the past. For example,
in the official report from the olympic games in 1908, see British Olympic Council, 1909,
the countries are ranked by giving the gold medals the value 5, silver medals the value 3 and
bronze medals the value 1. In the report from the olympic games in 1912, see International

128

5.4 Excursus: Olympic Medals and Ordinal Weight Space Decomposition

1× 2× 5× 10× Silver worth
20× bronze

1×

2×

5×

10×

Gold worth
20× silver

x

y

Only care
about gold
medals

All medals
are counted

(a) Visualization of the New York Times, see
Katz, 2022

Only care
about gold
medals

All medals
are counted

Only gold
and silver
medals are
counted

µ1

µ2

1
6

1
3

1
2

2
3

5
6

1

1
6

1
3

1
2

2
3

5
6

1

(b) Ordinal weight space decomposition

Figure 5.6.: Different visualizations of weight spaces for olympic rankings.

Olympic Committee, 1913, the ranking got changed and the value of a gold medal was 3,
of a silver medal 2 and of a bronze medal 1. There have been even more different ranking
strategies, but none of them has been used in large scale. Nevertheless, also scientist have
investigated the question of a fair ranking strategy in the olympic games, see for example
Du, 2018 and Gomes Júnior et al., 2014. Sitarz, 2013 suggests another value distribution
for gold, silver and bronze medals based on the incenter of a convex cone. In Perini et al.,
2022 it is considered that different rankings are given and aggregated to a final ranking.
As the final ranking looses information, they apply weight set decomposition to the set
of convex multipliers and investigate this decomposition. Furthermore, they suggest a
heuristic and an exact algorithm to compute the weight set decomposition.

In the New York Times an article was published in 2022 regarding the olympic games
in Beijing, see Katz, 2022. There, a weight space decomposition is suggested, which
visualizes for every country the possible placement in the ranking regarding to the value
of the medals. They assume that bronze medals have value 1 and they depict on the x-axis
the value of the silver medal in quantities of the value of the bronze medal. On the y-axis
the value of the gold medal is denoted in quantities of the value of the silver medal, see
Figure 5.6(a). Note that the value in the lower left corner is (1, 1) and that logarithmic
axes are used. Therefore, in the lower left corner the rank of the country is given for the
case that all medals have the same value, i.e., the total number of medals is considered.
Moreover, the area is unbounded in the upper right direction. The further we go into this
direction the more important become the gold medals. Hence, if we go far enough into
this direction we get the rank of a country if we only care about gold medals.

We would like to compare this visualization with a variant of the weight space decompo-
sition presented in Section 5.3. We are interested in the ordinal weight space decomposi-
tion, which tells us for a fixed country the possible placements of it, but not in the ordinal
weight space decomposition, which tells us which country is the best for which values.
The corners of this ordinal weight space decomposition correspond to giving all medals
equal values, considering the lexicographic order, i.e., only caring about gold medals, and

129

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

counting silver and gold medals with equal weight while ignoring the number of bronze
medals, see Figure 5.6(b).

In contrast to the visualization in Figure 5.6(a) the area of possible weights is bounded.
Nevertheless, there exists a one to one correspondence, i.e., a bijective function, be-
tween both visualizations. A weight (x, y) from Figure 5.6(a) corresponds to the point
(1
1+x+x·y ,

1
1+x+x·y) in Figure 5.6(b) and a weight (µ1, µ2) from Figure 5.6(b) corresponds

to the point (µ2

µ1
, µ3

µ2
) with µ3 = 1 − µ1 − µ2 in Figure 5.6(a). The ordinal weight space

decomposition as in Figure 5.6(b) can be computed by the algorithms presented in Perini
et al., 2022 as it can be interpreted as the aggregation of the rankings in the corners.

5.5. Numerical Results

In this section, we compare the Pareto cone CP with the ordinal cone C⩽t . Obviously, the
ordinal cone includes the Pareto cone and hence, if we apply the different cones on the
same outcome set Y , we get |N(Y,C⩽t)| ≤ |N(Y,CP)|. It is easily possible to construct
outcome sets, such that the non-dominated outcome vectors are the same for both cones or
such that all outcome vectors are non-dominated for the Pareto cone, but only one point
is non-dominated for the ordinal cone. This is illustrated in Figure 5.7. In the following,
we investigate the differences between the non-dominated sets N(Y,C⩽t) and N(Y,CP) for
assignment problems and knapsack problems. This analysis has to be interpreted with
care since we compare both cones on the same outcome set Y , which is not necessarily a
possible outcome set of problem (TOP) as we do not transform the set. For a possible
outcome set of problem (TOP) it has to hold that y1 ≥ y2 ≥ · · · ≥ yK for every y ∈ Y .

(a) Non-dominated set is the same un-
der the Pareto cone and the ordinal
cone.

(b) All outcome vectors are non-
dominated under the Pareto cone,
but only the black point is non-
dominated under the ordinal cone.

Figure 5.7.: Illustration of two different sets of outcome vectors and the non-dominated
points under the blue Pareto cone and the green ordinal cone, respectively.

5.5.1. Assignment Problems

130

5.5 Numerical Results

We consider multi-objective assignment problems, see Section 2.10, on complete bipartite
graphs G = (V1 ∪ V2), which have the same number of vertices n ∈ {10, 20, 30, 40} in V1

and V2. We assign a random integer value between 1 and K = 3 to every edge in the
graph, which can be interpreted as different categories. The objective functions are given
by the counting vector c, i.e., the number of edges in each category.

Note, that only the ordinal cone reflects the ordering of the different categories, while
if we apply the Pareto cone, the different categories are all interpreted as independent
categories. The number of possible values for the outcome vectors can be computed as(
n+K−1
K−1

)
= O(nK−1) (assuming that K is constant), i. e., it is equal to the number of

multisets of cardinality K − 1 taken from a set of size n+ 1.
For every possible value of n we generate 10 random instances and compare the car-

dinality of the non-dominated sets. Towards this end, we solve the problems with the
objective space method presented in Klamroth et al., 2015, see Section 2.10 for a brief
introduction.

The result is given in Table 5.1. Obviously, it is always possible to find an assignment
such that all edges have the value 1, and hence the cardinality of the non-dominated
set under the ordinal cone is always one. In contrast, in case of the Pareto cone all
possible outcome vectors are non-dominated as the number of edges in each solution of
the assignment problem is fixed. In most cases it is possible to find a feasible solution
of the assignment problem for every possible distribution of the edges in the different
categories, i.e., we found

(
n+K−1
K−1

)
outcome vectors. This result is not surprising as the

number of edges in the graph is much larger then the number of edges in a feasible solution
of the assignment problem and in most cases a feasible solution can be constructed for all
possible distributions of the edges in the different categories. The larger n is, the larger is
the difference between all edges in the graph and the edges needed for a feasible solution.
Therefore, we can see in Table 5.1 that for larger n the number of non-dominated outcome
vectors under the Pareto cone gets closer to

(
n+K−1
K−1

)
. Overall, for the non-dominated sets

of the considered assignment problems it makes a huge difference which cone is considered,
and hence we are in a similar situation as in Figure 5.7(b).

K n ∅|N(Y,CP)| min |N(Y,CP)| max |N(Y,CP)|
(
n+K−1
K−1

)
∅|N(Y,C⩽t)|

3 10 65.4 64 66 66 1
3 20 230.9 230 231 231 1
3 30 496 496 496 496 1
3 40 861 861 861 861 1

Table 5.1.: Average cardinality of the non-dominated sets of assignment problems under
the Pareto cone ∅|N(Y,CP)| and the ordinal cone ∅|N(Y,C⩽t)|, respectively.

5.5.2. Knapsack Problems

We consider binary knapsack problems with n items, each of which is assigned to one of
K ∈ {4, . . . , 6} categories. Again, if we solve the problem w.r.t. the ordinal cone, the
categories are interpreted as ordered, while if we apply the Pareto cone, the categories
are interpreted as independent categories. Furthermore, every item e has a weight value

131

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

w(e) = max{o(e) · 100 + round(normrnd(0, σ)), 0}. Here, o(e) denotes the category of
item e, round is the rounding operation to the next integer and normrnd(0, σ) computes
a random number from the normal distribution with mean parameter 0 and standard
deviation parameter σ. The bound on the total weight of the knapsack is chosen as
ρ percent of the sum over the weight of all items. For every instance type, which are
defined by n, K and ρ, we generate 10 random instances and solve them with the dynamic
programming algorithm described in Section 2.9 and in Klamroth and Wiecek, 2000.

The numerical results can be found for σ = 20 in Table 5.2, for σ = 30 in Table 5.3
and for σ = 40 in Table 5.4. The choice of σ does not seem to have a large influence.
Nevertheless, the numerical results show, that the number of non-dominated outcome
vectors is often significantly reduced if the ordinal cone is considered instead of the Pareto
cone. This has also impact on the running time of the algorithm, which gets also reduced.

132

5.5 Numerical Results

Instance Size Pareto Cone CP Ordinal Cone C⩽t

n K ρ ∅|YN| min |YN| max |YN| ∅[s] ∅|YN| min |YN| max |YN| ∅[s]

20 3 25% 12.1 11 14 0.57 8.7 8 10 0.48
20 3 50% 20.3 15 23 4.70 13.3 8 19 3.63
20 3 75% 13.4 12 15 12.49 8.1 7 10 9.47

20 4 25% 22.6 15 32 0.99 13.8 9 19 0.86
20 4 50% 41.6 21 62 10.00 23.2 12 41 7.82
20 4 75% 24.8 16 38 27.81 13.1 7 19 21.47

20 5 25% 42.7 23 54 1.54 28.4 19 38 1.27
20 5 50% 97.8 37 152 19.48 56.0 26 90 14.22
20 5 75% 51.6 28 67 55.41 29.3 14 40 41.49

20 6 25% 64.7 21 90 2.13 37.7 15 61 1.68
20 6 50% 158.5 26 259 32.25 82.5 20 133 21.48
20 6 75% 78.1 22 113 92.95 36.1 16 57 65.63

30 3 25% 24.7 21 27 10.28 18.7 15 22 8.35
30 3 50% 41.6 26 49 72.02 28.9 19 34 54.27
30 3 75% 23.9 22 26 181.59 17.0 14 19 134.02

30 4 25% 69.3 64 76 30.61 47.2 34 53 22.54
30 4 50% 141.7 80 182 293.33 87.5 57 111 192.04
30 4 75% 68.4 63 80 781.90 43.0 36 50 513.89

30 5 25% 151.6 106 192 60.75 101.3 66 129 41.29
30 5 50% 375.4 239 513 782.55 232.5 158 366 473.14
30 5 75% 161.3 116 193 2 065.89 96.8 51 137 1 311.52

40 3 25% 41.9 38 45 63.87 30.5 25 34 51.09
40 3 50% 73.4 47 82 457.59 51.3 40 59 332.81
40 3 75% 38.8 36 42 1 162.01 27.7 23 31 837.81

40 4 25% 142.3 122 160 237.84 102.3 94 113 168.14
40 4 50% 317.7 268 377 2 279.51 204.0 178 234 1 472.95
40 4 75% 136.0 121 152 5 875.43 90.1 77 101 3 855.20

50 3 25% 62.4 57 67 253.74 46.6 39 55 204.93
50 3 50% 103.9 81 119 1 763.07 76.1 63 86 1 327.45
50 3 75% 56.5 51 60 4 386.35 43.4 38 48 3 282.83

Table 5.2.: Average number ∅|YN|, minimal number min |YN| and maximal number
max |YN| of non-dominated outcome vectors of different knapsack instances
with σ = 20 and the average running time ∅[s] for optimization under the
Pareto cone and the ordinal cone, respectively.

133

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

Instance Size Pareto Cone CP Ordinal Cone C⩽t

n K ρ ∅|YN| min |YN| max |YN| ∅[s] ∅|YN| min |YN| max |YN| ∅[s]

20 3 25% 12.0 8 15 0.60 7.3 5 11 0.48
20 3 50% 16.9 8 25 4.69 9.6 6 12 3.20
20 3 75% 11.9 8 15 12.28 6.1 4 8 8.06

20 4 25% 28.3 23 32 1.02 16.6 11 20 0.78
20 4 50% 55.5 36 64 11.24 27.5 21 34 7.18
20 4 75% 30.5 24 33 32.10 16.4 13 20 20.25

20 5 25% 48.6 34 63 1.70 24.6 13 34 1.24
20 5 50% 103.9 61 128 21.95 46.4 27 66 12.76
20 5 75% 53.8 35 66 63.27 23.1 17 28 36.86

20 6 25% 70.2 42 98 2.26 38.4 22 62 1.66
20 6 50% 166.9 55 294 33.58 76.8 35 118 20.01
20 6 75% 81.6 48 114 96.89 37.2 22 57 59.51

30 3 25% 25.5 23 28 9.10 17.2 14 20 6.65
30 3 50% 46.8 41 51 65.87 26.3 21 31 42.75
30 3 75% 23.7 22 26 168.01 14.4 11 17 106.28

30 4 25% 69.3 38 86 29.77 40.2 25 51 17.66
30 4 50% 140.0 36 186 283.45 75.2 26 103 143.94
30 4 75% 62.8 35 74 754.78 35.1 26 45 381.59

30 5 25% 172.1 118 222 87.98 96.2 77 111 47.45
30 5 50% 392.1 280 533 1 104.55 198.2 140 234 508.03
30 5 75% 167.1 115 213 2 796.90 85.7 50 115 1 383.28

40 3 25% 42.7 36 46 68.84 25.8 21 30 46.05
40 3 50% 65.7 51 87 452.23 39.9 31 48 272.28
40 3 75% 36.5 32 39 1 131.42 22.7 19 25 671.09

40 4 25% 147.7 105 176 259.94 84.4 65 100 149.09
40 4 50% 285.4 194 368 2 318.47 147.9 91 179 1 190.18
40 4 75% 126.2 93 155 5 818.78 69.3 57 87 3 040.92

50 3 25% 64.7 55 72 255.13 41.9 37 48 167.04
50 3 50% 101.5 91 114 1 716.07 62.1 54 73 1 040.41
50 3 75% 52.4 49 58 4 226.12 34.6 28 43 2 579.64

Table 5.3.: Average number ∅|YN|, minimal number min |YN| and maximal number
max |YN| of non-dominated outcome vectors of different knapsack instances
with σ = 30 and the average running time ∅[s] for optimization under the
Pareto cone and the ordinal cone, respectively.

134

5.5 Numerical Results

Instance Size Pareto Cone CP Ordinal Cone C⩽t

n K ρ ∅|YN| min |YN| max |YN| ∅[s] ∅|YN| min |YN| max |YN| ∅[s]

20 3 25% 13.5 12 15 0.65 8.0 5 10 0.50
20 3 50% 20.6 12 28 4.88 10.8 5 14 3.25
20 3 75% 12.6 9 16 12.78 7.9 4 10 8.25

20 4 25% 27.2 18 33 1.13 11.7 8 14 0.80
20 4 50% 48.0 31 63 11.81 17.9 8 25 6.31
20 4 75% 26.7 19 32 32.92 10.8 6 14 16.83

20 5 25% 43.6 30 57 1.61 18.9 10 28 1.13
20 5 50% 94.4 57 130 21.27 33.2 17 47 11.02
20 5 75% 46.5 30 58 62.27 17.4 12 24 31.22

20 6 25% 78.3 41 103 2.48 32.8 21 51 1.64
20 6 50% 171.0 70 283 38.37 59.9 28 104 18.74
20 6 75% 83.0 39 111 112.25 28.3 13 47 55.62

30 3 25% 26.8 22 31 10.93 13.4 10 16 6.73
30 3 50% 41.7 29 50 74.54 20.1 15 25 40.08
30 3 75% 21.3 18 24 187.70 11.4 7 15 98.44

30 4 25% 69.8 53 85 25.78 33.2 20 42 13.32
30 4 50% 127.5 74 168 242.99 50.6 34 81 100.87
30 4 75% 59.7 45 78 652.05 26.6 19 33 267.13

30 5 25% 156.6 65 235 70.73 64.1 21 99 29.61
30 5 50% 350.2 93 555 886.40 127.7 45 193 284.69
30 5 75% 136.7 59 209 2 316.92 57.1 23 83 801.80

40 3 25% 43.6 33 49 67.66 21.7 16 27 39.64
40 3 50% 69.3 29 86 451.10 33.7 19 44 229.39
40 3 75% 34.5 28 39 1 125.02 18.8 16 25 553.99

40 4 25% 152.4 105 179 248.36 67.8 55 81 110.74
40 4 50% 307.9 193 369 2 310.61 132.2 93 184 902.99
40 4 75% 119.3 82 135 5 786.81 59.3 49 74 2 387.01

50 3 25% 69.0 57 77 292.65 33.9 29 38 161.66
50 3 50% 100.8 81 121 1 923.12 51.0 44 68 949.48
50 3 75% 51.1 39 62 4 650.32 28.7 23 34 2 320.62

Table 5.4.: Average number ∅|YN|, minimal number min |YN| and maximal number
max |YN| of non-dominated outcome vectors of different knapsack instances
with σ = 40 and the average running time ∅[s] for optimization under the
Pareto cone and the ordinal cone, respectively.

135

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

5.6. Multi-objective Combinatorial Optimization with Ordinal
Costs

In the following we extend our results to ordinal combinatorial optimization problems with
additional real-valued objective functions and discuss two different modeling possibilities
for this case, depending on whether the objectives are conflicting or coherent.

5.6.1. Conflicting Real-valued Objectives and Ordinal Objectives

The results of Section 5.2 can be extended to multi-objective optimization problems that
combine a finite number of p “standard” real-valued objective functions wj : X → R,
j = 1, . . . , p with a finite number of q ordinal objective functions ol : X → Cl, l = 1, . . . , q,
that are in mutual conflict. Note, that we use superscripts to identify the different real-
valued objective functions, although we introduced multiple real-valued objective functions
with subscripts and interpreted them as one vector-valued objective function. We do not
use this notation here to emphasize the the p real-valued objective functions can be seen
as different objectives and to make the notation consistent with the notation of several
ordinal objective functions. The ordinal objective functions have to have a superscript to
distinguish between them, because every single ordinal objective function has already a
vector of varying length as outcome. The number of categories in the l-th ordinal objective
function is denoted by Kl, i.e., Cl = {ηl1, . . . , ηlKl

} for l = 1, . . . , q.

For a feasible solution x = {e1, . . . , en} ∈ X, we assume that wj(x) :=
∑n

i=1w
j(ei),

j = 1, . . . , p. Moreover, ol(x) = sort(ol(e1), . . . , o
l(en)) for l = 1, . . . , q. This leads to the

multi-objective ordinal optimization problem with additional cost functions (MOOP):

minCP
(w1(x), . . . , wp(x))⊤

min⪯ν o1(x)
...

min⪯ν oq(x)
s. t. x ∈ X.

(MOOP)

By replacing the ordered vectors ol(x) for l = 1, . . . , q by the counting vectors cl(x) for
l = 1, . . . , q we get a corresponding multi-objective ordinal counting optimization problem
with additional cost functions (MCOP):

minCP

(
w1(x), . . . , wp(x)

)⊤
minC⩽t

c1(x)
...

minC⩽t
cq(x)

s. t. x ∈ X.

(MCOP)

We denote the concatenated outcome vectors of (MCOP) as

v(x) :=
(
w1(x), . . . , wp(x), (c1(x))⊤, . . . , (cq(x))⊤

)⊤ ∈ Rp+q̃,

136

5.6 Multi-objective Combinatorial Optimization with Ordinal Costs

where q̃ :=
∑q

l=1Kl. Then problem (MCOP) can be transformed into an equivalent
standard multi-objective optimization problem w.r.t. Pareto dominance using a linear
transformation that is defined by the block diagonal matrix

Ã :=


Ip×p

A1
⩽t

. . .

Aq
⩽t

 .

Here, Ip×p ∈ Rp×p denotes the identity matrix and Al
⩽t

is the transformation matrix
corresponding to the objective cl for l = 1, . . . , q, c.f. Theorem 5.16. Thus, we get the
multi-objective transformed Pareto cone optimization problem (MTOP)

minCP
Ã · v(x)

s. t. x ∈ X.
(MTOP)

Now, problem (MOOP) or, equivalently, problem (MCOP) can be solved by using a simple
adaptation of Algorithm 13, c.f. Section 5.3.

Example 5.26. We consider a problem of type (MCOP) with one real-valued objective w
and one counting objective c with K = 2 categories (i.e., p = q = 1). Consider an instance
with four feasible outcome vectors v = (w, c1, c2)

⊤ given by v1 = (4, 1, 0)⊤, v2 = (3, 2, 1)⊤,
v3 = (2, 0, 2)⊤ and v4 = (3, 0, 2)⊤. Then the corresponding outcome vectors of problem
(MTOP), ṽi = Ã vi for i = 1, . . . , 4, are obtained as ṽ1 = (4, 1, 0)⊤, ṽ2 = (3, 3, 1)⊤,
ṽ3 = (2, 2, 2)⊤ and ṽ4 = (3, 2, 2)⊤. In this case, the transformation matrix is given by

Ã =

1 0 0
0 1 1
0 0 1

 .

The feasible outcome vectors and the dominated volumes in the respective outcome spaces
are depicted in Figure 5.8 for both problems, (MCOP) and (MTOP).

5.6.2. Coherent Real-valued Objectives and Ordinal Objectives

In some practical applications, the elements of E have a real-valued cost (e.g., the length
of an edge) and an associated category (e.g., the safety of the corresponding road segment
for a cyclist) such that the real-valued cost is, rather than in conflict, coherent with the
respective category. This situation is illustrated at the following example:

Example 5.27. Consider the shortest path problem shown in Figure 5.9. Let w(e) denote
the length of an edge e and let o(e) denote its safety: green-dotted edges are safe and in
category η1, while red-solid edges are insecure and in category η2. Then, irrespective of the
number of edges contained in the respective paths, the path x1 = {e1, e2, e3} should be pre-
ferred over the path x2 = {e4, e5, e6} since the total weights are equal w(x1) = w(x2) = 10,
and the red sub-path in x1 has a smaller weight than that of x2. In this sense, the weight
or length of an edge can be interpreted as an attribute of its respective category. However,
x1 is dominated by x2 w.r.t. problem (MOOP).

137

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

v1v2

v3 v4

(a) Problem (MCOP)

ṽ1ṽ2
ṽ3 ṽ4

(b) Problem (MTOP)

Figure 5.8.: Original and transformed outcome space for the multi-objective problem with
one real-valued and one ordinal objective function introduced in Example 5.26.
In both figures the upper corner of the bounding box is located at the point
(5, 5, 5)⊤.

To model the situation where a real-valued objective function w : E → R is in accordance
with an ordinal objective function o : E → C with K categories, i.e., the situation where
the weight w(e) reflects the multiplicity with which the category o(e) of the element e is
to be counted, we introduce a weighted counting vector

cwi (e) :=

{
w(e) if o(e) = ηi

0 otherwise.

The basic idea of this concept is also used in the risk-aware bicycle routing application
geovelo, which takes, besides the route length, also the total length of unsafe route seg-
ments into account. For example, when K = 4, w(e) = 7 and o(e) = η2, then the weighted
counting vector is given by cw(e) = (0, 7, 0, 0)⊤. The weighted counting objective of a fea-
sible solution x = {e1, . . . , en} ∈ X equals the sum of the weighted counting vectors of all
elements in x, i.e., cw(x) =

∑n
i=1 c

w(ei). Thereby, the i-th component of cw(x) corresponds
to the total weight of the elements in x that are in category ηi, i = 1, . . . ,K. Now the
weighted counting vector can be handled analogously to the counting vector. Indeed, as
in the previous chapter we consider the transformation c̃wi (x) :=

∑K
j=i c

w
j (x) = A⩽t · cw(x)

to obtain the weighted transformed Pareto cone optimization problem

minCP
c̃w(x)

s. t. x ∈ X
(WTOP)

w.r.t. the concept of Pareto optimality, that can be solved with the methods developed in
the preceding sections.

5.6.3. Modelling Aspects

We emphasize that it depends on the context of the respective application whether the
multi-objective model (MTOP) or the aggregated model (WTOP) is more suitable. The
following example illustrates that the aggregated model (WTOP) is meaningful whenever
w and c are interrelated and coherent objectives, while the multi-objective model (MTOP)
is particularly useful for unrelated or incompatible objectives.

138

5.7 Conclusion and Further Ideas

s t

w(e1) = 1

w(e2) = 1

w(e3) = 8

w(e4) = 6

w(e5) = 2

w(e6) = 2

w o cw c̃w

x1 = {e1, e2, e3} 10

η1
η2
η2

 (
8
2

) (
10
2

)

x2 = {e4, e5, e6} 10

η1
η1
η2

 (
4
6

) (
10
6

)

Figure 5.9.: Instance of a shortest path problem. A green-dotted edge is in the best cat-
egory η1 and the red-solid edges are in the worst category η2. The feasible
s-t-paths x1 and x2 and their different objective function vectors are given.

Example 5.28. Consider again the shortest path problem depicted in Figure 5.9. Ob-
viously, the path x1 = {e1, e2, e3} is the unique efficient solution for problem (WTOP),
while the path x2 = {e4, e5, e6} is the unique efficient solution for problem (MOOP).

Whether x1 or x2 are actually preferred thus depends on the interpretation of the weights
and of the ordinal categories. Towards this end, suppose that, as in Example 5.27, the
category of an edge corresponds to its security level.

First, consider the case that the real-valued objective w(e) represents the length of the
edge e as in Example 5.27. Then both objectives are interrelated and hence model (WTOP)
is appropriate.

If, on the other hand, w(e) represents the toll of the edge or road e, then this real-valued
objective is not an attribute of the corresponding category. In other words, both objectives
are potentially conflicting and not coherent. Hence, in this case the path x2 is preferred
since the total amount of toll is the same for both paths, but the second path has more
green and fewer red edges.

5.7. Conclusion and Further Ideas

In this chapter we investigate ordinal combinatorial optimization problems. We describe
different optimality concepts for ordinal objective functions, namely ordinal optimality
as well as tail- and head-optimality. We prove that all three concepts are equivalent if
all feasible solutions have the same length. In general, only ordinal optimality and tail-
optimality are equivalent.

We provide alternative descriptions of these three optimality concepts based on as-
sociated ordering cones. Using the fact that ordinal optimality and tail-optimality are

139

Chapter 5 Combinatorial Optimization Problems with Ordinal Costs

equivalent, and that tail-optimality can be represented by a polyhedral cone with K ex-
treme rays in RK , we show that ordinal optimization problems can be transformed into
equivalent multi-objective optimization problems with K objective functions and with bi-
nary cost coefficients. The transformation is realized by a bijective linear mapping. The
resulting problem can be solved with standard methods from multi-objective optimiza-
tion, and hence ordinal optimization is as easy or hard as the associated, “standard”
multi-objective problems with K objective functions, as long as K is constant. For ex-
ample, ordinal knapsack problems and ordinal shortest path problems can be solved by
multi-objective dynamic programming, using Bellman’s principle of optimality.
The results can be extended to problems with more than one objective function. We

suggest two modelling approaches to combine an ordinal objective function with a real-
valued objective function. While in the first approach all objectives are considered in a
standard multi-objective setting, the second approach allows to model interrelated and
coherent objective functions, where the real-valued objective is interpreted as an attribute
of the respective category in the ordinal objective.
Future work should focus on the development of tailored optimization algorithms for the

associated multi-objective optimization problems that exploit the fact that these problems
have binary cost coefficients. Moreover, specific combinatorial problems like, for example,
shortest path, knapsack, assignment and general routing and network flow problems should
be analyzed both with coherent and with conflicting ordinal and real-valued objective
functions.

140

6. Conclusion and Further Ideas

In this thesis we investigate multi-objective matroid optimization problems with binary
and ordinal costs as well as multi-objective combinatorial optimization problems with
ordinal costs. An example for applications of matroid optimization problems are network
design problems, which often rely on the computation of optimal spanning trees. General
combinatorial optimization problems have many further applications like, for example,
the selection of investments, which can be modeled by a knapsack problem, or like the
traveling salesman problem. We investigate ordinal costs because in practical applications
often objectives should be optimized, which cannot be measured by numerical values but
which can be associated with ordered categories. An example for this is the safety of a
street for a cyclist as there is no possibility to measure the safety numerically. Nevertheless,
streets with a bike lane are safer than streets without a bike lane and little traffic which
are again safer than streets without a bike lane and a lot of traffic. This can be modeled
by assigning the streets to ordered categories.

One of our main results is that ordinal combinatorial optimization problems, given K
(ordinal) quality categories, can be equivalently formulated as multi-objective combina-
torial optimization problems with K binary objective functions and a specific structure
through a bijective linear transformation. Towards this end, we define different concepts
of ordinal optimality for matroid problems and for general combinatorial optimization
problems. We show that all ordinal optimality concepts are equivalent for problems with
solutions of equal length. Furthermore, we prove that an ordinal optimality concept based
on numerical representations for combinatorial optimization problems is equivalent to
the novel concept of tail-efficiency, which is defined on RK . Due to this result ordinal
combinatorial optimization problems can be solved through the computation of the effi-
cient solutions of multi-objective combinatorial optimization problems with binary costs.
Thereby, all standard methods, like, e.g., dynamic programming for the knapsack problem,
can be applied as the problem structure does not change. The weighted sum scalariza-
tion is a standard method to compute supported non-dominated points of multi-objective
optimization problems and hence, we investigate the interrelation between those and nu-
merical representations. Furthermore, we explain the relation between ordinal objective
functions and weight space decompositions and relate our findings to olympic medal ta-
bles. In the numerical tests, we investigate the influence of the chosen optimality concept
on the number of non-dominated points on assignment and knapsack problems. Moreover,
we extent our results to ordinal combinatorial optimization problems with one additional
sum objective function. We explain two possibilities to model such an additional function
depending on the application at hand.

For the more specific optimization problems on matroids with binary or ordinal costs,
we present algorithms to solve such problems in polynomial time. This is surprising
as the decision problem corresponding to multi-objective matroid optimization is known
to be NP-complete in general. We investigate single-objective and bi-objective matroid

141

Chapter 6 Conclusion and Further Ideas

optimization problems with ordinal costs and their interrelation to corresponding problems
with a lexicographic optimality concept. An important result is that single-objective
matroid optimization problems can be solved efficiently, i.e., in polynomial time, with
the greedy algorithm. For bi-objective matroid optimization problems with one ordinal
objective function we show that they can be solved in polynomial time by solving a series of
matroid intersection problems. The matroid intersection problems solve a corresponding
ε-constraint scalarization of the original problem. Again, we validate the efficiency of the
resulting algorithm by numerical tests. Moreover, we extend our results to multi-objective
matroid optimization problems with more than one objective function with ordinal costs.

For bi-objective matroid optimization problems with one binary objective function, we
introduce the Efficient Swap Algorithm, which solves the problem in polynomial time and
in a linear number of iterations. The algorithm is very fast, because it uses the con-
nectedness of the efficient set. While connectedness of the efficient set is a rare property
in general MOCO problems, we prove that the efficient set of bi-objective matroid opti-
mization problems with one binary objective function is connected. The efficiency of the
algorithm even for large problem instances is verified by numerical tests. The numerical
tests confirm that solving the bi-objective matroid optimization problems with one binary
objective function with the Efficient Swap Algorithm is much faster than solving them with
the Matroid Intersection Algorithm for Ordinal Constraints. Solving a series of matroid
intersection problems takes also only polynomial time, but the Efficient Swap Algorithm
uses the specific problem structure. As a side result, we search for counter examples to
show that the connectedness of the efficient set does not hold if we consider more than two
objective functions or more than two values, but still finitely many values for the formerly
binary objective function. We found such examples for objective functions with values
between 0 and 8.
Future work should investigate, whether the existing solution methods for specific multi-

objective combinatorial optimization problems, like, e.g., shortest paths or knapsack prob-
lems, can be improved for the multi-objective combinatorial optimization problems with
the specific structure, which results from the transformation from ordinal combinatorial
optimization problems. Furthermore, alternative definitions of ordinal optimality and the
similarities as well as differences between various ordinal and standard optimality con-
cepts should be further investigated. Moreover, we should investigate further under which
assumptions matroid optimization problems have connected efficient sets. A special case
is the question, whether matroid optimization problems with one sum objective function
and several binary objective functions have connected efficient sets in general.

142

Bibliography

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1993). Network Flows: Theory, Algorithms,
and Applications. Prentice Hall. doi: 10.5555/137406.

Bartee, E. M. (1971). “Problem Solving with Ordinal Measurement”. In: Management
Science 17.10, B622–B633. url: http://www.jstor.org/stable/2628998 (visited
on 12/21/2022).

Bazgan, C., H. Hugot, and D. Vanderpooten (2009). “Solving efficiently the 0–1 multi-
objective knapsack problem”. In: Computers & Operations Research 36.1, pp. 260–
279. doi: 10.1016/j.cor.2007.09.009.

Bazgan, C., S. Ruzika, C. Thielen, and D. Vanderpooten (2019). “The Power of the
Weighted Sum Scalarization for Approximating Multiobjective Optimization Prob-
lems”. In: CoRR abs/1908.01181. doi: 10.1007/s00224-021-10066-5.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.
Benabbou, N. and P. Perny (2015). “On Possibly Optimal Tradeoffs in Multicriteria Span-

ning Tree Problems”. In: Algorithmic Decision Theory. Ed. by T. Walsh. Cham:
Springer International Publishing, pp. 322–337. doi: 10.1007/978-3-319-23114-
3_20.

Benson, H. P. (1978). “Existence of efficient solutions for vector maximization problems”.
In: Journal of Optimization Theory and Applications 26.4, pp. 569–580. doi: 10.
1007/bf00933152.

Benson, H. P. and E. Sun (2000). “Outcome space partition of the weight set in multi-
objective linear programming”. In: Journal of Optimization Theory and Applications
105.1, pp. 17–36. doi: 10.1023/A:1004605810296.

Blot, A., M.-É. Kessaci, and L. Jourdan (2018). “Survey and unification of local search
techniques in metaheuristics for multi-objective combinatorial optimisation”. In: Jour-
nal of Heuristics 24.6, pp. 853–877. doi: 10.1007/s10732-018-9381-1.

Bökler, F. (2018). “Output-sensitive Complexity of Multiobjective Combinatorial Opti-
mization With an Application to the Multiobjective Shortest Path Problem”. PhD
thesis. TU Dortmund. doi: 10.17877/DE290R-19130.

Bökler, F., M. Ehrgott, C. Morris, and P. Mutzel (2017). “Output-sensitive complexity
of multiobjective combinatorial optimization”. In: Journal of Multi-Criteria Decision
Analysis 24, pp. 25–36. doi: 10.1002/mcda.1603.

Bossek, J., C. Grimme, and F. Neumann (2019). “On the Benefits of Biased Edge-Exchange
Mutation for the Multi-Criteria Spanning Tree Problem”. In: Proceedings of the 21th

Genetic and Evolutionary Computation Conference (GECCO). Prague, Czech Repub-
lic: ACM, pp. 516–523. doi: 10.1145/3321707.3321818.

Bossong, U. and D. Schweigert (1999). “Minimal paths on ordered graphs”. url: http:
//nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-4666.

143

https://doi.org/10.5555/137406
http://www.jstor.org/stable/2628998
https://doi.org/10.1016/j.cor.2007.09.009
https://doi.org/10.1007/s00224-021-10066-5
https://doi.org/10.1007/978-3-319-23114-3_20
https://doi.org/10.1007/978-3-319-23114-3_20
https://doi.org/10.1007/bf00933152
https://doi.org/10.1007/bf00933152
https://doi.org/10.1023/A:1004605810296
https://doi.org/10.1007/s10732-018-9381-1
https://doi.org/10.17877/DE290R-19130
https://doi.org/10.1002/mcda.1603
https://doi.org/10.1145/3321707.3321818
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-4666
http://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-4666

Chapter 6 Bibliography

Bouveret, S. and U. Endriss (June 2010). “Fair Division under Ordinal Preferences: Com-
puting Envy-Free Allocations of Indivisible Goods”. In: vol. 215, pp. 387–392. doi:
10.3233/978-1-60750-606-5-387.

Bowman, V. J. (1976). “On the Relationship of the Tchebycheff Norm and the Efficient
Frontier of Multiple-Criteria Objectives”. In: Lecture Notes in Economics and Math-
ematical Systems. Springer Berlin Heidelberg, pp. 76–86. doi: 10.1007/978-3-642-
87563-2_5.

Brams, S. J., P. H. Edelman, and P. C. Fishburn (2003). “Fair division of indivisible
items”. In: Theory and Decision 55.2, pp. 147–180.

Brezovec, C., G. Cornuéjols, and F. Glover (1988). “A matroid algorithm and its applica-
tion to the efficient solution of two optimization problems on graphs”. In:Mathematical
Programming 42, pp. 471–487. doi: 10.1007/BF01589417.

Brezovec, C., G. Cornuéjols, and F. Glover (1986). “Two algorithms for weighted ma-
troid intersection”. In: Mathematical Programming 36.1, pp. 39–53. doi: 10.1007/
BF02591988.

British Olympic Council (Mar. 1909). Fourth Olympiad; Being the Official Report of the
Olympic Games of 1908 Celebrated in London Under the Patronage of His Most Gra-
cious Majesty King Edward VII and by the Sanction of the International Olympic
Committee. Digitally published by the LA84 Foundation. url: https://digital.
la84.org/digital/collection/p17103coll8/id/8217/rec/6.

Brualdi, R. A. (1969). “Comments on bases in dependence structures”. In: Bulletin of the
Australian Mathematical Society 1.2, pp. 161–167. doi: 10.1017/S000497270004140X.

Casas, P. M. de las, A. Sedeño-Noda, and R. Borndörfer (2021). “An Improved Multiobjec-
tive Shortest Path Algorithm”. In: Computers & Operations Research 135, p. 105424.
doi: 10.1016/j.cor.2021.105424.

Chang, R. and S.-J. Leu (1997). “The minimum labeling spanning trees”. In: Information
Processing Letters 63.6, pp. 277–282. doi: 10.1016/S0020-0190(97)00127-0.

Chankong, V. and Y. Y. Haimes (1983). Multiobjective Decision Making: Theory and
Methodology. Elsevier Science Publishing, New York.

Climaco, J. C. N., M. E. Captivo, and M. M. B. Pascoal (2010). “On the bicriterion - mini-
mal cost/minimal label - spanning tree problem”. In: European Journal of Operational
Research 204, pp. 199–205. doi: 10.1016/j.ejor.2009.10.013.

Coello, C. A. (1998). “An Updated Survey of GA-Based Multiobjective Optimization
Techniques”. In: ACM COMPUTING SURVEYS 32, pp. 109–143. doi: 10.1145/
358923.358929.

Correia, P., L. Paquete, and J. R. Figueira (2021). “Finding multi-objective supported effi-
cient spanning trees”. In: Computational Optimization and Applications 78.2, pp. 491–
528. doi: 10.1007/s10589-020-00251-6.

Cubukcuoglu, C., M. F. Tasgetiren, I. S. Sariyildiz, L. Gao, and M. Kucukvar (2019). “A
Memetic Algorithm for the Bi-Objective Quadratic Assignment Problem”. In: Procedia
Manufacturing 39, pp. 1215–1222. doi: 10.1016/j.promfg.2020.01.348.

Delort, C., O. Spanjaard, and P. Weng (2011). “Committee Selection with a Weight Con-
straint Based on a Pairwise Dominance Relation”. In: Algorithmic Decision Theory.
Ed. by R. I. Brafman, F. S. Roberts, and A. Tsoukiàs. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 28–41.

144

https://doi.org/10.3233/978-1-60750-606-5-387
https://doi.org/10.1007/978-3-642-87563-2_5
https://doi.org/10.1007/978-3-642-87563-2_5
https://doi.org/10.1007/BF01589417
https://doi.org/10.1007/BF02591988
https://doi.org/10.1007/BF02591988
https://digital.la84.org/digital/collection/p17103coll8/id/8217/rec/6
https://digital.la84.org/digital/collection/p17103coll8/id/8217/rec/6
https://doi.org/10.1017/S000497270004140X
https://doi.org/10.1016/j.cor.2021.105424
https://doi.org/10.1016/S0020-0190(97)00127-0
https://doi.org/10.1016/j.ejor.2009.10.013
https://doi.org/10.1145/358923.358929
https://doi.org/10.1145/358923.358929
https://doi.org/10.1007/s10589-020-00251-6
https://doi.org/10.1016/j.promfg.2020.01.348

Du, J. (2018). “Modifying Olympics Medal Table via a Stochastic Multicriteria Accept-
ability Analysis”. In: Mathematical Problems in Engineering 2018, pp. 1–11. doi:
10.1155/2018/8729158.

Dächert, K. (2014). “Adaptive Parametric Scalarizations in Multicriteria Optimization”.
PhD thesis. University of Wuppertal.

Dächert, K., K. Klamroth, R. Lacour, and D. Vanderpooten (2017). “Efficient computa-
tion of the search region in multi-objective optimization”. In: European Journal of
Operational Research 260.3, pp. 841–855. doi: 10.1016/j.ejor.2016.05.029.

Eben-Chaime, M. (1996). “Parametric Solution for Linear Bicriteria Knapsack Models”.
In: Management Science 42.11, pp. 1565–1575. doi: 10.5555/2777472.2777479.

Edmonds, J. (1971). “Matroids and the greedy algorithm”. In: Mathematical Programming
1.1, pp. 127–136. doi: 10.1007/bf01584082.

Edmonds, J. (2003). “Submodular Functions, Matroids, and Certain Polyhedra”. In: Com-
binatorial Optimization — Eureka, You Shrink!: Papers Dedicated to Jack Edmonds
5th International Workshop Aussois, France, March 5–9, 2001 Revised Papers. Ed. by
M. Jünger, G. Reinelt, and G. Rinaldi. Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 11–26. doi: 10.1007/3-540-36478-1_2.

Ehrgott, M. (1996). “On matroids with multiple objectives”. In: Optimization 38.1, pp. 73–
84. doi: 10.1080/02331939608844238.

Ehrgott, M. (2005). Multicriteria Optimization. Berlin, Heidelberg: Springer Verlag. doi:
10.1007/3-540-27659-9.

Ehrgott, M. and X. Gandibleux (2000). “A survey and annoted bibliography of mul-
tiobjective combinatorial optimization”. In: OR Spektrum 22.4, pp. 425–460. doi:
10.1007/s002910000046.

Ehrgott, M. and X. Gandibleux (2004). “Approximative solution methods for multiobjec-
tive combinatorial optimization”. In: Top 12.1, pp. 1–63. doi: 10.1007/bf02578918.

Ehrgott, M. and X. Gandibleux (2008). “Hybrid Metaheuristics for Multi-objective Com-
binatorial Optimization”. In: Hybrid Metaheuristics: An Emerging Approach to Op-
timization. Ed. by C. Blum, M. J. B. Aguilera, A. Roli, and M. Sampels. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 221–259. doi: 10.1007/978- 3- 540-
78295-7_8.

Ehrgott, M., X. Gandibleux, and A. Przybylski (2016). “Exact Methods for Multi-Objective
Combinatorial Optimisation”. In: Multiple Criteria Decision Analysis. Springer New
York, pp. 817–850. doi: 10.1007/978-1-4939-3094-4_19.

Eichfelder, G. (2007). “Scalarizations for adaptively solving multi-objective optimization
problems”. In: Computational Optimization and Applications 44.2, pp. 249–273. doi:
10.1007/s10589-007-9155-4.

Eichfelder, G. (June 2008). Adaptive Scalarization Methods in Multiobjective Optimization.
Springer-Verlag GmbH. doi: 10.1137/060672029.

Engau, A. (2007). “Domination and decomposition in multiobjective programming”. PhD
thesis. Clemson University.

Feller, W. (1968). An Introduction to Probability Theory and its Applications. Vol. I. Wiley.
Fernandes, I., E. Goldbarg, S. Maia, and M. Goldbarg (2020). “Empirical study of exact

algorithms for the multi-objective spanning tree”. In: Computational Optimization
and Applications 75, pp. 561–605. doi: 10.1007/s10589-019-00154-1.

145

https://doi.org/10.1155/2018/8729158
https://doi.org/10.1016/j.ejor.2016.05.029
https://doi.org/10.5555/2777472.2777479
https://doi.org/10.1007/bf01584082
https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1080/02331939608844238
https://doi.org/10.1007/3-540-27659-9
https://doi.org/10.1007/s002910000046
https://doi.org/10.1007/bf02578918
https://doi.org/10.1007/978-3-540-78295-7_8
https://doi.org/10.1007/978-3-540-78295-7_8
https://doi.org/10.1007/978-1-4939-3094-4_19
https://doi.org/10.1007/s10589-007-9155-4
https://doi.org/10.1137/060672029
https://doi.org/10.1007/s10589-019-00154-1

Chapter 6 Bibliography

Feussner, W. (1902). “Über Stromverzweigung in netzförmigen Leitern”. In: Annalen der
Physik 314.13, pp. 1304–1329. doi: 10.1002/andp.19023141320.

Figueira, J. R., C. M. Fonseca, P. Halffmann, K. Klamroth, L. Paquete, S. Ruzika, B.
Schulze, M. Stiglmayr, and D. Willems (2017). “Easy to say they’re hard, but hard to
see they’re easy - Toward a categorization of tractable multiobjective combinatorial
optimization problems”. In: Journal of Multi-Criteria Decision Analysis 24, pp. 82–
98. doi: 10.1002/mcda.1574.

Figueira, J. R., L. Paquete, M. Simões, and D. Vanderpooten (2013). “Algorithmic im-
provements on dynamic programming for the bi-objective {0,1} knapsack problem”.
In: Computational Optimization and Applications 56.1, pp. 97–111. doi: 10.1007/
s10589-013-9551-x.

Fishburn, P. (1999). “Preference structures and their numerical representations”. In: The-
oretical Computer Science 217.2, 359–383. doi: 10.1016/S0304-3975(98)00277-1.

Frank, A. (1981). “A weighted matroid intersection algorithm”. In: Journal of Algorithms
2.4, pp. 328–336. doi: 10.1016/0196-6774(81)90032-8.

Freese, R. (2022). “Dreidimensionale Repräsentation von ordinalen und klassischen Ord-
nungskegeln”. Bachelors Thesis. University of Wuppertal.

Gabow, H. N. and R. E. Tarjan (1984). “Efficient Algorithms for a Family of Matroid
Intersection Problems”. In: Journal of Algorithms 5, pp. 80–131. doi: 10.1016/0196-
6774(84)90042-7.

Garfinkel, R. and G. L. Nemhauser (1972). Integer Programming. New York: John Wiley
& Sons Inc.

Gearhart, W. B. (1983). “Characterization of properly efficient solutions by generalized
scalarization methods”. In: Journal of Optimization Theory and Applications 41.3,
pp. 491–502. doi: 10.1007/bf00935368.

Geovelo, an application for short and safe bicycle route computations (2022). https:
//geovelo.fr. Accessed: 2022-01-28.

Gomes Júnior, S., J. Mello, and L. Angulo-Meza (Apr. 2014). “Sequential use of ordinal
multicriteria methods to obtain a ranking for the 2012 Summer Olympic Games”. In:
WSEAS Transactions on Systems 13, pp. 223–230.

Gorski, J. (2010). “Multiple Objective Optimization and Implications for Single Objective
Optimization”. PhD thesis. University of Wuppertal.

Gorski, J., K. Klamroth, and S. Ruzika (2011). “Connectedness of Efficient Solutions in
Multiple Objective Combinatorial Optimization”. In: Journal of Optimization Theory
and Applications 150, pp. 475–497. doi: 10.1007/s10957-011-9849-8.

Gorski, J. and S. Ruzika (2009). “On k-max Optimization”. In:Operations Research Letters
37.1, pp. 23–26. doi: 10.1016/j.orl.2008.09.007.

Gorski, J., K. Klamroth, and J. Sudhoff (2022). “Biobjective optimization problems on
matroids with binary costs”. In: Optimization 0.0, pp. 1–30. doi: 10.1080/02331934.
2022.2044479.

Grandoni, F., R. Ravi, M. Singh, and R. Zenklusen (2014). “New approaches to multi-
objective optimization”. In: Mathematical Programming 146, pp. 525–554. doi: 10.
1007/s10107-013-0703-7.

146

https://doi.org/10.1002/andp.19023141320
https://doi.org/10.1002/mcda.1574
https://doi.org/10.1007/s10589-013-9551-x
https://doi.org/10.1007/s10589-013-9551-x
https://doi.org/10.1016/S0304-3975(98)00277-1
https://doi.org/10.1016/0196-6774(81)90032-8
https://doi.org/10.1016/0196-6774(84)90042-7
https://doi.org/10.1016/0196-6774(84)90042-7
https://doi.org/10.1007/bf00935368
https://geovelo.fr
https://geovelo.fr
https://doi.org/10.1007/s10957-011-9849-8
https://doi.org/10.1016/j.orl.2008.09.007
https://doi.org/10.1080/02331934.2022.2044479
https://doi.org/10.1080/02331934.2022.2044479
https://doi.org/10.1007/s10107-013-0703-7
https://doi.org/10.1007/s10107-013-0703-7

Guddat, J., F. Guerra Vasquez, K. Tammer, and K. Wendler (1985). Multiobjective and
Stochastic Optimization Based on Parametric Optimization. Vol. 26. Mathematical
Research. Akademie-Verlag, Berlin.

Gusfield, D. (1984). “Matroid Optimization with the interleaving of two ordered sets”. In:
Discrete Applied Mathematics 8.1, pp. 41–50. doi: 10.1016/0166-218X(84)90077-5.

Göpfert, A., H. Riahi, C. Tammer, and C. Zălinescu (2003). Variational Methods in Par-
tially Ordered Spaces. CMS Books in Mathematics. New York, NY: Springer-Verlag.
doi: 10.1007/b97568.

Haimes, Y., L. Lasdon, and D. Wismer (1971). “On a Bicriterion Formulation of the
Problems of Integrated System Identification and System Optimization”. In: IEEE
Transactions on Systems, Man, and Cybernetics SMC-1.3, pp. 296–297. doi: 10.
1109/tsmc.1971.4308298.

Hamacher, H. W. and F. Rendl (1991). “Color constrained combinatorial optimization
problems”. In: Operations Research Letters 10, pp. 211–219. doi: 10.1016/0167-
6377(91)90061-S.

Hamacher, H. W. and G. Ruhe (1994). “On spanning tree problems with multiple objec-
tives”. In: Annals of Operations Research 52, pp. 209–230. doi: 10.1007/BF02032304.

Hamacher, H. W. and K. Klamroth (Apr. 2006). Lineare Optimierung und Netzwerkopti-
mierung. Vieweg+Teubner Verlag. 256 pp. doi: 10.1007/978-3-8348-9031-3.

Harris, J., J. L. Hirst, and M. Mossinghoff (2008). Combinatorics and Graph Theory.
Springer New York. doi: 10.1007/978-0-387-79711-3.

Hotz, M. (2016). generateSpanningTrees(A). Matlab implementation for MST computa-
tion, MATLAB Central File Exchange, downloaded on February 19, 2020. url: https:
//www.mathworks.com/matlabcentral/fileexchange/53787-generatespanningtrees-

a.
Hunt, B. J. and M. M. Wiecek (2003). “Cones to Aid Decision Making in Multicriteria

Programming”. In: Multi-Objective Programming and Goal Programming. Springer
Berlin Heidelberg, 153–158. doi: 10.1007/978-3-540-36510-5.

Ibaraki, T. (May 1987). “Enumerative approaches to combinatorial optimization - part
II”. In: Annals of Operations Research 11. Ed. by P. Hammer, pp. 343–602.

International Olympic Committee (1913). Fifth Olympiad: the Official Report of the Olympic
Games of Stockholm, 1912 Swedish Olympic Committee. Digitally published by the
LA84 Foundation. url: https://digital.la84.org/digital/collection/p17103coll8/
id/11660/rec/7#page=1178.

Jahn, J. (1984). “Scalarization in vector optimization”. In: Mathematical Programming
29.2, pp. 203–218. doi: 10.1007/bf02592221.

Jahn, J. (2011). Vector optimization: Theory, Applications, and Extensions. 2nd ed. Berlin,
Heidelberg: Springer. doi: 10.1007/978-3-642-17005-8.

Jaszkiewicz, A. (2002). “Genetic local search for multi-objective combinatorial optimiza-
tion”. In: European Journal of Operational Research 137.1, pp. 50–71. doi: 10.1016/
s0377-2217(01)00104-7.

Jesus, A. D., L. Paquete, B. Derbel, and A. Liefooghe (2021). “On the design and anytime
performance of indicator-based branch and bound for multi-objective combinatorial
optimization”. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence. ACM. doi: 10.1145/3449639.3459360.

147

https://doi.org/10.1016/0166-218X(84)90077-5
https://doi.org/10.1007/b97568
https://doi.org/10.1109/tsmc.1971.4308298
https://doi.org/10.1109/tsmc.1971.4308298
https://doi.org/10.1016/0167-6377(91)90061-S
https://doi.org/10.1016/0167-6377(91)90061-S
https://doi.org/10.1007/BF02032304
https://doi.org/10.1007/978-3-8348-9031-3
https://doi.org/10.1007/978-0-387-79711-3
https://www.mathworks.com/matlabcentral/fileexchange/53787-generatespanningtrees-a
https://www.mathworks.com/matlabcentral/fileexchange/53787-generatespanningtrees-a
https://www.mathworks.com/matlabcentral/fileexchange/53787-generatespanningtrees-a
https://doi.org/10.1007/978-3-540-36510-5
https://digital.la84.org/digital/collection/p17103coll8/id/11660/rec/7#page=1178
https://digital.la84.org/digital/collection/p17103coll8/id/11660/rec/7#page=1178
https://doi.org/10.1007/bf02592221
https://doi.org/10.1007/978-3-642-17005-8
https://doi.org/10.1016/s0377-2217(01)00104-7
https://doi.org/10.1016/s0377-2217(01)00104-7
https://doi.org/10.1145/3449639.3459360

Chapter 6 Bibliography

Katz, J. (Feb. 2022). Beijing Olympics: Who leads the Medal Count? New York Times,
online. Retrieved 14.02.2022. url: https://www.nytimes.com/interactive/2022/
02/07/upshot/which-country-leads-olympic-medal-count.html.

Kellerer, H., U. Pferschy, and D. Pisinger (2004). Knapsack Problems. Springer Berlin
Heidelberg. doi: 10.1007/978-3-540-24777-7.

Kergosien, Y., A. Giret, E. Néron, and G. Sauvanet (2021). “An Efficient Label-Correcting
Algorithm for the Multiobjective Shortest Path Problem”. In: INFORMS Journal on
Computing. doi: 10.1287/ijoc.2021.1081.

Klamroth, K. and M. Wiecek (2000). “Dynamic Programming Approaches to the Multiple
Criteria Knapsack Problem”. In: Naval Research Logistics 47, pp. 57–76. doi: 10.
1002/(SICI)1520-6750(200002)47:13.0.CO;2-4.

Klamroth, K., R. Lacour, and D. Vanderpooten (2015). “On the representation of the
search region in multi-objective optimization”. In: European Journal of Operational
Research 245.3, pp. 767–778. doi: 10.1016/j.ejor.2015.03.031.

Klamroth, K., M. Stiglmayr, and J. Sudhoff (2022a). “Multi-objective Matroid Optimiza-
tion with Ordinal Weights”. In: Discrete Applied Mathematics. doi: https://doi.
org/10.1016/j.dam.2022.07.017.

Klamroth, K., M. Stiglmayr, and J. Sudhoff (2022b). Ordinal Optimization Through Multi-
objective Reformulation. doi: 10.48550/ARXIV.2204.02003.

Knowles, J. D. and D. W. Corne (2001). “A comparison of encodings andalgorithms
for multiobjective minimum spanning tree problems”. In: Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’01). IEEE Press, pp. 544–551. doi:
10.1109/CEC.2001.934439.

Knuth, D. E. (2012). The Art of Computer Programming. Vol. 4A (Combinatorial Algo-
rithms, Part 1). Boston: Pearson Education, Inc.

Kung, J.-P. S. (1986). A source book in matroid theory. Boston: Birkhäuser. doi: 10.1007/
978-1-4684-9199-9.

Lew, A. and H. Mauch (2007). Dynamic Programming. Springer Berlin Heidelberg. doi:
10.1007/978-3-540-37014-7.

Loera, J. A. D., D. C. Haws, J. Lee, and A. O’Hair (2009). MOCHA – Matroids Op-
timization Combinatorics Heuristics and Algorithms. https://github.com/coin-
or/MOCHA. url: https://github.com/coin-or/MOCHA.

Loera, J. A. D., D. C. Haws, J. Lee, and A. O’Hair (2010). “Computation in Multicriteria
Matroid Optimization”. In: J. Exp. Algorithmics 14. doi: 10.1145/1498698.1658383.

Mansour, I. B., M. Basseur, and F. Saubion (2018). “A multi-population algorithm for
multi-objective knapsack problem”. In: Applied Soft Computing 70, pp. 814–825. doi:
10.1016/j.asoc.2018.06.024.

Martins, E. Q. V. (1984). “On a multicriteria shortest path problem”. In: European Journal
of Operational Research 16.2, pp. 236–245. doi: 10.1016/0377-2217(84)90077-8.

Matoušek, J., ed. (2002). Lectures on Discrete Geometry. Springer New York. doi: 10.
1007/978-1-4613-0039-7.

Merris, R. (1994). “Laplacian Matrices of Graphs: A Survey”. In: Linear Algebra and its
Applications 197-198, pp. 143–176. doi: 10.1016/0024-3795(94)90486-3.

Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Boston: Kluwer Academic
Publishers. doi: 10.1007/978-1-4615-5563-6.

148

https://www.nytimes.com/interactive/2022/02/07/upshot/which-country-leads-olympic-medal-count.html
https://www.nytimes.com/interactive/2022/02/07/upshot/which-country-leads-olympic-medal-count.html
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1287/ijoc.2021.1081
https://doi.org/10.1002/(SICI)1520-6750(200002)47:13.0.CO;2-4
https://doi.org/10.1002/(SICI)1520-6750(200002)47:13.0.CO;2-4
https://doi.org/10.1016/j.ejor.2015.03.031
https://doi.org/https://doi.org/10.1016/j.dam.2022.07.017
https://doi.org/https://doi.org/10.1016/j.dam.2022.07.017
https://doi.org/10.48550/ARXIV.2204.02003
https://doi.org/10.1109/CEC.2001.934439
https://doi.org/10.1007/978-1-4684-9199-9
https://doi.org/10.1007/978-1-4684-9199-9
https://doi.org/10.1007/978-3-540-37014-7
https://github.com/coin-or/MOCHA
https://github.com/coin-or/MOCHA
https://github.com/coin-or/MOCHA
https://doi.org/10.1145/1498698.1658383
https://doi.org/10.1016/j.asoc.2018.06.024
https://doi.org/10.1016/0377-2217(84)90077-8
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1016/0024-3795(94)90486-3
https://doi.org/10.1007/978-1-4615-5563-6

Mosheiov, G. and A. Sarig (2008). “A multi-criteria scheduling with due-window assign-
ment problem”. In: Mathematical and Computer Modelling 48.5-6, pp. 898–907. doi:
10.1016/j.mcm.2007.08.018.

Neumann, F. and C. Witt (2010). “Multi-objective Minimum Spanning Trees”. In: Bioin-
spired Computation in Combinatorial Optimization. Ed. by F. Neumann and C. Witt.
Natural Computing Series. Berlin, Heidelberg: Springer, pp. 149–159. doi: 10.1007/
978-3-642-16544-3_10.

Oxley, J. G. (2011). Matroid Theory. Oxford University Press, NJ.
Pascoletti, A. and P. Serafini (1984). “Scalarizing vector optimization problems”. In:

Journal of Optimization Theory and Applications 42.4, pp. 499–524. doi: 10.1007/
bf00934564.

Pentico, D. W. (2007). “Assignment problems: A golden anniversary survey”. In: European
Journal of Operational Research 176.2, pp. 774–793. doi: 10.1016/j.ejor.2005.09.
014.

Perini, T., A. Langville, G. Kramer, J. Shrager, and M. Shapiro (2022). Weight Set Decom-
position for Weighted Rank Aggregation: An interpretable and visual decision support
tool. doi: 10.48550/ARXIV.2206.00001.

Pitsoulis, L. S. (2014). Topics in matroid theory. Springer. doi: 10.1007/978-1-4614-
8957-3.

Pramanik, S. and P. Biswas (2012). “Multi-objective Assignment Problem with General-
ized Trapezoidal Fuzzy Numbers”. In: International Journal of Applied Information
Systems 2.6. Published by Foundation of Computer Science, New York, USA, pp. 13–
20. doi: 10.5120/ijais12-450375.

Przybylski, A. and X. Gandibleux (2017). “Multi-objective branch and bound”. In: Eu-
ropean Journal of Operational Research 260.3, pp. 856–872. doi: 10.1016/j.ejor.
2017.01.032.

Przybylski, A., X. Gandibleux, and M. Ehrgott (2008). “Two phase algorithms for the bi-
objective assignment problem”. In: European Journal of Operational Research 185.2,
pp. 509–533. doi: 10.1016/j.ejor.2006.12.054.

Przybylski, A., X. Gandibleux, and M. Ehrgott (2010). “A Recursive Algorithm for Finding
All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer
Programme”. In: INFORMS Journal on Computing 22.3, pp. 371–386. doi: 10.1287/
ijoc.1090.0342.

Raith, A., C. Houtte, J. Wang, and M. Ehrgott (Sept. 2009). “Applying Bi-Objective
Shortest Path Methods to Model Cycle Route Choice”. In: 32nd Australasian Trans-
port Research Forum, ATRF 2009.

Raith, A., U. Nataraj, M. Ehrgott, G. Miller, and K. Pauw (Sept. 2011). “Prioritising
Cycle Infrastructure Projects”. In: ATRF 2011 - 34th Australasian Transport Research
Forum.

Rendl, F. and M. Leclerc (1988-1989). “A multiply constrained matroid optimization prob-
lem”. In: Discrete Mathematics 73, pp. 207–212. doi: 10.1016/0012-365X(88)90149-
5.

Roy, R., S. Dehuri, and S. B. Cho (2011). “A Novel Particle Swarm Optimization Algorithm
for Multi-Objective Combinatorial Optimization Problem”. In: International Journal
of Applied Metaheuristic Computing 2.4, pp. 41–57. doi: 10.4018/jamc.2011100104.

149

https://doi.org/10.1016/j.mcm.2007.08.018
https://doi.org/10.1007/978-3-642-16544-3_10
https://doi.org/10.1007/978-3-642-16544-3_10
https://doi.org/10.1007/bf00934564
https://doi.org/10.1007/bf00934564
https://doi.org/10.1016/j.ejor.2005.09.014
https://doi.org/10.1016/j.ejor.2005.09.014
https://doi.org/10.48550/ARXIV.2206.00001
https://doi.org/10.1007/978-1-4614-8957-3
https://doi.org/10.1007/978-1-4614-8957-3
https://doi.org/10.5120/ijais12-450375
https://doi.org/10.1016/j.ejor.2017.01.032
https://doi.org/10.1016/j.ejor.2017.01.032
https://doi.org/10.1016/j.ejor.2006.12.054
https://doi.org/10.1287/ijoc.1090.0342
https://doi.org/10.1287/ijoc.1090.0342
https://doi.org/10.1016/0012-365X(88)90149-5
https://doi.org/10.1016/0012-365X(88)90149-5
https://doi.org/10.4018/jamc.2011100104

Chapter 6 Bibliography

Ruzika, S. and H. Hamacher (2009). “A survey on multiple objective minimum span-
ning tree problems”. In: Algorithmics. Ed. by J. Lerner, D. Wagner, and K. A. Zweig.
Vol. 5515/2009. Lecture Notes in Computer Science. Springer Berlin/Heidelberg, pp. 104–
116. doi: 10.1007/978-3-642-02094-0_6.

Ruzika, S. (2009). “A linear-time algorithm for the inary bicriteria spanning tree problem”.
Presented at 23rd european conference on operational research (EURO XXIII). url:
https://www.euro-online.org/media_site/reports/EURO23_AB.pdf.

Sauvanet, G. and E. Néron (2010). “Search for the best compromise solution on multiob-
jective shortest path problem”. In: Electron. Notes Discrete Math. 36, pp. 615–622.
doi: 10.1016/j.endm.2010.05.078.

Sawaragi, Y., H. Nakayama, and T. Tanino (1985). Theory of Multiobjective Optimization.
Vol. 176. Mathematics in Science and Engineering. Elsevier Science. 322 pp. url:
https://www.ebook.de/de/product/15181299/theory_of_multiobjective_

optimization.html.
Schnepper, T., K. Klamroth, J. Puerto, and M. Stiglmayr (2021). “A local analysis to de-

termine all optimal solutions of p-k-max location problems on networks”. In: Discrete
Applied Mathematics 296, pp. 217–234. doi: 10.1016/j.dam.2020.05.013.

Schrijver, A. (2003). Combinatorial Optimization. Springer Berlin Heidelberg.
Schrijver, A. (2017). A Course in Combinatorial Optimization. url: https://homepages.

cwi.nl/~lex/files/dict.pdf.
Schulze, B. (Jan. 2017). “New Perspectives on Multi-Objective Knapsack Problems”. PhD

thesis. Bergische Universität Wuppertal.
Schäfer, L. E., T. Dietz, M. Barbati, J. R. Figueira, S. Greco, and S. Ruzika (2021). “The

binary knapsack problem with qualitative levels”. In: European Journal of Operational
Research 289.2, pp. 508–514. doi: 10.1016/j.ejor.2020.07.040.

Schäfer, L. E., T. Dietz, N. Fröhlich, S. Ruzika, and J. R. Figueira (2020). “Shortest paths
with ordinal weights”. In: European Journal of Operational Research 280.3, pp. 1160–
1170. doi: 10.1016/j.ejor.2019.08.008.

Seipp, F. (2013). “On Adjacency, Cardinality, and Partial Dominance in Discrete Multiple
Ob- jective Optimization”. PhD thesis. TU Kaiserslautern.

Serafini, P. (1987). “Some considerations about computational complexity for multi ob-
jective combinatorial problems”. In: Recent Advances and Historical Development of
Vector Optimization. Ed. by J. Jahn and W. Krabs. Vol. 294. Lecture Notes in Eco-
nomics and Mathematical Systems. Springer, pp. 222–232. doi: 10.1007/978-3-642-
46618-2.

Shioura, A., A. Tamura, and T. Uno (1997). “An Optimal Algorithm for Scanning All
Spanning Trees of Undirected Graphs”. In: SIAM Journal on Computing 26.3, pp. 678–
692. doi: 10.1137/s0097539794270881.

Sitarz, S. (2013). “The medal points’ incenter for rankings in sport”. In: Applied Mathe-
matics Letters 26.4, pp. 408–412. doi: 10.1016/j.aml.2012.10.014.

Srinivas, M. A. (1995). “Matroid optimization with generalized constraints”. In: Discrete
Applied Mathematics 63, pp. 161–174. doi: 10.1016/0166-218X(94)00031-8.

Stanley, R. P. (2013). Algebraic Combinatorics. Springer New York. doi: 10.1007/978-
1-4614-6998-8.

150

https://doi.org/10.1007/978-3-642-02094-0_6
https://www.euro-online.org/media_site/reports/EURO23_AB.pdf
https://doi.org/10.1016/j.endm.2010.05.078
https://www.ebook.de/de/product/15181299/theory_of_multiobjective_optimization.html
https://www.ebook.de/de/product/15181299/theory_of_multiobjective_optimization.html
https://doi.org/10.1016/j.dam.2020.05.013
https://homepages.cwi.nl/~lex/files/dict.pdf
https://homepages.cwi.nl/~lex/files/dict.pdf
https://doi.org/10.1016/j.ejor.2020.07.040
https://doi.org/10.1016/j.ejor.2019.08.008
https://doi.org/10.1007/978-3-642-46618-2
https://doi.org/10.1007/978-3-642-46618-2
https://doi.org/10.1137/s0097539794270881
https://doi.org/10.1016/j.aml.2012.10.014
https://doi.org/10.1016/0166-218X(94)00031-8
https://doi.org/10.1007/978-1-4614-6998-8
https://doi.org/10.1007/978-1-4614-6998-8

Steuer, R. E. and E.-U. Choo (1983). “An interactive weighted Tchebycheff procedure for
multiple objective programming”. In: Mathematical Programming 26.3, pp. 326–344.
doi: 10.1007/bf02591870.

Stidsen, T., K. A. Andersen, and B. Dammann (2014). “A Branch and Bound Algorithm
for a Class of Biobjective Mixed Integer Programs”. In: Management Science 60.4,
pp. 1009–1032. doi: 10.1287/mnsc.2013.1802.

Tamby, S. and D. Vanderpooten (2021). “Enumeration of the Nondominated Set of Mul-
tiobjective Discrete Optimization Problems”. In: INFORMS Journal on Computing
33.1, pp. 72–85. doi: 10.1287/ijoc.2020.0953.

Tammer, C. and A. Göpfert (2003). “Theory of Vector Optimization”. In:Multiple Criteria
Optimization: State of the Art Annotated Bibliographic Surveys. Springer US, pp. 1–
70. doi: 10.1007/0-306-48107-3_1.

Verma, S., M. Pant, and V. Snasel (2021). “A Comprehensive Review on NSGA-II for
Multi-Objective Combinatorial Optimization Problems”. In: IEEE Access 9, pp. 57757–
57791. doi: 10.1109/access.2021.3070634.

Villarreal, B. and M. H. Karwan (1981). “Multicriteria integer programming: A (hy-
brid) dynamic programming recursive approach”. In:Mathematical Programming 21.1,
pp. 204–223. doi: 10.1007/bf01584241.

Yuan, J. and Y. Li (2021). “Solving binary multi-objective knapsack problems with novel
greedy strategy”. In: Memetic Computing 13.4, pp. 447–458. doi: 10.1007/s12293-
021-00344-7.

Zhang, C. W. and H. L. Ong (2007). “An efficient solution to biobjective generalized
assignment problem”. In: Advances in Engineering Software 38.1, pp. 50–58. doi:
10.1016/j.advengsoft.2006.06.003.

Zhou, G. and M. Gen (1999). “Genetic algorithm approach on multi-criteria minimum
spanning tree problem”. In: European Journal of Operational Research 114, pp. 141–
152. doi: 10.1016/S0377-2217(98)00016-2.

Ziegler, G. M. (1995). Lectures on Polytopes. Springer New York. doi: 10.1007/978-1-
4613-8431-1.

151

https://doi.org/10.1007/bf02591870
https://doi.org/10.1287/mnsc.2013.1802
https://doi.org/10.1287/ijoc.2020.0953
https://doi.org/10.1007/0-306-48107-3_1
https://doi.org/10.1109/access.2021.3070634
https://doi.org/10.1007/bf01584241
https://doi.org/10.1007/s12293-021-00344-7
https://doi.org/10.1007/s12293-021-00344-7
https://doi.org/10.1016/j.advengsoft.2006.06.003
https://doi.org/10.1016/S0377-2217(98)00016-2
https://doi.org/10.1007/978-1-4613-8431-1
https://doi.org/10.1007/978-1-4613-8431-1

153

Chapter A Comic: Ordinal Optimization

A. A Story About Ordinal Optimization
Through Multi-objective Reformulation

Ordinal Optimization Through Multiobjective
Reformulations

Julia Sudho�, Kathrin Klamroth and Michael Stiglmayr
University of Wuppertal

School of Mathematics und Natural Sciences
Optimization Group

DOI of the Preprint: 10.48550/ARXIV.2204.02003
Financially supported by Deutsche Forschungsgemeinschaft

project number KL 1076/11-1

This comic was presented at the interna-
tional conference Multicriteria Decision
Making (MCDM) 2022. The slides are
the same as presented on the conference,
with some minor corrections. The pre-
sentation is based on Klamroth et al.,
2022b.

Square-Village Square-City Square-Town Square-City Chaos-City

Once upon a time...

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 1/40

Once upon a time, in a distant country
there lived a ...

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 2/40

Maxi
Mini I

03 ß
6WO 0

... little girl named Mini together with
her father Maxi.

154

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 3/40

ÄFFT

t.IE 7
ÄEEIIEEIEIIEIEIEIEIEIEEEE'IE

They lived in Square-Village, a tiny town
with streets of equal length. Our story
begins at this peaceful place, but later
on we will also visit Square-City, make a
short trip to Square-Town to finally get
to Chaos-City, a very lively place full of
adventure. But let us start at Square-
Village and let’s see what Mini and Maxi
are doing.

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 4/40

Square

VillagetiiIEEEEiIi
i
E safe Eneutral Edangerous

Safest path from home to school

Mini walked to her dad Maxi and said:
“Dad, next Monday I will go to sec-
ondary school at the other side of the
village. I would like to discuss which
path to school is the safest. Towards this
end, I gave every street a color, accord-
ing to their safety. Safe streets, like the
shopping mall or the way through the
park, are colored in green, neutral streets
are colored in orange and the dangerous
street is colored in red.”
Maxi answered surprised: “You are very
well prepared.”

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 5/40

EEi.EE
Ä

IE

O

v0

Mini replied: “Thank you. I would like
to choose a path with many green edges,
because safe streets are often very beau-
tiful. In the shopping mall I can look at
all the nice things in the shop-windows.
In the park I can smell the flowers and
dance in the sun! If it is necessary, I
don‘t mind to take an orange or red
street.”
Maxi answered shocked: “No way! I
don‘t want you to take red streets! You
will get hurt or maybe you even die! I
don‘t mind whether you take green or
orange streets, but you should avoid red
streets!”

155

Chapter A Comic: Ordinal Optimization

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 6/40

Way through park

je
F III

f

Mini suggested: “Well, lets try to find
the best solution by giving the different
categories numerical values. Let‘s simply
give green edges the value one, orange
edges the value 2 and red edges the value
3. Hmmm, I could take this way through
the park. This would have the numerical
value 2 + 2 + 1 + 3 = 8.”

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 7/40

Why don't you takeTIEF_
Ö

TOI Valueitt3G

ggy

Great id

p

oo OO

Maxi wondered: “That‘s a long path,
why don‘t you go through the shopping
street?”
Mini agreed: “Yes, that is a great idea.
This path has a numerical value of 1 +
3 = 4!”

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 8/40

Why don't you take
the path around the
pond

OI

Dii

Maxi complained: “I still don‘t like this
path. It contains a red street! I think
you should take the road around the
pond.”
Mini disagreed: “But this path has nu-
merical value 1 + 1 + 2 + 2 = 6 which is
worse than 4!”

156

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 9/40

You choose the wrong
numerical values

But it is Longerios
D

oO

Maxi explained: “I think you choose the
wrong numerical values. I would assign
the value 1 to the green edges, the value
2 to the orange edges and the value 10 to
the red edges! Then your path has the
value 11 and my path has value 6.”
Mini complained: “But it is longer and
contains two orange edges – this can be
even more dangerous than one red edge!”

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 10/40

Äj

ä

o o
O

o o

Suddenly a creature appeared and said:
“Please don‘t argue!”
Maxi wondered: “Who are you? What
do you want?”
The creature answered: “I am the good
math fairy and I hate disputes. I think I
can help you.”
Maxi asked: “What do you suggest?”

157

Chapter A Comic: Ordinal Optimization

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 11/40

iordinallyminij.ESXE 2 with a discrete sets

G n na with na ne

ÖFTER.se
pathsfrom

oftoo FYEE.tk

The fairy explained: “You need the con-
cept of ordinal optimality. Your problem
can be formally described as to ordinally
minimize o(x) with x ∈ X. Here, X is a
subset of the powerset of a discrete set S.
Furthermore, we have a set C of K cate-
gories which can be strictly ordered.”
Mini stated: “This means in our case
S contains all streets of Square-Village
and X contains all paths from my home
to the school. A category is green dot-
ted which is strictly preferred over or-
ange dashed which is strictly preferred
over the category red solid. Is that cor-
rect?”
The fairy answered: “Yes, you are right.
Now, we have a function o that assigns a
category to every element of S. You have
done this already, as you gave every edge
a color. The objective function o(x) is a
vector which contains one component for
every element of the solution, that spec-
ifies the category of the element. The
order of the components of the vector o
is not important, as we will see later.”

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 12/40

Numerical representation
U C Rt IN Ulm for is
VE setof all numerical representations

Value of apath x es en

G En uCole

uG Eu y Yu eV and

nigin
Jo EU v x Fly

Luca E Schäferet al ThebinaryknapsackproblemwithqualitativeLevels4 g In EuropeanJournalofOperationalResearch 289.2 20211pp508514Dot10.10161ejor2020.07.040

The fairy explained further: “To com-
pare the quality of the paths you already
used numerical representations, which
means that you assigned numerical val-
ues in increasing order to the categories.
Then, we can calculate the value of a
path by addition of the numerical values
of its edges, like you have done it already.
Now, we can say that a path x ordinally
dominates a path y, if for all numeri-
cal representations the value of path x is
smaller or equal than the value of path
y and there exists at least one numeri-
cal representation such that the value of
path x is strictly better than the value
of path y. This concept was first intro-
duced for knapsack problems by Schäfer
et al., 2021.”

158

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 13/40

Ä
because

OI
EgÖEEE

Mini asked: “I see, so we can say that the
path through the park is ordinally domi-
nated by the path through the shopping
mall with the red edge, because the path
has just two additional orange edges and
is hence worse for every numerical repre-
sentation?”
The fairy rejoiced: “Yes, correct!”
Mini wondered: “But which path is op-
timal, the path with the red edge or the
one around the pond?”

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 14/40

XEX is an ordinalefficientpath
HyeX y

D
wo

The fairy answered: “Well, in this con-
text we talk about efficiency instead of
optimality, because there can be more
than one optimal solution. We call a
path efficient, if there is no other path
that dominates it. Here you can see all
possible paths without loops from your
home to the school in your village and
the dominance relations.”

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 15/40

FEE
v0 00

Maxi wondered: “There is more than
one optimal solution?!”
The fairy explained: “Yes, you found all
efficient solutions for your village.”
Mini cheered: “Brilliant! I can vary be-
tween both solutions – this means the
way to school does not get boring!”

159

Chapter A Comic: Ordinal Optimization

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 16/40

ÄIE

t.EE 7
Ä

i i

i
ä

Ü

Mini and Maxi were reconciled as they
were both correct. They thanked the
fairy and the fairy offered to help them
again, whenever they would need it.
Mini enjoyed to vary between both paths
to school and she came home safely every
day. So they lived in harmony for a few
years. But then Maxi got a job-offer in
Square-City. Mini and Maxi decided to
move to Square-City and they were lucky
and quickly found a nice apartment.

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 17/40

s 99
f

Ö

i
E

Ö

OV

A day before Mini had to go to the new
school, she asked her dad: “Which path
is the safest one to school now?”
Maxi had no idea and replied: “That’s
a good question. I don’t know. Square-
City is so big. I don’t want to compare
all possible paths by hand to calculate
the safest one. Let us ask the good math
fairy for help.”
As soon as he finished the last sentence,
the good math fairy appeared and asked:
“How may I help you?”
Maxi replied: “Fairy, do you know a way
to compute ordinally safest paths effi-
ciently?”

160

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 18/40

FI c X EI c G eexiolel n.gl

alt f ICH CH

a IH EI EI ETÄTIGE

iffy

Ciu numberofedges of category

wo

The fairy explained: “Well, we can refor-
mulate the problem. To make the idea
clear, we still consider Square-Village.
We can identify every edge by a vec-
tor which has the dimension of the num-
ber of categories. Every component is
zero except for the entry for the cate-
gory of the corresponding edge, which is
one. For a path we take the sum over
all those vectors and hence get a vector
c that counts, in its i-th component, the
number of edges in the i-th category. For
example, the vector c would be (1, 0, 1)⊤

for the path through the shopping mall
with the red edge, (1, 2, 1)⊤ for the path
through the park and (2, 2, 0)⊤ for the
one around the pond. The path which
contains only orange edges has the vec-
tor (0, 4, 0)⊤.

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 19/40

yeX x tail dominates y x y

Ä
E

i

TOI

üü I
UN

wo

Now we can introduce tail-dominance.
We say a path y is tail-dominated by a
path x if

K∑
j=i

cj(x) ≤
K∑
j=i

cj(y) for i = 1, . . . ,K

and there exists i∗ ∈ {1, . . . ,K} such
that

∑K
j=i∗ cj(x) ≤

∑K
j=i∗ cj(y). We call

it “tail-dominance” as we take the sum
over the last components of the vector c,
starting with component i.”
Mini realized: “Even with this dom-
inance concept the path through the
shopping mall tail-dominates the path
through the park. Because, if i = 1,
1 + 0 + 1 < 1 + 2 + 1, for i = 2 we get
0+1 < 2+1, and in the last component
both vectors have the value 1.”
The fairy answered: “Yes and that holds
in general, hence x ordinally dominates y
if and only if x tail-dominates y. The im-
portant result is that ordinal dominance
and tail dominance are equivalent. I will
quickly prove this result. Let’s assume
...”

161

Chapter A Comic: Ordinal Optimization

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 20/40

Ä
U

gg
iii

c

UN

Mini interrupted: “Wait! Do we have to
write a test about this?”
The fairy is confused and hesitantly an-
swered: “No... However, we assume that
a path x ordinally dominates a path y.

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 21/40

t

Eino o o jz

Then... - Are you listening?”
Mini and Maxi murmured: “Mmmm”

162

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 22/40

My EIG EITAN for all 1 k c c

di x di y for all ist k

dkltdlylpgjgitnaci.am

og

it II

wo

The fairy said: “I see... Let’s skip this
part. We just use the result that ordi-
nal and tail dominance are equivalent.
Now we define a new vector d, where
di(x) =

∑K
j=i c(x). Hence, the i-th com-

ponent of d tells us the number of el-
ements in category ηi or worse. Then
obviously, tail dominance on c is equiv-
alent to Pareto dominance on d. Pareto
dominance means that d(x) dominates
d(y) if d(x) is in each component smaller
or equal to d(y) and it has a strictly
smaller value in at least one component.
We consider Square Village to illustrate
this concept. If we identify the green
edges with the vector (1, 0, 0)⊤ the or-
ange edge with (1, 1, 0)⊤ and the red one
with (1, 1, 1)⊤, we can again compute the
outcome vector d of a path by taking the
sum over the vectors of the edges. For
example for the first path we compute
(1, 0, 0)⊤ + (1, 1, 1)⊤ = (2, 1, 1)⊤ which
Pareto dominates the vector (4, 3, 1)⊤ of
the second path, as expected. Further-
more, we notice that the first component
of d represents the number of edges in
the path.

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 23/40

C ER is a come And EC for all del LE R L 0
A come is called

äiüü

E IR is a polyhedral cone

ftp

T

wo

The tail dominance and Pareto domi-
nance can be visualized by their corre-
sponding ordering cones. We quickly re-
call the definition and some properties
of cones. A cone is a subset C of RK ,
if and only if it holds that αd ∈ C for
all vectors d ∈ C and all α > 0. The
cone is called convex, if it is a convex set
and it is called pointed if −d /∈ C for all
vectors d ∈ C \ {0}. A cone is called a
polyhedral cone, if it is induced by an
m×K matrix A. This means that every
K-dimensional vector y is in the cone if
and only if Ay ≧ 0.

163

Chapter A Comic: Ordinal Optimization

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 24/40

and addition then

ER y y 4142 ER is a cone
OECp R is reflexive
ER is pointed R is antisymmetric

Cp is convex R is transitive

C i EYZY.IE IE

j
S paranoider

pointed and convex cone that
does not contain O

Luca E Schäferet al ThebinaryknapsackproblemwithqualitativeLevels4 g In EuropeanJournalofOperationalResearch 289.2 20211pp508514Dot10.10161ejor2020.07.040

There exists a close connection between
binary relations and cones. Every bi-
nary relation on the real vector space
that is compatible with scalar multipli-
cation and addition induces a cone. The
tail dominance relation is a strict par-
tial order, see Schäfer et al., 2021, and
compatible with addition. Hence, we can
conclude that as the relation is antisym-
metric, the cone induced by this relation
is pointed. Because the relation is tran-
sitive, the cone is convex. As the relation
is not reflexive, the cone does not contain
zero.

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 25/40

Pareto cone IRI YERK y 0 y 0

Ä
cone induced by the identitymatrix7

Theoreme cone Aa 0 Cee with

a IseA
ÜI

öde
wo

The closure of the Pareto cone is a poly-
hedral cone, which is induced by the
identity matrix. The Pareto cone can
be equivalently seen as the cone induced
by the componentwise relation. Simi-
larly, the ordinal cone induced by the
relation of tail dominance can be equiva-
lently seen as a polyhedral cone without
the zero vector. The corresponding poly-
hedral cone is induced by aK×K matrix
A⩽t with ones on the diagonal as well as
the upper triangle and zeros otherwise.

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 26/40

Tail Dominance Pareto Dominance

3D

in

D

wo

Here we see the Pareto cone and the or-
dinal cone for two and three categories.
Every point inside the cones is domi-
nated by the origin. As you see, the ordi-
nal cone includes the Pareto cone. Note
that tail dominance is used for the vec-
tor c while Pareto dominance is used for
the vector d.

164

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 27/40

Äh FÖÖÖR cone induced by a strict binary relationR

ini

EIIE

dürr

wo

Tail and Pareto dominance can be equiv-
alently formulated with their orddering
cones. Hence, I explain the concept of
optimality for general cones. Assume
a set Y of possible outcome vectors of
an optimization problem is given and we
consider a ordering cone C, which is in-
duced by a binary relation R. Then the
non-dominated set of Y is defined by all
vectors ŷ ∈ Y such that (ŷ−CR)∩Y = ∅.
And we say a vector y1 dominates a vec-
tor y2 if (y1, y2) ∈ R. This picture visu-
alizes the definition of cone dominance.
The point y∗ is non-dominated, while ŷ
is dominated by every point in the dark
green area.

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 28/40

Ordinal ConeOptimizationProblem

mince CG COP
s t XEX

Transformed Pareto ConeOptimizationProblem

m.jp q

air D
wo

Now, we are able to formulate the or-
dinal cone optimization problem (COP),
which minimizes the vector c(x) w.r.t.
the ordinal cone such that x ∈ X. Fur-
thermore, we get the transformed Pareto
cone optimization problem (TOP) which
minimizes the vector d such that x ∈ X.
The vector d can be computed by mul-
tiplying the vector c with the matrix
A⩽t , which induces the ordinal cone. We
show, that those problems are equiva-
lent.

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 29/40

i NlY cone AI EN A Y IRI

Corollary

OP OP and TOP are the same

air D
wo

Towards this end, we refer to a well-
known result, which says that

A ·N(Y, cone(A)) ⊆ N(A · Y,RK
≧)

for a general matrix A. If A has maxi-
mal rank, then the sets are equal. Ob-
viously the matrix A⩽t , which induces
the ordinal cone, has maximal rank and
hence the efficient solutions of the prob-
lems (COP) and (TOP) are equivalent.

165

Chapter A Comic: Ordinal Optimization

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 30/40

Non dominated outcome vectors

f al ä E d

D

ii

Wo

For example, we consider again Square-
Village. In this picture we see both non-
dominated outcome vectors of Square-
Village and their dominance cones, re-
spectively. We look from the origin to
the positive orthant. We see the non-
dominated outcome vectors and the re-
gion, which is dominated by them.”

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 31/40

EEE.EE

YiEIEEE

ÄEEIIEEIEIIEIE'EIEEIIEEIIEITE
To show you another visualization of
dominance cones, we will leave Mini and
Maxi for a while and we make a trip to
Square-Town.

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 32/40

square

TowniE.EE
E 9

10 efficientpaths

Here we see a map from Square-
Town. Imagine, we would like to find
all ordinal-efficient paths from s to t.
Square-Town has 10 efficient paths from
s to t.

166

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 33/40

RabenFreese DreidimensionaleRepräsentationvonordinalenundklassischenOrdnungskegeln
BachelorThesis

Rabea Freese, a bachelor student from
the University of Wuppertal, printed the
corresponding dominated areas in 3D for
her Bachelor Thesis, see Freese, 2022.

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 34/40

Square City

iE

HEFTET_D
OO

Let’s go back to Mini, Maxi and the
fairy. Maxi seemed to be confused and
complained: “Fairy, I like your visualiza-
tions, but I still don’t understand how
this can help me to find all safe paths
from home to school in Square-City.”

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 35/40

St REX

mince Cx

St xEX
min da
St EX

i

iii
Iiii.it1 i

PMdelasCasaset al AnimprovedMultiobjective
ShortestPathAlgorithm

bös.BY E9oB rch1sscoa

wo

The fairy explained: “Well, we trans-
formed our original problem into a multi-
objective shortest path problem with bi-
nary coefficients, which can be solved by
standard methods. For the shortest path
problem I would suggest the algorithm
from Martins, 1984 or the improved ver-
sion of it from Casas et al., 2021.”

167

Chapter A Comic: Ordinal Optimization

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 36/40

a

Öi
wo

O O

Maxi realized: “Great, that makes the
computation of the solutions possible.”
The fairy added: “Yes and I have even
more good news: You can apply this
strategy to all ordinal combinatorial op-
timization problems and not only to
shortest path problems.”

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 37/40

How can I compute a safest path
in Chaos City where the streets
have different lengths

GroU 8

v0

Mini asked: “That sounds good, but my
big dream is to move one day to Chaos-
City! There the streets have different
lengths, which I denoted next to the
edges. How can I compute a safest path
in this case?”

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 38/40

e es category o le eG length flehe 4

üüTITDi

vo

The fairy replied: “Well in this case, ev-
ery edge e has a category o(e) and a value
for the length l(e). Now, we identify ev-
ery edge e with a vector of the dimension
of the number of categories, which has
the value l(e) in the first o(e) entries and
zero otherwise. For example, consider a
path with a green edge with length 6, an
orange edge with length 4 and a red edge
with length 5. Hence, we get the vectors
(6, 0, 0)⊤, (4, 4, 0)⊤ and (5, 5, 5)⊤. The
path has the outcome vector (15, 9, 5)⊤.
This can be computed similarly for ev-
ery path. Note that the first component
of the resulting vector gives us the to-
tal length of the path. Again, the re-
sulting problem is a multi-objective op-
timization problem, which can be solved
by standard methods.”

168

Square-Village Square-City Square-Town Square-City Chaos-City

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 39/40

i

j

ä ö
j

U O

and they lived happily ever after

Mini smiled and said: “Thank you very
much for your help, fairy! Now we
are able to cope with many kinds of
ordinal problems by transforming them
into standard multi-objective optimiza-
tion problems.”
... and they lived happily ever after.

Square-Village Square-City Square-Town Square-City Chaos-City

Thank you for your attention!

J. Sudho�, Ordinal Optimization Through Multiobjective Reformulations 40/40

169

	Contents
	Introduction
	Basic Concepts and Notation
	Binary Relations and Cones
	Optimization Problems and Optimality Concepts
	Scalarizations
	Graphs
	Matroids
	Single-objective Matroid Optimization and Multi-objective Minimum Spanning Tree Problem
	Single-objective Shortest Path Problem
	Single-objective Matroid Intersection Problem
	Multi-objective Knapsack Problem
	Multi-objective Assignment Problem

	Bi-objective Matroid Optimization Problems with Binary Costs
	Problem Formulation
	Theoretical Results
	Efficient Swap Algorithm
	Numerical Results
	Conclusion and Further Ideas

	Single- and Multi-objective Matroid Optimization Problems with Ordinal Costs
	Single-objective Matroid Optimization with Ordinal Costs
	Bi-objective Matroid Optimization with Ordinal Costs
	Matroid Intersection Algorithm for Ordinal Constraints
	Multi-objective Matroid Optimization with Ordinal Costs
	Numerical Results
	Conclusion and Further Ideas

	Single- and Multi-objective Combinatorial Optimization Problems with Ordinal Costs
	Single-objective Combinatorial Optimization with Ordinal Costs
	Ordinal Optimality versus Pareto Optimality: An Interpretation based on Ordering Cones
	Solution Strategies
	Excursus: Olympic Medals and Ordinal Weight Space Decomposition
	Numerical Results
	Multi-objective Combinatorial Optimization with Ordinal Costs
	Conclusion and Further Ideas

	Conclusion and Further Ideas
	Bibliography
	A Story About Ordinal Optimization Through Multi-objective Reformulation

