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Chapter 1

Introduction

In the face of the climate change [1–4], establishing renewable, climate neutral, and local
sources of energy is one, if not the one key challenge of our generation, and upcoming
generations [5, 6]. This challenge is called the ’energy transition’ [7]. Although the
energy transition has been set as a top priority in politics (see for example the ’Climate
Agreement of Paris’ [8] from 2015), it has turned out that its local progress is of strongly
varying pace [9]. Altogether, humanity lags behind the initial goal of limiting the global
warming to an average temperature increase of 2.0◦C in the time span from the begin
of the industrialization to the year 2100 [9]. Further reducing the costs of renewable
energies via technological innovation is, thus, an important key step to master the energy
transition [10,11].

1.1 Why Solar Concentrators?

Currently, there are several promising sources of renewable energy which are capable of
facing global warming. Biochemical energy is based on producing energy from biomass
and biofuels [12–15]. It is challenging to make use of biochemical energy due to low energy
densities in biomass [16]. Furthermore, the use of biomass and biofuels for energy produc-
tion causes secondary emissions of greenhouse gases. These greenhouse gases need to be
isolated from the environment and safely stored to make biochemical energy environment
friendly [17]. Wind and water energy are based on converting the kinetic energy of wind
and water into electric energy [18–21]. Geothermal energy utilizes the earth’s internal
heat either for its direct use for heating applications or for electricity generation [22–25].
All of these energy sources mentioned above have the potential to replace fossil energy
sources but are not realistically available everywhere (e.g. in urban environments) [26].
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Solar energy can fill this gap and stands in front of a promising future for successfully
integrating renewable energies as it can be easily harvested in urban environments [6,9],
and on empty, wind-still areas [27]. However, the average solar irradiance above the
earth’s atmosphere, called ’solar constant’, is only approximately 1.3 kW/m2 [6]. The
effective solar irradiance on the earth’s surface normal is significantly smaller due to the
absorption and reflection by the atmosphere. Moreover, depending on the location on
earth, a tilted incident angle of the solar irradiation with respect to the earth’s surface
can further reduce the solar irradiance. Therefore, very large areas have to be covered to
collect useful amounts of solar energy [6]. As a consequence, an appropriate solar energy
technology must exhibit low production and maintenance costs, high rates of production,
and low primary and secondary emissions of greenhouse gases per area [6, 11,28–31].

Today, two solar energy technologies dominate the market: solarthermics and photo-
voltaics. Solarthermics are based on converting solar energy to heat energy which is
then either directly used (e.g. to heat buildings [32–34]), stored [34–36] or converted
to electrical energy [34, 35, 37, 38]. In their simplest form, solarthermics devices consist
of a surface, which absorbs light and infrared radiation, and a heat conductor or heat
conducting medium which transports the heat to a desired location [35,39,40].

Photovoltaics are based on directly converting solar energy to electrical energy and have
emerged as a key technology [6,27,28,41]. Since 2008, the costs per Watt of silicon based
photovoltaics has been drastically reduced as a result of the upscaling of production
lines, and the reduction of silicon prices [11, 42]. As a result, photovoltaics emerged as a
competitive technology against fossil energy technologies. At the moment, only around
2% of the world’s electricity production are covered by photovoltaics [43]. However, the
production rate and generated electrical power of silicon-based photovoltaics increases
rapidly [9, 42, 44]. In addition, very recent next generation photovoltaics based on per-
ovskites might reduce the costs and increase the production rate of photovoltaics even
further [45, 46]. Due to these developments, it is predicted that, in the year 2050, a
significant portion of the world’s electricity production will be highly likely realized by
photovoltaics [42, 44, 47, 48]. It is further expected that, due to other renewable energy
sources, the use of fossil energy sources could be drastically reduced [9, 11, 49]. These
circumstances provide an optimistic prospect for the climate’s future. Nonetheless, it is
crucial to question how these trends can be further boosted and whether there are ways
to reduce the amount of materials and industrial processes which harm the environment.

Indeed, there is one way to boost both solarthermics and photovoltaics: the concentra-
tion of solar power via low-cost, environment-friendly solar concentrators [50, 51]. By
concentrating the incident solar power from a large area Ain to a small focus spot area
Aspot via solar concentrators, the power density can be increased by a maximum factor
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of C = Ain/Aspot [50].

Concerning solarthermics, an absorptive material exhibits significantly larger tempera-
tures through concentration [52]. As it is known from the Carnot limit from thermody-
namics [53], a larger relative temperature increases the efficiency of a heat engine [54]. The
kinetic energy produced by a heat engine can then be converted into electrical energy [52].
In total, the concentration of light increases the conversion efficiency from solar energy
into electrical energy. This concept is commonly used for solar thermal power plants
(CSPs) and has been established as viable alternative to fossil energy sources [52,55].

Concerning photovoltaics, the concentration of light can be regarded as a reduction of the
area size of a solar cell by a factor of 1/C, whereby approximately the same amount of
energy per area is harvested. This method is called ’concentrated photovoltaics’ (CPV)
[56–59]. Hereby, concentrated photovoltaics can reach larger energy conversion efficiencies
than conventional photovoltaics under appropriate thermal management. For instance,
it is stated in current reports that the use of multijunction solar cells combined with
concentrated light enables record energy conversion efficiencies [60]. For single junction
solar cells, concentrated light can lead to increased energy conversion efficiencies as a
result of larger open-circuit voltages [56, 61]. This renders CPV as an interesting route
to follow. Assuming that a solar concentrator can be fast produced at low costs, it seems
possible to either reduce the necessary solar cell area by a factor of 1/C, or increase the
production rate by a factor C, and increase the total energy conversion efficiency per area
by using high efficiency solar cells of small area sizes. Hereby, excess heat can be further
utilized in thermoelectrics [62–64] or in similar ways as for conventional solarthermics [65].

However, these advantages and promises of solar concentrators only account for a static
light source: in fact, the Sun’s azimuth and angle of elevation are constantly changing
throughout the day and season. Now considering a light concentrator (e.g. a conventional
Fresnel lens) under the moving Sun, the position of the spot of concentrated Sun-light
constantly shifts depending on the daytime and date. From a naive point of view, it
might be suspected that a well-engineered concentrator design could compensate this
shifting. Unfortunately, here comes a fundamental limit of solar concentrators into play:
the second law of thermodynamics forbids that the concentration exceeds a value of [66]

Clim,2D =
n′2
c

sin∆θLS
2 , (1.1)

whereby n′
c is a light concentrator’s refractive index and ∆θLS is the half-opening angle

of a light source (e.g. the Sun). Hereby, it is assumed that the angular distribution of
the light source is disk-shaped, so that its solid angle Ω is approximated by θ2LS. For
the concrete example of the Sun, ∆θLS is approximately 0.26◦, so that the maximum
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concentration in air is Clim,2D ≈ 48562 [66]. For reasons of reciprocity, ∆θLS is also the
’static acceptance angle’ of the concentrator with respect to a fixed spot position [66]. In
other words, a passive light concentrator of high concentration will only focus light onto
a receiver (the solar cell or absorber) for a short duration of time throughout the day and
the time-averaged collection efficiency is small. In reverse, a concentrator which focuses
light onto the receiver for a longer amount of time cannot provide high concentration.

To elevate the time-averaged efficiency, the system of concentrator and receiver must be
constantly adapted to the Sun’s azimuth and angle of elevation. Such an adaption is called
’Sun-tracking’ and is aimed to obtain an increased ’dynamic acceptance angle’ [66, 67].
For instance, both the concentrator and receiver can be mounted on a goniometric stage,
which follows the Sun’s position at the sky [66, 68]. At the first sight, in a world full
of automated technology, Sun-tracking does not seem like a hard challenge. In fact, the
requirements on active trackers are challenging to say the least. They must be long-lived,
accurately controllable, easily programmable, reliable, cost-efficient on the investment
and maintenance level, ideally light-weight, and robust to environmental influences (e.g.
wind loads, large temperature changes, rough weather conditions, dust, sand, corrosion,
etc.) [69, 70]. Taking all these requirements together, the realization of CPV has turned
out significantly more expensive than conventional photovoltaics [70]. In addition, CPV
systems are often too heavy to be installed on roof-tops. In consequence, CPV almost
completely disappeared from the market and is currently considered as a dead field [70].

Why then should anybody care about CPV nowadays? The answer is simply that the
promises of CPV still hold true when cost-efficient Sun-tracking could be realized. First
of all, it is important to recognize that there have been many technological innovations
since CPV has been mostly abandoned by the industry [70]. These innovations will be
elaborated in the next Section.

1.2 Existing Solar Concentrators and Tracking Tech-

nologies

The first generations of solar concentrators are based on the same principle: first, a solar
concentrator with a desired static acceptance angle is designed using the principles of
geometric optics. For instance, the most common designs of such concentrators are largely
dimensioned parabolic through concentrators (PTC) [71,72], parabolic dish concentrators
(PDC) [73–75], compound parabolic concentrators (CPC) [76–78], heliostat mirror arrays
(HMA) [52, 79], and Fresnel lenses [80–82] or mirrors [83, 84]. Depending on the type of
concentrator, direct incident Sun-light is concentrated on a focal line or focal point. To
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compensate the movement of the Sun at the sky, 1-axis or 2-axis trackers are combined
with the solar concentrators [68,85–89]. Herein, the complexity of a tracker system largely
depends on the solar-concentrators’ acceptance angle [68,85–89].

The next generation of solar concentrators, whatsoever, relies on different approaches
which come along with several advantages. One development to mention is solar con-
centrators in combination with micro tracking. Instead of largely dimensioned single
concentrators, the concentration of light is realized within a panel of many individual
concentrators and Sun-tracking is realized by the small mechanical movements of inter-
nal parts. For instance, free form optics [90] or arrays of Fresnel lenses (with or without
secondary optics) are used [91–95]. Herein, the tracking is typically realized via a trans-
lational movement of a receiver plate within a plane [91–95]. This way, the complicated
mechanics (goniometric stages with high-load joints) of two-axis trackers could be reduced
to a technologically much simpler mechanics (linear translation stages). On the lab-scale,
micro tracking has been demonstrated to show time-averaged efficiencies of around 30%

using a GaAs micro-solar cell [96].

Another development is the use of planar waveguides. Using the phenomenon of total
internal reflection, it is aimed to trap Sun-light within a waveguide and to subsequently
guide it to solar cells which are, for example, placed at the waveguide’s outer facets
[97–104]. This way, the large three-dimensional distances between the concentrator and
its focal line (or focal spot) of first-generation concentrators are converted to lateral
dimensions within the waveguide. Most existing concepts of waveguide concentrators are
based on the use of an array of focusing elements (e.g. micro lens arrays), and small-sized
light coupling elements [91,101,105–108]. This way, the probability that light is scattered
out on its way to the waveguide’s facet is minimized so that the achievable concentration
is maximized. Herein, many waveguide based solar concentrators can benefit from micro
tracking as well [91, 101,105–108].

The advantages of next-generation solar concentrators and micro tracking in comparison
to first generation solar concentrators and trackers are mostly given by their reduced
bulkiness [109]. Reduced bulkiness ultimately renders CPV and CSP as feasible for
roof-top installations, comes along with reduced issues with respect to shadowing, and
potentially decreases the overall investment and maintenance costs [70,109].

Nonetheless, it is obvious that the best way to further improve next-generation solar con-
centrators and trackers is to either get rid of any moving mechanical parts or largely sim-
plify their mechanical complexity. Very recently, there have been interesting new concepts
to tackle these challenges. Two novel concepts are the use of smart materials [110, 111]
or simplistic mechanics and artificial intelligence (AI) [112–115] to revive first genera-
tion solar concentrators and trackers. For instance, start-up projects have been showing
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convincing evidence that concentrated solarthermics with low-cost heliostat mirror ar-
rays controlled by AI reach comparable time-averaged efficiencies as for conventionally
controlled high-cost heliostat mirror arrays. Electrical beam steerers based on tunable
liquid-liquid interfaces promise to enable Sun-tracking by steering the Sun-light onto a
fixed conventional solar concentrator [109, 116, 117]. Another concept is to make use of
dynamical systems: there exist several reports for waveguide based solar concentrators,
which exhibit dynamical light coupler elements. Such dynamical light coupler elements
automatically adapt to the Sun’s position in the sky without any need of control sys-
tems and have been realized via micro actuators [118,119], phase-change materials [120],
light-sensitive colloidal solutions [121] and thermally induced bubble generation [122].
However, so far, the experimentally obtained time-averaged efficiencies of systems with
dynamical light coupler elements are rather small. To solve these challenges, new concepts
for future solar concentrators and trackers without the necessity of moving mechanical
parts are currently sought. In a nutshell, an efficient future generation solar concentrator
with mechanics-free Sun-tracking could indeed deliver a new boost for CPV and perhaps
for CSP as well.

1.3 Scope of the thesis

In this thesis, waveguide-based systems and other optical systems are investigated and
put in the context of existing solar energy technologies. First, a theoretical basis on
waveguides, plasmonics, and periodic structures (gratings) will be given. Second, ex-
perimental techniques as well as fabrication methods will be explained. Experimental
results on various structured waveguides and optical systems for broadband light cou-
pling and long distance propagation of light will be demonstrated. Third and last, a
strategy to actively control the coupling of light into and out of waveguides without the
use of moving mechanical parts will be provided in theory and experiment. This strategy
will be discussed with respect to its potential significance as a fundament for future solar
concentrators and trackers.
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Chapter 2

Electromagnetic Theory of Waveguides
and Structured Systems

Over the course of this chapter, the fundamental physics to understand the behavior of
electromagnetic waves in planar and structured geometries will be given. Subsequently,
important measures of interest will be defined with the help of some simple examples.
These examples cover the eigenmodes of optical slab waveguides, the properties of plas-
mons, and the eigenmodes of waveguide gratings. With this knowledge, the physics
of more complicated geometries as discussed in our scientific publications as well as in
Chapter 4 can be understood more intuitively.

2.1 Maxwell equations

The fundament of the physical behavior of optical systems is given by a set of a few fun-
damental equation, namely the Maxwell equations and the material equations [123]. For
the treatment of steady-state electromagnetic waves (including light), the time-harmonic
Maxwell equations with the time-phasor e−jωt have to be considered. They are given
by [123,124]

∇⃗ · D⃗ = ρ (2.1)

∇⃗ × E⃗ = jωµH⃗ (2.2)

∇⃗ · B⃗ = 0 (2.3)
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∇⃗ × H⃗ = J⃗ − jωε(ω)E⃗ (2.4)

with

∇⃗ =

∂/∂x

∂/∂y

∂/∂z

 (2.5)

as the ’Nabla operator’, ρ as the volume density of external electric charges and J⃗ as
the density of external electric currents [123, 124]. Importantly, the Maxwell equations
are a system of coupled linear differential equations and, thus, the electromagnetic fields
underlie the principle of superposition (E⃗tot =

∑
i E⃗i, H⃗tot =

∑
i H⃗i) [123,124].

The material equations are given by [123]

D⃗ = ε0E⃗ + P⃗ = εE⃗ = ε0εrE⃗. (2.6)

B⃗ = µH⃗ = µ0µrH⃗. (2.7)

with P⃗ as the polarization density. Herein, ε0 and µ0 are the natural constants of the
electric permittivity (termed electric constant) and the magnetic permeability. εr and
µr take into account all material related effects [123, 124]. As a side note, all materi-
als considered in this thesis are either para- or diamagnetic, so that µr can be set to
1 in very good approximation. εr, whatsoever, strongly varies as a function of space
(εr=εr(x, y, z)). Furthermore, the relative permittivity can be a complex-valued quantity
εr = ε′r + j · ε′′r . Materials with loss or gain exhibit positive or negative values of ε′′r ,
respectively [123,124].

In the absence of external charges and currents (ρ = 0, J⃗ = 0), the Maxwell Equations
can be used to derive the wave equations

1

c2
∂2E⃗

∂t2
− ∇⃗2E⃗ = 0 (2.8)

1

c2
∂2H⃗

∂t2
− ∇⃗2H⃗ = 0 (2.9)

with the ’Laplace operator’ ∇⃗2 , and
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c =
1

√
εµ

=
1

√
ε0µ0

1
√
εrµr

=
cvac
n

, (2.10)

whereby cvac = 1/
√
ε0µ0 is the vacuum speed of light and n =

√
εrµr is the refractive index

n = n′+ j ·n′′ [123–125]. The solutions of these differential equations are electromagnetic
waves, including light with wavelengths in the visible range between 380 nm and 780
nm [123].

The task of concentrating light can be understood as the task to guide the power flow of
electromagnetic fields into small spatial dimensions. This power flow needs to be defined.
Following Poynting’s theorem [123], the net change of the electromagnetic energy W per
time in a given volume V can be generally expressed by [123]

∂W

∂t
=

∂

∂t

∫
V

w dV =
∂

∂t

∫
V

1

2
(ε|E⃗|2) + µ|H⃗|2) dV = −

∮
∂V

(E⃗ × H⃗) dA⃗−
∫
V

J⃗indE⃗ dV

(2.11)

with J⃗ind = ε′′ωE⃗. The left side of the equation introduces the energy density w of the
electromagnetic field. On the ride side of the equation, the first term of the equation
describes the net power flow out through the closed surface ∂V of V , whereby S⃗ = E⃗×H⃗

defines the Poynting Vector S⃗ [123]. The second term describes losses into any other
forms of energy than electromagnetic fields (into thermal energy via Ohmic losses) [123].

With the integrated time-averaged Poynting vector [123]

∮
∂V

⟨S⃗⟩ dA⃗ =
1

2

∮
∂V

Re(E⃗ × H⃗∗) dA⃗ (2.12)

and the power loss [123]

Ploss =
1

2

∫
V

Re(J⃗indE⃗∗) dV⃗ (2.13)

the net power flow (in the absence of external charges and currents) can be interpreted
as a multi-port described by

∮
A⃗

⟨S⃗⟩ dA⃗ = −Pin + Pout + Ploss = 0 (2.14)

as it is visualized in Fig. 2.1. Pin and Pout are the total incoming and outgoing powers,
respectively. The normalized power loss
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Figure 2.1: Multiport of electromagnetic waves

A =
Ploss

Pin

(2.15)

is called the ’absorption’ A [123].

As a side note, this separation of the surface integral into a sum of powers is not trivial
as the Poynting-vector is inherently non-linear. Here, it can be applied as long as the
incoming and outgoing waves can be expressed by propagating plane-waves [123,124].

2.1.1 Plane-Wave-Spectrum, General Coupling Coefficients and

Reciprocity

At a given frequency ω, a majority of the solutions of equations 2.8 and 2.9 can be
expressed by a plane-wave spectrum [123,124,126]

E⃗(r⃗, ω, t) =

∫
ˆ⃗
E(k⃗, ω)ejk⃗r⃗e−jωt d3k⃗ (2.16)

with ˆ⃗
E as the spatial Fourier transform of E⃗, which is given by [123,124,126]

ˆ⃗
E(k⃗, ω) =

1

(2π)3

∫
E⃗(r⃗, ω, t)e−jk⃗r⃗e−jωt d3r⃗. (2.17)

Importantly, any distribution of incident waves (e.g. a Gaussian beam, a beam of homo-
geneous intensity, sun-light) can be expressed by Eq. 2.16.

With this decomposition into plane-waves, it is possible to link the ingoing and outgoing
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electric fields of a given multi-port by using a coupling matrix

E⃗0,j(k⃗j) = CE⃗0,i(k⃗i). (2.18)

Once all elements of C are known and an incident plane-wave spectrum is known, all
outgoing plane-waves can be calculated. These elements are called ’coupling coefficients’.
For example, a mirror would contain elements of C, which flip the sign of the component
of k⃗ of a plane-wave parallel to the mirror’s surface normal.

In the case of time-invariant, linear and isotropic materials, it can be shown that the
principle of reciprocity must be fulfilled [127]

∮
∂V

(E⃗0,i × H⃗0,j)− (E⃗0,j × H⃗0,i) dA⃗ = 0 (2.19)

Reciprocity can be understood in a way that a light source and a detector can switch
places and the received signals remain the same [127]. Reciprocity thus allows to predict
the scattering behavior of waves by reversing the arrow of time for a known field solution.
For example, if a lens focuses a parallel beam to a distinct spot size at its focal plane,
the reverse process of parallelizing a spot source of light using the same lens will work as
well.

At this point, the given mathematical expressions treat the multi-port as a black box.
As a matter of course, the spatial information of εr dictates the elements of C and the
majority of this thesis deals with the exploration of distinct configurations of εr.

Further practical meaning of the plane-wave spectrum, coupling coefficients and reci-
procity will become clear when concrete examples are explained in the upcoming sections.

2.1.2 Boundary Conditions

In its integral form (assuming finite field strengths), the Maxwell equations imply certain
conditions concerning the behavior of the tangential (indexed as Et) and normal (indexed
as Dn) components of the electric and magnetic fields at an interface between materials
of different values of εr,1 and εr,2. These conditions are [123]

Et,1 = Et,2 and Dn,1 = Dn,2 (2.20)

for the electric field strength and electric flux density [123]. Concerning the magnetic
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Figure 2.2: reflection and transmission at a planar interface between two materials of
relative permittivities εr,1 and εr,2. According to ref. [123].

field strength and flux density, both are analogously given by [123]

Ht,1 = Ht,2 and Bn,1 = Bn,2, (2.21)

since all materials are assumed to be non-magnetic (µr,1 = µr,2 = 1).

One basic phenomenon attributed to this interface is the occurrence of reflection and
transmission (see Fig. 2.2). Plane waves in the form of

E⃗1 = E⃗in · ej(kxx+kz,1z)e−jωt + E⃗r · ej(kxx−kz,1z)e−jωt (2.22)

and

E⃗2 = E⃗t · ej(kxx+kz,2z)e−jωt (2.23)

are assumed using the relations kz,j =
√

εr,jk2
0 − k2

x, k0 = 2π/λ and ω = cvack0 [123].
Herein, it is anticipated that both wavevector components can be complex in general

kx = k′
x + jk′′

x (2.24)

kz,j = k′
z,j + jk′′

z,j, (2.25)

whereby k′
x is called the ’lateral momentum’ [123,124].
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The continuity of the electromagnetic fields (Eqs. 2.20 and 2.21) leads to the Fresnel
equations [123]. Considering s-polarized light (TE) with Ey = |E⃗|, Ex = Ez = 0 and
Hy = 0, they read [123,124]

r = r1,2 =
kz,1 − kz,2
kz,1 + kz,2

(2.26)

and [123,124]

t = t1,2 =
2kz,1

kz,1 + kz,2
. (2.27)

r and t are called ’reflection coefficient’ and ’transmission coefficient’ [123, 124]. A com-
parison with Eq. 2.18 shows that r12 and t12 are the coupling coefficients of the coupling
matrix attributed to the single interface. They set the reflected and transmitted fields
Er and Et in relation to the incident field Ein.

For p-polarized light (TM) with Ey = 0 and Hy = |H⃗|, Hx = Hz = 0, analogous consid-
erations lead to the expressions [123]

r = r1,2 =
εr,2kz,1 − εr,1kz,2
εr,2kz,1 + εr,1kz,2

(2.28)

and [123]

t = t1,2 =
2εr,2kz,1

εr,2kz,1 + εr,1kz,2
. (2.29)

Normalizing Pin to 1, the evaluation of the power balance leads to [123]

1 = R + T + A, (2.30)

whereby R and T are termed as ’reflectance’ and ’transmittance’ and are given by [123]

R = |r|2 (2.31)

and [123]

T = Re(
kz,2
kz,1

)|t|2. (2.32)

In general, Eqs. 2.31 and 2.32 can be applied on any planar geometry including multiple
interfaces, whereby r and t then describe the reflected and transmitted fields outside
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of the geometry [123]. In the next section, an example in the form of a planar optical
waveguide will be provided.

2.2 Planar optical waveguides

Figure 2.3: The definition of a homogeneous planar waveguide.

A symmetric slab waveguide [123, 124, 128] defined by a substrate, a loss-free dielectric
layer and a superstrate with

εr(z) =


εr,1 = n2

s (z < za),

εr,2 = n2
f (za ≤ z ≤ zb),

εr,3 = n2
s (z > zb)

(2.33)

with ns < nf will be considered in the following lines (see Fig. 2.3). As this geometry
is translationally invariant with respect to both the x- and y direction, the x-z-plane is
arbitrarily chosen as the plane of incidence for mathematical simplicity. As in Section
2.1, a plane wave ansatz of the form

E⃗ = E⃗0 · ej(kxx+kzz)e−jωt (2.34)

and
H⃗ = H⃗0 · ej(kxx+kzz)e−jωt (2.35)

is used.

First, the boundary conditions of the waveguide are solved for TE polarized waves. As-
suming a wave of amplitude 1 incident from z < za and no incident waves else, the electric
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field for each region can be expressed by

Et(x, z, t) =


(1 · ejkz,1z1 + g1 · e−jkz,1z1) · ejkxx (z < za),

(f2 · ejkz,2z2 + g2 · ejkz,2(tWG−z2)) · ejkxx (za ≤ z ≤ zb),

f3 · ejkz,3z3 · ejkxx (z > zb)

(2.36)

using tWG = zb − za and local coordinates z1 = z, 0 ≤ z2 ≤ tWG and z3 = z − tWG [129].
These local coordinates can be understood as follows: a value of z1 = 0 corresponds to
z = za, values of z2 in between 0 and tWG correspond to values of z in between za and zb,
and a value of z3 = 0 corresponds to z = zb. The reason for using these local coordinates
is that additional layers can be easily added to the waveguide as it will be explained in
Section 2.4. This way, fj are the amplitudes of plane waves entering a layer (indexed
by ’j’) at zj = 0 and gj are the amplitudes of reflected plane waves reflected at zj = tj.
For the substrate and superstrate, tj is set to a value of zero. The positive and negative
values of kz,j represent forward and backward propagating waves with respect to the z-
direction. As side note, the unit of the electric field (V/m) is neglected for simplifying
the calculation. Further Note that the notation of amplitudes in Eq. 2.36 was chosen to
simplify the expressions for periodically structured layers later on.

The boundary conditions of the tangential field components in Eqs. 2.20 and 2.21 demand
that the electric field strength must be a continuously differentiable function with respect
to the z-direction and allow to determine all amplitudes g1, f2, g2 and f3.

A comparison of Eqs. 2.36 with the coupling matrix in Eq. 2.18 immediately shows
the relation between these amplitudes and the coupling coefficients: Here, the inputs
and outputs of the input-output-network are the incident plane wave of amplitude 1
and the reflected and transmitted plane waves of amplitudes g1 and f3, respectively. In
other words, the coupling coefficients for this example are the reflection and transmission
coefficients r and t of the slab waveguide, which can be identified by

r = g1 =
r1,2 − r1,2e

−2jΦ

1− r21,2e
−2jΦ

(2.37)

and
t = f3 =

t1,2t2,3e
−jΦ

1− r21,2e
−2jΦ

(2.38)

using the round-trip phase 2Φ = 2kz,2tWG as well as the reflection and transmission
coefficients ri,j and ti,j at each interface as described in Section 2.1 [128].

Concerning kx, there exist the two cases |kx| < nsk0 and nsk0 ≤ |kx| ≤ nfk0. For the
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Figure 2.4: a,b) The transmittance T and reflectance R for TE and TM polarized light
incidence.

first case, each kz,i is real-valued, displaying plane-waves, which fall onto the waveguide
coming from infinity and subsequently reflect from or transmit through it [128,129]. An
exemplary plot of R and T with the parameters λ = 500 nm, tWG = 500nm, ns = 1.0

and nf = 2.0 as a function of sin θ = arcsin (k′
x/k0) is shown in Fig. 2.4.

It has to be mentioned that |g2| and |f2| may occupy values above 1. This is due to the
fact that photons remain in the resonator for a distinct period of time tR. This time
period is proportional to the number of round-trips Q (also termed as Q-factor), which
photons statistically undergo before they leave the resonator again. As a result, energy
is stored inside the resonator and only a portion of 1/Q per time interval contributes
again to the net power flow [124, 128, 129]. Coming back to the amplitudes f2 and g2

later on again, this capability of storing energy will become of particular importance for
structured waveguides (see Section 2.16).

For the second case nsk0 ≤ |k′
x| ≤ nfk0, kz,1 and kz,3 become purely imaginary numbers,

indicating exponentially decaying and growing terms of Ey in the substrate and super-
strate. Furthermore, the reflection coefficient can be written as r1,2 = 1 · ejΦr1,2 , whereby
the amplitude of 1 indicates total internal reflection [124]. To prevent exponentially
growing terms, the amplitude of the incident wave must be chosen to zero. Non-trivial
solutions of the boundary conditions then only occur at the poles of r and t (see Eqs. 2.37
and 2.38) [129]. These poles are defined by the vanishing of their denominators [128,129]

1− r21,2e
−2jΦ = 1− 1 · e−j(2Φ−2Φr1,2 ) = 0 (2.39)
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Figure 2.5: a,b) Field distributions and x-components ⟨Sx⟩ of the time-averaged Poynting
vector ⟨S⃗⟩ for the first three Eigenmodes (TEl and TMl) of the geometry shown in Fig.
2.4.

The solutions for this equation are given by [128,129]

2Φ− 2Φr1,2 = l · 2π, l ∈ Z (2.40)

Eq. 2.40 is also known as the characteristic equation. The lth solution of the characteristic
equation is called a ’TEl eigenmode’. For each eigenmode, an effective refractive index
kx = neffk0 can be attributed [125]. These eigenmodes can be found for ns < |n′

eff | < nf .
Geometrically interpreted, n′

eff defines the angle θint = arcsin (n′
eff/nf ) under which

plane-waves propagate inside the layer. Fig. 2.5a shows both the normalized real part
of the tangential field Ey and the x-component of the time-averaged Poynting vector ⟨S⃗⟩
of the first three TE modes as a function of z for tWG = λ, ns = 1.0 and nf = 2.0.
Inside the layer, Ey is characterized by a standing-wave with l nodes (with respect to
the z-direction). Outside the layer, both Ey and H⃗ decay exponentially. For this reason,
the electromagnetic fields outside the layer are called ’evanescent fields’. ⟨S⃗⟩ has only a
positive x-component. Therefore, the power flow into the substrate and superstrate is
zero. It is confined in an eigenmode and the electromagnetic waves are guided by the
waveguide [128,129].

For TM polarization, analog considerations can be done, leading to the formation of TMl

modes [128,129]. Using the same parameters, the first three TM modes are shown in Fig.
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Figure 2.6: a) Complex plane of kx = k′
x + j · k′′

x including the modes in Figs. 2.4 and
2.5. b) Dispersion relation of a symmetric slab waveguide. Visualization according to
ref. [123].

2.5b

Fig. 2.6a shows an overview of the phenomena explained above as function of kx =

k′
x + j · k′′

x in the complex plane [128]. The so-called dispersion relation of an eigenmode
k′
x(ω) = n′

eff (ω)
ω

cvac
(with k′′

x = 0) is displayed in Fig. 2.6b. Here, as a result of the
waveguide’s mirror symmetry with respect to the z-axis, it can be observed that the TE0

and TM0 eigenmodes can exist for arbitrarily small values of ω [128]. In contrast, each
eigenmode of higher orders cannot exist below its characteristic cut-off frequency [128].
Over the course of this thesis, both the complex plane as well as dispersion relations will
be used to characterize waveguides.

Another important type of diagram is the two-dimensional k-space diagram, in which
data are plotted as a function of k′

x and k′
y [130]. For instance, it can be considered

that a rotation of the waveguide at hand around the z-axis does not change the observed
dispersion relations. Therefore, the sectional plane of k′

x and k′
y with the eigenmode’s

dispersion relations build circles of radii n′
effk0 (see. Fig. 2.7) [128].

2.3 Fundamentals of Plasmonics

Over the course of this thesis, several geometries using plasmonics will be discussed. To
provide a basic body of knowledge to understand these phenomena, the fundamental
properties of plasmons will be provided. Herein, the explanation of these properties will
begin with bulk plasmons (3D), move to surface plasmons (2D), briefly explain plasmon
waveguides (1D) and end with localized surface plasmons (0D).
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Figure 2.7: Schematic visualization of similar eigenmodes to the waveguide from Fig. 2.3
in the k′

x-k′
y plane (two-dimensional k-space diagram).

2.3.1 Bulk Plasmons (3D)

Bulk plasmons are charge oscillations inside a volume conductor. Their properties can
be approximated considering a volume of a conductive material which is exposed to an
external electric field of frequency ω. Herein, the charge carriers are assumed to move
freely and form a so-called ’free electron gas’ [131]. Two mechanisms describe the response
of the free electron gas to the external electric field: first, the external field enforces an
oscillation of the electrons of charge −e due to the force −eE⃗. Second, the movement
of the electrons inside the volume conductor is dampened (e.g. by Ohmic losses) with a
dampening rate Γ. Both mechanisms can be expressed via the differential equation [131]

me
¨⃗r +meΓ ˙⃗r = −eE⃗(t). (2.41)

with me as the electron mass.

Solving this equation to r⃗ and taking the volumetric number density of charge carriers
Nc into account, the polarization density is given by P⃗ = −Ncer⃗. Inserting this solution
into Eq. 2.6 leads to the relation [131]

εr(ω) = 1−
ω2
p

ω2 + jΓω
(2.42)

with ωp =
√

Nce2/(ε0me) as the ’plasma frequency’ [131]. Note that the real values of ε
may significantly deviate from an Eq. 2.42 as result of band structure effects [131]. For all
calculations including metals in this thesis, the experimental data provided in ref. [132]
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are used to obtain more realistic results.

2.3.2 Surface Plasmons (2D)

In Section 2.2, it was mentioned that the electric field strength has to be continuously
differentiable for TE polarization. For TM polarization, the Maxwell equations do not
demand this restriction. Here, Hy has only to be continuous and the electric field strength
may even be discontinuous at interfaces [133].

This circumstance allows a special kind of eigenmode solution to exist, which only consists
of evanescently decaying fields at one single interface. Using the same principles as in
Section 2.2, this eigenmode can be identified by finding e.g. the pole of the reflection
coefficient at an interface (see Section 2.1). Using, Eq. 2.28, a pole of r is then present
when the characteristic equation [133]

εr,1kz,2 + εr,2kz,1 = 0 (2.43)

is fulfilled, indicating that the real parts of εr,1 and εr,2 must have opposite signs (for
kz,1, kz,2 > 0). Such opposite signs occur at the interface of a metal and a dielectric
material. The solution of the characteristic equation is called a ’surface plasmon’ [133].

The dispersion relation of a surface plasmon can be expressed by [133]

kx =
ω

cvac

√
ε1ε2

ε1 + ε2
= k0 · neff (2.44)

In contrast to the modes in Section 2.2, the effective index neff = kx/k0 = n′
eff +i ·n′′

eff is
typically complex-valued for surface plasmons. Therefore, as both Hy, Ex and Ez contain
the factor eikxx, the time-averaged x component ⟨Sx(x)⟩ of the Poynting vector can be
expressed by

⟨Sx(x)⟩ = ⟨Sx(0)⟩ · e−2k0n′′
effx (2.45)

and thus decays over to the fraction 1/e of its initial value over the ’propagation length’
Lprop =

4πn′′
eff

λ
as the result of Ohmic loss [133].

Silver is an important metal for optical applications of surface plasmons in the visible
range of wavelengths as it enables long propagation lengths. For instance, at a vacuum
wavelength of λ = 532 nm, its dielectric constant exhibits a value of εm ≈ −16+j0.4 [132].
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Figure 2.8: a) Magnetic field strength and x-component of the time-averaged Poynting
vector of an SPP. b) Dispersion relation of silver under the assumption of an ideal Drude
metal with ωp = 1.36 · 1016. According to ref. [133].

Similar values (large negative real part, small positive imaginary part) are present over
the entire visible range [132]. As a result, typical propagation lengths of SPPs at silver-
air-interfaces are in the order of several ten microns.

Fig. 2.8a shows the distributions of the real part of Hy and the x component of the
time-averaged Poynting vector ⟨S⃗⟩x for a metal-air-interface. It can be observed that
surface plasmon eigenmodes are strongly confined with respect to the z-direction. As
an example, the dispersion relation of the surface plasmon calculated via an ideal Drude
metal (Γ = 0) with [131]

εAg = 1−
ω2
p

ω2
(2.46)

and ωp = 1.36 · 1016 is shown in Fig. 2.8b.

Here, toward infinitely large values of k′
x, the dispersion relation converges to a value of

ωsp = ωp/
√
2. In general, supposing that the dielectric is loss-free and represented by

εr,1, the dispersion relation converges to [133]

ωsp =
ωp√

1 + εr,1
(2.47)

in the limit of infinitely large values of k′
x.

2.3.2.1 Long-range (LR-) and short-range (SR-SPPs)

For a thin silver layer (see Fig. 2.9) the evanescent fields of both SPPs on each interface
may overlap with each other. As a result, these SPPs couple with each other. This
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coupling leads to the formation of a symmetric and antisymmetric eigenmode. The
specialist terms such a phenomenon ’hybridization’ [134]. In the field of plasmonics, the
symmetric and antisymmetric eigenmodes are termed ’long-range SPP’ (LR-SPP) and
’short range-SPP’ (SR-SPP), respectively [134]. These names originate from the fact
that the LR-SPP exhibits less electric-field penetration inside the metal and therefore
less Ohmic losses, resulting in a longer propagation length than for pure SPPs. The
opposite is the case for the SR-SPP [134]. A sketch of the corresponding magnetic field
strengths and dispersion relations is shown in Fig. 2.9

Re(H )y

eAg

e0

a b

Re(H )y

e0

LRSPP

SRSPPL
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S
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√

Figure 2.9: a) Magnetic field strengths of a LR-SPP and a SR-SPP. b) Qualitative sketch
of the dispersion relations of LR-SPPs and SR-SPPs. According to ref. [133].

For wavelengths near to the visible range, the hybridization of SPPs into LR-SPPs and
SR-SPPs become important for silver film thicknesses below approximately 100 nm [133].

2.3.3 Plasmons in 1D geometries

Geometries, which are elongated into one direction and small in all other direction per-
pendicular to this elongated direction, are considered as one-dimensional (1D). Applying
similar principles as for hybridized surface plasmons, such geometries can be used to
form plasmonic waveguides. In the simplest case, they consist of conductive stripes of
rectangular or circular cross-section [135]. As a side note, although they are not of
particular importance for this thesis, plasmonic waveguides have drawn remarkable at-
tention in the recent years as a tool to realize sub-wavelength circuits [131, 135]. An
intermediate step towards 0D plasmonic geometries are waveguides consisting of lines of
conductive nanoparticles lines (nanoparticle waveguides). The power transfer in nanopar-
ticle waveguides can be understood as the coupling of many individual localized surface
plasmons [131]. Such localized surface plasmons will be explained in the next Section.
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2.3.4 Localized Surface Plasmons (0D)

Historically, the research field of plasmonics arose from the investigation of glasses con-
taining nanoscopic metallic nano particles [136]. Depending on the diameter and shapes
of these particles, it could be observed that the scattering and absorption properties of
light can be influenced over broad spectral ranges. These properties are present due to
the excitation of localized surface plasmons (LSPs) [137]. As visualized in Fig. 2.10a,
LSPs are charge oscillations localized at a metal sphere (e.g. a silver nanoparticle). The
LSPs of small spherical particles (d << λ) are governed by the equations [138]

σext =
18π(ϵ′1)

3/2V

λ

ε′′2
(ε′2 + 2ε′1)

2 + (ε′′2)
2

(2.48)

σsca =
32π4(ε′1)

2V 2

λ4

(ε′2 − ε′1)
2 + (ε′′2)

2

(ε′2 + 2ε′1)
2 + (ε′′2)

2
(2.49)

for the extinction and scattering cross section σext and σsca. Hereby, ε1 and ε2 are the
relative permittivities of a host material and the metal, respectively. The LSPs of larger
spherical particles obey Mie’s Theory [139].

Figure 2.10: a) Sketch of a localized surface plasmon (LSP) of a metallic nanosphere
according to ref. [137]. b) Hybridization of LSPs for a dimer of metallic nanospheres.
According to refs. [140,141].

In contrast to surface plasmons, LSPs can be excited without additional structures and,
their excitation in an isotropic environment does not depend on the angle of incidence of
an incident wave [138, 140, 141]. For large inter-particle distances d >> λ, the LSPs of
AgNPs of the same diameter do not interact with each other. In this case, the extinction
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of a light beam’s intensity I propagating through a medium containing AgNPs is dictated
by the Beer-Lambert-law [138,142]

I = I0e
−Npσextx (2.50)

with Np as the volumetric number density of AgNPs and the extinction cross section
σext = σabs + σsca of a single AgNP.

Interesting phenomena occur when the inter-particle distance is reduced so that LSPs may
interact with each other and their field overlap is significantly large. Following Naomi
Halas’ report about the analogy between discrete electron states of single atoms and LSPs
as discrete single AgNP states, and in a similar way as for the formation of LR-SPPs and
SR-SPPs, this interaction of LSPs can be understood as the hybridization of LSPs (Fig.
2.10b) [140, 141]). This hybridization enables more energy levels in comparison to non-
interacting AgNPs and σext can be strongly altered. It will be of importance for some of
the phenomena explained in Chapter 4.

2.4 Periodic layers for light coupling

In this section, a generalization from the examples given in Section 2.2 is considered.
As a result of this generalization, a geometry now includes multiple layers as well as
periodically structured layers of a period Λ in x-direction, termed grating layer. A sketch
of such generalized geometry is shown in Fig. 2.11.

The method of rigorous coupled wave analysis (RCWA) will be shortly outlined using the
explanations given in ref. [129]. In addition to these explanations, practically applicable
formulations of some equations will be provided. The advantages and limitations of the
method will be discussed later on.

All layers are counted via an index j. The relative permittivity and its reciprocal values
in a grating layer of index j = p can be expressed by [129]

εr,p(x) = εr,p(x+ Λ) =
∞∑

ν=−∞

pνe
j(2πνx/Λ) (2.51)

and [129]

1/εr,p(x) = 1/εr,p(x+ Λ) =
∞∑

ν=−∞

sνe
j(2πνx/Λ) (2.52)
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Figure 2.11: Schematic geometry including period layers. From ref. [129].

Herein, ν indexes all diffraction orders. The Floquet theorem tells us that, in a similar
way, the electric and magnetic fields can be expressed with periodic functions [129]. It
is assumed that plane waves of a lateral momentum k′

x fall onto the geometry from the
substrate (see Fig. 2.11) [129]. By inserting an ansatz for the tangential field components
of E⃗ and H⃗ in the form of [129]

Et,j =
∞∑

ν=−∞

Et,j,ν(z)e
jkx,νx and Ht,j =

∞∑
ν=−∞

Ht,j,ν(z)e
jkx,νx (2.53)

into the Maxwell equations, using

kx,ν = k′
x,ν + j · k′′

x, k′
x,ν = k′

x + ν · 2π/Λ, (2.54)

26



a linear differential equation system of second order is obtained. Using again local coor-
dinates, and

kz,j,ν =
√
εr,jk0

2 − k2
x,ν , (2.55)

as well as

yj,ν =

kz,j,ν/ωµ0 for TE polarization

ωεr,j/kz,j,ν for TM polarization,
(2.56)

its solution for all homogeneous layers (j ̸= p) reads [129]

E⃗t,j =
∞∑

ν=−∞

{fj,νejkz,j,νzj + gj,νe
jkz,j,ν(tj−zj)} · ejkx,νx (2.57)

H⃗t,j =
∞∑

ν=−∞

yj,ν{fj,νejkz,j,νzj − gj,νe
jkz,j,ν(tj−zj)} · ejkx,νx, (2.58)

whereby selection of the square-roots of kz,j,ν is defined by k′
z,j,ν > 0 for |k′

x,ν | ≤ Re(k0
√
εr,j)

or k′′
z,j,ν > 0 for all other cases [129]. This set of equations can be understood as a set of

plane-waves, which propagate through the geometry independently from each other. For
a grating layer (j = p), the corresponding solution reads [129]

E⃗p =
∞∑

m=−∞

{fp,mejkz,p,mzp + gp,me
jkz,p,m(tp−zp)} ×

∞∑
ν=−∞

am,νe
jkx,νx (2.59)

H⃗p =
∞∑

m=−∞

yp,m{fp,mejkz,p,mzp − gp,me
jkz,p,m(tp−zp)} ×

∞∑
ν=−∞

bm,νe
jkx,νx (2.60)

with [129]

yp,m =

kz,p,m/ωµ0 (TE),

ωε0/kz,p,mγp (TM)
(2.61)

whereby γp is the average of 1/εr(x) taken over one period. The geometry and relative
permittivity of the grating is encoded in the matrices [129,143]
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A =



. . . ...
...

... ...

. . . a−1,−1 a0,−1 a1,−1 . . .

. . . a−1,0 a0,0 a1,0 . . .

. . . a−1,1 a0,1 a1,1 . . .
... ...

...
... . . .


and B =



. . . ...
...

... ...

. . . b−1,−1 b0,−1 b1,−1 . . .

. . . b−1,0 b0,0 b1,0 . . .

. . . b−1,1 b0,1 b1,1 . . .
... ...

...
... . . .


(2.62)

as well as in kz,p,m. Both matrices can be derived from the fundamental matrix [129,143]

P =

k2
0E −Kx for TE polarization

Y−1(k2
01 −KxE−1Kx) for TM polarization

(2.63)

of the linear differential equation system, using the definitions below [129,143]

pν =
1

Λ

∫ Λ

0

εr,p(x)e
j(2πνx/Λ) dx (2.64)

sν =
1

Λ

∫ Λ

0

1

εr,p(x)
ej(2πνx/Λ) dx (2.65)

Em,ν = pm−ν (2.66)

Y
m,ν

= sm−ν (2.67)

Kxm,ν
= δm,νkx,ν (2.68)

As a side note, the expression for P in the TM case has been debated about over the
course of many publications in the literature: similar to non-commutating mathemati-
cal operators, a different expression of P occurs when the Fourier-space representations
of εr(x) and 1/εr(x) are introduced before all necessary algebraic manipulations of the
Maxwell equations have been done. Following the work in ref. [144] and an own deriva-
tion of P , it has been confirmed that the expression provided here is correct. Wrong
expressions lead to unstable behaviors and slow convergences when a finite number of
Fourier orders is calculated (see Section 2.5).

The eigenvalues of P are k2
z,p,m and kz,p,m itself is obtained from the positive square root

of k2
z,p,m. The eigenvectors c⃗m of P define a matrix [129]

Ceig = [. . . : c⃗−1 : c⃗0 : c⃗1 : . . .] (2.69)
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Figure 2.12: Graphical representation of RCWA

Finally, the matrices A and B can be identified by [129]

A = B = Ceig for TE polarization

A = 1/γpYB and B = Ceig for TM polarization
(2.70)

For each layer, the boundary conditions (Eqs. 2.20 and 2.21) of the tangential field
components must be fulfilled. As only one plane wave falls onto the geometry from
the 0th diffraction order (ν = 0) with the lateral momentum k′

x, the amplitudes in the
substrate and superstrate are defined by f0,0 = 1, f0,ν = 0 for ν ̸= 0 and gJ+1,ν = 0 [129].
As a result, all amplitudes gj,ν and fj,ν can be unambiguously determined [129].

A graphical representation of RCWA is shown in Fig. 2.12. As mentioned above, in all
homogeneous layers, plane-waves propagate independently from each other. A grating
layer then functions as a coupling element between these plane-waves. Thus, a geometry
exhibiting grating layer can be regarded as a resonator with multiple interacting channels,
giving rise to interesting resonant phenomena [129].

Concerning the interpretation of the amplitudes g0,ν and fJ+1,ν , they can be identified as
the coupling coefficients between the incident wave and diffracted waves. In the literature,
the coupling coefficients between different diffraction orders ν are often referred to as
diffraction coefficients [145]. For an incident plane-wave coming from the substrate (j =
0), the conservation of energy can be expressed by [145]

∑
ν

[
Re(|g0,ν |2

kz,0,ν
kz,0,0

) + Re(|fJ+1,ν |2
kz,J+1,ν

kz,0,0
)

]
+ A = 1, (2.71)
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whereby kz,0,ν/kz,0,0 and kz,J+1,ν/kz,0,0 are geometrical correction factors to take into ac-
count cross-sectional intensity changes as a result of tilted propagation angles. The
reflectance R and the transmittance T are defined by [145]

R = |g0,0|2 and T = |fJ+1,0|2
kz,J+1,0

kz,0,0
, (2.72)

The diffraction efficiencies DR,ν and DT,ν are given by [145]

DR,ν = |g0,ν |2
kz,0,ν
kz,0,0

and DT,ν = |fJ+1,ν |2
kz,J+1,ν

kz,0,0
, n ̸= 0 (2.73)

Before moving on to the physical behavior of planar waveguides including gratings, details
on the computation using RCWA will be provided.

2.5 Computation of RCWA

In this section, explanations on the computation of geometries with periodic layers with
the equations provided in section 2.4 will be given.

2.5.1 Truncation of Fourier orders and an exemplary rectangular

grating

The expressions for both the electric and magnetic fields contain an infinite number of
Fourier orders. It is obvious that their practical calculation can only be realized using
approximate methods. Instead of an infinite number of Fourier orders, only −N < ν < N

Fourier orders are calculated. This procedure is termed ’truncation’ [129]. The number
N strongly depends on the parameters of a periodic layer. As rule of thumb, large
spatial variations of εr,p(x) and large layer thicknesses tend to require a larger value of
N to obtain trustworthy results. Furthermore, smaller values of N are required for TE
polarization than for TM polarization [129].

Convergence is reached, when the relative error of a simulated quantity X (e.g. the
transmittance T , reflectance R, Lprop, etc.) becomes smaller than a desired accuracy δE.
If not stated otherwise, δE < 10−3 is chosen. In practice, the maximum number of N can
be then found by applying a convergence criterium

|X(N + 1)−X(N)|
|X(N)|

< δE (2.74)
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Figure 2.13: a,b) Convergence of |pν | and |sν | for an increasing number of diffraction
orders ν. c) Convergence of the transmission T for increasing values of N .

To provide an example, the calculation of a rectangular metal-air grating with increasing
values of N will be discussed in the following and compared with reference results from
the literature [146].

For a rectangular grating, the dielectric function reads.

εr,p(x) =

εr,p1 (0 ≤ x ≤ D · Λ),

εr,p2 (D · Λ < x < Λ)
(2.75)

Inserting 2.75 into 2.64 and 2.65 yields
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Figure 2.14: Convergence of |Hy|2 for an increasing number of Fourier orders. See ref. [146]
for an exact result.

pν =
1

2jπν

[
εr,p1(e

j2πνD − 1) + εr,p2(e
j2πν − ej2πνD)

]
(2.76)

= ejπνD
[
εr,p1

sin (nπD)

νπ
+ εr,p2e

jπν sin (νπ(1− D))

νπ

]
(2.77)

and

sν =
1

2jπν

[
1

εr,p1
(ej2πνD − 1) +

1

εr,p2
(ej2πν − ej2πνD)

]
(2.78)

= ejπνD
[

1

εr,p1

sin (νπD)

νπ
+

1

εr,p2
ejπν

sin (νπ(1− D))

νπ

]
(2.79)

The geometry is defined by the parameters εr,p1 = 1.0, εr,p2 = εAg with εAg as the dielectric
constant of silver [132], D = 0.1, tg = 150 nm and Λ = 320 nm. TM polarized light at
a wavelength of λ = 640 nm under perpendicular incidence (k′

x = 0) is considered [146].
Note that this geometry represents an extreme example of very small spatial dimensions
in the x-direction. It exhibits large discontinuous jumps of εr,p(x), and, for a metal, large
grating layer thicknesses far above its penetration depth. It is thus ideal to test and
investigate the stability and convergence of the implemented RCWA algorithm.

|pν | and |sν | are shown in Figs. 2.13a and b. Toward large values of ν, both functions tend
towards zero. Thus, the impact of the Fourier orders on a calculated measure of interest
(X = E⃗,H⃗,T ,R, etc.) becomes smaller for increasing values of ν. This observation means
that all measures of interest converge, justifying the method of truncation. In accordance,
the transmittance T converges to a distinct value with increasing N (Fig. 2.13c). Here,
convergence is reached at the dashed line (N = 163). Similar arguments hold for the
magnetic field distribution Hy (Fig. 2.14), which looks near identical to the reference
distribution for N ≥ 100 (see Fig. 10a in ref. [146]).
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When smaller values of N are used, the field distributions may exhibit artifacts since the
truncation acts like a low-pass-filter on the spatial harmonics of Hy.

2.5.2 Slicing

Figure 2.15: Approximation of a grating with curved surface profile (a) by slicing it into
multiple layers of rectangular gratings (b). According to ref. [143].

To model a more complicated grating geometry such as a grating with curved interfaces
(εr,p = εr,p(x, z)), it can be approximated by slicing it into a stack of one dimensional
rectangular grating layers [143]. Such procedure of slicing is visualized in Fig. 2.15. The
grating layer is sliced into K sublayers of height tg/K, each consisting of rectangular
grating. For large values of K, the results of an exact calculation are asymptotically
approximated.

With increasing grating thickness and complexity (i.e. high spatial frequencies), the
calculation time drastically increases as more and more Fourier orders are necessary to
model the grating. There exist two ways to circumvent this problem. The first way is
to use the C-method, named after a work of Chandezon et al., when the grating can
be described by a continuously differentiable surface profile function and the boundary
conditions can be solved via a coordinate transformation [147]. The other way is to use
numerical methods such as the finite element method (FEM) [148] or finite difference
time domain (FDTD) [149]. For complicated grating geometries, a hybrid approach can
combine the advantages of these methods: first, the grating’s response to an incoming
plane-wave can be converted into effective values of pn and sn using either the C-Method
or numerics. Second, these calculated values can be inserted again into the RCWA
algorithm. For the geometries presented in this thesis, pure RCWA and slicing is used
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as the grating geometries are neither complicated nor thick and typically converge below
N = 100 and K = 50.

2.5.3 Conservation of Energy

Once convergence is confirmed, it is of crucial importance to check that Eq. 2.71 is
accurately true. For example, very large layer thicknesses in the order of 103λ may
exhibit exponential terms in the expressions of the electric and magnetic fields, which
are too large or too small to be represented by a 32-bit or 64-bit digit. The appearance
of these exponential terms reflect in a non-conserved energy balance or discontinuous
jumps of simulated values. Here, the implemented algorithm using RCWA was tested up
to optical layer thicknesses of approximately 80 µm. Improving this limit is one of the
outlooks of this thesis. Nonetheless, energy conservation is confirmed for all geometries
presented in this thesis as they are thin enough.

In the next section, using the computation methods explained above, the behavior of an
exemplary waveguide grating will be demonstrated and explained.

2.6 Phenomena of an Exemplary Waveguide Grating

Figure 2.16: Geometry of a simple waveguide grating.

The characteristics of a waveguide grating as defined in Fig. 2.16 will be discussed in this
section. It consists of a dielectric layer with a thickness of td = 500 nm, and one adjacent
rectangular grating with εr,0 = n2

0 = 1.0 and εr,1 = n2
1 = 2.02, a thickness of tg = 50 nm,

a period of Λ = 500 nm and a duty cycle of D = 0.5. The entire waveguide thickness is
tWG = 550 nm.

Although this geometry is rather simple, it shows a plethora of interesting effects with
respect to R, T , DR,ν and DT,ν as a function of the incidence angle θ (see Fig. 2.17).
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Figure 2.17: Characteristics of the waveguide grating for λ = 500 nm. a) The trans-
mittance T and reflectance R in the 0th order. b,c) The diffraction efficiencies DR,−1,
DR,1, DT,−1, and DT,1. d) Calculated values of Eq. 2.71. A value of 1 indicates energy
conservation (here, A is zero).

The various values of k′
x,ν (see Section 2.4) appear as diffracted plane-waves at the diffrac-

tion angles θd,n according to the equation

k0 · n0 sin(θν) = k0n0 sin(θ) + ν · 2π/Λ (2.80)

At distinct incidence angles θ and in contrast to a non-structured Fabry-Perot resonator
(see Section 2.2), both T and R show several sharp additional features (see the arrows
in Fig. 2.17a). For example, T and R are not continuously differentiable at θ = 0.
This behavior occurs as the wave-vector components kz,j,ν of the diffracted waves in the
substrate and superstrate flip between purely imaginary and purely real numbers. It is
called a ’Rayleigh anomaly’ named after its discoverer Lord Rayleigh. The remaining
sharp features (e.g. at θ ≈ 56◦) are called ’guided mode resonances’ [151]. The origin of
these guided mode resonances can be understood by taking a closer look at the reflection
coefficients r = g0,0. In a similar way as for non-structured geometries, it can be expressed
in the form of [129]
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complex pole of r
a b

complex zero of r

observable
values of |r|

Fano resonance
via eigenmode
excitation

complex pole of r
complex pole of r

Figure 2.18: a) |r| as a function of kx = (k′
x + jk′′

x). Its cut along k′′
x = 0 displays

the observable values of |r| under plane-wave incidence from the substrate. Due to the
vicinity of a complex zero-pole pair, a guided mode resonance with a Fano curve [150]
shape appears. b) The appearance of a second pole under a shifted lateral k′

x + 2π/Λ.

r = g0,0 ∝ det((1 −R)−1) (2.81)

whereby R is an effective matrix including all internal reflections and phase shifts of the
waveguide grating. A pole of g0,0 is then present, when the determinant det(1 − R) is
zero [129]. Fig. 2.18a shows |r| as a function of kx = (k′

x + jk′′
x) near to θ = 56◦.

It can be observed that the pole is complex with a positive value of k′′
x although no

losses are present in the geometry. Another pole with the same value of k′′
x is present

at k′
x + 2π/Λ. This second pole has almost the same real part k′

x ≈ 1.82 as the TE1

eigenmode of a homogeneous waveguide for which the grating is replaced with a layer of
an effective relative permittivity 1/2 · (εr,1 + εr,2) (see Fig. 2.18b).

As discussed in Section 2.3, a pole with k′′
x>0 can be interpreted as a mode with a

decaying intensity along the x-direction. A plot of the electric field distribution Ey as
well as ⟨Sx⟩ shows that power is transferred from the mode to plane-waves in the substrate
and superstrate (see Fig. 2.19). The positive value of k′′

x thus occurs due to radiation from
the eigenmode into plane-waves in the substrate and superstrate. Applying the principle
of reciprocity, an incident plane-wave from the substrate can excite this eigenmode. As a
part of the excited energy in the mode couples back to the plane-waves in the substrate
and superstrate, interference with the incident plane wave occurs and can be observed
as a guided mode resonance of the reflection coefficient r [151]. The curve shape of such
guided mode resonance can be understood as a cut of r along the real axis in Fig. 2.18a
and is composed of the tails of the pole and an adjacent zero of r (see the black line).
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Figure 2.19: a,b) Re(Ey) and ⟨Sx⟩ corresponding to the pole displayed in Fig. 2.18a.

From this geometric interpretation, it follows that larger values of k′′
x lead to resonances

of broader full width half maximum ∆θ [152]. The relation between ∆θ and k′′
x can be

derived from Heisenberg’s uncertainty principle (∆x ·∆px ≥ h). Identifying ∆x = Lprop

and ∆px = h ·∆k′
x = hk0ns cos(θ)∆θ, it reads [152]

∆θ =
2k′′

x

k0n0 cos(θ)
(2.82)

From analog considerations, using the energy-time uncertainty, the spectral width of the
guided mode resonance can be expressed by

Q =
ω0

∆ω
=

Re(neff )

2Im(neff )
, (2.83)

whereby the right side of the equation is only valid for waveguides with an attributed
propagation length. In contrast, the expression Q = ω/∆ω is valid for all kinds of optical
resonators [124].

A plot of R reveals the dispersion relations of eigenmodes in the form of guided mode
resonances and underlines this interpretation of mode excitation (Fig. 2.20). They can
be interpreted as a photonic band structure. The word band-structure is chosen based
on its similarity with the band-structure of electronic states in solid-state materials [153].
This similarity is the reason why periodically structured photonic geometries are often
referred to as ’photonic crystals’ [154].
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Figure 2.20: Reflectance R as a function of k′
x and ω.

2.6.1 Bound States in the Continuum (BIC)

Taking a closer look at the crossing point between the dispersion relations of two counter-
propagating modes in Fig. 2.20 toward k′

x = 0, they form two eigenmodes: A symmetric
eigenmode and an antisymmetric eigenmode of zero group velocity ∂ω(k′

x)/∂k
′
x (standing

waves) [128, 129]. Here, the words ’symmetric’ and antisymmetric’ are referred to the
electric field’s symmetry with respect to the x-direction. Herein, the symmetric eigen-
mode can couple to plane-waves in the substrate and superstrate [155]. In contrast, the
antisymmetric eigenmode is incompatible with the symmetry of plane waves in the sub-
strate and superstrate at k′

x = 0. As result, an excited eigenmode cannot couple to these
plane plane waves and vice versa. This circumstance is the reason why, toward k′

x = 0

the spectral width of the antisymmetric eigenmode asymptotically converges to zero and
indicates divergence of Q (k′′

x = 0). As the divergence of Q occurs on a continuous dis-
persion relation characterized by k′′

x > 0 for all values of k′
x except zero, it is called a

’Γ-BIC’ or ’Symmetry-Protected BIC’ [155,156].

Another type of BIC, called Friedrich-Wintgen BIC (FW-BIC) can occur as the result
of an avoided crossing of the dispersion relations of coupled eigenmodes [156]. This type
of BIC will be discussed in detail in Chapter 4 in the context of the discussion of a
photonic-plasmonic hybrid waveguide grating.
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2.7 Out- and Incoupling Efficiency and Concentration

So far, the behavior of waveguide gratings has been elaborated assuming infinitely ex-
tended plane-waves. Of course, real light sources are finite with respect to their spatial
dimensions. This section will provide a step-by-step transition from plane-waves and in-
finitely large geometries to finite light sources. These steps follow the methods provided
in ref. [157]. In the context of these steps, the concentration attributed to the eigenmode
of a waveguide grating will be defined.

It is considered that no incident plane-wave from the substrate or superstrate is present.
Instead, a mode with a total input power per unit length in y-direction Pin/ly at x = 0

is assumed, which propagates in the positive x-direction. As for the former example of
SPPs (see Section 2.3), the time-averaged Poynting vector attributed to the eigenmode
obeys the equation [157]

⟨Sx(x)⟩ = ⟨Sx(0)⟩ · e−2k0n′′
effx, (2.84)

whereby it is measured at some z-position inside the waveguide. n′′
eff takes into account

both radiation into the substrate and superstrate and all forms of loss (e.g. Ohmic loss).
The propagation length can then be composed via [157]

Lprop = (
1

Lprop,rad

+
1

Lprop,loss

)−1 (2.85)

In the limit x → ∞, ⟨Sx(x)⟩ becomes zero. Therefore, all of the initial power in the
eigenmode Pin is distributed into a radiation part Prad and a loss part Ploss. The intensity
of light radiated away from the waveguide grating shows an exponentially decaying profile
as well (see Fig. 2.21). Herein, it is important to recognize that the light outside the
waveguide grating propagates undisturbed, so that all diffraction orders separate from
each other in the far field. This circumstance enables to neglect the interference of waves
radiating into the substrate and superstrate and to assign the time averaged Poynting
vectors [157]

⟨S⃗ξ,ν⟩ =
1

2
E⃗ξ,ν × H⃗∗

ξ,ν (2.86)

to them, whereby ξ ∈ {−,+} is used to differentiate between radiation into the substrate
(’−’) and the superstrate (’+’). The corresponding expressions for E⃗ξ,ν and H⃗∗

ξ,ν are
defined via the individual summands in Eqs. 2.57 and 2.58. Every pair of numbers given
up by ξ, ν is called a ’radiation channel’. Eq. 2.86 then allows to calculate the power in
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Figure 2.21: Decay of an excited mode (ν = 0) into radiation (two radiation channels
with ν = −1) and absorption losses. According to refs. [157,158]

each radiation channel via [157]

Prad,ξ,ν/ly = |
∫ ∞

0

⟨S⃗ξ,ν⟩e⃗zdx|, (2.87)

whereby the integral is calculated at some position of z outside the waveguide grating.

The indexing of Prad,ξ,ν can be understood in the same way as for Eq. 2.86. Using Eq.
2.87, and defining the coupling efficiency per radiation channel [157]

ηξ,ν =
Prad,ξ,ν

Pin

, (2.88)

the conservation of energy can then be written in the form [157]

∑
ξ,ν

ηξ,ν + A = 1, (2.89)

whereby the sum of all coupling efficiencies per radiation channel (the left summand in
Eq. 2.89) is called ’outcoupling efficiency’. Furthermore, the process of the transferring
power from an eigenmode into the radiation channels is termed ’outcoupling’.

Importantly, the equations above exhibit information about the concentration of light.
⟨S⃗ξ,ν⟩ can be interpreted as the intensity Iξ,ν(x) of light radiated into one radiation
channel. From Eqs. 2.84-2.87, it can be derived that the average of this intensity is given
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by

Iξ,ν =
ηξ,νPin

Lprop cos θξ,νly
(2.90)

with θξ,ν as the mean diffraction angle attributed to a radiation channel (see Fig. 2.21).

Considering the initial intensity Iin attributed to the eigenmode, it can be calculated via
the effective mode thickness tmode = tWG + te,1 + te,2 and Pin via [128]

Iin =
Pin

tmodely
(2.91)

Hereby, te,1 = 1/Im(kz,0,0) and te,2 = 1/Im(kz,J+1,0) are the penetration depths of the
evanescent fields in the substrate and superstrate. When the optical thickness tWGn′ of a
waveguide grating of an average refractive index n′ is larger than λ/2, the initial intensity
can be approximated to Iin ≈ Pin/(tWGly). Comparing both Iξ,ν and Iin with each other,
the intensity in the radiation channel is thus reduced by a factor [157]

Iξ,ν
Iin

= ηξ,ν
tWG

Lprop cos θξ,ν
= ηξ,ν

1

Cgeo

(2.92)

with the geometric concentration factor

Cgeo =
Lprop

tWG

cos θξ,ν (2.93)

Now, the principle of reciprocity is applied: after the entire power Pin is radiated away and
absorbed, reversing the time must result in the excitation of the mode via the radiation
channels [157]. Therefore, a waveguide grating can concentrate light with a maximum
concentration factor of Cgeo. Hereby, maximum concentration is reached in the absence
of loss and an exponentially increasing intensity profile with respect to the negative x-
direction. To elaborate this explanation, a mirror symmetric waveguide grating with two
radiation channels is assumed (see Fig. 2.22a). As no losses are present (A = 0), ηξ,ν = 0.5

must hold true. Applying reciprocity, the eigenmode is excited with 100% incoupling
efficiency (ηtot) when the waves in both radiation channels are used as incident waves by
reversing time (see Fig. 2.22b). When only one radiation channel is used to excite the
eigenmode, the eigenmode can only be excited with 50% incoupling efficiency (see Fig.
2.22c). The same argumentation accounts for the presence of loss, whereby the incoupling
efficiency is always smaller than 100% [157]. It is important to note that the principle
of reciprocity must be applied to the electromagnetic fields, so that all phase relations
of the electromagnetic fields are correctly taken into account. For instance, considering
a TE1 eigenmode for the same symmetric waveguide grating, the relative phase between
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Figure 2.22: Mirror symmetric waveguide grating with two radiation channels under
A = 0. a) The outcoupling efficiency is 100%. b) Via reciprocal excitation, the eigenmode
can be with an incoupling efficiency of 100%. c) The incoupling efficiency decreases to
50% when only one beam falls onto the waveguide grating. According to refs. [157]

the fields in both radiation channels is π. Two incident waves with a relative phase of
zero would not excite a TE1 mode. In contrast, a TE0 eigenmode is symmetric and can
be excited with 100% incoupling efficiency by two incident waves with a relative phase of
zero [157]. Such considerations will be of importance in Chapter 5.

There is another important point to consider. In reality, incident light is commonly not
governed by an exponentially increasing intensity profile, but rather by a homogeneous
(e.g. the sun), or a Gaussian one (e.g. a laser) [159]. Considering that the incoming waves
excite the eigenmode via a distinct radiation channel ξ, ν, then the incoupling efficiency
per radiation channel ηin,+/−,ν can be expressed via the overlap integral between the
ideal (time-reversed) field distribution F⃗rad,ξ,ν and the field distribution of incident waves
F⃗in,ξ,ν [152,157]

ηin,ξ,ν = ηξ,ν
|
∫
A
F⃗ ∗
in,ξ,νF⃗rad,ξ,ν dA⃗|2∫

A
|F⃗in,ξ,ν |2 dA⃗|

∫
A
|F⃗rad,ξ,ν |2 dA⃗

, (2.94)

whereby F⃗in,ξ,ν and F⃗rad,ξ,ν refer to the electric field for TE polarization, and to the
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Figure 2.23: a) Excitation of an eigenmode by incoming waves of extent ∆L of homoge-
neous intensity. b) Corresponding efficiency under the assumption of mirror symmetry
to the z-direction. Maximum incoupling efficiency occurs at L ≈ Lprop. The incoupling
efficiency is doubled for two incident beams. According to refs. [152,157].

magnetic field for TM polarization. Note that the integral in Eq. 2.94 must be calculated
over an x-y plane in the substrate or superstrate (depending on ξ). For translational
invariance in the y-direction, it reduces to an integral over one dimension.

Using Eq. 2.94, the incoupling efficiency can be finally expressed by [152,157]

ηtot =
∑
ξ,ν

ηin,ξ,ν ≤ 1 (2.95)

This theory chapter will be closed with an example of the incoupling efficiency of a ho-
mogeneous beam with a spatial extent L with respect to the x-direction, which falls onto
a waveguide grating with equal coupling coefficients for both z-directions (Fig. 2.23a). It
is further assumed that an investigated eigenmode only radiates into a single diffraction
order, so that there is one radiation channel in the substrate and one radiation chan-
nel in the superstrate. The incoupling efficiency becomes zero for limL→0 and limL→∞

(Fig. 2.23b) [152, 157]. This behavior can be understood as follows. For small widths
∆L << Lprop, only a restricted number of grating slits is illuminated. Due to Heisen-
berg’s uncertainty principle, the angular divergence of diffracted waves becomes large and
most of the diffracted angles do not match the internal angle of the eigenmode. From the
mathematical point of view, an incident beam of small spatial dimension is represented by
a broad plane-wave spectrum. The plane-wave spectrum of an eigenmode is significantly
smaller in comparison to the one of the incident beam. Both arguments explain why the
overlap integral and the incoupling efficiency become small. For large widths L >> Lprop,
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only photons within a range of a few Lprop have a large probability to reach x = 0. All
other photons have a large probability of being diffracted out of the waveguide and, thus,
the incoupling efficiency becomes small. In between these two limits, for ∆L ≈ Lprop, an
optimum of the incoupling efficiency of ηtot ≈ 0.41 is observed. This value occurs as the
symmetry limits the incoupling efficiency to 0.5 when only one incident beam on one side
of the waveguide is present. The reduction from 0.5 to 0.41 results from the mismatch
between the homogeneous beam profile of the incident waves and the exponential beam
profile corresponding to the ideal field distribution. Two homogeneous beams could thus
reach a maximum efficiency of 0.82 [152,157].

The same considerations can be applied to more complicated beam profiles (such as
Gaussian beams) as well by expressing its plane-wave spectrum via a spatial Fourier
transform (see. Eq. 2.16).

2.8 Short Summary

With the methods and characteristics explained in the last sections, the fundament to
understand the publications presented in Chapters 4 and 5 is established. If needed,
additional elaborations on these methods will be given over the course of the thesis.
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Chapter 3

Experimental Methods

In the previous chapter, the theoretical characteristics of waveguide gratings have been
analyzed. The assumptions for calculating these characteristics are perfectly homoge-
neous, and flat dielectric films as well as perfect structures. It is obvious that real layers
and structures differ from these assumptions. In fact, it is challenging to achieve precisely
produced films and structures of low surface roughness, low densities of undesired light
scattering defects, and large areas. On top of that, their implementation for solar appli-
cations inherently demands the use of inexpensive processes (e.g. roll-to-roll fabrication).
In addition, the optical characteristics of samples need to be measured and analyzed. In
this chapter, both methods to fabricate and characterize waveguide gratings as well as
other geometries will be discussed.

3.1 Fabrication methods

Two exemplary geometries are anticipated, which will be discussed in our publications
in Chapters 4 and 5: A symmetric hybrid waveguide grating geometries consisting of
dielectric layers and silver gratings, and plasmonic geometries consisting of a silver layer
and silver nanoparticles (AgNPs). Exemplary visualizations of both geometries are shown
in Figs. 3.1a and b.

Methods to fabricate such geometries are introduced in the following sections. They can
be separated into two categories:

1. The fabrication and lamination of dielectric layers.

2. The fabrication of dielectric and metallic structures.
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Figure 3.1: Exemplary geometries which are challenging to fabricate. a) A waveguide
with symmetric dielectric layers and a point-symmetric silver grating with a period of
Λ ≈ λ in the visible range. b) Silver nanospheres of small diameter d << λ on top of a
planar silver layer.

3.1.1 Fabrication and Lamination of Dielectric layers

In the existing body of literature, there are various reports on the fabrication of dielec-
tric layers. For instance, polymer waveguides, e.g. consisting of polystyrene (PS) or
polymethyl metacrylate (PMMA), can be coated from the liquid phase [160], are cost-
efficient and large-scale compatible, and can be plastically deformed with ease above
their glass temperature to form structures. Thanks to these properties, polymers can
be coated and structured in high throughput roll-to-roll processes [161–163]. Moreover,
polymer layers can be deposited on top of each other using orthogonal solvents [164,165]
or cross-linking [166].

Figure 3.2: a) Refractive index of various OrmoCERs including OrmoCore and Ormo-
Clad. From [167]. b) Typical surface profile of a spin-coated and cross-linked Ormo-
Core film with a surface roughness of σRMS < 1 nm (obtained via atomic force mi-
croscopy [168]).

46



In this thesis, the polymers ’OrmoCore’ and ’OrmoClad’ are used [167, 169]. OrmoCore
and OrmoClad exhibit relatively large refractive indices (Fig. 3.2a), can be deposited
from the liquid phase and contain photo-initiator groups so that they can be cross-linked
into a rigid layer via illumination with UV-light. They exhibit a small surface roughness
of σRMS = 0.3...1.0 nm (Fig. 3.2b) after deposition and are highly transparent over the
entire visible and near-infrared range of wavelengths (see Section 3.2 for further details).

In the following, a standard procedure to obtain dielectric layers and symmetric waveg-
uides is provided. First, a clean transparent substrate is pre-treated by a heating step of
120◦ (Fig. 3.3a) and a subsequent UV-light irradiation step (Fig. 3.3b) at λ = 172 nm at
a dose of approximately 10 J/m2 to increase its surface energy [170]. This increased sur-
face energy of the substrate energetically favors a wetting of its surface by an OrmoCore
film [171].

Afterwards, an OrmoCore layer is deposited via spin-coating. To do so, a solution of
OrmoCore and propylene glycol methyl ether acetate (PGMEA) [172] is cast onto the
substrate (Figs. 3.3c and d). Subsequently, the substrate is put into rotation with a
defined rotation frequency profile ωR(t). The rotation frequency profile typically consists
of a linear ramp-up with ωR(t0) = 0 and ωR(t1) = ωF with ωF ≈ 300/s and t1 = 5 s. The
ramp-up is followed by a plateau of a constant frequency ωF until the rotation is stopped
at t2 = 30 s. In the beginning of the ramp-up, the solution spreads over the substrate
as a result of centrifugal forces [173]. With further increasing rotation frequency, excess
solution moves toward the substrate’s edge and is eventually hurled away. The remaining
solution is dominated by three processes [173]. The first one is the ongoing presence
of centrifugal forces. The second one are viscous forces, which are directed towards the
center of rotation. The third one is linked to an increase of viscosity as the film becomes
gradually thinner and, simultaneously, experiences solvent evaporation. These processes
then lead to a thickness dependence h(t) of [173]

h(t) =
h0√

1 + h2
0ω

2
FaL(t)t

≈ A0,S
cS√
ωF

(3.1)

during the plateau. Hereby, h0 is the initial film thickness immediately after the ramp-up
(t = t1), and aL is a solution specific parameter including the solution’s viscosity. The
approximation on the right side displays a practically more useful relation including a con-
stant A0,S, and the mass concentration cS of OrmoCore in the solution. In consequence,
the thickness of the film can be controlled via controlling cS and ωF [174].

Subsequently, residual solvents are evaporated via a post-baking step at 120◦C (Fig.
3.3e), or alternatively via a vacuum step at an air pressure of below 1 mbar (below the
vapor pressure of PGMEA of 3.6 mbar [172]) for 10 minutes, respectively.
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Figure 3.3: Deposition and lamination of OrmoCore layers for the fabrication of sym-
metric waveguides. a,b) Pre-treatment of a substrate via heating and UV light. c,d)
Spin-Coating of a layer of OrmoCore from solution. e) Post-treatment to evaporate sol-
vents. f) Separation of the coated substrate into two Pieces (1) and (2). g) Cross-linking
of Piece (1) and partial cross-linking of Piece (2). h) Lamination of both pieces by me-
chanical pressure and simultaneous UV cross-linking.

Now, the layer could be cross-linked and more layers could be added to build a waveg-
uide. As a matter of course, such approach underlies systematic and statistic variations
of the layer thickness which may result from the spin-coating process. As they render
the fabrication of a mirror symmetric waveguide grating by stacking difficult, the contri-
butions to these variations will be explained. First, only parts of the substrate’s surface
which are far away from its edges obey Eq. 3.1. Toward the substrate’s edges, residual
excess material leads to a systematic increase of the OrmoCore thickness [173]. Second,
away from the edges, solution flow instabilities, inhomogeneous evaporation, e.g. due
turbulences in the gas above the substrate, and inhomogeneous substrates or solutions
can lead to statistical thickness variations around the average thickness [173]. Third, the
environmental conditions, surface characteristics of the substrate, and viscosity of the
solution may slightly vary between subsequent spin-coating processes. This means that
slightly different average thicknesses may occur for subsequently spin-coated films which
are fabricated under nominally the same conditions.

Concerning the first contribution, larger substrates enable larger regions of homogeneous
layer thicknesses. For the second contribution, an optimization of all parameters of the
process can be done to minimize statistical variations. This optimization has been per-
formed by spin-coating OrmoCore films under a controlled temperature and air humidity
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in a clean room, whereby the spin-coater exhibits a pump system to ensure a laminar
nitrogen gas flow above the substrate’s surface. Moreover, by ensuring a sufficiently long
mixing time of the solution of at least 24 hours, fresh and unexposed OrmoCore (>2
months before the expiration date), thoroughly cleaned substrate surfaces via subsequent
supersonic acetone and isopropanol baths following a nitrogen dry blow, the use of so-
lution filters with a pore size smaller than 200 nm, a solution concentration below 40%,
and a complete solution coverage of the substrate before starting the ramp-up, the local
statistical thickness variations have been optimized to relative values of below 1.0%.

For the third contribution, whatsoever, it has been observed that it cannot be easily tack-
led by simply controlling all parameters. Instead, a different method, called ’lamination’
is chosen. Lamination will be explained with the following example.

A substrate with a non cross-linked, spin-coated OrmoCore layer is mechanically sepa-
rated into two pieces (1) and (2) (Fig. 3.3f). The OrmoCore layer on piece (1) is fully
cross-linked with a UV-dose of 2.0 J/cm2 at wavelength of λ = 365 nm. In contrast,
the OrmoCore layer on piece (2) is only partially cross-linked with a corresponding dose
of 0.23 J/cm2 (Fig. 3.3g). This way, the OrmoCore film on piece (2) is not viscous
anymore, but still plastically deformable. It is then possible to mechanically press piece
(1) and piece (2) together at a mechanical pressure of 100 bar and cross-link the Or-
moCore film on piece (2) through its corresponding substrate with another UV-dose of
2.0J/cm2 (Fig. 3.3h). This last step is called ’lamination’. Using lamination, a symmetric
substrate/OrmoCore/OrmoCore/substrate-waveguide with identical OrmoCore average
layer thicknesses can be created.

It is important to note that lamination can be extended to include structured layers in be-
tween both OrmoCore layers. For instance, additional structuring and metallization steps
of piece (1) prior to the lamination lead to the geometry shown in Fig. 3.1. Explanations
on how layers can be structured follow in the next section.

3.1.2 Structuring Methods

The structured dielectric layers used in this thesis are fabricated with the help of replica-
tion of a master stamp and subsequent UV-nano-imprint lithography (UV-NIL) [175,176].
This procedure is cost-efficient and compatible with large-area processing by step-and-
repeat [177] or roll-to-roll imprint [161]. As a matter of course, an initial master stamp
must be produced by a structuring process such as electron-beam-lithography (EBL) [178]
and reactive ion etching (RIE) [179], laser interference lithography (LIE) [180], conven-
tional photo lithography [181] or mechanical ruling [182]. For this thesis, commercially
available master stamps are used.
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Figure 3.4: Replication of structured master templates and UV-NIL of partially cross-
linked OrmoCore (p-c-OC). a) Casting of OrmoStamp onto a master template. b,c)
Bringing a transparent ’stamp substrate’ into contact with the OrmoStamp, subsequent
UV-cross-linking and release of the master template. d) Deposition of an anti-sticking
layer (ASL). e) Imprinting of the stamp’s negative surface profile into a partially cross-
linked OrmoCore layer. f) Cross-linking through the stamp. g) Release of the stamp. h)
A structured OrmoCore layer on a device substrate is obtained i,h) Optional metallization
steps via physical vapor deposition (PVD) to achieve a structured metal layer.

The replication procedure is as follows: A master template is coated with a droplet of
OrmoStamp [183] (Fig. 3.4a) and brought into contact with a transparent glass substrate
(’stamp substrate’) under vacuum to avoid defects caused by air inclusions. Capillary and
gravitational forces even out the layer thickness of the OrmoStamp to about 30 µm before
it is cross-linked using a Xenon-Lamp with a dose of 3 J/cm2 (Fig. 3.4b). Subsequently,
the stamp substrate with the structured OrmoStamp layer is released from the master
stamp. This replicate is called a ’NIL-stamp’(Fig. 3.4c). This NIL-stamp is coated with
an anti-sticking layer consisting of a monolayer of triflouorosilane [184], which eases the
release between the NIL-stamp and a target layer after an imprint and, thus, prevents
mechanically induced defects (Fig. 3.4d).
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Figure 3.5: Transfer printing of AgNPs [186, 187]. a) Casting of PDMS on a master
template. b) Thermal curing and subsequent release to obtain a structured PDMS stamp
(c). d,e) Metallization via PVD. The low surface energy of PDMS enables the formation of
AgNPs. f,g,h) Transfer of AgNPs onto a substrate via mechanical contact and controlled
release.

To structure a partially cross-linked OrmoCore layer (deposited on a ’device substrate’)
via UV-NIL, it is mechanically pressed together with the NIL-Stamp under a pressure of
100 bar for a period of 10 minutes (Fig. 3.4e). Subsequently, the OrmoCore layer is fully
cross-linked through the transparent glass and the replica using UV light with λ = 365

nm at a dose of 2.0 J/cm2 (Fig. 3.4f). Afterwards, the replica and the substrate are
mechanically separated from each other (Figs. 3.4g and h).

To obtain metallic gratings (Figs. 3.4i and j), a structured OrmoCore film can be sub-
sequently metallized using physical vapor deposition (PVD) [185]. For silver on native
cross-linked OrmoCore, closed layers typically occur for nominal thicknesses tAg above 20
nm.

Another way to obtain structured metal layers is ’transfer-printing’ [188]. For transfer-
printing, a replicate, called ’PDMS stamp’ (Figs. 3.5a-c), is made using thermally cross-
linkable polydimethylsiloxane (PDMS) [189]. As PDMS has a low surface energy γPDMS,
PVD coated metals with γPDMS < γmetal tend to energetically favor island growth [186].
For instance, silver deposited via PVD on native PDMS typically exhibits a percolation
threshold at a nominal thickness of around 40 nm [186,190]. Below this threshold, silver
nanoparticles (AgNPs) form on the surface of the PDMS stamp (Figs. 3.5d and e). The
same small surface energy of PDMS then allows to transfer the AgNPs from the PDMS
stamp to a target substrate with γPDMS < γsubstrate (Figs. 3.5f-h).

For larger silver thickness values above the percolation threshold, the same procedure can
be used to transfer regions of closed silver layers [187]. The geometry of these regions is
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Figure 3.6: Method to obtain binary silver gratings by transfer-printing. a) The surface
relief of a PDMS stamp is used as a shadow mask. The duty cycle of the grating can
be adjusted with the tilting angle β. b,c) Mechanical contact and subsequent release
transfer the grating on a structure. As the stamp is soft, the initial 3-dimensional shape
of the silver grating is converted into a binary quasi-2-dimensional shape.

dictated by the geometry of the PDMS stamp. For example, a one-dimensional surface
relief grating can be used to transfer print a binary silver layer pattern as shown in Fig.
3.6. Herein, the surface relief of a PDMS stamp can be used as a shadow mask. This
way, the duty cycle D of the binary pattern can be controlled via the tilting angle β of
the PDMS stamp with respect to the incoming beam.

AgNPs can also be obtained by a chemical process called ’mirror-reaction’ [191], or elec-
troless deposition (ELD) [192]. Usually, ELD is used to deposit closed metal films of
large thickness in the range of several hundred nanometers. In the first few seconds of
a deposition, a metal layer deposited by ELD undergoes a phase in which it consists of
nanoparticles only: from the point of view of thermodynamics [193], random agglomera-
tions of silver tend to grow above a critical radius and seeds below this critical radius tend
to shrink by releasing free silver ad-atoms onto a substrate’s surface. Seeds above the
critical radius grow to nanoparticles on the substrate. After a short period of time, the
continuous growth of these nanoparticles leads to a closed metal layer [193, 194]. When
the ammonia content of the ELD solution is increased, the growth rate can be drastically
reduced, opening a window of time during which the growth of nanoparticles can be ma-
nipulated [194]. For instance, it is possible to influence the growth positions of AgNPs
using external light or surface plasmons as it will be further elaborated in Chapter 4.

All geometries which will be presented in Chapters 4 and 5 can now be understood as the
results of combining the fabrication methods explained above (lamination, replication,
UV-NIL, PVD, ELD, and transfer-printing).
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3.2 Characterization

In this section, a selection of methods to optically characterize waveguides, waveguide
gratings and other optical samples are outlined. Other standard characterization methods
to obtain film thicknesses and morphological information (e.g. profilometry [195], atomic
force microscopy (AFM) [168] and scanning electron microscopy (SEM) [196]) will not
be explicitly described as they are well documented in the literature.

3.2.1 RTS and ATR

Figure 3.7: Angular resolved reflectance and transmittance spectroscopy (RTS). Accord-
ing to ref. [197].

The most important optical characterization methods used in this thesis are angular
resolved reflection and transmission spectroscopy (RTS) [197] and attenuated total re-
flectance analysis (ATR) [198]. A typical RTS setup is sketched in Fig. 3.7. A parallel
and polarized beam of light falls onto a sample under a defined angle θ. Both the spectra
of the reflected and transmitted light are measured with spectrometers. By referencing
these spectra to the incident light (or a reference sample), the transmittance T (λ, θ) and
reflectance R(λ, θ) can be extracted. Importantly, RTS can be used to measure the res-
onances of a waveguide grating to obtain insights about its eigenmodes (e.g. dispersion
relations). Numerous examples of RTS data exhibiting such resonances can be found in
Chapters 4 and 5.
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Figure 3.8: Attenuated total reflectance (ATR). a) Kretschmann configuration. b) Qual-
itative sketch of the corresponding dispersion relation. c) Exemplary reflectance R(θ)
of a 50 nm thick silver film at a wavelength of λ = 632.8 nm with a prism index of
nprism = 1.7847. A surface plasmon resonance (SPR) is observable round θ = 35.4◦.
According to ref. [198].

When no structures are present (e.g. for a planar silver film), it is impossible to excite
eigenmodes via RTS. In this case, ATR can be used to gain information about eigenmodes.
It is shortly described in the following: light inside a prism of refractive index nprism (Fig.
3.8a) can access larger lateral momenta (|k′

x| ≤ nprismk0) than light coming from vacuum
and falling onto a planar layer with the prism’s refractive index (|k′

x| ≤ k0). This increased
lateral momentum is enabled by the prism’s half-cylindrical shape. When n′

eff attributed
to a SPP is smaller than nprism, an angle of incidence θ exists for which the condition

n′
eff · k0 = nprism · k0 · sin θ (3.2)

is fulfilled and the dispersion relations of photons in the prism and surface plasmons cross
each other (Fig. 3.8b). Similar as for a guided mode resonance (see Section 2.16), neff

represents a complex pole of r(k′
x+ jk′′

x). As the photons in the prism can only scan over
the real axis (k′

x = nprism · k0 · sin θ, k′′
x = 0), the presence of this pole can be observed as

a resonance of R(θ) = |r|2. This type of resonance is called a ’surface plasmon resonance’
(SPR) [198]. An example of a SPR is shown in Fig. 3.8c. As a matter of course, a SPR of
measurable width and amplitude only occurs when the field overlap integral between the
evanescent field of the waves reflected at the prism base and the field profile of the SPP
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is large (see Section 2.23). Typical silver layer thicknesses, for which the field overlap
integral is large, are below 100 nm. In the context of this thesis, ATR is of particular
importance in Section 4.1.2.

3.2.2 Microscopic Inspection of Edge Emission of Waveguide

Modes Excited from High Index Liquid) (MEWEL)

Highly transparent polymers and materials such as OrmoCore and OrmoClad typically
exhibit values of n′′ in the order of 10−7 [199]. A direct measurement of the properties of
a waveguide with thickness values tWG of several microns via RTS is challenging: for such
small values of n′′, the absorption of light per round trip in an OrmoCore or OrmoClad
layer is A = exp (−2 · 4πn′′tWG/λ). For instance, for a thickness of tWG = 1 µm at a
wavelength of λ = 632.8 nm, this absorption is 4 · 10−6. Under perpendicular incidence
and typical refractive index values of around 1.5, the number of round trips is far below
10 [124], so that the absorption A = 1−R−T exhibits values between 4 · 10−6 to several
10−5. Simultaneously, R and T exhibit typical values of several 10−1. These values
mean that the signal-to-noise ratio of a detector must be at least above 104, which is
unrealistically high for standard CCD detectors at room temperature [200].

In principle, n′′ could be determined by measuring the extinction of light through a large
volume filled with the highly transparent material. However, the knowledge of n′′ alone
does not necessarily mean that a waveguide will exhibit a propagation length as predicted
by the theory in Chapter 2. In reality, the waveguide’s surface can be rough. During the
processing of the waveguide, unwanted light scattering defects or light absorbing particles
could be accidentally incorporated. All these effects are additive with respect to n′′

eff [201]
and the propagation length of the eigenmode of a real waveguide is given by

1

Lprop

=
1

Lprop,loss

+
1

Lprop,scat

+
1

Lprop,roughness

(3.3)

To accurately characterize the propagation length of a waveguide built from low-loss
materials, an eigenmode can be excited and its decay along its direction of propagation
can be analyzed.

One method is to directly excite an eigenmode via the waveguide’s facet, measure the
outcoupled light on the opposing facet, and subsequently shortening the waveguide’s
length step by step. The change of the outcoupled light’s intensity as a function of the
waveguide length then enables to calculate the mode’s propagation length. This method,
when applied to glass fibers, is called ’cut-back method’ and has the obvious disadvantage
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Figure 3.9: Explanation of ’MEWEL’ (Microscopic Inspection of Edge Emission of
Waveguide Modes Excited from High Index Liquid). a) A droplet of high refractive
index leads to the outcoupling of initially guided light propagating via an eigenmode. b)
The reciprocal process enables the excitation of eigenmodes. c) Controlled setup based
on this phenomenon. White light is coupled into a waveguide at the interface of a liquid
of high refractive index. This interface is movable along the waveguide’s surface. The
spectrally resolved change of intensity with varying distance ∆x reveals the extinction
coefficient α(λ) = 1/Lprop(λ) of the waveguide. According to ref. [203].

that it destroys the sample [202]. The other and more important disadvantage lies in its
inaccuracy since the geometry of the opposing facet may vary with every cut-back step.

Another method is to analyze the intensity distribution of scattered light along the prop-
agation path of an eigenmode [202]. However, to apply this method, the waveguide must
exhibit sufficiently large scattering losses.

In this thesis, a different method is used, which is inspired by ref. [204]. Let’s suppose
there is a droplet of liquid of high refractive index nl > nf on top of the waveguide’s
surface (Fig. 3.9a), whereby nf is the refractive index of the waveguide core. Beneath
this droplet, there is no total internal reflection. Light propagating beneath the droplet
via a set of initial eigenmodes must couple out into the droplet. Applying reciprocity,
externally incident light can excite eigenmodes at the boundary of the droplet (Fig. 3.9b).

This method to excite eigenmodes is used in the following measurement setup (see its
sketch in Fig. 3.9c). A cuvette filled with a high index liquid (e.g. diiodomethane [205]
or benzyl benzoate [206]) and a collimated light-source are placed on a movable stage.
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The cuvette is equipped with an overflow, so that the level of the liquid does not change
when a waveguide is dipped into it. Using a mirror, the light’s path is designed in a
way that it hits the surface of the liquid under a steep angle θin. The waveguide to be
investigated is fixed with respect to the cuvette so the surface of the liquid can move
along the waveguide’s surface. This way, the light excites eigenmodes of the waveguide
at the meeting point of the liquid-air interface and the waveguide’s surface (point P in
Fig. 3.9c). Subsequently, the light leaving the waveguide at its upper facet is guided
through focusing optics onto a linear spectrometer. This way, the light propagates over
a controllable distance ∆x through the waveguide. The measured intensity I(∆x, λ) of
the outcoupled light then enables to calculate the propagation length via

I(∆x, λ) = I0(∆x0, λ) · e−∆x/Lprop (3.4)

with ∆x0 as the starting position.

There are some details to consider to practically apply this method: First, a real waveg-
uide is built on top of a substrate of finite thickness. This substrate may support its
own eigenmodes (called ’substrate modes’), which disturb the measurement. To avoid
substrate modes, a silicon wafer with an oxide layer of 1500 nm thickness is used as a
substrate. As silicon strongly absorbs light, the wafer’s substrate modes exhibit short
propagation lengths compared to the propagation lengths of the waveguide’s eigenmodes.
Simultaneously, the large thickness of the oxide ensures that the evanescent field of a
waveguide’s eigenmode decays far enough, so that its propagation length is hardly af-
fected by the absorption of the silicon.

Second, the waveguide may support more than one eigenmode. The MEWEL method
cannot differ between multiple eigenmodes and the observed propagation length is com-
posed by the contributions of all eigenmodes. In practice, the observed propagation length
can be regarded as a lower bound for the propagation lengths of individual eigenmodes.
When the observed propagation length is longer than a value desired for an application,
it is fully ensured that the surface roughness, the density of light scattering defects and
the raw material’s inherent properties meet all requirements for fabricating waveguides
of sufficient quality.

Third, the limit of this method is given by the available sample length and accuracy
of the spectrometer. For the setup used for this thesis, the lengths of all samples were
chosen to 5 cm. This length ensures a detection limit of approximately Lprop = 1 m.

Fig. 3.10a shows the measured extinction coefficients α(λ) = 1/Lprop(λ) of a waveguide
consisting of the mentioned silicon wafer and a layer of OrmoCore with a thickness of
300 nm. The waveguide exhibits propagation lengths around 20 cm in the entire range
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Figure 3.10: Measured extinction coefficients α of two samples by MEWEL. a) Smooth
OrmoCore layer of 300 nm thickness on a Si/SiO2 substrate. b) OrmoCore layer of 5.5
µm with an imprinted blaze grating surface profile (Λ = 555 nm) measured along the
direction of the grating vector. The black solid line shows the measurement. The dashed
black lines shows the simulation of the TE0 eigenmode.

between 500 nm and 700 nm, confirming that this waveguide is of sufficient quality for
the fabrication of large-area devices.

MEWEL is also helpful to find out whether a structured surface is of high quality. Fig.
3.10b shows the measured propagation lengths of a structured OrmoCore layer of a total
thickness of 5500 nm, whereby its surface consists of a blazed surface profile with Λ = 555

nm, a height of 130 nm and a blaze angle of 18◦. This waveguide grating is fabricated with
the methods explained in Section 3.1. The measured values of α lengths are approximately
0.5/cm between 520 nm and 700 nm. A simulation of the TE0 eigenmode including the
data from Fig. 3.10a results in values of α which are between a factor of 2...3 smaller than
these measured data. Considering that the simulation was performed assuming perfect
interfaces, this deviation between the measured and simulated values of α can be regarded
as small and indicates a high quality of the structured surface.

In addition, α(λ) shows an oscillating behavior, which is typical for waveguide gratings
and originates from interfering diffraction orders (e.g. the 0th and -1st order). Strikingly,
as such interference requires precise phase relations and coupling coefficients, the appear-
ance of this oscillating behavior in a measurement over large distances indicates a high
degree of homogeneity of all geometric parameters of the waveguide grating.
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Chapter 4

Passive Systems

Waveguide solar concentrators ideally collect sun-light over a broad spectral width and
subsequently guide and concentrate light over long distances with minimal scattering
losses. In this chapter, three kinds of passive systems will be discussed which tackle these
challenges from different directions. First, systems combining different distributions of
AgNPs on planar Ag layers (with optional spacer layers) are discussed with respect to
their broadband interaction with light. Second, the theoretical properties of symmetric
waveguide gratings for achieving large propagation lengths will be elaborated. Last, a
method to achieve zero outcoupling with the help of a hybrid waveguide grating will be
discussed. Necessary additions to the methods explained in Chapters 2 and 3 will be
provided within the context of these discussions.

4.1 Plasmonic Structures for Strong and Broadband

Light Coupling

4.1.1 Plasmonic Black Silver by Transfer Printing

As explained in Section 2.3.4, the hybridization of LSPs leads to the formation of addi-
tional energy levels. As a result, the absorption spectrum of an ensemble of nanoparticles
can be significantly broadened via hybridization [141].

As a matter of course, the absorption of light over a broad spectral range is useful for
solar concentrators. For instance, an ideal solar concentrator absorbs the entire incident
sun-light and subsequently focuses it to a focal point or line (see Chapter 1). In the
case of the hybridized LSPs of AgNPs, the probability is large that photons are ther-
malized to heat [131, 138] unless they are captured by other devices such as solar cells.
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This large probability of thermalization renders the use of AgNPs as particularly useful
for solarthermics: as described in Chapter 1, many solarthermics designs are based on
strongly absorbing materials in combination with heat conducting materials [207, 208].
As metals like silver inherently exhibit large heat conductivity [209], broadband light
absorbing metals can fulfill both of these requirements.

In principle, an almost perfect absorber can be realized by embedding densely packed
AgNPs inside a transparent dielectric host material [210]. However, such an absorber
would not perform well in solar thermal applications as the host matrix is insulating.
To preserve the broadband absorbing properties of interacting LSPs and increase the
thermal conductivity, other strategies must be considered. One strategy is to distribute
densely-packed AgNPs on pre-structured templates to both minimize reflection losses
and form a surface at which moving liquids (e.g. water) can transport the heat away
to be used elsewhere [211]. The disadvantage of this method is its restriction to steam
generation. Other approaches combine metallic substrates, an insulating spacer layer
and metallic nanoparticles to form metal-insulator-metal resonators [212–216]. These
existing works in the literature report that most of the heat is created at the locations of
the nanoparticles and, thus, the spacer layer hinders the ideal transport of heat.

In the following, a broadband light absorber consisting of a monolayer of AgNPs directly
deposited on a silver layer will be presented and explained [190]. This way of arranging
the AgNPs has two advantages: first, the silver layer can be regarded as a source for
mirror charges, leading to an increased number of resonances right away in comparison
to isolated AgNPs [217]. Second, LSPs exhibit enough momentum to excite SPPs [218].
The AgNPs on the silver layer can therefore interact with each other via SPPs to form
additional resonances for externally incident light. In contrast to isolated AgNPs, obey-
ing Mie’s theory [139], it is complicated to theoretically describe the combination of these
processes via analytical models even for small numbers of particles. Instead, the numer-
ical method of Finite Difference Time Domain (FDTD) [219] is used to calculate the
absorption spectra of the AgNPs on silver. The goal of this simulation is to gain physical
insights by investigating trends of absorption spectra rather than to simulate an entire
densely packed network of AgNPs on silver in detail.

As a reference, Fig. 4.1a, shows the electric field intensity of a silver nanosphere of a
diameter of 40 nm in vacuum. External light with λ = 360 nm falls onto the silver
nanosphere in negative z-direction and excites an LSP of a dipole-like electric field in-
tensity. The effect of placing the silver nanosphere on the silver layer can be seen in
Fig. 4.1b. Herein, the silver layer is assumed to be infinitely thick. The field intensity
attributed to a resonance at λ = 363 nm increases ten-fold near the point of contact
of the silver sphere and the silver surface. A comparison of the absorption spectra for
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Figure 4.1: FDTD simulations of a silver nanospheres of varying diameters. a) 40 nm
sphere isolated in vacuum. b) Contact with a silver layer of infinite thickness. c) Values of
the absorption A corresponding to a) (dashed black line) and b) (solid black line). d) 80
nm sphere isolated in vacuum. e) Contact with a silver layer. f) Values of the absorption
A corresponding to d) (dashed black line) and e) (solid black line). From ref. [190].

the situations in Fig. 4.1a and Fig. 4.1b is shown in Fig. 4.1c. The dashed black line
corresponds to the configuration in Fig. 4.1a and the solid black line to the one in Fig.
4.1b, respectively. The presence of the silver layer strongly increases the average absorp-
tion and simultaneously broadens the absorption spectrum. An analogous simulation
for a larger particle with a diameter of 80 nm shows similar trends and leads to larger
absorption for longer wavelengths (Fig. 4.1d-f).

The next step is to place both particles separated from each other without changing the
surface density of nanoparticles Fig. 4.2a. The inter-particle distance is chosen to 150
nm. As a result, the absorption spectrum of these adjacent nanoparticles (solid black line)
is dominated by the superposition of their individual absorption spectra (dashed black
line), whereby a slight increase of the average absorption is observed (Fig. 4.2b). Now,
as shown in Fig. 4.2c, these particles are brought into contact to further increase the
number of resonances. It can be observed that, again, the absorption spectrum broadens,
and the average absorption further increases as new eigenmodes can exist due to this
closely packed arrangement of the nanoparticles (Fig. 4.2d). For instance, a resonance
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Figure 4.2: FDTD simulations of two silver nanospheres with a diameter of 40 nm and 80
nm, respectively. a) Large inter-particle distance of 150 nm. b) Corresponding absorp-
tion spectrum (solid black line). The dashed black line shows the superposition of the
individual spectra attributed to Figs. 4.1b and e. c) Touching particles. d) The resulting
absorption spectrum A(λ) is broadened and shows a significantly larger average value.
From ref. [190].

across both particles and the silver layer is present at λ = 738 nm. These observations
suggest that the following logic can be applied: To achieve broadband absorption of light,
it is sufficient to build a densely packed layer of nanoparticles of varying diameters to
form as many plasmonic resonances as possible.

From the technological point of view, the method of transfer-printing provided in Chapter
3 represents an ideal solution to tackle the challenge of placing round nanoparticles of
high particle density on top of a silver layer. Hereby, the variation of particle diameters
represents an optimization problem which can be empirically approached. Major param-
eters are the nominal thickness tt of silver on a PDMS stamp and the film thickness tb

of the silver layer. Here, both parameters are varied in a combinatorial approach: an
unstructured (flat) PDMS stamp and a glass substrate are covered with a film of a lin-
early increasing thickness gradient tt = 0...35 nm and tb = 0...100 nm, respectively. The
PDMS stamp is then placed on the covered glass substrate in a way that both gradients
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Figure 4.3: Plasmonic absorber fabricated with thicknesses gradients of tt and tb from
ref. [190]. a) Photograph of the sample. The arrows indicate the directions of both
gradients. b) Measured absorption values for tt = 7...35 nm at tb = 20 nm. Inset:
Measured values of A of the isolated PDMS stamp with AgNPs prior to any contact
with the silver layer. c) AFM data of the silver coated PDMS stamp before the transfer-
printing at varying values of tt. From ref. [190].

are aligned perpendicular to each other (see Fig. 4.3a). The corresponding photograph
of the sample shows a color gradient with varying tt, which is almost independent of tb
above a value of 15 nm. The results of RTS measurements under perpendicular incidence
show that a significant portion of light is absorbed by the sample (Fig. 4.3b), whereby
the wavelength of maximum absorption shifts toward red with increasing values of tt. In
contrast, the absorption values attributed to the isolated PDMS stamp with AgNPs are
far below 50% (see the inset in Fig. 4.3b) and indicate that the contact to the silver
layer is needed to achieve strong broadband absorption. In addition, it is striking that
the measured absorption spectra of the AgNPs in contact with the silver layer are much
broader and of higher average values than the simulated ones shown in Fig. 4.2. This
strong broadband absorption can be presumably understood by the fact that the AgNPs
on the PDMS stamp already form a layer of densely packed nanoparticles and many
overlapping plasmonic resonances are present.
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Figure 4.4: SEM micrograph of the sample from Fig. 4.3a after the transfer-printing of
AgNPs. From ref. [190].

This presumption of densely packed nanoparticles is confirmed by AFM measurements
of the stamp’s surface, which were obtained prior the transfer-printing of the AgNP layer
(Fig. 4.3c). Above tt = 7 nm, a network of touching AgNPs can be observed. With
increasing values of tt, the average diameters of the particles increases, and, according to
the numerical simulation, explains the redshift of the wavelength of maximum absorption.
A closer analysis of the AFM data shows that the variation of particle diameters is between
38 nm and 62 nm for tt = 33 nm.

An SEM image of a prepared edge of the sample subsequent to the transfer-printing and
removal of the PDMS for tt = 33 nm confirms that the AgNPs indeed form a mono layer
of particles, so that the observed absorption cannot be the effect of a three-dimensional
distribution of AgNPs (Fig. 4.4).

There is a way to further improve these absorption properties: Considering the observed
results of the FDTD simulation, the local variation of particle diameters has to be in-
creased to obtain a broader absorption spectrum and larger average absorption. This task
can be addressed by using the morphology of the PDMS stamp as another parameter (see
Fig. 4.5). A PDMS stamp fabricated with the help of a sinusoidally structured master
template with a period of Λ = 277 nm and an amplitude of 100 nm is used (Fig. 4.5a).
As side note, this small value of the period is chosen to suppress unwanted diffraction.

Now, when silver is evaporated via PVD onto the stamp’s surface, the surface is locally
tilted with respect to the beam by an angle β. As a consequence, the nominal local
mass thickness of the silver layer is reduced by a factor of cos β. As the average particle
diameter scales with tt (see Fig. 4.3c), the local variation of the PDMS stamp’s surface
normal enables a local variation of tt and, thus, of the local average diameter of the AgNPs
(Fig. 4.5b and c). The sinusoidal curvature of the stamp’s surface exhibits one elevation
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Figure 4.5: Fabrication procedure of optimized plasmonic broadband absorber. a) PVD
of silver onto a sinusoidally structured PDMS stamp. b) Sketch of local variation of
the particle size. c) Transfer-printing of a AgNPs of strongly varying particle sizes. d)
Photograph of a device produced with this fabrication procedure. From ref. [190].

and one sink per period which is characterized by β = 0. It is therefore expected that,
subsequent to the transfer-printing, AgNP particles of large diameters should appear in
distances of Λ/2 ≈ 139 nm on the silver layer.

Fig. 4.5d shows a photograph of a sample fabricated with this approach using values of
tt = 22 nm and tb = 20 nm. Three regions can be seen, which are marked by region (1),
region (2) and region (3). Region (1) only consists of the glass substrate and a flat silver
layer and region (2) only consists of the glass substrate and the transfer-printed layer of
AgNPs. The deeply black appearing region (3) consists of AgNPs on the silver layer on
glass.

Fig. 4.6a shows the AFM data of region (3). Indeed, the diameters of the AgNPs
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Figure 4.6: a) AFM micrograph of the sample shown in Fig. 4.5d. b) Corresponding
statistics of particle diameters. c,d) Energetically favored and unfavored positioning of
an AgNP on the PDMS stamp’s surface prior to the transfer-printing. The subfigures a)
and b) are from ref. [190].

periodically strongly vary along the direction of the PDMS stamp’s grating vector. Two
observations are surprising. First, the largest particle diameters do not appear every 139
nm along the grating vector, but instead every 277 nm. Second, the statistics of the
particle diameters in Fig. 4.6b reveal a variation between values of 20 nm and 120 nm.
On the first sight, it appears contradictory that larger particle diameters can appear for
the sinusoidally structured stamp at this value of tt than for the flat stamp at tt = 33 nm.
Both the larger distances between large particles as well as the larger particle diameters
can be presumably explained as follows: as explained in Section 3.1.2, the surface energy
of the PDMS-air interface is significantly smaller than that of the silver-air interface. In
consequence, the silver atoms minimize the total surface energy via diffusion [220, 221].
Two extreme situations for the placement of an AgNP can now be considered. The first
situation is the placement on an elevation of the PDMS stamp (Fig. 4.6c). This placement
is energetically unfavorable as most of the AgNP’s surface is exposed to air. The second
situation is the placement in a sink of the PDMS stamp (Fig. 4.6d). Here, the total area
governed by the silver-air interface is minimized and the area of the PDMS-air interface
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Figure 4.7: RTS data of the sample shown in Fig. 4.5d. a) TE polarization. b) TM
polarization (inset: SPP resonance attributed to a closed sinusoidally structured silver
layer). From ref. [190].

is maximized. Therefore, the silver tends to diffuse away from the stamp’s elevations
and towards the PDMS stamp’s sinks. This way, larger AgNPs than for a flat PDMS
stamp may form. As only one sink per distance Λ is present, particles of large diameters
only occur with a periodicity of 277 nm. Such a behavior is called ’curvature driven
de-wetting’ and has been observed in the literature as well [220,221].

Fig. 4.7 shows the results of RTS measurements of region (3) with varying angles of
incidence and polarizations. Herein, the grating vector and the sample’s surface normal
define the plane of incidence. For θ < 45◦, the absorption between 350 and 1050 nm is
above 70% for both TE and TM polarized light. For perpendicular incidence, the largest
absorption occurs around λ = 750 nm. TE polarized light tends to show decreasing
absorption with increasing incident angles (Fig. 4.7a). Most of remaining relative power
1 − A is present in the reflectance R. This reflectance R loosely follows a similar trend
as for standard Fresnel reflection of a lossy dielectric [222]. In contrast, TM polarized
light experiences increasing absorption and a broadening of the absorption spectrum with
increasing incidence angles (Fig. 4.7b). Again, R behaves similar as for a lossy dielectric,
including almost zero reflectance around 57◦ like for a Brewster angle [222]. Surprisingly,
despite the presence of periodicity, no dominant excitation of SPPs at the glass-silver
interface is observed. This absence of SPP excitation becomes evident by a comparison
with a smooth sinusoidal silver grating, for which significant resonance via SPP excitation
occurs along the dotted black line (see the inset in Fig. 4.7b). It can thus be presumed
that the absorption is dominated by the localized plasmonic resonances. As a matter of
course, such behavior can have multiple microscopic origins, including hybridized LSPs,
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and gap plasmons [223]. Due to the complexity of the AgNP layer, it is almost impossible
to identify all individual resonances of the sample. Even if all resonances would be known,
their number would be so large that it is not straight forward to gain deeper physical
insights from them. This problem is similar to many-body problems in physics. Once a
physical system gets too complex, it is more useful to summarize all microscopic effects
in statistically averaged parameters (e.g. the temperature, the pressure, the relative
permittivity, etc.) [224]. Here, in a similar way, the physical behavior of the AgNP layer
can be better captured via the attribution of effective relative permittivities. Specialists
in plasmonics and photonics term such a statistically averaged layer with sub-wavelength
structures a ’metasurface’ [225] or ’effective medium’ [226]. The AgNP layer is anisotropic
because it is densely packed in the x-y plane and a monolayer with respect to the z-
direction. Therefore, it can be described as a metasurface with an anisotropic relative
permittivity consisting of an in-plane component ε|| in the x-y-plane and an out-of-plane
component ε⊥ parallel to the z-direction. Hereby, it is important to mention that the
anisotropic relative permittivity is approximated by only two components instead of three
components (εx, εy, ε⊥) for the following reason: the reflectance data for both TM and TE
polarized light are almost equal toward small angles of incidence. For instance, at θ = 10◦,
the corresponding values of R only differ by approximately 2%. For such small angles
of incidence, the change from TE to TM polarization corresponds to a rotation of the
in-plane component of the electric field vector close to 90◦. As this rotation does not lead
to a significant change of R, the approximation of the anisotropic relative permittivity
via ε|| and ε⊥ is considered to be valid.

Using a modified expression of Eq. 2.37 in Section 2.2, it is possible to fit this anisotropic
relative permittivity to the measured data of R and T [190]. This modification reads
[227,228]
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Figure 4.8: Calculated anisotropic dielectric constants of the AgNPs by fitting R(λ, θ)
and T (λ, θ) to a modified version of Eq. 2.37. a) Real parts. b) Imaginary parts. From
ref. [190].

kTE
i = k0

√
εi,|| − sin(θ)2 (4.4)

kTM
i = k0

√
εi,|| −

εi,||
εi,⊥

sin(θ)2 (4.5)

The fitting is then performed via the least square method by minimizing the expression

∑
i

((RTE
measured(θi)− |rTE(θi)|2)2 + (RTM

measured(θi)− |rTM(θi)|2)2) (4.6)

for each wavelength. Hereby, the silver layer is approximated by a semi-infinite volume
filled with silver and d1 is chosen equal to the nominal value of the layer thickness of
tt = 22 nm. Note that this choice of d1 is somewhat arbitrary and, thus, the obtained
values of ε|| and ε⊥ may deviate from the true values with respect to their amplitude.
Nonetheless, a variation of d1 within reasonable limits (larger than the smallest particle
diameter and smaller than the largest particle diameter) does not affect the qualitative
characteristics of ε|| and ε⊥.

Their fit results are shown in Fig. 4.8, whereby the symbols are the calculated values and
the solid lines are a guide to the eye. ε|| exhibits similar properties to a lossy dielectric
layer over the displayed spectral range of 300 nm to 800 nm. In contrast, ε⊥ exhibits
dominant metallic behavior between 300 nm and 470 nm and dominant lossy dielectric
characteristics above 470 nm. Similar characteristics are reported in the literature for
anisotropic effective media composed of metals and insulators [226]. Note that the fitted
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values of ε|| and ε⊥ of the AgNP layer only lead to strong broadband absorption in
combination with the silver layer. For instance, the calculated absorption at λ = 730 nm
under perpendicular incidence reduces from around 80% to 34% when the planar silver
layer is replaced by PDMS. This reduction of absorption is in well agreement with the
measured data of AgNPs on PDMS (see Fig. 4.3b).

The description above showed how a strong broadband absorber of light can be realized
by the sole use of electrically conductive materials. Following the Wiedemann-Franz-
law [209], a good electrical conductor is also a good thermal conductor and, thus, strong
broadband light absorption and large thermal conduction have been combined. Sum-
marizing these results, an interesting concept for solar thermal applications has been
demonstrated.

The last part of this discussion revealed a fascinating path of research: Metasurfaces
consisting of AgNPs seem to exhibit non-trivial optical properties, when they are brought
into close contact with a planar silver layer. In the next section, more of these optical
properties are explored for metasurfaces grown by ELD under the influence of coherent
light.
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4.1.2 Fourier-Space engineering via Plasmon- and Light-induced

growth of AgNPs

Figure 4.9: a) Experimental setup to obtain surface plasmon induced growth of AgNPs.
b) Photograph of a sample after the growth process. From ref. [229].

In this section, metasurfaces grown by ELD under the influence of light will be discussed.
A general observation which will arise from this discussion is the ability of AgNP meta-
surfaces to adapt to an external light source. This behavior enables to obtain complex
structures from ELD as cost-efficient bottom-up process. Herein, the fabrication of Ag-
NPs via ELD is based on a distinct process initially developed by Polywka et. al [194].
By increasing the relative content of ammonia in the ELD solution, the growth rate of
silver on a substrate’s surface is reduced [194]. This, way the growth of silver is more
sensitive to other environmental influences such as the irradiation by intense visible light
(e.g. a cw-laser). Under such irradiation, light-induced growth of AgNPs can be ob-
served. These AgNPs exhibit structural features which are governed by the properties of
the light source, such as its wavelength, angle of incidence and state of polarization [194].
In the following, the concepts of light-induced growth are applied to surface plasmons.

Herefore, instead of a glass substrate, a sapphire substrate coated with a silver layer with
a thickness of 54 nm and a PMMA spacer layer of 15 nm is used. As sketched in Section
3.2.1, surface plasmons are excited at the silver-PMMA interface (see Fig. 4.9a) with the
help of a half-cylindrical sapphire prism [229].

A coherent laser with λ = 660 nm excites the SPPs (called ’incident SPPs’). Although
it is not yet fully understood, the growth process of the AgNPs is presumed to take
place as follows: First, a small number of AgNPs randomly growths and forms seeds for
the subsequent growth of other AgNPs. These initial AgNPs can support LSPs above
a diameter of approximately 1 nm [230]. Importantly, these LSPs can be excited via
the incident SPPs as their electromagnetic fields overlap. Applying reciprocity, LSPs can
excite SPPs as well. In good approximation, the AgNPs exhibit rotational symmetry with
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Figure 4.10: Sketch of the formation of a surface plasmon interference pattern. a) Incident
SPPs (k′

x = kSPP ) are converted into scattered SPPs (k′
∥ = kSPP ) via LSPs. b) The phase

fronts of the incident and scattered SPPs.

respect to the z-axis and, thus, the LSPs show no preferred direction for this reciprocal
excitation of SPPs. This process is visualized in Fig. 4.10a. It can be understood
as an LSP-mediated scattering of the incident SPPs (k′

x = kSPP = k0 · neff,SPP ) into
SPPs of any lateral direction (

√
(k′

x)
2 + (k′

y)
2 = k′

∥ = kSPP ). The latter ones are called
’scattered SPPs’. For the scattered SPPs, it is assumed that no change of the frequency
of light occurs and that there exists a fixed phase relation between the incident SPPs
and scattered SPPs. As a result, interference may happen and leads to the formation of
distinct intensity patterns of the electric field (Fig. 4.10b). To our current understanding,
the probability of nucleation is increased for higher electric field intensities and the growth
of the subsequent AgNPs is favored at such positions of high intensity [229]. In other
words, this interference of SPPs dictates the positions of AgNPs on a microscopic scale,
whereby the laser’s coherence enables engineered disorder [231] on a macroscopic scale.
The meaning of both scales will be elaborated in the following.

Fig. 4.11a and b show SEM images of an AgNP layer subsequent to the growth via
plasmon-induced ELD [229]. Seemingly, the AgNPs are randomly distributed. In fact,
they show a hidden order which becomes visible in a discrete Fourier transform (FTEM)
[232]

F (x̂, ŷ) = L(g(x, y)) (4.7)

of the SEM data g(x, y) attributed to Fig. 4.11a. Hereby, the results of this Fourier
transform are expressed via the spatial frequencies x̂ = k′

x/2π and ŷ = k′
x/2π. In general,
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Figure 4.11: a,b) SEM micrographs of the sample from Fig. 4.9b. c) Fourier transformed
SEM micrograph (FTEM) attributed to a) and definitions of the values r̂in, ˆrs,c and ∆r̂s,c.
From ref. [229].

all quantities provided via spatial frequencies are marked by a ’ˆ’ symbol. For instance,
the incident SPPs are characterized by the spatial frequency x̂ = n′

eff,SPP/λ = 1/λSPP ,
whereby neff,SPP is the effective refractive index attributed to an SPP. Fig. 4.11c shows
|F (x̂, ŷ)| [229]. It exhibits two ’structure-rings’ of a radius [229]

r̂s,c =
1

λSPP

. (4.8)

The average width of these structure rings is given by ∆r̂s,c. The center positions of both
structure rings are separated from each other by 2x̂in = 2/λSPP , so that the structure-
rings touch each other at x̂ = ŷ = 0. This configuration of structure-rings indicates that
the formation of the AgNPs is altered by SPPs. Interestingly, the Fourier amplitude
|F (x̂, ŷ)| at the structure-rings is reduced in comparison to the remaining amplitude
background visible in the FTEM [229]. As the Fourier amplitude of the AgNP layer is
linked to its scattering properties [233], this observation may be interpreted as follows:
The AgNPs grow in a way that they inherently minimize the probability of converting
an initial SPP into a scattered SPP. To express this interpretation with a simple model,
all possible states of scattered SPPs are represented by rings of radius r̂w and width ∆r̂w

in the Fourier space. These rings are termed ’wave-rings’ [229]. Following this model,
the scattering of incident SPPs into scattered SPPs is decreased when the structure-
rings perfectly overlap with the wave-rings (Fig. 4.12a). As there is less power lost into
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Figure 4.12: Overlap of structure rings and wave rings and application as a sensor. a)
Theoretical variation of wave-rings under refractive index variation. b) Experimental
setup for a refractive index sensor. c) The simulated reflectance R of the geometry under
the simplification of the AgNPs via an effective medium of a thickness of 200 nm and
a refractive index nem = 1.3381 + j0.0051. SPP The overlap function Foverlap between
the structure- rings and the wave-rings as a function of nanalyte. d) Measured values of
R as a function of nanalyte. A peak of R with an extraordinarily small FWHM occurs for
n = nELD. From ref. [229].

scattered SPPs, more light is reflected so that R is large. In return, environmental changes
or subsequent mechanical misalignments detune the wave-rings with respect to their
diameter, position and orientation. In consequence, the overlap between the structure
rings and wave-rings may shrink. As a result, the probability of the scattering of incident
SPPs into scattered SPPs may increase and less power is reflected from the prism base,
so that R decreases. Please note that this overlap must not be confused with the field
overlap described in Chapter 2. Instead, it is quantified by an overlap function Foverlap,
which is described in detail in the supporting information of ref. [229]. Its value is 1.0 for
perfect overlap and 0.0 for no overlap [229].

This train of thought inspired a refractive index sensor which is designed as visualized
in Fig. 4.12b. First, AgNPs are grown as described above. Then, the ELD solution is
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replaced by a mixture of chemically passive liquid with a tunable refractive index nanalyte.
Fig. 4.12c shows the simulated reflectance of the geometry under the simplification of the
AgNPs via an effective medium. This effective medium is assumed to exhibit a thickness
of 200 nm and a refractive index of nem = 1.3381+j0.0051 [229]. The red curve shows the
calculated values of Foverlap as a function of nanalyte. Foverlap is maximized for nanalyte =

nELD, whereby nELD is the refractive index of the ELD solution. The measured values
of R in Fig. 4.12d agree with this model: away from nELD, they are mostly governed by
a background of a conventional SPR. Remarkably, toward nanalyte = nELD, they exhibit
a sharp peak with approximately the same peak center and width as for the overlap
function. The maximum of the sensitivity (1/R)(∂R/∂nanalyte) of 968 is comparable
to the sensitivity of plasmonic systems structured by electron beam lithography [234].
This observation is remarkable as, except from the PVD evaporation of the silver layer,
only solution-based processes have been used. As the growth of AgNPs is a coherent
phenomenon, the theoretical limit of this sensitivity is only given by the divergence angle,
illumination area and spectral width of the light source [229]. Additional experimental
and analytical investigations show that the plasmon-induced growth process of the AgNPs
automatically ensures perfect alignment to the incident light source, rendering this sensor
advantageous in comparison to sensors built by conventional methods [229].

Another aspect of the light- and plasmon-induced growth of AgNPs is the possibility to
create structures which exhibit a distinct type of features in the Fourier space, which is
called ’hyperuniformity’ [235]. To define and investigate hyperuniformity, it is common
to use the ’spectral density’ χs(k

′
x, k

′
y) . It can be calculated with the help of Eq. 4.7

via [130]

χs(x̂, ŷ) = |L(g(x, y)− g)|2 (4.9)

with g as the average value of g(x, y). From a physical point of view, χs(x̂, ŷ) provides
a measure for the scattering probability of a structure with a lateral momentum transfer
of 2πx̂ + 2πŷ [130]. Using the angular average χs,a(r̂ =

√
x̂2 + ŷ2) of χs [235], ideal

hyperuniformity can now be defined by

lim
r̂→0

χs,a(r̂) = 0 (4.10)

To fill this expression with more intuitive insights, one example is given which explains the
meaning of hyperuniformity. A hypothetical infinitely large plane covered with nanopar-
ticles of diameters dp is considered, whereby the average particle diameter is considered
to be significantly smaller than the average inter-particle distance. This way, the parti-
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cles can be placed in many different configurations. For instance, a completely random
positioning of the particles would be characterized by a Poisson distribution. This distri-
bution means that there is a certain probability to find large regions without any particles
at all. On the contrary, there is an equally high probability to find densely packed regions.
Such a distribution is not hyperuniform as there will be always some local particle con-
figurations which contribute to χs,a(r̂) no matter how small r̂ becomes. A hyperuniform
particle distribution, however, is not completely random with respect to the interparticle
spacings so that there is a vanishing probability of finding large empty or densely packed
regions [235]. For instance, a perfect crystal is hyperuniform as all particles are spaced
in well defined distances. For isotropic particle distributions, hyperuniformity indicates
the absence of density fluctuations over large distances in all directions [235].

Another phenomenon related to hyperuniformity is the appearance of ’stealthy hyperuni-
formity’. Stealthy hyperuniformity is defined by [235]

χs(r̂) = 0, 0 < r̂ ≤ R̂ (4.11)

with R̂ as a threshold value of r̂. It can appear when an isotropic particle distribution
exhibits local short-range order without translational long-range order [231]. As a last
definition, any simply connected anisotropic shape in the Fourier space in which the
spectral density becomes exactly zero can be attributed to the name ’anisotropic stealthy
hyperuniformity’ [235].

It is now investigated how hyperuniformity is related to AgNPs grown via ELD. Figs.
4.13a-c show the spectral densities of three AgNP layers grown by ELD with varying
deposition times ∆td of 10, 22, and 25 minutes. The growth took place in darkness. The
corresponding values of χs,a(r̂) are displayed in Fig. 4.13d. Seemingly, according to Eq.
4.10, there is no hyperuniformity present. However, it is important to note that Eq. 4.10
demands a calculation over infinitely large lateral dimensions. In reality, the sample size
is always restricted. In consequence, true hyperuniformity cannot be directly observed
in experiment [130]. However, it is possible to extrapolate calculated data of χs,a(r̂) and
define a hyperuniformity metric

H =
limr̂→0 χs,a,extrapolated(r̂) = 0

max (χs(r̂))
(4.12)

to estimate whether a distribution of particles is hyperuniform anyway [130]. Smaller
values of H indicate a larger degree of hyperuniformity [130]. Here, the three straight lines
in Fig. 4.13d labeled by (1), (2), and (3) exemplary show such extrapolation. Following
this extrapolation, the corresponding values of H are 0.62, 0.26 and 0.17, respectively
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Figure 4.13: Spectral densities of ELD-grown AgNPs on glass under varying deposition
times ∆td. The growth took place in darkness. a) 10 minutes. b) 22 minutes. c) 25
minutes. d) Corresponding normalized and angular averaged spectral densities. The
three black solid lines are linear extrapolations to calculate the hyperuniformity metric
H. From ref. [130].

[130]. A comparison with the literature reveals that these values are small enough to
claim the presence of hyperuniformity [236,237].

The physical reason for the occurrence of hyperuniformity for ELD grown AgNPs is not
understood yet. However, it is highly likely that it is linked to the thermodynamics and
chemical processes during the growth. For instance, there is a large probability that at
exactly one AgNP growths within a distinct area size after a distinct deposition time.
Simultaneously, the probability is small that two AgNPs grow directly adjacent to each
other. As a result, the distribution of all AgNPs is not completely random as for a Poisson
distribution.

It is further investigated how the influence of external light during growth affects this
hyperuniformity. Perpendicular incidence with circularly polarized coherent light is used.
Three different wavelengths of λl = 405 nm, 532 nm and 660 nm are used [130]. The
spectral densities of all AgNP layers are shown in Fig. 4.14a-c.
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Remarkably, all layers apparently show a similar behavior as for stealthy hyperuniformity.
This behavior is characterized by the equation [130]

χs(r̂) ≈ 0, 0 < r̂ ≤ R̂. (4.13)

This equation defines ’quasi stealthy hyperuniformity’. Here, for each wavelength λ, the
value of R̂ is observed to be [130]

R̂ =
nELD

λ
(4.14)

with nELD = 1.336. This appearance of quasi stealthy hyperuniformity indicates that the
influence of the circularly polarized light on the growth process is highly likely to introduce
short-range order in the absence of translational long-range order. As R̂ scales with 1/λ,
it can be presumed that this short-range order is dictated by the interference between
the incident light and light scattered from existing AgNPs. However, there are no deeper
insights on the exact growth mechanism leading to the quasi stealthy hyperuniformity
yet.

Moreover, for r̂ > R̂, the spectral density exhibits a doughnut-shaped maximum [130].
Such a characteristic can be understood as an isotropic diffraction grating with only one
single diffraction order and is sought in the community of photonic researchers as an ideal
Fourier space to form isotropic photonic bandgaps [238].

For plasmon-induced growth of AgNPs, similar phenomena can occur [130]. When the
deposition times is reduced with respect to the ones used in Fig. 4.11a, χs is characterized
by two disks of radii 1/λSPP . Within these disks χs is significantly smaller than outside
these disks (see Fig. 4.14d). As this behavior is similar to anisotropic stealthy hyper-
uniformity, it is termed ’anisotropic quasi stealthy hyperuniformity’ [130]. Herein, it is
highly likely that the presence of surface plasmons leads to an introduction of near-range
order, whereby the direction of the incident surface plasmons along the x-axis causes the
anisotropy with respect to the resulting spectral density.

The potential of stealthy hyperuniformity and anisotropic stealthy hyperuniformity for
waveguide solar concentrators can be seen by converting the spectral density into a theo-
retical optical response. Inside a waveguide of a refractive index n′, a stealthy hyperuni-
form structure has a reduced probability of specular light reflection and transmission, and
an increased probability of light scattering above a critical angle θcrit = arcsin (k′

∥/(n
′K)).

When K is chosen in such a way, that θcrit is equal to the critical angle of total internal
reflection of the waveguide, light will be efficiently scattered into the eigenmodes of the
waveguide. Thus, stealthy hyperuniform layers could be used as potential light-coupling
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Figure 4.14: a-c) Stealthy hyperuniform spectral densities of ELD-grown AgNPs on glass.
The AgNPs were grown under illumination of perpendicular incident, circularly polarized,
and coherent light of varying wavelengths. a) λ = 660 nm. b) λ = 532 nm. c) λ = 405
nm. d) Anisotropic stealthy hyperuniform spectral density of an AgNP layer formed by
plasmon-induced growth. From ref. [130].

elements for waveguide based solar concentrators. Moreover, they might be useful for
photovoltaics enhanced by light trapping [239].

All the results presented above can be summarized as follows. AgNPs grown from ELD
show potential for solar concentrators and are worthy to be pursued in future research.
As a matter of course, the challenge of all plasmonic systems is to tackle their intrinsic
Ohmic losses. On the contrary, loss-free materials inherently enable to build geometries
exhibiting long propagation lengths. Such systems of long propagation lengths will be
the focus of the next section.
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4.2 Long Propagation Lengths utilizing TE Node Modes

In Chapter 2, the concentration attributed to the eigenmode of a waveguide grating was
introduced and found to obey the relation

Cgeo ∝
Lprop

tWG

(4.15)

with tWG as the thickness of the waveguide grating.

For common waveguide gratings, light in the visible spectrum propagates over typical
length scales of several ten microns with waveguide thicknesses in the range of a few λ.
Thus, the most common applications of waveguide gratings are grating couplers [240–
242] and optical filters [243–248]. However, to achieve large concentration values with
waveguide gratings, far longer propagation lengths are desired without increasing the
waveguide thickness.

Figure 4.15: Definition of a symmetric waveguide grating. From ref. [249].

However, from a naive point of view, it appears logical that the propagation length of an
eigenmode is simply given by the number of interactions between photons and the grating
layer. Following this logic, the seemingly only way to increase the propagation length
is to increase the waveguide thickness. In fact, this picture is only correct in the limit
of geometric optics. As a matter of fact, an eigenmode originates from the interference
of plane-waves inside the waveguide grating (see Chapter 2). When this interference
is destructive at the position of the grating layer, the effective number of interactions
between photons and the grating layer can be strongly decreased. A similar concept
has been used to minimize absorptive losses for electric contacts in waveguides [250].
Its extension to waveguide gratings and other structures has been proposed recently
[251–253] and the results of concrete simulations [249] for distinct waveguide gratings
will be presented in the following.

The geometry parameters of these waveguide gratings are defined in Fig. 4.15. They
consist of a substrate and superstrate of a refractive index ns, two dielectric layers and a
rectangular grating layer between these layers. The dielectric layers are characterized by
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Figure 4.16: Distributions of Re(Ey) and |Ey|2 of the TE0 and TE1 modes with corre-
sponding filling factors FF . a) χgp = 0.0. b) χgp = 1.0. The filling factor is the smallest
for the TE1 eigenmode at χgp = 1.0. From ref. [249].

their thicknesses td1 and td2 as well as their refractive indices nd1 and nd2, respectively.
The grating is defined by its thickness tg, the refractive indices ng1 and ng2, the duty
cycle D, and its period Λ.

The degree of symmetry of the waveguide grating is expressed by the symmetry param-
eters

χgp = 1− |td1 − td2|
td1 + td2

(4.16)

and
χn =

nd1

nd2

(4.17)

Perfect symmetry is present for χgp = χn = 1. The impact of these symmetry parameters
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Figure 4.17: Variation of χgp for a grating layer with ng1 = 1.0 and ng2 = 1.5 under a
fixed value of td1 + td2 = 0.632λ. a) Normalized propagation length Lprop/λ. The longest
propagation length occurs for the TE1 eigenmode at χgp = 1.0. b) Attributed divergence
angle ∆θ. From ref. [249].

on the propagation length will be explained in the following lines.

First, the grating is replaced by a homogeneous dummy layer of thickness tg = 0.079λ

by setting ng1 = ng2 =
√

1
2
(1.52 + 1.02) = 1.275. The eigenmodes corresponding to this

geometry show evanescently decaying fields in the substrate and superstrate, and allow
to define the filling factor [249]

FF =

∫ zg+tg
zg

|Ey|2dz∫∞
−∞ |Ey|2dz

, (4.18)

whereby zg defines the position of the interface between the grating layer and the bottom
dielectric layer (td2, nd2).

The remaining parameters are ns = 1.0, nd1 = nd2 = 1.5, and td1 + td2 = 0.632λ. The
TE0 and TE1 eigenmodes of the waveguide are investigated (see Fig. 4.16). At χgp = 0.0,
the filling factors for the TE0 and TE1 eigenmodes are FF = 0.033 and FF = 0.096,
respectively. Concerning χgp = 1.0, the TE0 eigenmode exhibits a value of FF = 0.129.
Remarkably, the filling factor of the TE1 eigenmode is significantly smaller and exhibits
a value of FF = 0.002 [249].

To show the meaning of this small filling factor, the parameters of the grating are set
to ng1 = 1.0, ng2 = 1.5, D = 0.5 and Λ = 0.632λ. As explained in Chapter 2, the
effective indices neff of the eigenmodes become complex due to outcoupling. They can
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Figure 4.18: Normalized distributions of Re(Ey(x, z)) and |Ey(x, z)|2 of the geometry
discussed in Fig. 4.17 for selected parameters. a) TE0 mode at χgp = 0.0 b) TE1 mode
at χgp = 0.0. c) TE0 mode at χgp = 1.0. d) TE1 mode at χgp = 1.0. From ref. [249].

be attributed to a propagation length Lprop and an angular divergence of ∆θ according
to Eqs. 2.45 and 2.82. Fig. 4.17 shows both their characteristics as a function of
χgp. At χgp = 0.0, the propagation lengths of the TE0 and TE1 eigenmodes are in the
order of Lprop = 102λ, whereby the attributed divergence angles are around 0.1◦. In
contrast, for χgp = 1.0 the TE1 eigenmode exhibits a 1000-fold longer propagation length
of approximately Lprop = 105λ and a divergence angle of (10−4)◦ [249].

Fig. 4.18 shows the electric field distributions attributed to the TE0 and TE1 eigenmodes
for χgp = 0.0 and χgp = 1.0. For the TE0 eigenmode, the field distributions for both
values of χgp are structured along the x-direction. This is different to the field distri-
butions shown in Fig. 4.16, which are invariant along x. Here, these structures along
the x-direction can be interpreted as a result of outcoupling in combination with short
propagation lengths (see Chapter 2). Similar observations can be made for the TE1 mode
at χgp = 0.0. In contrast, the electric field distribution of the TE1 mode at χgp = 1.0

looks almost identical to the one in Fig. 4.16d. These observations mean that an excited
TE1 at χgp = 1.0 eigenmode exhibits a significantly lower probability (per length) of
converting the initial power in the eigenmode into radiation channels as a result of the
small value of FF [249].

Shortly summarizing, these observations demonstrate that a nearly 1000-fold increase of
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Figure 4.19: Normalized propagation length and divergence angle under the variation of
tg at a fixed value of td1 + td2 = 0.632λ (a,b), and under the variation of tWG at a fixed
value of tg = 0.079λ (c,d). From ref. [249]

Lprop of an eigenmode with respect to a conventional waveguide grating geometry can be
achieved without changing tWG or any of the grating parameters. According to Eq. 4.15,
the attributed concentration is increased by a factor of around 1000 as well [249].

To demonstrate that the elongated propagation lengths toward χgp = 1.0 are no coinci-
dence at a distinct set of parameters, but rather a general consequence of a minimized
filling factor, the characteristics of the waveguide grating at hand with respect to param-
eter variations will be shown in the following lines [249].

Fig. 4.19a and b display the behavior of Lprop and ∆θ under varying grating layer
thicknesses and a fixed value of td1 + td2 = 0.632λ. Increased values of Lprop are present
for the TE1 mode at χgp = 1.0 and for tg < 0.4λ. Below this value of tg, all displayed
graphs follow a power law behavior [249]
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Lprop ∝
1

tpg
(4.19)

as it can be seen by their linear characteristics in a double-logarithmic plot. The TE0

eigenmode for both χgp = 0.0 and χgp = 1.0 as well as the TE1 eigenmode for χgp = 0.0

are characterized by p = 2 [249]. This quadratic proportionality is known as ’parabolic
region’ in the standard theory of waveguide gratings [158]. In contrast, one finds p = 6

for the TE1 eigenmode at χgp = 1.0 [249]. An explanation for this exponent can be found
by taking a closer look at the proportionalities of the filling factor near χgp = 1.0. A
Taylor approximation of the electric field intensity at the center plane zc of the waveguide
grating reads

I ∝ |Ey(z)|2 ∝ (z − zc)
2 (4.20)

As the filling factor is given by the integral of |Ey(z)|2 around zc, it obeys the propor-
tionality

FF ∝ t3g (4.21)

From empiric investigations, these findings can be generalized to the relation

Lprop ∝
1

tp1·p2g
(4.22)

whereby p1 is the inherent exponent of any channel (radiative, Ohmic loss, etc.) and
p2 is the exponent provided by FF ∝ tp2g . For instance, the TE1 mode at χgp = 1.0

is characterized by p1 = 2 and p2 = 3, and all other displayed cases are approximately
characterized by p1 = 2 and p2 = 1.

Figs. 4.19c and d show the behavior of Lprop and ∆θ under a variation of tWG with a
fixed grating layer thickness of tg = 0.079λ. These data demonstrate that these increased
values of Lprop for the TE1 mode at χgp = 1.0 persist down to its cut-off [249].

To provide more intuitive insights on these numbers in the visible range, concrete geome-
try parameters are inserted. Assuming a wavelength of λ = 632.8 nm, a grating thickness
of tg = 50 nm, and a waveguide thickness of tWG = 450 nm, a propagation length of
Lprop = 7.6 cm is observed for the TE1 eigenmode at χgp = 1.0 and of Lprop = 110µm for
the TE0 eigenmode at χgp = 0.0. To obtain comparable values of Lprop in the range of sev-
eral centimeters using the TE0 eigenmode, tg would have to be reduced to approximately
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Figure 4.20: a) Normalized propagation length under variation of λ/tWG at fixed ratios of
the geometry’s parameters (see the text). b) Variation of λ/tWG for a highly asymmetric
geometry (χgp = 0.93,χn = 1.03). From ref. [249].

Figure 4.21: Influence of λ on the TE1 eigenmode at χgp = 1.0 under otherwise identical
parameters as for Fig. 4.17. a) Lprop. b) ∆θ. From ref. [249].

0.8 nm or tWG (at a fixed value of tg) would have to be increased by an approximate
factor of 15 [249].

The elongated values of Lprop are present for a variation of the wavelength at otherwise
fixed parameter ratios as for Fig. 4.19 at tg/(td1 + td2) = 0.045 (Fig. 4.20a). Over the
displayed range from λ = 0.9 tWG to λ = 1.8 tWG, the values of Lprop/λ of the TE1

mode for χgp = 1.0 are consistently between 104 and 106. In contrast, the ones of the
TE0 for χgp = 0.0 stay below a few 102 over the entire displayed range. These findings
show that, with appropriate choices of materials and grating parameters, the increase of
Lprop via the minimization of the filling factor is possible over the entire visible and near-
IR range of wavelengths for symmetric waveguide gratings. For asymmetric waveguide
gratings such as chosen in Fig. 4.20b, the node position of the TE1 eigenmode shifts
with respect to the center position of the grating layer under varying wavelengths. At a
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Figure 4.22: a,b) Influence of Ohmic loss on Lprop and ∆θ for the TE1 eigenmode (solid red
line) and TE0 eigenmode (solid black line) at χgp = 1.0. c,d) Influence of an asymmetric
grating on Lprop and ∆θ for the TE1 eigenmode (red squares) and TE0 eigenmode (black
circles) at χgp = 1.0. For all four subfigures, aside from the different grating geometry,
otherwise identical parameters as for Fig. 4.17 are assumed. From ref. [249].

distinct wavelength, the filling factor is minimized in an analogous way as described for
the symmetric waveguide grating, and Lprop is maximized at a value of approximately 105.
Away from this distinct wavelength, the filling factor increases again and Lprop decreases
down to values between 102 and 103 [249].

Fig. 4.21 shows the relation of Lprop attributed to the TE1 eigenmode under a variation
of Λ under otherwise fixed geometry parameters as discussed in Fig. 4.17 at χgp = 1.0.
It can be observed that no significant change of Lprop is present. Therefore, the observed
phenomena are not dependent on the grating period, as long as the grating’s momentum
is large enough to ensure that the TE1 eigenmode can couple to radiation channels [249].

It could be presumed that the characteristics described above only occur for loss-free
gratings, which are mirror symmetric with respect to the z-direction. Concerning the
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influence of Ohmic loss, a waveguide grating is simulated for which ng2 is set to the
refractive index of silver at a wavelength λ = 632.8 nm (ng2 = 0.06+ j4.24). The value of
χgp is fixed at 1.0 (see Figs. 4.22a and b). Using otherwise identical parameters as in Fig.
4.19, the grating thickness is varied and all other parameters are fixed. As for loss-free
gratings, Lprop is significantly larger for the TE1 eigenmode (solid red line) than for the
TE0 eigenmode (solid black line). The difference to the loss-free grating is as follows: for
the TE0 eigenmode, p1 = 1 and p2 = 1 are present. For the TE1 eigenmode, p1 = 1 and
p2 = 3 can be found. The value of p1 is observed because the Ohmic losses of the grating
layer are proportional to its thickness and dominate over outcoupling [249].

To estimate the effects of an asymmetric grating layer, a geometry containing a triangular
grating as shown in Fig. 4.22c and d is simulated, whereby the remaining geometry
parameters are chosen as in Fig. 4.19 at χgp = 1.0. Again the values of Lprop for the TE1

eigenmode (red squares) are significantly larger than for the TE0 mode (black circles).
Here, a value of p = 4 is observed for the TE1 eigenmode and a value of p = 1.9 is present
for the TE0 eigenmode [249].

The fact that the elongated values of Lprop occur for such large parameter variations con-
firms that this concept of achieving long propagation lengths can be applied on waveguide
gratings in general (under the constraints of thin grating layers as explained above) [249].

Another interesting property of symmetric waveguide gratings using the nodes of TE
modes is their sensitivity to asymmetric geometrical or environmental changes. For in-
stance, inducing an asymmetric change of the waveguide grating’s refractive index profile
(χn = 1.0 → χn ̸= 1.0) drastically reduces Lprop. This behavior is visualized in Fig. 4.23
for a waveguide grating with a grating thickness of tg = 1.5 ·10−3λ and otherwise identical
parameters as for the geometry discussed in Fig. 4.17. Here, nd1 is varied and nd2 is fixed
at a value of 1.5 and χgp is fixed at a value of 1.0. A Figure of Merit (FoMLprop) to
measure the sensitivity can be defined by [249]

FoMLprop =
1

Lprop

∂Lprop

∂nd1

(4.23)

The values of FoMLprop are strongly pronounced for the TE1 eigenmode near symmetry
and become approximately 104. In comparison, the TE0 eigenmode under the same
conditions exhibits values of around 5. In a similar way, the relative change [249]

S∆n =
Lprop(nd1 +∆n)

Lprop(nd1)
(4.24)

for a value of ∆n = 10−4 is around 1.5 · 106 for the TE1 eigenmode near symmetry and
around 1 for the TE0 mode for any value of nd1 [249].
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Figure 4.23: Characteristics of a waveguide grating with tg = 1.5 · 10−3λ and otherwise
identical parameters as in Fig. 4.17 under a variation of χn at nd2 = 1.5 and χgp = 1.0.
a) Normalized propagation lengths of the TE0 and TE1 eigenmodes. b) Figure of Merit
1/Lprop(∂Lprop/∂nd1). c) Sensitivity S∆n to refractive index changes. From ref. [249].

This sensitivity means that the nodes of TE polarized modes in symmetric waveguide
gratings can be used to detect even slight asymmetry inducing changes of the geometry
or environment [249]. From the reciprocal point of view, controlling the geometry or
environment of the waveguide in an asymmetry inducing way enables to control Lprop over
many orders of magnitude [249]. Besides from potential future advances with respect to
existing sensors [254–260] and modulators [261, 262] based on waveguide gratings, these
properties can be useful in two ways: first, a highly parallel light-source of controllable
divergence angle and local output intensity could be realized. Second, a light concentrator
might be realized for which Lprop can be matched to the lateral extension of an incoming
light beam either through the initial geometry design, e.g. by the selection of distinct
layer thicknesses, or through the active adaption of the geometry’s layer thicknesses or
refractive indices.

However, there is one drawback when solar concentrators are considered. According to
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the explanations in Chapter 2, such long propagation lengths demand that both ∆θ and
∆λ = λ/Q attributed to an eigenmode are small. To collect the spectrum of the sun
within its momentary angular range of 0.52◦ [66], at least N = 0.52◦/∆θ waveguide grat-
ings would have to be stacked. As gratings are strongly dispersive, the actual required
number of waveguide gratings is substantially higher. Therefore, the advantageous ratio
of Lprop/tWG for a single eigenmode comes along with the trade-off of a higher number
of required eigenmodes to cover the sun’s angular range and spectrum. In fact, although
preliminary experiments have shown that the stacking of waveguide gratings works in
principle, such a high number of eigenmodes would require rather complex geometries.
In addition, the collection of light via a waveguide grating, or any other waveguide with
homogeneously distributed light-coupling elements, comes along with the unwanted out-
coupling of light, which has already been concentrated into the waveguide grating. Both
of these challenges will be tackled in the upcoming sections. At first, a method to com-
pletely cancel outcoupling for a distinct photonic-plasmonic hybrid waveguide grating
will be demonstrated.
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4.3 Complete Suppression of Outcoupling with Hybrid

Bound States in the Continuum

In the last section, it has been demonstrated that some challenges have to be tackled
to make waveguide gratings useful for solar concentrators. One challenge was to find a
way to prevent the outcoupling of light after it has been concentrated into a waveguide
grating. There exists a curious phenomenon termed ’Bound State in the Continuum’
(BIC) which is characterized by a singular eigenmode of zero outcoupling efficiency within
a dispersion relation of eigenmodes of non-zero outcoupling efficiency. This phenomenon
has drawn remarkably attention in the recent years as it can be used to achieve large
quality factors [156], low-threshold lasers [263–265] or vortex lasers [266], higher order
harmonic generation [61, 111, 267, 268], and tunable transmittance [269–271]. As briefly
outlined in Chapter 2, one way to achieve a BIC is via a symmetry mismatch at k′

x = 0

between the field distribution of an eigenmode and the plane-waves in the substrate and
superstrate [272]. In the recent years, more ways to achieve BICs in photonic crystals and
waveguide gratings at k′

x ̸= 0 have been demonstrated, ranging from single resonators to
coupled systems [156,273]. These BICs originate from a common principle: when multiple
internal waves or eigenmodes couple to the same radiation channel (e.g. a diffraction
order), and their phase relations as well as amplitudes are chosen in a way that they
interfere destructively, outcoupling can be completely canceled [272]. To achieve such
destructive interference, the number of internal plane-waves or eigenmodes Ni must be
larger than the number of radiation channels Ne [272]. For instance, a BIC for a single
eigenmode can occur from the destructive interference of electric and magnetic resonances
[273]. As a matter of course, Ni > Ne is only a necessary, but not a sufficient condition
for the occurrence of BICs [272]. For instance, asymmetric geometries may exhibit a large
number of internal waves or resonances, but their phase and amplitude relations may not
exhibit destructive interference for any combination of k′

x and ω, unless a specific set of
geometric parameters is chosen. For some occasions, such a specific set of parameters
is found by accident and historically led to the name ’accidental BIC’ for this type of
BIC [274]. However, for symmetric geometries, BICs experience topological protection
and exist for all geometric changes which preserve symmetry [156,264,266,272,275].

Concerning coupled systems, among others [278], there is a type of distinct type of BIC,
which is termed ’Friedrich-Wintgen-BIC’ (FW-BIC) [279]. For example, a FW-BIC can
be achieved by the coupling of two eigenmodes via a grating layer [277, 280, 281]. A
simplified model of this coupling is given by the ’Hamiltonian model’ [272, 277]. This
model is also often referred to as ’coupled mode theory’ [282]. In this model, all the
amplitudes gj,ν and fj,ν of an eigenmode (see Chapter 2) are replaced by a single amplitude
a with an attributed complex eigenfrequency ω − jγ, whereby the total dampening rate
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Figure 4.24: Coupling of two resonances in a waveguide grating with one common output
channel. For κ > 0, avoided crossing accompanied by a Friedrich-Wintgen BIC (FW-
BIC) can occur. The black dashed lines show the dispersion relations for zero coupling
(κ = 0) for comparison. According to refs. [272,276,277].

γ can be derived using the Q-factor by γ = ω/2Q. Herein, the Q-factor is composed of a
lossy component Qloss and a radiative component Qr. Both components are linked to Q

via [203]

1

Q
=

1

Qr

+
1

Qloss

. (4.25)

Importantly, an outcoupling efficiency of zero is equivalent to an infinitely large Qr.

Now, two eigenmodes of amplitudes a1 and a2, and frequencies ω1 − jγ1 and ω2 − jγ2 are
considered. The time-evolution of these eigenmodes can then be described by [203]

∂

∂t

(
a1

a2

)
= H

(
a1

a2

)
(4.26)

H =

(
ω1 κ

κ∗ ω2

)
− j

(
γ1

√
γ1γ2

√
γ1γ2 γ2

)
(4.27)

The parameters κ and √
γ1γ2 are the coupling parameters between both eigenmodes. The

solutions of this differential equation system is given by the eigenvalues and eigenvectors
of H. Hereby, the eigenvalues obey the equation

92



Figure 4.25: Visualization of the meaning of Eq. 4.29. a) A sinusoidal grating exhibits
mirror symmetry under glide operations. b) A blaze grating is never mirror symmetric.

ω+/−(k
′
x) =

1

2
(ω1 + ω2)− j

1

2
(γ1 + γ2)±

1

2

√
[(ω1 − jγ1)− (ω2 − jγ2)]2 + 4(κ− j

√
γ1γ2)

2

(4.28)

and the eigenvectors are linear combinations of both eigenmodes [277], whereby their
amplitude weights and phases are parametrically tuned along their dispersion relations
[277]. Such a linear combination is called ’hybrid eigenmode’. As a result of the coupling,
the real parts of ω+ and ω− show an avoided crossing and the imaginary part of either ω+

or ω− becomes zero along one of the dispersion relations of the hybrid eigenmodes [272,
277]. This vanishing imaginary part is the FW-BIC and characterized by an outcoupling
efficiency of zero. An exemplary sketch of an avoided crossing accompanied by a FW-BIC
is shown in Fig. 4.24.

It is important to note that topologically protected FW-BICs occur when the condition

ε(x+ δ, y,−(z − zc)) = ε∗(x, y, (z − zc)) (4.29)

is fulfilled, so that they can always be observed along the hybrid eigenmodes’ dispersion
relations [274]. Hereby, zc is the center plane of the grating. This condition describes mir-
ror symmetry with respect to the z-direction under glide operations along the x-direction.
For example, a sinusoidal grating can be converted into a perfect mirror symmetric grat-
ing via choosing δ = Λ/2 (see Fig. 4.25a). In contrast, there is no glide operation which
produces mirror symmetry for a blaze-grating (Fig. 4.25b).

In 2018, Azzam et. al [276] theoretically predicted the existence of hybrid photonic-
plasmonic FW-BICs (hybrid FW-BICs) when plasmonic eigenmodes (SPP) and photonic
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Figure 4.26: a) Planar hybrid waveguide. b) Dispersion relations of the symmetric and
antisymmetric photonic (PHs and PHs) as well as plasmonic (LR-SPP and SR-SPP)
eigenmodes. From ref. [203].

eigenmodes (PH) are coupled with each other via a diffraction grating. Herein, the term
’photonic’ means that the majority of the magnetic field strength is distributed within a
dielectric layer. As a side note, both Ni < Ne and Eq. 4.29 were fulfilled by treating the
entire substrate as a semi-infinite silver layer, acting as a symmetry inducing mirror [276].
This way, all diffraction orders in the substrate were canceled and FW-BICs could be
observed via simulations [276].

Here, an experimental demonstration and theoretical considerations on the sensing per-
formance of hybrid FW-BICs will be provided in the following [203].

In a step-by-step explanation, the design of a waveguide grating will be explained which
fulfills both Ni < Ne and Eq. 4.29. In a first step, a symmetric waveguide is considered
as visualized in Fig. 4.26a. It consists of two OrmoCore layers (refractive index nOC)
embedding a thin silver film of a thickness of 60 nm. The superstrate and substrate of
this waveguide consist of Borofloat glass of a refractive index ns [283]. The thickness of
both OrmoCore layers is chosen to a value of 1035 nm. For TM polarized light around
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Figure 4.27: a) Hybrid waveguide with a sinusoidally structured silver grating. b) Dis-
persion relations of the symmetric and antisymmetric photonic (PHs and PHs) as well as
plasmonic (LR-SPP and SR-SPP) eigenmodes. c) Corresponding normalized magnetic
field distributions. From ref. [203].

a wavelength of λ = 860 nm, this symmetric waveguide supports two photonic eigen-
modes and two surface plasmon eigenmodes [203]. The two plasmonic eigenmodes are
the (antisymmetric) SR-SPP eigenmode and the (symmetric) LR-SPP eigenmode of the
silver layer. The photonic eigenmodes are termed as PHa and PHs, whereby the indices
’a’ and ’s’ stand for an antisymmetric and symmetric magnetic field distribution, respec-
tively. The dispersion relations of these eigenmodes are displayed in Fig. 4.26b. Both
dispersion relations of the PHa and PHs eigenmodes are found between k′

x = ω
cvac

ns and
k′
x = ω

cvac
nOC . As the silver film is surrounded by OrmoCore, the SR-SPP and LR-SPP

possess larger lateral momenta than k′
x = ω

cvac
nOc (see Chapter 2). Fig. 4.26c shows the

magnetic field distributions of these four eigenmodes together with their corresponding
Q-factors. Going from the largest to the smallest Q-factor, the PHs, PHa, LR-SPP and
SR-SPP exhibit values of 5560, 2120, 535, and 160 [203].

To establish the coupling between these eigenmodes, fulfill Eq. 4.29 , and provide com-
patibility with the available fabrication procedures, a sinusoidal modulation of the silver
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Figure 4.28: a) The Q-factor Q and its radiative component Qr. The hybrid FW-BIC
is characterized by a singularity of Qr, whereby Q is finite due to Ohmic losses. b)
Corresponding distribution of |Hy|2 attributed to the hybrid FW-BIC. The interference
pattern near the grating originates from the interference of the counter propagating LR-
SPP and PHs modes. From ref. [203].

film with an amplitude of ta = 100 nm and period of Λ = 555 nm is introduced (Fig.
4.27a). Due to the formation of a band-structure (see Chapter 2), the dispersion rela-
tions of the eigenmodes appear above the light-line, which is defined by ω = cvac|kx|
(Fig. 4.27b) [203]. No coupling occurs between the PHs and SR-SPP as well as the
PHa and LR-SPP eigenmodes as their overlap integral vanishes due to their opposing
symmetries with respect to the z-direction [203]. In contrast, pair-wise avoided crossing
occurs between the PHs and LR-SPP, as well as between the PHa and SR-SPP eigen-
modes and, thus, indicates their coupling with κ > 0. The magnetic field distributions
of the eigenmodes away from the positions of avoided crossing are shown in Fig. 4.27c.
In comparison to the ones shown in Fig. 4.26c, these field distributions are distorted as
a consequence of a large outcoupling efficiency [203]. This large outcoupling efficiency
decreases the Q-factors by approximately one order of magnitude: the Q-factors of the
PHs and PHa eigenmodes are 453 and 293 and those of the LR-SPP and SR-SPP are 106

and 26, respectively [203].

Near to the avoided crossing of the LR-SPP and the PHs eigenmode, there is a signif-
icant deviation from these trends. As shown in Fig. 4.28a, the Q-factor of the PHs

eigenmode shows a maximum at a distinct lateral momentum k′
x. This behavior occurs

as the radiative component Qr of the Q-factor diverges to infinity, whereby Qloss stays
limited [203]. This observation means that an outcoupling efficiency of zero is present. A
cross-sectional plot of |Hy|2 for Qr → ∞ is shown in Fig. 4.28b. Indeed, the superstrate
and substrate are characterized by an evanescently decaying field, independently confirm-
ing that an outcoupling efficiency of zero is present [203]. Interestingly, the remaining
field distribution inside the waveguide exhibits an interference pattern near to the silver
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Figure 4.29: a-c) Fabrication procedure of the hybrid waveguide grating using the meth-
ods explained in Chapter 3. d) Cross-sectional SEM of laminated OrmoCore layers sur-
rounding a sinusoidal silver grating. e) Photograph of the fabricated sample. From
ref. [203]

grating. This interference pattern originates from the opposite directions of propagations
of the PHs and LR-SPP eigenmodes and confirms that the entire field distribution can be
understood as a hybrid eigenmode. From this point of view, the occurrence of zero out-
coupling efficiency can be interpreted as the destructive interference of radiation emitted
by a forward propagating PHs eigenmode and backward propagating LR-SPP eigenmode
into the same diffraction order (with equal amplitudes and opposite phase) [203].

Concerning the experimental demonstration of hybrid FW-BICs, the waveguide grating
design from Fig. 4.27a is realized by a combination of UV-NIL, metallization and lam-
ination (Figs. 4.29a-c). A cross-sectional SEM of two OrmoCore layers surrounding a
sinusoidal silver grating demonstrates that a high degree of symmetry is achieved with
these methods (Fig. 4.29d). To investigate whether the hybrid FW-BICs can be observed,
such a stack has been laminated between two one millimeter thick Borofloat layers. A
top-view photograph of this stack is shown in Fig. 4.29e [203].
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Figure 4.30: The reflectance R and absorption A of the hybrid waveguide grating. a,b)
Experimentally obtained values. c,d) Simulated values. From ref. [203]

.

The results of angular resolved RTS measurements of this waveguide grating are shown
in Fig. 4.30 [203]. The reflectance R (Fig. 4.30a) shows several distinct features in the
displayed parameter range which will be elaborated in the following.

The excitation of the photonic and plasmonic eigenmodes can be observed as dips of
R. Herein, the species of eigenmodes can be identified by calculating their attributed
values of Re(neff ) (see Chapter 2). For instance, the dip at λ = 843 nm and θ = 1◦

corresponds to Re(neff ) = 1.51. This value lies between n′
s and n′

OC , and can therefore
be attributed to photonic eigenmodes. The dip at λ = 885 and θ = 1◦ corresponds to
Re(neff ) ≈ 1.6 > nOC and can be attributed to plasmonic eigenmodes. As predicted
by the simulation, the slopes of the center positions of these dips are of opposite signs,
indicating counter-propagating photonic and plasmonic eigenmodes. As a side note, it is
not possible to distinguish SR-SPP and LR-SPP resonances from these measurements as
their spectral widths are larger than their spectral separation. Nonetheless, their coupling
with the photonic eigenmodes can be observed, confirming that all conditions for FW-
BICs are fulfilled. Indeed, at a parameter pair near λ = 867 and θ = 2.9◦, one of the
dips attributed to the photonic eigenmodes completely vanishes. This vanishing is the
result of the existence of a hybrid FW-BIC (BIC 1) attributed to the coupling of the PHs
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and LR-SPP eigenmodes. An analogous observation can be made near λ = 878 nm and
θ ≈ 5.0◦, indicating a hybrid FW-BIC (BIC 2) arising from the coupling of the PHa and
SR-SPP eigenmodes [203].

To exclude that the observed phenomena are not only features of R alone, the absorption
A = 1− R − T is investigated as well (Fig. 4.30b). Here, the excitations of eigenmodes
becomes apparent as peaks of A as photons have a higher probability of thermalization
under resonance [284]. These peaks vanish at the same wavelength and incidence angles,
indicating that no eigenmodes can be excited by the incident light as a result of the
presence of the hybrid FW-BICs. These observations are in qualitative agreement with
simulated data of R and A (Fig. 4.30c and d), whereby the characteristics attributed
to plasmonic eigenmodes shows quantitative differences to the experiment. As the ex-
periment displays an average over many grating periods, this discrepancy presumably
originates from local variations of the grating geometry. Apparently, as long as these
local variations do not break the local symmetry of the grating, hybrid BICs occur as a
result of their topological protection [203]. In comparison, a waveguide grating exhibit-
ing a blaze grating does not fulfill Eq. 4.29 and, thus, shows no occurrence of hybrid
FW-BICs (Fig. 4.31) [203].

Figure 4.31: a, b) Measured values of R and T for a hybrid waveguide grating containing
a blaze grating. c) Sketch of the geometry of the hybrid waveguide grating. d) atomic
force micrograph of the blaze grating surface prior to the lamination. From ref. [203].

To provide further experimental evidence for the hybrid FW-BICs, the radiative Q-factors
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Figure 4.32: Q-factors and absorption amplitudes ∆A obtained from fitting Lorentzian
peaks to the measured values of R. a) BIC 1. b) BIC 2. From ref. [203].

(λ/∆λ) and amplitudes ∆A of the peaks near to the FW-BICs are extracted from the
measured data. These extracted values are shown in Fig. 4.32. Towards both hybrid
FW-BICs, decreasing peak widths and values of ∆A are observed [203].

All the observations explained above provide convincing experimental evidence for the
existence of hybrid FW-BICs. This evidence is the main result of ref. [203] and con-
firms that outcoupling can be completely suppressed in hybrid waveguide gratings. The
consequences for solar applications will be discussed later on. Before this discussion, an
investigation about the advantages of hybrid FW-BICs with respect to the sensitivity to
refractive index changes will be presented.

To explain the reason why such investigations have not been done before, a typical way
to use resonators as sensors will be briefly explained and related to BICs. A common
way to build a sensor is to measure the intensity of reflected or transmitted light via a
low-cost photo detector and a monochromatic light source. For this case, the performance
is usually defined by the intensity related Figure of Merit [285]

FoM∗ =
1

I

∂I

∂n′ ∝ SλQ, (4.30)

whereby

Sλ =
∂λres

∂n′ (4.31)

is the sensitivity attributed to a resonance with a center wavelength λres and n′ as a
refractive index change.

Naturally, resonators with large values of Sλ and large Q-factors are sought. However,
within a given class of resonators (purely dielectric, purely plasmonic), their product
remains nearly constant [285–289]. Yu et. al provide an insightful explanation in ref. [290]:
the occurrence of a resonance can be understood as the scanning of an eigenmode’s
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dispersion relation k′
x with a probe (e.g. a prism, a grating, etc.). As a result, both Sλ

and 1/Q are scaled with the same factor [290].

It is important to note, that the hybridization of one resonator of a large Q factor with
another resonator of a large sensitivity Sλ does not provide any improvement of SλQ,
when only one of the resonators couples to an output channel (e.g. plane waves in the
substrate or superstrate) [285, 291–294]. For instance, the coupling of two resonators,
which do not share a common output channel can be modeled via [295]

H =

(
ω1 κ

κ∗ ω2

)
− j

(
γ1 0

0 γ2

)
(4.32)

In this case, the eigenvalues for ω1 ≈ ω2 become

ω+/−(k
′
x) =

1

2
(ω1 + ω2)− j

1

2
(γ1 + γ2)±

1

2

√
4|κ|2 − (γ1 − γ2)2 (4.33)

It can be seen, that the resulting imaginary parts of ω+/− are always in between γ1 and γ2

and the sensitivity is between the sensitivities S1 and S2 of the individual resonators [203].

Remarkably, BICs break this relation as Sλ remains constant and Qr diverges toward a
distinct wavelength λBIC and incident angle θBIC . Therefore, BICs theoretically enable
infinitely large sensing performance. In reality, Qr is limited due to the presence of
residual scattering, finite sample sizes and light sources deviating from ideal plane waves
[156, 296, 297]. Nonetheless, various high performance sensors have been demonstrated
using BICs [271,298–300].

However, this high performance only prevails for BICs in the absence of loss (Q = Qr).
For the presented hybrid FW-BICs, the resonance amplitude toward λBIC and θBIC

approaches zero, so that the maximum achievable performance is given by [249]

FoM∗ = QS/λ (4.34)

in the limit Qr → ∞, which is equal or even smaller than the performance of a conven-
tional resonator or a system of coupled resonators [285]. As visualized in Fig. 4.33a-c,
this relation can be deduced by considering that the measured signal arises from the
interference of incident plane-waves and back-coupled plane waves from an excited eigen-
mode (see Chapter 2). Toward the hybrid BIC, the amplitude of the signal vanishes, so
that the attributed intensity function I(n′) is flattened out. From this point of view, it
is of no surprise that no reports on the sensing performance of hybrid FW-BICs existed
in 2020 [203].
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Figure 4.33: a) Sensor setup in specular geometry (S). b) Available detection channels. c)
Relation between available detection channels and the resonances of the hybrid waveguide
grating. A measured signal is the result of the interference between incoming waves and
an excited resonance (see also Chapter 2). d) Sensor setup in diffraction geometry (D). e)
The available signals are the intensities attributed to the radiation channels. f) Relation
between available detection channels and the resonances of the hybrid waveguide grating.
From ref. [203].

The situation is different when no external incidence, but an excited propagating eigen-
mode under the conditions of a FW-BIC is considered as sketched in Fig. 4.33d-f. Then,
the average intensity I of radiated light can be directly derived from Eq. 2.45. This way,
the FoM∗ is given by [203]

FoM∗ ≈ 1

γr

dγr
dn′ (4.35)

It is important to note again that the hybrid FW-BIC is located near the avoided crossing
of the PHs and LR-SPP eigenmodes. As visualized in Fig. 4.34, the sensitivity attributed
to λBIC with respect to a change of n is therefore approximately given by the average
sensitivity of both eigenmodes, leading to the expression [203]

dγr
dn

=
∂γr

∂(ω − ωBIC)

∂(ω − ωBIC)

∂n′ ≈ ∂γr
∂(ω − ωBIC)

1

2
(Sω1 +Sω2) =

∂γr
∂(ω − ωBIC)

Sω (4.36)

with Sω = dωres/dn
′. Here, the refractive index of the upper OrmoCore layer is varied.

It is empirically found via RCWA calculations, that the first product in the equation can
be identified as [203]

1

γr

∂γr
∂(ω − ωBIC)

=
Qr

ω
, (4.37)
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Figure 4.34: Visualization of the sensitivity attributed to a (hybrid) FW-BIC.

so that the entire expression for the FoM∗ reads [203]

FoM∗ =
Qr

ω
Sω ≈ Qr

λ
Sλ (4.38)

with Sλ = 1/2 · (SPHs + SLRSPP ). Near the avoided crossing, the values of SPHs and
SLRSPP are 44 nm/RIU and 527 nm/RIU and a value of Sλ ≈ 285 nm/RIU is expected.
A direct evaluation via RCWA results in Sλ ≈ 334 nm/RIU [203].

Fig. 4.35a shows the calculated values of FoM∗ via RCWA as a function of λ and
θ. Small values of around 1 are present in the absence of resonance. Far away from
BIC 1, increased values of the FoM∗ are apparent under the excitation of plasmonic
(FoM∗ = 2 ·102) and photonic modes (FoM∗ ≈ 3 ·103). These values fit well to literature
reports of plasmonic and hybrid photonic-plasmonic sensors [285]. Strikingly, toward BIC
1, the FoM∗ diverges to infinity as it is typical for BIC based sensors [271, 298–300]. A
direct comparison of the calculated FoM∗ of a hybrid FW-BIC with a photonic FW-BIC
is shown in Fig. 4.35b [203]. Herein, the relative lateral momentum krel is given by
krel = k′

x − kBIC . As predicted, the FoM∗ of the hybrid FW-BIC in diffraction geometry
(D hybr.) is almost one order of magnitude larger than that of the photonic BIC (D
diel.). As a side note, the dashed line shows the FoM∗ of the hybrid FW-BIC in specular
geometry (S hybr.), which is much smaller as Ohmic losses are present [203].

These results can be understood as follows: for purely photonic eigenmodes, the resulting
values of the FoM∗ toward a FW-BIC for both the specular geometry and the diffrac-
tion geometry are identical. In comparison, the incorporation of plasmonic eigenmodes
enhances Sλ and, thus, the FoM∗ by a factor of approximately 8 [203]. As a matter of
course, this increase of the sensitivity comes along with Ohmic losses. The consequences
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Figure 4.35: a) Simulated values of the FoM∗ as a function of λ and θ. Here, θ is the
angle under which light is coupled into the substrate and superstrate. b) The FoM∗ in
the specular geometry (S) and diffraction geometry (D) as a function of krel = k′

x−k′
x,BIC .

c) Comparison of the FoM∗ of BIC 1 and a purely photonic BIC under the assumption
of a spread in the k-space ∆k′

x due to finite beam sizes or finite sample sizes. d) Effective
performance η · FoM∗(∆k′

x) of BIC 1 and a purely dielectric BIC. From ref. [203].

of these Ohmic losses will be discussed later on.

These calculated values of the FoM∗ do not yet deliver useful insights on the sensing
performance of the waveguide grating under real conditions such as finite sample sizes
and beams of finite widths and non-zero divergence angles. To give an estimate for these
conditions, the FoM∗ is calculated using an averaged intensity obtained over a weighted
integral [203]

I(∆k) =

∫ ∞

−∞
G(krel,∆k)I(krel)dkrel (4.39)

with the weight function [203]
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G(krel,∆k) =
1√

2π∆k2
e−

(krel)
2

2∆k2 (4.40)

and ∆k as the spread of lateral momentum.

The resulting values of FoM∗(∆k) are plotted against 1/∆k in Fig. 4.35c. For small
values of 1/∆k (large values of ∆k), the values of FoM∗(∆k) tend to zero as only a small
portion of the light is modulated by the dynamics of the BIC. Toward larger values of
1/∆k, the values of FoM∗(∆k) attributed to the hybrid FW-BIC are consistently larger
than these for the photonic BIC [203]. These results show that hybrid FW-BICs are a
potential platform for high performance light sensors and modulators. Nonetheless, there
are limitations to this concept. As Ohmic losses are present in the waveguide grating,
the outcoupling efficiency is limited. To take this efficiency into account, an effective
performance η · FoM∗(∆k) is considered (see Fig. 4.35d). It gives an estimate for a
device performance when power consumption is a critical parameter (e.g. for mobile
devices). With respect to this effective performance, hybrid FW-BICs are advantageous
over photonic BICs below a distinct value of 1/∆k. Here, this value is around 56 µm. In
other words, for large sensors, the increase of the FoM∗ via the introduction of surface
plasmons is paid by a significantly smaller efficiency due to the Ohmic losses [203].

4.4 Short summary

The plasmonic systems presented in Section 4.1, they enable strong broadband interac-
tion with light and are promising for solarthermics well as for the fabrication of high-
performance sensors and k-space engineered plasmonic metasurfaces. As a drawback, all
of these plasmonic systems suffer from the intrinsic Ohmic losses of metals, which would
significantly decrease the efficiency of solar concentrators based on plasmonics.

In Section 4.2, symmetric waveguide gratings supporting long propagation ranges over
broad spectral ranges have been demonstrated. In the regime of single eigenmodes,
these symmetric waveguide gratings show numerous advantages compared to conventional
asymmetric waveguide gratings and could be utilized for highly parallel light sources and
sensors. However, to realize solar concentrators with such passive symmetric waveguide
gratings, many thousand of them would have to be stacked to capture the opening angle
of the Sun. To enable dynamic tracking, even more symmetric waveguide gratings would
have to be stacked to enable mode excitation from any angle under any wavelength.
Importantly, once light is concentrated into the eigenmodes of a waveguide grating, the
subsequent outcoupling cannot be prevented.
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Concerning hybrid waveguide gratings, a way to completely cancel outcoupling via hy-
brid FW-BICs has been experimentally demonstrated. However, the singular nature of
BICs means that an outcoupling efficiency of zero can only be achieved for one singular
wavelength and outcoupling angle.

In conclusion, all these passive systems show numerous advantages for solar concentrators.
However, they do not allow to realize Sun-tracking in an obvious way. In fact, the
direction and propagation length of light in a waveguide based solar concentrator needs
to be actively switchable on a local level. This task can also be understood as the local
active control of outcoupling.

In the following chapter, an active waveguide grating will be presented which enables the
local control of outcoupling between zero and, theoretically, 100%.
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Chapter 5

Active waveguide systems: Broadband
Electrically Controlled Light Trapping

In this chapter, a method to locally control the outcoupling of light inside a waveguide
grating will be presented. The core idea of this method can be derived by reconsidering all
of the properties of the waveguide gratings from Chapter 4 at the most fundamental level:
the maximized propagation lengths for the node eigenmodes in symmetric waveguide
gratings are a result of destructive interference at the center plane of the grating. In
a similar way, the complete cancellation of outcoupling for hybrid FW-BICs originates
from the destructive interference of eigenmodes emitting radiation into the same radiation
channels. The reason why this complete cancellation of outcoupling can be reached is
that the amplitudes and phases of the eigenmodes can be parametrically tuned along their
dispersion relations [277,279]. This parametric tuning can be understood as the control of
an internal degree of freedom and the actuating variable is λ. This point of view explains
why a BIC is of singular nature with respect to λ, whereby it is also singular with respect
to θ as a result of dispersion [272]. To obtain broadband cancellation of outcoupling, the
actuating variable has to be changed, so that it is independent of λ. One way to realize
such change of the actuating variable is provided in the following lines [301,302].

Consider a thick waveguide which supports a quasi-continuum of eigenmodes (tWG >> λ).
Let’s suppose that two beams may propagate inside this waveguide in a zig-zag pattern
(Fig. 5.1a). By some physical process, the relative phase 2∆Φ between both beams may
be adjustable from 0...2π. Now, a thin geometry is placed at the exact center of this
waveguide, which is capable of scattering the beams into the substrate and superstrate
regions. Using the coupling coefficients Cs,1 and Cs,2 of the coupling matrix C, the
electric field vectors E⃗1 and E⃗2 and wave-vectors k⃗1 and k⃗2 attributed to the two beams,
the intensity I attributed to a scattered plane-wave (indexed by ’s’) is then given by
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Figure 5.1: Concept of a waveguide with a locally controllable outcoupling efficiency. a)
For a distinct relative phase Φ − (−Φ) = 2∆Φ between beams, the local outcoupling
efficiency becomes zero (’trapping’). b) For another value of the relative phase (e.g.
2∆Φ+π), the local outcoupling efficiency becomes 100% (’perfect local outcoupling’). c)
Trapped beams propagate undisturbed as for a homogeneous planar waveguide. d) Under
perfect local outcoupling , the beams are immediately redirected into ’local radiation
channels’ once they hit the thin geometry. According to ref. [301].

I ∝ |Cs,1(E⃗1, E⃗s, k⃗1, k⃗s) · E⃗1 · e2j∆Φ + Cs,2(E⃗2, E⃗s, k⃗2, k⃗s) · E⃗2|2. (5.1)

As visualized in Figs. 5.1a and b, the outcoupling efficiency can be locally completely
suppressed (or maximized), when the scattered waves are of equal amplitude and the
relative phase 2∆Φ is chosen in a way that they interfere destructively or constructively
(Fig. 5.1b). The relative phase 2∆Φ is thus the new actuating variable. Importantly,
there is difference to the definition of the outcoupling efficiency from Chapter 2: Here, it
is aimed to measure the fraction of the power of the two beams, which is locally coupled
out of the waveguide. For this reason, a measure termed ’local outcoupling efficiency’
must be introduced. Such a new definition is necessary as any loss-less, infinitely extended
waveguide geometry, which exhibits non-zero outcoupling, is automatically of 100% out-
coupling efficiency. It is hence obvious that the outcoupling efficiency is not a useful
measure to describe phenomena on a local level. The local outcoupling efficiency will be
mathematically further elaborated in the next section.
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For now, it is sufficient to know that a local outcoupling efficiency of 0% means that
the two beams propagate undisturbed in the waveguide (Fig. 5.1c). On the contrary, a
local outcoupling efficiency of 100% means that the two beams are locally coupled out
of the waveguide and no power remains within the waveguide (Fig. 5.1d). Herein, a
local outcoupling efficiency of 0% is referred to as ’trapping’. Beams which propagate
under trapping are termed as ’trapped beams’. Any process which sets the beams into a
condition of trapping is termed as ’the trapping of beams’. In return, a local outcoupling
efficiency of 100% is referred to as ’perfect local coupling’. It is anticipated that, in
reality, the local outcoupling efficiency can only be maximized up to a distinct value
which depends on the geometry parameters and parameters of the two beams. Such
a maximum of the local outcoupling efficiency below 100% is termed ’maximized local
outcoupling’. It is further anticipated that a switching between trapping and perfect local
outcoupling can be done at any position where the two beams cross the thin geometry.
In addition, it is important to note that this procedure can only be applied as long as
both beams do not interfere with themselves. This is termed as the ’absence of self-
interference’. Absence of self-interference is present when the lateral distance L0 between
the beams is larger than their lateral extent ∆L (see Figs. 5.1a and c).

Until 2022, except for ref. [301] and ref. [302], no such scheme has been reported in the
literature yet: concerning the control of the coupling efficiency to radiation channels or
to absorption via two beams and a relative phase, there are only reports using free-space
beams (without a waveguide) [303–312]. Concerning the guidance or local control of
light, integrated photonics [313–318], micro-electro-mechanical systems (MEMS) [319–
321], controllable photonic structures [322,323], liquid crystals [324–327] and modulators
based on surface-acoustic-waves (SAW) [328] are the current state-of-the-art.

In the following sections, the proposed scheme will be concretely applied to waveguide
gratings in theory. Subsequently, these theoretical results will be compared with experi-
mental data and their consequences will be discussed with respect to this state-of-the-art
as well as to solar applications.

5.1 Theory of Light Trapping and Perfect Local Out-

coupling

For waveguide gratings, the general expression in Eq. 5.1 can be specified. As outlined in
Chapter 2, the two beams inside the thick waveguides can be expressed by a plane-wave
spectrum. It is assumed that the thin geometry in the center of the waveguide contains
one or multiple gratings of period Λ and can be described by RCWA (ε(x) = ε(x+ Λ)).
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Figure 5.2: a) Plane wave channels of the two beams falling onto and exiting the film
resonator. b) Scattering matrix representation of the film resonator under the assumption
of semi-infinite half-spaces above and below it. According to ref. [301].

In the following, the thin geometry is termed ’film resonator’. The two beams are further
assumed to be mirror symmetric with respect to the center plane of the thick waveguide.
This way, every plane-wave component of a beam has a mirrored plane-wave component
in the other beam and the response of the film resonator can be fully described by the
superposition of the electric and magnetic fields resulting from two incident plane-waves
(see Eq. 5.1 and Fig. 5.2a).

As the lateral extent ∆L of the two beams is smaller than the projected lateral path length
L0, there is no self-interference outside the film resonator, so that an RCWA model of
the film resonator can be applied under the assumption of an infinitely large waveguide
thickness (semi-infinite half-spaces). For each of the two incident plane waves, there
exists a set of coupling coefficients to outgoing plane-waves leaving the film resonator
into these half-spaces (Fig. 5.2a). As both beams are of the same lateral momentum
k′
x,0, the lateral momenta k′

x,ν of the outgoing plane-waves are pair-wise identical and the
electric and magnetic fields of these outgoing plane waves are two-wave superpositions.
These two-wave superpositions can be represented by a matrix formalism for which the
former notation of the coupling coefficients is modified for reasons of simplicity. This
matrix formalism together with its notation is visualized in Fig. 5.2b.

Plane waves which come from and leave into the upper/lower semi-infinite half-space are
assigned to a +/− symbol, respectively. The diffraction order is symbolized by ’ν’. The
positions at which the two beams interact with the film resonator are termed as ’dots’ and
counted with an index m = 1, 2, 3, .... To give a few examples, the reflection coefficient of
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a plane-wave coming from the upper semi-infinite space is noted as rm,0,+,+. The coupling
coefficient of a plane wave coming from the upper semi-infinite space and leaving into the
first diffraction order in the lower semi-infinite space is noted as dm,0,1,+,−. Some more
variations to show the notation of the coupling coefficients are shown in Fig. 5.3. In
contrast to the definition of the radiation channels in Chapter 2, this indexing signifies
that each dot m exhibits both the 0th order for plane-waves, which are guided in the
waveguide, and other diffraction orders which form a set of ’local radiation channels’.
The meaning of these local radiation channels will become clear over the course of the
upcoming explanations.

To obtain the possibility to set boundary conditions and calculate the progression of the
plane-wave amplitudes during propagation, the input and output amplitudes a⃗m and b⃗m

of each dot are expressed by the equation system

b⃗m =



b⃗m,−N

...
b⃗m,−1

b⃗m,0

b⃗m,1

...
b⃗m,N


, a⃗m =



a⃗m,−N

...
a⃗m,−1

a⃗m,0

a⃗m,1

...
a⃗m,N


, b⃗m = Sma⃗m (5.2)

with

Sm =



Rm,−N Dm,−N,−N+1 . . . . . . . . . Dm,−N,N−1 Dm,−N,N

Dm,−N+1,−N
. . . ...

...
... ... Dm,−N+1,N

... . . . Rm,−1 Dm,−1,0 Dm,−1,1 . . .
...

... . . . Dm,0,−1 Rm,0 Dm,0,1 . . .
...

... . . . Dm,1,−1 Dm,1,0 Rm,1 . . .
...

Dm,N−1,−N
... ...

...
... . . . Dm,N−1,N

Dm,N,−N Dm,N,−N+1 . . . . . . . . . Dm,N,N−1 Rm,N


(5.3)

Each element of b⃗m and a⃗m is given by

b⃗m,ν =

(
bm,ν,+

bm,ν,−

)
(5.4)
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Figure 5.3: Notation of the elements of Sm.

a⃗m,ν =

(
am,ν,+

am,ν,−

)
(5.5)

The elements of Sm contain all coupling coefficients and read

Rm,ν =

(
rm,ν,+,+ tm,ν,−,+

tm,ν,+,− rm,ν,−,−

)
(5.6)

Dm,ν,j =

(
dm,ν,j,+,+ dm,ν,j,−,+

dm,ν,j,+,− dm,ν,j,−,−

)
(5.7)

Note that the geometric correction factors in Eq. 2.71 are already included in the coupling
coefficients of the matrix Sm, so that it is unitary in the absence of loss

SHS = 1 (5.8)

As the two beams are reflected at the waveguide’s outer interfaces, the output and input
amplitudes of two dots can be connected via the expression
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Figure 5.4: Visualization of the connection of dots via Eq. 5.9. According to ref. [301].

a⃗m+1,0 =

(
r′m,+e

jΦm,+ 0

0 r′m,−e
jΦm,−

)
b⃗m,0 = Tmb⃗m,0 (5.9)

This relation is visualized in Fig. 5.4. Herein, a change of the relative phase at an
(m+ 1)th dot is defined via

2∆Φm = Φm,+ − Φm,− (5.10)

As a first boundary condition, it is assumed that only waves from the 0th diffraction order
fall onto each dot

a⃗m,ν =

(
0

0

)
∀ ν ̸= 0 (5.11)

Therefore, Eq. 5.9 simplifies to

a⃗m+1,0 = Tmb⃗m,0 = TmRm,0a⃗m,0 (5.12)

The second boundary condition is the definition of input amplitudes at m = 1 and reads

a⃗1,0 =

(
E+e

jΦ0,+

E−e
jΦ0,−

)
(5.13)

with the normalization

|⃗a1,0|2 = 1 (5.14)
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Figure 5.5: Frequency-momentum space visualizing trapping and perfect local outcou-
pling for one dot. The environment of the waveguide grating is assumed as air. The
average refractive index of the film resonator is n1. The refractive index of the remaining
waveguide is n2. It is assumed that 1 < n1 < n2 is true. Under trapping (1), the two
beams occupy a state below the light line. For perfect local outcoupling (2), the two
beams occupy a state above the light line. For a local outcoupling efficiency between
0% and 100%, both states are present: one part of the input power is coupled into local
radiation channels (2) and the other part remains in the waveguide grating (1).

and E+, E− as real-valued input amplitudes. The angle θint is assumed to be large enough
to ensure total internal reflection (|rm,+| = |rm,−| = 1). Then, all waves are trapped inside
the waveguide when

b⃗m,ν =

(
0

0

)
∀ ν ̸= 0 (5.15)

is true for all m. With the boundary conditions assumed above, Eq. 5.15 thus describes
trapping. Viewed in the frequency-momentum space (see Fig. 5.5), trapping can be
regarded as a bound continuum which is decoupled from the radiation continuum (the
black dot labeled by (1)). Herein, the two trapped beams form the bound continuum. In
this graph, the local radiation channels of one dot are symbolically represent by the −1st

diffraction order marked by (2). From this point of view, it can be seen that trapping is
different to a BIC in a waveguide grating. This difference between trapping and BICs a
direct consequence of the absence of self-interference. Again, a BIC of a given geometry
is singular with respect to λ and θ. In contrast, trapping can be found for any specific set
of input parameters, coupling coefficients and phases Φm,+,Φm,−. Here, only the coupling
coefficients are fixed and the remaining parameters are variable, so that there is no direct
restriction of the values of λ and θ for which trapping can occur.

In the following the conditions for trapping will be further elaborated by considering
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a film resonator which exhibits translationally invariant coupling coefficients along the
x-direction. The translational invariance can be expressed by Rm+1,i = Rm,i = Ri,
Dm+1,ν,j = Dm,ν,j = Dν,j, and Tm+1 = Tm = T , whereby Rν , Dν,j, and T are given by

Rν =

(
rν,+,+ tν,−,+

tν,+,− rν,−,−

)
(5.16)

Dν,j =

(
dν,j,+,+ dν,j,−,+

dν,j,+,− dν,j,−,−

)
(5.17)

T =

(
r′+e

jΦ+ 0

0 r′−e
jΦ−

)
(5.18)

Under these assumptions, trapping is present when the condition implied by Eq. 5.15
and

a⃗m+1,0 = T b⃗1,0 = TR0a⃗m,0 = c⃗am,0 (5.19)

are fulfilled. These conditions can be understood as follows. |bm,ν,+|2 and |bm,ν,−|2 are a
measure for the local coupling efficiency per local radiation channel (except for ν = 0).
As an example, a value of |b1,−1,+|2 = |⃗a1,0|2 means that the plane waves incident on the
first dot are coupled to the local radiation channel defined by the −1st diffraction order
in the superstrate with 100% local outcoupling efficiency.

When the local outcoupling efficiency at the first dot is zero under distinct input param-
eters, and the same input parameters are reproduced for the next dot, then the local
outcoupling efficiency is zero for all dots. Thereby, c is a complex number representing
any amplitude and phase changes, which do not change the phase and amplitude relation
between the input parameters. For instance, lossy and loss-free systems are characterized
by |c| < 1 and |c| = 1, respectively. This form of T is obviously the case as the entire
waveguide grating is assumed to be mirror symmetric.

By using an Euler representation of the coupling coefficients (x = |x|ejΦx), and explicitly
inserting these conditions in Eq. 5.2

b⃗1,0 = R0a⃗1,0 =

(
r0,+,+ · E+e

jΦ0,+ + t0,−,+ · E−e
jΦ0,−

t0,+,− · E+e
jΦ0,+ + r0,−,− · E−e

jΦ0,−

)
(5.20)

b⃗1,ν = Dν,0a⃗1,0 =

(
dν,0,+,+ · E+e

jΦ0,+ + dν,0,−,+ · E−e
jΦ0,−

dν,0,+,− · E+e
jΦ0,+ + dν,0,−,− · E−e

jΦ0,−

)
, (5.21)

it can be shown that the local outcoupling efficiency at the first dot can be zero for the
amplitude relation
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|dν,0,+,+||dν,0,−,−| = |dν,0,−,+||dν,0,+,−| (5.22)

and the phase relations

2∆Φ0 +∆Φd+ = π(2n+ 1) (5.23)

2∆Φ0 +∆Φd− = π(2n+ 1) (5.24)

with

∆Φd+ = Φdν,0,+,+ − Φdν,0,−,+ (5.25)

∆Φd− = Φdν,0,+,− − Φdν,0,−,− (5.26)

General solutions of Eq. 5.19 can be derived with numerical methods. Here, to provide
analytically describable physical properties attributed to trapping, a mirror symmetric
film resonator with respect to the z-direction and equal input amplitudes

E+ = E− =
1√
2

(5.27)

is considered. Due to this mirror symmetry, the coupling coefficients read

|dν,0,−,+| = |dν,0,+,−| = |dν,0,t| (5.28)

|dν,0,+,+| = |dν,0,−,−| = |dν,0,r| (5.29)

|r0,+,+| = |d0,−,−| = |r0| (5.30)

|t0,+,−| = |t0,−,+| = |t0| (5.31)

The amplitude relations in Eq. 5.22 therefore simplify to

|dν,0,t|2 = |dν,0,r|2 ⇔ dν,0,t = ±dν,0,r = ±dν (5.32)

The conditions on the phase relations for zero local outcoupling efficiency at the first dot
are then solved for exactly two cases

• Solution 1: dν,0,t = −dν,0,r, 2∆Φ0 = 2nπ
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• Solution 2: dν,0,t = dν,0,r, 2∆Φ0 = (2n+ 1)π

with n ∈ N.

The output amplitudes in the 0th diffraction order (Eq. 5.20) can be rewritten to

b1,0,+ =
1√
2
ej(Φ0,++Φr0 )

[
|r0|+ |t0|ej(−2∆Φ0+Φt0−Φr0 )

]
(5.33)

b1,0,− =
1√
2
ej(Φ0,++Φr0 )

[
|t0|ej(Φt0−Φr0 ) + |r0|e2j∆Φ0

]
(5.34)

Inserting these solutions into Eq. 5.20 leads to

• 1) b1,0,+ = b1,0,− for Solution 1.

• 2) b1,0,+ = −b1,0,− for Solution 2.

Therefore, the amplitude and phase relation between the input amplitudes of the subse-
quent dot are identical to those of the first dot. As Eq. 5.19 is true, Solutions 1 and 2
thus represent trapping. In the absence of loss, it can be shown that

|b1,0,+|2 + |b1,0,−|2 = 1 (5.35)

and the entire power is indeed guided within the waveguide with zero local outcoupling
efficiency for each dot. Consequently, the outcoupling efficiency for the entire waveguide
grating is zero as well. This finding can be interpreted as follows: once the beams are
trapped (Solution 1 or 2), they remain trapped for the subsequent dots.

There is another benefit which comes along with 2∆Φ0 as a degree of freedom. For

• dν,0,t = −dν,0,r, 2∆Φ0 = (2n+ 1)π

• dν,0,t = dν,0,r, 2∆Φ0 = 2nπ

with n ∈ N, the local outcoupling efficiency is maximized and leads to the expressions

|b1,0,+|2 + |b1,0,−|2 = 1− 4
∑
ν

|dν |2 (5.36)

|b1,i,+|2 + |b1,i,−|2 = 4
∑
ν

|dν |2. (5.37)
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Figure 5.6: Examples of trapping and perfect local outcoupling for a hypothetical mirror
symmetric waveguide grating with an ideal scattering matrix. For simplicity, the four
black arrows in each subfigure represent the local radiation channels attributed to all
diffraction orders. a) Solution 1 with dν,0,t = −dν,0,r and t = r = 1/2. b) Solution 2 with
dν,0,t = dν,0,r and t = −r = 1/2.

For |t0| = |r0| = 1/2 and the absence of loss, these equations become

|b1,0,+|2 + |b1,0,−|2 = 0 (5.38)∑
ν

(|b1,ν,+|2 + |b1,ν,−|2) = 1 (5.39)

and the entire power is coupled to local radiation channels. This behavior displays perfect
local outcoupling. Both the occurrence of trapping and perfect local outcoupling mean
that the control of 2∆Φ0 enables to continuously control the local outcoupling efficiency
between 0% and 100% of the power incident on a dot (see Fig. 5.6).

It is important to note, that once trapping is established, any local relative phase shift
2∆Φm ̸= 0 would lead to an increase of the local outcoupling efficiency of subsequent
dots. This circumstance will be elaborated later on.

As a matter of course, all these considerations above have been done with a series of
assumptions, which question whether they are of any practical meaning. In the next
Section, concrete and realistic waveguide gratings will be presented which demonstrate
the validity of these considerations.
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5.2 Exemplary Calculation of a Symmetric Waveguide

Figure 5.7: Visualization of a mirror symmetric waveguide grating. See the text for
further details. From ref. [301].

In this section, the concepts explained in Section 5.1 will be applied to an exemplary
waveguide grating. This waveguide grating is visualized in Fig. 5.7. Its outer layers
consist of two 500 µm thick lithium tantalate (LiTaO3) layers. Hereby, the c-axises of
these layers are of opposite directions with respect to each other. Both c-axises are parallel
to the z-direction. This way, the Pockels effect can be used to cause a relative phase shift.
This procedure will be elaborated later on and, for the next sections, the phases 2∆Φm

are not yet linked to any physical phenomena to keep the following discussion as general
as possible. The film resonator is placed in between the LiTaO3 layers. It consists of two
thin cladding layers of OrmoClad with a thickness of 70 nm, two OrmoCore layers with
a thickness of 1900 nm, and a rectangular silver-OrmoCore grating of 30 nm thickness, a
duty cycle of D = 0.35, and period of Λ = 555 nm. In the linear regime (excluding the
Pockels effect), it is thus mirror symmetric with respect to the z-direction. TE polarized
light is considered.

First, the response to plane-waves will be investigated. Later on, the response to Gaussian
beams will be composed via their plane-wave spectra.

At first, a fixed wavelength of λ = 632.8 nm is considered. θint is varied between 42.0◦

and 43.5◦ and all the locii of t0, r0, d−1,0,r and d−1,0,t are plotted in the complex plane
(see Fig. 5.8a). Following the explanations from Section 5.1, it is sought to find a value
of θint for which d−1,0,r = d−1,0,t and |t0| = |r0| = 0.5 are fulfilled. Concerning the former
condition, d−1,0,r and d−1,0,t are almost equal for all values of θint. At θint = 43.0◦, it can
be indeed observed the absolute values of t and r both become 0.5. This is no coincidence,
as the film resonator exhibits a resonance attributed to an eigenmode for this incident
angle. In contrast to the systems discussed in the previous chapters, this eigenmode
can be directly excited from the 0th order because the film resonator is surrounded by
a medium of higher refractive index. Due to this higher refractive index, photons of an
excited eigenmode have a non-zero probability of tunneling into the lithium tantalate,
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Figure 5.8: Locii of scattering matrix elements of the waveguide grating at λ = 632.8 nm
as a function of θint. a) single plane wave incidence. Note that d−1,0,r (blue curve) and
d−1,0,t (pink curve) are almost equal. b) Incidence with two plane waves. At resonance
(43.0◦), trapping and near perfect local outcoupling can be achieved.

resulting in a non-zero overlap integral. Such an eigenmode is termed ’leaky eigenmode’.

So far, these values describe the response of one dot to plane waves coming from only
one half-space. For two incident plane waves of equal amplitudes, as described in Section
5.1, interesting phenomena can be observed (Fig. 5.8b). Two cases are considered:
2∆Φ0 = 0 and 2∆Φ0 = π. For the first case, one finds

√
2b1,0,+ =

√
2b1,0,− = r0 + t0 and√

2b1,−1,+ =
√
2b1,−1,− = d−1,0,r + d−1,0,t. For the latter case, the outgoing amplitudes

read
√
2b1,0,+ = −

√
2b1,0,− = r0 − t0 and

√
2b1,−1,+ = −

√
2b1,−1,− = d−1,0,r − d−1,0,t. The

locii of these expressions are shown in Fig. 5.8b. Strikingly, their characteristics are close
to the behavior of trapping as well as perfect local outcoupling attributed to Solution
2: at θint = 43.0◦ and 2∆Φ0 = 0, the local outcoupling efficiency becomes maximized.
For 2∆Φ0 = π, one observes d−1,0,r − d−1,0,t ≈ 0 and r − t ≈ 1, indicating that the local
outcoupling efficiency is indeed suppressed and that the remaining power stays in the 0th

order. This remaining power is termed ’guided power’.

This behavior is further elaborated in Fig. 5.9. |b1,0,+|2+ |b1,0,−|2 and |b1,−1,+|2+ |b1,−1,−|2

for m = 1 are displayed as a function of 2∆Φ0. Herein, for each plane-wave component
of a beam, the former expression can be understood as a measure for the guided power
in the 0th order and the latter one for the local coupling efficiency into the -1st diffraction
order. Indeed, |b1,−1,+|2 + |b1,−1,−|2 becomes near to zero for 2∆Φ0 = π (indicating
trapping) and maximized for 2∆Φ0 = 0. Remarkably, for 2∆Φ0 = π, |b1,0,+|2 + |b1,0,−|2
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Figure 5.9: |b1,0,+|2 + |b1,0,−|2 and |b1,−1,+|2 + |b1,−1,−|2 at m = 1 as a function of ∆Φ.

Figure 5.10: Distributions of Re(Ey) and |Ey|2. The dashed black line marks the film
resonator’s symmetry plane. a) 2∆Φ0 = π b) 2∆Φ0 = 0. According to ref. [301].

a value of 99.97% of |⃗a1|2 although the grating consists of a lossy material. For 2∆Φ0 =

0, |b1,−1,+|2 + |b1,−1,−|2 reaches a value of 73.3% of |⃗a1|2, indicating the occurrence of
maximized local coupling. The difference to 100% originates from three contributions.
The first contribution is the local coupling efficiency into to other diffraction orders of
approximately 16.3% , the second contribution are Ohmic losses of around 10%, and the
third contributions is residual guided power of 0.4%.

The electric field distributions at 2∆Φ0 = π and 2∆Φ0 = 0 are displayed in Fig. 5.10a
and b, respectively. Herein, it is important to note that the relative phase change 2∆Φ0

is assumed to take place before the plane waves fall onto the dot. This way, the film
resonator can be assumed to be symmetric as its refractive index profile is dictated by
linear optics. For the first case, it can be observed that the field distribution is antisym-
metric with respect to the center plane of the waveguide grating and shows vanishing
values of |Ey|2 at the grating layer, indicating that the interaction of the grating with
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the incident waves is minimized. For the latter case, contrary observations of symmetric
field distributions and maximized values of |Ey|2 at the grating layer can be made.

The behavior of the subsequent dots (m > 1) is considered in the following lines. When
2∆Φ0 is fixed at π, the local outcoupling efficiency of all subsequent dots remain small
(Fig. 5.11a). This means that the beams are effectively trapped and remain trapped. At
m = 100, |b1,0,+|2 + |b1,0,−|2 decreased to a value of 97% of |⃗a1|2 (identical to 0.9997100),
confirming that trapping is preserved for each dot. Thereby, the observed decrease can be
attributed to Ohmic losses. Using θint and the thickness of the LiTaO3 layers to determine
L0, this decrease of the guided power over m can be attributed to a propagation length
of Lprop ≈ 3 m. Concerning a fixed value of 2∆Φ0 = 0, |b1,0,+|2 + |b1,0,−|2 is dampened
over a short distance due to maximized local outcoupling as well as losses. The resulting
attributed propagation length is Lprop ≈ 0.3 mm. It is anticipated that these values are
close to the ones for a full calculation using beams of finite size (see Section 5.3).

To express these results in the same language as for the hybrid FW-BICs in Section 4.3, a
radiative component of the Q-factor (Qr) and a total Q-factor is attributed to the waves
propagating in the 0th order. Their values are displayed in Fig. 5.11b as function of
2∆Φ0.

For the simulated waveguide grating at hand, maxima of Q and Qr of around 7 · 107 and
8 · 109 are observed, respectively. The corresponding minima of Q and Qr are 5 · 103

and 1 · 104. For an ideal scattering matrix fulfilling the conditions for Solution 2 and
perfect local outcoupling, Qr would show values between zero and infinity. The observed
deviations from an ideal film resonator occur due to slightly imperfect coupling coefficients
(di,0,r ≈ di,0,t and t0 ≈ −r0) and the presence of Ohmic losses.

To show that the control of |b1,0,+|2+|b1,0,−|2 and |b1,−1,+|2+|b1,−1,−|2 is available on a local
level, another result of a simulation is shown for which a fixed value of 2∆Φ0 = π (Fig.
5.11c). As described before, the waves propagate with a permanent phase relation of π
through the waveguide grating and the beams are trapped. Now, another phase shift of
π is introduced at the 50th dot to cause maximized local outcoupling at the 51th. Indeed,
maximized local outcoupling analogous to the case of 2∆Φ0 = 0 in Fig. 5.9 occurs.
Therefore, light can be locally outcoupled from the waveguide by locally controlling the
phase 2∆Φm.

So far, only one distinct wavelength λ has been considered. To show that the same
phenomena occur at a broad range of incident angles and wavelengths, the contrast

CPW =
max(|b−1,0,+|2(2∆Φ0))

min(|b−1,0,+||2(2∆Φ0))
(5.40)
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Figure 5.11: a) Relative guided power in the waveguide for 2∆Φ0 = π (black line) and
2∆Φ0 = 0.0 (red line). b) Radiative and total Q-factors Qr and Q as a function of
2∆Φ0. c) Demonstration of the control of the local outcoupling efficiency by choosing
2∆Φ0 = π and 2∆Φ50 = π. These conditions mean that trapping is initiated at m = 1
and maximized local outcoupling (near perfect local outcoupling) is initiated at m = 51.

and the error function

Ferror = (|t0| − 0.5)2 + (|r0| − 0.5)2 (5.41)

are calculated. Infinite contrast values indicate trapping. The error function becomes
zero for |t0| = |r0| = 1/2 and indicates that no power is left in the 0th order after passing
the film resonator as a result of perfect local outcoupling (see Section 5.1).

The simulated values of Ferror and the CPW are displayed in Fig. 5.12a and b, respectively.
Note that for later comparisons with experimental data, the outcoupling angle θext with
respect to air is used. It is linked to θint via
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Figure 5.12: Calculated values of the Error function Ferror from Eq. 5.41 (a) and the
contrast CPW from Eq. 5.40 (b) (According to ref. [301].). The simultaneous occurrence
of Ferror = 0 and infinite values of CPW correspond to the fulfillment of the conditions
for trapping and perfect local outcoupling. The markings (1), (2), (3) and (4) can be
attributed to the leaky eigenmode pairs TE0/TE1, TE2/TE3, TE4/TE5, and TE6/TE7,
respectively. c,d) Corresponding values attributed to an isolated grating.

θext = arcsin (n′
LiTaO3

sin θint −
λ

Λ
) (5.42)

The Ferror exhibits values near to zero along the dispersion relations of the leaky eigen-
modes. Strikingly, infinite contrast values occur on ellipse-like lines near the dispersion
relations of the leaky eigenmodes (Fig. 5.12b). It is thus obvious that the phenomena
described in Fig. 5.9 are not singular with respect to λ and θext as it would be the case
for BICs. Quite the contrary, these infinite contrast values can be found over a vast range
of λ and θext.

From these observations, it can be concluded that the elements of Sm become almost
ideal with respect to the conditions mentioned in Section 5.1 as a result of resonance.
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Figure 5.13: Simulated values of |b1,−1,+|2 + |b1,−1,−|2. These values can be interpreted as
the local coupling efficiency into the −1st diffraction order for the first dot (m = 1). a)
2∆Φ0 = π. b) 2∆Φ0 = 0.

Thereby, the film resonator’s (linear) mirror symmetry with respect to the z-direction
enforces the occurrence of trapping and maximized local outcoupling (near perfect local
outcoupling) over a broad spectral range.

In comparison, when the film resonator is replaced by an isolated diffraction grating
(identical to the one in the film resonator), significantly smaller contrasts as well as
values of the error function far above zero occur (Figs. 5.12c and d). These results
indirectly confirm the necessity of the film resonator.

A plot of |b1,−1,+|2+|b1,−1,−|2 displays the local coupling efficiency into the −1st diffraction
order as a function of 2∆Φ0 is shown in Fig. 5.13. For 2∆Φ0 = π, |b1,−1,+|2 + |b1,−1,−|2

is almost zero in the entire parameter range, whereby the smallest values occur at wave-
lengths and external angles for which the contrasts in Fig. 5.12a are infinite. On the
contrary, for 2∆Φ0 = 0, |b1,−1,+|2 + |b1,−1,−|2 reaches values of around 80% of |⃗a1|2 along
the dispersion relations of the eigenmodes.

At this point, the waveguide grating’s response to plane-waves is fully characterized. In
the next sections, the effects of finite beam sizes, unequal input amplitudes will be consid-
ered. Subsequently the theoretical model at hand will be compared with experimentally
obtained data, whereby the effects of local inhomogeneities and global asymmetries will
be introduced in the context of this comparison.
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Figure 5.14: Effects of the finite beam size on the beam power Pm,0,+ + Pm,0,− in the 0th

order as a function of m (the guided power). It is normalized to the input power Pin. The
solid black line corresponds to 2∆Φ0 = π and the solid red line corresponds to 2∆Φ0.

5.3 Effects of Finite Beam Size

In the last section the response of an exemplary waveguide grating to plane waves has been
investigated. Although this response already reveals the core characteristics of trapping
and perfect local outcoupling, there remains the transition to beams of finite size. To
model both beams, they can be decomposed into plane-wave spectra (see Chapter 2). This
way, the response of the waveguide grating to the beams can be constructed from the
plane-wave responses known from Section 5.2. Due to the large dimensions of the LiTaO3

layers with respect to the z-direction, the power of the beams in the 0th diffraction order
as well as in all diffracted beams can be regarded as far field phenomena. Therefore, to
evaluate the local outcoupling efficiency or efficiency attributed to the guided power of a
dot, the integral can be directly executed over the values of |bm,ν,+|2 and |bm,ν,−|2 obtained
from the plane-wave response. This method is stated as ’Finite Beam RCWA’ (FB-
RCWA) in the literature [329]. Hereby, it is important to note that the electromagnetic
fields of the beams, including their full amplitude and phase information, are rigorously
calculated throughout their propagation in the waveguide.

For the remaining discussion, a Gaussian intensity profile with translational invariance
with respect to the y axis is chosen. Beams with such intensity profile are termed ’Gaus-
sian beams’. To provide comparable conditions as for the experiments shown later on,
the divergence angle and initial lateral spot size of the Gaussian beams are fixed at values
of 0.5 mrad and 0.5 mm. Furthermore, the intensity profile is normalized in a way that
both Gaussian beams share an initial power Pin per unit length in the y-direction of
P1,0,+ + P1,0,− = Pin with Pm,ν,+ and Pm,ν,− as the powers of the beams (per diffraction
order) in the upper and lower half-space, respectively. To give an example, Pm,0,+ and
Pm,0,− are obtained via integrating over |bm,0,+|2 and |bm,0,−|2 in the k-space [329].
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Fig. 5.14 shows an analogous calculation as for Fig. 5.11 with an internal angle of
θint = 43.0 and λ = 632.8 nm. Strikingly, the introduction of a finite beam size does
not seem to affect trapping in an obvious way. A closer look at the data reveals that the
guided power behind the first dot for 2∆Φ0 = π is now 99.96% of Pin instead of 99.97% of
|a⃗1|2. This marginal difference originates from small residual local outcoupling efficiency
of around 3·10−5Pin introduced by misaligned plane-waves with respect to the parameters
for infinite contrast in Fig. 5.12. For 2∆Φ0 = 0, the local coupling efficiency into the
−1st diffraction order is still 73.3% These values mean that the propagation length for
Gaussian beams with a relative phase of π is still in the meter range. These facts can be
intuitively understood by taking two considerations into account. The first consideration
is, that the divergence angle of the Gaussian beams is small and the spot size is relatively
large. Under these conditions, the Gaussian beams are mostly described by a single
plane wave component. The second consideration is, that the matrix formalism model in
Section 5.1 links the amplitudes and phases of plane waves together as if the plane waves
would not overlap with each other. This way, plane waves from separate dots do not
affect each other. For these two reasons, calculations using plane waves already represent
useful approximations for all beams of small divergence angles (as long as there is no
self-interference).

To confirm that the procedure above produces trustworthy results, the response of a dot
to two Gaussian beams is calculated via FEM as an independent method, whereby the
divergence angle and lateral spot size are chosen to 0.5 mrad and 0.5 mm as well. The
results of this calculation are shown in Fig. 5.15. Hereby, it has to be mentioned that
the implemented refractive index LiTaO3 in the simulation tool (COMSOL Multiphysics)
is given by n′

LiTaO3 = 2.17 at a wavelength of λ = 632.8 nm. Here, this value is also
assumed for calculations via the matrix formalism to enable a valid comparison to the
numerical calculations. The power scattered away from the dot is measured via a far
field monitor. The scattering angle α is defined in the x-z plane and visualized in Fig.
5.15a. The scattered power for 2∆Φ0 = 0 is shown in Fig. 5.15b. The local coupling
efficiency into the −1st diffraction order is 71.1% and both Gaussian beams behind the
dot are of near zero relative phase. For 2∆Φ0 = π (see Fig. 5.15c), the guided power
behind the first dot for 2∆Φ0 = π is 99.8%, and the residual local outcoupling efficiency is
7.3·10−5Pin. Importantly, the relative phase of the beams behind the dots is 0.9991π and,
thus, confirms the results obtained via the matrix formalism. Strikingly, the calculated
values of P1,ν,+ and P1,ν,− equal the numerically obtained values within a relative error
of 0.7%.

This small error may occur as a result from slight numerical inaccuracies due to the
required large mesh density of the grating. Nonetheless, the numerical simulations inde-
pendently demonstrate the occurrence of trapping and maximized local outcoupling and
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Figure 5.15: Numerical calculation to confirm the results obtained via FW-RCWA. a)
Definition of the scattering angle α. b) Far field power under 2∆Φ0 = 0. b) Far field
power under 2∆Φ0 = π.

validate the use of FB-RCWA for the following sections.

5.4 Effects of Unequal Beam Powers and Varying Rel-

ative Phases

So far, all calculations have been done under the assumption that all plane-waves and
Gaussian beams are of equal amplitudes and power values, respectively. In reality, such
condition is obviously not always true. Scattering events and inhomogeneities may put
the beams out of balance. Second, for a real device, the beams must be somehow coupled
into the waveguide grating in the first place so that they might begin their propagation
with unbalanced power values right away. So far, it is unclear how such imbalance affects
both trapping and perfect local outcoupling.

To discuss this apparent problem, the entries of Sm are revisited under plane-wave in-
cidence as described in Section 5.2. It can be recognized that these entries behave in a
special way: as the waveguide grating is symmetric and homogeneous, it can be assumed
that the amplitude vector of an (m+ 1)th dot is related to the input amplitudes of each
plane-wave component of the Gaussian beams via

a⃗m+1,0 = Rm
0 a⃗0,0 (5.43)

Hereby, any phase shifts between the dots which do not change the phase relation between
both beams are neglected. For simplicity, an absence of loss and the conditions for
Solution 2 are assumed. These assumptions are mathematically expressed by choosing
T = 1. Explicitly inserting r0 and t0 into Rm

0 then leads to the expression
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Figure 5.16: The leveling of Gaussian beams for an initial choice of P1,0,+ = Pin and
P1,0,− = 0 at λ = 632.8 nm. The solid red and black lines correspond to θint = 43.0◦ and
θint = 42.7◦, respectively. For the former value, resonance is present.

Rm
0 =

(
(r0 − t0)

m + (r0 + t0)
m (r0 + t0)

m − (r0 − t0)
m

(r0 + t0)
m − (r0 − t0)

m (r0 − t0)
m + (r0 + t0)

m

)
(5.44)

From the previous Section 5.2 it is known that the waveguide grating exhibits the property
|r0 + t0| < |r0 − t0|. Without further proof, this property also prevails for different
wavelengths than λ = 632.8 nm. It is then obvious that (r0 + t0)

m becomes smaller than
(r0 − t0)

m with increasing m and Rm
0 converges to

lim
m→∞

Rm
0 =

(
(r0 − t0)

m −(r0 − t0)
m

−(r0 − t0)
m (r0 − t0)

m

)
(5.45)

As this matrix has entries of equal amplitudes and reversing signs, any set of input
amplitudes results in equal amplitudes for infinitely large values of m. This phenomenon
is called ’leveling’. The results of an exemplary calculation of leveling are shown in Fig.
5.16. The same waveguide grating as in Fig. 5.9 is considered.

A worst case scenario is chosen: The entire input power is in the upper beam and no power
is in the lower beam for m = 1 (P1,0,+ = Pin). Two sets of parameters are considered: res-
onant conditions (θint = 43.0◦, λ = 632.8 nm) and non-resonant conditions (θint = 42.7◦,
λ = 632.8 nm). The normalized difference of the beam powers |(Pm,0,+ − Pm,0,−)|/Pin

is displayed as a function of m. It can be observed, that for both conditions, the power
difference of the beams converges to zero, whereby significantly faster convergence occurs
at resonance. These observations confirm that leveling takes place under initially unequal
beam powers.

It is important to note that this leveling is consistent with the previous descriptions and
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includes both trapping and perfect local outcoupling as special cases: In the absence of
loss (r0 − t0 = 1), equal input amplitudes under 2∆Φ0 = 0 enforce a⃗m+1,0 = 0 (perfect
local outcoupling) and |⃗am+1,0|=1 under 2∆Φ0 = π (trapping). More general, similar to
a tilted polarizer, any set of input parameters can be converted into a basis of a trapping
and perfect local outcoupling

(
a0,+

a0,−

)
=

1√
2

[
A0

(
−1

1

)
+B0

(
1

1

)]
(5.46)

with A0 = (a0,+−a0,−)/
√
2 and B0 = (a0,++a0,−)/

√
2. When the conditions for trapping

and perfect local outcoupling are fulfilled, the power of an input beam is automatically
split up into a trapped part (Ptrapped) and a part which is outcoupled (Prad). Herein,
the total power being trapped and being outcoupled is given by a weighted integral over
|A0|2(k′

x) and |B0|2(k′
x), respectively (see Section 5.3). When the beams are dominated

by respectively one plane-wave, as for lasers, these integrals become approximately

Ptrapped

Pin

= |A0|2 (5.47)

Prad

Pin

= |B0|2 (5.48)

It is now assumed that both Gaussian beams at m = 1 can be represented by a pair of
amplitudes (abeam,+, abeam,−) and a relative phase 2∆ΦB

(
abeam,+

abeam,−

)
=

(
cos(αB)

sin(αB) · e2j∆ΦB ,

)
(5.49)

whereby αB determines the amplitude ratio between both beams. Then, Ptrapped reads

Ptrapped

Pin

=
1

2
[sin2 (αB) sin

2 (2∆ΦB) + sin2 (αB) cos
2 (2∆ΦB)

− 2 sinαB cosαB cos (2∆ΦB) + cos2 (2∆ΦB)]

(5.50)

To provide some examples of Eq. 5.50, the waveguide grating discussed in Section 5.2 is
considered under varying selections of unequal beam powers and relative phases.

In the first example, the entire input power is in the upper beam (P1,0,+ = Pin) and no
power is in the lower beam. According to Eq. 5.46, this condition leads to A0 = −B0.
Therefore, approximately one half of the input power should be trapped and the other
half should be outcoupled or absorbed via Ohmic losses. Fig. 5.17a shows the behavior
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Figure 5.17: Separation of beams of unequal power values and varying relative phases at
λ = 632.8 nm and θint = 43.0◦. a) Evolution of (Pm,0,+ +Pm,0,−)/Pin for an initial choice
of P1,0,+ = Pin. This choice means that only one beam falls onto the first dot. Here,
approximately 50% of Pin are trapped. b) Evolution of (Pm,0,+ + Pm,0,−)/Pin for varying
values of 2∆ΦB. Here, both input beam powers at the first dot are identical. Depending
on the values of 2∆ΦB, a smaller or larger part of Pin is trapped in the waveguide grating.
Generally, any initial set of input beam amplitudes and phases can be separated into a
trapped part of power Ptrapped and an outcoupled part of power Prad.

of (Pm,0,++Pm,0,−)/Pin as a function of m. The internal angle of incidence is θint = 43.0◦

and the wavelength is λ = 632.8 nm, so that resonant conditions are present (see Section
5.2). Indeed, (Pm,0,+ + Pm,0,−)/Pin rapidly converges to a value of approximately 0.5,
indicating that the descriptions above are correct.

In the second example, equal beam powers are chosen (αB = 0.25π) and their relative
phase is varied (Fig. 5.17b). Here, an evaluation of equation 5.50 leads to the expression

Ptrapped

Pin

=
1

2
(1− cos (2∆ΦB)) (5.51)

For some selected values of the relative phase, Ptrapped/Pin exhibits values as displayed in
Table 5.4

2∆ΦB Ptrapped/Pin

0.0 π 0.0
0.25 π 0.146
0.5 π 0.5
0.75 π 0.853
1.0 π 1.0

It can be observed that the calculated values are close to these expected values, confirming
that the splitting of power into a trapped part and an outcoupled part is indeed present.
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As a matter of course, for any system with Ohmic and residual scattering losses, Ptrapped

is at least slightly smaller than predicted by equation 5.46. Here, as already mentioned
in Section 5.3, the deviation from trapping in the absence of loss and the absence of
finite beam sizes is around 0.04% per dot. Nonetheless, this finding means that a small
disturbance away from the conditions of a trapping does not lead to a breakdown of
trapping. Instead, a small portion of light is radiated away and the remaining light
stays trapped in the waveguide grating. This behavior is termed ’self-stabilization’. As a
matter of course, local changes of the relative phase (or amplitude corrections) could be
introduced to either increase |A0|2 or |B0|2. Therefore, the two beams in the waveguide
can be switched between trapping and maximized local outcoupling (up to perfect local
outcoupling) at any lateral position in the waveguide. Note that equivalent observations
can be made for a hypothetical system obeying Solution 1.

An experimental realization of such switching together with other experimental data
will be presented in the next section. Throughout this section, other influences like
geometrical asymmetries and concrete calculations of the effects of local inhomogeneities
will be introduced along with the discussion of these experimental data.

5.5 Comparison to the Experiment

In this section, experimental data of a waveguide grating will be provided and compared
to simulation.

These experimental data were obtained with a waveguide grating as displayed in Fig.
5.18a. A laser beam of a radial Gaussian intensity profile (here also referred to as ’Gaus-
sian beam’) is coupled into the waveguide grating via a grating coupler (Fig. 5.18b, left).
This coupled Gaussian beam crosses the resonator and splits into two beams. After lev-
eling, the phase between the two beams is locally tuned via the Pockels effect using two
tip electrodes. Again, the c-axises of the lithium tantalate layers are of opposite direction
with respect to each other, whereby both c-axises are parallel to the z-direction. This
way, the electric field of the tip electrodes increases the refractive index in one layer and
simultaneously decreases it in the other layer. This refractive index difference causes the
desired change of the relative phase. Without any phase change, scattering and diffrac-
tion of light out of the waveguide grating is observed. This behavior is displayed in the
photographs shown in Fig. 5.18c. For a better visibility of these phenomena, zoomed
versions of these photographs with inverted colors and an increased gamma value of 1.5
are displayed besides the original photographs. Here, gamma is referred to the gamma
value known from standard image processing. Scattered light appears pink. The individ-
ual dots can be clearly recognized in these photographs. Strikingly, for a certain applied
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Figure 5.18: a) Rendered illustration of the waveguide grating used in experiment. b) The
waveguide grating geometry used for experiments. In addition to the geometry explained
in Fig. 5.7, there is a coupler region exhibiting an incoupling grating. c) Photograph
of the sample without any applied voltage at the tip electrodes. The enlarged insets
show the light which is diffracted and scattered away from the waveguide. For better
visibility, color-inverted images are shown on the right side. d) Analogous photographs
and enlarged insets of the sample with a tip electrode voltage causing trapping between
them. From ref. [301].

voltage, which corresponds to a phase change of π at both positions marked by ’x’, it
is then observed that scattering and diffraction are suppressed between both electrodes
(Fig. 5.18d). This observation indicates the presence of trapping.

To model these experimental conditions and to estimate how the effects explained in the
last section affect the broadband behavior of trapping and maximized local outcoupling,
Gaussian beams with a divergence angle of 0.5 mrad and an initial spot size of 0.5 mm
are used. These values fit well to the data of the laser used for the experiments. To take
into account the effect of the incoupling grating, the initial beam powers are chosen to
P1,0,+ = Pin. The leveling of the beams is simulated by assuming a propagation over
L = 20 dots prior to any local phase shift events. Now, a local phase shift of ∆Φ0 is
considered, whereby the counting of m starts at the 21st dot. The attributed contrast

Cm =
max(ηm(2∆Φm−1))

min(ηm(2∆Φm−1))
(5.52)

with the local coupling efficiency into the -1st diffraction order ηm = Pm,−1,+ is shown in
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Figure 5.19: a) Simulation setup to mimic the experimental conditions. b) Contrast of
Gaussian beams after leveling over L = 20 dots (m = 1). c) Contrast after propagation
over m = 100 dots under trapping. d) Contrast toward m → ∞. The subfigure (d) is
from ref. [301].

Fig. 5.19.

These contrast values Cm are reduced in comparison to the ones under plane-wave in-
cidence (see Fig. 5.12). This is of no surprise as the local outcoupling efficiency of the
Gaussian beams results from an averaging over a spectrum of plane-waves. In conse-
quence, only a few single plane-waves of this spectrum may exhibit trapping, whereby
the remaining plane-waves exhibit local outcoupling efficiency values near to zero. In ad-
dition, even after a propagation of 20 dots, the amplitudes of the beams are not perfectly
equal as leveling occurs asymptotically toward infinite m. Due to these two reasons, the
local outcoupling efficiency of the beams is slightly larger than zero. Nonetheless, con-
trast values of C ≈ 105...106 along the dispersion relations of the leaky eigenmodes are
observed (Fig. 5.19b). Now, the phase relation between both beams at m = 1 is chosen to
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π to ensure that the beams propagate under trapping. This phase selection represents the
first electrode. The second electrode is then modeled via a second phase shift at m > 1.
Plane-wave components, which do not exhibit large contrast values, are dampened by
outcoupling and only those components remain which are inherently trapped and exhibit
the largest contrast values. In accordance, it is observed, that the contrast values with
increasing values of m asymptotically approach the ones under pure plane wave incidence
(see Section 5.2). This can be seen by comparing the contrast values for m = 100 and
m → ∞ in Figs. 5.19c and d with the ones in Fig. 5.12b, respectively.

It is important to recognize that these contrasts have still been evaluated by sweeping a
freely choosable phase 2∆Φm−1 over the entire range from 0 to 2π. In this experiment,
the relative phase is provided by an external electric field. To give an estimate how this
link to a physical process affects trapping, the relative phase is approximated by

2∆Φm−1 =
8π

λ

∆n(Em−1)t

cos θint
(5.53)

Hereby, Em−1 is assumed as a homogeneous electric field strength between the dots m−1

and m. As a matter of course, the true electric field is not homogeneous. Therefore, the
following data might slightly differ from the true ones attributed to the tip electrode. Fig.
5.20 shows the values of the normalized local coupling efficiency into the -1st diffraction
order

ηm,normalized =
Pm,−1,+ + Pm,−1,−

Pm−1,0,+ + Pm−1,0,−
(5.54)

as a function of Em−1 for m → ∞. The values of ηm,normalized can be interpreted as a
local coupling efficiency into the -1st diffraction order which is normalized to the power
incident on the mth dot instead of to Pin. Similar to Fig. 5.13, ηm,normalized can be tuned
between values of 0% and 80% along the entire displayed range of wavelengths. The
striking difference to a freely choosable relative phase 2∆Φm−1 is the presence of lines of
constant relative phases (white dashed lines), which depend on the applied field strength.
In other words, 2∆Φm−1 is dependent on the wavelength and outcoupling angle and a
line of constant relative phase crosses the dispersion relations of the film resonator’s leaky
eigenmodes. The consequences of this behavior will be discussed later on in Chapter 6.
For now, the important point to remember is that linking the phase relation between the
two beams to a physical process may alter the occurrence of trapping in comparison to Fig.
5.13. Nonetheless, the observations for Fig. 5.19 imply that the trapping between the two
electrodes (Fig. 5.18) can be reproduced by the simulation model over a broad spectral
range even when the effects of finite beams and unequal input powers are taken into
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Figure 5.20: a-c) Values of ηm,normalized for m → ∞ as function of a local external field
Em−1.

account. As a matter of course, a more quantitative comparison with the experiment is
desired which does not depend on assumptions of the homogeneity of the external electric
field.

One simple way to quantitatively compare the simulation model with experimental results
is the use of homogeneous electrodes. Such a setup using is displayed in Fig. 5.21.

Here, the electric field in the LiTaO3 wafers can be assumed as homogeneous in good
approximation. As the wafers are thick compared to the resonator, they dominate the
capacity of the waveguide grating and the phase shift between both beams can be ex-
pressed by Eq. 5.53 by setting Em = Eg (and therefore 2∆Φm = 2∆Φ). Both the
validity of Eq. 5.53 for the sample and the homogeneity of the electric field are confirmed
by conventional interferometry. Using this setup, various experimental data have been
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Figure 5.21: a) Sketch of an experimental setup using homogeneous electrodes. b) Cor-
responding notation of phases and definition of L and m. According to the descriptions
in ref. [301]

obtained.

Before these data are compared to the model at hand, the characteristics of ηm attributed
to such homogeneous electrode will be presented. Subsequently the effects of global
asymmetries and local inhomogeneities will be discussed. Herein, ηm is normalized to its
maximum value for each value of m.

The one corresponding to the symmetric waveguide grating (Fig. 5.22a) can be under-
stood as follows. Due to the globally applied field, the phase relation between the beams
is altered by the same phase 2∆Φ. Along Eg = 0, the same situation as for 2∆Φ0 = 0

in Fig. 5.11 is present. For Eg ≈ 3.9 kV/mm, the beams are trapped for m = 1. Subse-
quently, the relative phase is shifted by 2∆Φm ≈ π again and ηm is maximized. This way,
trapping and maximized local outcoupling alternate. Consequently, for both these values
of Eg the propagating beams are dampened by local outcoupling and the guided power
tends to zero with increasing m. However, at distinct values of Eg, the accumulated
phases add up in a way that maxima of ηm are present. These maxima are symmetrically
distributed around values of Eg which correspond to a phase shift of 2π.

Global asymmetries mean that the entire waveguide grating is characterized by the same
asymmetry of the geometry for every dot. Three cases are considered: first, an asym-
metric change of the upper OrmoCore layer from 1900 nm to 1950 nm. Second, an
asymmetric grating profile with a surface profile matched to an atomic force micrograph
of the transfer-printed binary grating. Third, an asymmetric thickness difference of the
wafers corresponding to a phase shift of 0.25λ per dot. These three cases are displayed,
along with the initial symmetric waveguide grating, in Fig. 5.22b-d. The graphs show
ηm as a function of Eg at λ = 632.8 nm and θ = 42.9◦. An asymmetric change of the
bottom Ormocore layer from 1900 nm to 1950 nm induces asymmetric amplitudes of the
maxima (Fig. 5.22b).

An asymmetric grating profile with otherwise fixed parameters leads to a formation of
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Figure 5.22: Effects of global asymmetries. a) Symmetric waveguide grating as reference.
b) Asymmetric OrmoCore layer thicknesses (1950 nm top, 1900 nm bottom). c) Asym-
metric grating shape. d) Asymmetric wafer thicknesses.

oscillations with respect to Eg, which are dampened out with increasing values of m (Fig.
5.22c). These oscillations occur as a result of additive phase terms and are a typical
sign for strongly asymmetric coupling coefficients due to either non-resonant conditions
or other asymmetries. Here, the shift of the excitation angle of the eigenmode dominates
this occurrence of oscillations. Concerning an asymmetry induced by unequal thicknesses
of the LiTaO3 layers (Fig. 5.22d), a constant shift with respect to Eg is observed in
comparison to the characteristics of the symmetric waveguide grating. These cases cover
the most important global asymmetries.

Now, the effects of local inhomogeneities are considered (Fig. 5.23). These inhomo-
geneities are implemented as a local parameter change of the waveguide grating at m = 10

with respect to either the OrmoCore layer thicknesses (a), the grating layer thickness (b),
the ratio of the beam amplitudes (c), and the wafer thicknesses (d). The corresponding
parameters are shown in the caption of the Fig. 5.23. It can be observed that all these
effects lead to distinct asymmetric characteristics of ηm.

All these characteristics above are used to fit the simulation model to the experimental
data. Herein, it is important to note that the effects of global asymmetries and local
inhomogeneities are distinguishable from each other, so that a fit to experimental data
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Figure 5.23: Effects of a local inhomogeneity introduced at m = 10. a) Inhomogeneity of
OrmoCore layer thicknesses (top 1950 nm, bottom 1900 nm) b) Inhomogeneity of grating
layer thickness (60 nm instead of 30 nm). c) Inhomogeneity leading to unequal beam
amplitudes d) Inhomogeneity of the wafer thicknesses, causing a local phase shift of 0.4λ.

enables an unambiguous assignment of geometry parameters. As a matter of course, only
physically reasonable asymmetries or inhomogeneities are introduced to ensure that the
simulated values still allow a judgement of the model’s validity. In detail, thickness vari-
ations were assumed to be below the tolerances of fabrication procedures. The grating
geometry was strictly modeled according to AFM data [301]. Concerning the OrmoCore
layer thicknesses, the best agreement between the simulation and experimental data is
found with values of 1882 nm and 1900 nm (top and bottom). No further global asym-
metries are assumed. One local inhomogeneity is assumed at m = 1 to match initially
unequal input amplitudes and phase relations. Three more inhomogeneities are present
at m = 11 and 12 as defects are obviously present. Strikingly, no other asymmetries or
inhomogeneities are assumed between m = 1 and m = 11. Therefore, the behavior of
ηm within this region exhibits valuable physical information. A comparison between the
experimental data and the simulated ones shows excellent agreement and confirms the
validity of the simulation model (Fig. 5.24).
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Figure 5.24: Comparison of experimentally obtained values of ηm (a) and simulated values
(b) at λ = 632.8 nm and θext = 19.65◦. The characteristics of both the measured and
simulated data agree well with each other and, thus, confirm the existence of trapping
and maximized local outcoupling.

Figure 5.25: Measured and simulated values of ηm for different wavelengths. a) λ = 632.8
nm and θext = 19.65◦. b) λ = 532 nm and θext = 33.2◦. In both cases, trapping and
maximized local outcoupling can be confirmed. The data from subfigure (a) are from
ref. [301]

To show that the agreement between the model and the experiment is not only present
for one wavelength, different lasers are used. Fig. 5.25 shows a comparison of ηm of for
λ = 632.8 nm at θext = 19.65◦ and m = 15 (Fig. 5.25a), and λ = 532 nm at θext = 33.2◦

and m = 13 (Fig. 5.25b). Strikingly, large contrast values of 1236 (λ = 632.8 nm) and
511 (λ = 532 nm) can be observed. As these wavelengths and angles are in no distinct
relation to each other (e.g. a rational number), it is unlikely that these observations are
coincidental. Preliminary experiments show that the occurrence of trapping can even be
observed for an incoherent broadband light source.

Therefore, it can be concluded that trapping and maximized local outcoupling are indeed
present over a broad spectral range for the waveguide grating at hand. Summarizing
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their properties with respect to the challenges which have been brought up in Chap-
ter 4, they enable to incouple over a broad range of wavelengths and incident angles.
Subsequent to its collection with Lprop ≈ 0.3 mm, light can be trapped (Lprop ≈ 3 m)
with the help of local phase changes. In other words, all of these challenges have been
successfully addressed. Nonetheless, as these findings are an entirely new concept, their
potential consequences for solar concentrators need to be discussed. As this discussion is
of subjunctive nature, it can be found in the Outlook of this thesis (see Chapter 6).
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Chapter 6

Outlook

Over the course of this thesis, various systems with potential benefits for solar applications
have been introduced.

It has been shown that plasmonic systems consisting of AgNP metasurfaces on a silver
layer enable simultaneous broadband absorption and heat conductance, rendering them as
interesting for solar thermal applications such as water vaporization and thermo-electrics.
In addition, it has been demonstrated that the growth of AgNP under light illumination
leads to metasurfaces which are adapted to the light source in the form of an engineered
k-space. In the future, it is to question how this adaption to light could be used to
circumvent the limits of conventional plasmonic systems. Obvious applications could be
the use of the k-space engineered metasurfaces for plasmonically enhanced photovoltaics.
Assuming that the morphology of the metasurface could be transferred into transparent
dielectric media, scattering layers for solar concentrators could be achieved. For example,
a stealthy hyperuniform metasurface could potentially be designed in a way that light is
only scattered into angles above the critical angle of total internal reflection [233]. An-
other way to exploit the AgNP metasurfaces could be the following: considering that,
subsequent to their growth, the AgNPs could still move on the surface, they might dynam-
ically adapt to a moving light source (e.g. the Sun). This way, a self-tracking plasmonic
system might be built. A general drawback of plasmonic systems based on AgNPs is
their inherent Ohmic losses.

Concerning thin waveguide gratings consisting of loss-free materials, methods to achieve
long propagation lengths with the help of node eigenmodes have been demonstrated.
In an exemplary simulation of a waveguide grating, the propagation length (and, thus,
the concentration) could be increased by a factor of around 1000 without changing the
waveguide’s thickness or parameters of the grating layer. Instead, only the geometric
symmetry of the waveguide has been exploited, so that the filling factor attributed to node
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eigenmodes has been drastically reduced. Moreover, it has been demonstrated that this
elongation of the propagation lengths comes along with a drastic increase of the sensitivity
to environmental changes, rendering such waveguide gratings as potentially important
for sensors and light modulators in the future. For the use of the elongated propagation
lengths for solar concentrators, it has been realized that many waveguide gratings would
need to be stacked. Preliminary experiments have shown that stacking indeed increases
the dynamic acceptance angle, but the necessary number of waveguide gratings leads to
an unpractically large fabrication complexity. Moreover, residual outcoupling has been
identified as another challenge.

Hybrid BICs have been identified as a way to turn the outcoupling efficiency down to
zero. They could be experimentally observed. However, hybrid BICs are of singular
nature and zero outcoupling efficiency can only be achieved for one wavelength and one
outcoupling angle. Furthermore, Ohmic losses forbid to reach long propagation lengths.

For all these systems, it has been further recognized that their passive nature does not
solve the initial problem of Sun-tracking. As a prerequisite for Sun-tracking, it has been
identified that a waveguide should be locally switchable between the broadband trapping
of light, and the propagation of light over large distances. This way, light could be locally
coupled into a waveguide and subsequently guided to a focus point.

These challenges have been tackled using active systems in the regime of the absence of
self-interference. Herein, the principle of achieving zero outcoupling efficiency for hybrid
BICs has been transferred onto the relative phase between two beams within a waveguide
grating. This way, the occurrence of zero outcoupling efficiency to radiation channels is
not singular anymore and can be locally affected. Via a simplified theoretical model and
the assumption of symmetry, conditions have been derived for which the beams can be
locally switched between trapping and perfect local outcoupling. Using an exemplary
waveguide grating, the existence of these phenomena has been demonstrated via the pro-
posed model, independent numerical simulations and in experiment. Briefly summarizing
these results, light can be locally incoupled, splitted into two beams, and subsequently
trapped via controlling the relative phase between the two beams. Strikingly, these phe-
nomena are present for a broad spectral range. In principle, they can be used to maximize
the concentration of light with respect to a moving light source, that is, tracking. How-
ever, with this knowledge, it is to question which challenges still do remain and how they
could be solved.

First of all, the use of homogeneous periodic layers has mainly been introduced to obtain
fundamental physical phenomena under controlled and analytically feasible conditions.
In fact, a grating diffracts light with via a lateral momentum transfer per diffraction order
ν of k′

x,ν/k0 = ν · λ/Λ. As a consequence, longer wavelengths are attributed to larger
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Figure 6.1: The dispersion relation, spectral width ∆λ and acceptance angle ∆θ of a
waveguide grating’s eigenmode vs. the spectral range and angular range attributed to
the Sun light. Only a small portion of the Sun light can couple to the eigenmode.

diffraction angles than shorter wavelengths (see Section 2.16). In a waveguide grating,
this behavior leads to a typical dispersion relation of an eigenmode as it is displayed in Fig.
6.1. Here, every wavelength is attributed to a different angle of incidence under which
the eigenmode can be excited. Therefore, subsequent to the collection of the Sun-light
into a waveguide based solar concentrator with an initial structure, the local momentum
transfer of a structure must be matched to the light’s local spectrum and momentum to
enable trapping. Finding an ideal (non-homogeneous) structure is, thus, an important
challenge towards solar concentrators based on trapping and perfect coupling. One way
to optimize future devices toward solar applications could therefore be the following: the
simplest geometries which can be used to match the angular and spectral range attributed
to Sun light are, as a matter of course, the ones which act on the zeroth order (e.g.
refractive optics, mirrors, etc.). Commonly, these geometries are bulky, so that their use
for the method at hand might be hard to realize. Nonetheless, there has been remarkable
progress on the field of certain metasurfaces in the recent years. These metasurfaces
introduce a phase gradient to bend the direction of the zeroth order. In practice, this
means that a thin structured layer acts like a mirror or beam steerer. Recent results have
shown that perfect coherence can be achieved for such metasurfaces [312]. Therefore, it
might be concluded that trapping and perfect local outcoupling could be realized using
metasurfaces to match the Sun’s spectrum and range of angles of incidence.

It is further important to question whether the Sun as an incoherent light source can be
switched between trapping and perfect coupling. Preliminary experiments could confirm
that this is indeed possible, wherein detailed investigation have to be carried out in the
future to quantify the local outcoupling efficiency as a function of the wavelength and
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angle of incidence.

Using structures which provide large lateral momentum, the average direction of two
trapped beams could be locally deflected within a waveguide toward a focal point. This
procedure is called ’local deflection’ and could be used to support or realize tracking.

It could also be considered to pre-focus light via external optics before it is trapped within
a waveguide. As a matter of course, this pre-focusing leads to a larger divergence angle
of the two beams within the waveguide. Therefore, the two beams would exhibit self-
interference after a short distance of propagation when no appropriate design measures
are considered. Such design measures could aim to spectrally split and distribute the
light over a phase shifter area (e.g. consisting of a matrix of electrodes), so that there
are enough degrees of freedom to enable both trapping and perfect local outcoupling
(or local deflection) across the entire spectral and angular range of the incident light.
Future studies should aim to investigate different phase shifter areas and light scattering
structures to optimize Sun-tracking. Herein, one additional information on trapping has
to be given. As photons are Bosons, two pairs of trapped beams do not disturb each other
even when their paths cross. This fact has been confirmed via numerical simulations. By
applying the same principle on the pre-focused light, this behavior suggests that the
conditions for trapping would not be broken even when self-interference becomes present
over light’s path of propagation. In this sense, the absence of self-interference is only
necessary to trap the two beams, but the subsequent introduction of self-interference
does not lead to local outcoupling. Future designs of solar concentrators should, thus,
take this possibility into account. Nonetheless, this argumentation is, at the current
point in time, mostly hypothetical and the behavior of both trapping and perfect local
outcoupling under the introduction of self-interference should be rigorously investigated
by numerics and experiments. From the logical point of view, the possibility to locally
switch between trapping and perfect local outcoupling (or local deflection) might be lost
during this process, so that the direction of light should be already set toward a focal
point before self-interference sets in.

Another challenge is that the control of the relative phase has been realized via a volume
effect (the Pockel’s effect) under high voltages. Causing relative phase shifts via other
physical effects or miniaturizing the waveguide grating’s dimensions (e.g. the thickness)
could lead to improved future devices using smaller voltages.

Taking all these arguments above together, trapping and perfect local coupling offer plenty
of promising options toward the realization of waveguide based solar concentrators using
active Sun-tracking without mechanical parts.
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