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1 Introduction

Network theory, which is the study of graphs as a representation of the relations between
the objects of a complex system, has gained importance in many research areas in recent
years. The reason for this is that many real world problems are basically problems of
complex systems. Examples of such systems from different research areas, in particular
the networks formed by the interacting of their objects, are, for example, technological
networks (e.g., the internet), infrastructure networks (e.g., power grids, airports, or
roads), social networks (e.g., Facebook, Twitter, or Instagram), biological networks
(e.g., metabolic or brain networks), and financial networks.

Since the financial crisis of 2008, when network effects led to one of the worst global
economic crises to date, the techniques provided by network theory have also become
an integral part of economic research. In financial networks the focus is mainly on the
contribution that network analysis can make in order to assess, manage, or monitor
(systemic) risk in financial systems. An attempt is made to examine these systems
and their underlying network structures with regard to their stability or robustness.!
Financial systems that are frequently examined are, for example, banking markets,
(global) stock markets, or the cryptocurrency market. Analysing the systemic risk of
such markets is very important from both an investor and a policymaker perspective,
since major fluctuations can affect both investment decisions and regulatory actions,
respectively.

A particular network measure that is often associated with the robustness of a network
against exogenous shocks is assortative mizing or simply assortativity, cf. Newman
(2002). Assortativity is the tendency of one node to form a connection with another
that has a similar number of connections as itself. The most popular assortativity
measure is the assortativity coefficient, which has been originally proposed by Newman
(2002, 2003) first for unweighted and undirected networks, then for unweighted directed
networks. Piraveenan, Prokopenko, and Zomaya (2012) have refined the measure of
Newman (2003) so that a further differentiation of the assortativity structure in directed
networks is possible.

Assortativity is closely related to the epidemic threshold, which is a key figure in
mathematical epidemiology, indicating when an epidemic will persist, and when it will
become extinct, cf. Peng, Jin, and Shi (2010). The epidemic threshold is the criti-

cal ratio of the infection to cure rate beyond which epidemics emerge. When mod-

Sometimes also referred to as resilience.
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elling epidemics using networks it can be shown that the epidemic threshold is inversely
proportional to the largest eigenvalue of the adjacency matrix of the network (i.e., a
matrix that completely defines the network), see Boguna and Pastor-Satorras (2002),
Yang Wang, Chakrabarti, Chenxi Wang, and Faloutsos (2003) and Chakrabarti, Wang,
Wang, Leskovec, and Faloutsos (2008). The influence of the assortativity of a network
on the largest eigenvalue of its adjacency matrix or the epidemic threshold is studied
by Brede and Sinha (2005) and Scala and D’Agostino (2013). They find that networks,
which exhibit a high assortativity tend to have a lower epidemic threshold, and thus,
are less robust than networks, for which the assortativity is low (i.e., disassortative
networks).

In this context, it is also interesting to know which of the nodes (or vertices) or con-
nections (or edges) of a network are the most endangering on the one hand, and which
are the most protective ones on the other hand. This can help with developing efficient
strategies for both breaking up a network (e.g., with vaccination in disease spreading so-
cial networks) and protecting particularly vulnerable networks (e.g., financial networks
or technological networks, such as the Internet), cf. Newman (2002).

The assortativity coefficient, being a global measure, however, cannot provide answers
to those kinds of questions. There is a need for a local assortativity measure that
can either be verter based or edge based, and thus, identify those vertices or edges
that contribute most to the global assortativity structure of a network, respectively.
Local assortativity in undirected and directed yet unweighted networks has been studied
for example by Piraveenan, Prokopenko, and Zomaya (2008, 2009, 2010); Piraveenan
et al. (2012), Zhang, Cheng, and Zhang (2012) and Thedchanamoorthy, Piraveenan,
Kasthuriratna, and Senanayake (2014).

So far, as already pointed out by Noldus and van Mieghem (2015), assortativity in
weighted networks has been insufficiently studied, which is surprising as many real-world
networks exhibit weighted edges. Basically, every (interesting) financial network that we
are aware of is a weighted network, e.g., the above-mentioned banking or cryptocurrency
networks. Moreover, financial networks may be complete networks, by construction, for
which the unweighted assortativity coefficient cannot even be computed. That implies
that, so far, there is no straightforward way of analysing the robustness of (complete)
financial networks in terms of assortativity. There have been several attempts at gener-
alizing (global) assortativity for weighted networks, though, claiming the superiority of
one measure over the other. However, none of the measures has established itself as a
standard for weighted networks. We aim therefore at introducing a generalized assorta-
tivity coefficient that unifies previous definitions by nesting them as special cases, and
that is also applicable to complete networks, e.g., the financial networks just mentioned.

Although local assortativity has been widely studied, to the best of our knowledge,

there exists no definition of local assortativity for weighted networks at all, so far.
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We aim therefore at also closing this gap by introducing a generalized local assortativity
coefficient, which is flexible in the sense that it can be either vertex based or edge based.
After generalizing global and local assortativity, we then test our new coefficients and
demonstrate their usefulness by analysing the network underlying the cryptocurrency
market in terms of its robustness in order to assess its systemic risk.

In 2008, by publishing the white paper “Bitcoin: A Peer-to-Peer Electronic Cash
System” under the pseudonym Satoshi Nakamoto, an individual or group laid the foun-
dation of today’s cryptocurrency market, see Nakamoto (2008). By proposing a system
for electronic transactions that does not rely on trust, they introduced the first cryp-
tocurrency now known as Bitcoin. Moreover, they en passant popularized a technology
referred to as blockchain, on which also many of the newer cryptocurrencies are based
on. Already well before the Bitcoin price reached its all-time high above $67,500 in
November 2021 cryptocurrencies have attracted the attention of mainstream media and
their popularity has increased ever since.

As far back as 2018, it has been considered likely that Bitcoin and alternative
blockchain-based tokens emerge as their own asset class that may become an inter-
esting investment alternative and diversification instrument, cf. Berentsen and Schar
(2018). Back then, others have also studied the technology of blockchain and identified
its potential for financial inclusion, cf. Ohnesorge (2018). The term financial inclusion
refers to individuals and businesses having access to financial products and services
(e.g., transactions, payments, savings), c¢f. The World Bank Group (2022).

Meanwhile, in 2022, Forbes Advisor presents for the venturesome investors overviews
of the top cryptocurrencies together with guides on how to buy them on a regular
basis, see, e.g., Tretina (2022a, 2022b). Moreover, Bitcoin has been adopted as an
official currency in El Salvador and the Central African Republic, in 2021 and 2022,
respectively, cf. Aswad (2021) and Reuters (2022). The market of cryptocurrencies is
a $932B market that comprises approximately 10,000 active cryptocurrency projects.?
Thus, cryptocurrencies appear to be more than a fad, and one can no longer deny the
market’s increasing importance for the global economy. In this context, great interest is
taken in assessing the stability of the market, i.e., its systemic risk, as cryptocurrencies
are well known for their high volatility. We expect that the results of analysing the
cryptocurrency network will also be of relevance for other (financial) networks.

This work is structured therefore as follows: Chapter 2 briefly reviews essential net-
work foundations to facilitate the understanding of the subsequent derivations and ex-
planations. The reader who is already familiar with the basics of network theory may
skip this chapter and proceed directly to Chapter 3, where we propose a generalization
of the concept of assortativity by introducing our generalized assortativity coefficient.

We also provide procedures that allow for both precisely assessing and interpreting the

2Information sourced from coinmarketcap.com, current as of June 30, 2022.
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assortativity of weighted networks as well as its statistical significance. Finally, we
demonstrate the usefulness of our proposed generalized assortativity coefficient by in-
depth analysing the assortativity structure of several weighted real-world networks. An
abridged version of this chapter has already been published in Physica A: Statistical
Mechanics and its Applications, cf. U. Pigorsch and M. Sabek (2022).

In Chapter 4, we present an extension of local assortativity for weighted networks. By
unifying two approaches used in the literature, we are able to derive distinct measures
that allow us to determine the assortativeness of individual edges and vertices as well
as of entire components of a weighted network. We demonstrate the usefulness of these
measures by applying them to various theoretical and real-world networks. Along the
way, we also explain how to compute local assortativity profiles, which are informative
about the pattern of local assortativity either with respect to edge weight or vertex
strength.

Building on this foundation the robustness of the network structure of the cryptocur-
rency market is analysed in Chapter 5 by means of the previously extended global
and local assortativity measures. We first present in detail the method we have cho-
sen to estimate the underlying network structure based on cryptocurrency price data.
After analysing the robustness of the network, we present a method to determine its
community structure, as this provides additional information for risk assessment and
management.

Chapter 6 provides a summary of this work and points out interesting questions
for further research. An important empirical finding of this work is that the systemic
risk of the cryptocurrency market appears to be inversely related to the generalized
assortativity structure of its underlying network. This allows statements to be made on
the significance and severity of a potential crisis. Previously, this has not been possible

with the methods existing so far.



2 Basic Concepts of Network Analysis

“, any real system that can be described by means of a

The term network refers to
mathematical object called a graph.” Caldarelli (2007, p. 10). This chapter provides
an introduction into the foundations of network theory with focus on those concepts
that are most relevant for the understanding of the remainder of this thesis. Thus,
in Section 2.1 we present the very basics of graph theory. Important terms such as,
e.g., graphs, vertices, and edges are introduced and their notation defined. Further, we
give an example of a simple graph representation, such as the adjacency matrix, which
can be used to implement and analyse networks. Some properties of networks are
introduced, such as, e.g., paths, cycles and components, that help with characterizing
their structural features. In addition, a brief overview of some special networks, such as,
e.g., trees, stars, and complete networks is given. Finally, we introduce the concept of
degree and degree centrality as this is the basis for the assortativity measures discussed
in the subsequent chapters. Section 2.2 introduces two basic random graph models, as

extensions thereof will be analysed in Chapter 4.

2.1 Graph Representation of Networks

The following introduction to the terminology of graph theory and its notation is a
synthesis of the following resources: Gibbons and Gibbons (1999), Bollobas (2008) and
Diestel (2018) are excellent textbooks on (algorithmic) graph theory. Moreover, Harary,
Norman, and Cartwright (1966) and Wasserman and Faust (1994) are classics of social
network analysis, whereas Jackson (2011), Barabasi (2016) and Newman (2018) give a

more modern, state of the art, view into the field of network science.

2.1.1 Graphs, Vertices, and Edges

A graph G = (V,E) is an ordered pair, where V' = {v1,v9,...,v,} is a finite set of
elements, and E = {ej,ea,...,ep,} is a set of 2—subsets of V. The graph G = (V, E)
is then said to be a graph on the verter set V with the edge set E. In order to refer
to the vertex set or edge set of a graph, V(G) and E(G) are used, respectively. For
example, the vertex set V(H) of a graph H = (W, F) is W and its edge set E(H) is F.
For convenience, the distinction between a graph and its vertex set or edge set will not
be very strict, likewise, it may be appropriate to state that a vertex v € G or an edge

e € G instead of v € V(G) or e € E(G), respectively.
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The cardinality of the vertex set |V (G)| determines the number of vertices of a graph
which is called order of a graph. The order of a graph is often denoted by n. The
cardinality of the edge set |E(G)| determines the number of edges in a graph which is
called size of a graph. The size of a graph is often denoted by m. For example, the
graph shown in Figure 2.1a has order n = 7 and its size is m = 5. An arbitrary graph
of order n and size m is denoted by G(n,m).

Sometimes, vertices have labels, so they can be distinguished. Typically, integer labels
1,...,n as in Figure 2.1a are used. In minimal examples sometimes character labels
are used, e.g., upper case or lower case letters. The labelling is arbitrary but unique,
thus, it does not matter which vertex gets which label as long as the label can be used
to unambiguously refer to a specific vertex.

Let u, v be vertices, the edge e = {u,v} that joins these vertices is sometimes, more
conveniently, denoted by uv. The vertices u and v are end vertices or ends of the edge
e, moreover, v and v are said to be incident with e. Furthermore, u and v are adjacent,
or neighbouring, vertices of a graph. Let w be another vertex, if e; = uv and e = uw,
then e; and ey are adjacent edges of a graph, because they share a common end, i.e.,
vertex u.

If each edge has a direction associated to it, i.e., the ordering of its end vertices
becomes relevant, the graph is called a directed graph. To distinguish directed from
undirected edges parentheses are used rather than braces, thus, e = (u,v) is an edge
pointing from u to v. In undirected graphs, uv and vu denote the same edge, whereas
in directed graphs these edges are distinct, i.e., uv # vu.

Usually, a graph is depicted by drawing points for the vertices and connecting them
with lines, if they form an edge. Figure 2.1a shows an example of a graph on seven
vertices with five edges. Similarly to an undirected graph, a directed graph is depicted
by drawing points for the vertices, but instead of connecting the vertices with lines
they are connected by arrows, if they form an edge. Figure 2.1b shows an example of a
directed graph on seven vertices and with six directed edges. The arrows indicate the
direction for which a traversal of the edges is possible. For example, vertex 1 can be
reached from 5 by using the edge (5, 1), but starting from 1 vertex 5 cannot be reached.

An edge leading from a vertex to itself is called a self-edge or self-loop or simply a
loop. If there is more than one edge running between two vertices, and thus, an edge
cannot be unambiguously identified by only specifying its end vertices, then, those edges
are collectively referred to as parallel edges or multiedges. Graphs that neither contain
loops nor multiedges are called simple graphs, whereas graphs that contain multiedges
are called multigraphs. However, no particular term is assigned to graphs that contain
loops. In the following we focus on simple graphs.

In a simple graph G(n,m), each of the n vertices can be joined to at most (n — 1)

other vertices by an edge, resulting in a maximum size of muyax = (n’_‘g)! =n(n-—1),
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(a) Undirected graph. (b) Directed graph.

Figure 2.1. Undirected and directed graphs. Both graphs have the same set
of vertices V' = {1,...,7}. The edge set of the undirected graph is given by F =
{{1,2},{1,7},{2,3},{2,5}, {5, 7}}, whereas for the directed graph it is given by E =
{(1,2),(1,3),(2,3),(2,4),(3,4), (5, 1)}

if G is directed. For undirected graphs, the number of possible edges halves, since uv

g) = n(n;l)'

The proportion of actual number of edges present to the maximum number of edges

and vu denote the same edge between vertices u and v, and thus mpyax = (

possible is called density of a graph. If this proportion is high, the graph is called dense,
whereas, if it is low, i.e., most of the edges that could exist, are not present, the graph
is referred to as sparse.

The pair (G, f) is called weighted graph, where G = (V, E) is a graph, and the function
f : E(G) = R is a weight function, that assigns a weight to each edge of the graph.
Depending on the application, the edge weights can have a different meaning, and may
refer to either distances, costs, or throughputs or the like. For example, Figure 2.2 shows
a weighted graph constructed from network data on online discussion groups collected
by Beck et al. (2003). In this network the eight vertices a,b,...,h represent members
of a group, and the edges indicate communication between group members. The total
number of messages sent and received between group members is represented by the
edge weights, cf. Boyd, Fitzgerald, and Beck (2006).

There are several types of data structures available which can be used to represent

graphs. A simple representation of a graph G is given by a (n X n) matrix A, which
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Figure 2.2. Weighted graph. The data has been collected by Beck et al. (2003,
group 1). Vertices with labels a,b,...,h in the graph correspond to members of the
group, and edges indicate communication between group members, where darker edges
indicate a higher rate of communication. The edge labels correspond to the total number
of messages sent and received between group members.

is called adjacency matriz, and of which its elements a;; = 1 if vertices ¢ and j are

connected, and a;; = 0 otherwise, and thus, the adjacency matrix is defined as:

air @12 ... Qin
as a2 1if (ij) € E(G), Vi,j € V(Q)
A= ] . |, wherea;; =
: : : 0 otherwise.
anl co.o Qpn

If the graph is simple, then there are no loops and the diagonal elements of the adjacency
matrix of G are zero. If the graph is undirected, then A is a symmetric matrix, i.e.,
a;; = aj;. For weighted graphs it is possible to give a weighted adjacency matriz. The
entries of the (n x n) matrix W correspond to the weights of the edges, i.e., w;; = f(ij),
if there is an edge between vertex ¢ and j, and w;; = 0 if there is no edge, therefore,

the weighted adjacency matrix is defined as:

w1l W12 ... Win
w21 W22 flij) if (ij) € E(G), ¥Yi,j € V(G)
W = ] . ) ., where w;; =
: : : 0 otherwise.
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Similar to A, the diagonal elements of W are zero, if the weighted graph is simple, and
W is symmetric for undirected weighted graphs, i.e., w;; = wj;. For example, for the
graph in Figure 2.2, its adjacency matrix A as well as its weighted adjacency matrix

W are given by the following two matrices:

01111101 04 77 2101
10111101 102 4 4 2 01
11011101 4 2 07 8105
A 11101101 ’ W— 4 5406 2 0 2
11110101 1576 0105
10111011 10112011
11010001 1304000 3
11111100 132433200

When choosing a graph representation, there exist a trade-off between the time com-
plexity and the space complexity of a particular representation. Time complexity refers
to the mapping of the input size n to the number of elementary steps needed by an al-
gorithm to compute a result. In contrast, space complexity refers to the mapping of the
input size to the number of storage locations. For adjacency matrices, some operations
require only constant time (e.g., adding or deleting an edge) by accessing the respec-
tive matrix element. However, since the matrix has n? elements, its space complexity
is quadratic. For trading off time complexity against space complezity, when solving
algorithmic problems on graphs, other more space-efficient graph representations are

available, e.g., adjacency lists, cf. Magnani and Marzolla (2014).

2.1.2 Directed Paths and Cycles

A path P, is a graph of order n, of which vertices can be arranged in a sequence
v1,...,U, such that the edge set is F = {vv;41|i =1,...,n — 1}. A path starts at its
initial vertex and ends at its terminal vertex, where the length of a path is the number
of edges it consists of. A path from vertex uw to v it is called a uv-path. Paths may
also be denoted in terms of their lengths, hence a path from vertex u to v of length
k is denoted by uiw, whereas a path of unknown length between the two vertices is
denoted by u—suv.

A cycle C), is a graph of order n, of which vertices can be arranged in a cyclic sequence
(v1,v2,v3,...,v,) such that the edge set is £ = {vviy1 |t =1,...,n—1}U{v1v,}. Thus,
a cycle is a path, of which initial and terminal vertices are identified. For the order of
a cycle it holds that n > 3, otherwise if n = 1 the cycle is a loop and if n = 2 it is a
multiedge both of which are not allowed in simple graphs. Moreover, a cycle of order

n = 3 is called triangle.
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2.1.3 Components and Connected Subgraphs

A graph G’ is a subgraph of a graph G if the vertex set of G’ is contained in the vertex
set of G, i.e., V(G') C V(G), and if the edge set of G’ is contained in the edge set of
G, i.e., E(G") C E(G). Moreover, if G’ # G, then F is a proper subgraph of G. In
other words, a proper subgraph of G is obtained by removing both or either a vertex
(or set of vertices) or an edge (or set of edges) from G. If G’ is a subgraph of G, then
this is denoted by G’ C G and G’ is said to be contained in G, or simply, G contains
G’. A subgraph G’ of G is called a spanning subgraph if the vertex sets of the two
graphs are equal, i.e., V(G') = V(G). Thus, a spanning subgraph G’ is obtained from
G by performing only edge deletions. A subgraph G’ of G is called induced by a vertex
set V(@) if its edge set contains all the edges with both end vertices in V(G’) and is
denoted by G’ := G[V(G')]. An induced subgraph G’ is obtained by removing vertices
from G together with their incident edges.

The removal of a set of edges F' from a graph G is denoted by G — F := (V,E \ F),
whereas adding the edges in F' is denoted by G + F := (V, EU F). If the set F' = {e}
consists of a single edge then, for simplicity, removing or adding this edge is denoted by
G — e or G + e rather than G — {e} or G + {e}, respectively. Similarly, the removal of a
set of vertices U from a graph G is denoted by G — U := G[V \ U]. As before, removing
or adding a single vertex v from G is denoted by G — v or G + v rather than G — {v}
or G + {v}, respectively.

The shortest path from vertex u to v in a graph G denotes the distance between the
two vertices, i.e., distg(u,v) = min(k | uiw) When there is no path u—sw then, by
convention, the distance between two vertices u and w is distg(u, w) = co. In directed
graphs distances are not necessarily symmetrical since the ordering of the vertex pairs
is significant, therefore distg(u,v) might differ from distg(v,u). For example, consider
vertices 5 and 4 in Figure 2.1b, then distg(5,4) = 3 but distg(4,5) = co. In case of
a weighted graph, If there is an edge uv € E(G), then f(uv) denotes the length of
uv, moreover, for any subgraph H C G the weight of H is the sum of the weights of
its edges, i.e., f(H) = X .cpq) f(€). Let P C G be a path, then f(P) is its length,
hence, distg,f(u,v) = min{ f(P) | P : u—wv} is the length of the shortest weighted path
between vertices u and v.

An undirected graph G is connected if distg(u,v) < oo for all u,v € G and discon-
nected otherwise, i.e., starting from any vertex u every other vertex v is reachable via
a path. The maximal connected subgraphs of a graph G are its connected components.
In this case maximal connected means that a subgraph H C G is a connected subgraph
and for any vertex v € V(G) but v ¢ H the graph G[V(H) U {v}] is disconnected.
The number of connected components of a graph G are denoted by ¢(G). Clearly, if
¢(G) =1 then G is connected.
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2.1.4 Trees, Stars, Circles and Complete Networks

A graph on n vertices, for which every possible edge is present, i.e., there is an edge
between every pair of vertices, is called complete graph and is denoted by K. Figure 2.3
shows examples of complete graphs on up to seven vertices. A graph that has no edges
is called empty graph. The empty graph has no dedicated symbol and is rather denoted

in terms of the complement of a complete graph, i.e., K.

Figure 2.3. Complete graphs.

In general, the complement of a graph G = (V, E) is the graph where all the adjacen-
cies and non-adjacencies are inverted. This means that two vertices that are adjacent
in G are not adjacent in G and two vertices that are not adjacent in G are adjacent
in G, thus G = (V,V® \ E(G)) where V() denotes the set of vertex pairs. Thus, to
construct the complement of a graph G one simply deletes the edges in E(G) from a
complete graph of equal order.

If there exists a one-to-one correspondence 6 : V(G) — V(H) between two graphs G
and H such that 6 preserves all the adjacencies and non-adjacencies, i.e., uv € E(G) if
and only if 0(u)f(v) € E(H), or in other words, the number of edges joining any two
vertices in G is equal to the number of edges joining the corresponding vertices in H,
then the graphs are said to be isomorphic which is denoted by G = H. Less formally,
two graphs are isomorphic if one or the other can be redrawn such that both graphs
look identical.

A graph is called an r-partite graph if its vertex set V can be partitioned into r
pairwise disjoint sets of vertices, i.e., VUV U...UV, =V and V;NV; = @, where
1 < i < j < r, such that every edge uv € E(G) has its end vertices in different
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Figure 2.4. Complement and isomorphic graphs. The graph C5 and its com-
plement C5. Since there is a mapping that preserves adjacencies: {1,2,3,1,5} —
{a,c,e,b,d}, both graphs are also isomorphic. Adapted from Diestel (2018, p. 4).

partitions, i.e., u € V; and v € V;, where ¢ # j. Thus, vertices that are in the same
vertex partition cannot be adjacent. For r = 2 the graph is called bipartite. A complete
bipartite graph has every possible edge between the two sets of vertices present and
is denoted by K;; where ¢ = |Vi]| and j = |V5|. If one of the vertex partitions in a
complete bipartite graph consists of a single vertex only, e.g., Ky 5, then the graph is
called a star graph. For star graphs it suffices to specify only the number of vertices
other than its centre, i.e., K16 = S¢. Figure 2.5 shows two bipartite graphs, one of

which is a star graph.

N\
/)

Figure 2.5. Bipartite graphs. The figure shows a complete bipartite graph K43 on
the left, and a star graph Sg on the right.

Ky 3
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2.1.5 Neighbourhood

Adjacent vertices of a vertex are called its neighbours and the set of all neighbours of
a vertex is called (open) neighbourhood. The open neighbourhood of a vertex v in a
graph G is denoted by Ng(v) = {u|uv € E(G)}. The set of neighbours together with
a vertex itself is called closed neighbourhood and is denoted by Ng[v] = Ng(v) U v.
For example, the open neighbourhood of vertex 2 in Figure 2.1a is Ng(2) = {1, 3,5},
whereas its closed neighbourhood is N¢g[2] = {2,1,3,5}.

2.1.6 Degree and Centrality

The number of neighbours of a vertex v equals the number of edges it is incident with
and is referred to as its degree. The degree of a vertex is denoted by degq(v) = |Ng(v)|.
The minimum degree of a graph G is 6(G) = min{deg,(v)|v € G}. Similarly, the
mazimum degree of a graph G is A(G) = max{degqs(v) |v € G}. For the minimum and
maximum degree of a graph it holds that 0 < §(G) < A(G) < (n —1). If a vertex has
degree of (n — 1) then it is connected to all other vertices in the graph. If instead a
vertex has zero degree then it is not connected at all, and thus called isolated. A graph
G where every vertex has the same degree r, i.e., degg(v) = rVov € V(G), is called
r-reqular. Clearly, if G is r-regular, then 0(G) = A(G) = r. For example, Figure 2.4
shows the cycle Cs, cycles are 2-regular. Figure 2.3 shows complete graphs, K, on up
to n = 7 vertices, complete graphs are (n — 1)-regular.

In directed graphs the degree of a vertex can be further distinguished, since its neigh-
bourhood can be divided into other vertices that can reach the vertex and other vertices
that are reachable by the vertex. Let N (v) = {u|uv € E(G)} denote the set of ver-
tices in G that can reach v and N2"(v) = {u|vu € E(G)} denote the set of vertices
that can be reached by v, then deg(v) = N2 (v)| and degl(v) = |N2*(v)| denote its
in-degree and out-degree, respectively.

A useful property of the adjacency matrix of a directed graph G is that summing the -
th row yields the out-degree of vertex ¢ and summing the i-th column yields its in-degree,
Le, Y iev(a) @ij = deg™ (i) and Yjevie) Gi = deg®(4). Since the adjacency matrix of
an undirected graph is symmetric, its row and column sums are equal, hence, the out-
and in-degree of a vertex are equal, i.e., deg(i) = degll(i) = degq(i). Sometimes, for
reasons of clarity, we use the symbol &} to denote the degree of vertex ¢ when it is clear
from the context which network is meant.

The simplest definition of centrality states that the most central vertices are the most
active ones in the sense that they have the most connections to other vertices in the
network, cf. (Wasserman & Faust, 1994, p. 178). Based on this definition, a centrality
measure equally simple has been introduced for both undirected and directed networks
by Nieminen (1973, 1974). In an undirected network, the degree centrality of a vertex

is simply its degree. The measure is an index of the potential communication activity
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of a vertex. Vertices for which their degree centrality is high are expected to use their
connections to communicate actively and therefore take central positions in the network.
Vertices with low degree centrality are expected to take less central positions as far as
complete decentralized positions when vertices have no connections and therefore are
unable to communicate at all.

As with vertex degree, degree centrality can be further distinguished in a directed
network. Then, the out-degree of a vertex is an index for its activity, as before, and its
in-degree can be seen as a simple measure of its popularity (or sometimes prestige).3

Moreover, dividing degree centrality by its maximum value, which is (n — 1), yields
a normalized degree centrality measure that is comparable across networks of different
orders n, cf. Freeman (1978). Degree centrality then corresponds to the proportion of
vertices that a vertex is adjacent to.

In this thesis, we focus on degree centrality, as this is the view of centrality that
is adopted when analysing the assortativity in its original form. However, by linking
different views of centrality to the distinct structural attributes of a vertex, alternative
definitions become available. For example, for a particular vertex, its control of com-
munication is linked to the proportion of the shortest paths between any two vertices
of the network that pass through that particular vertex, and is referred to betweenness
centrality, cf. Freeman (1978). Central vertices according to this definition maintain
the communication activity of the network, but are also capable of withholding or dis-
torting information. The independence or efficiency of communication of a vertex is
linked to the inverse average distance between itself and all other vertices, where the
obtained measure, which is referred to as closeness centrality, determines how quickly
information produced by that vertex reach the rest of the network, cf. Sabidussi (1966)
and Magnani and Marzolla (2014). Finally, there is an approach to centrality, where a
vertex is considered to be central only if it is pointed to by many other central vertices.
The corresponding measure to this view of centrality is referred to eigenvector centrality,
cf. Bonacich (1987).

2.2 Basic Random Graph Models

In this section we discuss the Erdds-Rényi random graph (ER) and the Barabéasi—Albert
(BA) model, which will be analysed in an extended version in Chapter 4. Both models

are very popular and commonly used as benchmark models.

3Eventually, it is worth mentioning that one has to be cautious when interpreting popularity or
prestige as its meaning strongly depends on the application, more precisely, on the definition of edges
and whether they describe positive or negative effects. The interpretation would have to be reversed
in case of negative effects.
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2.2.1 Erdos-Rényi Random Graph Model

The Erdés-Rényi random graph (ER) model is a term that usually refers to two closely
related models. One is the Gy, yy model, introduced by Erdés and Rényi (1959, 1960),
who laid the foundation for random graph theory as a mathematical field, cf. Doro-
govtsev (2010), and the other one is the G,, , model, introduced by Gilbert (1959). In
this context, G, s denotes an ensemble of networks, G, with fixed order n and fixed
size M, of which members are all equally likely to realize. However, Gy, , denotes an
ensemble of networks, G, with fixed order n and a given probability, p, that any two

vertices in the network are connected by an edge.
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Figure 2.6. Realization of sampling the ER model. The figures visualize (a)
the network structure of the resulting ER sample, with order n = 100 and connection
probability p = 0.025, and (b) a bar diagram of the degree distribution.

Figure 2.6 shows a realization of sampling the ER model. For each entry of the (100 x
100) dimensional adjacency matrix, the flip of a p-biased coin with p = 0.025 determines
if an edge is present between the corresponding vertices or not. The bar diagram on the
right shows the degree distribution of the sample graph, i.e., the probability distribution
that a randomly chosen vertex has degree k. In general, the degree distribution of the
ER model is the binomial distribution:

P(k) = (Nk_ 1):0’“(1 —p)N R

which in the case of large N is sometimes approximated by the Poisson distribution,
P(k) = #"e7*/k1, where z is the mean degree, cf. Newman, Strogatz, and Watts (2001).
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2.2.2 Barabasi—Albert Model

The Barabési-Albert (BA) model by Barabasi and Albert (1999) is another famous
network model, which we like to consider in this Thesis. The BA model has been
proposed in order to address two implied assumptions of the ER model that are vi-
olated in many real-world networks, which are: (1) Networks have a fized number of
vertices; (2) Vertices are assumed to connect randomly to others with a constant prob-
ability. Barabasi and Albert (1999) overcome this by incorporating both a growth- and
preferential attachment mechanism into their model.

Network growth is considered by initializing a random BA network to a number of
myg arbitrarily connected vertices, such that each vertex is incident with at least one
edge, and then, let it grow over a time horizon T'. At each time step t = 1,...,T a
vertex is added to the network by forming m (m < mg) edges between the newly added
vertex and some already existing vertex. The process of link formation is governed by
a preferential attachment mechanism, i.e., the probability, p;, that the newly created
vertex connects to an existing vertex 7 depends on the degree k' of vertex ¢ in such a

way that:

i/

pi = mo+t—17/°
Zi:l kz

(2.1)

Apparently, a new vertex has a higher probability to connect to an existing high degree
vertex than to connect to an existing low degree vertex, which, eventually, will lead to
the formation of hubs.

After T time steps, a network generated by the BA model consists of mq+ 1 vertices
and mg + mT edges. Moreover, it is scale free, i.e., its degree distribution, particularly
for large £, is a power law function of the form P(k') ~ (k')~™7 where the power law
exponent v = 3, cf. Barabasi and Albert (1999), Barabasi, Albert, and Jeong (1999)
and Bollobas, Riordan, Spencer, and Tusnady (2001).

Fig. 2.7 illustrates the scale free property for a small network generated by sampling
the BA model for the parameters my =5, m = 2 and T = 500. The figure on the right
shows the degree distribution on the log-log scale, where the solid black line indicates
the observed degrees, and the dashed red line indicates a power law fit. The slope of the
dashed line corresponds to the power law exponent . Since the dashed line represents a
good fit for the solid line, the BA sample appears to have a scale-free degree distribution,
as expected.

The above described model is the simplest form of the BA model, thus, we therefore
refer to it as the simple BA model or simple preferential attachment model. A plethora
of extensions to the simple preferential attachment scheme have been suggested over
time, in order to alter the characteristic topological features that it induces. For ex-
ample, Garcia-Domingo, Juher, and Saldana (2008), Deijfen and Lindholm (2009) and
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Figure 2.7. Realization of sampling the BA model. The figures visualize (a) the
network structure of the resulting BA sample, with parameters mg = 5, m = 2 and
T = 500, and (b) the degree distribution of the network on the log-log scale. Lines
indicate observed degrees (solid black) and a corresponding power law fit (dashed red).

Brot, Honig, Muchnik, Goldenberg, and Louzoun (2013) also consider the deletion of
edges or vertices. The ageing of vertices is considered by Dorogovtsev and Mendes
(2000) and Hajra and Sen (2005). With ageing vertices, the probability of a newly
added vertex connecting to an existing vertex ¢ is positively weighted by its degree
k! but, at the same time, negatively weighted by its age wx;, i.e., the preferential at-
tachment scheme is altered such that the probability p; is proportional to the ratio
k./xz;, indicating that older vertices are less likely to be chosen by new ones to connect
to. More generally, Bianconi and Barabési (2001) and Borgs, Chayes, Daskalakis, and
Roch (2007) introduce an additional fitness value n; for existing vertices and add new
ones with probability proportional to mk{.“ Many more extensions have been suggested,
of which a non-exhaustive overview is given by Coolen, Annibale, and Roberts (2017).

Weighted extensions of the basic models presented in this section are considered in
Chapter 4 as benchmark models for our local assortativity measures. First, however,
we want to define the concept of assortativity and review the state of the literature on
this topic. Moreover, we propose a new coefficient for the measurement of assortativity

in the subsequent chapter.

“The concept of fitness of a vertex is closely related to ageing, e.g., by letting 1; = 1/x; the same
preferential attachment scheme as with ageing is obtained.



3 Assortative Mixing in Weighted Directed Networks

As previously noted, assortativity is the tendency of a vertex to bond with another
based on their similarity, with similarity being usually measured via vertex degree.
The most popular assortativity measure is the assortativity coefficient, which is defined
as the Pearson correlation coefficient between the excess degrees of both ends of an
edge. In this chapter we propose a more general coefficient of assortativity that nests
previous assortativity measures as special cases, and that can be applied to unweighted
and undirected as well as weighted and directed networks. Moreover, we show that
the use of this general coefficient enables us to determine the underlying assortativity
structure in weighted networks more precisely. Furthermore, we propose a procedure to
assess the statistical significance of assortativity using jackknife, bootstrap and rewiring
techniques. An abridged version of this chapter has already been published in Physica
A: Statistical Mechanics and its Applications, cf. U. Pigorsch and M. Sabek (2022).
The remainder of the chapter is structured as follows: Section 3.1 provides a review
of the related literature and motivates the use of excess strength for the computation
of assortativity. In Section 3.2 we introduce our generalized assortativity coeflicient,
elaborate on the importance of considering excess strength rather than total strength,
and propose procedures for the interpretation and statistical assessment of assortativ-
ity in weighted networks. Section 3.3 illustrates the application and interpretation of
assortativity in weighted real-world networks. In Section 3.4 we discuss our empirical

results and give suggestions for future research.

3.1 Background and Related Literature

The assortativity coefficient 7~ has been proposed by Newman (2002) and is defined as
the Pearson correlation coefficient between the excess degrees (sometimes: remaining
degrees) of both ends of an edge. Excess or remaining degrees are defined to be one less
than the ends’ degrees, i.e., they are the degrees of the ends prior to the formation of the

particular edge which is currently considered. The coefficient is obtained by computing

N MUY ks — M7V YS 50 + k) (3.1)
MUY 507+ K7) — M1 5 + k)]
where j; and k; are the excess degrees of the ends j and k of edge ¢, where i =1,..., M,

N

and M is the number of edges in the network. Since r" is a correlation coefficient it
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lies in the range —1 < rN

< 1, and has the advantage that assortativity coefficients
can be compared across different networks. The coefficient in Equation (3.1) has been
proposed for undirected unweighted networks.

Newman (2003) has also proposed an extension towards directed unweighted networks.
He defines assortativity in directed networks as the correlation coefficient between the
excess out-degree of the vertex that the i-th edge leads out of and the excess in-degree
of the vertex that the i-th edge leads into. In addition to this, Piraveenan et al. (2012)
find it sensible to also consider both the correlation between (excess) out-degrees of both
ends of an edge and the correlation between (excess) in-degrees of both ends of an edge.
Therefore, they propose alternative definitions for assortativity in directed networks,
namely out-assortativity and in-assortativity, which are the tendencies of vertices to
bond with others of similar out-degree and in-degree as themselves, respectively. This
results in four different variants of the assortativity coefficient in directed networks.

For our empirical analysis, we refer to these variants as the mode of assortativity. We
denote by out-in the assortativity coefficient of Newman (2003). The modes out-out
and in-in refer to the out- and in-assortativity according to Piraveenan et al. (2012),
respectively. Finally, by in-out we denote the correlation coefficient between the in-
degree of the vertex that the i-th edge leads out of and the out-degree of the vertex
that the i-th edge leads into, see also Piraveenan et al. (2012).

The corresponding assortativity coefficient for directed networks is given by:

5 Sk~ M D) e
VS = (7] [ - a1 (5]

where this time j; and k] are the (excess) in- or out-degrees of ends j and k of the i-th
edge,and i =1,..., M.

The coefficient in Equation (3.2) has been introduced for directed unweighted net-
works. However, it is capable of handling undirected unweighted networks as well, if
the network is slightly modified, i.e., by replacing each undirected edge by two directed
ones that point in opposite directions, see Newman (2003). Indeed, the formulation
in Equation (3.1) is a simplification of the more general formulation in Equation (3.2)
that makes use of the property of symmetry of the adjacency matrix of an undirected
network.

According to Noldus and van Mieghem (2015), assortativity in weighted networks
has been insufficiently studied, so far. One exception is the coeflicient of Leung and
Chau (2007), which, for example, has been used by Chang, Su, Zhou, and He (2007),



3 Assortative Mixing in Weighted Directed Networks 20

where the following extension of the assortativity coefficient towards undirected weighted

networks is suggested

JLC _ HY Y wilGiks) — [HYY, swils + ki) |
H-UYS, qwi(G2 + k2) — [HV S, jwili + ki)

(3.3)

where, as in Equation (3.1), j; and k; are the excess degrees of the ends j and k of edge 7,
w; denotes the weight of the i-th edge and H = ), w; is the sum of edge weights where
the sum is over all edges. Obviously, if all edge weights equal one, i.e., the network
is unweighted, the coefficient in Equation (3.3) reduces to the original assortativity
coefficient in Equation (3.1).

The underlying mechanism of this assortativity coefficient, can easily be illustrated.
For the ease of exposition and without loss of generality suppose integer-valued weights
(as real-valued weights can be linearly mapped to integers with arbitrary precision,
see Rubinov, 2016).> Then incorporating edge weights is equivalent to replacing each
w-weighted edge by w edges with weight one. Thus, high-weighted edges amplify the
impact of their connections and therefore contribute more to the overall assortativity.

Although this is a reasonable approach, we instead propose a generalization of assorta-
tivity to weighted networks that is based on the correlation between the excess strengths
of both ends of an edge. Considering excess strength is quite intuitive here, as vertex
degree generalizes to vertex strength in weighted networks, see Barrat, Barthélemy,
Pastor-Satorras, and Vespignani (2004). He defines the strength of a vertex u as
Sy = EUGV Wy, Where V' is the vertex set and w,y, is the weight of the edge between
and v.

In fact, note that the emergence of assortativity in a weighted network consists of two
mechanisms. The first one is the just mentioned amplification effect, which occurs if a
connection is considered according to the respective edge weight when computing the
correlation between the vertex values. The second one is the connection effect, which
occurs if, instead of unweighted vertex values (e.g., excess degrees), weighted vertex
values are considered (e.g., excess strengths). More precisely, consider two arbitrary
adjacent vertices and suppose they have the same degrees but different strengths, as
depicted in Figure 3.1. The connection between them, weighted or not, is assortative
if degrees are used as vertex values, but is disassortative if strengths are used. The
connection effect might also occur vice versa, for example, if two adjacent vertices have
different degrees but similar strengths. Noteworthy, the connection effect is ignored in
the definition of the assortativity coefficient of Equation (3.3). In the following section

we propose a generalized assortativity coefficient that incorporates both of these effects.

Oprecision)

5For example, Winy = round(Wrear - 1 is a mapping that linearly maps real-valued weights

to integers with arbitrary precision.
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Amplification Effect

(a) Assortative connection. (b) Weighted assortative connection.

1997 UOT}IUUO))

(c) Disassortative connection. (d) Weighted disassortative connection.

Figure 3.1. Illustration of the connection effect and the amplification effect.
All figures show the same exemplary connection between two arbitrary vertices with
similar degrees but different strengths. The size of a vertex is proportional to its excess
degree in (a) and (b), whereas it is proportional to its excess strength in (c) and (d).
Edges have the same widths in (a) and (c), whereas their widths are proportional to
their weights in (b) and (d). Arrows then indicate the direction in which the respective
mechanisms operate, i.e., when determining the assortativity, the amplification effect
occurs if additionally the weight of a given connection is considered, whereas the con-
nection effect occurs if strengths are considered instead of degrees.

3.2 A Generalized Assortativity Coefficient

To account for both effects, we include vertex strength in addition to vertex degree
into our assortativity coefficient, which is defined in Section 3.2.1. In Section 3.2.2, we
elaborate on the importance of considering excess strength rather than total strength, a
distinction that is rarely made explicitly in the context of vertex degree in the existing
literature. Moreover, our proposed generalized assortativity coefficient nests four dif-
ferent assortativity coefficients. We suggest computing and interpreting all of them, as
their comparison provides new insights on the assortativity structure of weighted net-
works. This is detailed in Section 3.2.3. We further supplement the analysis by propos-
ing a procedure for assessing both the statistical significance of the four assortativity
coefficients and whether the observed assortativity structure has social, organizational

origins or has been randomly generated, see Section 3.2.4.
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3.2.1 Definition of the Generalized Assortativity Coefficient

In the following, we introduce our generalized weighted assortativity coefficient, that
takes the amplification effect as well as the connection effect into account. To this end,
let s}, = > cywy,, @ € {0,1}, be a modified version of vertex strength. Clearly, if
a = 1 then s, = s,, whereas for a = 0 it reduces to ordinary vertex degree. Our
generalized weighted assortativity coefficient is then defined as

Blom. — O~ B B
— >oiwy limi — Q7 (3, w ) (32, wy ) . (3.4)

T(a,B) =
\/ [zi W)~ -1y, wfm?] [zi (Wm2) — 01T, wfm)?

where [; and m; are the excess (in- or out-) strengths of the ends [ and m of edge i. For
example, l; = s; —w{ is the excess strength of end [ of edge i. Furthermore, Q =3, wiﬁ
with 8 € {0,1}. Obviously, if 5 = 1 then Q@ = H, whereas for § = 0 it reduces to
the total number of edges in the network, i.e., & = M. The generalization is achieved
by introducing « and 3, which account for the two different mechanisms, i e. the
connection effect and the edge amplification effect, respectively. As such the previous
definitions of assortativity are nested as special cases, in particular TEJa:O, g=1) = rLC
and rzjazo,ﬂzo) =N,

Note that “C is based on the formulation of 7N introduced Newman (2002), whereas
our coeflicient rfa’ﬂ) is based on the formulation 7} of Newman (2003) and Farine
(2014). Thus, it is capable of handling directed (weighted) networks as well as undirected
(weighted) networks by replacing, as before, each undirected edge by two directed ones
that point in opposite directions.

Our assortativity coefficients rfw 3) is also inline with the definition of the weighted
correlation coefficient, see Da Costa (2011), which is defined as:

- 2o wiXeYs — 3 wilXa Y, wiYg _ (3.5)

\/ (Sowx? - (St ) (Souny? - (w2

The sums are over observations i; X; and Y; are the pair of values of variables X and Y
that correspond to the i-th observation; w; is the weight attributed to this observation,
and the sum of edge weights equals unity, i.e., >, w; = 1. Furthermore, if all weights
w; are equal they cancel out and Equation (3.5) reduces to the usual formula for the
Pearson correlation coefficient, i.e., the unweighted correlation coefficient. By defining
variables X; = [; and Y; = m; and weights w; = wiﬁ , it becomes immediately clear that

Equation (3.4) and Equation (3.5) are equivalent.®

5The additional requirement that > w? = 2 = 1 can be met without loss of generality by a suitable
remapping of the observed edge weights.
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To summarize, assortativity in weighted networks is not unambiguously defined. In
fact, there are four different ways edge weights can be treated, resulting in four differ-
ent versions of the assortativity coefficient. First, if present edge weights are neglected,

assortativity can be measured as the correlation between the excess degrees of both

(0.0

Newman (2002), henceforth referred to as the benchmark assortativity coefficient, also

ends of an edge, r which is the classical definition of assortativity introduced by
cf. Figure 3.1 (a). Leung and Chau (2007) suggest to measure assortativity by the
weighted correlation between the excess degrees of both ends of an edge, 7“‘(*6’1), cf. Fig-
ure 3.1 (b). This partly accounts for edge weights keeping vertex values still unweighted.
The remaining two versions of the assortativity coefficient have not been considered in
the literature so far, and are both based on excess vertex strength, i.e., @ = 1, rather
than excess vertex degree. In particular, we can either partly incorporate edge weights,

this time, by computing the unweighted correlation of weighted vertex values, i.e., ex-

(1,0

weight, i.e., « = 1 and 8 = 1, by computing the weighted correlation between the excess
strengths of both ends of an edge, cf. Figure 3.1 (c¢) and (d). We denote the latter by

7’“("}1 1) and refer to it as the generalized assortativity coefficient.

cess strength, resulting in the assortativity coefficient r or fully incorporate edge

When analysing the assortativity structure of a real weighted network, we suggest to
focus on both, the generalized assortativity coefficient and the benchmark coefficient,
i.e., to fully consider edge weights or to neglect them entirely. For example, if the
interest is exclusively on the binary network edges, it might be reasonable to neglect
edge weights, and to focus on the benchmark assortativity coefficient. However, in
many cases edge weights provide additional information, which in turn can be fully
explored using the generalized assortativity coefficient. In contrast, focusing exclusively
on assortativity coefficients that only partially consider edge weights, falls short, as
each includes just one of the two effects of edge weights. Nevertheless, as we will detail
in Section 3.2.3, using them as supplementary measures allows drawing more distinct

conclusions about the assortativity structure and as such they are also of interest.

3.2.2 Excess (Out- or In-) Strengths in Directed Weighted Networks

The existing literature on the measurement of assortativity rarely explicitly addresses
whether total degrees or excess degrees are used; rather, it is often times just referred to
“degree”. However, Newman (2002) defines the assortativity coefficient for undirected
and unweighted networks to be the correlation coefficient between the excess degrees
rather than the total degrees of both ends of an edge. The reason for this is that a
vertex’s tendency to bond with another one is based on the degree it has prior to forming
the particular edge, i.e., its own excess degree as well as the other vertex’s excess degree,
cf. Noldus and van Mieghem (2015). Consequently, using ezcess strengths in case of

weighted networks is the obvious choice.
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We can only assume that the above-mentioned imprecision is due to the fact that for
unweighted networks it makes no difference whether correlation is computed based on
excess degrees or on total degrees, as both result in the same value of the assortativity
coefficient. This holds as the excess degrees of the ends of an edge and the total degrees
of the ends of an edge differ by a constant (i.e., by one) and the correlation between
two random variables does not change if a constant is added or subtracted to either or
both variables. As opposed to this, in a weighted network it indeed makes a difference
whether excess or total strength is used. The reason is that the excess strengths of the
ends of an edge differ from total strengths of the ends of an edge by the weight of the
particular edge and this difference is not constant. Therefore, the resulting assortativity
coefficient based on excess strengths will be drastically different from the one based on
total strengths.

In the following we give a brief example that illustrates the consequences of using total
strengths rather than excess strengths for assessing a network’s assortativity structure.
To this end we consider the weighted and directed network, considered in Yuan, Yan,
and Zhang (2021), which is depicted in Figure 3.2. The directed edges are marked by
their weights. For example, the first edge of the network connects vertices A and B
with an edge of weight 10 pointing from A to B, i.e., w; = wap = 10. The seventh edge
of the network points from C to A with an edge weight of 1, i.e., w7 = weca = 1.

ﬁ:> 4
@%ﬁ}wa@
Figure 3.2. Sample weighted directed network. Adapted from Yuan et al. (2021).

The corresponding edge list of the network is depicted in Table 3.1. The edge list is
expanded by the excess out- and in-strengths as well as the total out- and in-strengths.

The excess out-strength of the source end [ of edge 7 is defined as its total out-strength

less the edge weight, i.e., §(°luit) = sf“t — w;. Similarly, the excess in-strength of the

target end m of edge i is defined as its total in-strength less the edge weight, i.e.,

52% o = st — w;. The excess in-degree of the source end [ of edge ¢ as well as the
excess out-strength of the target end m of edge i are not separately listed in Table 3.1,

since 52?1) = sf” and E(O#fi) = 5% respectively, as reasoned in Section 3.2.1. The total

strengths are obtained as usual.
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i l; m; w; E&% 527;”) sput sin sin sout
1 A B 10 3 6 13 3 16 9
2 H B 6 0 10 6 3 16 0
3 B G 5 4 0 9 16 5 0
4 B F 4 5 0 9 16 4 0
5 A E 3 10 0 13 0 3 13
6 D A 2 0 1 2 0 3 13
7 C A 1 0 2 1 0 3 9

Table 3.1. Edge list of sample network in Figure 3.2. The edge list has been
expanded by excess and total out- and in-strengths.

For example, the excess out-strength of vertex A with respect to the first edge is
given by §E’}4”f1) = 13 — 10 = 3 and, at the same time, the excess out-strength of vertex
A with respect to the fifth edge is given by 5(0%5) = 13 — 3 = 10. Also, the excess
in-strength of vertex A with respect to the seventh edge is given by §Ef‘4’7) =3-1=2
and, at the same time, the excess in-strength of vertex A with respect to the sixth edge
is 5%276) = 3 —2 = 1. This clearly shows that the excess (out- or in-) strengths of
the ends of an edge depend on the weight of the edge that is currently considered. As
opposed to this, the total strengths of the ends remain the same for all edges.

We will now illustrate the emerging consequences of using total strengths rather than
excess strengths when computing the weighted assortativity coefficient. To this end, let
p = r‘(’Ja:L 1) be the generalized assortativity coefficient as defined in Equation (3.4)
which is based on excess strengths and p be the assortativity coefficient based on total
strengths as in Yuan et al. (2021). For the given network, the generalized assortativ-
ity coefficients for the different modes of assortativity are poyt.in = —0.65, Pout-out =
—0.76, pin-in = —0.70 and pPip_oue = —0.82. On the contrary, the coefficients based on
total strengths are poutin = 0.29, pout-out = —0.29, pin-in = —0.56 and pip_our = —0.82.

Yuan et al. (2021), therefore, conclude that the example network simultaneously
shows assortative and disassortative mixing, whereas, as a matter of fact, the network
shows no assortative tendencies at all. The network is purely disassortative. Except
for the in-out mode of assortativity, the resulting coefficients based on total strengths
are throughout greater compared to those of the generalized coefficient. As mentioned
before, for the in-out mode of assortativity the excess in- and out-strengths equal the
total in- and out-strengths of the ends of an edge, respectively, and thus, p and p
coincidentally exhibit the same value. Other than that, using total strengths rather than
excess strengths for computing the assortativity coefficient for a weighted network will
lead to an overestimation towards the assortative direction, since high weighted edges
necessarily connect vertices with high total strengths. Hence, a connection between two
vertices that might be disassortative will appear more assortative as the vertex values

are artificially inflated by the weight of the edge that connects the two vertices when
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total strengths are used. Thus, it is crucial to use excess strengths in order to properly
determine the underlying assortativity structure of a network.

In order to show this, consider the relative difference d between two variables z > 0
and y > 0 defined as d = 2=l for which we set d = 0 if 2 = y = 0. Computing d

(z+y)’
with respect to the vertex values of a network yields an indicator of the magnitude of

assortativity of a particular connection. To be precise, if d is small, within its bounds
[0, 1], then the considered vertices are similar with respect to their vertex values. Vice
versa, if d is large, then the considered vertices are different with respect to their vertex
values, which basically equals the definition of assortative mixing.

Focusing on the out-in mode of assortativity, for the edges of the network in Figure 3.2
we obtain the following relative differences with respect to excess (out- and in-) strengths
d(zou gimy = {0.33,1,1,1,1,1,1}. It can be seen that edges 2 to 7 are correctly identified
as disassortative. They all tie a connected vertex to a vertex that is not connected at
all, which is the most disassortative connection one can think of. The edge connecting
vertices A and B is identified as rather assortative, since its value of d(zout giny; = 0.33
is rather small. By comparing this to the relative differences with respect to total
(out- and in-) strengths dgout giny = {0.1,0.63,0.38,0.29,0.5,0.2,0.45}, which is possible
because both d(zout giny and d(sout 4iny are dimensionless and of the same scale, it can be
seen that every single edge is considered more assortative than it actually is, since
d(gout gin) i < d(gout giny; for all edges i. This explains why the results pous-in and pout-in
differ so drastically.

Based on this reasoning, we further recommend the following proper utilization of
either excess or total strengths (or degrees) when computing the assortativity coefficient
for different modes of assortativity for directed networks. Excess strengths are used for
both out- and in-strengths when the mode of assortativity is out-in. Excess out- and
total out-strengths are used when the mode is out-out, and total in- and excess in-
strengths are used when the mode is in-in. For the mode in-out the correlation between
both total in- and out-strengths should be used.

To see this, suppose, for example, of interest is the out-assortativity of a directed
weighted network. Consider a particular edge leading out of vertex u and into vertex
v, then, the out-strength of vertex u is affected by the edge weight whereas the out-
strength of vertex v is not. More precisely, consider the out-strengths of both vertices
that the particular edge connects prior to forming it. The excess out-strength for vertex
u is its out-strength less the edge weight, whereas the excess out-strength for vertex v
equals its total out-strength, in this case. For the other modes the reasoning is similar.
Technically, the same holds true for directed unweighted networks, however, the results
are the same no matter if one computes the correlation between excess or total (in- or

out-) degrees (or any combination), as before.
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We have recently noticed that, in independent and concurrent research, Yuan et al.
(2021) have proposed a measure for assortativity in weighted networks similar to ours.
Their measure, however, is based on the total strengths between the ends of an edge,
which leads to misleading results as outlined above. Moreover, their paper focuses
on the assortativity of theoretical network models. However, our key contribution is
the introduction of a procedure that allows for both a more precise assessment and
interpretation of the assortativity of weighted real-world networks and its analysis with

respect to the statistical significance of the network’s assortativity.

3.2.3 Procedure for Assessing and Interpreting Assortativity

In order to assess and interpret a network’s assortativity, we suggest the following
procedure: Firstly, compute r‘(*’a 5) for all four parameter combinations («, ), where

a, B € {0,1}, i.e., we compute the benchmark assortativity coefficient 7%70), the gener-

(1)

w

alized assortativity coefficient 7 as well as both supplementary measures T(1.0) and

7““6’1 .
| Tile values of the benchmark assortativity coefficient as well as the generalized assor-
tativity coefficient range between —1 and 1. They give an indication of the underlying
assortativity structure of the network with respect to the corresponding vertex values,
which are degrees in case of T‘(’f)yo) and strengths in case of T‘(’lel). Similar to the inter-
pretation of the original assortativity coefficient, for both coefficients, positive values
indicate an overall assortative structure of the network, and negative values indicate
an overall disassortative structure of the network, for zero values of the coefficients the
network is considered to be non-assortative.
Secondly, compare the benchmark and the generalized assortativity coefficient. The

values of 7 ) and r%’l 1) might be similar in magnitude for some networks, for others

w
0,0
they might( differ. Thus, a comparison of both values provides information on the
impact of edge weights on the underlying assortativity structure of the network. For
example, if r%}o) > rE"l,l), then the consideration of edge weights leads to a decrease in
assortativity or an increase in disassortativity of the network. In contrast, if r‘(“o?O) <
7“?’1’1), the corresponding weighted network is more assortative than the network where
edge weights are neglected.

An even more precise distinction regarding the effects that make up the network’s
assortativity structure is possible if, in a third step, the supplementary measures rt”l’o)

and T‘(’f) 1) are included into the comparison. For example, since the connection effect is

0,0 (1,0 (1,1);

respectively, provides information on how the assortativity of the network varies with

and r% 1 with 7

captured by the parameter «, a comparison of r with r
respect to using weighted vertex values instead of unweighted ones (i.e., strengths rather
than degrees). Particularly, if rfom < TEULO), then incorporating vertex strength leads to

an increase in assortativity, suggesting that unweighted connections are more assortative
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or less disassortative with respect to strengths as compared to degrees. Whereas, if
7“?6’0) > TEULO)’ then incorporating vertex strength leads to a decrease in assortativity,
suggesting that unweighted connections are less assortative or more disassortative with
respect to strengths as compared to degrees. Similarly, the connection effect can be
interpreted for edge weighted connections, i.e., if 7“‘(*6,1) < TE"M), then incorporating vertex
strength leads to an increase in assortativity. This suggests that weighted connections
are more assortative or less disassortative with respect to strengths as compared to
degrees. As opposed to this, if T‘(("E)J) > r‘(*’u), then incorporating vertex strength leads
to a decrease in assortativity, suggesting that weighted connections are less assortative
or more disassortative with respect to strengths as compared to degrees.

By the same logic, since the amplification effect is captured by the parameter 3, com-

0.0 0.1)° (10)

changes if edge weights are considered in terms of using weighted connections instead

w

parisons of 7 with 7 and 7 with 1) respectively, reveal how assortativity

of unweighted ones in the computation of the assortativity coefficient for fixed vertex

(0,1

assortativity suggests that high weighted connections tend to be more assortative or less

values (strengths or degrees). To be more precise, if 7“%‘6’0) <7 then the increase in
disassortative by degree than low weighted ones. Vice versa, if rt‘&o) > 74‘(6,1)’ there is a
decrease in assortativity, suggesting that high weighted connections are less assortative
or more disassortative by degree than low weighted ones. Similarly, if TL(‘?[,O) > Tﬁ,l)’ then
the increase in assortativity suggests that high weighted connections tend to be more
assortative or less disassortative by strength than low weighted ones. Again, if, vice
versa, 7"(*’1’0

nections tend to be less assortative or more disassortative by strength than low weighted

) < r%’l 1) then the decrease in assortativity suggests that high weighted con-

ones.

If the assortativity of a network increases due to one of the two effects, we call the
respective effect assortative, if, however, the assortativity of a network decreases, we
call the respective effect disassortative. As can be seen from the above, both effects
are twofold as they might operate differently with respect to the way in which edge
weights are considered. For example, for the same network, the assortativity might
vary differently for unweighted and weighted connections if edge weights are considered
via weighted vertex values as with the connection effect. The same holds true for the
amplification effect where the assortativity with respect to both unweighted vertex values
and weighted verter values might vary differently if edge weights are considered in terms
of weighted connections.

We call the effects consistent if, considered individually, they operate in the same way,
and inconsistent the other way round. For example, a connection effect which reduces
the assortativity of the network for both unweighted and weighted connections if edge
weights are considered with respect to weighted vertex values is considered consistent, in
this particular case consistently disassortative. Contrary to this, an amplification effect

that increases assortativity by degree on the one hand but decreases assortativity by



3 Assortative Mixing in Weighted Directed Networks

29

SnlnEl 2Rl Procedure for assessing and interpreting assortativity.

(a) Compute r‘(“a 3 for all four parameter combinations («, 3).

(b) An indication of the overall assortativity is given by the values of r%"o’o) and

L)’
e if values > 0 = assortative

e if values < 0 = disassortative

o if values = 0 = non-assortative

(c) Obtain the edge weight effect on assortativity by comparing the generalized

with the benchmark assortativity coefficient:

o if 7"%’0 0 > T )= weighted network is less assortative

)

o if TE‘B 0 < T ) = weighted network is more assortative

)

(d) Interpret assortativity effects by comparing the generalized with the bench-

mark assortativity coefficient:

o (Connection effect

oW
if (0,0

(less) more assortative by strength as by degree

)(>) <y o) = most unweighted connections tend to be

— if T%,l)(>) < 7{1,1) = most weighted connections tend to be (less)

more assortative by strength as by degree

o FEdge amplification effect
— if T%,O
more assortative by degree

)(>) < 79,1y = high weighted connections tend to be (less)

— if rﬁvo)(>) < r{1,1) = high weighted connections tend to be (less)

more assortative by strength
e Both effects

— if one or both effects operate in the same (different) direction
with respect to the way in which edge weights are considered =
respective effect is consistent (inconsistent)

—ifrg gy < min(r‘(’io),r‘(”O’l)) Ve > max(r%’l’o),r‘(‘a,l)) = consen-

sual

— if T € [min(r?’lyo),r‘(‘f]yl)),max(r?’l’o),r‘(‘{)yl))} = opposing
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strength on the other is considered inconsistent. In this case, there exists an assortative
amplification effect with respect to unweighted vertex values but, at the same time, a
disassortative amplification effect with respect to weighted vertex values.

Finally, we can determine whether the effects are consensual or opposing. The ef-
fects are consensual if the assortativity coefficient for which one of the effects has
already been taken into account increases or decreases even further if the other ef-
fect is additionally taken into account. This is the case if Tﬁ,l) < min(r%"ljo),r‘(’al))

or TEJLI) > max(r‘(’io),r%’l)). If, however, TEJLI) € min(r‘("lyo),r‘(’fm)),max(r‘(’io),r%’l))},

then, this indicates that the effects are opposing because there is an effect that results
in a more disassortative or assortative coefficient, respectively, if the other one is not
considered, i.e., the impact of the first effect is reduced by the second.

The outlined procedure is summarized in summary box 3.2.1, and we will illustrate

its application to empirical networks in Section 3.3.

3.2.4 Assessing the Significance of Assortativity

As mentioned above, there are four different ways of measuring assortativity in weighted
networks. If we interpret each of them to be an estimator of the respective unknown
population parameter, then computing the values for the coefficients based on a real
network yields the corresponding point estimates. However, the associated estimation
uncertainty is unknown, such that inference on the individual assortativity coefficients is
infeasible, unless standard errors are computed, which is a challenging task in network
analysis, as there is usually just one realization of a real network and no sample of
realizations available. Therefore, resampling methods such as the jackknife or bootstrap
method are employed, which generate artificial samples of networks based on which an
estimate of the standard error can be derived, cf. Quenouille (1956), Tukey (1958) and
Efron (1979). This allows to conduct significance tests for the respective assortativity
coefficient.

When assessing a specific network characteristic, it is often times of interest whether
the observed characteristic is due to some underlying social or organizational process or
due to structural constraints (e.g., finite size), see Maslov and Sneppen (2004), Serrano,
Boguna, and Pastor-Satorras (2006) and Yang, Pan, and Zhou (2017). In this thesis,
we will therefore compare the observed assortativity coefficients to the values one would
have obtained if edges had formed randomly, i.e., the assortativity of a null model,
which we obtain based on a link rewiring technique.

In the following, we present the resampling methods as well as the link rewiring tech-
nique adopted in this thesis. Thereafter, we summarize our procedure for the statistical

assessment of the assortativity coefficients.
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3.2.4.1 Resampling Methods for Networks

In order to resample the networks in our empirical analysis, we follow Newman (2003) in
order to obtain jackknife estimates of the standard error of the generalized assortativity
coefficient, which we denote by 67«7&@7 J- The idea behind the jackknife method is as
follows: For a dataset that consists of n sample variables, n artificial subsamples are
created by successively removing the i-th sample variable, i = 1,...,n. For networks,
there are different approaches of adopting the jackknife method. One can either consider
the n vertices of a network as sample variables and create subsamples by removing the
vertices in turn, thus, a single subsample is the induced subgraph of the (n—1) remaining
vertices, cf. Snijders and Borgatti (1999), or one considers the jackknife with respect
to the m edges, i.e., by removing the edges in turn as suggested by Newman (2003).
We use the latter for our analysis, as it already has been suggested for the original
assortativity coefficient, and since then, has also been used for other network quantities
such as reciprocity, see e.g., Garlaschelli and Loffredo (2004) and Squartini, Picciolo,
Ruzzenenti, and Garlaschelli (2013). The jackknife estimate of standard error of the

generalized assortativity coefficient, 6,7 - is defined as

m

5 — w w 2
Irta sy = Z (r(a,ﬁ),(—i) - T(a,g)) ) (3.6)

=1

where r& B).(—i) is the value of coefficient for the network where the i-th edge is removed.
Note that in large networks with many edges this approach can be computationally
intensive. In such cases, where computation times are prohibitively long, it might be
sensible to consider the jackknife with respect to the vertices instead, since the count
of vertices is usually much lower than the count of edges.

Alternatively, we also consider the bootstrap method by following the non-parametric
approach of Snijders and Borgatti (1999), which is referred to as the vertex bootstrap.”
The idea of the bootstrap is, again for a dataset that consists of n sample variables, to
consider the data as a population itself. A subsample is then generated by sampling
n variables with replacement from the observed data. Thus, a subsample might con-
tain multiple copies of some variables, and at the same time, no copies of some other

variables. For the vertex bootstrap, we sample with replacement from the vertices of

“In a later publication this procedure is more formally defined as the empirical graphon bootstrap,
see Green and Shalizi (2022).

8 An alternative parametric bootstrapping approach with respect to the edges of a network has been
suggested by Rosvall and Bergstrom (2010). Given the observed weighted edges w1, ..., wm, a sample
of size m is drawn by resampling every edge weight from a Poisson distribution with mean equal to the
observed edge weights, i.e., w; ~ Pois(w;), ¢ =1,...,m, for a single bootstrap replicate. However,
according to the authors, this approach is not suitable in the case of an unweighted network or when
the assumption of a Poisson distribution is not appropriate. We therefore do not consider it further in
this thesis.
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an observed network.? More precisely, consider the weighted n x n adjacency matrix
W = [w;j] of the observed network, where n is the number of vertices and the elements
w;; represent the weights of the edges connecting some vertices 7 and j. If, however,
¢ and j are not connected then w;; = 0.1 A sample with replacement is drawn from
the sequence of vertices i = 1,...,n, and denoted by i(1),...,i(n). A single bootstrap
network is created by letting W* = [wy,], where its elements are obtained from the

observed weighted adjacency matrix

Whi, = Winyiky,  1(h) # (k). (3.7)

In the case of i(h) = i(k), i.e., i(h) and i(k) correspond to the same vertex in the
observed network, the weight wy, is sampled randomly from the set of all observed
edges, since self-edges or loops are usually not considered in real networks. After this,
the generalized assortativity coefficient of the bootstrapped network 0 = ra ﬁ)(W*) is

computed. Repeating the above procedure B independent times yields an ensemble of

B bootstrap replications of the estimate of assortativity, é{, e é}} The bootstrap esti-
mate of standard error of the generalized assortativity coefficient, denoted by 67"& 4B
can be obtained according to:
1 & <\ 2
. P .
UT?JQ,B)’B - U@,B - B—1 Z (eb 9*> ) (3'8)

where 5* is the mean of the B bootstrap replications. The computational cost of boot-
strapping depends on the number of generated subsamples B. Indeed, the number of
bootstrap samples B has to be large enough to adequately approximate the distribu-
tion of the generalized assortativity coefficient. However, if B is less than the number
of vertices n as well as the number of edges m in a network, then the bootstrap requires
less computation than both the jackknife with respect to vertices and the jackknife with
respect to edges, cf. Cameron and Trivedi (2012).

For the sake of completeness, we report in our empirical analysis both, jackknife and

bootstrap standard error estimates for the generalized assortativity coefficient, together

9Since the assortativity coefficient is basically a correlation coefficient, an obvious thought that
comes into one’s mind is to use the standard non-parametric bootstrapping approach for the correlation
coefficient, cf. Efron (1979). That corresponds to drawing a sample with replacement from the pairs
(zi,yi),2 =1,...,n. In the context of networks this corresponds to drawing a sample with replacement
from the edges of the network. Thus, multiple edges between vertices may emerge. Such edges can be
merged into a single edge with a combined edge weight, in weighted networks. However, it is not clear
how to proceed with multiple edges in case of an unweighted network. We therefore do not consider it
further in this thesis.

OWe focus on directed weighted networks. Nevertheless, the approach is capable of handling any
kind of (un)directed and (un)weighted network.
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with 95 percent normal approximation confidence intervals, cf. Davison and Hinkley
(2013); Efron (1987), which are defined as:!!

C1

w
"(,B)

095+ = [0 = 7o T dl,  d= 20075 0re (3.9)

where 6w
(cv,8)

defined in Equations (3.6) and (3.8), respectively, and zp 975 is the 97.5 percent quantile

 are either jackknife or bootstrap estimates of the standard error, as

of the standard normal distribution.

We find that in almost all considered cases the results based on the bootstrap are in
line with those based on the jackknife. In rare cases, where the results are ambiguous,
we rely on the method that produced its results based on the larger set of subsamples.
Thus, we prefer the bootstrap over the jackknife in small networks (B > m) and vice

versa in large networks (B < m).

3.2.4.2 Generation of a Null Model by Link Rewiring

Newman (2003) gives an attempt at an explanation for the phenomenon of assortative
mixing (by degree). A distinction is made between the degree correlations that originate
from social or organizational processes (e.g., attraction or affiliation) and others that are
artefacts resulting from structural constraints that are imposed on the type of network
(e.g., structural disassortativity as discussed by Maslov & Sneppen, 2004).

To assess whether a network’s assortativity is due to some underlying social or or-
ganizational process or due to structural constraints, we adopt the general approach
of Maslov and Sneppen (2004) to detect and analyse topological patterns in networks,
to the context of assortativity. Maslov and Sneppen (2004) suggest that a statistically
significant deviation of a topological property of a network from the one of an appro-
priate null model presumably reflects that the property has real social or organizational
origins.

Consequently, if there is no significant deviation, the pattern appears to be random
with respect to the type of network. This means one will commit a mistake by attaching
too much importance to it as it appears to be a result from structural constraints, such
as finite size. In this context, Yang et al. (2017) show that for (undirected) finite-size
unweighted scale-free networks the lower bound of the assortativity coefficient does not
approach —1 in the limit of large network sizes, but instead, depends on the power law

exponent 7 of the degree distribution p(k) ~ k=7 of the network. Furthermore, Ser-

HFor our purpose, we verify its validity by analysing the histogram and Q-Q plots of the distribution
of the bootstrap replications, see Figures A.1 to A.6 in the appendix. Alternatively, statistical tests,
such as the Jarque-Bera or Anderson-Darling test, can be employed to check the normality assump-
tion, though, in our case the bootstrap diagnostic plots were conclusive. If the normal distribution
assumption is not appropriate, more advanced bootstrap confidence intervals can be used, cf. Efron
(1981, 1982, 1987), DiCiccio and Efron (1996), and the excellent overview given in Davison and Hinkley
(2013).
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rano et al. (2006) show that due to structural constraints purely uncorrelated weighted
networks cannot exist. Hence, an absolute consideration of observed assortativity coeffi-
cients as well as their comparison across networks, which are heterogeneous with respect
to basic features, will yield misleading results. The coefficients would either have to be
interpreted within their respective bounds or —as we do— compared to the values of a
null model.

A null model is a random network that is matched for basic properties other than
the one of interest, such as order, size and degree distribution, see Fornito, Zalesky, and
Bullmore (2016). As our focus is on weighted networks we expand these basic properties
by the network’s strength distribution and weight distribution. The null distribution
is sampled by employing a switching based graph generating approach where Markov
chains are used to generate an ensemble of randomized networks, see Milo, Kashtan,
Itzkovitz, Newman, and Alon (2003); Ying and Wu (2009).

In order to create a single random network we apply the two-step algorithm suggested
by Rubinov and Sporns (2011).12 Initially, the binary edges of the observed network
are rewired such that the degree distribution is preserved. To this end we use the well-
known algorithm by Maslov and Sneppen (2002), which carries out a series of k& Monte
Carlo switching steps, where a single step consists of sampling two edges and rewiring
them, such that the origin of the first edge is connected to the target of the second
edge, and the origin of the second edge is connected to the target of the first edge,
provided that by the rewiring no multiple edges or loops are created, i.e., rewiring edges
(a,b),(c,d) € E and (a,d), (c,b) ¢ E, where a # d A ¢ # b, such that (a,d),(c,b) € E
and (a,b), (c,d) ¢ E.

Afterwards, the edge weights of the original network are assigned to the edges of the
randomized network in such a way that the observed strengths are closely approximated.
This is done by randomly selecting an element a,,,, from the randomized network, observ-
ing its expected weight rank 7 and assigning it to the i-th highest previously unassigned
observed edge weight w,,. The weight of an edge connecting vertices v and v, with
strengths s, and s,, respectively, which we would expect if edges formed randomly is

SuSu

defined as ey, = *4*¢, where v = > up Wuw is the sum of all edge weights. The expected

(unassigned) weight magnitude of an element a,,, is €,, (su—z h u?uh> (SU_Z h QI);W>,
where w,,, are the already assigned weights of the randomized network. Clearly, €,, is a
version of ey, that corrects for weights that were already assigned, hence, if no weights
have been previously assigned, i.e., if all assigned weights equal zero, i.e., Wy, = 0, then
Cup = €yy. Arranging a,, by €y, yields the expected weight rank i. After assigning
the weight wy, to the edge a, the pair is removed from further consideration. The
remaining elements are then re-arranged by é,, and the procedure repeats by randomly

selecting another element a,, until all elements have been assigned an observed edge

2 Alternatively, the algorithm proposed by Serrano et al. (2006) can be used in order to generate a
suitable null model.
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weight. According to Rubinov and Sporns (2011) re-arranging the elements in every
step is necessary in order to allow for convergence to the original strengths. This might
be computationally expensive in large networks with many edges. For those networks
however, according to the authors, a less frequent re-arranging will not impair the ac-
curacy.

A random network generated by the algorithm outlined above preserves the degree
sequence of the original network and, thus, the (in- and out-) degree distribution, ex-
actly. It also preserves the weight distribution but not the weight sequence. There-
fore, the observed strengths of the original network will only be closely approximated.
However, a review of the relevant literature shows that, so far, there is no null model
of weighted networks that preserves observed strengths exactly. We therefore follow
Rubinov and Sporns (2011) and check whether the correlation between the pre- and
post-randomization strength sequences is high. Moreover, the Kolmogorov-Smirnov
two-sample test indicates that the pre- and post-randomization strength sequences fol-
low the same distribution.!®> We therefore conclude that the considered null model is

appropriate for our purpose.

3.2.4.3 Statistical Assessment of Assortativity

In the following we make use of the standard errors obtained from the jackknife and
bootstrap method, in order to test for the significance of the generalized assortativity
coefficient. Moreover, we construct confidence intervals implied by the null model, in
order to determine, whether the observed assortativity is due to organizational or social
effects, or due to structural constraints.

In particular, to test, whether the assortativity coefficient is significantly different
from zero, we check whether the 95 percent jackknife or bootstrap confidence interval
of the generalized assortativity coefficient, covers the value zero. If zero is not included,
we conclude that the generalized assortativity coefficient is significantly different from
zero at the 5 percent significance level. Furthermore, a comparison of the mean of the
assortativity of the null model with the observed value of assortativity allows to assess
the origins of the assortativity. More precisely, if the 95 percent confidence interval of
the mean assortativity of the null model does not encompass the observed assortativity
coefficient, we conclude that the assortativity is due to some social or organizational
processes. Vice versa, if the computed interval covers the observed assortativity coeffi-
cient, this indicates that the assortativity structure of the observed network is due to
structural constraints, and thus random with respect to basic features of the network.

The procedure is summarized in summary box 3.2.2.

3Results are available from the authors upon request.
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S nInERRSH-W2l Procedure for assessing significance of assortativity.

(a) Estimate &T?’a o+ for all four parameter combinations («, 3) using a suitable

method (e.g., jackknife or bootstrap method, as defined in Equations (3.6)
and (3.8), respectively)

(b) Compute confidence intervals, CI"fa e

S, e.g., S =95% (e.g., jackknife or bootstrap normal approximation confi-

5%, for a predefined confidence level

dence intervals as in Equation (3.9)), and interpret according to:

o if0¢ CIT& gy Sk = statistically significant assortative mixing

e if 0 € CIT& 5« = assortative mixing statistically insignificant

\B)
(c) Determine the distribution of the assortativity of a respective null model by
a suitable method (e.g., link rewiring as described) and estimate its mean,

" (o8),rnd

(d) Compute confidence intervals, CITZJQ o

null model, for a predefined confidence level S, e.g., S = 95%, and interpret

S of the mean assortativity of the

according to:

o if r‘(’Ja7 3) ¢ Clrfa,g),mdvs = network’s assortativity structure appears to

have social or organizational origins

o if r‘(’; g) € Clrﬁda S = network’s assortativity structure appears to

be random with respect to basic features of the network (e.g., size,

order)

3.3 Application: Assortativity of Real-World Weighted Directed
Networks

In the following we apply our generalized assortativity coefficient to several (un)directed
weighted real-world networks and illustrate its usefulness in assessing and interpreting
the assortativity structure of these networks by incorporating weighted edges. To this
end, we follow the procedures outlined in summary boxes 3.2.1 and 3.2.2. For our
analysis, we focus on real-world networks, for which both a content-related interpreta-
tion is easily accessible, and the data sets are generally available, such that our results
can be easily reproduced.!® The analysed networks are taken from the website of the
Koblenz Network Collection project (KONECT), cf. Kunegis (2013), and have also

10Of course, our procedure is also applicable to synthetically generated networks, e.g., ones with
scale-free degree (or strength) distributions, generated by one of the various network models. However,
we do not consider synthetic networks in this chapter, as in such networks edge weights typically do
not have a substantial interpretation.
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already been considered in previous literature. Table 3.2 presents for each network
the assortativity coeflicients T‘Z’a 3) for the different parameter combinations («, ) along
with the corresponding jackknife and bootstrap estimates of the standard error, &de !

B, respectively, as well as the 95 percent confidence intervals, CIT& 5095,

0.95,8- Bootstrap results are based on B = 1499 bootstrap replications.

and G«
(a,8)

and CIT@B)’
15 We estimate the mean Tma and standard deviation &, —of the assortativity of the
respective null models based on an ensemble of 1000 randomizations of the observed
network, where the number of switching steps per randomization is set to k& = 20m, as
recommended by Fornito et al. (2016); Ying and Wu (2009).'6 The lower and upper
bounds of the 95 percent confidence intervals CIT?nde-% are obtained by computing the
respective quantiles of the distribution of the randomized assortativity. Subsequently,

a detailed analysis of the assortativity structure of each of the networks is given.

3.3.1 NetScience Scientific Collaboration Network

The NetScience network is an undirected collaboration network of scientists working
on network theory which has been constructed by Newman (2001). A node in the
network represents a scientist and an edge between two scientists indicates that both
co-authored one or more publications. In total 2742 co-authorships of 1589 scientists
have been included. The intensity of the relation between two scientists is incorporated
by positive edge weights, which are defined as w;; = (ng —1)7' Y, (5?5;?, where 0F = 1
if scientist i was co-author of paper k, and n; is the total number of co-authors of a
paper k. As such, edge weights take into account that co-authors of large collaborations
might know each other less than co-authors of smaller collaborations. Consequently,
the interpretations of both vertex degree and vertex strength have to be considered
carefully. In particular, vertex degree corresponds to the number of different co-authors
scientist ¢ has collaborated with, whereas vertex strength corresponds to the number of
papers scientist i has co-authored with others, cf. Newman (2001).

According to our empirical results, the NetScience network is an overall assortative
network indicating that scientists have a tendency to collaborate with others that are
similar based on the number of co-authors (degree) or based on the number of papers
they have been co-authors of (strength), since both the benchmark assortativity coeffi-

w

cient, Tl0.0) = 0.4616, and the generalized assortativity coefficient, 7’?’1’1) = 0.1928, have

positive values.

W
(1,1)
sidered. On the one hand, this is partly due to a consistently disassortative connection

However, since r‘(’f) 0> the network is less assortative if edge weights are con-

5Based on Davidson and MacKinnon (2000) where a minimum of B = 399 bootstrap replications
for tests at the 0.05 level and a minimum of B = 1499 bootstrap replications for tests at the 0.01 level
is suggested, we choose B = 1499, although we test at the 0.05 level.

16 Alternatively, k = 100m can be chosen, cf. Milo et al. (2003), but this is computationally more
demanding.
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a=20 a=1
Measure
B=0 =1 B=0 =1
NetScience
re 0.4616 0.3405 0.1016 0.1928
e -0.0436 -0.0051 -0.0691 -0.0988
Gprw g 0.0715 0.0618 0.0282 0.0527
Grw. B 0.0944 0.1054 0.0978 0.1223
6w a 0.0173 0.0339 0.0138 0.0305
rn
Cl,w 0.95,7 [0.3215,0.6017] [0.2194, 0.4616] [0.0463, 0.1569] [0.0895, 0.2961]
Cl,w 0.95,B [0.2766, 0.6466] [0.1339,0.5471] [—0.0901, 0.2933] [—0.0469, 0.4325]
Cl,w 4:0-95 [—0.0709, —0.0143] [—0.0586, 0.0498] [—0.0910, —0.0462] [—0.1452, —0.0459]
rnd’"
‘Windsurfers
r¢ -0.1470 -0.0170 -0.1710 -0.0769
o -0.2182 -0.1187 -0.1880 -0.2266
Grw ., g 0.0654 0.1285 0.0481 0.1077
Grw. B 0.0465 0.0833 0.0343 0.0901
6w a 0.0324 0.0740 0.0251 0.0760
rn
Cl,w 0.95,7 [—0.2752, —0.0188] [—0.2689, 0.2349] [—0.2653, —0.0767] [—0.2880, 0.1342]
Cl,w 0.95,B [—0.2381, —0.0559] [—0.1803,0.1463] [—0.2382, —0.1038] [—0.2535,0.0997]
Cl,w 4095 [—0.2711, —0.1654] [—0.2434, —0.0016] [—0.2299, —0.1492] [—0.3530, —0.0965]
rnd’ "
Macaques
out-in
re -0.3709 -0.3801 -0.2479 -0.2578
rid -0.1475 -0.0394 -0.1525 -0.0526
Grw, g 0.0377 0.0483 0.0381 0.0476
Grw . B 0.0555 0.0638 0.0533 0.0668
Gw d 0.0174 0.0240 0.0173 0.0242
rn;
Cl,w 0.95,7 [—0.4448, —0.2970] [—0.4748, —0.2854] [—0.3226, —0.1732] [—0.3511, —0.1645]
Cl,w 0.95,B [—0.4797, —0.2621] [—0.5051, —0.2551] [—0.3524, —0.1434] [—0.3887, —0.1269]
CI,w 1,095 [-0.1765, —0.1201] [—0.0790, —0.0010] [—0.1809, —0.1238] [—0.0922, —0.0128]
rn
out-out
re 0.4162 0.4294 0.3145 0.3251
o 0.1022 0.0375 0.0877 0.0269
Grw ., g 0.0400 0.0491 0.0424 0.0513
6w, B 0.0551 0.0641 0.0507 0.0559
6w 4 0.0200 0.0259 0.0195 0.0246
rn
Cl,w 0.95,7 [0.3378, 0.4946] [0.3332, 0.5256] [0.2314,0.3976] [0.2246, 0.4256]
Cl,w 0.95,B [0.3082, 0.5242] [0.3038, 0.5550] [0.2151, 0.4139] [0.2155, 0.4347]
Cl,w 1095 [0.0698, 0.1354] [—0.0055, 0.0810] [0.0564, 0.1197] [—0.0127,0.0678]
rnd’ "
in-in
re 0.4030 0.4586 0.2277 0.2828
e 0.1032 0.0260 0.0771 0.0132
Grw g 0.0386 0.0440 0.0468 0.0520
Grw. B 0.0566 0.0677 0.0471 0.0570
6w a 0.0194 0.0246 0.0198 0.0263
rn
Cl,w 0.95,7 [0.3273,0.4787] [0.3724, 0.5448] [0.1360, 0.3194] [0.1809, 0.3847]
Cl,w 0.95,B [0.2921, 0.5139] [0.3259, 0.5913] [0.1354, 0.3200] [0.1711, 0.3945]
Iw 4:0-95 [0.0723,0.1360] [—0.0144,0.0679] [0.0445,0.1100] [—0.0301, 0.0559]
rnd’ "
in-out
r* -0.4884 -0.5214 -0.3933 -0.4195
red -0.0745 -0.0320 -0.0586 -0.0287
Grw . g 0.0234 0.0300 0.0283 0.0391
6rw B 0.0505 0.0586 0.0440 0.0545
Gpw a 0.0211 0.0281 0.0214 0.0283
rn
Cl,w 0.95,7 [—0.5343, —0.4425] [—0.5802, —0.4626] [—0.4488, —0.3378] [—0.4961, —0.3429]
Cl,w 0.95,B [—0.5874, —0.3894] [—0.6363, —0.4065] [—0.4795, —0.3071] [—0.5263, —0.3127]
Cl,w 4,0-95 [—0.1084, —0.0405] [—0.0793,0.0145] [—0.0919, —0.0243] [—0.0748,0.0179]
rnd’

Table 3.2. Generalized assortativity analysis. Reported are: Generalized assortativ-
ity coefficient 7, randomized assortativity, 7 ;, jackknife, bootstrap and randomized
assortativity standard errors, 6,» j, 0y« p and &Ti’nd as well as 95 percent jackknife,
bootstrap and randomized assortativity confidence intervals, Cl,w .95 7, Clw .95 g and
ClLyw | 0.95, respectively, for all four parameter combinations (a, B). A description of the
networks is given in the text.
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effect, as T(ff),o) = 0.4616 > r%"l’o) = 0.1015 as well as T((‘E)J) = 0.3407 > 7“("171) = 0.1928,
which indicates that most interconnected scientists tend to be more similar based on
the number of co-authors they have collaborated with and less similar regarding the
number of co-authored papers.

On the other hand, there is a disassortative amplification effect when degrees are
used as vertex values, since T?z),o) = 0.4616 > T((‘E)J) = 0.3407, suggesting that the
stronger co-author relationships persist between scientists that are less similar based on
the number of co-authors they have collaborated with. However, since TL(’Jl,o) =0.1015 <
7”?1,1) = 0.1928, the amplification effect is inconsistent and, thus, there is an assortative
amplification effect when strengths are used as vertex values, which means that the
stronger co-author relationships tend to persist between scientists that are more similar
based on the number of papers they have published with others.

Apparently, both effects are opposing as r‘(’JLl) = 0.1928 € [min(r‘(’io), 7“?6’1)) =
0.1015,max(7“%170),r%71)) = 0.3405]. Consequently, scientists tend to collaborate with
others that are either different based on the number of co-authors they have collaborated
with or that are similar based on the number of papers they have published.

In order to assess the significance of the above results, we compute 95 percent jack-
knife and bootstrap confidence intervals for the coefficients and find that the NetScience
network is significantly assortative. Moreover, as the 95 percent confidence inter-

vals of the randomized assortativity do not cover the respective observed assortativ-

ity, i.e., 7“(‘6 0 = 0.4616 ¢ CLan0 0)ana:0:95 = [—0.0709, —0.0143] and 7"("1 ) = 0.1928 ¢
CanJ1 D095 = [—0.1452, —0.0459], we can conclude at the 5 percent significance level,

that the observed strong assortative structure is due to some social or sociological pro-

cess. The network would have been disassortative if edges had formed randomly.!”

3.3.2 Windsurfers Social Network

The Windsurfers network is an undirected network which is formed by data that was
collected while studying the social behaviour of 43 windsurfers on a beach in southern
California during the fall of 1986, see Freeman, Freeman, and Michaelson (1988). A
node in the network represents a windsurfer and an edge between two windsurfers indi-
cates interpersonal contact. Information on the frequency of this interpersonal contact
is incorporated by positive edge weights where a high edge weight indicates a more
frequent contact and vice versa. An edge weight of 1 indicates a one-time contact.

Thus, the degree of a vertex corresponds to the number of acquaintanceships, whereas

"For the measures T,y and r( ;) the jackknife and the bootstrap intervals seem inconclusive.
The respective coefficients differ indeed significantly from the null assortativity, though the bootstrap
intervals of the observed assortativity encompass zero. However, in these cases we rely on the jackknife
intervals as, for the NetScience network, they are based on the larger set of subsamples, as B = 1499 <
m = 2742.
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vertex strength corresponds to the frequency of encounters. The network consists of
336 weighted edges.

The Windsurfers network is overall disassortative, suggesting that there is a ten-
dency that windsurfers connect to other windsurfers that are more interconnected than
themselves. However, the weighted network is less disassortative, as can be seen by
comparing the benchmark assortativity coefficient with the generalized assortativity
coefficient, TEUO,O) = —0.1470 < T((d171) = —0.0769. Analysing both effects, the network
indeed shows a consistently disassortative connection effect, which indicates that most
interconnected windsurfers differ by the number of acquaintanceships, but differ even
more by the frequency of encounters, since r%’o) = —0.1470 > 7"‘("1’0) = —0.1710 and

7‘((*6 1) = —0.0170 > r‘(*’l 1y = —0.0769 and, thus, most connections persist between two
windsurfers where one is more interconnected than the other. However, there is a con-
sistently assortative edge amplification effect, since r((%,o) = —0.1470 < 7“‘(*671) = —0.0170

and TEJLO) = —0.1710 < 7"2”171) = —0.0769, indicating that, although the network is
overall disassortative, the high weighted connections tend to be rather assortative,
i.e., windsurfers tend to stay in touch with others more frequently, mostly, if they
are as interconnected as themselves, for example, with other windsurfers that either
have an equal number of acquaintances or have equally frequent encounters. Since
i = —0.0769 € [min(r‘{l,o),r‘(’ayl)) = —O.l710,max(r‘(’io),7“z’0’1)) = —0.0170], we have
opposing effects for the Windsurfers network. Additionally, because both effects are
consistent and because the magnitude of disassortativity is reduced by incorporating
both effects, we can reason that the edge amplification effect might be the stronger one.

Considering the significance of the assortativity, the findings are somewhat inconclu-
sive. On the one hand, the respective 95 percent confidence intervals of the randomized
assortativity, CI”?’a,ﬁ),m %70 ‘("1,1
hand, they cover the values of r‘(*E)’l) and r%"lvo) indicating that the windsurfers network

1,095 do not cover the values of r ) and r ), on the other

is indeed significantly more disassortative than we would expect if edges had formed

randomly, but our previous conclusions regarding the connection effect as well as the

(01 (1,0

appear to be insignificant with respect to the null model. Additionally, both the jack-

amplification effect have to be questioned, as the auxiliary measures 7 ) and r
knife and the bootstrap 95 percent confidence intervals of the observed assortativity r*
overlap the respective null assortativity coefficient 7 ,, for all parameter combinations
(a, B) indicating that the disassortative structure of the Windsurfers network might also

be, at least partially, structural and dependent on the type of the network.

3.3.3 Macaques Dominance Relationship Network

The Macaques network is a directed network which is formed by data that was collected

while studying the dominance relationships of 62 female Japanese monkeys (Macaca
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fuscata) during the nonmating season from April to early October 1976, see Takahata
(1991).

A node in the network represents a specific monkey and directed edges between the
nodes represent dominance relationships. Thus, an edge connecting two monkeys points
from the dominating monkey to the one which has been dominated during an encounter
where food was involved, and edge weights indicate how often such encounters hap-
pened. Since the network is directed we can differentiate between in- and out-degrees
as well as in- and out-strengths. Thus, four different modes of assortativity are possi-
ble, which are denoted by out-in, out-out, in-in and in-out, where out-in, for example,
corresponds to the correlation between the excess out- and in-degrees (or strengths) of
two interconnected monkeys. The out-degree of a monkey corresponds to the number
of different other monkeys it has dominated during an encounter, whereas its in-degree
corresponds to the number of different other monkeys it has been dominated by. The
out-strength, on the other hand, corresponds to the number of times when a monkey
has dominated others, and the in-strength corresponds to the number of times it has
been dominated by others. In total, the network consists of 1187 weighted edges. The
edge weight sum of 2435 corresponds to the total number of observed encounters.

The network is overall out-in as well as in-out disassortative, since all the mea-

sures r%}o)put_in = —0.3709, 'rfl’l)’out_in = —0.2578, r%p)’in_out = —0.4884 as well as
7"%)1 1) in-out = —0.4195 are negative. This implies that monkeys who dominate many

others, or dominate others more frequently, preferably dominate other monkeys who
are dominated by only a few, or are dominated less frequently. Vice versa, monkeys
who dominate few others, or dominate others less frequently, tend to dominate other
monkeys who are dominated by many others, or are dominated more frequently. Com-
paring the respective benchmark with the generalized assortativity coefficient reveals
that a full consideration of edge weights reduces the overall disassortativity of the net-

work for both modes of assortativity, although not as much for the in-out mode, as

the difference between r¥, . . and % .. compared to the difference between
(0,0),in-out (1,1),in-out

w w

T(O,O),out—in and T(l,l),out—in shows.

At the same time, the network exhibits assortative tendencies with respect to the

out-out and in-in modes, since 7'?670)70%_0% = 0.4162, r?’171)70ut_0ut = 0.3251, T?f),o),in-in =
0.4030 as well as % = 0.2828 are all positive. This indicates that dominating

(1,1),in-in
monkeys tend to dominate other dominating monkeys. Also, inferior monkeys usually
dominate other inferior monkeys. The network is less out-out as well as in-in assortative
if edge weights are considered, since 7"(‘6’0)70%_0“ > r‘("m)’out_out and 7"(‘670)7m_m > r‘("m)’in_m.
The decrease in disassortativity for the out-in and in-out modes as well as the decrease
in assortativity for the out-out and in-in modes can be explained by analysing the

respective connection and amplification effects.
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There is a consistently assortative connection effect for the out-in and in-out modes,

since r%,()),out—in = —0.3709 < Tﬁ,o),out-in = —0.2479 and 7‘?}0,1)7out-in = —0.3801 <
r?}l,l),out-in = —0.2578 as well as r‘(%,O),in-out = —0.4884 < rt(dl,o),in-out = —0.3933 and
T?E),l),in—out = —0.5214 < r‘(’il)7in_0ut = —0.4195, but a consistently disassortative con-
nection effect for the out-out and in-in modes, as T?E),O),out—out =0.4162 > T?Jl,o),out-out =
0.3145 and r‘(b’l)put_out = 0.4294 > 7’%’171)70ut_0ut = 0.3251 as well as T%,O),in—in = 0.4030 >
T‘(dl,()),in—in = 0.2277 and r%71)7in_in = 0.4586 > Tﬁ,l),in—in = 0.2828. This means that, for

the out-in and in-out modes, most interconnected monkeys differ less based on the num-
ber of times they have dominated or have been dominated by others, and vice versa,
respectively, compared to the number of different monkeys they dominated or have been
dominated by. On the contrary, for the out-out and in-in modes, most interconnected
monkeys differ more based on both the number of times they have dominated others
and the number of times they have been dominated by others compared to the number
of different monkeys they dominated or have been dominated by, respectively.

Furthermore, there is a consistently disassortative amplification effect for the out-

in and the in-out modes, because r‘(*6 0),out-in = —0.3709 > 7’?6 1) ,0ut-in = —0.3801 and
Tﬁ,O),out—in = —0.2479 > r&l)yout_in = —0.2578 as well as T%,O)Jn—out = —0.4884 >

7“(071)’in_0ut = —0.5214 and TE"LU = —0.3933 > T?)l,l) = —0.4195, but a
consistently assortative amplification effect for the out-out and in-in modes, since
= 0.4162 < r¥ = 0.4294 and r* =0.3145 < r

w —
(0,1),0out-out (1,0),0out-out (1,1),out-out —

0.3251 as well as T?Z),O),in—in = 0.4030 < T?i),l),in-in = 0.4586 and r?}l,O),in—in = 0.2277 <

rﬁ 1),incin = 0.2828. Indicating that dominant monkeys less frequently dominate inferior

),in-out ,in-out

w
T(O,O),out—out

monkeys, and vice versa. Also, monkeys dominate others that are similarly dominant
or inferior, respectively, more frequently.

The connection effect and the amplification effect are opposing for all four modes, as
can be seen by the fact that if one is assortative the other is disassortative and vice
versa, as well as by the fact that r{ ;) € [min(r‘(*’l,o)7 7“(}0,1)), max(r‘(‘io),rtdo’l))] for all four
modes. Additionally, since all effects are consistent, and since the weighted network is
less disassortative for the out-in and in-out modes, but less assortative for the out-out
and in-in modes, the connection effect can be regarded as the stronger effect for all four
modes. Finally, since all coefficients are significantly different from zero, and the 95
percent confidence intervals of the randomized assortativity do not cover any observed
coefficient, we can conclude that the observed assortativity structure of the Macaques
network has real social or sociological or organizational origins rather than being random
with respect to basic network characteristics such as order, size, distribution of degrees,

strengths, or weights.
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3.4 Discussion and Future Work

Based on the preceding analysis of the assortativity of the weighted example real-world
networks, precise statements of their network topology are now possible. For example,
consider the Macaques network —without having actually plotted the network graph-
ically in advance, but having verified our observations afterwards— we conclude that
the network has a multi-tiered, almost tree-like hierarchical structure, that branches
out into star-like configurations, where cycles are possible for the lower tiers, and where
the higher weighted edges tend to form either between vertices where the out-degree or
-strength of the one is different from the in-degree or -strength of the other, and vice
versa, or between vertices of similar in-degree or -strength as well as vertices of similar
out-degree or -strength.

Based on this reasoning, we chose to visualize the network with the layout algorithm
by Reingold and Tilford (1981) in Figure 3.3b. This is quite unusual, since the layout is
specially designed for trees, but the network under consideration is not a tree because
it contains cycles. However, the tree layout captures the structure of the network quite
well. For example, the top tier node represents the alpha-female of the group, and also
the dominance relationships between the other low-ranking monkeys are clearly visible.
To make a comparison, in Figure 3.3a we also visualize the network with the layout
algorithm by Kamada and Kawai (1989), which is one of the most popular graph layout

algorithms. Apparently, this visualization gives almost no indication of the topological

(a) Kamada and Kawai graph layout. (b) Reingold and Tilford graph layout.

Figure 3.3. Visualization of the graph structure of the Macaques network
using different layout algorithms. Both figures show the same network, using (a)
the layout algorithm by Kamada and Kawai (1989) and (b) the layout algorithm for
trees by Reingold and Tilford (1981). The vertex out-strengths are colour-coded, where
darker colours indicate higher strengths, and lighter colours indicate lower strengths.
The size of the coloured hull of a vertex is proportional to its out-degree. Moreover,
thicker edges indicate higher edge weights.
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Admittedly, these observations also could have been obtained by studying the weight-
ed adjacency matrix of the network, moreover, they are quite unsurprising even, given
that dominance relationships between animals have been exhaustively studied for several
species in the past. However, the fact that our proposed procedure of assessing the
assortativity of a weighted network reveals the structural features of each example
network precisely is exactly what we aim for.

Moreover, the use of the generalized assortativity coefficient together with the pro-
cedure of identifying its significance can help, if the interest is in understanding the
mechanics of the underlying network formation process. For example, for the Wind-
surfers network we find that its assortativity appears to be structure-dependent, such
that the corresponding network model can be simplified, as degree (or strength) cor-
relations can be omitted. As opposed to this, for the NetScience network degree (or
strength) correlations would have to be explicitly considered when modelling the net-
work.

We think that in the case of networks which are larger by several orders of magnitude
than the ones we considered for illustrative purposes in this chapter, and for which
the topology or the formation process is not-well known, our generalized assortativity
coefficient will provide useful insights.

Moreover, the concept of generalizing assortativity to weighted networks, shown in
this work, easily extends to more complex definitions of assortativity, for example, the
ones by Meghanathan (2016) or Arcagni, Grassi, Stefani, and Torriero (2017, 2021),
as they are, at their core, still based on the Pearson correlation. Meghanathan (2016)
considers assortativity based on centrality measures other than degree (or strength),
such as betweenness, eigenvector, and closeness centrality. Arcagni et al. (2017, 2021)
define higher order assortativity, which is the tendency of similar vertices to bond via
indirected connections, such as paths, shortest paths or random walks.

In this chapter we have shown that assortativity, the tendency of vertices to bond
with others based on similarities (usually excess vertex degree), in weighted networks
is more complex than in unweighted networks. Previously published research focuses
on seeking a single measure that describes the underlying assortativity structure. We
pointed out, however, that focusing on a single measure might lead to information
loss, and, therefore, proposed a generalized assortativity coefficient that nests previous
measures and that utilizes available information at the best.

To this end, we proposed to use as vertex values excess vertex strength, which has
never been considered in the assortativity literature so far and which is the generalization
of excess vertex degree in weighted networks. We broke down assortativity in weighted
networks into its components and identified two mechanisms that essentially affect the
assortativity structure of a network, which we refer to as the connection effect as well as

the amplification effect. Furthermore, we provided procedures that allow for a detailed
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interpretation and assessment of assortativity in weighted networks as well as for the
assessments of its statistical significance. For the latter we introduced appropriate
resampling and link rewiring techniques.

We demonstrated the application and usefulness of our generalized assortativity coef-
ficient for assessing and interpreting the assortativity of three commonly used weighted
real-world networks, both directed and undirected. Albeit being often times considered
in the literature, the analysed networks are admittedly not very complex. However, our
procedure can straightforwardly be applied to analyse the assortativity structure of also
more realistic networks, as we will detail in Chapter 5 when we analyse the network of
cryptocurrencies.

But first, based on our developments in this chapter, we will extend the concept
of generalized assortativity to local assortativity in the subsequent Chapter 4. This
allows us to identify those vertices and edges that contribute the most to the global

assortativity of a network.



4 Local Assortativity in Weighted and Directed
Complex Networks

So far we have focused on global assortativity. We proposed a new assortativity coef-
ficient and showed its usefulness. We now turn our focus on local assortativity, which
is the contribution of individual vertices or edges to the global assortativity structure.
Since assortativity is a measure of the stability of a network, this is particularly im-
portant as it can help to understand which vertices or edges are particularly stability-
threatening and which are stability-protective. This can help with developing efficient
strategies for both breaking up a network (e.g., with vaccination in disease spreading so-
cial networks) and protecting particularly vulnerable networks (e.g., financial networks
or technological networks, such as the Internet), cf. Newman (2002). As compared with
global assortativity, local assortativity can be considered as a third-order graph metric
as it provides further differentiation in graphs that have the same degree distribution
(first-order metric) as well as the same assortativity structure (second-order metric), cf.
Noldus and van Mieghem (2015). For example, both the ER and BA model are known
to generate (global) non-assortative networks, see Newman (2002), however, only the
ER model generates graphs that also show local non-assortative tendencies, whereas
vertices that join the network at an earlier point in time tend to be local disassorta-
tive, in the BA model. In this chapter we propose a more general coefficient of local
assortativity, which nests previous local assortativity measures as special cases and is
flexible in the sense that it can be either vertex based or edge based. Moreover, our
local assortativity measure will be applicable to unweighted and undirected as well as
weighted and directed networks.

The remainder of the chapter is structured as follows: Section 4.1 provides a review
of the related literature on local assortativity in unweighted networks. Moreover, we
are able to demonstrate the equivalence of two allegedly different previous definitions of
local assortativity, namely the one by Piraveenan et al. (2008) and the one by Zhang et
al. (2012). To the best of our knowledge, we are the first to recognize the equivalence
of both definitions. The unified approach will then serve as point of reference for
our generalized local assortativity coefficient, which we introduce in Section 4.2. In
Section 4.3 we illustrate the application and usefulness of our local assortativity measure
based on simulated networks, and analyse local assortativity of two real-world networks.

Thereby, we also demonstrate how to compute local assortativity profiles, which are very

46
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helpful for characterizing the local assortativity pattern of a network. In Section 4.4 we

discuss our empirical results and give suggestions for future research.

4.1 Background and Related Literature

As with global assortativity, there exist multiple definitions of local assortativity in undi-
rected as well as directed yet unweighted networks. In the following, we will briefly re-
view those aspects from the previous literature that are most relevant to our subsequent
analysis. The concept of local assortativity has been first introduced by Piraveenan et
al. (2008, 2010) for undirected networks, and later extended towards directed networks,
cf. Piraveenan et al. (2012). The authors define local assortativity as the scaled dif-
ference between the average excess degree of the neighbours of a vertex and the global
average excess degree. Their local assortativity coefficient is a verter based measure.

An allegedly different approach has been proposed by Zhang et al. (2012), who refer to
their measure as the universal assortativity coefficient (UAC). The UAC is denoted by
pUAC and is defined as the sum of so-called edge assortativeness values, p, of a targeted
edge set, Eiarget. Thereby, these assortativeness values, p., can serve well as an edge
based local assortativity measure. By consolidating the edge assortativeness values of
the set of edges that emanate from a vertex, so-called vertex assortativeness values are
obtained, which can be considered as a verter based local assortativity measure.

In the following we present a comprehensive description of the derivation of the mea-
sure of Zhang et al. (2012). However, we will reconsider the one proposed by Piraveenan
et al. (2008, 2010, 2012) by demonstrating the equivalence of the local assortativeness
values of Zhang et al. (2012) and the vertex based assortativity measure of Piraveenan
et al. (2008), at the end of this section.

To this end, let p(k’) = prr denote the degree distribution, i.e., the probability of a
randomly chosen vertex having degree k’; q(k) = ¢ denotes the remaining (or excess)
degree distribution, i.e., the probability that a vertex reached by following a randomly
chosen edge has excess degree k. Since the excess degree k is the total degree k' of a
vertex less one, i.e., k =k’ — 1, it is distributed proportional to (k + 1)pg,1. Thus, the
distribution ¢ is given by:

o = (k + Dpry1
Zk/ K'pys ’

where Y_,, k'py is the expected degree of a vertex.

Let e denote the joint distribution of excess degrees of either end of an edge, i.e.,
the probability that a randomly chosen edge connects two vertices with excess degrees j
and k, see Callaway, Hopcroft, Kleinberg, Newman, and Strogatz (2001) and Newman
(2002).
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Then, given the above, the edge assortativeness values, pe, are derived from the
definition of assortativity, r, of Newman (2002) by rearranging the right-hand side of
the equation by applying the Kdnig-Huygens formula'® reversely for the covariance in

the numerator:

1 .
"= ij(ejk — qiqk) (4.1)
9k jk
C Djedkein = 225005 2 kax L9
- = (42
qk
_ E[JK]-Ug,
T
_ BlJK]-Ug —Ug, +Ug, (43)
'
_ EBlJK] - E[J|U,, — E[K]Uq, + EUZ ]
= o
9k
_ E[JK - JU,, — KUy, + U, ]
g
E[(J — Ug)(K — Uy,)]
- q:;gk Gl (4.4)

where J and K are the excess degrees of the ends of an edge and Uy, denotes the mean
of the distribution ¢, which is the mean excess degree of an end of an edge and ogk is
the variance of the distribution gx. For Equation (4.2), since both ends of an edge have
the same expected excess degree it holds that 3, jg; = E[J] = ) kqy = E[K] = Uy,
and thus, Zj JG Y ke = UqQk. For Equation (4.3), a constructive zero is added.

By estimating the theoretical quantities in Equation (4.4) by their sample counter-
parts (by averaging over the edges of the network), the assortativity coefficient of a real

undirected network can be obtained by computing!:

ﬁ Zé\il (je _ qu)(ke - qu)
7, |

T =

(4.5)

where j. and k. are the excess degrees of the ends of edge e; U,, = ﬁ Zi\il %(je + ke)

and 64, = \/ﬁ Zeﬂil 3(j2 + k2) — U2 are the sample mean and standard deviation of

the excess degree of an end of an edge, and M is the number of edges in the network.?"

¥With the Konig-Huygens formula, the variance of a random variable X can be expressed in terms
of its raw moments F(X) and E(X?), i.e., Var(X) = E[(X — E(X))?] = E(X?) — E(X)?.

9Whether to apply Bessel’s correction, i.e., using ﬁ instead of ﬁ as a correction factor is just a
minor technicality as it cancels out anyway when computing the Pearson correlation coefficient.

2Tn an undirected network, each edge e has two ends j. and k., and thus, there are 2M ends in
total. Therefore, the mean excess degree of an end of an edge is obtained by averaging the mean of
the excess degrees of the ends of an edge over all edges of the network. This extends to computing the
standard deviation of the excess degree of an end of an edge.
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From this representation it becomes apparent that the (direct) contribution of an
individual edge, e, to the assortativity coefficient, r, is determined by p., which is the
scaled product of the differences between the excess degrees of both ends of an edge and

the mean excess degree of an end of an edge:

(je — UQk)(ke B UQk)
M&gk '

pe = (4.6)
An important result is the fact that the assortativeness values in Equation (4.6) can
be interpreted as an edge based local assortativity measure. In particular, an edge is
considered assortative if its contribution to the global assortativity coefficient is positive,
i.e., pe > 0, and disassortative, in case its contribution is negative, i.e., pe < 0.
Defining local assortativity on an edge basis is advantageous, since this allows for
determining the assortativity of sets of edges by summing the values p. for a particular
target edge set, Eiarget, Which is used by Zhang et al. (2012) to define their UAC as:

pUAC = Z Pe- (4.7)

eeEtarget

Setting the target edge set Eiarget in Equation (4.7) to the entire edge set E consisting
of the M edges of the network yields the assortativity coefficient r by Newman (2002),
ie., Zéw:l Pe =T.

Moreover, Zhang et al. (2012) argue that the assortativeness values p. can be used
to easily derive a wvertex based local assortativity measure p, for some vertex v simply
by setting the target edge set Eiarget to the edges emanating from that vertex v. More

precisely, for undirected networks this gives:

Pv = Z Peyu s (48)
u=1

where pe,, is the assortativeness value of the edge e that has end vertices v and u. A
vertex is considered as assortative if p, > 0, and as disassortative if p, < 0.

Note that the computation of p, in Equation (4.8) is similar to the computation of
the vertex degree k] of vertex v in an undirected network, however, instead of summing
the elements of the network’s adjacency matrix A = [a,,], the sum is over the local
edge assortativeness values of connected vertices. Hence, the summation of p, for all

vertices yields:2!

n
Z Py = Z Pen, = 2T (4.9)
v=1 uv

21 As compared with the sum of all vertex degrees in an undirected network, which is >y k, =
D Quw = 2M.
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In order to show that the values, p,, as defined in Equation (4.9), are equivalent to
those defined by Piraveenan et al. (2008), consider again Equation (4.8). By replacing
the right-hand side of the equation by its definition in Equation (4.6) we obtain:

- " (jo — Uy ) (ky — U,
pU:Zpevu :Z(v 3(});_2 qk)
u=1 qk

u=1
=y el (4.10)
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(4.12)

where Equation (4.10) is an equivalent transformation, c¢f. Newman (2002, eq. (4)).
Equation (4.11) results because the number of neighbours of a vertex corresponds to
its degree, and thus, ki, S ky=ky & S0 ky = Kkl ky, where k, is the mean excess
degree of the neighboflrs of vertex u. Finally, Equation (4.12) shows that the vertex
based local assortativity measure p, is precisely the definition of local assortativity by
Piraveenan et al. (2008).

This demonstrates that both definitions of local assortativity, the one by Zhang et al.
(2012) and the one by Piraveenan et al. (2008) are equivalent. Note that Piraveenan
et al. (2008) scale their local measure, such that summing over the local vertex as-
sortativeness values yields the assortativity coefficient r. This, however, is a matter of
choice, and is achieved by multiplying the denominator in Equation (4.12) by 2, because
D1 P =2r ST =300 %v

Piraveenan et al. (2010) give a slightly different definition of local assortativity. More
precisely, using our notation, then, modifying the numerator of Equation (4.12) to be
Jukl,(ky — Ug) yields the local vertex assortativeness values by Piraveenan et al. (2010).
However, in order to derive this definition Piraveenan et al. (2010) had to make a
questionable assumption on how to split the contribution to the global assortativity
among vertices, whereas our definition, and thus, the definition by Piraveenan et al.
(2008), copes without additional assumptions. Moreover, the resulting local vertex
assortativeness by Piraveenan et al. (2010) additionally would have to be scaled, as
their summation does not equal the global assortativity coefficient any more. This
is because the definition in Equation (4.12) obeys this rule, and unless Uy = 0V
jo # 0 or Ug = j, # 0 both definitions are different, in general. Therefore, we
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consider the modified local assortativity coefficient by Piraveenan et al. (2010) as the
inferior measure. It seems that their first intuition was right, i.e., the local assortativity
coefficient as proposed by Piraveenan et al. (2008), as we arrive at the same result
differently.

With the help of both assortativeness values, p. and p,,, the following measures can be
derived in order to further differentiate the local connectivity tendencies of a network:
The relative frequency of assortative edges is denoted by P(pe > 0); similarly, The
relative frequency of assortative vertices is denoted by P(p, > 0). Zhang et al. (2012)
also derive two measures they refer to as the average assortative (or disassortative)
strength of an edge. However, this might lead to confusion, as the term strength refers
to something different in the context of weighted networks, as we will detail in a bit.
Instead, for the two measures, we will refer to them as what they actually are. More
precisely, the mean absolute magnitude of assortative edges, which we denote by @,

and similarly, the mean absolute magnitude of disassortative edges, which we denote by

(pe)--
Finally, we consider the edge based definition of local assortativity by Zhang et al.

(2012) as the more flexible approach, especially as it also allows us to obtain precisely
the vertex based assortativeness values by Piraveenan et al. (2008). We therefore adopt
this formulation for the derivation of our generalized local assortativity measure, in the

subsequent section.

4.2 Generalized Local Assortativity

Recall that in weighted complex networks, vertex degree generalizes to vertex strength,
see Barrat et al. (2004). He defines the strength of a vertex u to be the total weight of
its connections, i.e., s, = ZUEV Wyy Where V' is the vertex set and w,y, is the weight
of the edge that connects vertices v and v. Thus, it is sensible to also generalize the
definition of the assortativity coefficient, r, in Equation (4.1) by incorporating excess
vertex strengths rather than excess vertex degrees in weighted networks. This allows
for deriving a weighted local assortativity measure similarly to the global one. Initially,
Zhang et al. (2012) derive their measure for undirected networks only. They indeed point
out that an extension towards directed networks is straightforward, but do not provide
any details. In the following, we will first derive a weighted local assortativity measure
for undirected networks and, thereafter, give a detailed description of the necessary

steps for extending the newly obtained definition to directed networks.

4.2.1 Undirected Weighted Networks

In order to derive weighted local assortativity for undirected weighted networks, we

define the following quantities: let py denote the strength distribution, i.e., the prob-
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ability that a randomly chosen vertex has strength s’; ¢s denotes the excess strength
distribution, i.e., the probability that a vertex reached by following a randomly chosen
edge of weight w has excess strength s. Note that the excess strength s of a vertex
depends on the weight w of the edge we arrived along. It is the total strength of the
vertex less the edge weight w, i.e., s = s’ — w, and hence is distributed proportional to

(s +w)pst+w-. Analogously to the previous derivation for g, the distribution is given by:

BRSO
° Zs/ 3/p5’

where )~ s'py is the expected strength of a vertex. We denote by ey the joint distri-
bution of excess strengths of either end of an edge, i.e., the probability that a randomly
chosen edge connects two vertices with excess strengths s and ¢. Having generalized
these quantities, a similar representation of assortativity as in Equation (4.1), but with

weighted vertex values, is given by:

1
re = = Z st(est — qsqt), (4.13)
ds st

which, by a similar rearranging of the right-hand side as before, is equivalent to:

E[(S — U, )(T - U,
B aéf )] 414

where, this time, S and 7' are the excess strengths of the ends of an edge and U,
denotes the mean of the distribution ¢, which is the mean excess strength of an end of
an edge and ags is the variance of the distribution gs.

In order to quantify the amount of assortative mixing Newman (2002) follows Call-
away et al. (2001) by employing the (unweighted) connected degree-degree correlation
function. This is suitable for unweighted networks. However, in weighted networks in-
formation on the weights of the observational pairs s, and t. are incorporated via edge
weights w, of the connecting edge e. The extension of the definition of assortativity to
incorporate connection weights when computing the correlation coefficient between the
weighted vertex values is straightforward, as weighted statistical functions for arithmetic
means, covariances, and variances are readily available, see Price (1972).

Thus, we can estimate the theoretical quantities in Equation (4.14) by their weighted
sample counterparts (again by averaging over the edges of the network), and obtain the

following weighted assortativity coefficient:

o + M we(se — Uz )(te —U)
o - , (4.15)
qs
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where s, and t. are the excess strengths of the ends of edge e, the sum of edge weights
is denoted by H = Zé\il We; U;‘; =H! Ze]‘il Twe(se +1te) is the weighted sample mean
and 6y = \/H—1 M swe(s2 +t2) — (Ug)? the weighted sample standard deviation

of the excess strength of an end of an edge.

The coefficient, r*, in Equation (4.15) corresponds to the weighted correlation co-
efficient between the weighted vertex values (excess strengths) of the ends of an edge,
as introduced in Chapter 3. It is the weighted counterpart of the assortativity coeffi-
cient, r, by Newman (2002) as in Equation (4.5), which is the unweighted correlation
coefficient between the unweighted vertex values (excess degrees) of the ends of an edge.

Furthermore, we denote by p% the extension of the assortativeness values as in Equa-
tion (4.6) towards weighted networks. The weighted assortativeness values p¥ are de-

fined as:

" we(se—Ugi)(te—U;:)

106 = H(&;‘;)Q

(4.16)

Edges are considered disassortative if the values are negative, i.e., if p¥ < 0, and assor-
tative of the values are positive, i.e., p¥ > 0.

Similar to the generalized assortativity coefficient in Chapter 3 (see Equation (3.4)),
we introduce tuning parameters «, € {0,1}, that function as switches and allow
for controlling the degree of generalization of the local assortativity coefficient. More
precisely, the parameter « switches between the use of excess degrees or strengths
as vertex values, and [ switches between the computation of unweighted or weighted
correlation between the vertex values of the ends of an edge. Moreover, these tuning
parameters allow for nesting previous (local) assortativity measures as special cases, as
we will detail in the following. To this end, let s}, = >°, ., w, be a modified version of
vertex strength s/,. Clearly, if & = 1, then s* equals the vertex strength, i.e., s* = 5,
whereas, if @ = 0, then s* reduces to ordinary vertex degree, i.e., s* = k’. Furthermore,
let Q = Zé\il Wl Obviously, if 8 = 1, then Q = H, i.e., Q corresponds to the sum
of edge weights, whereas, if § = 0, then Q = M, i.e.,  equals the number of edges in
the network. Based on these parameters, («, 3), we define the corresponding weighted

assortative values as:

Weﬂ[le - U;i (0475)][7”6 - U(Z (CV, 6)]
Q[6% (@, )1

pe(a, B) = : (4.17)

where [ and m. are the vertex values of the ends of edge e. For example, [ =
s; — wg; the (weighted) sample mean and standard deviation expressed as functions
of the parameters (a, ) are U (a,f) = Q! Zéwzl %we’g(le + me) and &y (o, B) =
\/Q—l M %weﬁ(lg +m2) — [U% (e, )], The expression in Equation (4.17) is the most

general version of the (weighted) assortativeness values (for undirected networks) as
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it nests all previous (local) assortativity measures as follows: for the combination
a = 0 and B = 0, the values p¥(a, 3) reduce to the original assortativeness values
as proposed by Zhang et al. (2012) (see Equation (4.6)), i.e., p¥(0,0) = pe, such that,
Zé‘il p2(0,0) = r. Whereas, for the combination &« = 1 and 8 = 1, the values equal
the weighted assortativeness values (see Equation (4.16)), i.e., p¥(1,1) = p¥, and thus,
Zé\il p2(1,1) = r. Generally, summing the values p¥(«, ) for all edges M in the
network yields the generalized assortativity coefficient, v («, ), i.e., Ze]\il (e, B) =
(v, B). We therefore refer to the values p¥(a, §) as the generalized edge assortative-
ness values. The summation of the generalized edge assortativeness values over the
edges emanating from a vertex v yields the generalized vertex assortativeness values,
g, 8) = Y0 o2, (o, ).

Additionally, by using the same naming convention as used by Zhang et al. (2012),
we refer to the assortativity coefficient that results by summing the generalized edge
assortativeness values for an arbitrary target edge set Eiarget as the generalized universal
assortativity coefficient (GUAC), and define it as:

> pla, B) = pSUAC (4.18)

€€Etarget

The GUAC is a versatile coefficient that, e.g., can be used to determine the contribution
of either a set of vertices or edges to the global assortativity. It is up to the researcher
to choose which vertices and edges are interesting to consider. Possible interesting
vertices can include the top n most assortative or most disassortative vertices (or edges).
However, it can also be interesting to examine the vertices that can be combined into a
community (or the edges connecting them) with regard to their aggregated assortativity.
Another interesting example, which is considered in the following, is the determination
of the assortativity of isomorphic components in a network.

Figure 4.1 shows the advantage of the GUAC of being capable of identifying the
differences of weighted local connectivity patterns of isomorphic components. The ex-
ample undirected network on n = 70 vertices with M = 71 edges is based on the
one depicted in Zhang et al. (2012), but is complemented by randomly assigned edge
weights, except for edges that are incident with vertices of components A or B, which
have the same weight of one. The network is overall disassortative with respect to de-
grees, as r“(0,0) = —0.800, and also (even slightly more) overall disassortative with
respect to strengths, as r¥(1,1) = —0.828. However, the components A and B show
different local connectivity patterns in the sense of how they connect to the rest of the
network. In order to quantify this behaviour the GUAC of the components is computed
by summing the local edge assortativeness values that connect each component to the
rest of the network, respectively. Although they are isomorphic components, A tends

to connect degree disassortatively to the rest of the network, ngAC(O,O) = —0.034,
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Figure 4.1. Differences of local connectivity patterns of isomorphic compo-
nents (A and B). The example weighted undirected graph on n = 70 vertices with
M =71 edges is based on the one depicted in Zhang et al. (2012), but is complemented
by randomly assigned edge weights (except for the edges that are incident with vertices
of components A or B, which have the same weight of one). Higher edge weights are
indicated by thicker edges. The depicted size of vertices is proportional to the vertex’
total vertex strength.

whereas B forms degree assortative connections, p%UAC (0,0) = 0.025. This can be ver-
ified, again, by considering Figure 4.1, where the component A, of which the vertices
have a relatively low degree, is surrounded by high-degree vertices, whereas component
B is connected to also low degree vertices. If, however, edge weights are considered,
then, the components A and B are almost non-assortative, as p%UAC(l, 1) = —0.009
and p§UAC(1,1) = 0.007. The signs of p§UAC(1,1) and p§UAC(1, 1) still differ, because
of the way each component connects to the rest of the network, i.e., A is surrounded
by vertices with high strengths, whereas B connects to low strength vertices. However,
the contribution to the overall disassortativity of the network is equally small for both
components A and B. This is because of the comparatively low weights of the edges
that connect the components to the rest of the network (all equal one).

As a result, the components A and B show different local connectivity patterns with
respect to their degrees, but show similar local connectivity patterns with respect to
their strengths. Thus, the GUAC allows to further distinguish between local connec-
tivity patterns of components and their contribution to the global assortativity of the
network, if edge weights are additionally considered.

Moreover, with the help of both generalized edge and vertex assortativeness values,
generalizations of the unweighted measures can be derived, that allow for further dif-

ferentiation of the local connectivity tendencies of a weighted network, such as the
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proportion of assortative edges, P(p¥(«, ) > 0), the proportion of assortative vertices,
P(p¥(a, B) > 0), the mean absolute magnitude of assortative edges m and the
mean absolute magnitude of disassortative edges, (p2(a, 3))_

Finally, with the help of the generalized edge assortativeness values it is possible to
determine local assortativity measures, which have not been considered in the litera-
ture, so far. For example, p¥(1,1) is a local assortativity measure that corresponds to
the global generalized assortativity coefficient, which we proposed in Chapter 3. More-
over, p¥(0,1) is a local assortativity measure corresponding to the (global) assortativity
coefficient suggested by Leung and Chau (2007)

So far we have considered undirected networks. Now we will extend the proposed

local assortativity measures for directed networks.

4.2.2 Directed Weighted Networks

In the following, we extend the definition of generalized local assortativity for directed
weighted networks, similar to Newman (2003) and Piraveenan et al. (2012) for un-
weighted networks. We therefore define the following quantities: pS™ denotes the
out-strength distribution, i.e., the probability that a randomly chosen vertex has out-
strength s’. The in-strength distribution, i.e., the probability that a randomly chosen
vertex has in-strength s’ is denoted by pi}}.

In order to define the excess out- or in-strength distributions we have to distinguish
between the cases in which an edge leads out of a vertex and those in which an edge
leads into a vertex, respectively. We indicate the latter by a superscript asterisk symbol.

To this end, for the excess out-strength, let ¢S denote the excess out-strength dis-
tribution of the end that a directed edge leads out of, i.e., the probability that a vertex
reached by backtracing a randomly chosen directed edge of weight w has excess out-
strength s. However, ¢:°" denotes the excess out-strength distribution of the end that

a directed edge leads into, i.e., the probability that a vertex reached by following a

randomly chosen directed edge of weight w has excess out-strength s. In case of ¢2"*

the excess out-strength s of an end depends on the edge weight w, thus, it is the total

out

out-strength less the edge weight, i.e., s = s’ — w, hence, ¢°

is distributed according

to (s +w)p?t | and, as before, normalization results in:

(stw)’
out
out _ B @I
s Zs’ S/pg/ut

As opposed to this, in case of ¢i°" the excess out-strength s of an end does not depend

on the edge weight w, and thus, the excess out-strength is equal to the total out-strength

out
s’

*out

in this case, i.e., s = ¢, hence, ¢¥°" is distributed according to p
Similarly, for the in-strength, we denote by ¢*™ the excess in-strength distribution of

an end that a directed edge leads into, i.e., the probability that a vertex reached by
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following a randomly chosen directed edge of weight w has excess in-strength s. The
excess in-strength distribution of an end that a directed edge leads out of is denoted
by ¢, i.e., the probability that a vertex reached by backtracing a randomly chosen
directed edge of weight w has excess in-strength s. This time vice versa, in case of ¢}"
the in-strength of an end depends on the edge weight w, thus, it is the total in-strength
less the edge weight, i.e., s = s’ —w, hence, ¢ is distributed according to (3+w)p1(1; )

where normalization yields:

q*m — (S + OJ) (s+w) .
5 Zs’ S psl

Contrary, if we consider ¢ the excess in-strength of an end does not depend on the
edge weight w, thus, the excess in-strength is equal to the total in-strength in this case,
i.e., s = &', such that ¢ is distributed according to pi;}.

Furthermore, we define e2* ™ to be the joint distribution of excess out- and in-
strengths, i.e., the probability that a randomly chosen directed edge leads out of a
vertex with excess out-strength s and into a vertex with excess in-strength ¢. The joint
distributions for the other modes of assortativity, which are out-out, in—in and in—out,
are defined accordingly. For reasons of clarity, we only show the derivation for the
out—in mode. The derivation for the other modes is analogous.

Using the above, we define a directed weighted assortativity coefficient as:

1
P = ———— > st(ed* " — gg™). (4.19)

quut Uq*in o

Apparently the representation in Equation (4.19) is a directed version of the coefficient
in Equation (4.13), and thus, corresponds to the (vertex value) weighted version of the
directed assortativity coefficient by Newman (2003), i.e., it is the correlation between
the excess out-strength of the outgoing end and the excess in-strength of the incoming
end of an edge.

Once more, we rearrange the right-hand side of Equation (4.19), estimate the theo-
retical quantities by their weighted sample counterparts, and introduce (v, 3) and the
mode of assortativity as parameters. We then define the directed weighted assortative-

ness values as:

WA — U0, )] min — U, ()]
w . B, 3 — - s s 4.20
p2 (v, B, out—in) Q.- qwom<a’ 3) - g(c; (04,5) ( )

where I9% and m® are similarly defined, as before, with the addition that the direc-
tion of edge e is incorporated, i.e., if @« = 1, the quantities denote the excess out-
strength of the end [ that edge e leads out of and the excess in-strength of the end

m that edge e leads into. If, however, the parameter a = 0, the vertex values re-
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duce to the excess out- and in-degree, respectively; U Out(a B) =01t Z _q We lout and
U;éin( a,fB) = Q~ 1 Ze:l weﬁmm are the (weighted) sample mean out- and in-strengths

e

of the outgoing and incoming ends, respectively; and the respective (weighted) sample
standard deviations are given by & Out( ,B) = \/Q 1 Ze 1 g(lg‘lt)2 - [7;)“(04,6)]2

a‘nd O—q*in( /8) \/Q 1 z =1 w@ (mln) [U(‘iln( 6)]222
If 5 = 1 weighted sample mean and standard deviation of the vertex value of an

end of an edge are used. However, if 8 = 0, the unweighted mean and standard
deviation are used. Just like Equation (4.17) for undirected networks, the expres-
sion in Equation (4.20) is the most general version of the (weighted) assortativeness
values for a directed network.”? For example, consider the parameter combination
( = 0,8 = 0), the summation of the generalized weighted and directed assortative-
ness values, p¥(a, B, mode), for the out—in mode of assortativity corresponds to the
directed assortativity coefficient, r4, by Newman (2003), whereas for the out—out and
in—in modes it corresponds to the so-called out-assortativity, rout, and in-assortativity,

Tin, respectively, see Piraveenan et al. (2012).

Mode
B=0 =1 B=0 =1
undirected PN, 1 rke 2 - e
i 3 — — «
out—in Td, T out—in
4

out—out Tout - - Tout-out

. 4 w
m—in Tin, - - Tin—in
m—out - - - Tin

in—out

! Newman (2002)
2 Leung and Chau (2007)
3 Newman (2003)
4 Piraveenan et al. (2012)

Table 4.1. Overview of previous assortativity measures that are obtainable by sum-
ming p¥(c, 5, mode), as in Equation (4.20) for the various parameter combinations
(a, B) for the different modes of assortativity. We indicate assortativity measures, which
have been previously used in the literature by their references (no claim to complete-
ness) Measures that have not been focused by the literature, so far, are indicated by
. Note that the generalized assortativity coefficient ¥ , (a, ) technically nests all
measures, however, its focus is on the parameter combination (o« = 1,8 = 1), and thus,
we decide to forgo placing a reference in each cell of the table for reasons of clarity.

22Unlike in undirected networks, in a directed network each edge has one outgoing and one incoming
end. Therefore, the mean excess out-degree or out-strength of an end of an edge is obtained by averaging
the excess out-degrees or -strengths of the outgoing ends over all edges in the network. The mean excess
in-degree or -strength of an end of an edge is obtained, accordingly. This also applies to the computation
of the standard deviation of the excess out- or in-degree or -strength of an end of an edge.

23Technically, Equation (4.20) is capable of handling undirected networks as well, however, a slight
modification to the network is necessary, i.e., replacing each undirected edge by two directed ones that
point in opposite directions, alternatively Equation (4.17) can be used, c¢f. Newman (2003).
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Table 4.1 gives an overview of previous assortativity measures that are obtainable by
summing the generalized weighted and directed assortativeness values for the various
parameter combinations for the five different modes of assortativity (we consider undi-
rected as a fifth mode here). For example, Zej\il p2(0,0, undirected) = r~, which is the
assortativity coefficient by Newman (2002).

Moreover, in directed networks, the vertex assortativeness values can be further dif-
ferentiated. The sum can either be computed using the edge assortativeness values of
the outgoing edges or the incoming edges. This results in two representations of vertex
assortativeness values, which we refer to as the generalized vertex out-assortativeness
values and generalized vertexr in-assortativeness values, respectively. The generalized
vertex out-assortativeness and in-assortativeness values of a vertex v are denoted by

% (e, B, out) and p¥(a, B, in), respectively, and they are defined as:

(o, B, out) = Zp‘cfw (a, 8, mode), pula, B,yin) = Zp‘cfw (ar, B, mode).
u=1

u=1

We suggest that the directed vertex assortativeness values are chosen in accordance
with the considered mode of assortativity. For example, both generalized vertex out-
and in-assortativeness values can be determined for the out—in mode of assortativity. For
the generalized vertex out-assortativeness, the contribution to the global assortativity
is assigned to the vertex from which the edge originates. In the case of generalized
vertex in-assortativeness values, the contribution to global assortativity is assigned to
the vertex pointed to by an edge. It depends on the research setting, in particular
which vertex is responsible for a connection, whether the former or the latter should be
preferred. Finally, the generalized vertex out- and in-assortativeness values obey the

following summation rule:
Z (e, B, out) = Z (e, B,in) = Z pe,, (@, B,mode) = r*(a, f,mode). (4.21)
v=1 v=1 uv

In summary, by generalizing the concept of local assortativity towards directed and
weighted networks, we obtain the generalized edge and vertex assortativeness values, p¥
and p¥ (see Equations (4.20) and (4.21), respectively), yielding measures for the contri-
bution to global assortativity of individual edges and vertices, respectively. Moreover,

the generalized universal assortativity coefficient, pGUAC

(see Equation (4.18)), mea-
sures the assortativity of network components by aggregating the assortativeness values
of edges of an arbitrary edge subset. For all measures, the parameters are («, 8, mode),
where the parameter « indicates if vertex degrees or strengths shall be used and
indicates whether to compute the unweighted or weighted correlation, for the respec-

tive mode of assortativity. We proceed with a demonstration on how to use the newly
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obtained measures for an in-depth analysis of local assortativity of a network in the

subsequent section.

4.3 Empirical Analysis of Local Assortativity Patterns

In the following, we demonstrate the usefulness of our generalized local assortativity
measures by presenting an in-depth analysis of the generalized local assortativity of
theoretical network models as well as of real world networks. Section 4.3.1 considers
weighted generalizations of the Erdds-Rényi random graph (ER) and Barabéasi-Albert
(BA) models. In Section 4.3.2 we consider two real world networks, one undirected the

other one directed.

4.3.1 Selected Network Models

The models considered below are weighted extensions of models that are known to be
(global) non-assortative. We therefore expect that the weighted extensions will have
a similar assortativity structure, especially since the extended models contain their re-
spective counterparts as unweighted projections (for which we measure the assortativity
with the parameter combination (o = 0,5 = 0)). A main purpose of the analysis is to
verify that our generalized local assortativeness measures are able to identify a known
(global) non-assortative network, and also to uncover differences in the local structures.
The differences in the local assortativity structures can then help to further differentiate

the topology of networks with similar global assortativity.

4.3.1.1 The Weighted Random Graph Model

The weighted random graph (WRG) model by Garlaschelli (2009) is an extension of
the Erdds-Rényi random graph (ER) model towards weighted networks. It seizes on
the Gy, ensemble (see Chapter 2), but incorporates edge weights w. The derivation is
analogous to the ER model, see Park and Newman (2003), Maslov and Sneppen (2004),
Garlaschelli and Loffredo (2008, 2009) and Garlaschelli (2009) for a thorough derivation
of the model. In essence, the WRG model is completely specified by the probability

that any two vertices ¢ and j are connected by an edge of weight w, which is given by:
P(Wi; = w) = P(w) = p“(1 —p). (4.22)

The probability that there is no edge between two vertices is denoted by P(0), and thus,
1— P(0) = p is the probability of two vertices being connected by an edge of any (non-
zero) weight. The choice of the symbol p is, according to Garlaschelli (2009), justified
by the fact that the projection of the WRG model onto an unweighted graph yields
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the ER random graph with connection probability p.2* Consider Equation (4.22) and
let ¢ = (1 — p), with this, note that the random weights Wj; are distributed according
to a geometric distribution with success probability ¢, i.e., W;; ~ Geo(q). Usually, the
parameter of the geometric distribution is denoted by p. In this paper, however, p is
defined in terms of the complement, hence, we introduce the substitution § = (1 — p)
for reasons of traceability. In this case, the geometric distribution is the probability
distribution of the number of consecutive fails w that can be observed, in a series of
independent Bernoulli trials with success probability ¢, before the first success occurs,
cf. Krishnamoorthy (2020). In order to draw samples from the geometric distribution,

the parameter ¢ can be determined by equating the network’s average edge weight @w to
1— 1

the mean of the distribution Geo(q), i.e., @ = qq 4=z

leads to the identity p = G;L—i-l Sw= 1%}3.
With the above, we can generate directed samples from the WRG model, with a

which, by resubstitution,

given order n and mean edge weight @w, simply by forming a weighted n x n adjacency
matrix W = [wj;] from the realizations, wj;, of n(n — 1) randomly drawn edge weights,
Wij ~ Geo(q), such that the diagonal elements of W are zero.?® For undirected samples
only the upper triangle of W has to be populated with randomly drawn weights, due to
symmetry of the adjacency matrix (the lower triangle is populated, such that w;; = wj;,
afterwards).20

Figure 4.2 shows networks of order n = 100, which result of sampling the WRG
model for different target mean edge weights w, and thus, different target connection
probabilities p. For the ER model, the condition for the emergence of a giant component
isp> ﬁ, i.e., a giant component emerges if the mean degree of the network exceeds
unity (K’ > 1), in other words, each vertex is on average connected to at least one
other vertex, cf. Erdos and Rényi (1960), Bollobas (2008) and Barabési (2016). For
the WRG model, this translates to the following condition for the emergence of a giant
component: w > ﬁ Interestingly, by comparing Figures 4.2a to 4.2c, the transition
from a subcritical regime, where there is no giant component, to a supercritical regime,
where there is a giant component together with small clusters, to a connected regime,

where there is single giant component and no small clusters, can be observed.

Z4Note that, for the purpose of fitting the model to a real network, the maximum likelihood estimates
p* of the connection probability p are different for the WRG and the ER model, see Garlaschelli and
Loffredo (2008), more precisely:

. 2H h " 2M
= ———————— , whereas = —.
Pwrac nn—1)+2H PER n(n — 1)

25See Devroye (1986) and Krishnamoorthy (2020) for algorithms for sampling random numbers from
a geometric distribution.

26 Alternatively, pseudocode of the algorithm that generates undirected samples from the WRG
model, as presented in Garlaschelli (2009), which can be easily generalized for directed networks, can
be found in Coolen et al. (2017)
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w =0.02

Measure a=0 a=1

B=0 B=1 B=0 B=1
undirected
re -0.002 -0.002 -0.002 -0.002
P(p¥ > 0) 0.500 0.500 0.502 0.501
(P‘é’)+ 6.48e-05 6.48e-05 6.43e-05 6.44e-05
(pe)_ 6.53e-05 6.53e-05 6.52e-05 6.53e-05
P(py > 0) 0.499 0.499 0.499 0.499
out—in
r -0.001 -0.001 -0.001 -0.001
P(p¥ > 0) 0.500 0.500 0.501 0.501
(p‘g’)+ 3.26e-05 3.26e-05 3.23e-05 3.23e-05
(p%)_ 3.27e-05 3.27e-05 3.25e-05 3.25e-05
P(p¥ (out) > 0) 0.499 0.499 0.500 0.500
P(pY (in) > 0) 0.500 0.500 0.500 0.501
out—out
r -4.25e-04 -2.63e-04 -4.09e-04 -2.46e-04
P(p¥ > 0) 0.500 0.500 0.501 0.501
( ‘g)+ 3.26e-05 3.26e-05 3.23e-05 3.23e-05
(p%)_ 3.27e-05 3.27e-05 3.25e-05 3.25e-05
P(p¥ (out) > 0) 0.499 0.500 0.498 0.499
P(p¥(in) > 0) 0.500 0.501 0.500 0.500
in—in
rY -0.001 -0.001 -0.001 -0.001
P(p¥ > 0) 0.500 0.500 0.501 0.501
(p‘é’)+ 3.25e-05 3.25e-05 3.22e-05 3.22e-05
(p%)_ 3.27e-05 3.27e-05 3.25e-05 3.25e-05
P(p¥ (out) > 0) 0.499 0.498 0.499 0.499
P(p¥(in) > 0) 0.497 0.499 0.499 0.500
in—out
r -4.49e-04 -0.001 -4.05e-04 -4.77e-04
P(p¥ > 0) 0.501 0.501 0.503 0.503
(p;’)_,_ 3.26e-05 3.26e-05 3.22e-05 3.22e-05
(p%)_ 3.27e-05 3.27e-05 3.26e-05 3.26e-05
P(p% (out) > 0) 0.499 0.499 0.499 0.499
P(p¥(in) > 0) 0.499 0.499 0.499 0.499

Table 4.2. Generalized local assortativity analysis of the WRG model. Re-
ported are the generalized assortativity coefficient r*, fraction of local assortative edges
P(p¥ > 0), average absolute magnitude of assortative edges (p¥)4, average absolute
magnitude of disassortative edges (p¥)_, fraction of local assortative vertices P(p} > 0)
(undirected), and fraction of local out- and in-assortative vertices P(p%(out) > 0) and
P(p¥(in) > 0) (directed), respectively, for the WRG model, for a target mean edge
weight w = 0.02, for all four parameter combinations («, ). An ensemble of 100
weighted random graphs (WRG) of order n = 1000 is drawn for each mode of assorta-
tivity. The results are averaged over the samples of the respective ensembles.
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(a) Subcritical regime. (b) Supercritical regime. (c) Connected regime.

Figure 4.2. Realizations of sampling the WRG model from different regimes.
The graphs are on n = 100 vertices. The probability of two vertices being connected by
an edge of any (non-zero) weight is, for (a) p = 0.0099 resulting in a mean edge weight
w = 0.01, for (b) p = 0.0196 and @ = 0.02, and for (¢) p = 0.0476 and @ = 0.05. The
size of a vertex is proportional to its (total) strength. Moreover, thicker edges indicate
higher edge weights.

Since most real-world networks are supercritical, cf. Barabasi (2016), we base our
local assortativity analysis of the WRG model on that regime. For each mode of as-
sortativity, i.e., undirected, out—in, out—out, in—in and in—out, we sample an ensemble
of 100 networks. We set the average edge weight of a sample to i = 0.02. This way
we ensure that the resulting samples are in the supercritical regime. The range of p for
which the supercritical regime results is % <p< %, cf (Barabési, 2016, p. 86). An
average edge weight of @ = 0.02 corresponds to a connection probability p = 0.0196,
which lies in between - = 0.01 < 0.0196 < 0.0461 = 219 Apy other value from this

100 100
range would be appropriate, too.

Table 4.2 shows the averaged results of the local assortativity analysis (over the
samples of the respective ensembles) for the four different parameter combinations
(o, B) € {0,1}. Note that, for the parameter combination (o« = 0,8 = 0), the WRG
model is projected onto an unweighted graph, i.e., analysing the generalized assortativ-
ity of the WRG model is the same as analysing the assortativity of the ER model, for
this combination. The following detailed description refers to all modes and parameter
combinations, as the results are quite similar. For example, the generalized assortativity
coefficient 7 («, #) equals almost zero, indicating that the WRG model generates net-
works that do not show any degree or strength correlations, as expected.?” Moreover,
there is an equal proportion of assortative and disassortative edges, as P(p. > 0) =~ 0.5.
Also, assortative and disassortative edges tend to be equally strong as the average abso-
lute magnitude of assortative and disassortative edges is fairly balanced. Finally, there

is an equal proportion of assortative and disassortative vertices, as P(p, > 0) =~ 0.5.

2"The fact that the coefficient is not exactly zero might be explained by structural constraints, i.e.,
the finite size of the network sample, cf. Serrano et al. (2006) and Yang et al. (2017).
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Figure 4.3. Generalized local assortativity plots of the WRG model. The
plots are for a single undirected sample of the WRG model of order n = 1000 with an
average edge weight w = 0.02, for the parameter combination (o = 1,8 = 1).
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Figures 4.3a to 4.3f provide a graphical analysis of the local assortativity pattern of
the undirected WRG model, for the parameter combination (o = 1,3 = 1).?8 More
precisely, Figure 4.3a shows a scatter plot of the relation between the edge assortative-
ness values and the position of an edge in the edge list or adjacency matrix. If the
elements of the edge list or adjacency matrix of the network are ordered from a content
perspective, this depiction will provide a facility of analysing the edge assortativeness
with respect to this ordering. In the case of the theoretical WRG, however, there is
no particular ordering of vertices or edges. Therefore, Figures 4.3a and 4.3b emphasize
once more that no degree or strength correlations are present in this model, as positive
as well as negative edge and vertex assortativeness values are evenly distributed among
edges and vertices, respectively. This observation is also supported by the histograms
in Figures 4.3e and 4.3f. However, Figure 4.3d shows an interesting pattern. Although
vertices tend to be local non-assortative on average, the figure shows that there is more
variation in the vertex assortativeness values for vertices with an average excess strength
either below or above a particular value.??” The value for which the variation of gener-
alized vertex values is lowest (=~ 20) happens to be the global average excess strength
of the ends of an edge. This, however, is due to the way how (vertex based) local assor-
tativity is defined, as the definition pivots on the global average excess strength, U,,,
cf. Equation (4.12).

A main purpose of the preceding analysis is verifying that our generalized local assor-
tativeness measures are able to identify a known non-assortative network. It is, thus,
pleasant to see that the results coincide with our expectations, as the WRG model shows
neither global nor local assortative or disassortative tendencies, just as its unweighted
counterpart the ER model with unweighted assortativity.

We continue with another theoretical model that, similar to the WRG, is known
(global) non-assortative, but is structurally different with respect to local assortativity.
We show that these different structures can be uncovered by our local assortativity

measures.

4.3.1.2 Weighted Preferential Attachment Models

Yook, Jeong, Barabési, and Tu (2001) consider weighted scale free networks. Their
model, which they refer to as the weighted scale free model (WSF), expands the simple
BA model by a weight assignment scheme, i.e., edges are created according to the
simple preferential attachment scheme in Equation (2.1), to which weights are assigned

afterwards. In order to derive the weight assignment scheme, the following assumptions

28We forgo showing figures for both the other parameter combinations and modes of assortativity
because of their similar visual appeal.

29The average excess strength of a vertex corresponds to the total strength less the mean of the
weights of the edges emanating from that particular vertex. Figure B.1 illustrates how the average
excess degree and strength of a vertex are obtained.
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are made: (1) the weight of a newly created edge between a new vertex j and an existing
one ¢ is proportional to the degree kf; (2) it is assumed that vertices have reasonably
uniform total resources for linking to others. Thus, for each new vertex entering the
network, its total strength is fixed,3’ and normalized, such that the sum of weights of
m newly created edges equals unity, i.e., > (i} wjir = 1, where {#'} is the set of vertices
to which a new vertex j is connected to. As a result of combining the two assumptions,
weights are assigned to newly created edges between vertices j and i according to the
following scheme:
ki

wji Z{i/} k‘/{i/}' (4.23)
Furthermore, Yook et al. (2001) propose two variants of the model, by altering either
the preferential attachment scheme or the weight assignment scheme. The former is
referred to as weight driven connectivity, whereas the latter is referred to as weight
driven weight. With weight driven connectivity, the preferential attachment scheme in
Equation (2.1) is altered, such that the probability of choosing an existing vertex i is
proportional to its strength s, instead of its degree k}. Similarly, in the weight driven
weight case, degrees &’ are replaced by strengths s’ in the weight assignment scheme in
Equation (4.23). Moreover, Zheng, Trimper, Zheng, and Hui (2003) contribute to this
by adding a stochastic weight assignment scheme to the WSF model. At first, random
fitness values 7 are assigned to the vertices, where, for simplicity, n; ~ Ujgy) for each
vertex i.3% With probability p, edge weights are then assigned to newly created edges
according to Equation (4.23), and, with probability (1 — p) edge weights are assigned

according to the scheme:

i

wi (4.24)
For p = 1 the connectivity driven weight scheme suggested by Yook et al. (2001) is
recovered, whereas, for p = 1 weights are driven entirely by vertex fitness. For values in
the range 0 < p < 1, weights are stochastically assigned, mimicking the real-world be-
haviour of newcomers entering a network, and choosing to connect to others either based
on their popularity or based on other non-popularity related attributes captured by the
fitness value. As with the simple BA model, there exist a growing number of extensions
to the weighted BA model. Among the above-mentioned extensions for the simple BA
model, of which some might also be applicable to the weighted BA model, there exist
extensions specifically developed for the weighted model. For example, Barthélemy,

Barrat, Pastor-Satorras, and Vespignani (2005) argue that the presence of a new edge

30Vertices increase their strength by attracting new connections over the course of time, though.
3'However, the fitness values are not restricted to be uniformly distributed, but rather can be
distributed according to any distribution P(n), cf. Zheng et al. (2003).
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can introduce variations of existing weights across a network, such that a local rear-
rangement of weights might be sensible.

The simple BA model immediately becomes more complex when directed networks
are considered. Bollobas, Borgs, Chayes, and Riordan (2003) have suggested a directed
version of the unweighted simple BA model by introducing a set of additional parameters
a, 3,7, dout, Oin, Which are non-negative real numbers, where o + 8 + v = 1, together
with a set of rules on how to proceed in each time step t. A network is generated by

the following rules:

(A) with probability «, a new vertex j is added to the network and connected to an
existing vertex ¢ by forming an edge that points from j to ¢, where the probability

of choosing 7 is proportional to (kf, (i) + din).

(B) with probability /3, two existing vertices j and ¢ are connected by forming an edge
that points from j to i, where j and 7 are chosen independently, with probabilities

proportional to (k] (j) + dout) and (k! (¢) + din), respectively.

(C) with probability «, a new vertex j is added to the network and connected to an
existing vertex ¢ by forming an edge that points from 7 to j, where the probability

of choosing i is proportional to (k. (i) + dout)-

Apparently, parameters «, 3,7y can be interpreted as probabilities of a biased three-
sided coin, and &, and oyt are tuning parameters that allow for vertices with zero in-
or out-degree, kI or kl ., respectively, to still be considered as an end to connect to.

To the best of our knowledge, so far, there is no established model for producing
random directed and weighted scale free networks. Indeed, an attempt at a definition
of such a model has been made by Yuan et al. (2021), in order to generalize the model
by Bollobas et al. (2003). However, the generalization is not complete in that sense
that the case (B) is not contained in the model by Yuan et al. (2021), moreover, their
choice of assigning edge weights in the process of link formation seems a bit arbitrary
to us, as they randomly sample integer values ranging from 1 to 10.32 We conclude
that this model needs further investigation, and therefore, only consider the undirected
WSF model in this Thesis. We postpone the analysis of directed weighted scale-free
models to future research.

For our assortativity analysis, we consider the WSF model with stochastic weights
assignment scheme, for which we set mg = 5, 7" = 10000, m = 2 and p = 0.5, as a
representative of a weighted network with a scale free degree (and strength) distribu-
tion. Table 4.3 shows the results of the local assortativity analysis for the WSF model,
as averages over the individual samples of the ensemble. Interestingly, the results of

our analysis show that the model generates predominantly disassortative networks, as

32We aim at analysing the influence of edge weights on the local (edge) assortativity, and thus, it
does not seem sensible to us to set edge weights arbitrarily and then to interpret them.
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the generalized assortativity coefficient, r“, is negative for all parameter combinations
(a, ). This is the result of the fact that, on the one hand, the proportion of disas-
sortative edges is slightly higher, i.e., P(p¥ > 0) > 0.5, and, on the other hand, the

average absolute magnitude of disassortative edges is higher than that of assortative

edges, i.e., (p¥)_ > (p¥),. Furthermore, most of the nodes are disassortative, since
P(p¥ >0)>0.5.

a=0 a=1
Measure
B=0 B=1 B=0 =1

r -0.042 -0.079 -0.039 -0.074
P(p¥ > 0) 0.671 0.718 0.706 0.748
( ‘g’)+ 6.48e-06 5.57e-06 5.53e-06 4.87e-06
(p%)_ 1.95e-05 2.81e-05 1.98e-05 2.91e-05
P(p¥ >0) 0.692 0.702 0.714 0.725

Table 4.3. Generalized assortativity analysis of the WSF model. Generalized
assortativity coefficient 7, fraction of local assortative edges P(p¥ > 0), average abso-
lute magnitude of assortative edges (p¥)., average absolute magnitude of disassortative
edges (p¥)_, fraction of local assortative vertices P(p% > 0) for the WSF model, for all
four parameter combinations (a, ). An ensemble of 100 samples of the WSF model
with mg = 5, T' = 10000, m = 2 and p = 0.5 is drawn. The results are averaged over
the samples of the ensemble.

The BA model, of which the WSF model is an extension of, can be shown to be
non-assortative in the limit of large n, c¢f. Newman (2002). However, due to structural
constraints such as the finite size of the network samples, the model does not produce
purely non-assortative networks, cf. Maslov and Sneppen (2004), Serrano et al. (2006)
and Yang et al. (2017). Apparently, the WSF model shares this property.

Unlike the WRG model, Figure 4.4 shows patterns in the local assortativity struc-
tures for the WSF model. Note that in preferential attachment models, if vertices and
edges are numbered consecutively when entering the network or when forming, then the
respective indices correspond to the times at which a vertex was created or at which an
edge was formed. For example, in Figures 4.4a and 4.4b it can be seen that nodes that
join the network earlier tend to be disassortative, and edges that form early tend to be
assortative, cf. Noldus and van Mieghem (2015), who note a similar pattern in the BA
model.

On the other hand, plotting the edge assortativeness values against the corresponding
edge weight, cf. Figure 4.4c shows that highly weighted edges tend to be disassortative.
Similarly, for the vertex assortativeness values, when plotted against the average excess
strength of a node, cf. Figure 4.4d shows that the vertices with higher excess strength
tend to be disassortative. However, the analysis of the histograms in Figures 4.4e
and 4.4f indicates that the majority of edges and vertices are non-assortative.

Moreover, most of the assortative edges can be traced back to connections between

the disassortative hubs, which in turn are the product of the initialization of the model,
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Figure 4.4. Generalized local assortativity plots of the WSF model. The plots
are for a single sample of the WSF model with mg =5, T'= 10000, m = 2 and p = 0.5,
for the parameter combination (a« = 1,8 = 1).
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i.e., vertices that belong to the initial set of vertices, mg. Apparently, it takes some
time for these initialization effects to average out, and 7" = 10000 does not seem to be
long enough for the model to adopt an overall non-assortative structure. Xu, Zhang,
Sun, and Small (2009) and others consider cases in which the assortativity structure of
(scale free) networks is significantly influenced by super rich nodes. They argue that it
may be sensible to exclude these super rich nodes from consideration when calculating
certain network measures, e.g, assortativity. Considering the above, this might also be
useful if the WSF model is to be used.

Interestingly, both the WRG and the WSF model show very different local assorta-
tivity patterns, even though they are weighted extensions of models that are considered
to generate global non-assortative networks. This implies that networks may exhibit a
similar global assortativity, but the underlying local structures can differ substantially.
Accordingly, it seems sensible to also consider the local assortativity structures of a
network in order to describe its topology as precisely as possible. In the following, we

turn our focus to analysing the local assortativity patterns of two real-world networks.

4.3.2 Real World Networks

To exemplarily demonstrate the analysis of generalized local assortativity, we consider
two weighted real-world networks, one undirected, the other directed. We reconsider
therefore the NetScience network of Chapter 3 as an example for an undirected network
as well as the neural network of the nematode worm Caenorhabditis elegans (C. Elegans)
as an example for a directed network. Both networks are commonly used examples in
the literature. In addition, the datasets are publicly available, which ensures that the

results below can be easily reproduced.

4.3.2.1 NetScience Scientific Collaboration Network

Recall from the previous chapter, that the NetScience network is an undirected col-
laboration network of scientists working on network theory, where vertices represent
scientists and edges indicate if both co-authored one or more publications, c¢f. Newman
(2001). The intensity of the relation between two scientists is incorporated by positive
edge weights. In particular, degrees in the network correspond to the number of differ-
ent co-authors of a scientist, whereas strengths correspond to the number of papers a
scientist has co-authored with others, cf. Newman (2001).

Figure 4.5 shows a visualization of the graph structure of the NetScience network. It
can be clearly seen that the network consists of a larger connected component and many
smaller components, which are often basic configurations such as dyads, triangles, edge-
triangles or bow ties. According to our empirical results, presented in Chapter 3, the
NetScience network is an overall assortative network indicating that scientists have a

tendency to collaborate with others that are similar based on the number of co-authors



4 Local Assortativity in Weighted and Directed Complex Networks 71

0 o5 2 -® Y ®
s = 4 ® . @ . ..!, e ® =
(! R s 2] ol o e

. %.... = ’. =~. ..0@ N ..‘ s p ...:‘. ® %..

M @‘"‘Q\. - "egle s T e g

e * .: ..a;" ¢ o '0...‘ S e
. T T oo’y .. @ ®
e N iy 58 = ?C.o{ SR L .
) ¢ f o d 8 )\ 50"

Figure 4.5. Visualization of the graph structure of the NetScience network.
The figure shows both the largest connected component of the network, which consists
of ny = 379 vertices out of the n = 1589 vertices of the complete network, and the
remaining small components of which the network also is composed of (128 isolated
vertices have been omitted in the figure). The (total) vertex strengths are indicated by
colour-coded hulls, where lighter colours indicate lower strengths, and darker colours
indicate higher strengths. The size of the coloured hull of a vertex is proportional to its
(total) degree. Moreover, thicker edges indicate higher edge weights.

(degree) or based on the number of papers they have been co-authors of (strength),
since both the benchmark assortativity coefficient, Tt(%,o) = 0.4616, and the generalized
assortativity coefficient, rﬁvl) = 0.1928, have positive values.

Table 4.4 presents the results of the local assortativity analysis of this network. Well
over 70 percent of the edges are assortative, since P(p¥ > 0) > 0.7, for all parameter
combinations («, 3). The proportion of assortative vertices is of a similar order of
magnitude, with the proportion of P(p¥ > 0) = 68.9 percent for the combination (1,0)

standing out as rather low.
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Recall from Chapter 3, that there is a consistently disassortative connection effect
for the network. However, there is an inconsistent amplification effect, since it is dis-
assortative if degrees are used as vertex values but assortative if strengths are used.
Interestingly, this can be confirmed and even specified if we compare the average abso-
lute magnitude of assortative and disassortative edges. We then notice that the ratio
changes if we use weighted rather than unweighted vertex values, i.e., excess strengths
instead of degrees. For example, the average absolute magnitude of assortative edges is
higher than that for disassortative edges when considering the combinations (0,0) and
(0,1). On the other hand, if we look at the parameter combinations (1,0) and (1,1),
we find that the average absolute magnitude of disassortative edges is greater than that
of the assortative edges. This appears to be an indication of the connection effect.

In contrast, if we compare the average absolute magnitudes of assortative and disas-
sortative edges for a given value of the parameter «, the amplification effect becomes
apparent. For example, for a = 0, the difference in the average absolute magnitudes
between assortative and disassortative edges is reduced if 8 = 1 instead of 8 = 0, since
the magnitude of assortative edges is reduced in this case. For o = 1, on the other hand,
the difference in the average absolute magnitudes is reduced if § = 1 instead of 8 = 0,
because the magnitude of assortative edges increases more than for disassortative edges.

Figures 4.6a and 4.6b, depict the vertex assortativeness values plotted against the av-
erage excess degree (or strength) of a vertex. Moreover, the edge assortativeness values
are plotted against the corresponding weight of an edge, which is shown in Figure 4.6¢.
By considering Figures 4.6a and 4.6b, for the combinations (0,1) and (1,1), it becomes
apparent that the higher the average excess degree or strength of a vertex, the more
assortative it is. For combinations (0,0) and (1,0), vertices tend to be non-assortative
up to a medium average excess degree or strength, then assortative, and then non-
assortative again. In terms of content, there seems to be a certain degree or strength
where authors prefer to form connections with other equally well-connected authors.
Below or above, research collaborations seem to be of a more disassortative nature,
both in terms of degrees and in terms of strength. However, recurring collaborations
tend to exist between well-connected authors, recognizable by the slope of the curves
when the weighted correlation is calculated, i.e., for parameters (0,1) and (1, 1).

From Figure 4.6c, we see that edges tend to be more assortative the greater the
edge weight, with this effect being stronger in the case of degrees than in the case of
strengths. Again, the inconsistent amplification effect can be observed since the curve
for the combination (0,1) is above that of (0,0), but that for (1,1) is below that for
(1,0).

Also interesting to examine in general is the question of which vertices or edges are
particularly assortative or disassortative. For the network under consideration a par-

ticular assortative vertex corresponds to an author collaborating usually with others
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a=0 a=1

Measure

B=0 =1 B=0 =1

NetScience
e 0.462 0.340 0.102 0.193
P(p¥ > 0) 0.772 0.772 0.713 0.749
(p2) 2.76e-04 2.18¢-04 1.16e-04 1.55e-04
(p2)_ 1.96e-04 1.93e-04 1.59¢-04 1.83e-04
P(p > 0) 0.755 0.737 0.689 0.738
C. Elegans

out—in
I -0.233 -0.355 -0.181 -0.292
P(p¥ > 0) 0.511 0.494 0.610 0.633
(p2) 1.19e-04 1.18e-04 6.18e-05 8.21e-05
(p2)_ 3.27e-04 4.14e-04 2.94e-04 4.80e-04
P(pi > 0) 0.306 0.350 0.455 0.495
out—out
I 0.099 0.269 0.065 0.148
P(pe >0) 0.562 0.564 0.591 0.593
() 2.74e-04 3.50e-04 1.99e-04 2.24e-04
(p2)_ 2.55¢-04 1.89¢-04 2.20e-04 1.71e-04
P(p% > 0) 0.643 0.640 0.646 0.640
in-in
™ -0.092 -0.132 -0.068 -0.098
P(p? > 0) 0.572 0.677 0.694 0.734
(). 1.14e-04 1.12e-04 6.14e-05 9.66e-05
(p2)_ 2.44e-04 4.08¢-04 2.34e-04 4.23e-04
P(pi > 0) 0.549 0.616 0.582 0.636
in—out
™ -0.026 0.138 0.061 0.125
P(p? > 0) 0.531 0.530 0.645 0.658
(p2) 2.28e-04 3.19e-04 1.66e-04 1.92e-04
(p2)_ 2.82e-04 2.35e-04 2.27e-04 2.13e-04
P(p > 0) 0.532 0.549 0.660 0.653

Table 4.4. Generalized local assortativity analysis of real-world networks.
Reported are the generalized assortativity coefficient 7%, fraction of local assortative
edges P(p¥ > 0), average absolute magnitude of assortative edges (p¥)4, average ab-
solute magnitude of disassortative edges (p¥)_, fraction of local assortative vertices
P(p¥ > 0), for all four parameter combinations («, ), for two real-world weighted
networks, one undirected, the other one directed. The networks are: a co-authorship
network of scientists working on network theory (Newman, 2001), in which authors are
connected if they have co-authored one or more papers; the neural network of the ne-
matode worm C. Elegans (Watts & Strogatz, 1998; White et al., 1986), in which edges
indicate that two neurons are connected by either a synapse or a gap junction.
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Figure 4.6. Generalized vertex and edge assortativeness profiles of the
NetScience network. Generalized vertex degree assortativeness (a) and strength
assortativeness (b) and edge assortativeness (c) profiles of the NetScience network for
all four parameter combinations («, ). The profiles are obtained by smoothing the
data with loess regression (the shaded area indicates 95 percent confidence bands).

that have a similar number of co-authors (degree assortative) or a similar number of
co-authored publications (strength assortative). Disassortative vertices, on the other
hand, correspond to authors that usually collaborate with others who are unlike them,
i.e., authors with many co-authors (degree disassortative) or co-authored publications
(strength disassortative) tend to collaborate with others that have few co-authors or
few co-authored publications, respectively, and vice versa. Assortative edges connect

authors with a similar number of co-authors (degree assortative) or co-authored pub-
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lications (strength assortative), whereas disassortative edges connect authors that are
dissimilar. However, since we will not go into this further below, the interested reader
will find tables listing the top assortative and disassortative vertices and edges in the
appendix of this work, cf. Tables B.1 and B.2.

ADNN NPannavhahAditia Clanana NManival Nabhuaravl,

Figure 4.7. Visualization of the graph structure of the C. Elegans network.
The (total) vertex strengths are indicated by colour-coded hulls, where lighter colours
indicate higher strengths, and darker colours indicate lower strengths. The size of the
coloured hull of a vertex is proportional to its (total) degree. Moreover, thicker edges
indicate higher edge weights.

The neural network of the nematode worm Caenorhabditis elegans (C. Elegans) is
an example of a completely mapped neural network, cf. Watts and Strogatz (1998)
and White et al. (1986). A node in the directed and weighted network represents a
neuron and an edge between two neurons indicates that they are connected by either
a synapse or a gap junction. However, we could not find any information on how edge
weights are defined in this network, so we must assume that they somehow reflect the
cost or capacity of communication between the neurons (e.g., distance, speed, volume,
or bandwidth) as it is the usual way to define edge weights in brain networks of that
type, cf. Faskowitz, Betzel, and Sporns (2022).

Figure 4.7 shows a visualization of the graph structure of the C. Elegans network. We
have not analysed the C. FElegans network in detail in Chapter 3, and thus, will briefly
describe the generalized assortativity structure of the network. Overall, the network is
disassortative for the modes out—in and in—in for all combinations (¢, 3). Moreover,
the network is assortative for the modes out—out and in—out for all combinations («, f3),
except for the mode in—out for the combination (0,0), for which the network is also

disassortative. Table 4.4 shows the results of the local assortativity analysis of the C.
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Elegans network. However, instead of giving a repetitive local assortativity analysis,
which would be largely identical to the procedure just described for the NetScience
network but for four modes instead of just one, we proceed directly with describing the

local vertex and edge assortativeness profiles.
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Figure 4.8. Generalized edge assortativeness profiles of the C. Elegans net-
work. Generalized edge assortativeness profiles of the C. Elegans neural network for
all four parameter combinations («, ) for all four modes of assortativity. The profiles
are obtained by smoothing the data with loess regression (the shaded area indicates 90
percent confidence bands).

Figure 4.8 shows the average edge assortativeness values plotted against the corre-
sponding edge weight. In Figures 4.9 and 4.10 the average vertex assortativeness values
are plotted against the corresponding average excess out-degree or -strength of a vertex.
For reasons of clarity, we consider the averages of the edge and vertex assortativeness
values for this network. Since we are considering four modes of assortativity at the same
time, it would not otherwise be possible to clearly identify patterns.

Considering the edge assortativeness values first, we see that the modes out—in and

im—in as well as out—out and in—out turn out be structurally quite similar. For the
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Figure 4.9. Generalized vertex degree assortativeness profiles of the C. FEl-
egans network. Generalized vertex degree assortativeness profiles of the C. Elegans
neural network for the two parameter combinations («, /3), for which degrees are used as
vertex values, for all four modes of assortativity. The profiles are obtained by smoothing
the data with loess regression (the shaded area indicates 95 percent confidence bands).

out—in mode, edges with low edge weights tend to be non-assortative, for the area
of medium edge weights disassortative, and beyond that again non-assortative. For
medium edge weights, the out—in edge assortativeness values decrease more clearly for
the combinations (0,1) and (1,1) than for the combinations (0,0) and (1,0). This is
again an indication of the amplification effect, this time consistent since the curve for
(0,1) is below that of (0,0) just as the curve for (1,1) is below that of (1,0). The above
is structurally similar for the in—in mode, but not as pronounced. For the out—out
mode, the edge assortativeness values tend to be non-assortative for all combinations
(a, ), except for (0,1) in the middle edge weight range, for which the edges tend to
be assortative. In addition, for the structurally similar in—out mode, the curve bends

slightly in the area of middle edge weights also for the parameter combination (1,1).
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Figure 4.10. Generalized vertex strength assortativeness profiles of the C.
Elegans network. Generalized vertex strength assortativeness profiles of the C. El-
egans neural network for the two parameter combinations (a, 3), for which strengths
are used as vertex values, for all four modes of assortativity. The profiles are obtained
by smoothing the data with loess regression (the shaded area indicates 95 percent con-
fidence bands).

By considering Figures 4.9 and 4.10, we see that with increasing average excess out-
degree or -strength, vertices tend to become more disassortative for the out—in and in—in
modes of assortativity. Conversely, for the modes out—out and in—out, vertices tend to
be more assortative with increasing average excess out-degree or -strength. However, for
all modes, the pattern is more pronounced when the weighted correlation is considered,
i.e., =1 instead of g = 0.

The local assortativity analysis revealed how the global assortativity structure of a
network is composed. The C. Elegans network is out—in disassortative because edges
with a mid-range edge weight are disassortative, while low-weighted edges and high-
weighted edges tend to be non-assortative (see Figure 4.8). The netscience network, on

the other hand, is assortative, since edges tend to be more assortative the higher the
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edge weight. The effect is more or less pronounced for both networks, depending on
whether degrees or strengths are used as vertex values. Being able to recognize these
fine differences has only become possible through the generalized local assortativity
consideration. Thus, the analysis of the local assortativity can therefore help to further
break down the assortativity structure for a network. For a comparison across networks,
this also allows to further differentiate the topology of networks that exhibit a similar
global assortativity, as we have shown for the theoretical models. In summary, the gen-
eralized local assortativity consideration provides valuable information when examining

the assortativity of a network.

4.4 Discussion and Future Work

In this chapter, we have extended local assortativity for weighted networks. By having
unified two approaches used in the literature, we were able to derive distinct measures
that allow us to determine the assortativeness of individual edges and vertices as well
as of entire components of a weighted network. We demonstrated the usefulness of
these measures by applying them to various theoretical and real-world networks. Along
the way, we also explained how to compute local assortativity profiles, which are in-
formative about the pattern of local assortativity either with respect to edge weight
or vertex strength. Such profiles have been analysed by Piraveenan et al. (2008) for
their unweighted vertex-based local assortativity measure. Since our generalized local
assortativity can be either vertex-based or edge-based, we have extended the assorta-
tivity profiles accordingly in order to be able to gain as much information from them
as possible, when considering weighted networks.

Thedchanamoorthy et al. (2014) suggest an alternative definition of local assortativity
that, contrary to the definition by Piraveenan et al. (2008, 2010), does not pivot on the
global mean excess degree (or strength) of the ends of an edge, U,,. They claim, that
the definition of Piraveenan et al. (2008, 2010) is counter-intuitive, in that sense, that
an edge, which connects two vertices with different degrees, but both higher than U'qk, is
considered assortative, whereas an edge that connects two vertices with similar degrees,
where one has a degree higher than qu, and the other one has a degree lower than qu, is
considered disassortative. We have shown, however, that this definition inherently rests
upon the definition of assortativity by Newman (2002), and departing from it does not
seem quite sensible, as it is widely accepted. Moreover, Thedchanamoorthy et al. (2014)
state that their approach is computationally less expensive, which is also not quite right,
as the generalized edge assortativeness values, p¥(«, 3, mode), are immediately available
when computing the assortativity coefficient of a network, and thus, our definition of
local assortativity does not bear any additional computational costs. We, therefore, did

not consider the approach by Thedchanamoorthy et al. (2014) in this thesis.
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We noticed that by analysing the local assortativity structure of a network via the
generalized edge assortativeness values, p¥(«, 3, mode), only the direct contribution of
an edge e to the global assortativity coefficient is captured. More precisely, because
of the way the generalized assortativeness values are defined, i.e., as a product of the
scaled differences of the excess degrees (or strengths) of both ends of an edge and their
respective means, edges are considered in isolation. However, if a vertex w is incident
with more than one edge, then, the presence of edge e increases the excess degree (or
strength) of that vertex when considering any edge other than e, which can be seen as
an indirect contribution to the global assortativity. This potential indirect contribution
is neglected in the definition of the generalized assortativeness values, but is also ne-
glected in the previous local assortativity definitions by Piraveenan et al. (2008, 2010,
2012) and Thedchanamoorthy et al. (2014). In order to decide if this is a drawback, a
more in-depth analysis is necessary. We plan on revisiting this topic in future research
where we will compare the generalized assortativeness values to an alternative local edge
assortativity measure that also captures indirect contributions to the global assortativ-
ity. For example, an unsophisticated alternative local edge assortativity measure is the
following;:

ol =BT (4.25)

ity AF(D)
where 7 is any global assortativity coefficient of choice, e.g., the generalized assortativ-
ity coefficient, then 7 = rz”m 5); A7(e) = T — 7(_) is the difference between the global
assortativity 7 of a network and the jackknife statistic 7_,), i.e., the global assortativ-
ity of the same network but with the e-th edge removed. Apparently, the measure in
Equation (4.25) is based on the jackknife method, and thus, we denote it by p/ and
refer to it as the jackknife local (edge) assortativeness values. The measure p; cap-
tures the direct as well as the above-mentioned indirect contribution of an edge e to the
global assortativity of a network. However, as compared to the generalized local assor-
tativeness values as in Equation (4.20), the computational cost is considerably larger
for the jackknife local edge assortativeness values. In fact, it increases by a factor of
(M + 1). Nevertheless, for small- and medium-sized networks, the jackknife local edge
assortativeness values can serve as a benchmark for determining the accuracy of the
generalized local assortativeness values, though. So far, we conjecture that the indirect
influence on the assortativity of an edge becomes negligible the bigger the network is,
which leads us to believe that the use of the generalized local assortativeness values
for measuring the local edge assortativity is appropriate in most cases, especially when
analysing very large real world networks, for which computing the local assortativity
based on the jackknife statistics would result in a prohibitively large computational

cost.
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Moreover, as for global assortativity, it also applies to local assortativity that the
concept of generalizing local assortativity to weighted networks, shown in this work,
easily extends to the more complex definitions of assortativity of Meghanathan (2016)
or Arcagni et al. (2017, 2021). Recall, that they are, at their core, still based on the
Pearson correlation.

Finally, in future research we will address the assessment of significance of local
assortativity profiles. Since local assortativity is a third-order graph metric one would
have to employ a feature preserving graph rewiring algorithm in order to decide whether
the observed local assortativity profile significantly deviates from one of a suitable null
model (either generative or by link-rewiring). However, such a rewiring algorithm would
have to preserve also the global assortativity of the network, and thus, the link-rewiring
algorithm by Rubinov and Sporns (2011), which we utilized in order to assess the
significance of the global generalized assortativity coefficient, is not applicable here as it
only preserves the degree and strength distribution of the observed network. However,
a review of the relevant literature shows that, so far, there exists no null model of
weighted networks that preserves the observed generalized assortativity.

In future research we will also focus on epidemic spreading. Wu, Xu, and Wang
(2005) study the properties of weighted scale free networks, in particular, the epidemic
spreading process via a susceptible-infected (SI) model. It would be interesting to also
analyse the epidemic spreading in scale free networks that also show assortative or
disassortative mixing. We might consider the mutual attraction model, introduced by
Wang, Hu, Wang, and Yan (2006) for generating assortative and disassortative networks,
for which we will analyse the generalized (local) assortativity. We are curious if a
network’s resilience against exogenous shocks can indeed be increased by the removal of
edges with certain local assortativeness values, i.e., the epidemic spreading process can
be slowed down. Based on such findings, policy advice can be given, which can also be
interesting for financial networks such as the cryptocurrency network.

And we will therefore now move our attention towards the analysis of the assortativity
structure of the cryptocurrency network. To this end we will apply not only our global
measure of assortativity but also the generalized local assortativity measures derived in

this chapter, in order to analyse its resilience.



5 The Robustness of the Network Structure of the
Cryptocurrency Market

The market of cryptocurrencies is a $932B market that comprises approximately 10,000
active cryptocurrency projects.3 Thus, cryptocurrencies appear to be more than a fad,
and one can no longer deny the market’s increasing importance for the global economy.
In this context, great interest is taken in assessing the stability of the market, i.e., its sys-
temic risk, as cryptocurrencies are well known for their high volatility. Another question
that arises is whether and how cryptocurrencies are related to each other. Combining
the above, the question arises if there is a network formed by cryptocurrencies and, if
so, whether it is robust.

This chapter is dedicated to the analysis of the robustness of the network topology of
cryptocurrencies by means of analysing its generalized assortativity structure. To this
end, we employ the Diebold and Yilmaz (2014) (DY) connectedness index methodology
in order to construct the cryptocurrency network’s adjacency matrix from cryptocur-
rency price data. The remainder of this chapter is therefore structured as follows:
Section 5.1 provides a review of the related literature on financial networks. In Sec-
tion 5.2 we give a detailed description of the DY methodology and the estimation of
high-dimensional financial networks based on vector autoregression with regularization.
Building on this foundation, the network of cryptocurrencies is analysed thoroughly in
Section 5.3. We analyse the relationship between financial connectedness, as a measure
of systemic risk, and generalized assortativity of a network, as an indicator of network
stability. By analysing the evolvement of the generalized assortativity coefficient of the
volatility connectedness network, we are able to empirically show that both measures
are inversely related, which opens up new possibilities of monitoring systemic risk, es-
pecially since there are indications that connectedness might not be suitable for an
absolute comparison across different markets, which we will also discuss. In Section 5.4

we discuss our empirical findings and give suggestions for future research.

5.1 Background and Related Literature

The recent financial crises have led to a greater awareness of systemic risk and financial
contagion, and as a result, network analysis has also found its way into financial market

analysis and has become increasingly important. Even textbooks on network analysis,

33Information sourced from coinmarketcap.com, current as of June 30, 2022.
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such as, e.g., Caldarelli (2007), devote an entire chapter to this subject. The author
presents an overview of different types of financial networks. There are simple networks
in which the connections between the objects are directly observable. For example, as
with the board of directors, where a network is formed either by joining directors sitting
on the same board or by joining boards that share a common director, cf. Caldarelli
(2007, p. 234). Other examples of networks with somehow directly observable relations
are, e.g., networks formed by global import and export trade relationships among coun-
tries such as the world trade web, cf. Serrano and Boguna (2003) and Garlaschelli and
Loffredo (2004). Or, networks representing interbank markets, where edges correspond
to interbank lending, cf. Soraméki, Bech, Arnold, Glass, and Beyeler (2007), Bech and
Atalay (2010), Craig and von Peter (2014), in 't Veld and van Lelyveld (2014) and
Fricke and Lux (2015).

Interbank markets are special in that the bilateral trade relationships can be ob-
served directly, but the data usually is non-disclosed and often times only available to
researchers in central banks. In such cases, the application of more sophisticated meth-
ods is needed in order to estimate the network structure from publicly available data.
For example, Torri, Giacometti, and Paterlini (2018) estimate the dependence structure
of a sample of European banks in terms of their partial correlations from credit default
swap time series data.

Another frequently used method to infer the network structure in cases where direct
relationships cannot be observed is by analysing cross-correlation patterns. There exists
a strand of literature that analyses the stock network topology by means of minimum
spanning tree (MST), c.f. Mantegna (1999), Brida and Risso (2010), Bonanno, Cal-
darelli, Lillo, and Mantegna (2003), Onnela, Chakraborti, Kaski, Kertész, and Kanto
(2003) and Vandewalle, Brisbois, and Tordoir (2001), where a network is created by link-
ing two companies based on their stock return correlation. Mantegna (1999) and Onnela
et al. (2003) show that the resulting network structure exhibits groups corresponding
to industry sectors. Moreover, using the MST methodology, Bonanno et al. (2003)
find that popular models of portfolio dynamics fail to capture topological properties
of real financial markets. Furthermore, the MST of such a stock network is scale-free,
see Onnela et al. (2003) and Vandewalle et al. (2001), such that insights gained from
studying (theoretical) scale-free networks can be applied stock networks as well. The
MST methodology has also been used by Zieba, Kokoszczynski, and Sledziewska (2019)
in order to analyse the cryptocurrency market.

Diebold and Yilmaz (2009, 2012, 2014, 2015a, 2015b) propose a framework for defin-
ing, measuring and monitoring connectedness. To this end they propose several measures
at different levels of granularity, from disaggregated pairwise connectedness through ag-
gregated system-wide connectedness. The authors refer to connectedness as describing

how strongly or weakly a financial system is connected overall. The term is also as-
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sociated with various types of financial risks (e.g., market risk, portfolio concentration
risk, credit risk, business cycle risk or systemic risk), cf. Diebold and Yilmaz (2015a).
But it is most commonly associated with systemic risk and some authors use the terms
connectedness and systemic risk interchangeably, see, e.g., Barunik and Kiehlik (2018).

Systemic risk is “fthe risk of] ... breakdowns in an entire system, as opposed to
breakdowns in individual parts and components” (George G. Kaufman & Kenneth E.
Scott, 2003, p. 371), which aligns with our interpretation of systemic risk in this thesis.
There exists a variety of approaches in order to quantify systemic risk, for example, the
marginal expected shortfall (MES) proposed by V. V. Acharya, Pedersen, Philippon,
and Richardson (2017), which tracks the sensitivity of a financial firm’s returns to
market-wide extreme or systemic events; the SRISK (SRISK) of V. Acharya, Engle, and
Richardson (2012) and Brownlees and Engle (2017), which, depending on a systemic
event, measures the capital shortfall that financial firm is expected to experience; the
aggregated SRISK can be therefore viewed as the amount of capital that the government
would have to provide to sustain the financial system; and the conditional value-at-risk
(A CoVaR) of Adrian and Brunnermeier (2016), which is defined as the change in value-
at-risk (VaR) of the financial system conditional on shifting from the median return of
a firm to its return when in distress. These metrics are the most important market-data
based measures in the systemic risk literature, see Benoit, Colliard, Hurlin, and Pérignon
(2017) for a thorough review of this topic. According to Diebold and Yilmaz (2014),
their connectedness measures and the above systemic risk measures are indeed different,
but measure similar things and can therefore be related to each other. More precisely,
MES measures exposures of firms to systemic shocks from the system, whereas A CoVaR
measures contributions of firms to systemic events, which corresponds exactly to what
is measured by pairwise connectedness. Moreover, system-wide connectedness provides
a measure of systemic risk comparable to the aggregated SRISK. In the following, we
therefore consider connectedness as a proxy for systemic risk and use this index to
monitor crises in the cryptocurrency market.

Since Diebold and Yilmaz (2014) established the connection between their connect-
edness index methodology and network theory, this approach has also been used very
frequently to estimate the underlying network structure of various markets. For ex-
ample, Uluceviz and Yilmaz (2020) recently applied it to analyse the real-financial
connectedness in the Swiss economy by means of analysing the connectedness between
a real economic activity proxy (KOF barometer) and several financial variables (e.g.,
the Switzerland stock market index). Bostanci and Yilmaz (2020) estimate and analyse
the global network structure of sovereign credit risk, a network constructed from daily
log returns of sovereign credit default swaps (SCDS) spreads.

Recent studies, who apply the DY connectedness methodology to the cryptocurrency
market, are, e.g., Koutmos (2018) and Kamisli, Kamisli, and Temizel (2019). Koutmos
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(2018) studied the connectedness among 18 cryptocurrencies from August 2015 to July
2018 (1,076 daily observations). The author finds that Bitcoin (BTC) is the dominant
contributor of return and volatility connectedness. Moreover, the degree of connect-
edness increases with media attention regarding cryptocurrencies. Also, connectedness
among cryptocurrencies has risen over the years.

Kamisli et al. (2019) study the return and volatility connectedness between Bitcoin
(BTC) and stock markets (stock indices) from different (global) regions from analysing
weekly data on Bitcoin (BTC) and regional stock index returns from August 2011 to
February 2019. There appears to be limited pairwise directional return and volatility
connectedness between Bitcoin and regional stock markets, where the strength of con-
nectedness varies locally. For example, Bitcoin tends to receive more connectedness
from Asian regions, whereas it tends to emit more connectedness to stock markets of
America.

However, there are quite a number of studies examining the cryptocurrency market us-
ing alternative methods as well, for an extensive survey we refer to Kyriazis (2019). For
example, Bouri, Gabauer, Gupta, and Tiwari (2021) analyse the time-varying volatil-
ity connectedness of 15 cryptocurrencies from August 2015 to March 2020 (1679 daily
observations) based on the framework introduced by Gabauer (2020), which is an alter-
native to the DY framework based on the DCC-GARCH model originally proposed by
Engle (2002).

What we do find, however, is that there is a lot of untapped potential. Many of the
studies analyse the connectedness between cryptocurrencies or between cryptocurrencies
and other variables (stock indexes, gold, exchange traded funds or other currencies
such as USD, EUR, or GBP) and sometimes find more or less connectedness. More
rarely, however, do we see network theoretical methods being applied to the underlying
network, as suggested by Diebold and Yilmaz (2014).

To the best of our knowledge, by analysing the assortativity structure of the cryp-
tocurrency network, we are the first to consider assortativity for a connectedness net-
work. This is surprising, as assortativity is often associated with network robustness,
where robustness is defined as the ability of a system to maintain its core functionality,
even if individual components fail, cf. Barabasi (2016). However, if connectedness mea-
sures systemic risk, which is the risk of a system losing its core functionality due to the
failure of individual components, there must be a link between the two concepts that is
worth investigating. Moreover, our study stands out from others, as we analyse a more
exhaustive set of data, both in terms of the time span and in terms of the number of
considered cryptocurrencies. Other studies either look at a similar length of time as
we do, but only analyse a handful of cryptocurrencies, or consider a similar number of

cryptocurrencies as we do, but for a much shorter period of time.
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The problem that arises when considering a large amount of cryptocurrencies is that
the model complexity increases very quickly, in the sense that the number of parameters
to be estimated becomes very large. In cases where the available data is not sufficient to
compensate for the loss of degrees of freedom, this leads to overfitting or even to the fact
that the model can no longer be estimated. Regularization methods are then needed
to be applied to restrict the number of parameters used for estimation, cf. Torri et al.
(2018) and Sanchez Garcia and Cruz Rambaud (2022). In the context of connectedness,
Demirer, Diebold, Liu, and Yilmaz (2018) are the first to propose a regularization

approach for the DY framework in order to estimate also high-dimensional networks.

5.2 Financial Networks Based on Variance Decompositions

Ever since vector autoregression (VAR) has been introduced by Sims (1980) it has be-
come a popular method for modelling the time-varying relationship between multiple
variables. Its fields of application are thereby manifold and range from the joint analysis
of multivariate time series over forecasting to structural inference and policy analysis,
cf. Stock and Watson (2001). An advantage of VAR models is that current and lagged
values from multiple time series are used for the estimation, thereby capturing comove-
ments of variables that would have gone undetected in the case of uni- or bivariate
models, cf. Stock and Watson (2001).

In the following we will give a detailed description of the DY connectedness index
framework. Therefore, the VAR(p) model is introduced in Section 5.2.1. Section 5.2.2
introduces generalized impulse response functions and variance decompositions, on
which the DY connectedness measures are based on. An overview of the connectedness
measures, and an explanation of how they relate to networks is given in Sections 5.2.3
and 5.2.4, respectively. Finally, since the estimated VAR(p) model is indispensable for
the subsequent assessment of connectedness, we explore regularization techniques that

ensure that the model can be estimated even in high dimensions in Section 5.2.5.

5.2.1 The VAR(p) Model

The foundation of the DY framework is the N-variable covariance stationary process,
which is modelled by the VAR(p) model as:34

p
Ty = Z b1 ; + &y, (5.1)
=1

34Note that we consider the mean-adjusted process here. Also, we use the same notation as in
Pesaran and Shin (1998), for reasons of clarity and comprehensibility. However, the presentation of
the fundamentals of the VAR(p) model is also based on Hamilton (1994), Liitkepohl (2007) and Tsay
(2014).
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where & = (z14,...,2N,) is a (N x 1) vector of random variables at points in time t =
1,...,T, and ®; are fized (N x N) coefficient matrices at lags i = 1,...,p. Eventually,
the error term e; = (g14,...,en¢)" is an N-dimensional white noise or innovation
process, i.e., E(ey) =0, E(ee}) = X = [0y4], i, =1,..., N, for all t, and E(ee;) =0,
for s # t. Moreover, the covariance matrix of the errors, X, is assumed to be non-
singular. Because x; is assumed to be covariance stationary, Equation (5.1) can also be

formulated based on its infinite vector moving average representation:
oo
Ty = Z AiEt_i, (52)
=0

where A; are (N x N) matrices of moving average coefficients, which can be obtained
using the coefficient matrices ®;, once the model has been estimated, by the recursive

relations:
A =P 1A 1+ P24, 2+ ...+ fI)pAi,p, (5.3)

where Ay = Iy and A; = 0 for i < 0. Sometimes Equation (5.3) is represented in a more
convenient form, by using the lag operator L of LPx; = x;_,. With the (N x N) matrix
lag polynomial ®(L) = [Iy — ®1L — ... — ®,LP] the model in Equation (5.1) can be
rewritten as ®(L)x; = €;, and Equation (5.2) as x; = A(L)e;, where ®(L) = [A(L)] !,
which demonstrates the recursive relations from Equation (5.3) in terms of the matrix
lag polynomials. The matrix polynomial A(L) contains an infinite number of lags, and
thus, has to be approximated by the moving average coefficients, Aj, calculated at
different horizons h =1,..., H.

5.2.2 Generalized Impulse Response Functions and Variance Decompositions

The DY connectedness measures are based on variance decompositions, which are trans-
formations of the elements Ap, cf. Barunik and Kiehlik (2018). In order to produce
these variance decompositions, the DY approach utilizes the generalized VAR frame-
work by Koop, Pesaran, and Potter (1996) and Pesaran and Shin (1998) (KPPS), which
has the advantage of being invariant to variable ordering.3?

KPPS define the generalized impulse response function, GI,. To this end, let €2;_;

be the non-decreasing set of available information up to ¢ — 1, and J; denotes a shock

35In order to circumvent the problem of the dependence on the variable ordering, DY switched
from using the identification scheme based on the Cholesky factorization suggested by Sims (1980),
which orthogonalizes the system, to the KPPS framework, cf. Diebold and Yilmaz (2009, 2012). If the
interest is in the topology of the resulting network, KPPS should be preferred, especially if there exist
no profound economic theory on the true ordering of the variables of interest, since, with KPPS, the
network is completely determined by the data, cf. Wiesen, Beaumont, Norrbin, and Srivastava (2018).
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to the j-th element of &;, then, the generalized impulse function of x; at horizon h is
defined as:

GI,(h,6;,%_1) = E(xeynleje = 05, Q1) — E(@in|Q—1). (5.4)
By using Equation (5.2) in Equation (5.4), the above equation reduces to:
GI,(h,6;,%_1) = ApE(elejr = 05).
Additionally assume that e; has a multivariate normal distribution,3 then:
E(eilejr = 65) = (015, 02;, - - - ,UNj)’oj_jléj = Zejaj_jléj, (5.5)

where e; is a selection vector whose j-th element is 1, and all other elements are 0.
The unscaled generalized impulse response function of the effect of a shock to the j-th

equation at time ¢ on ayyp is then given by:

AhEejch . AhEej (5]'
9335 VO9ii  V95i

Defining §; = /755, in Equation (5.6), the scaled generalized impulse response function,

llff(h), is obtained as:

GI,(h,6;,_1) =

(5.6)

_1
VE(h) = 0,.* A Se;. (5.7)

With Equation (5.7), the (7, j)-th element of the H-step-ahead generalized forecast error
variance decomposition (GFEVD) matrix, 85(H), is then defined as:

C1—H
Ujjl 2 h=0 (e;AhEej)z

0%.(H) =
- Yo €jARS Al e

vy

(5.8)

where the numerator accumulates the squared impulse responses of the effect of a unit
shock (i.e., one standard deviation) to the j-th innovation at time ¢ on the future value
of z; 44n, over the horizon h =1,..., H, and the denominator accumulates the impulses
of variable 7 to all influences over the same horizon, i.e., it corresponds to the mean
squared error of the H-step-ahead forecast of variable 7.

Thus, Oz-gj (H), measures the contribution of the j-th variable to the H-step-ahead
forecast error variance of the i-th variable. In order to preserve the interpretation of

the contribution to the forecast error variances as percentages, the rows of the GFEVD

36Note that, by using the KPPS framework, an additional normality assumption for the historically
observed error distribution is required. However, in this thesis, we consider log volatilities, which
are well-approximated as Gaussian, see Diebold and Yilmaz (2015a), and thus, the KPPS framework
appears to be appropriate.
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matrix have to be normalized, as they might not sum to unity, i.e., due to the non-
zero covariance between the non-orthogonalised shocks, in general Zjvzl Hzgj(H ) # 1, cf.
Pesaran and Shin (1998). The rows of the GFEVD matrix are normalized according to:

_ 0% (H)
()= Y~ |
U= S8 e

Hence, by construction, the sums of the rows of the normalized GFEVD matrix equal
unity, i.e., Zé\le éfj(H) =1, and thus, the sum of all elements of 68(H) is equal to N.

5.2.3 Measures of Financial Connectedness

In the context of the DY framework, the elements of éZgJ(H ) yield a measure of pairwise
directional connectedness between the variables ¢ and j at horizon H, and thus, the
notation is converted to C’fij, for reasons of clarity and comprehensibility, i.e., C’ilij =
Hfj(H), cf. Demirer et al. (2018) and Diebold and Yilmaz (2014).

Along with the pairwise directional connectedness measure, Cf_ i the DY framework
introduces two measures of total directional connectedness, where one is the total con-
nectedness from all other variables j to variable i, which is defined as the i-th off-diagonal

row sum of the GFEVD matrix:

The total from-others-connectedness, CL, measures the share of variable i’s forecast

e
error variance that is due to the forecast error of all the other variables j. By looking

at this the other way round, the total to-others-connectedness, CH

or;, of variable 7 is the

amount of forecast error variance of all other variables j that is induced by variable i,
which is defined as the i-th off-diagonal column sum of the GFEVD matrix:3”

N

j=Liij

3"Note that Demirer et al. (2018) define from-others- and to-others-connectedness differently. The
authors additionally scale both measures by a factor N~!. Thus, from-others-connectedness becomes
Cff—./N and to-others-connectedness becomes Ceti/N. By scaling, the interpretation of the measures
changes slightly, as they have to be interpreted relative to the forecast error variance of the entire
system. Moreover, by scaling, the total system-wide connectedness is obtained as the sum (instead of
the mean) of either one of the measures (from-others or to-others).
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Additionally, the measure, C| referred to as total system-wide connectedness is avail-
able, which is defined as the scaled sum of the off-diagonal elements of the GFEVD

matrix:

N 0 N 0 ~
Digevizg O5H) _ Nijmrin; 05(H) _ Te(65(H))
N D .
214:1 eng(H) N N

CH

The total system-wide connectedness measures the share of the total forecast error
variance of the system that is not self-induced by the variables, thus, it equals the
mean of the total directional connectedness values of the variables of the system (either
from-others or to-others).38

Note that the above measures are defined only in relation to a "reference universe”,
i.e., a specific set of variables x;, which implies that they will generally not be robust to
the choice of variables, cf. Diebold and Yilmaz (2015a, p. 19). This means that adding
or removing variables from consideration can change the resulting connectedness value.
However, this is an indication that the measures might not be suitable for an absolute
comparison (of percentages) across markets or that the results of such a comparison at

least have to be viewed with caution.

5.2.4 Connectedness Networks

In order to relate the DY connectedness indices to networks, recall that a network
can be represented as a graph G = (V,E) of order n and size m. The finite set
V = {v1,v9,...,v,} is the vertex set, and E = {ej,ea,...,e,} is a set of 2-subsets of
V referred to as the edge set. The graph or network G is a directed network, if each
edge has a direction associated to it. This means that the ordering of its end vertices
becomes significant, which is the case if edges vive and vovy refer to distinct edges in
the network. Moreover, the network is a weighted network, denoted by the pair (G, f) if
the function f : E(G) — R is a weight function that assigns a weight to each edge of the
network. Furthermore, G can be represented by its weighted (n x n) adjacency matrix
W, where the elements w;; = f(w;;) if vertices ¢ and j are connected, and w;; = 0
otherwise. The network is called simple network if there are no loops, i.e., the diagonal
elements of the (weighted) adjacency matrix of G are zero.

Diebold and Yilmaz (2014) note that (disregarding its diagonal elements) the GFEVD
matrix can be interpreted as a weighted adjacency matrix that forms a connectedness
network, where the pairwise directional connectedness values Cg correspond to the

weights of edges between variables (or vertices) i and j.3° However, what is a bit

38Note that the measures would have to be multiplied by 100, in order to obtain percentages.

39Note, that Diebold and Yilmaz (2014) utilize a similar notation as Newman (2018) where the
weighted edge Cg = wj; leads out of vertex j and into vertex i. However, the reverse is also commonly
used, i.e., to define an edge that leads out of vertex ¢ and into vertex j as w;;. Eventually, this is a

matter of taste, as the adjacency matrix can be transposed such that it complies with the definition,
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misleading is the fact that they associate their measures with degrees when they are
actually strengths since the network is weighted. More precisely, the from-others- and
to-others-connectedness values can be related to the in- and out-strengths of a vertex,
respectively, and the system-wide connectedness corresponds to either the mean in-
or out-strength. Recognizing this is beneficial, since this implies that, by utilizing
the methods of network theory, additional tools for analysing connectedness become

available.

5.2.5 Regularization for High-Dimensional VAR Estimation

The complexity of a VAR(p) model can grow rapidly fast, as the number of parameters
that have to be estimated depends on both the dimension of x; and the lag order p.
If both the number of considered variables N and the number of considered lags p
are high then a correspondingly large number of parameters must be estimated. The
problem with a model with too many parameters is that it is prone to overfit the
data. In order to ensure that the model in Equation (5.1) can be estimated even in
high dimensions, regqularization techniques are available for recovering some degrees
of freedom. Regularization refers to the technique of imposing a constraint on the
magnitude of the parameters of a model, in order to control for its complexity, cf.
Lever, Krzywinski, and Altman (2016). A popular regularization method, which we
will utilize in this thesis, is the elastic net proposed by Zou and Hastie (2005). The
elastic net is a compromise between the ridge regression (RR), which has been first
introduced by Hoerl and Kennard (1970a, 1970b) and the least absolute shrinkage and
selection operator (LASSO) by Tibshirani (1996).

RR coefficients minimize a penalized residual sum of squares (RSS) by imposing a
limit on the squared ¢ norm of the coeflicients, which is the sum of squares of param-
eters, in cases where there is a vector of coefficients. In a VAR model the coefficients
are collected in matrices, and thus, RR limits the squared ¢ matrix norm, which is
the squared singular value of the coefficient matrix.4® RR has the advantage that it
provides a unique parameter solution, in cases where different models yield the same
minimal RSS due to multiply correlated variables, a problem we might also encounter
when estimating high-dimensional VAR(p) models. However, regardless of how large
the value of the penalty parameter A is chosen, RR only shrinks coefficients towards

zero, but is unable to set them to zero.

but one has to be careful, when using software, to prevent confusion (e.g., with out- or in-degrees of
vertices). For example, the igraph package (Gabor Csardi & Tamas Nepusz, 2006) for the R language
(R Core Team, 2021) implements the latter definition, using this package, we have to transpose the
GFEVD matrix before forming the network.

19For a matrix A, it holds that: ||All2 = v/ Amax(A’A) = omax(A) (spectral norm), where Amax (A’ A)
denotes the largest eigenvalue of the matrix A’ A, and omax(A) denotes its square root, i.e., the largest
singular value of A, cf. Gentle (2017). Moreover, ||A’All2 = ||AA"||2 = ||A]|3 = 0max(A)?, by singular
value decomposition, cf. Meyer (2008).
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LASSO on the other hand performs well in variable selection, i.e., setting the co-
efficients of variables to zero. It does so by imposing a limit on the ¢; norm of the
coefficients, which is the sum of the absolute values of the parameters, in cases where
there is a vector of coefficients. In the context of a VAR model, this corresponds to
limiting the ¢; matrix norm, which is the maximum column sum of the coefficient ma-
trix. 4!

By combining the above, the elastic net penalty is given by:

T P
min ;Hwt - ; @z, |3 + Al @[ + (1 - a)||®]3) (5.9)

where the first term of the sum is the RSS and the second term corresponds to the
penalty, where ||-||; and ||-||2 denote the ¢; and f matrix norms, ® = [®4,...,P)]
denotes the coefficient matrix, A > 0 is a penalty or complexity parameter that controls
the amount of shrinkage, and the parameter « balances the LASSO and RR penalties.
While the A parameter is usually obtained by a cross-validation procedure (CV), the
« parameter can be chosen either on qualitative grounds or alternatively by CV, cf.
Hastie, Tibshirani, and Friedman (2009), or even adaptively, cf. Zou and Zhang (2009)
and Demirer et al. (2018). For our analysis in Section 5.3, we will obtain values for both
A and a by CV.

The elastic net penalty in Equation (5.9) consists of two parts, i.e., the RR regulizer
function, A(1— «)||®||3, which shrinks coefficients of highly correlated variables towards
each other, and the LASSO, Aa||®||1, which performs a variable selection. Thus, reg-
ularization with elastic net penalty combines the advantages of both RR and LASSO,
cf. Lever et al. (2016).

Note, however, that the RR solutions are not equivariant under scaling of the input
variables, thus, the inputs are usually standardized (and centred), cf. Hastie et al.
(2009), moreover, since we utilize a single penalty parameter, A, for all model coeffi-
cients this problem carries over to the regularization with elastic net penalty. We follow
therefore Nicholson, Matteson, and Bien (2017) and Nicholson, Wilms, Bien, and Mat-
teson (2020) for a standardization procedure for regularization in VAR models. This
means, prior to estimation, we ensure that all included time series are on the same scale
by standardizing each series, such that it has zero mean and unit variance. Further-
more, when considering a rolling estimation window, in order to capture the parameter

variation over time, we standardize each series separately in each rolling window, again.

*! Again, for a matrix A, it holds that: ||A[|1 = maz Y, |ai;| (column-sum norm), cf. Gentle (2017).
J
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5.3 The Cryptocurrency Network

We apply the DY methodology to the cryptocurrency market and analyse its volatility
connectedness as well as the resulting volatility connectedness network. When analysing
financial connectedness, volatility connectedness is of particular interest for its aptitude
for real-time monitoring systemic risk. This is because volatilities tend to move together
primarily in financial crises, whereas returns tend to move together in both calm and
turbulent times, cf. Diebold and Yilmaz (2015a). Apart from Figure 5.6 in Section 5.3.4,
where we show the dynamic total system-wide return connectedness for illustrating
the afore-mentioned behaviour of asset returns, we will focus on analysing volatility
connectedness, as our interest is in analysing the systemic risk and correspondingly the
stability of the cryptocurrency market and the corresponding cryptocurrency network.
Henceforth, we mean volatility connectedness, when referring to connectedness, unless
otherwise stated.

The remainder of this section is structured as follows: in Section 5.3.1 we provide
a brief introduction to cryptocurrencies based on the Bitcoin system. The section is
therefore primarily of interest for the reader being not familiar with cryptocurrencies
and blockchains. A description of the data that we consider in our empirical analysis
is given in Section 5.3.2. We present a static and dynamic connectedness analysis in
Sections 5.3.3 and 5.3.4, respectively. Section 5.3.5 we analyse the relationship between
volatility connectedness, as a measure of systemic risk, and the generalized assortativ-
ity coeflicient of a network, as an indicator of network stability. In Section 5.3.6 we
explore the multiscale backbone of the volatility connectedness network and analyse its

community structure.

5.3.1 A Primer on Cryptocurrencies

In the following, we give a simple explanation of a cryptocurrency based on the Bitcoin
system in order to convey the basic idea. For the big picture, however, we refer to two
extensive, albeit not too technical surveys on this topic, one on Bitcoin in particular,
the other one on cryptocurrency systems in general, ¢f. Ghimire and Selvaraj (2018)
and Mukhopadhyay et al. (2016), respectively.

To this end, Figure 5.1 shows a simplified representation of a blockchain. The in-
formation carriers of the decentralized system are referred to as blocks. A Block has a
unique identifier, namely its hash. A hash is the result of the application of a crypto-
graphic hash function that takes an input of variable length and generates a fixed length
output, hence the name cryptocurrency. Each block consists of the hash of the previous
block — this is how blocks are linked together to form a blockchain — together with a

list of transactions to be executed and a proof of work.



5 The Robustness of the Network Structure of the Cryptocurrency Market 94

The proof of work makes a block a valid block, and only valid blocks are added to the
blockchain. More precisely, the proof of work consists of the task of finding a number
referred to as nonce,*? that when hashed together with the other information of a block
yields a hash that meets the requirements of a valid block. For a block to be considered
valid it is required that its hash begins with a certain number of zeros.*3

The search for valid blocks in order to propose them to the system is referred to as
mining. Participants of the system that mine blocks are referred to as miners. If a
proposed block is accepted, it is added to the blockchain and a reward in form of newly
created Bitcoin is granted to the miner that successfully proposed the block (as part of
the transactions to be executed of that block). By adding the block to the blockchain
the transactions are executed and reported to all participants of the system. Therefore,
it is possible for any participant of the system to track the entire transaction history at

any time, rendering fraud or double spending uneconomical, as this would be detected

immediately.
Blockchain
Block
Previous hash Previous hash Previous hash
Transactions Transactions Transactions
Proof of work Proof of work Proof of work

Figure 5.1. Simplified blockchain. Adapted from Ghimire and Selvaraj (2018).

The working principles of other cryptocurrencies are similar to a greater or lesser
extend differing, for example, by the way how blocks are validated, where proof of work
is just one option, or by the particular hash function that is used for encryption, or by
the way how possible transaction fees are considered, or by how fast transactions are

executed.

5.3.2 Data

We obtain data from CoinMarketCap over the period from July 3, 2017 to June 30,
2022 (1735 daily observations).** From the top 500 active and tracked cryptocurrencies

42The term is an acronym and stands for number only used once.

43It is noteworthy that it is practically impossible to infer from a hash of a valid block what the
nonce might have been that has generated this very hash. Computing the hash for a given nonce, on
the other hand, can be done fast, so that the proof of work can be easily verified.

“https://coinmarketcap.com/api/
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by market capitalization (as of June, 30 2022), we select those for which consecutive
data for at last 5 years are available. The final data sample consists of daily open, high,
low, and closing (OHLC) prices of 49 cryptocurrencies.

Table C.1, in the appendix, gives an overview over the selected cryptocurrencies’
names and symbols as well as their ranks according to their market capitalization.®
As of this writing, the selected cryptocurrencies account for a share of approximately
66.2 percent of the market capitalization of the entire market, suggesting that the
selection represents the market fairly well. Figure 5.2 shows the percentage share of the
accumulated market capitalization as a function of the number of top n cryptocurrencies.

Apparently, the cryptocurrency market consists of a few key players who accumulate
most of the market capitalization.

Market capitalization share (%)

04 05 06 0.7 08 09 1.0

I I I I I I
0 100 200 300 400 500

Top cryptocurrencies

Figure 5.2. Market capitalization share of top cryptocurrencies. For example,
the top 100 cryptocurrencies account for approximately 95.1 percent of the market
capitalization of the entire market (as of June 30, 2022).

The latent cryptocurrency return volatility has to be estimated. The literature on
estimating and modelling volatility is vast, e.g., see Andersen, Bollerslev, Christoffersen,
and Diebold (2006) and Andersen, Bollerslev, Christoffersen, and Diebold (2013) for a
survey on this topic. In this thesis, since we have daily OHLC price data, we follow
Demirer et al. (2018) and utilize the daily range-based volatility estimator, suggested
by Garman and Klass (1980), which is defined as:

62, = 0.511(usy — dig)> — 0.019 sy (uss + dig) — 2ui¢di,t] ~0383¢,  (5.10)

45For each cryptocurrency the market capitalization is determined by multiplying its circulating
supply with its current price, where circulating supply is the amount of coins that are circulating in
the market, and thus, are in public hands, cf. CoinMarketCap (2022). Hence, circulating supply is
comparable to the floating stock in the stock market, which is the number of shares available for trading
of a particular stock.
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Table 5.1. Descriptive statistics. Descriptive statistics of annualized volatilities
and returns (percentage) in the period from July 3, 2017 to June 30, 2022.

Symbol Mean Median Max. Min. Std. dev.  Skewness!  Kurtosis!
Annualized volatilities
BTC 59.315 47.275 460.399 5.851 45.443 0.047 3.002
ETH 75.996 61.615 665.190 7.543 56.466 0.219 3.290
XRP 88.769 63.228 923.949 9.974 86.204 0.431 3.190
Market 115.991  87.057 4204.759 0.222 112.341 -0.996 9.000
Annualized returns
BTC 19.446 35.615 6513.372  -18345.153  1478.905 -1.734 25.939
ETH 44.517 89.339 8531.882  -21554.505  1906.077 -1.562 20.527
XRP -5.133 28.548  16428.659 -19660.993  2285.422 -0.144 17.816
Market 9.902 7.307 58186.267 -35466.463  2580.912 0.215 28.351

! For volatility, the values in the table correspond to the skewness and kurtosis of the logarithm
of the annualized volatilities.

where w;y = H; 1 —O;4,diy = Ly —O; 4 and ¢; 4y = C; 4 —O; ¢ are the normalized high, low
and closing prices, and O; ¢, H; ¢, L;  and C; ; are the logs of daily OHLC prices of crypto-
currency i at time ¢.%6 The estimator in Equation (5.10) is an estimator for the daily
return variance of a cryptocurrency. In order to obtain an estimator for the annualized
daily percentage standard deviation of the returns, i.e., daily return volatility, &, we
apply the following transformation: &;; = 100 - 1/365-62. When analysing returns,
we consider the log return of a cryptocurrency ¢ defined as the difference of log closing
prices: 1y = Cj — Cj -1, cf. Campbell, Lo, and MacKinlay (2012).

In the appendix, for each cryptocurrency, for the sample period from July 3, 2017 to
June 30, 2022, Figures C.1 to C.4 show time series plots of the estimated annualized daily
volatility and return (percentage). Moreover, Figures C.5 to C.12 present histograms
and density estimates of the log annualized daily volatilities and the daily log returns
(together with respective normal densities for comparison), respectively, indicating that
the log volatilities are well-approximated as Gaussian.*”

Table 5.1 presents descriptive statistics of the percentage annualized volatilities and
percentage annualized log returns averaged over the entire cryptocurrency market, for
the sample period. Moreover, descriptive statistics of the top 3 cryptocurrencies, i.e.,
Bitcoin (BTC), Ethereum (ETH), and Ripple (XRP), are separately shown, for com-

46 Alternative estimators are available for higher frequency price data. For example, Barunik and
Kfehlik (2018) use daily realized volatility in the context of volatility connectedness, which is the sum
of squared (intraday) returns, where they use a sampling period of 5 minutes. However, Alizadeh,
Brandt, and Diebold (2002) show that the range-based volatility estimator is almost as efficient as
realized volatility, albeit using only four inputs per day.

4"The log returns on the other hand are not so well-approximated as Gaussian, as was expected, cf.
Diebold and Yilmaz (2015a). However, we focus on the volatility connectedness, and take the results
for return connectedness with a grain of salt, as they are mainly presented for reasons of completeness
anyway.
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parison purposes. Evidently, the cryptocurrency market is much more volatile than
previously analysed financial markets.

For example, Diebold and Yilmaz (2015a) analyse the connectedness of 10 major
global stock markets, by considering daily data on nominal local-currency stock market
indexes, over the course of almost 20 years up to the year 2013. The mean of the annu-
alized volatilities averaged over the 10 stock markets is 18.841, cf. Diebold and Yilmaz
(2015a, table 4.3, p. 87), whereas the mean of the annualized volatilities averaged over
the cryptocurrency market is 115.991. The mean annualized returns on the other hand
are much more similar in magnitude. The mean of the annualized returns averaged
over the 10 stock markets is 11.410, cf. Diebold and Yilmaz (2015a, table 4.2, p. 86),
whereas the mean of the annualized returns averaged over the cryptocurrency market
is 9.902.8

Additionally, by comparing the skewness and kurtosis values of the annualized volatil-
ities of the top 3 cryptocurrencies with those of the entire market, it becomes apparent
that the volatilities of the cryptocurrencies are likely to be on different scales. This
can also be confirmed by considering the volatility plots in Figures C.5 to C.8 in the
appendix. It seems therefore sensible to utilize a standardization procedure before esti-

mating the VAR model, as mentioned before.

5.3.3 Static Analysis: Full Sample Connectedness

For the full sample analysis of the volatility connectedness, we estimate a VAR(p = 4)
based on the demeaned and standardized logarithms of the annualized return volatilities
over the entire sample period from July 3, 2017 to June 30, 2022.4° For the model,
a lag order of p = 4 is chosen based on the ACF and PACF functions, respectively.?”
Considering up to four lags is also in accordance with what can be found in the literature,
where usually lag orders of p = 3 or p = 4 are chosen, depending on the frequency of
the data, and the number of trading days. For example, cryptocurrencies can be traded
7 days in a week, and thus, the chosen lag order corresponds to exactly half a trading
week. The forecast horizon, H, based on which the GFEVD matrix is computed, is set
to H = 12, which is long enough, for our analysis, to capture the impulse responses
entirely. The robustness of the total system-wide volatility connectedness with respect
to our parameter choice is supported in Figures C.13 and C.14, in the appendix of
this thesis, which show the estimated total system-wide connectedness for a range of

alternative lag orders and forecast horizons.

48 Although the considered time periods differ, the comparison is in so far fair, as there have been
calm and turbulent times in both considered time periods.

“9For each series, we use the Augmented Dickey-Fuller (ADF) test in order to verify its stationarity.

50Gince it would result in a very large number of figures, we do not present the ACF and PACF
functions, but they are available from the authors upon request.
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Figure 5.3. Static pairwise directional volatility connectedness. The colours
of the tiles of the heatmap correspond to the magnitude of the pairwise directional
connectedness between the corresponding cryptocurrencies, light cyan indicates low
connectedness, whereas dark deep pink indicates high connectedness.

In the DY methodology the connectedness is usually summarized in a table referred
to as connectedness table (or sometimes called spillover table), cf. Diebold and Yil-
maz (2009, 2012, 2014). This is informative if the number of variables, for which the
connectedness or spillover effects are investigated, is not too large. However, since our
sample consists of 49 cryptocurrencies, such a table would encompass 492 pairwise direc-
tional connectedness values, which can no longer be presented in a clear way. Instead,

we show the pairwise directional volatility connectedness values, Cﬁ_j,

between two
cryptocurrencies ¢ and j in terms of a heatmap, in Figure 5.3.

Each tile of the heatmap corresponds to a pairwise directional connectedness value.
The colours of the tiles range from light cyan, for lower connectedness values, to deep
pink, for higher connectedness values. The rows and columns of the heatmap correspond
to the cryptocurrencies of our sample, which are ordered by their market capitalization

rank. Apparently the pairwise directional connectedness is highest for the diagonal
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elements, indicating that a large percentage of the forecast error variance of a cryp-
tocurrency is self-induced (sometimes called own-variable effects). The colours of the
off-diagonal elements on the other hand appear to have a fairly even hue, indicating
that the pairwise directional connectedness values tend to be similar in magnitude be-
tween one variable and variables other than itself. However, the tiles in the upper left
corner of the map appear to be a bit darker than the rest. This might indicate that the
pairwise directional connectedness values between cryptocurrencies with a high market

capitalization tend to be slightly higher than the others.®!
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Figure 5.4. Pairwise directional connectedness. Depicted are a histogram of
the distribution of the pairwise directional connectedness values, C’Z{{_j, separated into
directional connectedness from a variable to itself (own), C/ ., and directional connect-
edness from one variable to a variable other than itself (other), Cilij,z' #J.

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. dev.
Other 0.000 1.297 1.847 1.817 2.360 4.625 0.761
Own  6.336 7.758 8.899 10.979 11.050 44.041 6.803

Table 5.2. Descriptive statistics of pairwise directional connectedness. Re-
ported are the pairwise directional connectedness values, Cﬁ_j, separated into direc-
tional connectedness from a variable to itself (own), C/ ., and directional connectedness
from one variable to a variable other than itself (other), C{1. IR T

In order to convey a sense of the scale of the pairwise directional connectedness values,
Figure 5.4 shows histograms of their distributions separated into own (diagonal) and
other (off-diagonal) pairwise directional connectedness, where additional information
are provided in the form of descriptive statistics of the pairwise directional connected-
ness values in Table 5.2. For example, the average of the diagonal pairwise connect-

edness is approximately 10.9 percent, which is about 5 times as much as the mean of

51'We verify this later, when we extract the connectedness backbone network, in Section 5.3.6, and
find that the more relevant edges are between the large cryptocurrencies.
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the off-diagonal pairwise connectedness, which is about 1.8 percent. Most of the off-
diagonal pairwise connectedness range between 1 and 3 percent, whereas the minimum
of diagonal pairwise connectedness exceeds 6.3 percent. However, the diagonal pairwise
connectedness is below 12 percent for 75 percent of the cryptocurrencies. Vice versa, for
75 percent of the cryptocurrencies, at least 88 percent of their forecast error variance are

due to shocks to other variables in the system (sometimes called other-variable effects).

150

H
o
o
To others

a1
o

95

85

75

From others

65

Total directional connectedness (volatility)

012
-25
-50

Figure 5.5. Static total directional volatility connectedness. For each cryp-
tocurrency, the figure shows its respective from-others-connectedness, C/Z . to-others-

<o)
connectedness, C.H<_Z» as well as the net-connectedness, as the difference between from-

others- and to-others-connectedness.
Figure 5.5 shows the aggregation of pairwise directional connectedness, Cf_j, in the
form of the total directional measures to-others-connectedness, Cf{_i, and from-others-

connectedness, CL ., as well as the net-connectedness, as the difference between from-

i)
others- and to-others-connectedness, for each cryptocurrency. In the figure, the cryp-
tocurrencies are, again, ordered according to their market capitalization, such that the
market capitalization decreases, from left to right.

A slight decline in the to-others-connectedness for smaller cryptocurrencies is visible.
Apparently, larger cryptocurrencies are connected more strongly, and thus, tend to dis-
tribute a larger proportion of shocks to the system. The from-others-connectedness on
the other hand appears to be fairly even, for all cryptocurrencies, with some exceptions
among the smaller ones. However, the measure is quite high overall, indicating that a
large proportion of uncertainty is due to shocks received from other cryptocurrencies.

For example, consider Bitcoin (BTC, first from left), 93.47 percent of its forecast
error variance is induced by other cryptocurrencies, whereas only 6.53 percent of the

uncertainty is self-induced. On the other hand, the to-others-connectedness of Bitcoin
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is 141.65 percent (relative to its own forecast error variance), which (by scaling the
measure) corresponds to 2.89 percent of the grand total of forecast error variance that

52 We compare our results to Yi, Xu, and

is emitted by all variables in the system.
Wang (2018) who analyse the volatility connectedness among 8 cryptocurrencies over
the period from August 4, 2013 to April 1, 2018 (their observed period and ours overlap
by about 9 months). For Bitcoin, they find a from-others-connectedness of 57.72 percent
as well as a to-other-connectedness of 58.14 relative to own forecast error variance, which
corresponds to 7.27 percent of the systems total forecast error variance. Given that we
consider a larger system size (49 cryptocurrencies), it seems plausible that the from-
others-connectedness of the cryptocurrency has increased over time (93.47 > 57.72), as
more cryptocurrencies in the market bring additional uncertainty to the system. If we
consider the to-other-connectedness, we find that this has increased relative to the own
forecast error variance (141.65 > 58.14), but has decreased in relation to the grand total
of forecast error variance that is emitted by all variables in the system (2.89 < 7.27).
This is also sensible, since the contribution of bitcoin in terms of forecast error variance
is distributed among more cryptocurrencies.

We observe further that the net-connectedness and to-others connectedness are struc-
turally quite similar, which is due to the (more or less) evenly high from-others-connect-
edness, for most of the cryptocurrencies. However, the cryptocurrencies can be clearly
separated into net receivers, for which the net-connectedness is negative, and net emit-
ters, for which the net-connectedness is positive. The depiction of the net-connectedness
indicates that smaller cryptocurrencies tend to be net receivers of shocks from other,
presumably, larger ones. This is because larger cryptocurrencies tend to be net emitters
of shocks, with Bitcoin (BTC) and Ethereum (ETH, second from left) being the largest
emitters of shocks.

When analysing the aggregated measures, in Figure 5.5, The cryptocurrency Tether
(USDT, third from left) stands out a bit. This may be due to the fact that Tether is
a cryptocurrency stablecoin pegged to the U.S. dollar, and thus, differs inherently from
the considered cryptocurrencies.®

Finally, averaging either the to-others- or the from-others-connectedness values yields
total system-wide connectedness, C¥, which is a proxy of systemic risk (recall, some-
times the terms are used interchangeably). We obtain a total system-wide connectedness
of CH = 89.02 percent, for the cryptocurrency market, for the entire period from July
3, 2017, to June 30, 2022. This indicates that 89.02 percent of the volatility forecast

error variance in the entire market is due to the connectedness of individual cryptocur-

521n this case, the scaling by Demirer et al. (2018) (see Footnote 37) gives a better feel for the scale of
the to-others-connectedness measure. However, in the case of the from-others-connectedness measure,
we consider it more informative to report the measure relative to the own forecast error variance of the
variable.

53In our further analysis on the stability of the cryptocurrency network, in Section 5.3.5, it will turn
out that Tether plays an important role.
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rencies. To put this into perspective, Diebold and Yilmaz (2015a) find that the total
system-wide connectedness among 10 major stock markets is approximately 41 per-
cent. It is no secret that the market of cryptocurrencies stands out due to being highly
volatile. However, our analysis shows, that apart from being highly volatile, the market
is also subject to high systemic risk due to high connectedness. Again, if we compare
our results to those of Yi et al. (2018), we note that the increase in systemic risk is
a development of recent years, as the total-system-wide connectedness over the period
from August 2013 to April 2018 was only 37.79 for the cryptocurrency market (based
on a smaller system size).>*

Diebold and Yilmaz (2015a) already recognized that the full sample connectedness
analysis yields a snapshot, which summarizes volatility connectedness dynamics over
the considered period. However, in order to capture the evolution of the financial
market under consideration during both calm and turbulent times, connectedness would
also have to be considered dynamically. Because of this, we proceed with a dynamic
analysis of the system-wide volatility connectedness of the cryptocurrency market in

the subsequent section.

5.3.4 Dynamic Analysis: Rolling Sample Connectedness

For the dynamic analysis of the system-wide connectedness of the cryptocurrency mar-
ket, we estimate the VAR(p = 4) model using 90-day rolling samples, and a forecast
horizon H = 12 for computing the GFEVD. For a rolling window estimation, setting
an appropriate window size, that captures the dynamics well, without smoothing too
much on the one hand and also not being too erratic on the other hand, is challeng-
ing. Our choice for the window size, w = 90, corresponds to a quarterly period, for
daily return volatilities (and returns). We additionally compared our parameter choice
to alternative rolling window sizes, see Figure C.15, in the appendix, which shows the
estimated dynamic total system-wide connectedness for different window sizes. The se-
lected rolling window size provides a good balance between smoothness and sensitivity
when capturing the dynamics of connectedness. Increasing the window size leads to a
very strong smoothing of the dynamics, such that the waves of connectedness are no
longer so clearly visible.

Figure 5.6 presents the dynamic system-wide volatility connectedness, and dynamic
system-wide return connectedness, for a comparison. There are several waves of high
volatility connectedness clearly visible in the figure, when shocks created a large por-
tion of future uncertainty, and hence strong connectedness, in the system. Volatility
connectedness is well above 90 percent for these waves, where the last wave is ongoing

since the second quarter of 2022. We will soon discuss the events that might have led

S*However, using a rolling window estimation of connectedness Yi et al. (2018) find a steadily
increasing total system-wide connectedness, which was around 70 percent at the beginning of 2018,
which is closer to our results for this period.
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Figure 5.6. Total system-wide return and volatility connectedness. The results
are based on a rolling window estimation of a VAR (p = 4) model using the most recent
w = 90 observations, and where the GFEVD is based on an H-step-ahead forecast with
H=12.

to an increase of volatility connectedness. Obviously, during recovery phases volatil-
ity connectedness drops. However, return connectedness stays high also in between
volatility connectedness peaks, illustrating that volatilities tend to move together only
in financial crises, whereas returns tend to move together in both calm and turbulent
times, as mentioned before.

The dynamic total system-wide volatility connectedness of the cryptocurrency market
ranges between 78.49 percent and 95.19 percent, with an average of 87.95 percent over
the considered period, which is quite high, all things considered. For example, if we
consider again the 10 major stock markets, analysed by Diebold and Yilmaz (2015a,
fig. 4.3 (b), p. 95), their analysis shows that the volatility connectedness of the stock
markets ranges between 24 percent (in 2000) and 65 percent (in 2008). In another study
Barunik and Kiehlik (2018) analyse the volatility connectedness of 11 major financial
U.S. firms, over the course of 16 years (2000-2016), and find that the connectedness
among these firms ranges between 55 percent and 85 percent. The cryptocurrency
market, therefore, appears to have a very high base level of connectedness, and thus
systemic risk, which can increase even further in times of crises. However, the variation
of system-wide connectedness of the cryptocurrency market, over time, can be expected
because the studied period includes both upswings and downswings, in which shocks
transmit across the system with different strengths.

Volatility Connectedness bottoms during calm times over the periods from early 2019

to early 2020 and from mid 2020 to early 2021, creating a less connected system. A
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decline in the overall trend of connectedness can be observed over the course of the
years before 2020. After 2020, a rising trend of connectedness can be observed. This
might be an indication of a business cycle. However, in order to state this assuredly,
the considered time span would have to be increased.

Finally, we consider events that might have led to phases of increased connectedness.
For example, the first two volatility connectedness peaks in Figure 5.6 occur during the
year 2018, which can thereby be attributed to several occurrences over the course of
the year. In 2018, the market experienced its biggest crash to date, leading to insiders
referring to the year as a nightmare, cf. Ouimet (2019). In early 2018, the market
had already begun to cool off, after Bitcoin has reached an all-time-high of almost
$20K by December 2017, when rumours of a cryptocurrency exchange ban in South
Korea have brought uncertainty to the market, cf. C. Kim and Kim (2018a, 2018b).
Additional uncertainty has been brought to the market by the news that Japan’s largest
cryptocurrency over-the-counter (OTC) market, Coincheck, had to suspend trading due
to $530MM worth of the cryptocurrency NEM (XEM) being stolen in a cyberattack, the
largest ever by then, cf. Mochizuki and Vigna (2018). This has triggered a large sell-off
wave resulting in a Bitcoin price as low as $6,200 by February 2018, corresponding to
a drop in price by 70 percent within two months. The market did not recover over the
course of next months but rather experienced another major price decline at the end of
the year, cf. Patterson (2018).

The next volatility connectedness peak appears in the first half of 2020. At that time,
the World Health Organization (WHO) declared COVID-19 a pandemic (on March 11,
2020), entailing lockdowns across most countries of the world, cf. Onyeaka, Anumudu,
Al-Sharify, Egele-Godswill, and Mbaegbu (2021). Thus, the high connectedness in the
cryptocurrency market can be attributed to high uncertainty due to a global, generally
precarious economic situation.

In May 2021, first, Elon Musk, Chief Executive Officer (CEO) of Tesla, Inc., a manu-
facturer for electric vehicles, has stated that the company will no longer accept Bitcoin
for car purchases due to the environmental impact of the cryptocurrency, cf. Jin and
Singh (2021). At about the same time, China has banned the provision of cryptocur-
rency related financial services, cf. Shen and Siu (2021), resulting in another connect-
edness peak.

There has been an ongoing increase in connectedness since early 2022, which can
be caused by a variety of reasons, such as repercussions of the (still ongoing) global
pandemic (e.g., supply chain troubles), a generally uncertain economic situation due to
high inflation and war-related events, or recent plans for cryptocurrency regulation (e.g.,
the Markets In Crypto Assets (MiCA) framework by the EU, cf. European Commission,
2019). Regulation plans have been reinforced, lately, by the collapse of the algorithmic
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stablecoin, TerraUSD (UST), and its governance token, LUNA (LUNA), in May 2022,
which has led to a billion worth loss across the cryptocurrency market, cf. John (2022).

The considerations above suggest that the cryptocurrency market is sensitive to two
types of events, those that also affects other (financial) markets (e.g., pandemic, in-
flation, war-related events), and market specific events (e.g., regulation plans, security
gaps), see, e.g., Corbet, Lucey, Urquhart, and Yarovaya (2019) for a comprehensive
review on the topic of cryptocurrencies as financial assets. This increases the difficulty
of assessing the systemic risk for the cryptocurrency market, and emphasizes the need
of a reliable approach for monitoring connectedness, that also gives an indication of the

severity of a potential crisis.

5.3.5 Robustness of the Volatility Connectedness Network

The terms robustness and resilience are often used synonymously, however, they are
closely related concepts that are nevertheless different, cf. Barabasi (2016). Recall that
robustness is defined as the ability of a system to maintain its core functionality even
if individual components fail. In the context of networks, this means that the core
functionality is preserved even if individual vertices or edges are missing. On the other
hand, resilience is the ability of the system to adapt the mode of operation to internal or
external disturbances, so that the core functionality is preserved. Resilience is therefore
a dynamic property that requires a shift in core activities. That means a system might
be robust because of its resilience.

In the following we focus on analysing the robustness or resilience of the cryptocur-
rency connectedness network. Since the assortativity of a network is often considered as
a measure of its resilience, we therefore, analyse the assortativity structure of the cryp-
tocurrency connectedness network and its change over the course of time. Recall that
assortativity is the tendency of a vertex to bond with another based on their similarity,
with similarity being usually measured via vertex degree.

The assortativity structure of a network has a big impact on its percolation behaviour.
This is because perturbations or shocks have a higher chance to propagate through the
network, if central vertices tend to be connected to each other, i.e., if the network struc-
ture is assortative. However, the opposite is true, if the network shows disassortative
tendencies, i.e., if central vertices tend not to be connected to each other. This implies
that assortative mixing leads to a loss of stability, and that disassortative networks are
more robust to the effect of dynamic fluctuations than assortative networks, cf. Brede
and Sinha (2005) and Xulvi-Brunet and Sokolov (2004).

These considerations are under the premise that edge weights denote somehow nega-
tive effects, which are desirably prevented. For example, in case of the cryptocurrency
network, edge weights describe negative effects, as they indicate transmission of risk due

to uncertainty. This means that the network is more robust, the more disassortative
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it is. There are, however, other forms of financial networks, for which the opposite
reasoning applies. Consider, for example, banking networks, where edge weights denote
the flow of money (perceived as positive). In such networks, it is crucial to maintain
this flow in order to prevent the market from failing. Therefore, banking networks tend
to be more robust, the more assortative they are.

The assortativity of a network is obtained by computing the Pearson correlation
coefficient between the excess degrees of both ends of an edge. Unfortunately, in the
case of the connectedness network, this leads to a problem. Since the network is a
complete network by construction, i.e., there exists an edge between any pair of vertices,
it is r-regular with » = (n — 1), implying that every vertex has the same degree. Thus,
the correlation coefficient cannot be computed due to the homogeneous degrees of the
vertices. Sometimes, a network is declared to be perfectly assortative, in such a case,
arguing that connected vertices are maximally similar with respect to their degrees.
Our analysis, however, will show that one might make a mistake by doing so.

By considering vertex strength instead of vertex degree, it becomes possible to deter-
mine and analyse assortativity for such r-regular networks, and thus, for the cryptocur-
rency network as well. The derivations and analyses of Chapters 3 and 4 are therefore of
essential use. By using the generalized assortativity coefficient it is possible to compute
the assortativity of the network, and furthermore, to assess its statistical significance.
Moreover, since the network is also weighted, the maximum of available information is
used in order to determine the robustness of the cryptocurrency network.

Recall that the generalized assortativity coefficient has been defined as:

(a,B) —
\/ [zi W2)— -1y, wfziﬂ {Zi Wm2) — (X, wfm)?

rY i wiﬁlimi - (3 wfli)( > wiﬁmz’)

where [; and m; are the excess (in- or out-) strengths of the ends [ and m of edge i.
For example, l; = s} — w{ is the excess strength of end [ of edge ¢ with o € {0,1}.
Furthermore, Q = 3", wf with 8 € {0,1}. Since degree assortativity cannot be com-
puted for the network, we focus on the parameter combination (a = 1,5 = 1). For the
mode of assortativity, a pre-analysis has shown that the out—in and in—in modes are
structurally very similar as well as the out-out and in—out modes, see Figure C.18, in
the appendix.®® We focus therefore on the out-in mode of the generalized assortativity

coefficient, as this is also the suggested mode by Newman (2003).

55To the best of our knowledge, we are the first to perform such an analysis. It would be interesting
to see if other networks also show this kind of behaviour or if it is unique to the cryptocurrency
network. Interestingly, the modes out—in and in—in as well as out—out and in—out, respectively, have
already shown similar patterns regarding the local assortativity analysis of the C. Elegans network in
Chapter 4. This might be therefore something worth understanding.
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In order to assess the significance of the assortativity of the connectedness network,
we use the algorithm by Rubinov and Sporns (2011), as in Chapter 3. This algorithm
(approximately) preserves the strength distribution while rewiring the observed net-
work. Since the total system-wide connectedness corresponds to the mean strength of
the network (either out or in), it is preserved by the algorithm. This implies that ran-
dom samples are drawn from the distribution of networks that exhibit the same total
system-wide connectedness as the observed network, but for which edges had formed
randomly, i.e., random assortativity structure. A comparison of the observed assortativ-
ity with the assortativity of the surrogates gives an indication of the significance of the
assortativity of the observed network. We draw therefore a sample of 250 random net-
works for each rolling window estimate of the connectedness network and compare their
respective assortativity values. Figure 5.7 shows the evolvement of the assortativity of
the connectedness network over time.

The assortativity of the connectedness ranges between —0.36 and 0.08, with an av-
erage of —0.07 over the considered period, indicating that there are times when the
network is more stable and times when it is less stable. We observe that the peaks
and troughs of assortativity and connectedness coincide, respectively, i.e., at times at
which the assortativity is low the connectedness is high, and vice versa. Apparently the
total system-wide connectedness of the market and the generalized assortativity of the
underlying network are inversely related.

By looking at both indicators at the same time, and additionally considering the
significance of the generalized assortativity coefficient over time, a more precise assess-
ment is possible as to when the market seems to be in a crisis and when not. The
market is in crisis when the underlying network has transformed itself in such a way
that it is non-assortative or (in particularly severe crises, such as in 2018) significantly
disassortative compared to the corresponding null model, as this structure is as robust
as possible against the failure of individual vertices. A crisis appears to subside when
the underlying network resumes assortative tendencies over an extended period of time.
In addition, the network shows the greatest assortative tendencies during periods of
upswing. This is the case, for example, in the phases of the upswing from early 2019
to early 2020 and from mid-2020 to early 2021, and at the time before the last crash in
the second quarter of 2022.

Statements of this kind cannot be made by analysing the total system-wide connect-
edness alone, since this key figure is apparently not suitable for an absolute comparison
(of the percentages), as previously suspected.’® This can be seen, for example, by look-
ing at the periods from the second half of 2018 to early 2019 and from late 2021 to

early 2022. The average system-wide connectedness is at a similarly high level for both

56If it were the case, that the absolute total system-wide connectedness percentages were suitable
for a comparison across markets, we would come to the conclusion that the cryptocurrency market is
permanently in a crisis.
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Figure 5.7. Evolvement of generalized out—in assortativity of the volatility
connectedness network. Depicted are the evolvement of the generalized out—in as-
sortativity coefficient (o« = 1,8 = 1) for a rolling window estimation of the volatility
connectedness network (w = 90, H = 12, p = 4), in the top figure. The dark grey
line and grey shaded area indicate the mean of the generalized out—in assortativity of
a respective null model together with a piecewise 95 percent confidence band, respec-
tively. The bottom figure presents the total system-wide volatility connectedness, for
comparison purposes.

periods. However, the market is in crisis in the first period, while the second period is
rather calm. Only the additional consideration of the generalized assortativity for both
periods enables the correct classification. Another point that shows that the analysis of
assortativity provides additional information is the period between the two connected-
ness peaks at the beginning and end of 2018. Although the connectedness falls slightly
during this period, which indicates a less connected system, and thus, a supposedly
lower systemic risk, the assortativity shows that the market has not yet overcome the
crisis. This is an advantage of the assortativity analysis, since the resulting coefficient

can be compared with across networks by comparing it to the null model.
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It would be interesting to know which underlying processes lead to the network being
formed into an assortative or a disassortative one. Unfortunately, so far there exists
no generative model that can be used to construct networks with a given assortativity,
which would help explain why assortative mixing arises. All models known to us are
based on a random graph with predefined basic features such as order, size, or degree
distribution, which is made assortative or disassortative by link rewiring. So to explain
how the network manages to form disassortatively in times of crisis and assortatively in
upswings, we need to look at the components that make up the network.

In principle, the network is based on the return volatilities, which in turn are based
on the returns resulting from the prices of the individual assets, which in turn are the
product of supply and demand in the market. The core of the network and in particular
its assortativity structure is therefore derived from the aggregated investment decisions
of all participants in the market. The way investors act in the market, i.e., whether they
sell or hold positions or even buy more, significantly influences the assortativity structure
of the underlying network of the market. The assortativity structure of the network
may therefore reflect the market sentiment. If the market sentiment is positive, as is
the case with upswings, the potential risk of an exogenous shock is collectively assessed
as low, which the investors express through their actions. The result is that the network
becomes assortative, and the associated loss of stability is apparently tolerated by the
market participants. However, if the risk of a shock is collectively perceived as high, as is
the case in crises, the instability of the network will then no longer be tolerated, and the
adjusted investment decisions lead to the network structure becoming non-assortative
or even disassortative, which increases stability. It would be interesting to see if an
additional analysis of sentiment indicators and the comparison of their evolvement with
those of assortativity can confirm these assumptions. Possible sentiment indicators may
be the VIX or the index of Baker and Wurgler (2006), for which Anamika, Chakraborty,
and Subramaniam (2021) have shown that they impact the cryptocurrency market.
Alternatively, the VCRIX, a volatility index specific to cryptocurrencies in the vein of
the VIX index of A. Kim, Trimborn, and Hardle (2021) may be considered.

Although we are confident that the inverse relationship between a market’s systemic
risk and the robustness of its underlying network structure, which we empirically show
for the cryptocurrency market, is shared by other financial markets more widely as well.
This is something that has to be verified by further research.

However, if our assumption is confirmed, then for example, from a practical applica-
tion point of view, the results of the joint analysis of connectedness and assortativity
can be used to monitor the risk development in real time, not only in the cryptocurrency
market but any financial market. It is then possible to identify early when the market
is cooling off or is even heading towards a crisis. Moreover, the granularity in which the

analysis is carried out can be selected arbitrarily fine, and it only depends on the data



5 The Robustness of the Network Structure of the Cryptocurrency Market 110

availability whether quarterly, monthly weekly, or daily periods may be considered. We
also see no reason why such an analysis should not also be possible on the basis of
intraday data.

In the following, however, we want to deepen the assortativity analysis further and
focus on the generalized local assortativity. Breaking down the interpretation of global
generalized assortativity, as an indicator of the stability of a network, to individual ver-
tices and edges, we come to the conclusion that local assortativity can be an indicator
of stabilizing vertices or edges. More precisely, since vertices that have a particularly
high (and positive) local vertex assortativeness value contribute the most to the assor-
tative structure of the network, they therefore destabilize the network the most. In
contrast, nodes that have a particularly high (and negative) local vertex assortativeness
value contribute the most to the disassortative structure of the network, and thus sta-
bilize it the most. The same considerations can be made for edges and their local edge
assortativeness values.

The analysis of the local generalized assortativity is based on the full sample volatility
connectedness network. For this purpose, Table 5.3 first shows the results of the global
generalized assortativity analysis for the consideration of the entire period, again for
the parameter combination (o = 1,8 = 1, mode = out—in). Obviously, the network is
significantly disassortative, since r¥ < ¥ ., and r* ¢ [—0.075, —0.050], indicating that

rnd’

the market is currently in a (severe) crisis.

¢ Ore,J Trnd Ore Clie 0.95

rnd rn

-0.098 0.032 -0.062 0.006 [—0.075, —0.050]

Table 5.3. Generalized assortativity analysis of the static volatility connect-
edness network. Reported are the values of the generalized assortativity coefficient,
¥, together with the jackknife estimate of the standard error, 6, 5, the expected gener-
alized assortativity of the corresponding null model (based on an ensemble size of 250),
re 4> together with its standard error estimate and a 95 percent confidence interval of
the generalized assortativity coefficient of the null model, Cl,« .95, for the parameter
combination (a = 1,5 = 1, mode = out—in).

To break down the global generalized assortativity, we calculate the generalized edge
assortativeness values, p¥, for each edge and the generalized vertex assortativeness val-

ues, py, for each vertex. Recall that the generalized edge assortativeness, p%', are defined

as:
(o B, ottin) w12 — T2 (o, B)][mid = U (o, B)]
. (o, D, out—in) = W % ,
p Q ’ O-qut (O[, /B) : O-q;kin (Oé, 18)

where the mode of assortativity is out—in and is determined by the mode of the global

out
le

assortativity under consideration, and m® are the excess out-strength of the end I
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that edge e leads out of and the excess in-strength of the end m that edge e leads into.
The weighted sample mean out- and in-strengths of the outgoing and incoming ends are
U;fm( ,3) and U “im (a, B), respectively, and the respective weighted sample standard
deviations are given by & out(a B) and Oq*m( ,B). Further, recall that the generalized

vertex assortativeness values, p%, are defined as:>”

a, 3, out) Z pe., (a, B, out-in).

Figure 5.8 visualizes the results of the local assortativity analysis. For example, Fig-
ures 5.8a and 5.8c show scatterplots of the generalized edge assortativeness values, and
Figure 5.8e shows the corresponding histogram. Since the elements of the adjacency
matrix are ordered (i.e., cryptocurrencies are ordered according to their market capital-
ization), this order carries over to the order in which the edges are considered. Thus,
when the edge assortative values are plotted against their index, we can observe that
connections between large cryptocurrencies tend to be disassortative and connections
between smaller cryptocurrencies tend to be assortative.

When the edge assortativeness values are plotted against the corresponding edge
weight, we observe that assortative connections are almost exclusively present in the
low edge weight range, whereas disassortative edges tend to have medium to high edge
weights, but hardly any low ones. The histogram, shows that the proportion of disas-
sortative edges is slightly higher than the proportion of assortative edges, however, the
majority of the edges are non-assortative.

Figures 5.8b and 5.8d show scatterplots and Figure 5.8f shows the corresponding
histogram for the generalized vertex assortativeness values. As before, since the elements
of the adjacency matrix are ordered, plotting the vertex assortativeness values against
their index reveals if there is a relationship between the size of a cryptocurrency and its
vertex assortativeness. Apparently, this is not the case as assortative and disassortative
vertices tend to be evenly distributed across all indexes. However, the two largest
cryptocurrencies are particularly disassortative as compared to the others.

On the other hand, plotting the vertex assortativeness values against the correspond-
ing average excess strength of a vertex, reveals a nonlinear relationship. More specifi-
cally, vertices with an average excess strength fairly close to the mean average excess
strength, which equals 0.872, tend to be non-assortative. Vertices with an average ex-
cess strength above mean tend to be disassortative, while they can be both assortative

and disassortative if their average excess strength is below mean. If we look at the his-

5TRecall that in a directed network it is possible do compute both generalized vertex out-
assortativeness values and generalized vertex in-assortativeness values. A preliminary analysis has
shown that the results do not differ much, no matter what form of generalized vertex assortativeness
value we compute. Thus, we focus on generalized vertex out-assortativeness.
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Figure 5.8. Generalized local assortativity of the static volatility connected-
ness network.
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togram, we find that vertices are almost exclusively non-assortative or disassortative.
As we shall shortly see, there are only two assortative vertices.

There are various ways of achieving a non-assortative or disassortative structure for
a network. For example, if we make the comparison to the WRG or WSF model (see
Chapter 4), we find that a network can be non-assortative in that disassortative and
assortative vertices or edges balance each other (WRG). Or it takes a non-assortative
structure with a slight tendency towards disassortativity in that the predominant part
of the network is non-assortative and only a few vertices or edges are very strongly
disassortative (WSF). If we consider the edge and vertex assortativeness values in the
cryptocurrency network, however, it becomes apparent that the whole network is seeking
for robustness, since almost all parts (edges and vertices) tend to be non-assortative or
disassortative.

Consider, therefore, Table 5.4 and Table 5.5 where we report the top 5 assortative and
disassortative vertices and the top 5 assortative and disassortative edges, with respect
to generalized vertex and edge assortativeness, respectively. In the context of stability,
we note that Tether (USDT) poses the greatest threat to the stability of the underlying
network, while Bitcoin (BTC) and Ethereum (ETC) protect it. The statements refer
to the network that is currently in a crisis. It is to be expected that a different picture
emerges in upswings. However, to show that a more sophisticated, dynamic analysis
of local assortativity is required, which is beyond the scope of this work and which we

therefore postpone to future research.

Generalized vertex assortativeness

Top assortative Top disassortative
Rank Symbol Assortativeness Rank Symbol Assortativeness
1 UsDT 0.0004448 1 ETH -0.0112978
2 FUN 0.0000101 2 BTC -0.0111917
3 ZEC -0.0001088 3 GXC -0.0054079
4 DGB -0.0001102 4 NEO -0.0051509
5 DOGE -0.0001287 5 SBD -0.0049446

Table 5.4. Generalized vertex assortativeness ranking of the (static) volatil-
ity connectedness network. The table shows the top 5 most assortative as well as
the top 5 most disassortative cryptocurrencies with respect to the generalized vertex as-
sortativeness values, p¥, for the parameter combination (o = 1, 8 = 1, mode = out—in).

Finally, if we translate the results of the generalized local assortativity analysis into
recommendations for action with respect to investment decisions during financial crises,
the following strategy appears to be fairly reasonable. One might want to consider
investing in positions as disassortative as possible, for which the risk of failure due to a

direct exogenous shock is low (based on project size or liquidity reserve et cetera). For
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Generalized edge assortativeness

Top assortative Top disassortative
Rank From To Assortativeness Rank From To Assortativeness
1 USDT XWC 0.0063853 1 BTC XWC -0.0049170
2 NMR XWC 0.0034936 2 ETH XWC -0.0043160
3 MAID XWC 0.0023983 3 ETH VERI -0.0042937
4 ANT XWC 0.0022711 4 BTC VERI -0.0036766
5 REP XWC 0.0019433 5 BTC UsDT -0.0032437

Table 5.5. Generalized edge assortativeness ranking of the (static) volatility
connectedness network. The table shows the top 5 most assortative as well as the
top 5 most disassortative connections between cryptocurrencies with respect to the
generalized edge assortativeness values, p¥, for the parameter combination (o =1, =
1, mode = out—in).

such positions, the risk of failure due to an indirect shock that propagates through the
network is lower due to the disassortative tendencies, however, the risk of a direct shock
remains, and thus, should be also considered. On the other hand, one might want to
consider staying away from or clearing positions that show assortative tendencies, and
for which it is unclear if they would stand even indirect shocks (again, based on project
size or liquidity reserve et cetera). Such positions have a higher risk of failure due to
both direct and indirect shocks.

To illustrate this, we compare the performance of WhiteCoin (XWC), a small cryp-
tocurrency with respect to market capitalization, which is the receiving end of the top 5
assortative edges (according to our strategy one to avoid), with those of Bitcoin (BTC),
the largest and second most disassortative cryptocurrency (according to our strategy
one that should be preferred). WhiteCoin (XWC) experienced an above-average fall in
the price of 91.97 percent, since the beginning of 2022. In terms of market capitaliza-
tion of WhiteCoin, this means that about $565MM vanished. By comparison, the price
decline of Bitcoin, is equivalent to (merely) 59.59 percent, over the same time period.
The price decline of the more assortative WhiteCoin (as compared with Bitcoin) is more
than 50 percent higher than for the more disassortative Bitcoin. However, this is only
an indication. Further research has to verify whether the trading strategy is sensible or
not. Therefore, one would have to examine the local assortativity dynamically.

Moreover, the analysis of the local edge and vertex assortativeness values can also
be particularly helpful with selecting considerable pairwise directional connectedness
relationships for an analysis, as analysing of all of them might not possible with justifi-
able effort. For example, for the considered network, there are a total of 2352 pairwise
connectedness relationships. Thus, it seems sensible to select only those pairwise rela-
tionships for a more in-depth analysis that are particularly relevant from a risk perspec-

tive, e.g, the top assortative and disassortative relationships (see Table 5.5). For the
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cryptocurrency network, Figures C.20 and C.21 depicts the evolvement of pairwise di-
rectional connectedness over the considered time period, for both the top 5 assortative
and disassortative connections between the cryptocurrencies, for example. However,
a more in-depth analysis of the pairwise connectedness, in particular the meaningful-
ness of the results, would require detailed knowledge of the individual cryptocurrency
projects. However, that would exceed the scope of this work. We may come back to
this in future research.

In addition to the total system-wide and pairwise directional analysis of connected-
ness, it can sometimes be useful to examine whether cryptocurrencies can be grouped
together based on their connectedness, from a robustness perspective. The idea behind
it is, that in the event of a shock to a particular cryptocurrency, the surrounding ones
that are close tend to be affected sooner or more severely. In network terminology such
a phenomenon is referred to as cascading failures, i.e., the activity of a vertex depends
on the activity of its neighbours, such that the failure of a vertex may induce failures to
the vertices it is connected to, cf. Barabasi (2016). Cascading failures are common in
economic systems and have been the cause of some of the most severe financial crises in
the recent past. Consider, for example, the decline in house prices in 2008 in the U.S.,
which led eventually to a global financial crisis. It is therefore valuable information
for both investors and policymakers to know which cryptocurrencies are particularly
close in terms of community structure in order to take possible cascading failures into
account. To this end we consider briefly the community structure of the cryptocurrency

network in the next section.

5.3.6 Backbone Extraction and Community Structure

The backbone of a network refers to a simpler version of the original network that is
reduced in size (i.e., some vertices or edges are omitted), such that the core information
of the original network is preserved, cf. Dai, Derudder, and Liu (2018). We men-
tioned above that the cryptocurrency network is a complete network, i.e., each vertex is
connected to every other vertex in the network by a weighted edge. In the case of assor-
tativity, we had to extend the assortativity coefficient, in order to be able to compute
the measure for the cryptocurrency network. Some methods are in theory applicable to
complete networks but fail in practice because of the high edge density. For example,
the algorithm that we use for community detection is unable to uncover the communities
in the complete network. In order to achieve sparsity of the network, i.e., to determine
its backbone, a plethora of techniques is available, of which a comprehensive review is
given by Dai et al. (2018).

A simple and straightforward approach is the global weight thresholding, cf. Yan,
Jeub, Flammini, Radicchi, and Fortunato (2018). When illustrating the resulting net-
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work, Diebold and Yilmaz (2014, fig. 7) utilize global weight thresholding,®® by only
depicting edges whose edge weight magnitude is above a certain percentile threshold.®
Alternatively, the minimum spanning tree can be examined instead of the complete
network. In order to find the minimum spanning tree of a network, (n — 1) edges are
selected such that no cycle is created and the sum of their weights is minimal,®® see,
e.g., Kruskal (1956). Zigba et al. (2019), for example, analyse cryptocurrency networks
using their minimum spanning trees.

However, both of these approaches have disadvantages, as they destroy local patterns
and neglect the multiscale nature of networks. The minimum spanning tree omits cycles
by construction, and thus, produces overly simplified representations of the original net-
work, where clustering hierarchies are destroyed, cf. Serrano, Boguné, and Vespignani
(2009). Moreover, since exactly (n—1) edges are select in finding the minimum spanning
tree, its size is fixed. With global weight thresholding, the threshold is usually chosen
arbitrarily. In addition, the reduced-size network only contains edges with a relatively
high edge weight, since edges whose weight is below the threshold are removed. Hence,
global thresholding introduces arbitrariness, structural bias and uniscalarity, cf. Dai et
al. (2018).

In order to reduce the density of the network of cryptocurrencies, and extract its
backbone, we opt therefore for using a more sophisticated approach, which does not
have the above disadvantages. We will use the disparity filter algorithm suggested by
Serrano et al. (2009).%1 By specifying a null model to define anomalous fluctuations in
the edge weights, the disparity filter algorithm preserves those edges of the network that
deviate significantly from the local weight assignment scheme under the null hypothesis.
The assumed null model considers normalized edge weights, p;; = w;;/s;, where, as
before, s, = Zj w;j is the strength of vertex .52 The normalized edge weights, that
correspond to the connections of a particular vertex of degree k’, are then considered
to be randomly assigned draws from a uniform distribution, Uy y).

According to Serrano et al. (2009) a somehow conceivable explanation would be to

consider the lengths of k subintervals obtained by uniformly sampling k — 1 breakpoints

58However, they do not refer to the term global weight thresholding explicitly.

59We have also seen others using this approach.

50Note, however, that this is the case if edge weights refer to distances. In case of connectedness
one would either have to select the edges such that their sum is maximal or use their reciprocals, as a
high connectedness indicates a low distance between vertices and vice versa.

51Interestingly, the disparity filter algorithm is a special case of the Pélya filter, which offers a
continuous family of network backbones P,, as a combinatorial model, based on the Pélya urn, that
is driven by a self-reinforcement mechanism governed by a reinforcement parameter a, cf. Marcaccioli
and Livan (2019). An example of a Pélya urn is the following: initially, an urn contains By black balls
and Ry red balls; a ball is drawn from the urn, randomly with replacement; when returning the ball,
a many new balls of the same colour are added to the urn; this process repeats n times, such that the
probability of observing x red balls after n steps follows the Beta-Binomial distribution, cf. Mahmoud
(2009). The disparity filter is obtained by setting a = 1.

52For simplicity, the depiction of the algorithm is for the case of an undirected network, however, it
is also suitable for directed networks.
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from the interval [0, 1]. The lengths of the & intervals then correspond to the expectation
of the normalized edge weights, p;;. The probability density function for the normalized

edge weights taking on a particular value x is then given by:
plx)dz = (k—1)(1 — 2)*2dz.

With this, for each edge of the original network, the probability of its weight being in
accordance with the null model can be determined by:

Dij

ij =1 —(k— — z)"2dx.
aij=1— (k 1)/0 (1 2)*2d

By prespecifying a significance level &, edges that do not comply with the null hypothesis
are filtered out, i.e., if o;; < &, as they are considered to be the product of network-
organizing principles, and thus, form the network backbone. Edges for which a;; > &
are removed, as they are considered to be random fluctuations.

Serrano et al. (2009) conclude that values in the range & = [0.01,0.5] are optimal in
the sense that the resulting backbones preserve a large proportion of both the number
of vertices and the sum of edge weights, compared to the original network.%® Moreover,
they exhibit the same clustering, and have a stable stationary degree distribution, albeit

consisting of a much smaller number of edges.

a %Horig. %‘/orig. %Eorig. a %Horig. %‘/orig‘ %Eorig.
0.50 0.995 1.000 0.982 0.25 0.235 1.000 0.156
0.45 0.980 1.000 0.949 0.20 0.079 0.857 0.046
0.40 0.899 1.000 0.822 0.15 0.018 0.449 0.010
0.35 0.703 1.000 0.580 0.10 0.005 0.143 0.003
0.30 0.479 1.000 0.353 0.05 0.000 0.041 0.000

Table 5.6. Disparity backbone network sizes. The sizes are in relation to the
original network, in terms of percentage total edge weight %Horig., vertices %Vorig, and
number of edges % Horig. for different values of a.

For the volatility connectedness network, Table 5.6 gives an overview of resulting
backbone network sizes, as compared to the original network, in terms of percentage
total edge weight % Horig., vertices %Vorg, and number of edges % Horig. and Figure 5.9
shows the corresponding resulting backbone network visuals for different values of the
parameter &. The vertex labels correspond to the respective market capitalization
ranks of the cryptocurrencies, as in Table C.1, in the appendix. For example, the

vertex labelled 1 corresponds to Bitcoin (BTC). Apparently, by changing the values

53In the case of the volatility connectedness network, the fact that a large proportion of the sum
of edge weights is preserved is desirable, as it is proportional to the total system-wide connectedness
measure, CH .
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of &, edges are filtered out progressively focusing on more relevant edges.? As the
figures show, there are more relevant edges between cryptocurrencies with higher market
capitalization, as already indicated in Section 5.3.3.

However, with the disparity filter algorithm, not only edges with a high edge weight
are considered, but also statistically significant edges with a low edge weight. This
means that all important connections are considered on multiple scales at the same
time. This would not have been possible with the global weight thresholding approach,
since all edges below the scale determined by the threshold are removed. However, all
approaches to reducing the complexity of the network have their limitations, including
the disparity filter algorithm approach. In particular, the disparity filter algorithm does
not work in networks where the edge weights are homogeneously distributed, cf. Serrano
et al. (2009). However, this is not a problem in the present case, since the edge weights
of the cryptocurrency network are heterogeneously distributed, see Figure 5.4b.

The question arises as to which value of & should be chosen in order to determine
the network backbone. Unfortunately, there is no answer that conclusively answers the
question. We, therefore, propose to examine a selection of values with regard to their
suitability on a case-by-case basis, as we did. In the case of the cryptocurrency network,
if we had to commit to a value, we would tend towards 0.2, as this is the value that
generates the smallest backbone network with all vertices preserved from the original
network. We want the backbone network to be small, limited to only the most relevant
edges, but at the same time, we want to keep all vertices of the original network as
we want to assign each cryptocurrency to a community. However, there may be cases
where it is not necessary to preserve all nodes of the original network, then another
value may be more appropriate.

There are a multitude of methods for finding communities in networks, see, e.g.,
Fortunato and Hric (2016) for an excellent review on community structure detection.
For uncovering the communities of the cryptocurrency network we use the very popular
Louvain algorithm, cf. Blondel, Guillaume, Lambiotte, and Lefebvre (2008).5° The
Louvain algorithm is a greedy algorithm optimizing the network modularity. Modularity
is a measure that indicates the quality of a network partition in the sense that the within
community edge density is high, whereas, at the same time, the in-between community
edge density is low, c¢f. Newman and Girvan (2004), Newman (2004) and Leicht and
Newman (2008). Figure 5.10 shows the network backbones for which we determined

the communities using the Louvain algorithm, the nodes are coloured according to their

54We forgo depicting network visuals for values of & = {0.50, 0.45,0.40,0.35,0.05}, as the resulting
backbone networks either have a similar visual appeal as the complete network or consist of only a
single connection between vertices 1 and 2.

55The classic Louvain algorithm is designed for undirected networks. Directed networks are usually
treated as undirected, as the method is still applicable, then. This is what we have done in this work.
However, Dugué and Perez (2015) have proposed a directed version of the algorithm, which we might
consider in future research.
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community affiliation. Apparently, the algorithm is able to uncover the communities
the better, the sparser the network is. Depending on the desired level of sparsity,
the cryptocurrency network can be divided into between two and seven communities.
The information about which cryptocurrencies can be grouped together can now also
be used to assess the potential threat that individual cryptocurrencies pose to others.
Interestingly, considering the top 3 largest cryptocurrencies, Bitcoin (BTC) and Tether
(USDT) are almost always in the same community (the exception is for & = 0.25).
In contrast, Bitcoin (BTC) and Ethereum (ETH) are in different communities for the

sparsest network backbones, where the focus is on the most relevant edges.

5.4 Discussion and Future Work

Our analysis has shown that the total system-wide volatility connectedness, which is a
proxy for the systemic risk, can be related to the generalized assortativity coefficient
of the corresponding volatility connectedness network, which itself is considered to be
a proxy for the stability of the network. Both measures are inversely related, i.e., the
one is high when the other is low and vice versa. More precisely, it is in turbulent
times of high systemic risk (crisis), when the system-wide connectedness peaks. In
those times, the generalized assortativity coefficient of the connectedness network tends
to be low, indicating that the network is non-assortative or even disassortative (with
respect to a corresponding null model). In phases of upswing, however, the network
tends to become assortative. We have shown that analysing both metrics together is
beneficial as it allows for a more precise classification of crises and their severity. This
was previously not possible with the exclusive consideration of connectedness.

Analysing the generalized local assortativity of the volatility connectedness network
has shown that Tether (USDT), being the most assortative vertex in the network, is the
greatest threat to the stability of the cryptocurrency network. Whereas the two largest
cryptocurrencies Bitcoin (BTC) and Ethereum (ETH) are its strongest protectors, as
they contribute most to the disassortative structure of the network. Note, however,
that the above reasoning is based on the static local assortativity.

Both global and local generalized assortativity analysis are based on real-time mon-
itoring the market of cryptocurrencies. However, it would be interesting to see if the
future evolution of the network, particularly the assortativity, can be predicted. If that
were the case, potential crises could be identified at an early stage and recommenda-
tions for action could be made. We have not mentioned it explicitly yet, but when we
look at the cryptocurrency network dynamically, we obtain a separate adjacency matrix
for every point in time. In network science, such networks are referred to as temporal
networks for specific methods are available, see, e.g., Holme and Saraméki (2012) and
Holme (2017) for a survey on the subject of temporal networks, and Brey, LeBlanc,

and Deschamps (2018) for an overview of selected methods for analysing and visual-
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izing temporal networks based on the R programming language. In this context, two
recent publications consider temporal network prediction and interpretation, one using
interpretable learning algorithms, such as LASSO regression and random forests, the
other one reviewing various approaches, e.g., probabilistic, time series analysis, or deep
learning approaches. We will test the above methods for their suitability for predicting
the future assortativity structure of the cryptocurrency network, and thus, anticipating
times of crisis of the cryptocurrency market, in future research.

Furthermore, it may be interesting to examine the development of the assortativity
structure with regard to its timeframe. We are interested in finding out whether there
are differences in the short-, medium- and long-term assortativity structure. For the
volatility connectedness, in order to account for heterogeneous frequency responses to
shocks of variables, Barunik and Krehlik (2018) introduce a framework based on the
spectral representation of variance decompositions. This allows for partitioning con-
nectedness in, for example, short-, medium- and long-term financial cycles. Again, we
have not yet seen any explicit reference in the literature, but with the approach by
Barunik and Kfehlik (2018), multiple adjacency matrices at any point in time are ob-
tained, for which the edge weights each have a different meaning. In the case of edge
weights referring to short-, medium- and long-term connectedness, there are three ad-
jacency matrices at any point in time. This is a temporal multiplex, which is a special
case of a multilayer network, cf. Kivela et al. (2014) for an overview of the topic of
multilayer networks. Since there are also separate methods for these kinds of networks,
we also see untapped potential for future research here. We want to use these methods
to further improve our assortativity analysis of the cryptocurrency network.

Considering the general suitability of the DY framework in combination with KPPS
for the derivation of the underlying network structure of the market of interest, Wiesen
and Bharadwaj (2021) point out disadvantages: (1) As a consequence of using the ad
hoc normalized GFEVD matrix, such that rows sum to unity, DY may fail to measure
the exact degree of total connectedness, cf. Caloia, Cipollini, and Muzzioli (2019); (2)
By summing the directional connectedness values that lead to variable j, in order to
obtain the total to-connectedness, Cﬁ_., the cross-correlation between the variables (over
which the sum is computed) are neglected, and, thus, the use of DY spillover indices
may only imprecisely dichotomize forecast error variance into own-variable effects and
other-variable effects, cf. Lastrapes and Wiesen (2021).

Although we conjecture that (2) may not be too drastic, as we utilize a regulariza-
tion approach in order to estimate the coefficients, and the RR part of the elastic net
penalty considers multiple correlated variables. Therefore, as an alternative to the DY
framework, we may consider using the joint spillover index suggested by Lastrapes and
Wiesen (2021), which overcomes the above-mentioned disadvantages, in order to con-

struct the adjacency matrix of the network. It would be interesting to see whether and,
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if so, how far the resulting network structure is affected by the use of different spillover
indexes.

We find that the data are particularly well suited for analysing risk and robustness,
since the market for cryptocurrencies is characterized, among other things, by its high
volatility. Moreover, the market had to suffer several shocks in the recent past. These
shocks always led to strong fluctuations, as compared to other financial markets, for
which a price decline of around 90 percent in 2 months is rather unusual, for exam-
ple. At the same time, however, this also means that the resulting patterns of the
cryptocurrency market are becoming more apparent, which enabled us to recognize the
connection between connectedness and assortativity. We find it fascinating that the
analysis of the generalized assortativity produces such interesting results and that the
patterns are so well pronounced for the cryptocurrency market.

This concludes the analysis. We proceed with a conclusion of this thesis in the last

chapter.



6 Conclusion

In this thesis we have shown that assortativity, the tendency of vertices to bond with
others based on similarities (usually excess vertex degree), in weighted networks is more
complex than in unweighted networks. Previously published research focuses on seeking
a single measure that describes the underlying assortativity structure. We pointed out,
however, that focusing on a single measure might lead to information loss, and, therefore,
proposed a generalized assortativity coefficient that nests previous measures and that
utilizes available information at the best.

To this end, we proposed to use as vertex values excess vertex strength, which has
never been considered in the assortativity literature so far and which is the general-
ization of excess vertex degree in weighted networks. We broke down assortativity in
weighted networks into its components and identified two mechanisms that essentially
affect the assortativity structure of a network, which we refer to as the connection effect
as well as the amplification effect. Furthermore, we provided procedures that allow for
a detailed interpretation and assessment of assortativity in weighted networks as well
as for the assessment of its statistical significance. For the latter we introduced appro-
priate resampling and link rewiring techniques. We demonstrated the application and
usefulness of our generalized assortativity coefficient for assessing and interpreting the
assortativity of three commonly used weighted real-world networks, both directed and
undirected.

Moreover, we have extended local assortativity for weighted networks. By having
unified two approaches used in the literature, we were able to derive distinct measures
that allow us to determine the assortativeness of individual edges and vertices as well
as of entire components of a weighted network. We demonstrated the usefulness of
these measures by applying them to various theoretical and real-world networks. We
were able to show that the analysis of generalized local assortativity can help to further
break down the assortativity structure for a network. This allows to further differentiate
the topology of networks that exhibit a similar global assortativity, as we have shown
for the theoretical models. Along the way, we also explained how to compute local
assortativity profiles, which are informative about the pattern of local assortativity
either with respect to edge weight or vertex strength.

Since (almost) everything can be represented as a network, we were able to analyse the
underlying network of the cryptocurrency market, the structure of which we estimated
using cryptocurrency price data. By using a regularization approach when estimating

the model parameters, we were able to conduct a study that stands out from others.
124
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Since we analyse a more exhaustive set of data, both in terms of the time span and
in terms of the number of considered cryptocurrencies. Other studies either look at
a similar length of time as we do, but only analyse a handful of cryptocurrencies, or
consider a similar number of cryptocurrencies as we do, but for a much shorter period
of time. However, by looking at a longer period of time, we were able to better interpret
the patterns that emerged.

We have thoroughly studied the network of cryptocurrencies, particularly with re-
gard to the relationship between the network’s volatility connectedness, as a measure
of systemic risk, and its assortativity structure, as a measure of network resilience. By
analysing the evolvement of the generalized assortativity coefficient of the volatility
connectedness network, we were able to empirically show that both measures are in-
versely related. This opens up new possibilities of monitoring systemic risk, since we
additionally provide a procedure for determining the significance of generalized assor-
tativity with respect to a null model. For this purpose, we have provided information
on how the results of this analysis can be used to develop a corresponding monitoring
tool. Without the generalized assortativity measures, this analysis would not have been
possible, and this relation would have remained undetected.

Moreover, we demonstrated how the backbone of the cryptocurrency network can
be obtained in order to properly determine its community structure. This analysis
provides valuable information in terms of assessing and managing risk, as it allows
cascading failures in the network to be taken into account.

In addition, we have given references to interesting questions for future research at the
appropriate points in this work. What we find most interesting is whether the network
structure can be predicted. Based on the results of this work, we conclude that the
ability to predict the network structure would be tantamount to the ability to predict
crises. For this reason, we will devote more attention to this question.

Finally, we expect that this way of analysing connectedness together with generalized
assortativity will be extensively used in analysing financial networks, and we are curious
to see whether such an analysis will deliver similar results for other markets. We leave
for future research to ascertain whether the inverse relationship between a market’s
systemic risk and the robustness of its underlying network structure is unique to the

cryptocurrency market or is shared by other financial markets more widely.
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Figure A.1. Histogram and QQ-plot of bootstrap replications (NetScience).
Histogram and QQ-plot of the distribution of bootstrap replications é*, b=1,...,B=
1499 for the undirected NetScience network for the various parameter constellations
(a,B) € {0,1}. Lines indicate the kernel density of the bootstrap distribution (solid)

and the density of the normal distribution A (6}, &g*) (dashed).
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Figure A.2. Histogram and QQ-plot of bootstrap replications (Windsurfers).
Histogram and QQ-plot of the distribution of bootstrap replications é*, b=1,...,B=
1499 for the undirected Windsurfers network for the various parameter constellations
(a,8) € {0,1}. Lines indicate the kernel density of the bootstrap distribution (solid)

and the density of the normal distribution A (6}, 6’3*) (dashed).
b
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Figure A.3. Histogram and QQ-plot of bootstrap replications (Macaques,
out—in). Histogram and QQ-plot of the distribution of bootstrap replications ég, b=
1,...,B = 1499 for the Macaques network for the various parameter constellations
(a,B) € {0,1} for the assortativity mode out-in. Lines indicate the kernel density of

the bootstrap distribution (solid) and the density of the normal distribution N ( AZ, 03*)
b
(dashed).
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Figure A.4. Histogram and QQ-plot of bootstrap replications (Macaques,
out—out). Histogram and QQ-plot of the distribution of bootstrap replications éz, b=
1,...,B = 1499 for the Macaques network for the various parameter constellations
(a,8) € {0,1} for the assortativity mode out-out. Lines indicate the kernel density of

the bootstrap distribution (solid) and the density of the normal distribution N/ ( Al’j, 0'0%*)
b
(dashed).
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Figure A.5. Histogram and QQ-plot of bootstrap replications (Macaques,
in—in). Histogram and QQ-plot of the distribution of bootstrap replications é;," b =
1,...,B = 1499 for the Macaques network for the various parameter constellations
(a,B) € {0,1} for the assortativity mode in-in. Lines indicate the kernel density of

the bootstrap distribution (solid) and the density of the normal distribution N ( AZ‘, Jg*)
b
(dashed).
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Figure A.6. Histogram and QQ-plot of bootstrap replications (Macaques,
in—out). Histogram and QQ-plot of the distribution of bootstrap replications ég‘, b=
1,...,B = 1499 for the Macaques network for the various parameter constellations
(a,B) € {0,1} for the assortativity mode in-out. Lines indicate the kernel density of

the bootstrap distribution (solid) and the density of the normal distribution N ( AZ‘, 65*)
b
(dashed).
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(a) Average excess degree ky = 3. (b) Average excess strength 54 = 6.

Figure B.1. Average excess degree and strength illustration. Depicted are two
graphs, one unweighted (all weights equal 1) (a) and the other one weighted (unlabelled
edges have weight 1) (b). The average excess degree of vertex A is computed as the
mean of excess degrees that result if edges are, in turn and from left to right, omitted
from (a), i.e., ks = w = 3. Similarly, considering (b), the average excess strength
of vertex A is computed as §4 = W = 6.
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Rank Name oy Degree Name oy Strength

1 UETZ, P 0.0159 20 JEONG, H 0.0252 18

2 CAGNEY, G 0.0159 20 BARABASI, A 0.0226 30

3 MANSFIELD, T 0.0159 20 PASTORSATORRAS, R 0.0171 17

4 GIOT, L 0.0150 19 VESPIGNANI, A 0.0119 15

5 JUDSON, R 0.0150 19 OLTVAI Z 0.0069 10

6 KNIGHT, J 0.0150 19 MORENO, Y 0.0062 15

7 LOCKSHON, D 0.0150 19 VAZQUEZ, A 0.0062 11

8 NARAYAN, V 0.0150 19 VICSEK, T 0.0046 9

9 SRINIVASAN, M 0.0150 19 ALBERT, R 0.0037 8

10 POCHART, P 0.0150 19 SOLE, R 0.0035 15
11 QURESHIEMILI, A 0.0150 19 WATTS, D 0.0029 9
12 LI, Y 0.0150 19 BARTHELEMY, M 0.0021 9
13 GODWIN, B 0.0150 19 HILGETAG, C 0.0021 11
14 CONOVER, D 0.0150 19 DIAZGUILERA, A 0.0020 11
15 KALBFLEISCH, T 0.0150 19 NEWMAN, M 0.0019 23
16 VIJAYADAMODAR, G 0.0150 19 GUIMERA, R 0.0019 10
17 YANG, M 0.0150 19 KAHNG, B 0.0018 11
18 JOHNSTON, M 0.0150 19 STROGATZ, S 0.0016 8
19 FIELDS, S 0.0150 19 YOUNG, M 0.0015 13
20 ROTHBERG, J 0.0150 19 HOLME, P 0.0014 9
1442 LEICHT, E -0.0007 2 ALON, U -0.0006 8
1443 MACDONALD, P -0.0008 2 MACDONALD, P -0.0007 1
1444 BIANCONI, G -0.0008 4 SMITH, E -0.0007 2
1445 DOBRIN, R -0.0008 3 FERRERICANCHO, R -0.0007 4
1446 BEG, Q -0.0008 3 VALVERDE, S -0.0007 5
1447 HU, G -0.0008 11 PACHECO, A -0.0007 4
1448 KOVACS, B -0.0008 4 MASON, S -0.0007 1
1449 LATORA, V -0.0008 15 WUCHTY, S -0.0008 1
1450 GLOT, L -0.0008 3 HUBERMAN, B -0.0008 8
1451 SOLE, R -0.0009 17 BOCCALETTI, S -0.0009 12
1452 DEZSO, Z -0.0009 1 BIANCONI, G -0.0009 3
1453 YOOK, S -0.0009 4 LATORA, V -0.0009 11
1454 TU, Y -0.0009 3 BORNHOLDT, S -0.0010 8
1455 BOCCALETTI, S -0.0011 19 YOOK, S -0.0011 3
1456 WUCHTY, S -0.0011 2 GASTNER, M -0.0011 1
1457 DIAZGUILERA, A -0.0012 15 LUSSEAU, D -0.0011 1
1458 MASON, S -0.0013 3 PARK, J -0.0011 1
1459 YOUNG, M -0.0016 20 MONTOYA, J -0.0011 2
1460 BARABASI, A -0.0022 34 DEZSO, Z -0.0015 1
1461 NEWMAN, M -0.0059 27 GIRVAN, M -0.0020 3

Table B.1. Generalized vertex assortativeness ranking of the NetScience
network. Reported are the 20 most assortative as well as the 20 most disassortative
actors of the network, with respect to generalized vertex assortativeness, p¥(«, 3), for
the two parameter combinations («, 5) = {(0,0),(1,1)}.
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Rank Symbol Name Rank Symbol Name

1 BTC Bitcoin 26 DGB DigiByte

2 ETH Ethereum 27 STRAX Stratis

3 USDT Tether 28 LSK Lisk

4 XRP XRP 29 BNT Bancor

5 DOGE Dogecoin 30 XNO Nano

6 LTC Litecoin 31 ARDR Ardor

7 XLM Stellar 32 SNT Status

8 XMR Monero 33 SYS Syscoin

9 ETC Ethereum Classic 34 REP Augur
10 EOS EOS 35 STEEM Steem
11 7ZEC Zcash 36 RLC iExec RLC
12 MIOTA I0TA 37 MAID MaidSafeCoin
13 NEO Neo 38 FUN FUNToken
14 BAT Basic Attention Token 39 ANT Aragon
15 WAVES Waves 40 VERI Veritaseum
16 DASH Dash 41 ARK Ark
17 XEM NEM 42 MLN Enzyme
18 DCR Decred 43 XWC WhiteCoin
19 QTUM Qtum 44 XVG Verge
20 GNO Gnosis 45 SBD Steem Dollars
21 STORJ Storj 46 GXC GXChain
22 GLM Golem 47 MONA MonaCoin
23 SC Siacoin 48 BTS BitShares
24 ZEN Horizen 49 GRS Groestlcoin
25 NMR Numeraire

Table C.1. Overview of cryptocurrency selection.
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Figure C.1. Annualized daily volatility (percentage) top 1-25.
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Figure C.2. Annualized daily volatility (percentage) top 26-49.
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Figure C.8. Histogram of log annualized daily volatilities top 46-49. Lines
indicate kernel density estimates (solid black) and the respective normal density (dashed
black) for comparison.



C Appendix Chapter 5

142

BTC ETH USDT
0 S 4
(=T - -
S o
@
< S @
S S S 7
(=}
Jo2] o ©
g1 §- 8
o
N — <
S -
S E °
2 4
g S ) \ 8
S \ - \
o
8 J 8 - -
°© T T T T T 1 o T T T T T 1 T T T T 1
-150 -100 -50 0 50 100 -200 -100 -50 50 100 -20 -10 0 10 20
XRP DOGE LTC
(=]
1]
3 o
o [S]
I 8 _ .
© 5
g
8 B s
o S -1 i
]
- - 2 4
o n 3
E 3 s o |l
j=]
8 8 J g -
°© T T T T e T T T T 1 S T T T T T T 1
-200 -100 0 100 2 -200 0 200 400 600 -150 -50 0 50 100 150
XLM o XMR ETC
8 5
S -
i 8
S
o (=}
g g - .
S
-1 (S
o o -1
g g - g
(=} o 1 S
(=}
[=] j=3 [=]
8 8 - 8 -
o o T T T T T T T 1 o T T T T T T T 1
-200 -100 -50 0 50 100 150 -200 -100 -50 0 50 100 150
ZEC MIOTA
o
1]
=}
° o
o I
S S
g S °
o
(S
9 2
3 3 h 2 y
3 ° ! \ ° l \
o
U
\
g g g <
o T T T T 1 S T T T T T 1 5} T T T T T T T 1
-200 -100 0 100 200 -200 -150 -100 -50 50 100 -200 -100 -50 O 50 100 150
NEO BAT WAVES
8
(=} -
8 s g
° [S]
7 |~
g g - 3
E E g
i \ 1 \
0 \ - ) \
g o g g -
c T T T T 1 S} T T T T T T T 1 o T T T T 1
-200 -100 0 100 200 -200 -100 -50 O 50 100 150 -200 -100 0 100 200

Figure C.9. Histogram of annualized daily log returns top 1-15. Lines indicate
kernel density estimates (solid black) and the respective normal density (dashed black)

for comparison.



C Appendix Chapter 5

143

DASH XEM 3 DCR
3 S ]
S
S _
o o
2 S § -
S =] o
° -
o o
o 3 S
= =] 3 4
S S S
o
(=] o (=]
(=] o (=]
S S S -
o o T T T T T T 1 o
-150 -50 0 50 100 150 -200 -100 0 100 200 300 400 -200 -100 -50 0
QTUM ° GNO STORJ
- g -
° I
o S
N - o
§
o o wn
N £
S S
4 S S
S 7 S
S 2
o o d
= g °
o wn
4 ql\ / \ S
\ - 1, S
(=3 o (=]
g J A g J g J
o T T T T 1 <) T T T T 1 [} T T 1
-200 -100 0 100 200 -200  -100 0 100 200 -200 -100 200 300
GLM SC ZEN
o
2 g g
S IS =
o
o o
2 3 g
g =] o
o (=3 o
[=] o 2 [=]
S - <] S -
(=] T 1 o T T T T 1 (=}
-200  -100 100 200 -200 -100 0 100 200 -200 -100 0
NMR DGB STRAX
(=]
g 8 S
S 3 s
o o
g g g
o S S
(=] o (=]
[=] o o
8 - 8 S
o T T T 1 o T T T T 1 o
-200 -100 0O 200 300 400 -200  -100 0 100 200 200 -100 0
LSK o BNT XNO
3 -
g -
o
o
4 I
(=] o
S o °
S S |
=] _
7 S
2 9 =i
3 S °
IS) ) \
4 \ 1
(=] o o
(=] o (=]
S S - S -
o T T T T T T T 1 o T T T T T T T 1 o
-200 -100 0 50 100 150  -200 -100 -50 0 50 100 150 -200 -100 0

Figure C.10. Histogram of annualized daily log returns top 16-30. Lines
indicate kernel density estimates (solid black) and the respective normal density (dashed

black) for comparison.



144

C Appendix Chapter 5

SYS

T T T T 1
020'0 STO'0 0TO0 S00'0 0000

SNT

0200 0100 0000

ARDR

0200

0700

-100 0 100 200 300

-200

-100 0 100 200 300

100 200 -200

0
REP

RLC

STEEM

-200 -100 0 100

-300

MLN

o
- S
@
° -
- o
N
j=3
L 8 -
S
~
o Z
< -
o
| &
=
I
° -
- ©
o~
I
o
L © L
@
| R E— ! T T T T 1
GI0'0 0T00 S00'0 0000 0200 STO'0 0TO'0 S00'0 0000
o
-8 -
14
o
i
=
Fo = -
l”l"ll W
JJ .
- S
=
I -
o —
L ©
1N
I
T T T 1 T T T 1
0200 0700 0000 0200 0700 0000
o
- ©
14
o
i
=
a -
<
Lo S
o
| S
=
I
o
L ©
o~
T T T T 1 ! T T T
0z00 0100 0000 0200 0100 0000

-100 0 100 200
ARK

-500 -300

0 100 200
VERI

-100

-200

(=]
- ©
N -
[=3
L 8 -
=
[a]
) -
F o 0
S -
(=]
[ ©
=
l —
o
L © L
N
T T T 1 ! | B B .
0200 0100 0000 0€00 0200 0100 0000
o
r <
~N
. -
i
=
L o % .
X
o -
L ©
7
&
o
L © -
S
I
(=]
L g L
)
| I R R ! | I S B
020'0 STO'0 0TO'0 S00°0 0000 0200 0100 0000
(=]
r <
<
o
- o
N
- o B
s
F o X
=
. -
L ©
h
L I I N B | | N I N B R R

2100

8000

000

0000

0€0°0

0200

0100

0000

200 400 600

0

-600 -400 -200

-100 0 100 200 300

-200

-500 0 500

-1000

Lines

Histogram of annualized daily log returns top 31-45.

Figure C.11.

indicate kernel density estimates (solid black) and the respective normal density (dashed

black) for comparison.
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indicate kernel density estimates (solid black) and the respective normal density (dashed
black) for comparison.
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Figure C.13. Total system-wide connectedness robustness check: lag order.
The figure shows the robustness of the total system-wide volatility connectedness for a
rolling window estimation (w = 90, H = 12), for different lags p = {1,4,7,21}.
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Figure C.14. Total system-wide connectedness robustness check: forecast
horizon. The figure shows the robustness of the total system-wide volatility con-
nectedness for a rolling window estimation (w = 90, p = 4), for different horizons
H ={6,12,18}.
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Figure C.15. Total system-wide connectedness robustness check: window
size. The figure shows the robustness of the total system-wide volatility connectedness
for a rolling window estimation (p = 4, H = 12), for different window sizes w =
{90,120, 240}.
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Figure C.16. Evolvement of generalized assortativity of the volatility con-
nectedness network. Depicted is the evolvement of the generalized assortativity
coefficient (« = 1, 8 = 1) for a rolling window estimation of the volatility connectedness
network (w =90, H = 12, p = 4), for each mode of assortativity (out—in, out-out, in—in
and in—out).
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Figure C.17. Evolvement generalized assortativity of the return connected-
ness network. Depicted is the evolvement of the generalized assortativity coefficient
(a = 1,8 = 1) for a rolling window estimation of the return connectedness network
(w =90, H =12, p = 4), for each mode of assortativity (out—in, out—out, in—in and
in—out).



C Appendix Chapter 5 148

-
o -
@ out-in
= @ null model
= o
8 o 7
2
=
2z 2
8 9
S
1723
g o
3%
2
©
2 o
8 77
T T T T T
2018 2019 2020 2021 2022
O out-out
= @ null model
= o
E 24
S o
=
z 8
g s
=3
(723
8
3 8 4
L o
© >
E’ % WWWW
o wn
[=}
o 24
1
T T T T T
2018 2019 2020 2021 2022
=
(<] @ in-in
= 3 null model
£
5 o
g 8-
2
=
8 o
5 9
2 T
1%}
©
o
2 o
s 9
[
=4
[
° L3¢]
?‘ =
T T T T T
2018 2019 2020 2021 2022
g
s | B in-out
= 3 null model
Z 9
5 = A
s ©
2
=
g g |
5 IS
[N
o
% 8
s ° Ay x
[
c
3 [Te]
© [=}
S

T T T T T
2018 2019 2020 2021 2022

Figure C.18. Evolvement of generalized assortativity of the volatility con-
nectedness network. Depicted is the evolvement of the generalized assortativity
coefficient (« = 1, 8 = 1) for a rolling window estimation of the volatility connectedness
network (w = 90, H = 12, p = 4) and for each mode of generalized assortativity (out—in,
out—out, in—in and in—out). The dark grey line and grey shaded area indicate the mean
of the generalized assortativity of a respective null model together with a piecewise 95
percent confidence band, respectively.
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Figure C.19. Evolvement of generalized assortativity of the return connect-
edness network. Depicted is the evolvement of the generalized assortativity coefficient
(a = 1,8 = 1) for a rolling window estimation of the return connectedness network
(w =90, H=12, p = 4) and for each mode of generalized assortativity (out—in, out—
out, in—in and in—out). The dark grey line and grey shaded area indicate the mean
of the generalized assortativity of a respective null model together with a piecewise 95
percent confidence band, respectively.
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Figure C.20. Evolvement of pairwise directional connectedness (top assorta-
tive). Depicted is the evolvement of pairwise directional connectedness of the top 5 as-
sortative connections between cryptocurrencies with respect to the generalized edge as-
sortativeness values, p¥, for the parameter combination (o = 1, 5 = 1, mode = out—in).
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Figure C.21. Evolvement of pairwise directional connectedness (top disas-
sortative). Depicted is the evolvement of pairwise directional connectedness of the top
5 disassortative connections between cryptocurrencies with respect to the generalized
edge assortativeness values, p¥, for the parameter combination (v = 1,5 = 1, mode =
out—in).
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