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This thesis analyzes SVE, a novel SIMD extension for Arm architectures. SVE removes

the concept of vector size from the ISA, which allows CPU implementations with dif-

ferent vector sizes to execute the same SIMD instructions. In our work, we ask what

consequences this has on application developers and computer architects. We select a

set of standard HPC benchmarks and applications for the analysis and rely on Gem5, a

state-of-the-art simulator for computer architecture research. We first evaluate the SVE

ISA by looking at the vectorization of specific loops and searching for new vectorization

opportunities. Afterward, we analyze how the VLA concept translates to algorithms

and kernels in HPC. Finally, we study how different SVE lengths impact the execution

and behavior of components in the microarchitecture. Our results show that the VLA

paradigm in many algorithms naturally extends the fixed-width SIMD implementation.

A larger SVE size results in better performance, especially in compute-bound kernels.

At the same time, we show that different SIMD widths in a CPU can significantly af-

fect the out-of-order execution and influence bottlenecks in various microarchitectural

components.
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Chapter 1

Introduction

1.1 Motivation

High-Performance Computing (HPC) has seen a substantial increase in computing power

over the recent decade. In June 2008, the first petascale system was introduced, which

could compute more than 1015 floating-point operations per second (Flop/s). Since

then, multiple research projects worldwide have aimed to achieve the exascale (1018)

mark. Finally, in June 2022, this goal was accomplished with the supercomputer Frontier

at Oak Ridge National Laboratory in the US. The machine reached a performance

of 1.1 EFlop/s on the High-Performance Linpack (HPL) benchmark. Many consider

this a noteworthy milestone due to estimates that a human brain operates at a similar

processing power at the neural level. However, this accomplishment does not change

much for HPC users and developers.

We can observe an exponential growth of computing power in the Top500 list, which

reports the five hundred fastest supercomputers globally [1]. Figure 1.1 shows the per-

formance of the first, last, and the sum of all machines on the Top500 list over time.

Such a long-lasting exponential behavior was first predicted by Gordon E. Moore in 1965

when he observed that the number of transistors in an integrated circuit doubles roughly

every two years [2]. Moore’s law will end in the not-so-distant future due to the physical

constraints of the semiconductors. However, this does not necessarily mean an end to

the HPC system performance growth, and the term zettascale has already been coined

in the HPC community. Therefore, the per-core and per-node capabilities will likely

continue increasing despite new challenges. The same holds for increased system-level

parallelism of combining nodes into a large-scale system. For example, today’s fastest

machines include hundreds of thousands of processors that can simultaneously work on

a single problem.

1
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Figure 1.1: Top500 performance over time
Taken from https://www.top500.org/statistics/perfdevel

In recent years, supercomputing centers based most of their systems on high-end server

processors (usually from Intel Xeon, AMD Epyc, or IBM Power processor families).

These processors offer a high throughput of operations due to their large number of cores.

Furthermore, they have a highly advanced microarchitecture in the Central Processing

Unit (CPU) that provides the best out-of-order capabilities. A dedicated Graphics

Processing Unit (GPU) often accompanies such machines and acts as a high-performance

accelerator. Modern GPUs can output tens of TFlop/s, and many HPC applications

offer the option to offload computationally expensive kernels to GPUs. Therefore, a

heterogeneous CPU-GPU architecture has become common for machines at the top of

the Top500 list.

In June 2020, Fujitsu introduced a new supercomputer Fugaku which implements an

Arm-based processor, the A64FX. Fugaku was a novel surprise in the ranking because

Arm-based machines were uncommon in the HPC community.1 The system took first

place on the list with an impressive 415 PFlop/s on the HPL benchmark. Another

interesting thing that stands out is the machine’s power efficiency. Despite having no

additional GPU devices, the power consumption relative to computing power (usually

measured in Flop/s/Watt) was similar to state-of-the-art machines with GPUs. The

A64FX chip features 48 cores and is the first to implement a new vector extension

from Arm called Scalable Vector Extension (SVE) [3]. Equipped with two 512-bit SVE

1Before Fugaku, the only Arm-based machine on the Top500 list was Astra at Sandia National
Laboratories in the US. (Astra implements the ThunderX2 processor.)

https://www.top500.org/statistics/perfdevel
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units and the high-bandwidth memory (HBM), a single node of the A64FX (running

at 2.2 GHz) has a theoretical peak performance of 3379 double-precision GFlop/s and

a theoretical memory bandwidth of 1024 GByte/s. With such impressive numbers, the

machine remarkably announced the coming of Arm in the HPC market.

1.2 Single Instruction Multiple Data

Many improvements in compute-power technology today originate from a concept of

parallelism. In a broad sense, parallelism describes a process in which many calculations

are executed simultaneously to solve a common task. This simple idea has become an

intrinsic principle in the design of modern processors. Therefore, to achieve maximum

performance on today’s high-end machines, it is crucial to exploit all kinds of parallelisms

that a machine offers. One part involves making an application scale to many cores &

nodes. HPC applications often use MPI for inter-node communication and OpenMP or

pthreads to utilize all cores inside each node (multithreading). The other side of par-

allelization refers to the in-core parallelization, which is often underutilized. The main

concepts for in-core parallelization are instruction-level parallelism and vectorization.

Instruction-level parallelism (ILP) is a term that encompasses the parallel execution of

different instructions within a core. Most instructions on today’s CPUs are pipelined.1

This means that the execution process of instructions accumulates through a pipeline.

Each pipeline stage is independent of others, and the execution of multiple instructions

within each functional unit can overlap. We use the term functional unit (sometimes also

called execution unit) to describe a hardware entity that executes a set of instructions.

Another aspect of ILP refers to CPUs having multiple functional units for the same

family of instructions. The CPU renames the instruction’s operands from architectural

state to physical registers, and the CPU scheduler schedules independent instructions

to different units to maximize the number of executed instructions per cycle (IPC).

Single Instruction Multiple Data (SIMD) or simply vectorization is an essential opti-

mization principle in today’s processors. It builds upon the observation that the same

stream of instructions often acts on many individual elements. Consequently, computer

architects started combining computation and forcing a Single Instruction to perform

operations on Multiple Data, hence the name SIMD. SIMD techniques were first in-

troduced with vector processors in the late 1970s.2 The central concept behind those

machines was an instruction set that operated on vectors rather than scalars. Vector

1An exception to this are instructions that require recursive computation, e.g., divide or square root.
2The first supercomputer which successfully implemented vector processing was CRAY-1.
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instructions took the size of the vector as an input parameter and executed the op-

eration on a vector of elements. Vector processing led the design of supercomputers

until the 1990s, when the design shifted to combining multiple machines into a cluster.1

However, the idea of SIMD parallelization persisted. In the early 2000s, scalar ma-

chines started implementing fixed-length SIMD extensions. This means that despite the

processor primarily targeting scalar instructions, dedicated execution units that could

operate on small vectors extended the instruction set with SIMD operations. We often

refer to these functional units simply as SIMD units. Today’s SIMD architectures im-

plement 128, 256, or 512-bit wide vector units that operate on floating-point and integer

data types. Examples include Streaming SIMD Extensions (SSE, SSE2, SSE3, SSE4)

and Advanced Vector Extension (AVX, AVX2, AVX512) for x86 and Advanced SIMD

(NEON) for Arm architectures.

SIMD operations offer a significant performance benefit compared to scalar operations.

This is most evident in compute-intensive applications, where the floating-point oper-

ation throughput limits the performance. Depending on the SIMD vector size and the

data type size, the throughput can be even an order of magnitude higher when SIMD

instructions are used. However, not all code can be vectorized. Because SIMD instruc-

tions operate simultaneously on multiple elements, it is impossible to use them when

data dependencies exist between elements.

1.3 Research goals

In this thesis, we perform an architectural exploration of a novel Arm SIMD extension

called Scalable Vector Extension. As we explain in Chapter 2, this extension brings

some new concepts to the SIMD Instruction Set Architecture (ISA). Most notably, the

size of the SIMD vector is not predefined in the architectural state but is restricted

to a set of values from 128 to 2048 bits. A processor implements a specific SVE size;

however, there is no notion of the vector size in assembly. Therefore, the same binary

can run on machines with different hardware vector lengths. We call such SIMD in-

struction set Vector-Length-Agnostic (VLA). This opens many new questions in terms

of programming and hardware implementation.

Firstly, we assess SVE and its capabilities for vectorizing various loops. SVE requires

unique loop control to generate VLA binaries, and we want to know if this leads to any

limitations in the loop vectorization. We then ask ourselves what kind of loops SVE can

vectorize and how this compares to other SIMD ISAs. Besides, we are interested if simple

changes in the SVE ISA could open new vectorization opportunities. For every new

1The first example of a computer cluster was the Beowulf cluster in 1994.
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ISA introduced on the market, some time is needed until the compiler engineers adopt

the new ISA technology into the compilers. Like HPC developers, compiler engineers

are even harder affected by a vector length agnostic instruction set. Therefore, we

want to analyze how compilers deal with the VLA concept and how it impacts auto-

vectorization decisions. Finally, we analyze if compilers recognize all SVE opportunities,

and where this is not the case, what is the effort of manual vectorization? We hope that

such analysis will give some insights into the current state of SVE and the maturity of

compilers.

Developers of HPC simulation codes know the potential benefit of a good SIMD uti-

lization. Traditionally, vectors have a predefined size, and when targeting a specific

architecture, developers can always make assumptions about the architecture’s vector

size. Having this information might also result in a specific design choice. For example,

a particular algorithm or data layout could better utilize the underlying vectors. In our

research, we would like to explore how VLA ISA affects the existing HPC codes and

the changes necessary to adapt applications to this new concept. Furthermore, we are

also interested in how the underlying algorithm changes when we target a VLA ISA.

For this work, we choose a set of HPC applications to study. We know that no two

applications are the same, and each application offers unique features to researchers.

However, many simulation codes share computational patterns, and choosing the right

set of applications can cover a wide range of HPC workloads. Besides, we want to select

applications widely used in the scientific community and encourage VLA concepts with

open-source contributions.

SVE has many advanced features compared to previous generations of SIMD sets. For

many complex kernels, there exist different approaches to loop vectorization, and the de-

veloper often has to choose one of several possible implementations. The difference might

arise with specific code refactoring or simply due to different (forms of) instructions.

Also, specialized gather-load and scatter-store instructions enable effortless vectoriza-

tion of outer loops (t.i. loops that contain other loops). By vectorizing outer loops, we

execute more code with SIMD instructions, but this requires additional work of reassem-

bling data in the SIMD registers. What performance benefits can we obtain for these

different types of vectorizations? Additionally, we analyze the SVE’s interaction with

the hardware by looking at the first implementation of SVE (the A64FX processor). We

inspect how different instructions are treated regarding execution latency, throughput,

and decoding. In particular, we look at advanced memory operations like gather-load

and scatter-store.

Since the SVE size is not predefined, the vendors implementing SVE in their chips must

decide on a particular size. Large vector units will lead to better performance but at
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the cost of higher power consumption and more transistors. Choosing the vector size

and the number of SIMD units is a significant design decision. Unfortunately, studies

have shown that it is hard to give a unique answer to which vector length is the best. It

depends on what kind of workloads the machine will run. With this in mind, we would

like to know what performance benefits are possible for applications when increasing the

vector size. In our experiments, we rely on Gem5, a simulator for computer-architecture

design exploration. We want to point out strongly that our goal is not to correctly

simulate real hardware in Gem5. We are aware that the model in Gem5 has significant

simplifications, and improving it would exceed the scope of this thesis. Therefore, we

would not like to base our findings on the absolute performance numbers achieved in the

simulator. Instead, we would like to base our results on relative numbers and see how

the performance changes when we change the application or specific parameters in the

microarchitecture. To make these conclusions applicable to real hardware, our model

must be realistic. We, therefore, want to configure the model similar to a real machine.

(In our case, this will be a Graviton 2 processor from Amazon.) Ideally, we want to see

how different SVE widths affect the out-of-order execution and occupation of resources

like the reorder buffer, reservation stations, or the load-store queue. Hopefully, this

will expose bottlenecks that may arise in the microarchitecture due to different SVE

implementations.



Chapter 2

Background

2.1 SVE

Arm introduced the concept of SIMD in the ARMv6 architecture in 2002. Initially, SIMD

instructions were associated with 32-bit integer SIMD registers. The SIMD ISA was

relatively small, with support for approximately sixty instructions. Their primary goal

was to implement audio and video encoders more efficiently in multi-media applications.

Throughout the years, the developers recognized the potential of SIMD for other use-

cases, and Arm expanded the SIMD with more features. The ISA and the register sizes

grew to a 128-bit Advanced SIMD. ASIMD is also known as the NEON technology for

the Arm Cortex-A and Cortex-R series processors and is implemented in most of Arm’s

chips today.

In recent years there has been a growing demand for longer SIMD vectors and more ad-

vanced SIMD features in the HPC community [4]. For x86 architectures, Intel proposed

the AVX-512 SIMD set in 2013, which has longer 512-bit vectors. Additionally, many

extensions of the AVX-512 started introducing advanced instructions offering support for

masking, permutation, conversion, and other operations. These enhancements pushed

SIMD capabilities very far, but not without a cost. As the number of transistors in

chips increased, the power consumption grew accordingly. To deal with this, frequency

downscaling has become a common phenomenon on some Intel machines. For example,

for workloads that rely heavily on AVX-512 instructions, the CPU clock frequency can

reduce by 40% to avoid too much heat dissipation [5]. This opens an important debate

as to which vector length is the most appropriate. Few studies have analyzed this, and

there did not seem to be a unique answer. Different applications utilize the SIMD units

differently, so the answer depends on the machine’s usage. Therefore, it is crucial to con-

sider the machine’s targeted users and demands when designing a new chip. Although

7
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vendors try to do that, users usually have pretty different requests, and it is impossible

to create a single chip that would accommodate all perfectly.

Scalable Vector Extension [3] is a new vector extension for ARMv8-A, introduced in 2017,

that tries to tackle the abovementioned problem. Traditionally, the SIMD extensions

had a predefined size of the vector register. In the case of NEON, 128-bit registers

can store data for different elements depending on the data type size: two elements

for 64-bit types or four (eight) elements for 32-bit (16-bit) data types. The same also

holds for SIMD extensions in the x86 architecture. Unlike these, SVE introduces a new

Vector-Length-Agnostic (VLA) instruction set. VLA means that the size of the SVE

register is not predefined in the ISA. It can range from a minimum of 128 to 2048 bits

in 128-bit steps. CPU vendors choose the vector size they want to implement in their

chip. Afterward, CPUs with different vector lengths support the same instructions and

can run the same binaries. Therefore, the SVE assembly has no notion of the underlying

vector size.

To stay concise, we introduce the following terminology. We denote the size of the SVE

vector in bits as bSVE :

bSVE ∈ {128, 256, ..., 2048} (2.1)

The slots that hold individual elements inside the SIMD register are called lanes. The

number of lanes depends on bSVE and the data type that fills the register. For a data type

d, the number of lanes is equal to bSVE/sizeof(d), if sizeof(d) is the size of data type d

in bits. We denote the number of lanes as lSVE . Unless otherwise specified, this symbol

refers to the number of lanes for 64-bit data types. Therefore, lSVE ∈ {2, 4, ..., 32}.
Additionally, we mark the number of SVE units inside the core as NSVE .

To denote the size of the data type, we use a standard notation from the Arm documen-

tation, which also translates to assembly syntax:

size (bits) name assembly size specifier

64 doubleword .d

32 word .w

16 halfword .h

8 byte .b

Table 2.1: SVE data type sizes
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2.1.1 Architectural state

SVE defines a new architectural state shown in Figure 2.1. Developers can use thirty-

two SVE vector registers named z0 -z31. These new registers are an extended version of

NEON registers, v0 -v31, which occupy the lowest 128 bits. As explained before, the size

of the SVE register bSVE is unknown to the developer and is a multiple of 128 bits. SVE

register can hold double-, single- and half-precision floating-point or integer numbers.

Figure 2.1: SVE architectural state

In addition, SVE introduces sixteen predicate registers p0 -p15 that play a crucial role

in constructing vector length agnostic loops. Most SVE instructions take a predicate

register as an input operand. Predicate register controls which lanes of the output

register are updated. The size of the predicate register is equal to bSVE/8. SVE sets

individual bits to one depending on whether a specific lane is active. For 8-bit data

types, each bit is used to construct a predicate. For doublewords, only the lowest bit

of each byte is set. Figure 2.2 shows an example of a simple SVE addition instruction

fadd z2.d, p0/z, z0.d, z1.d for lSVE = 6. The predicate’s first, third and fourth lane are

active (green color), and others are inactive (red color). Only elements corresponding to

the active predicate lanes are updated in the output register. Three forms of predicate

use are defined: Z- predicate form updates the inactive lanes of the output register to

zero (example in the figure), M- form merges the inactive lanes with those of the input

register, and X- form leaves them undefined.

Figure 2.2: Predicated add operation
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Lastly, SVE includes the First-Fault Register (FFR) and three control registers zcr el.

The purpose of the FFR register is to suppress the segmentation faults for first-fault

vector load instructions. Registers zcr el control the scalable vector system for different

Arm privilege levels. As a result, the SVE size can be reduced to a smaller value

within the maximum implemented hardware vector size. Therefore, the user can run

applications with a smaller vector size if needed.

2.1.2 Main features

This section briefly discusses some of the main SVE features we commonly reference

throughout the thesis. Here, we only give an overview of high-level concepts. A detailed

explanation with code examples is provided in Appendix A. (A certain familiarity with

assembly is needed to understand the examples.)

2.1.2.1 Predication

Predication is the central concept of the SVE’s design. Predicate registers drive decisions

in a vectorized loop control flow. In traditional SIMD architectures, predication is often

implemented by constructing a vector that holds a sequence of incrementing numbers

from a loop counter. Such vector is then used as an input to a vector compare operation

to check if any lane satisfies the loop’s exit condition. If yes, the remaining iterations

are computed with scalar instructions (called loop tail). This leads to a wasted register

and an additional compare operation. SVE overcomes this problem with a family of

while instructions. These instructions construct a predicate register whose active bits

correspond to iteration decisions in a sequential loop. Because the SVE size is not

predefined, the while instruction will create a different predicate register depending on

the machine on which it is running. Figure 2.3 shows an example of this for a loop with

eleven iterations. We see that for an eight-lane SVE register, we execute two iterations.

In the first iteration, whilelt(0, 11) construct a predicate register with all active bits

(green color). In the second iteration, whilelt(8, 11) returns a predicate with the first

three active bits and others inactive (red color). This leads to correct loading and storing

of data without out-of-bound errors. Additionally, it removes the need for treating loop

tails as is typical for the NEON vectorization. Similar correct behavior is also shown for

two-lane and four-lane SVE.
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Figure 2.3: SVE whilelt instruction

The loop counter in vectorized loops is updated with cnt instructions. This instruction

counts the number of lanes lSVE on the machine where the application is currently

running. Different forms are used for different data type sizes: cntd, cntw, cnth, and

cntb. With these instructions, we can increment the loop counter in a VLA fashion. We

show a typical example of the SVE loop in Appendix A.1.

2.1.2.2 Gather-load & Scatter-store

SVE features many instructions for loading and storing data from/to memory. The

most basic instructions are the ld1 instructions that load the data with a unit stride

t.i. from contiguous locations in memory. The last letter in the instruction specifies

the datatype size of the elements (for example, ld1d for 64 bits). To load data with a

bigger stride, one can use ld2, ld3, and ld4 (stride 2, 3, and 4, respectively) instructions

which are especially useful when dealing with arrays of structures or complex numbers.

A new feature in SVE that is not available in NEON is gather-load and scatter-store

instructions. These instructions enable us to load data from memory with any stride

or pattern. The register which holds indices to memory locations for gather-loads is

usually called an index register. Instruction with the same name, index, is used to

create a register that holds integers in an arithmetic sequence. Figure 2.4 shows an

example of how to create an index register with stride five and offset two.

Figure 2.4: SVE index instruction

However, an index vector can hold arbitrary indices. Figure 2.5 shows an example of a

gather-load instruction with random ordering. In this example, values from the array a

are loaded with an index vector {0, 2, 3, 6}. Appendix A.2 shows how to use gather-loads

and index vectors to vectorize an array permutation.
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Figure 2.5: SVE gather-load

Although gather-load and scatter-store provide a neat way to vectorize specific loops,

there is also a drawback in using these instructions. Most importantly, loading the data

to individual lanes is not executed fully in parallel. The exact behavior is implementation-

dependent. However, hardware almost always splits gather-load and scatter-store into

multiple micro-instructions. We, therefore, refer to these as sequential memory instruc-

tions, and ld1 as normal memory instructions. Especially for scatter-store instructions,

the SVE ISA mandates that individual lanes must be handled separately in-order. For

example, suppose the values in the index register are the same (different lanes writing

data to the same memory location). In this case, the memory should be updated by

the last element (write-after-write dependency). Therefore, hardware must handle a

completely separate memory flow for each lane. Due to no data dependencies, there is

more flexibility in hardware implementation for gather-load instructions.

2.1.2.3 Reduction operations

SVE introduces a rich family of reduction operations. Reduction operations operate

between elements within the same SVE register. Some examples include min (max )

instruction which calculates the minimum (maximum) element, or faddv, which com-

putes a sum of elements in all lanes. In SVE, we distinguish two types of reduction

operations1:

� Ordered reduction operations (see Figure 2.6 left). These operations perform the

calculation across elements in order from left to right. Such order is important for

floating-point numbers where one has to comply with the IEEE 754 standard on

the non-associativity of floating-point operations. An example of this operation is

fadda.

� Tree-like reduction operations (see Figure 2.6 right). These operations perform

the reduction in a tree-like fashion, which leads to a smaller latency and faster

execution (with less accuracy). An example of this operation is faddv.

1For commutative operations, there exists only one form of reduction operation.
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Appendix A.3 shows an example of both approaches in practice. Due to a dependency

chain of ordered operations, the execution latency of these instructions is often bigger

than tree-like. For example, 512-bit single-precision fadda on the A64FX processor takes

31 cycles while faddv is executed in 9 cycles.

Figure 2.6: In-order vs. tree-like reduction

2.1.2.4 Other

Vector compare operations perform a comparison of the entire SVE vectors lane by

lane. The output of these instructions is a predicate register. The lanes of the predicate

register are active if the comparison operator evaluates to true and inactive otherwise.

Compare operations exist both for integer and floating-point data types. Some examples

include greater than, less than, and is equal. These instructions enable the vectorization

of loops with operations under a specific condition (if-else constructs).

SVE also introduces instructions for complex arithmetics. When loops involve complex

numbers, the usual approach combines all real parts of the complex array in one vector

and all imaginary parts in the other. This is usually done with ld2 instructions, which

load data with stride two. Complex arithmetics are then constructed using normal

multiply-accumulate operations, separately for the real and imaginary parts.1 However,

SVE introduces new fcmla operations. These instructions enable us to construct a

complex multiplication on SVE vectors with real values in even and imaginary values

in odd lanes. (We can load an array of complex numbers with normal ld1 instructions

into SVE registers). For a more detailed explanation, we refer to Appendix A.4.

Speculative vectorization is another advanced feature of SVE. Specific loops do not

explicitly define the number of loop iterations but rather stop on a particular condition

of the data values they process. A typical example of this is operations on strings, where

the loop ends when a NULL character is encountered. Such loops are hard to vectorize

because the standard load instructions can access locations outside of allocated memory

1Multiplication of two complex numbers requires three multiply-accumulate, and one multiply-
subtract operation.
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(after the last character) and cause a segmentation fault. SVE introduces a family of

first-fault load instructions to tackle this problem. These instructions suppress faults

on all but the first active element in the vector. Faults are detected and used to create

a predicate register of elements that do not fault. An example of a vectorized strlen

function, which computes the length of the string, is explained in Appendix A.5.

2.1.3 Code generation

There are different strategies when writing SIMD code. In most software, where per-

formance is not the central aspect of design, developers can just rely on the automatic

vectorization by the compiler. Auto-vectorization requires the least effort and is very

portable because compilers can target different architectures. However, compilers can-

not always vectorize loops. In some instances, auto-vectorization can be improved by a

specific algorithm design that is more appropriate for SIMD execution. Otherwise, de-

velopers can also resort to external tools. For example, SIMD libraries facilitate SIMD

code generation by providing high-level mathematical routines guaranteed to execute

using SIMD instructions. These libraries often target various architectures, so porta-

bility is not compromised. Some examples include NSIMD [6], Vc [7], and MIPP [8].

When developers require more control over the generated code, they can use intrinsic

functions or write assembly. Such code becomes less portable and requires more effort.

An overview of different techniques is shown in Figure 2.7.

Figure 2.7: Application porting

2.1.3.1 Assembly

Today, developers write assembly primarily for two reasons. First, to access specific

processor instructions or system calls that the compiler does not support. Secondly, to

optimize performance-sensitive parts of code, where they want to have complete control

over the generated code. (This is the case for the OpenBLAS library.) Due to a lack of

portability, software that leverages assembly usually contains separate implementations

for different ISAs.
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The syntax of SVE assembly instructions consists of the operation code, destination

register, predicate register, and input operands.1 Figure 2.8 shows an example of a

floating-point multiply-accumulate fmad instruction. The instruction first sums ele-

ments of registers z1 and z2 before adding the result to elements of z0. This particular

instruction acts on 32-bit elements as denoted by the .s specifier. Additionally, we use

the m predication form. This leaves the inactive elements in z0 as they are.

Figure 2.8: SVE assembly syntax

To directly leverage assembly in code, we either write complete functions in the assem-

bly source or use an inline assembler. Unfortunately, writing functions in assembly is

cumbersome and prone to errors because the developer must ensure proper code call-

ing conventions and register saving. On the other hand, inline assembler is a feature of

compilers that allows developers to embed low-level assembly code directly inside higher-

level languages. Most modern compilers support it. For example, in GCC, we use it

through the keyword asm. The main problem of inserting assembly directly inside the C

code is that it interferes with the register allocation. When the compiler compiles code,

it keeps track of the variables and their associated registers. Developers do not have any

information on this mapping, which would normally result in unwanted instructions and

register spilling. GCC provides the syntax of extended inline assembly to deal with this

problem. (See Listing 2.1.)

1 __asm__ <asm -qualifier > ( "assembly code"

2 : output operands

3 : input operands

4 : clobber registers )

Listing 2.1: GCC extended inline assembler

The primary purpose of the extended syntax is to read and write C variables directly

inside the assembly. The string of assembly instructions is followed by a list of output

and input operands, separated by a colon. We can use these operands as names of the

1Some instructions do not have any predicate register or input operands.
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registers, and the compiler will correctly allocate registers to individual variables. To

use other registers for computation, we can include a list of clobber registers, which are

guaranteed to return to the original state at the end. Sometimes, compilers optimize

the hand-coded assembly to produce the most efficient code. To prevent this, a qualifier

volatile must be used to ensure that the hand-coded assembly is injected into code as-is.

An empty asm volatile statement is often used in benchmarks to prevent compiler’s dead

code elimination.

2.1.3.2 Intrinsic code

SVE code can also be generated in C and C++ programming languages using Arm C

Language Extensions (ACLE) for SVE [9]. We refer to these extensions as intrinsic

functions or simply intrinsics. The main goal of intrinsic functions is to provide a set

of types and functions that correspond to SVE vectors and predicates. Using these

particular types, a programmer can explicitly work with the SVE registers and perform

operations on them. An ACLE API defines functions for almost all SVE instructions.

The developer can directly access SVE features without touching the assembly. Gen-

erally speaking, the ACLE is more general than the ISA, and it is a compiler’s job to

pick the best instruction for each intrinsic function. Even though the names of intrinsic

functions closely resemble the names of SVE instructions, there is no guarantee that

these are mapped one to one to underlying hardware operations.

To use intrinsic functions, we include the header arm sve.h. Such a file does not exist

because the intrinsic functions are included in the compiler. All intrinsic SVE types and

functions are named with the prefix sv-. Listing 2.2 shows a function that computes the

DAXPY kernel using SVE intrinsic functions. DAXPY computes y = ax + y, where y

and x are vectors of size n, and a is a scalar. Computation is done on double-precision

floating-point numbers.

Here, we give a quick walkthrough of the code, explaining the most important steps.

First, a loop counter is created using a 64-bit integer value set to 0 (line 2). A type

svbool t in line 3 is a type for a predicate register. Function svwhilelt 64 returns a

predicate register for doublewords, as explained in Figure 2.3. In this case, the variable

pg can only be used as an operand for operations acting on 64-bit elements. We construct

the loop over elements of array y using a do-while construct. In lines 6 and 7, we use a

type svfloat64 t which corresponds to an SVE register containing 64-bit floating-point

values. SVE ACLE defines different SVE types depending on the data type used. For

example, one can use svint32 t for integers or svuint16 t for unsigned shorts. We use

svld1 instruction to load contiguous data from x[i] and y[i]. The first argument for
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this function is the created predicate type pg, and the second is the address to memory.

Afterward, we use the function svmla f64 x. As the name of the function suggests, this

corresponds to a multiply-accumulate instruction of 64-bit floating-point numbers using

-x form of the predicate. In lines 10 and 11, we update the loop counter and predicate

register for vector-length-agnostic execution. The svcntd instruction in line 10 returns

the number of lanes lSVE , and in line 11, the predicate register is updated with the new

active lanes. The exit condition in line 13 means that the loop repeats if any active

lanes are present in the predicate register.

1 void daxpy(double *x, double *y, double a, int64_t n) {

2 int64_t i = 0;

3 svbool_t pg = svwhilelt_b64(i, n);

4 do

5 {

6 svfloat64_t x_vec = svld1(pg , (const double *) &x[i]);

7 svfloat64_t y_vec = svld1(pg , (const double *) &y[i]);

8 svfloat64_t res = svmla_f64_x(pg, y_vec , x_vec , a);

9 svst1(pg, (double *) &y[i], res);

10 i += svcntd ();

11 pg = svwhilelt_b64(i, n);

12 }

13 while (svptest_any(svptrue_b64 (), pg));

14 }

Listing 2.2: Example of DAXPY with SVE intrinsics

ACLE defines types for a single SVE vector or a tuple of size 2, 3, or 4. These are named

svBASExN t, where BASE is the data type, and N is the tuple size. The vector-

length-agnostic nature of the SVE presents a significant limitation on how compilers

treat these types. The intrinsic vector types occupy bSVE bits in memory. Because bSVE

is different depending on the machine, the ACLE documentation completely removes

the concept of size. It defines a new category of a type called sizeless type. (These

are not yet addressed in any high-level language standards). Sizeless types are more

restrictive than complete types but are not incomplete. Most cases of restrictive usage

of these types come from the fact that the compiler does not know how to allocate size

in memory correctly. Some of the main features of sizeless types that impact the usage

in HPC applications are1:

� Sizeless types can not be used as an array element or a member of a union, struct,

or class. Some HPC applications abstract intrinsic functions for different architec-

tures by implementing a wrapper class for various SIMD targets. Each target is

then implemented as a class that overrides the wrapper class by having an intrinsic

1For a complete definition of sizeless types, we advise looking in the ACLE SVE documentation.
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vector data type as a class field. This approach is not possible for SVE unless we

use fixed-size types. (See the next paragraph.)

� Sizeless types can not be used for static or thread-local storage variables (even if

they are just declared and not defined).

� They cannot be used as an argument to the sizeof() function.

� It is not possible to perform arithmetic operations (+, -, ++, --) on pointers to

sizeless types.

Such restrictions impact software, in which developers must know the SIMD size at com-

pilation. ACLE also defines a fixed-size SVE type that enables developers to generate

code only for specific runtime SVE sizes to avoid this problem. Fixed-size types are com-

piled only for hardware with a particular SVE length, while the behavior is undefined

for others. To create a fixed-size type, we use the attribute arm sve vector bits. Ad-

ditionally, the macro ARM FEATURE SVE BITS is set to bSVE and can be used to separate

implementations for different sizes. An example of this is shown in Listing 2.3.

// Following only works on a 256-bit SVE machine

#if __ARM_FEATURE_SVE_BITS ==256

typedef svint32_t vec __attribute__ (( arm_sve_vector_bits (256)));

typedef svbool_t pred __attribute__ (( arm_sve_vector_bits (256)));

svbool_t pg = svptrue_b64 ();

svint32_t x_vec = svld1(pg, (const int *) &x[i]);

// x_vec is guaranteed to be 256 bits

...

#endif

Listing 2.3: Fixed-size SVE types

2.1.3.3 Compiler support

Since Arm introduced SVE in 2017, compiler engineers have added various degrees

of support. GCC added support for SVE in version 8. This included basic auto-

vectorization that was vastly improved in GCC 9. Version 10 introduced support for SVE

intrinsic functions and the generation of additional (more complex) SVE instructions.

GCC 11 also added targets for the A64FX core for microarchitectural tuning. It also im-

proved intrinsic code generation and auto-vectorization. In this thesis, we rely primarily

on GCC 11.1.0. The other major open-source compiler toolchain, LLVM, added support

for SVE in version 5 (only assembly and disassembly). Intrinsic functions were added in
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version 11, whereas version 12 added experimental support for auto-vectorization (im-

proved in version 13). SVE is also supported in commercial compilers (Arm Compiler

for Linux, Fujitsu compiler, and Cray compiler).

Most compilers implement two auto-vectorization algorithms: a traditional loop vector-

izer and a Superword-Level Parallelism (SLP). These techniques are closely related to

other topics in compiler engineering like dependence testing, loop normalization, loop

interchange, scalar expansion, and others. Loops are the natural candidate for vector-

ization because the same instructions are repeated on different data in each iteration.

This is the most widely used way of exploiting data-level parallelism and SIMD instruc-

tions. However, vectorization can only be performed if there exist no data dependencies

between iterations. Figure 2.9 shows a simple example of traditional loop-level vector-

ization.

for (int i = 0; i < N; i++) {

a[i] = b[i] + c[i];

}

for (int i = 0; i < N; i += vec_len) {
a[i]

a[i+1]

...

a[i+l-1]

 =


b[i]

b[i+1]

...

b[i+l-1]

+


c[i]

c[i+1]

...

c[i+l-1]


}

Figure 2.9: Traditional loop-based vectorizer

Superword-level parallelism denotes a vectorization algorithm where individual scalar

instructions are combined into a vector instruction. This algorithm works by scanning

the code and looking for repeated sequences of scalar instructions, regardless if they are

in a loop. After scanning, it tries to recognize blocks with isomorphic statements. State-

ments are then packed with vector instructions instead of traditional scalar instructions.

An example is shown in Figure 2.10. Although SLP is not connected to loops, we may

still be able to use it in cases where traditional loop vectorization is unsuccessful. In

this case, a loop is first unrolled to obtain a single block of instructions inside many

iterations. Then an SLP algorithm scans the code for vectorization opportunities. This

is also called unroll-and-jam.

a[i] = b[i] + c[i];

a[i+1] = c[i] + d[i];

e[i] = f[i] + c[i];

f[i] = b[i] + c[i];


a[i]

a[i+1]

e[i]

f[i]

 =


b[i]

c[i]

f[i]

b[i]

+


c[i]

d[i]

c[i]

c[i]



Figure 2.10: SLP vectorizer

If the compiler identifies the opportunity for vectorization, it can generate the SIMD

instructions. However, each SIMD opportunity does not necessarily translate into a
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SIMD code. Scalar instructions are less expensive than SIMD, and therefore, a vectorized

loop will not necessarily perform faster (especially if the number of iterations is small).

For this reason, modern compilers employ a cost model. Cost models determine whether

a vectorization of a specific loop will yield better performance. For example, both GCC

and LLVM compute the cost of scalar and vectorized code blocks and decide on one

with a smaller cost. The block cost is computed as a sum of the costs of individual

instructions. Of course, these depend on the underlying hardware and the vector size.

Since SVE does not define a vector size, compilers do not have this information at compile

time. When compiling VLA binaries, GCC, for example, performs a cost analysis for

the smallest possible size - 128 bits. It assumes that a speedup is constant or strictly

increasing with vector size, which is not necessarily the case. We can override the

decisions originating from the cost model with compilation flags1.

Developers can also provide hints or suppress vectorization with compiler directives

(pragmas). For example, for GCC, developers can use pragma GCC ivdep, which tells

the compiler to ignore vector dependencies between iterations. (Using it where this

is not the case can lead to incorrect behavior.) Vectorization can also be encouraged

through the use of OpenMP directives (omp parallel simd).

2.2 Applications

This subsection gives a brief overview of the main libraries and applications used in our

work. A more detailed explanation is given in Chapter 4.

2.2.1 Benchmarks

STREAM [10] is a de-facto standard benchmark to measure memory bandwidth. Four

kernels (copy, scale, add, triad) are evaluated over a predefined number of iterations.

STREAM reports the average time and the measured bandwidth for each of them. There

exist different conventions for reporting memory bandwidth. STREAM computes the

amount of data transferred as is perceived by the developer. This means that the number

of bytes the user asks to read and write from memory is summed up. In other words, if

N bytes of data are copied from one memory location to another, the transferred amount

is 2×N bytes (from memory to CPU and then back). This number can be different from

the data transferred in hardware due to the write-allocate cache policy. On most systems

today, a cache miss on store operation will first load the cache line before overwriting it.

Therefore, the developer-perceived bandwidth (as reported by STREAM) is 75% of the

1For GCC, we can use the flag -fvect-cost-model=model.
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actual hardware bandwidth for add and triad kernels. (67% for copy and scale kernels.)

We use STREAM version 5.10. To reduce the Gem5 simulation time, we set the number

of iterations to 3 and array size to N = 10000000.

Tinymembench [11] is a benchmark that measures memory throughput and latency.

Since we already measure the memory bandwidth with the STREAM benchmark, we

focus only on the part that measures the memory latency. The benchmark implements

a pointer-chasing kernel written in Arm assembly. The assembly does not include any

SIMD instructions, so we are executing a strictly scalar code. Latency is measured

for a single and double read at each iteration. When the array size gets large, the

measured latency is also affected by TLB misses and page walks. However, this effect

is still relatively low for the biggest size in our Graviton 2 run. (In our Gem5 model,

memory pages and the TLB are not simulated.) The latency measurement is repeated

for different array sizes to observe the cache effects. The benchmark increments the

array size as the power of two, and we set the maximum size to 64 MByte.

NAS Parallel Benchmarks [12] (NPB) is an open-source benchmark suite developed

by the NASA Advanced Supercomputing division. Eight kernels are extracted from

CFD applications to evaluate the performance of parallel supercomputers quickly. The

original benchmarks are written in Fortran. However, we rely on an unofficial C version1.

NPB includes five kernels that implement integer sort, embarrassingly parallel algorithm,

conjugate gradient, multi-grid, and Fast Fourier Transform (FFT). Additionally, three

pseudo-applications apply block tridiagonal solver, scalar penta-diagonal solver, and

lower-upper Gauss-Seidel solver.

Test Suite for Vectorizing Compilers [13] (TSVC) is a benchmark suite for eval-

uating the compiler’s auto-vectorization capabilities. The original version, written by

Callahan et al., contained 135 synthetic loops. In 2011, TSVC was extended to 151 loops

(TSVC2). Loops test various strategies in vectorization algorithms, like dependence test-

ing, statement reordering, loops interchange, scalar expansion, etc. One important thing

to note is that the loops are not extracted from any HPC application but were explicitly

written for compiler analysis.

2.2.2 OpenBLAS

OpenBLAS [14] is an open-source package for dense linear algebra. It is an active fork

of GotoBLAS, which was developed by the Texas Advanced Computing Center. The

library is heavily used in the scientific community and provides a good alternative to

industry implementations like Intel MKL or ArmPL. The library implements APIs for

1https://github.com/benchmark-subsetting/NPB3.0-omp-C
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BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra PACKage).

This thesis will focus on the BLAS part, which we briefly explain here. We give a

more detailed explanation in Chapter 4. There exists an interface for both Fortran and

C programming languages (the latter is commonly referred to as CBLAS). BLAS is

composed of three different levels.

� Level 1 is a group of functions that perform vector-vector operations. These in-

clude, among others, dot product, a sum of two vectors, scalar-vector multiplica-

tion, or finding a minimum (maximum) element in a vector.

� Level 2 functions implement matrix-vector operations. Apart from matrix-vector

multiplication for different types of matrices (triangular, Hermitian, conjugated,

general), this also covers the solution of a linear system of equations for a triangular

matrix.

� Level 3 functions consider the computation of matrix-matrix operations. Most

widely used is a general matrix-matrix multiplication (GEMM) which computes

C = αAB + βC for matrices A, B, and C. This function is commonly used as a

benchmark that stresses the floating-point performance.

Functions from all three levels are implemented for single (S, C) and double (D, Z)

precision floating-point numbers (real and complex numbers). The letter that prepends

the function name corresponds to the data type. For example, DGEMM stands for

a General Matrix Multiplication for double-precision floating-point numbers. Whereas

level 1 and 2 functions are usually memory-bound on today’s machines, level 3 kernels

are compute-bound. However, achieving high performance (close to the machine’s theo-

retical peak) in functions such as DGEMM is not trivial. Different architectures require

diverse techniques to attain high performance, and developers must tailor the code to

each machine individually. In this regard, compilers are often not mature enough to gen-

erate such high-precision code. OpenBLAS includes specialized assembly kernels (often

called macrokernels) targeting specific instruction sets and CPUs. These kernels ensure

that the floating-point execution units in the CPU execute one instruction per cycle

without any stalls. Additionally, the original data layout is transformed to maximize

data reuse and good cache utilization.

2.2.3 GROMACS

GROMACS [15] is one of the most widely used molecular dynamics (MD) codes for

simulating a system of particles in biochemistry. The program uses a modified Verlet



Chapter 2. Background 23

algorithm which computes forces between the particles and solves the Newtonian equa-

tions of motion. In addition, a particle mesh Ewald algorithm is used to approximate

long-range forces. (Ewald algorithm mainly relies on the FFT.) GROMACS is primarily

used for simulations of proteins and nucleic acids. For state-of-the-art simulations, the

number of particles usually exceeds one million.

Compared to other MD simulation codes, GROMACS is known for its high perfor-

mance, making it particularly popular in the HPC domain [16]. Even though it was

primarily designed for complicated bonded interactions inside biochemical molecules,

the application is also fast at simulating non-bonded interactions, which is usually more

compute-intensive. This is realized with its heterogeneous design that leverages different

levels of parallelization in modern machines. For example, intrinsic functions are used to

utilize SIMD registers inside the core fully. Parallelism inside spatial domains is config-

ured with OpenMP, while MPI is used for decomposing an entire problem over multiple

nodes in the cluster. Additionally, GPUs and other accelerators can handle kernels com-

puting the non-bonded interactions. These paradigms have a dedicated implementation

separated from others and targeted to attain high performance.

2.2.4 GPAW

GPAW [17] is a simulation software for calculating materials’ electronic structures and

atomic properties. It is used across multiple physics, chemistry, and materials science

fields. Written with MPI and OpenMP parallelization, the code is specifically targeted

at massively parallel supercomputers. The algorithm applies functional density theory

(DFT) based on the projector-augmented wave (PAW) method and the atomic simula-

tion environment (ASE). GPAW uses three main numerical methods:

� Finite differences (FD) is the default mode in GPAW. Simulation space is dis-

cretized on a uniform real space orthorhombic grid, which can expand the pseudo

wave function. Two different discretizations are used (coarse and fine). The effec-

tive potential is evaluated on the fine grid and then restricted to the coarse grid,

acting on the wave functions. Different stencils can be applied for the Laplacian

operator and Poisson equations.

� Linear combination of atomic orbitals (LCAO) is an alternate mode of com-

putation for calculating wave functions. In this mode, waves are approximated

using a basis set of atomic orbital-like functions. This makes the computation

cheaper; however, the simulation is less accurate if the chosen basis is not selected

correctly. Therefore, GPAW implements an internal basis tool that can generate

a set of orbital functions for each element in the system.
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� Plane-wave (PW) mode is usually used for small systems where good parallel

efficiency is unnecessary. In this mode, quantities are represented using Fourier

transforms on the periodic supercell with periodic boundary conditions.

2.2.5 MiniFE

MiniFE [18] is a proxy application for the exploration of parallel programming techniques

for codes based on the implicit Finite Elements Method (FEM). The application is not

used for solving real-life FEM workloads but rather as a mini-application (mini-app),

a small but accurate representation of a real-world application. It enables developers

to quickly evaluate the performance of different programming techniques without the

effort of changing big production codes. MiniFE was developed at Sandia National Labs

as part of the Mantevo project. Mantevo project includes several mini-apps used for

performance optimization.

The application solves a steady-state conduction equation for heat transfer. Temperature

is computed on a box-shaped domain composed of linear 8-node hexagonal elements (a

linear hexahedral mesh). Dirichlet boundary conditions are applied on all sides of the

box. Despite its small size of code (approximately 8000 lines), the MiniFE mimics all

kernels of a full FEM simulation:

� Hexahedral mesh assembly. The box domain is decomposed into regular hexahe-

drons. The application computes the node coordinates for each cell and maps them

to a global array. When MPI is used, each subdomain is assigned to a different

MPI rank.

� Generation of the matrix structure. The matrix is first constructed with the ap-

propriate number of rows and columns for non-zero elements depending on the

sparse matrix format. Next, each OpenMP thread initializes the memory for its

local matrix.

� Computation of equation operators. The mini-app calculates the local FEM oper-

ators to assemble a diffusion matrix for each node.

� Assembly of the sparse matrix and RHS vectors. Diffusion matrices of nodes are

accumulated into a final matrix. Additionally, Dirichlet boundary conditions are

applied to calculate the right-hand side.

� Conjugate Gradient (CG) method for solving a linear system. MiniFE includes a

CG solver and separate implementation of the sparse matrix-vector product and

other vector kernels (DAXPY, dot product, vector norm).
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� Verification of results. Results are compared to an analytical solution.

2.3 Hardware

For the results presented in this thesis, we mostly rely on the Gem5 simulator, which

we explain in Section 2.5. However, to compare the simulator with the actual hardware,

we also perform experiments on two Arm-based machines: the Graviton 2 and the

A64FX. First, we give a more detailed explanation of the Neoverse N1 core, which

is implemented in the Graviton 2 processor. We use the Neoverse N1 as a template

when configuring the Gem5 core model. Then, for the A64FX, we explain the most

critical parameters and differences compared to the Neoverse N1. Vendors use different

terminology when describing execution in the CPU. To stay concise, we introduce the

following terminology:

� Instruction is a fundamental part of the ISA and does not depend on the hardware

implementation. A stream of instructions constitutes a program that is executed in

a CPU. Instructions are fetched from the instruction cache before being decoded.

� Micro-instruction is a hardware-level entity that is decoded from the instruction.

A single instruction can be decoded into a single or multiple micro-instructions that

are issued to the corresponding execution units. On Arm-based machines and in

Gem5, micro-instructions are often called micro-operations.

� Operation is a more general term that describes pure mathematical operation

(multiplication, addition) or an execution process in the functional unit.

2.3.1 Neoverse N1

The Neoverse N1 (or just N1) is a high-performance CPU designed by Arm [19]. The

N1 was introduced in 2019 as a server counterpart to the mobile’s Cortex-a76 core. Arm

does not manufacture the core itself but instead sells the core’s intellectual property

(IP). Other semiconductor companies buy the license to implement and manufacture

the core in their products. The design of the N1 CPU targets a high-end server-class

market. It offers low power consumption and high multithreading capabilities with a

scalable design (8 to 128 cores per socket). The microarchitecture of the Neoverse N1

core is loosely based on the Cortex-a76 and is optimized for heavy OS activity and

infrastructure applications. It implements the Armv8.2 instruction set architecture and

is usually built on a 7 nm lithography process.
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Figure 2.11 shows a high-level diagram of the microarchitecture. The N1 core can fetch

up to four instructions per cycle from the L1 instruction cache (L1-I). Compared to the

previous Arm cores, the biggest change in the core’s frontend is a decoupled branch

predictor. Separated from the instruction fetch, the predictor can speculatively fetch

addresses even if the fetch pipeline to the L1-I stalls. These addresses continue to access

the I-cache, which acts as a prefetcher and reduces the number of future L1-I cache

misses. Afterward, instructions are forwarded to a 4-wide decoder, where each lane can

decode one instruction per cycle. At this stage, instructions are first decoded into macro-

operations. Frequently used instructions (ALU and branches) are decoded into a single

macro-operation, while more complex instructions are decoded into multiple macro-

operations. Additionally, I-cache can store partially decoded instructions to speed up

this process.

Decoded macro-operations are then sent to the rename unit, which can also receive

up to four operations per cycle. Each macro-operation is renamed into one or two

micro-instructions, and architectural registers are replaced with physical registers. Here,

simple register-to-register mov instructions can be simplified or eliminated through the

rename tables. Rename unit dispatches up to eight micro-instructions to the out-of-order

backend. When a micro-instructions is dispatched, its status is tracked in the reorder

buffer and the issue queue. The reorder buffer can hold up to 128 micro-instructions.

The issue queue is responsible for monitoring the instruction’s source operands. Once

all operands are available, the operations are issued to the corresponding execution unit

from the instruction queue. Each execution unit features an additional 16-entry buffer to

increase the out-of-order window. However, if the buffer is empty, dispatched instruction

can bypass it to minimize latency. The reorder buffer tracks micro-instructions and

commits them in order after execution (up to eight per cycle).
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Figure 2.11: Neoverse N1 microarchitecture

The execution stage features eight separate functional (execution) units. The first unit

B executes branch instructions, most of them in one cycle. The following three units

I1, I2, M target the integer instructions. Basic ALU instructions can be executed in a

single cycle on all three FUs, whereas more complex integer instructions1 are executed

only on the M unit. The core also includes two SIMD units (V1, V2 ) for floating-

point and NEON instructions. Most NEON instructions can be executed on both units,

while some complex instructions (fdiv, fsqrt, fconvert) are executed only on the V1 unit.

Lastly, two load/store units (L1, L2 ) are responsible for memory operations and address

generation. These are accompanied by a load-store queue (LSQ) with 68 load and 72

store entries.

The Neoverse N1 features private L1 and L2 caches. Furthermore, the L1 cache is split

into instruction (L1-I) and data (L1-D) cache. Both L1 caches are 4-way set-associative

with a size of 64 kByte. The L1-D has a latency of 4 cycles and a bandwidth of 32

Byte/cycle. The L2 cache can be configured with different sizes with a load-to-use

1multiply, divide, multiply-accumulate, saturate, sign/zero extend...
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latency of between 9-11 cycles (depending on its size). The Most important parameters

are shown in Figure 2.12. All caches are write-back, and the external memory is not

updated unless the cache line is evicted from the System Level Cache (SLC) or explicitly

requested. Additionally, all caches allocate a cache line on read and write access. The

L1-D cache is strongly inclusive to the L2, which means that any cache line in the L1 is

also present in the L2. The L1-I, on the other hand, is weakly inclusive. When the cache

line is allocated, it is allocated in both L1-I and L2. However, it can later be removed

from the L2 and persist in the L1.

cache line size 64 Byte

L1i & L1d size 64 kByte

L1i & l1d associativity 4

L1d clusivity to L2 strongly inclusive

L1i clusivity to L2 weakly inclusive

L2 size 512-1024 kByte

L2 associativity 8

L2 clusivity to L3 exclusive

Figure 2.12: Neoverse N1 cache configuration

An interface between the CPU and the external interconnect is called DynamIQ Shared

Unit (DSU). DSU contains all external interfaces of the N1 core, including bus, power

management, and clock interfaces. It can be configured either as a direct connect or a

multiple CPUs cluster. A direct connect has no L3 cache, and memory connections pass

directly through the DSU to the interconnect. When multiple CPUs are implemented

in the DSU, the cluster contains an optional L3 cluster cache and the Snoop Control

Unit (SCU). The cluster cache is shared between the cores in the cluster and has a more

complex cache line allocation. Finally, the N1 System-on-Chip (SoC) can implement up

to 256 MByte of shared System-Level Cache.

2.3.1.1 Graviton 2

For our experiments, we rely on the Graviton 2 CPU [20]. Graviton 2 is a processor

developed by Amazon and Annapurna Labs which implements the Neoverse N1 core. It

was designed for usage in the Amazon Web Services (AWS) cloud as an alternative to

x86-based systems. The main parameters of the Graviton 2 are shown in Table 2.2. The

cores operate at a frequency of 2.5 GHz.
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clock frequency 2.5 GHz

#cores 64

DSU configuration 32 x 2 (core-duplex)

L1-I&L1-D cache size 64 kByte

L2 cache size 1 MByte

L3 cache size none

SLC cache size 32 MByte (1 MByte slice per core-duplex)

Table 2.2: Graviton 2 configuration

The processor features 64 cores in the configuration of 32 DSUs on the SoC. Cores are

connected over the Arm’s coherent mesh network CMN-600. Each DSU cluster contains

two cores without an L3 cluster cache. Therefore, cores connect directly to the mesh

interface over the Component Aggregation Layer (CAL). AWS reports that such a design

improves latency to the SLC and DRAM because it removes the logic of the optional

cache and SCU inside the cluster. Each crosspoint of the mesh interconnect connects to

a slice of 1 MByte SLC, giving a total SLC cache size of 32 MByte. Figure 2.13 shows

a high-level overview of the cluster configuration on SoC.

Figure 2.13: Graviton 2 SoC
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2.3.2 A64FX

The A64FX [21] is the first processor that implements SVE. The processor was intro-

duced in 2020 with the supercomputer Fugaku which took first place on the Top500 list.

The A64FX processor is architecturally very different from the Graviton 2.

The processor is designed for the HPC market and implements the Armv8.2-a1 architec-

ture profile with support for SVE. Each core features two 512-bit SVE units. Compared

to N1, a single core can execute four times more floating-point operations per cycle. The

processor consists of 48 cores (plus two or four assistant cores) running at 1.8-2.2 GHz.

A private 4-way 64 kByte instruction and data cache accompany a shared L2 cache. The

cache-line size is 256 bytes, four times bigger than in Graviton 2. The main parameters

of the A64FX CPU are shown in Table 2.3.

clock frequency 1.8-2.2 GHz

#cores 48 (+2/+4)

Core configuration 4 x 12 (4 CMG)

SVE units 2

SVE size 512 bit

Cache-line size 256 Byte

L1-I&L1-D cache size 64 kByte

L2 cache size 8 MByte per CMG

Memory 8 GByte (HBM)

Table 2.3: Main parameters of the A64FX

The A64FX chip has a very different SoC configuration. The SoC comprises four core

memory groups (CMG) and a Tofu-D interconnect controller. Each CMG has 12 cores

and a unified 8 MByte L2 cache that is shared between all cores in the CMG. The

A64FX also uses a second-generation High-Bandwidth Memory (HBM). Each CMG has

a memory access controller (MAC) connected to the HBM2 stack. The HBM memory

offers high bandwidth but at the cost of a higher latency. The theoretical peak bandwidth

of a single CMG is 256 GByte/s, which gives 1024 GByte/s for a full node. However, as

reported in the A64FX manual, the load-to-use latency is 131 to 140 ns (depending on

the distance to the core). This is roughly 60% slower than in Graviton 2. An overview

of the SoC configuration is shown in Figure 2.14.

1It also supports complex arithmetics instructions from Armv8.3-a
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Figure 2.14: A64FX SoC

The out-of-order microarchitecture is also quite different from the N1. An overview is

shown in Figure 2.15. The core can fetch up to eight instructions per cycle from the

L1 instruction cache (two times more than in N1). This is achieved with the help of

the branch prediction mechanism that predicts branch directions and target addresses.

Fetched instructions are temporarily stored in the instruction buffer, which can hold 48

instructions.

Then, up to six instructions per cycle are sent to a decoder which decodes instructions

into micro-instructions. Most instructions are decoded into a single micro-instruction,

while complex instructions are split into multiple micro-instructions. After decoding,

micro-instructions are dispatched in-order to the reservation stations. The A64FX im-

plements five reservation stations (RS), which issue the operations out of order. Unlike

Graviton 2, where reservation stations are unified in an issue queue, the A64FX com-

pletely separates different reservation stations. Each RS issues micro-instructions to a

subset of execution units (see Figure 2.15). The reorder buffer, also known as the Com-

mit Stack Entry (CSE), has 128 entries, the same as the N1. Up to six micro-instructions

can be committed per cycle.
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Figure 2.15: A64FX microarchitecture
Taken from the A64FX manual (https://github.com/fujitsu/A64FX)

The execution engine is composed of two integer pipelines (EXA/EXB), two pipelines

for floating-point operations (FLA/FLB), a predicate pipeline (PR), and two pipelines

for load/store and address generation (EAGA/EAGB). Due to importance of the gather-

load and scatter-store instructions, we take a look at how these are treated in the A64FX

processor. Gather-load instructions are first split into lSVE/2 micro-instructions. Each

micro-instruction loads a pair of elements in neighboring lanes. If elements in a pair

point to the same 128-bit address space, they are treated in one memory flow. If they

are not, they are split further into two separate micro-instructions. For scatter-store

instructions, the processor issues one memory write per lane. Compared to the N1, the

core has a smaller buffer for load (40) and store (24) instructions.

Overall, the A64FX has fewer resources for an out-of-order execution than the N1.

Although the architecture of the A64FX is quite different, the five reservation stations

have 79 entries, 41 less compared to the issue queue in N1. Additionally, the RS are

separated, leading to a bottleneck if execution units of the same RS are overstressed.

Also, the number of general-purpose registers is smaller (96 to 128).

https://github.com/fujitsu/A64FX
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SIMD instruction N1 (NEON) A64FX (SVE 512-bit)

integer addition (add) 2 4

integer multiplication (mul) 4 9

shift left (shl / lsl) 2 4

integer compare equal (cmeq / cmpeq) 2 4

FP addition (fadd) 2 9

FP multiplication (fmul) 3 9

FP multiply-accumulate (fmla) 4 9

FP square root (fsqrt) 7-17 154

FP divide (fdiv) 7-15 154

Table 2.4: Instruction latencies of Neoverse N1 and A64FX

Another big difference to N1 is that the execution units for SVE implement much deeper

pipelines. As a result, the execution latencies of different SIMD instructions are bigger

compared to the N1. In table 2.4 we show major execution latencies for double-precision

integer and floating-point SIMD operations. Most of the A64FX’s instruction latencies

are two to three times bigger than in N1. For fsqrt and fdiv operations, the execution

is up to ten times slower.

2.4 Tools

Arm Instruction Emulator (ArmIE) [22] is an SVE emulator developed by Arm. It

enables developers to run SVE binaries on existing Arm platforms that do not support

SVE. SVE instructions are emulated with native Armv8-a instructions. The tool can

emulate SVE instructions for any supported vector length (128-2048 bits). Listing 2.4

shows an example of an ArmIE command.

armie -msve -vector -bits =<128,256,..> ./ sve_bin.exe

Listing 2.4: ArmIE command

Additionally, the tool can provide some useful insights into the SVE code. ArmIE uses

DynamoRIO, a dynamic binary instrumentation tool for x86 and Arm platforms. Users

can write new or modify existing binary-level instrumentation clients for their purposes.

Multiple clients are preconfigured for use and can be invoked with the options -i and

-e.

HPCToolkit [23] is a set of tools for measuring an application’s performance. Due to

its ability to measure data for massively parallel applications, HPCToolkit is a common
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choice for profiling applications in the HPC community. Furthermore, both MPI and

OpenMP programming models are supported. The tool works by sampling timers and

hardware performance counters during the execution.

2.5 Gem5 simulator

Gem5 [24][25] is an open-source system simulator used to assess the design space of

computer architectures. The tool was introduced in 2011 by merging the GEMS and

M5 simulator codes. Since then, a large community has actively developed the code

and added many new features. Nowadays, Gem5 is a widely used tool for computer

architecture research in industry and academic institutions. The simulator provides a

highly configurable simulation framework with support for multiple ISAs. This includes,

among others, x86, RISC-V, POWER, and ARM architectures. In addition, support for

SVE was added in 2018. The Gem5 framework features a modular design, with various

components connected in a simulation system. Many of these components are premade,

and users can quickly build their system without understanding how each component

works internally. Additionally, a few fully premade systems are available out-of-the-box

for users who quickly want to test the simulator.

Choosing accuracy vs. performance is a crucial design question for any simulator. For

example, a detailed simulator that completely simulates real hardware to cycle-level

detail in all architectural components would be very accurate and slow. On the other

hand, simplifying certain parts can significantly increase performance, but with simpli-

fications, the accuracy suffers. Gem5 is a flexible tool that allows the user to choose

where he would like to perform simulations in this accuracy-speed spectrum.

Gem5 includes different CPU models, ranging from fast and straightforward in-order

cores to more detailed out-of-order cores. The simplest core model is an AtomicSim-

pleCPU, a fully functional abstract model without a pipeline. The operations are ex-

ecuted in order, and memory accesses happen instantly. This makes the model super

fast but not realistic. It is usually used for testing or the warm-up phase when a

detailed model is unnecessary. TimingSimpleCPU uses the same core model as Atom-

icSimpleCPU but with more realistic memory accesses that stall the CPU until data is

transferred to the core. MinorCPU is a more detailed in-order superscalar CPU with

a fixed pipeline. This model executes multiple instructions simultaneously if issued to

different functional units. However, the execution is still done strictly in order. Addi-

tionally, MinorCPU model also allows visualization of instruction’s pipeline execution

process. The most detailed model with the ability for out-of-order execution is the

O3CPU model. This model resembles today’s general-purpose processors. The O3CPU
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is loosely based on the Alpha 21264 CPU but provides a high degree of freedom in its

configuration. We provide more details in Section 3.3.1.

Similarly to a CPU configuration, Gem5 also provides different models for simulating

a memory system. A wide range of DRAM, HBM, and abstract memory technologies

are preconfigured. Additionally, Gem5 provides two cache configuration models. A

classic memory model is a default model that supports private and shared cache levels,

different cache replacement policies, and the MOESI snooping protocol. Memory objects

(caches, buses, memory controllers) are connected via unique interfaces called ports.

These always come in pairs with the mem side sending requests and receiving responses

and the cpu side receiving requests and sending responses. Each component can have

multiple ports. Such a modular design enables a quick assembly of the memory system.

A more detailed Ruby model also exists, which can simulate different interconnects and

a wide variety of cache coherence protocols. Furthermore, the caches can be arranged

flexibly into arbitrary topologies, creating homogeneous and heterogeneous systems.

Gem5 can operate in two modes for simulating devices. A System-emulation mode

emulates system calls. Whenever a system call is encountered in the application, Gem5

intercepts it, emulates it, or forwards it to a host (machine on which we are running

the simulation) operating system. Unfortunately, many calls are still not supported

for various architectures, which leads to problems for applications that rely on many

system calls. Gem5 can also simulate a complete operating system and devices with

a Full-system mode. This mode supports different privilege levels, interrupts, and I/O

devices. In this case, Gem5 relies on a disk image that contains an installed operating

system. Although the full-system mode provides a more configurable environment for a

simulation, it also requires more effort to set up correctly. Additionally, the simulation

time is increased due to the need for system boot1. In this thesis, we exclusively use

a system-emulation mode. This requires some application modifications (to remove

specific system calls). Still, we feel that this effort outweighs the complexity of the full-

system mode. All application code changes are presented in Section 3.2.3, with the code

publicly available.

Gem5 is written in C++ and Python and simulates time as a series of discrete events

(called ticks). Each Gem5 object schedules events for a specific tick in the future based

on the event’s elapsed time. These events are placed in the Eventqueue and are called

at their scheduled tick. Ticks are incremented in chronological order.

1This can be mitigated with simulation checkpoints and snapshots.
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2.6 Related Work

Despite the first SVE hardware only becoming available in 2020, there were already

a few studies about SVE before that relied on simulation and emulation. Kodama et

al. [26] performed simulations in the Gem5 simulator for various kernels and showed

that increasing vector length could improve performance when the bottleneck arises due

to a long chain of operations or instructions issues. However, this only holds if there is

a sufficient number of physical registers. If the number of physical registers is too small,

the bigger vector size can worsen the performance. For memory-bound applications, the

vector length did not affect the performance significantly.

Poenaru et al. [27] analyzed the effectiveness of the SVE instruction set for a set of

mini-apps. They observed that compilers successfully generate VLA code and utilize

main SVE features. For all workloads, compilers vectorized more code when targetting

SVE than when compiling for NEON, confirming that SVE offers more features. They

also discussed the benefit of per-lane predication, which allows easy vectorization of

loops with heavy control flow. Furthermore, the evaluation of mini-apps with ArmIE

concluded that increasing the vector size decreases the total instruction count. However,

not all applications can fully utilize all lanes of the SVE register when the vector size

becomes big (≥ 512-bit). Also, the memory accesses were efficiently handled by gather-

load and scatter-store instructions.

Pohl et al. [28] studied the difference between vector-length-agnostic and vector-length-

specific code. They evaluated the Test Suite for Vectorizing Compilers (TSVC) bench-

mark suite in Gem5 and noticed a better SVE vectorization than NEON. Additionally, on

average, vector-length-agnostic code was roughly 10% slower than vector-length-specific

due to additional predicate operations. They also observed that the average speedup of

loops does not scale perfectly with increasing vector length due to memory limitations.

Here, an increasing L1 cache size significantly impacted longer SVE vectors. They con-

clude that large vectors will push today’s applications even more in the memory-bound

region. This opens new challenges for the cache hierarchy design required to utilize large

vectors fully.

Armejach et al. [29] investigated the potential of SVE for stencil codes. They showed

that manual optimizations could speed up the code up to a factor of 1.57 compared

to a straightforward compiler-vectorized code. These improvements come from vari-

ous code-optimization principles like loop unrolling and data reuse. However, specific

optimizations can also hurt performance due to the reduced arithmetic intensity and

instruction overheads.
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Meyer et al. [30] presented the SVE port in the lattice QCD simulation software frame-

work GRID. They reported that a suitable data layout is crucial for good SIMD par-

allelization. Because the data layout depends on the SIMD width, the SVE vector

length was fixed at compile time. They showed various real and complex arithmetics

implementations but have not reported any performance evaluations.

Alappat et al. [31] modeled the performance of streaming kernels and sparse matrix-

vector multiplication on the A64FX processor. They established an execute-cache-

memory (ECM) performance model which accurately predicted (up to 20% error) perfor-

mance for in-memory data sets. They identified long floating-point instruction latencies

and limited out-of-order execution capabilities as the main culprits of poor performance

and lack of bandwidth saturation. Furthermore, they showed how CSR is not an ap-

propriate matrix-storage format for Sparse Matrix-Vector Multiplication (SpMVM) and

how the SELL-C-σ format improves performance.

Jackson et al. [32] investigated the performance of various applications on the A64FX.

They saw that most applications and benchmarks were ported to SVE with minimal

effort and no code changes required. In addition, they observed excellent performance on

the A64FX, which often outperformed other Arm and top-of-the-range Intel processors.

However, they also reported worse performance for a few benchmarks and concluded

that further work is needed to optimize math libraries for the A64FX processor.
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Methodology

3.1 Auto-vectorization

Automatic vectorization of compilers has evolved rapidly over the recent decade. Both

GCC and LLVM compiler technologies have added new features that recognize more

vectorization opportunities and better predict the benefit of potential vectorization.

Since new features are gradually released, auto-vectorization can be different for different

compiler versions. Compilers also introduce various flags that impact how vectorization

is treated. The major optimization levels (-O2, -O3, -Ofast) enable a different set of

optimizations, and these are not exactly the same for different compilers. Additionally,

optimizations for a particular architecture or a CPU (-march or -mtune) introduce

another degree of freedom. For these reasons, we do not focus on the pros and cons of a

particular compiler and how different optimization levels impact vectorization. Instead,

we focus on how compilers interact and adopt SVE. We analyze three compilers: GCC

11.1.0, Arm Compiler for Linux (ACfL) 22.0.1, and the Clang version of the Fujitsu

compiler 4.7 (FCC).

We evaluate the compiler’s ability to vectorize loops with SVE instructions using the

TSVC benchmark. Although all compilers can compile fixed-size SVE code, we focus on

the generation of VLA binaries. For each compiler, we enable all optimizations which we

deem relevant for vectorization. Most importantly, we enable the -Ofast optimization,

which sets the -ffast-math flag. This flag enables a set of optimizations that break the

IEEE floating-point compliance. In GCC, we also enable -fivopts which enables induc-

tion variable optimization on trees and use aarch64-auto-vectorization-preference

to only vectorize loops with SVE. For ACfL and Fujitsu compiler, -ffp-contract=fast

is used to enable fused multiply-add operations. In GCC, this is enabled by default. In

39
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ACfL, the option -fsimdmath allows the compiler to generate calls to vectorized ArmPL

library routines. Table 3.1 shows flags used for each compiler.

GCC (gcc) ACfL (armclang) FCC (fcc -Nclang)

-march=armv8.2-a+sve

-Ofast -fivopts --param

aarch64-autovec-preference=2

(-fno-tree-vectorize)

-march=armv8.2-a+sve

-Ofast -fsimdmath

-ffp-contract=fast

(-fno-vectorize)

-march=armv8.2-a+sve

-Ofast -ffp-contract=fast

(-fno-vectorize)

Table 3.1: TSVC compiler flags

We are interested in how well different features of SVE are exploited and whether a

particular family of loops possesses any problems for SVE. We rely on both static and

dynamic analysis. First, we check the compiler-generated code by inspecting assembly

and reading the compiler optimization reports. For dynamic analysis, we rely on the

A64FX processor, where we compare the benchmark execution times. We introduce the

vector speed-up

η =
tscalar
tvec

(3.1)

as the ratio between execution times of scalar and vectorized binaries. Here, tscalar

and tvec refer to the time measurement from the beginning of the first iteration until

the completion of the last iteration. Scalar binaries are produced using the same flags

but adding -fno-tree-vectorize and -fno-vectorize to disable vectorization. We

set up the same framework as Maleki et al. [33], where a speed-up of at least 1.15 is

required to call a vectorization beneficial. The array lengths were set to LEN 1D=8000

and LEN 2D=80. This way, the whole data fits in the cache, avoiding any bottleneck

arising from the memory bandwidth. Each loop is executed 1000 times.

Afterward, we look closely at loops where all compilers fail to vectorize. In these cases,

we try to manually vectorize loops with intrinsic functions. Finally, for loops where

we succeed with vectorization, we analyze whether compilers failed specifically due to

VLA/SVE or some other optimization technique. In the latter, we try to classify missed

opportunities according to optimization techniques. We also ask ourselves if simple

changes in the SVE ISA could increase vectorization opportunities.
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3.2 Application setup

3.2.1 Computational patterns

To evaluate the potential of SVE in real-life workloads, we select a set of applications

and libraries that capture some of the most common computational patterns in the HPC

domain. In 2004, Collela identified seven computational dwarfs covering a wide range of

applications important in science and engineering [34]. In 2006, this list was expanded

to thirteen by Asanovic et al. [35]. Each dwarf describes a common computation and

data movement scenario. Here, we give a brief overview of the original seven dwarfs:

1. Dense Linear Algebra. Matrices and vectors are dense, and memory accesses

are often consecutive (unit-stride).

2. Sparse Linear Algebra. Matrices are sparse and usually stored in a compressed

format to reduce storage and bandwidth requirements.

3. Spectral methods. Data is stored in the frequency domain rather than the

spatial/time domain. The most common computation is the calculation of the

Fast Fourier Transform (FFT).

4. N-Body methods. Such problems compute interactions between many discrete

points. Moreover, each point depends on other points, leading to a O(n2) complex-

ity. Typical examples are a simulation of atomic particles or stars in the galaxy.

5. Structured grids. A numerical solution is computed on a regular grid (nested

rectangular array). Local stencil operators are applied to each rectangle.

6. Unstructured grids. Data is computed on an irregular grid. Therefore, we must

first determine a list of neighboring points to update a grid point.

7. Monte Carlo simulations. Repeated random trials to compute a statistical

result. Monte Carlo is often regarded as embarrassingly parallel with little com-

munication between processes.

For our work, we choose four applications/libraries that cover the different dwarfs listed

above. OpenBLAS (see Section 2.2.2) is a package for BLAS functions. We mostly

focus on level 3 BLAS routines which are described by the Berkely dwarf 1. Although

the performance of OpenBLAS does not always match that of commercial libraries from

hardware vendors, it is still actively developed and widely used. The second application

we choose is GROMACS, which belongs to dwarf 4. GROMACS (see Section 2.2.3)
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supports a wide range of molecular dynamics simulations and is heavily used in the

pharmaceutical field. Parts of the application (long-range interactions) are also cov-

ered in dwarf 3. GPAW (see Section 2.2.4) is an application for materials science and

electronic structure calculation. Due to many different modes of computation, GPAW

encompasses various computational patterns. However, we focus on kernels belonging

to stencil operations on a regular grid (dwarf 5). The last application is MiniFE (see

Section 2.2.5), a mini-application for finite element methods. Although the solution is

evaluated on a regular grid, the problem is formulated implicitly by assembling a sparse

linear system. Therefore, we treat it as dwarf 2.

Another way to classify different HPC kernels is by analyzing the arithmetic intensity.

For example, let us denoteW as the work done by the CPU, which is typically measured

in the number of floating-point operations. In some cases (not for the applications we

consider), it may be better to count the number of integer operations. Next, we define the

number of bytes transferred from memory as Q. UnlikeW , the memory transfer depends

on the platform parameters due to different cache hierarchies. Unless the kernel is very

simple, one usually estimates Q only asymptotically and must rely on measurements for

exact computation. The arithmetic intensity is defined as

AI =
W

Q
. (3.2)

Arithmetic intensity AI is often used together with a roofline model [36]. The roofline

model combines two platform-specific performance ceilings in a single plot, first due to

the processor’s peak performance and second due to the memory bandwidth. We refer to

this as applications being compute-bound or memory-bound. The arithmetic intensity

where the two ceilings connect is known as the ridge point. Despite its simplicity, the

roofline model can provide an insightful visualization of a bottleneck in the system.

Additionally, the model has been extended to account for caches (Execution-Cache-

Memory model) [37].

Our four applications cover both aspects of the roofline model. OpenBLAS and GRO-

MACS are compute-bound, and GPAW and MiniFE are memory-bound on most sys-

tems. Consequently, selected applications have different exposures to SIMD parallelism

and porting efforts. For compute-bound kernels, good utilization of SIMD is crucial,

and OpenBLAS and GROMACS rely on assembly and intrinsic functions. On the other

hand, GPAW and MiniFE are less reliant on SIMD, and the SIMD instructions are

generated only through compiler auto-vectorization.
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3.2.2 Application hot spots

Hot spots are performance-critical parts of code where the application spends the most

time. Consequently, these parts of codes are most interesting for optimization. For

each of the four applications, we first identify hot spots. In some cases, these are easily

identified if we know where the underlying algorithm is implemented. Additionally, some

HPC applications provide such information at the output. For others, we have to resort

to profiling tools. Application profiling is a standard method for analyzing a program’s

performance. Developers profile applications to measure various statistics about the

application’s execution. For our work, we are interested in the execution time spent in

different code sections.

In this thesis, we use HPCToolkit (see Section 2.4) to find hot spots of applications. To

use HPCToolkit, we first prepare the application for measurement. Overall, HPCToolkit

is easy to use and does not require any manual code instrumentation. However, a helpful

step is to compile the application with a debug flag -g. This way, the compiler records

information about inlining and how instructions in code are mapped to assembly. There

are no restrictions on the application’s build system. For dynamically linked binaries,

the hpcrun command automatically instruments the code for measurement. However,

if the application is statically linked, the command hpclink is used to link the tool’s

monitoring code into the application. Afterward, we use the hpcviewer command to

analyze the results.

3.2.3 Benchmark preparation

From our selected applications, only GROMACS offers explicit support for SVE. There-

fore, a significant effort was made for SVE exploitation. We present these porting efforts

in Chapter 4, where we also explain details of applications and their underlying algo-

rithms.

Despite Gem5’s design efforts to improve the simulator’s performance, long simulation

times are still the primary constraint of our work. Gem5’s performance depends on the

detail of the simulated model and the execution context. Our experience shows that

the simulation rate of Gem5 is approximately five orders of magnitude slower than the

execution on real hardware. (One simulated second in Gem5 takes approximately one

day in real time.1) Therefore, we use Gem5 only for final simulations and rely exclusively

on ArmIE when testing and modifying the applications. Among HPC simulation codes,

long runtimes are standard for production runs in state-of-the-art research. However,

1This is only a very rough estimate.
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due to a slow simulation rate, running such use cases is not feasible in Gem5. To solve

this, we scale all applications to the total runtime of approximately one second on a

single core. We do this differently depending on the application.

OpenBLAS DGEMM

For our analysis, we focus on the double-precision matrix-matrix multiplication. We

write a simpleDGEMM benchmark that measures the execution time of OpenBLAS’s

DGEMM function. The benchmark first defines arrays for matrices and fills them with

random values. Afterward, it executes a series of calls to OpenBLAS’s DGEMM function

in a for loop. In each iteration, the execution time is measured using gettimeofday().

The benchmark accepts two command-line arguments, specifying the matrix dimensions

and the number of iterations. Scaling down the time of DGEMM computation is simple

because it is closely related to the matrix size. The best performance across iterations is

reported in GFlop/s. The number of floating-point operations is calculated as mn(2k+

2), where m, n, and k are dimensions of matrices. The code is publicly available1.

For our experiments, we link the benchmark to OpenBLAS version 3.20. Release 3.20

includes our SVE changes presented in Chapter 4.1. Additionally, we have removed the

mbind system call which is not supported in Gem5. The build system in OpenBLAS

is very straightforward. For native compilations, the program recognizes the underlying

hardware and configures the compilation accordingly. When cross-compiling, the user

selects the build target from a list of supported architectures. Because the Gem5 model

is not a real machine, OpenBLAS does not have any targets that would correctly set the

block sizes based on the Gem5 hardware parameters. Therefore, we modified the pseudo

target ARMV8SVE to match the architecture of the Gem5 model. This involved correctly

setting the size, associativity, and cache line size for different cache levels. Afterward,

we cross-compiled the library with:

make TARGET=ARMV8SVE CROSS=1 USEOPENMP =1

Listing 3.1: OpenBLAS compilation command

We use a GCC compiler, version 11.1.0. For experiments on Graviton 2 and A64FX, we

only change the target option to TARGET=NEOVERSEN1 and TARGET=A64FX, respectively.

OpenBLAS includes both statically and dynamically linked libraries by default.

1https://github.com/binebrank/DGEMM-benchmark

https://github.com/binebrank/DGEMM-benchmark
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GROMACS

GROMACS offers many standard use cases for users who quickly wish to test or bench-

mark the application. However, most use cases are too big to be executed in the Gem5

simulator. We, therefore, choose use cases of small molecular systems where we also

decrease the number of iterations of the MD simulation. Since the computational pat-

tern of each iteration is the same, we do not lose any information by focusing only on

a few iterations. For our simulations, we focus on the simulation of Ribonuclease pro-

tein in a water solvent and a box of pure water molecules. The input configurations

(rnase bench systems and water GMX50 bare) were taken from GROMACS’s official

repository. Additionally, we run simulations using GROMACS’s internal nonbonded

benchmark. This benchmark is shipped as part of the code and is frequently used to

measure performance. The nonbonded benchmark repeatedly executes the Nbnxm non-

bonded kernel that computes the short-range nonbonded forces between particles. As we

explain in Chapter 4.2.2, this is the most compute-intensive part of the simulation. We

run the benchmarks for ten iterations. An example of the command line for nonbonded

benchmark is shown in Listing 3.2.

gmx nonbonded -benchmark -size 1 -simd 4xm -nt 1 -iter 10 -warmup 2 -time

Listing 3.2: Nonbonded benchmark execution command

To evaluate GROMACS, we use version 2021.5, to which we added changes explained

in Section 4.2.3. Using this version initially failed in Gem5 due to incorrectly aligned

addresses in the SVE implementation, which we fixed. Additionally, we experienced

problems with the GROMACS’s timing measurement. The application records time

by reading high accuracy counters in the CPU. Due to a system-emulation mode of

Gem5, these counters are not available for Gem5 simulations. We, therefore, mod-

ified the code to measure time with gettimeofday(). The modified code is available

on Gitlab1. We compiled the application using GCC 11.1.0 and target SVE with a

command-line option -DGMX SIMD=ARM SVE. Because the SVE size needs to be set at

compile-time, we have build three different versions, separately for 128-, 256-, and 512-

bit SVE. For Graviton 2 runs, we build GROMACS the same way but with the option

-DGMX SIMD=ARM NEON ASIMD which targets the NEON architecture. The application

features CMake build system and has very few external dependencies. It implements an

internal library for Fast Fourier Transformations and BLAS functions. However, these

can also be linked to external libraries. For our compilation, we link GROMACS to

FFTW version 3.3.9. Although there has been some effort for SVE in FFTW [38], the

1https://gitlab.com/binebrank/gromacs/-/tree/phd_gem5

https://gitlab.com/binebrank/gromacs/-/tree/phd_gem5
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official release does yet support it. The full command line for 128-bit SVE is shown in

Listing 3.3.

module load CMake FFTW

FLAGS="-march=armv8 -a+sve -msve -vector -bits =128 -static -fopenmp "

FLAGS+="- DGEM5ROI" # used for Gem5 region of interest

cmake .. -DCMAKE_C_COMPILER ="gcc" -DCMAKE_CXX_COMPILER ="g++" \

-DCMAKE_BUILD_TYPE=Release \

-DCMAKE_C_FLAGS_RELEASE ="-O2" -DCMAKE_CXX_FLAGS_RELEASE ="-O2" \

-DCMAKE_C_FLAGS =" $FLAGS" -DCMAKE_CXX_FLAGS =" $FLAGS" \

-DGMX_MPI=off -DGMX_OPENMP=on -DGMX_GPU=off -DGMX_DOUBLE=off \

-DGMX_SIMD=ARM_SVE -DGMX_SIMD_ARM_SVE_LENGTH =128 \

-DGMX_BUILD_SHARED_EXE=off -DGMX_PREFER_STATIC_LIBS=ON \

-DGMXAPI=off -DGMX_THREAD_MPI=on -DGMX_IMD=off -DGMX_USE_TNG=off

Listing 3.3: GROMACS build command

GPAW

To study GPAW, we rely on use cases from the Unified European Applications Bench-

mark Suite (UEABS) [39]. However, all use cases are too big for a Gem5 simulation. To

solve the problem, we have extracted two of the most computationally expensive func-

tions out of the application. (See Section 4.3.3.) Both functions are therefore executed

as standalone benchmarks without any external dependencies. The code is publicly

available1. For analysis of application hot spots, we use version 22.1.0 and compile

the code with Python 3.9.4 and GCC 11.1.0. Additionally, we rely on OpenMPI 4.1.2,

OpenBLAS 0.3.18 and FFTW 3.3.9.

MiniFE

In the case of MiniFE, we evaluate the openmp4.5 implementation of version 2.1. The

only input parameter for MiniFE is the size of the grid, where the problem is solved.

The default size, 10×10×10, is very small (even in the context of the Gem5 simulator),

so we evaluate cases where the overall runtime on real hardware is approximately one

second. As we explain in Section 4.4.4, we added the Sliced ELLpack matrix format and

implemented the SpMVM kernel with intrinsic functions for better utilization of SVE.

For the Gem5 statistic measurement, we inserted the ROI markers around a single iter-

ation of matrix-vector multiplication in the CG method. The code is publicly available

2.
1https://gitlab.jsc.fz-juelich.de/brank1/gpaw-benchmarks
2https://gitlab.jsc.fz-juelich.de/epi-wp1-public/minife

https://gitlab.jsc.fz-juelich.de/brank1/gpaw-benchmarks
https://gitlab.jsc.fz-juelich.de/epi-wp1-public/minife
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When testing the MiniFE code in the Gem5 simulator, we noticed strange behavior if

we compiled the code with the auto-vectorization enabled (both NEON and SVE). For

specific input configurations, Gem5 simulations failed with segmentation fault errors.

However, we could not reproduce these errors on real hardware, which suggests that the

problems occurred because of bugs in the simulator. To avoid this problem, we have

disabled auto-vectorization with the -fno-tree-vectorize flag and also applied manual

vectorization for the CSR matrix format. Additionally, we set the number of cores in

the Gem5 model to match the number of OpenMP threads due to the unimplemented

wait system call. (This call is redundant if the number of cores matches the number

of threads.) We limit the CG method to 100 iterations to avoid long simulation times.

However, this is relevant only when the grid size nx,y,z ≥ 30, because the CG method

converges in less than 100 iterations for smaller input sizes. The full command line used

for the compilation of SVE binaries for Gem5 is shown in Listing 3.4.

gcc -O3 -fno -tree -vectorize -fopenmp -march=armv8 -a+sve -static

-DMINIFE_SELL_MATRIX

-DMINIFE_SCALAR=double

-DMINIFE_LOCAL_ORDINAL=int

-DMINIFE_GLOBAL_ORDINAL=int

Listing 3.4: Compilation command for MiniFE

3.2.4 Region Of Interest

In our analysis, we focus on application hot spots. However, because our workloads

are significantly reduced in size due to the Gem5 simulator, the hot spot might take

a smaller portion of the total runtime due to the initialization phase. Therefore, we

only want to measure and collect the data during the hot spot execution. Both Armie

and Gem5 support measurement in the Region Of Interest (ROI): a user-defined code

section. This way, we only measure data for parts of the code we are interested in.

By default, the ArmIE instrumentation client collects data for the entire program.

Therefore, we must instrument the code with special markers (hardware instructions)

to measure data only for a specific code section. Listing 3.5) shows an example of this.

Additionally, the option -a -roi has to be used at the command line; otherwise, the

markers are ignored.
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1 #define __START_TRACE () { asm volatile (". inst 0x2520e020 "); }

2 #define __STOP_TRACE () { asm volatile (". inst 0x2520e040 "); }

3

4 int main() {

5 ...

6 __START_TRACE ();

7 // measurement region

8 __STOP_TRACE ();

9 ...

10 }

Listing 3.5: ArmIE Region of Interest

Without source modification, Gem5 also outputs statistics for the whole application

runtime. Similar to ArmIE, ROI markers are provided to specify where Gem5 should

reset and dump statistics in the application. Listing 3.6 shows an example of this in

practice, where three ROIs are separated. First from the start of execution until line 5,

second for the hot spot, and third from line 7 until the end of the program. Additionally,

one has to link the application to the Gem5 library.

1 #include "gem5/m5ops.h"

2

3 int main() {

4 ...

5 m5_dump_reset_stats ();

6 // hot -spot

7 m5_dump_reset_stats ();

8 ...

9 }

Listing 3.6: Gem5 Region of Interest

3.3 Gem5 model

This section explains how we configure the Gem5 model for our experiments. To make

our results applicable to real hardware, we want our model to be a realistic representation

of the current design of Arm cores. We achieve this by configuring the model based on

the Neoverse N1 core (Graviton 2 CPU). Most of the architectural parameters for N1

are publicly available. With the AWS, the Neoverse N1 has become one of the most

widely used Arm processors in the server market.

In our model, we use an out-of-order O3CPU core with a classic memory system. As

observed by some studies, we expect that the SVE ISA and different SVE sizes will

significantly impact the core architecture design rather than the memory system. We,

therefore, decided to keep our focus on a detailed configuration of the core model and
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make simplifications in our cache/memory configuration. Furthermore, using a simplified

memory reduces the runtime of our simulations. Although our simulations primarily

focus on a single core, we build a multi-core system with four cores. Of course, Gem5

supports much bigger systems (up to 64 cores), but we noticed that the increased number

of cores makes the simulator less stable and more prone to failures.

3.3.1 O3CPU

Before explaining our configuration, we give an overview of the O3CPU model in Gem5.

We frequently reference some of the Gem5 internal workings for the rest of the thesis,

and it is essential to know what exactly we are simulating. O3CPU is a detailed out-or-

order model composed of seven pipeline stages. One of the main features of the Gem5

model is that the ISA is decoupled from the CPU model. Therefore, none of the CPU

models is explicitly limited to a particular architecture. This is implemented by splitting

the instruction’s static information from its dynamic execution.

The StaticInst class describes the static information for each binary instruction. This

class contains information about instructions’ operation code, the source and destination

registers, and into which micro-instructions it decodes. The primary method execute()

defines all architectural movements and mathematical operations that the instruction

performs. In the case of memory instruction, the process is split into address calcula-

tion and the actual memory access, depending on the architecture. Additionally, each

instruction is assigned its operation class. Gem5 groups similar instructions into op-

eration classes called OpClass which simplifies specific steps in the core backend. An

example of an operation class is IntALU which groups simple integer ALU operations

(add, subtract, shift, bit operations, etc.). To increase the simulator performance, a

StaticInst object for every binary instruction is stored in a hashmap. This way, each

machine instruction is decoded only once. Note that all the information in StaticInst is

derived exclusively from the ISA, and there is no connection to its dynamic execution.

The DynInst class is a class that includes all dynamic information about the instruc-

tion. This consists of a program counter (PC), renamed source and destination registers,

the result after the execution, information about the thread number, etc. This class is

instantiated for each binary instruction together with a StaticInst. This enables the

O3CPU model to work for different ISAs because only the StaticInst changes while

dynamic execution stays the same. When the simulation is running, the DynInst pro-

vides an interface to the execution context to modify the CPU state (physical registers,

program counter, memory access). Pointers to each DynInst object pass through seven
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pipeline stages. The stages are shown in Figure 3.1. (We also show the most important

high-level functions in the calling chain for non-memory instructions.)

Figure 3.1: Out-of-order pipeline in the O3CPU model

1. At Fetch stage, instructions are fetched from the instruction cache. Each fetched

instruction creates instances of the DynInst and StaticInst classes.

2. Decode stage models instruction decoding and PC resolution of unconditional

branches. (The actual decoding of binary instructions is done when the StaticInst

instance is created.)

3. Rename stage handles register renaming and configuration of the out-of-order

execution. Each micro-instruction is renamed from architectural registers to phys-

ical registers, and the history of renaming is kept. When the branch is falsely

predicted, the instructions are squashed, and mappings are reverted to the correct

stage of the program. This stage stalls when there are insufficient physical registers

or back-end resources.

4. Gem5 combines Issue, Execute, and Writeback into a single stage (IEW). This

stage first dispatches a micro-instruction to the instruction queue (IQ) and creates

an entry in the reorder buffer (ROB). The IQ is a single unified buffer that holds all

micro-instructions. In this sense, the Gem5 model is more similar to the N1 than
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the A64FX processor, which has multiple reservation stations. (See Section 2.3.2.)

The IQ waits until all operands are available before issuing the micro-instruction

to one of the units in the FUPool. At the same time, the IQ obtains the execution

latency ilat from the FU. Then, on the last execution cycle, the write-back stage

signals the result to the IQ, which issues dependent micro-instructions. This allows

back-to-back scheduling. For a memory operation, the execute function creates a

new entry in the LSQ. In case of a load, the LSQ issues a cache request to the

L1 data cache. For a store instruction, the LSQ waits until the instruction is

committed to issue a cache request. An executed instruction is removed from the

IQ but stays in the ROB until it is committed.

5. Finally, Commit stage commits instructions back in order and handles redirect in

case of a branch mispredict. Committed instructions are removed from the ROB.

Each pipeline stage operates in different states depending on the input, available re-

sources, and a possible branch mispredict. Additionally, each stage features a buffer

(skidBuffer), where current instructions are stored in case of a stall. Table 3.2 shows an

overview of the five main execution states.

Idle The stage receives no input from the previous stage and waits for instruc-

tions.

Run The stage is in a normal operation state. For example, the decode stage

receives instructions from the fetch stage and outputs decoded instructions

to the rename stage.

Block The stage stops its execution due to a lack of resources or a signal from

another stage. During this state, no instructions are processed. When a

block occurs, the stage signals to the previous stage to block. All instruc-

tions currently in this stage are put in the skidBuffer for processing when

the stage unblocks.

Unblock The stage unblocks itself due to available resources or a signal from another

stage. When this happens, the stage first starts processing instructions in

the skidBuffer. When all instructions from the buffer are processed, the

stage enters an idle state and signals the previous stage to unblock.

Squash Occurs in the case of a branch mispredict. All instructions are squashed,

and the skidBuffer is emptied. The instruction thread reverts to the last

retirement state, and when new instructions are available, the stage enters

the run state.

Table 3.2: Gem5 pipeline states
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3.3.2 Core configuration

As explained in Section 3.3, our goal is configuring the Gem5 model to resemble the

Arm Neoverse N1 core, which is also implemented in the Graviton 2. Our starting point

is the Arm O3 v7 model, a default Gem5 configuration of the O3CPU model for Arm

architectures. This core is loosely based on a rather old Cortex A15 core. Therefore, we

significantly modify most aspects of its microarchitecture.

The main configuration step of the O3CPU is defining a set of functional units in the

core backend. The O3CPU model includes an object FUPool which describes units that

execute operations. Gem5 simplifies the configuration of functional units by combining

similar instructions into groups. These groups are called operation classes (class opClass,

see Section 3.3.1). Each unit includes a list of operation classes (instructions) that it

can execute. We configure the units of our model to match those in the Neoverse

N1 (see Figure 2.11 in Section 2.3.1) with a few exceptions. Firstly, Gem5 groups

branch instructions together with arithmetic instructions in the operation class IntAlu.

Therefore, we could not create a separate FU for branch instructions but have combined

the two types. Three FUs for integer and branch instructions are accompanied by an

additional FU for complex integer operations. (These are equivalent to B, I1, I2, M in

the N1). We also add two units for floating-point and SIMD (SVE) operations. Here

we make a minor simplification and make both units execute all types of floating-point

operations. (This includes fsqrt and fdiv, which can be executed only on one FU in the

N1). Additionally, we add a functional unit for predicate operations, which is not used for

NEON binaries. Finally, two units are added that execute the memory operations. Gem5

treats gather-load and scatter-store instructions similarly to the A64FX. All gather-load

and scatter-store instructions are decoded into lSVE micro-instructions. The entire FU

pool, with main operation classes for each FU, is shown in Figure 3.2. (Compare with

2.11).
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Figure 3.2: Gem5 functional units

Configuration of the FUPool also requires setting the execution latencies of different

instructions. In Gem5, these are set for each operation class. Our goal was to config-

ure execution latencies to match those on the Neoverse N1. However, we noticed that

operation classes for Arm ISA in Gem5 are set too broadly. For multiple cases, instruc-

tions with different characteristics and latencies in N1 are put in the same operation

class. This makes it impossible to set the latencies of all instructions to match precisely.

Additionally, reconfiguring Gem5 operation classes would require a significant source

code change, which is not our goal. We solve this problem by setting the latency of

each operation class to the latency of what we think is the most commonly executed

instruction of that class. See Appendix B for detailed documentation of the FUPool and

the latencies used in our model.

Here, special care was taken for the SVE in-order reduction instruction fadda (see Sec-

tion 2.1.2.3). Instructions like this one are special because their execution is not done

simultaneously for all lanes in the SVE register. To model this correctly, we look at

how these instructions are handled on the A64FX. First, we notice that the execution

latency of fadda in the A64FX depends on the SVE size (latency gets bigger for larger

SVE size). Additionally, these instructions are sequentially decoded into lSVE micro-

instructions and dispatched in order. We imitate this behavior in Gem5 by splitting

the model for three SVE sizes (128, 256, and 512 bits) and setting the latency for each

SVE size separately. Additionally, we configure these instructions as not pipelined to

mimic the sequential decode. Non-pipelined instructions block the execution unit until

the instruction is executed. For example, on real hardware, this is a typical scenario

for fsqrt and fdiv instructions that require multiple iterations of the Newton-Raphson
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method to compute the result. We know that such a configuration is not ideal, but it is

more realistic than a fully pipelined operation.

Parameters of other stages of the core pipeline are also set to realistic values of real

hardware. In Table 3.3, we report the main parameters that match the microarchitecture

of the Neoverse N1. We found most of these parameters in the Arm public documentation

[19]. For other parameters, we relied on the unofficial internet sources.1 2

reorder buffer size 128

load queue size 68

store queue size 72

instruciton queue size 120

# integer registers 120

# floating-point/vector registers 128

fetch width 4

decode width 4

rename width 8

dispatch width 8

issue width 8

write-back width 8

Table 3.3: Gem5 pipeline buffer widths

3.3.3 Cache configuration

To configure the memory system of the Gem5 model, we rely on Gem5’s classic memory

model. This introduces many simplifications but makes the simulation faster. Also, our

goal is not a detailed simulation of the Graviton 2’s memory system.

Caches in our Gem5 model resemble Graviton 2 with a significant change in the system-

level cache. Each core features a private L1 instruction and data cache and a unified

L2 cache. Latencies of the caches were configured to match those reported in the docu-

mentation of Graviton 2. In addition, we use a Least Recently Used replacement policy

(LRU) for all cache levels. Configuring a shared SLC cache with multiple slices con-

nected over a mesh-interconnect would require an advanced Ruby memory model. We

avoid this and keep a simple architecture with a unified shared L3 cache that is con-

nected to private L2 caches via a coherent crossbar. On the memory side, the L3 is

connected to a memory controller. Because our model comprises only four cores, the L3

cache size was scaled down from 32 to 8 MByte. Additionally, we set the number of Miss

Status Holding Registers (MSHR) to 20 and 46 for the L1-D and L2 cache, respectively.

MSHR (also called miss buffer) tracks the cache line misses that are being fetched from

lower cache levels. Main cache parameters are shown in Table 3.4.

1https://en.wikichip.org/wiki/arm_holdings/microarchitectures/neoverse_n1
2https://chipsandcheese.com/2021/10/22/deep-diving-neoverse-n1/

https://en.wikichip.org/wiki/arm_holdings/microarchitectures/neoverse_n1
https://chipsandcheese.com/2021/10/22/deep-diving-neoverse-n1/
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L1-data

size 64 kByte

tag latency 3

data latency 3

associativity 4

clusivity mostly incl

L2

size 1 MByte

tag latency 5

data latency 5

associativity 8

clusivity mostly incl

L3

size 8 MByte

tag latency 48

data latency 48

associativity 16

clusivity mostly excl

Table 3.4: Cache parameters of the Gem5 model

The hardware prefetcher is an important part of the cache system in Graviton 2. Unfor-

tunately, both Arm and Amazon do not disclose much information about it. However,

some sources [19] suggest that several prefetchers exist that load data in multiple cache

levels and TLBs. They support stream, strided, and spatial memory pattern recognition.

We use a tagged prefetcher with degree 32 at the L2 cache in our model. This decision

was partially based on the results of the STREAM benchmark for a single core.

We are aware that in this aspect, our Gem5 configuration is very different from the

reference hardware architecture, Graviton 2. Because the hardware prefetcher can be

the main performance factor for single-threaded memory-bound kernels, we point out

again that results in the Gem5 simulator in these cases can be quite different than on

the Graviton 2. Figure 3.3 shows an overview of the entire cache hierarchy in our Gem5

model.

Figure 3.3: Gem5 cache configuration
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3.3.4 Memory configuration

Gem5 supports DDR, GDDR, and HBM memory technologies. In our model, the caches

and interconnect are so simplified that it makes little sense to try to mimic the memory

technology of Graviton 2 with a detailed model. Therefore, we configure the random

access memory with the Gem5’s simpleMemory model. This is an easy-to-configure

memory system with two parameters: latency and bandwidth. We set the bandwidth to

25.6 GByte/s and latency to 50ns. Similar to the number of cores, we also scale down

the number of memory channels and add a single bank of such memory. Therefore, the

total bandwidth (25.6 GByte/s) is eight times lower than on Graviton 2.

3.4 SVE static analysis

SVE enhances the ARMv8-A ISA with many new features compared to NEON. To study

how these features translate to the code, we analyze SVE binaries with different ArmIE

instrumentation clients. Although one can write custom DynamoRio clients, we use

preconfigured clients with ArmIE.

To count the number of SVE instructions in a program, we use ArmIE together with

the libinscount emulated.so client. This client outputs the number of emulated in-

structions, giving a simple overview of SVE utilization. Additionally, we frequently

rely on libopcodes emulated.so. This client reports the histogram of decoded SVE

instructions in binary form. However, ArmIE provides the python script enc2instr.py

that leverages the llvm-mc machine code analyzer to decode the operations. For fur-

ther analysis, we write an additional python script that sums instructions with the same

operation code and different input operands.1 With this, we can count the number of in-

dividual SVE instructions. Finally, libmemtrace sve<sve>.so collects simple memory

traces of SVE instructions. Most importantly, this gives us insight into the amount of

gather-load and scatter-stores instructions. Additionally, we see the number of memory

operations with fully and partially active lanes.

We also read the number of instructions in Gem5. Gem5 separates the count for differ-

ent stages of the O3CPU model (number of fetched instructions, decoded instructions,

executed instructions, etc.). These mainly depend on the simulated architecture. How-

ever, the number of committed instructions I is independent of the architecture. Unlike

Armie, Gem5 does not report the number of individual SVE instructions. Instead,

most statistics are based on operation classes (see Section 3.3.1). The name of the

class OpClass is usually self-explanatory. For example, class SimdFloatMultAcc refers

1https://github.com/binebrank/phd_scripts/tree/main/armie_scripts

https://github.com/binebrank/phd_scripts/tree/main/armie_scripts
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to different forms of fmla and fmad instructions. We also read the number of decoded

micro-instructions, which are more relevant when analyzing the core’s backend. The rea-

son for this are instructions that are decoded into multiple micro-instructions. Table 3.5

shows the most important metrics in our analysis.

Symbol Gem5 event name Description

I committedInsts Committed instructions

µ committedOps Committed micro-instructions

IC committedInsts::OpClass Committed instructions for OpClass C

µC not available Committed micro-instructions for OpClass C

ISVE not available Committed SVE instructions

Table 3.5: Gem5 static analysis counters

3.5 Architectural exploration

Hardware simulators are often used to study the impact of hardware parameters on the

application’s performance. Such simulations also provide computer architects with feed-

back about how different hardware components work together throughout the execution.

An important step for software/hardware codesign is to specify the design and analysis

space. The design space includes a list of architectural parameters that are changed

during simulations. The analysis space defines parameters for studying the hardware

and application’s response.

Usually, the design and analysis spaces are tightly connected to the simulator’s capa-

bilities and accuracy. Therefore, the full codesign methodology often involves multiple

simulation environments. In our work, we only use Gem5, which provides much infor-

mation for microarchitectural analysis.

3.5.1 Design space

Gem5 allows users to easily repeat experiments with different sets of architectural pa-

rameters. However, simultaneously changing many parameters expands the exploration

space into many dimensions making analysis more difficult. The modern microarchitec-

ture is very complex, and different components’ behavior is often coupled. For example,

let us assume that poor performance results from a bottleneck in one microarchitectural

component. Increasing the capability of this component will not altogether remove the

bottleneck but merely shift it (in a reduced form) to some other part of the system.
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Therefore, a usual approach is to analyze behavior by changing only one parameter at

a time and keeping others fixed.

Since SVE is a vector-length-agnostic, the first question is how the microarchitecture

responds to different SVE sizes. This will be the main topic of our simulations. Although

the size of SVE can range up to 2048 bits, the current trends of the SIMD width do

not show any plans of going beyond 512 bits. Therefore, we perform experiments with

128, 256, and 512 bits sizes. However, increasing SVE size also increases the number of

transistors and power consumption in real machines. To consider this, we also perform

experiments where we change the number of SVE units while keeping the parameter

Flop/cycle constant. For these experiments, we choose three configurations: 4x128-bit,

2x256-bit, and 1x512-bit SVE. Another point of interest is the A64FX core, which is

architecturally very different from the Neoverse N1. The main difference is deep pipelines

in execution units which results in higher instruction latencies. Where the performance

in the A64FX differs significantly from our N1 model, we analyze this with an alternative

Gem5 model, where the latencies are matched to the ones in the A64FX.

In our analysis, we mainly focus on the core backend. This involves studying the occu-

pation of the functional units (see Figure 3.2) and the buffers for out-of-order execution

in the core backend (see Figure 3.1). Here, we are limited to the O3CPU model, where

the main components are ROB, IQ, physical registers, and LSQ. The sizes of these

parameters are kept fixed (See Table 3.3).

3.5.2 Microarchitectural analysis

Gem5 simulator outputs an extensive report about the completed simulation. File

stats.txt is generated alongside the model configuration and executable output. This

file contains statistics for events of every object created in the Gem5 model. Analyz-

ing events of architectural components gives us a deep insight into the behavior of the

simulated architecture. Firstly, we are interested in the overall performance benefit of a

bigger SVE size. Although all selected applications report performance, the overall run-

time in cycles tc can also be read from the number of simulated clock cycles numCycles

in Gem5. To quantify results, we define the relative vector speed-up as the execution

time for longer SVE width (e.g. η256) compared to the 128-bit SVE (t128).

η256 =
t128
t256

, η512 =
t128
t512

(3.3)

Additionally, we refer to a parallel efficiency for double-precision as:

ϵ256 =
η256
2
, ϵ512 =

η512
4

(3.4)
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To see how well applications utilize instruction level parallelism, we often refer to the

number of committed instructions per cycle ipc.

As discussed in the previous section, the second part of our analysis focuses on how

SVE length impacts other components in the core’s backend. The execution units in a

Gem5 model are configured in a FUPool (See Section 3.3.2). Gem5 provides information

on the occupancy of units with fuBusy events. These events are triggered if a micro-

instruction can not be issued to the execution unit as soon as it is ready (has all operands

available). This usually happens because the unit is stalled or if the CPU tries to issue

many micro-instructions in the same cycle. fuBusy events are also available for each

OpClass separately (see Table 3.6).

Symbol Gem5 event name Description

tc numCycles Number of CPU cycles simulated

ipc ipc Instructions per cycle

B fuBusy FU busy when requested (Count)

Brate fuBusy.rate B/µ

BC statFuBusy::opClass FU busy for opClass C

Table 3.6: Gem5 execution counters

A large number of fuBusy events for a particular class of instructions shows that a

core cannot handle all operations efficiently. This indicates a potential bottleneck in

the execution stage. In the best case, an execution unit executes one operation per

cycle. Therefore, we can estimate the lower bound for the total number of cycles. The

minimum number of cycles needed to execute all SVE instructions is

tc ≥
ISVE
NSVE

(3.5)

Here, we can make a tighter bound if we consider that some instructions are not

pipelined. As explained in Section 3.3.2, non-pipelined instructions (e.g. fadda) block

the unit for the execution duration. For example, let Ifadda be the number of fadda

instructions and latfadda its latency. The minimum time needed to execute all fadda

operations is

tc ≥
Ifaddalatfadda

NSVE
(3.6)

The same analysis can also be applied to memory instructions. We do not have any

non-pipelined instructions for units that execute memory operations because requests

are automatically put in the LSQ. However, we have to separate normal and sequential

memory operations. Gem5 decodes gather-load and scatter-store instructions into lSVE
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micro-instructions. In contrast, each normal load/store is decoded into a single micro-

instruction. Therefore, if µmem is a total number of memory micro-instructions, the

minimum number of cycles to execute these is

tc ≥
µmem

Nmem
(3.7)

To evaluate how SVE size impacts out-of-order buffers, we choose the following statistics

shown in Table 3.7. As the name suggests, fullRegistersEvents counts the number of

events where all physical registers (either integer of SIMD) are fully occupied at the

rename stage. Another point of interest is the reorder buffer which tracks the micro-

instructions that execute out-of-order. A ROBFullEvents counts the number of events

for a full reorder buffer. Additionally, iqFullEvents reports the number of times that

micro-instructions could not be dispatched to the IQ because the queue was full. Finally,

lsqFullEvents counts such events for the LSQ.

Gem5 event name Description

fullRegistersEvents All physical registers occupied

vecRegfileReads Vector regfile reads

vecRegfileWrites Vector regfile writes

ROBFullEvents Reorder Buffer full

iqFullEvents Instruction Queue full

lsqFullEvents Load-Store Queue full

Table 3.7: Gem5 out-of-order counters

We can estimate some our-of-order bottlenecks from the buffer sizes. Let us denote lLSQ

and lROB sizes of the LSQ and ROB, respectively. Each memory operation in the LSQ

is also present in the ROB. When the lsqFullEvent occurs, lLSQ entries in the ROB

are occupied by memory operations. Because the ROB stores operations in-order, the

lsqFullEvents can only occur when the number of memory operations compared to other

operations in the code reaches a critical factor

fLSQ =
lLSQ

lROB − lLSQ
. (3.8)

Otherwise, the ROB fills up before LSQ, and the bottleneck shifts to the ROBFullEvents.

Our Gem5 model has a factor fLSQ = 72
128−72 = 1.29. For loop kernels, the number of

memory operations can be estimated by looking at the assembly and counting opera-

tions in one iteration. Predicting iqFullEvents is more complex because the IQ holds

operations out-of-order. When an instruction is executed, it is removed from the IQ but
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stays in the ROB until it is committed. Therefore, the IQ can become full only when

more than

fIQ =
lIQ
lROB

(3.9)

micro-instructions in the ROB have not yet been executed. In our Gem5 model, fIQ =

120/128 = 94%. In other words, iqFullEvent occurs when less than 6% of instructions in

the ROB have finished execution. We do not anticipate many iqFullEvents since these

are likely hidden by the ROBFullEvents.

The number of events for a full buffer significantly impacts the out-of-order execution.

Although Gem5 does not report the number of stall cycles for individual events, we look

at the number of cycles spent in different pipeline states (see Table 3.2). Our main focus

is the rename stage, where the pipeline blocks if the physical registers, ROB or IQ, get

full. Table 3.8 shows the main counters for measuring the state of the rename stage.

For analysis, we define the stall cycles as cycles from both idle and block states. (When

unblocking, the stage is already processing instructions.)

Gem5 event name Description

rename.idleCycles Cycles in idle

rename.blockedCycles Blocked cycles

rename.runCycles Cycles in normal operation

rename.unblockCycles Processing of the skidBuffer

rename.squashCycles Cycles in squash state

Table 3.8: Main rename stage counters

To gain insight into cache performance, we focus on the LSQ. Table 3.9 shows the most

important LSQ statistics. We use the average load-to-use latency loadToUse::mean to

analyze how well the data is cached. This is reported with a standard deviation and a

histogram of latencies for all read requests put in the LSQ. (In the table, we only show

events for latencies less than 30 cycles.)

Gem5 event name Description

lsq0.LoadToUse::samples All load requests put in LSQ

lsq0.LoadToUse::mean Average load-to-use latency

lsq0.LoadToUse::stdev Standard deviation of load-to-use latency

lsq0.LoadToUse::0-9 Requests fetched in 0-9 cycles

lsq0.LoadToUse::10-19 Requests fetched in 10-19 cycles

lsq0.LoadToUse::20-29 Requests fetched in 20-29 cycles

Table 3.9: Main LSQ counters
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Additionally, we analyze the cache behavior by inspecting the number of cache refills

(replacements) for each cache level. Here, cache.replacements counts replacements due

to both hardware prefetcher and the core requests. To separate both cases, we inspect

the cause of MSHR misses. Table 3.10 shows the most important counters for our

analysis.

Gem5 event name Description

dcache.replacements L1-D cache refills

l2cache.replacements L2 cache refills

l2cache.overallMshrMisses::prefetcher L2 cache misses caused by prefetcher

l2cache.overallMshrMisses::cpu0.data L2 cache misses caused by the core

l3cache.replacements L3 cace refills

Table 3.10: Main LSQ and cache counters

Finally, we read the traffic over the memory controller. This enables us to analyze the

memory footprint and the utilized bandwidth of all cores. Table 3.11 shows a few Gem5

statistics with the name of Gem5 events being self-explanatory.

Gem5 event name Description

mem ctrls.numReads::cpu0.data Read request from core 0

mem ctrls.numReads::cpu1.l2cache.prefetcher Read request from core 1 prefetcher

mem ctrls.bytesRead::total Bytes read (all cores)

mem ctrls.bytesWritten::cpu2 Bytes written from core 2

mem ctrls.bwRead::total Total read bandwidth

mem ctrls.bwWritten::total Total written bandwidth

mem ctrls.bwTotal::total Total badwidth (read and write)

Table 3.11: Gem5 memory controller

3.5.3 Typical workflow

Listing 3.7 shows an example of a command line for Gem5 simulations. We modify the

SVE size with parameter system.cpu[:].isa[:].sve vl se. The number of execution

units is configured with different CPU types and selected via --cpu-type. Other input

parameters (see Section 2.5) are predefined in the model. Additionally, we have modified

the default se.py script for our needs.
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/home/brank1/gem5_dir/build/ARM/gem5.opt -d results -gromacs/sve_128

-r /home/brank1/gem5_dir/configs/example/se.py --cpu -type=O3_ARM_Neoverse_N1

--num -cpus=4 --caches --l3_size =8MB --mem_latency =50ns

--mem_bandwidth =25.6GB/s --mem -size=1GB --cpu -clock =2.5 GHz

--sys -clock =2.5 GHz --param system.cpu [:]. isa [:]. sve_vl_se =128

--cmd="${BIN}" -o "${OPTIONS }" --mem -type SimpleMemory

--mem -channels =1 --mem -ranks=1 &

Listing 3.7: Gem5 command line

For easier workflow, we write a set of bash scripts that run the simulations for various

SVE lengths, input sizes, and a number of threads. We also write a script that collects

the statistics for multiple SVE sizes and ROI and parses them for a more straightforward

analysis. All scripts are available in the Github repository1. All Gem5 simulations were

performed on the Juawei cluster (Kunpeng 916 nodes) at the Juelich Supercomputing

Centre.

For accessing the Graviton 2 processor, we rely on the AWS cloud service. AWS features

many types of servers in a virtual environment called instances. These instances are

configured with a different number of virtual cores and memory depending on the user’s

needs. All instances are running on the AWS Nitro System, a virtualization technology

developed by AWS. For our work, we rely on the C6g instances, which are powered by

the Graviton 2 CPUs. For most instances, a single node is most likely shared with other

users for most instances, which is not the ideal setup for benchmarking. Therefore, we

use the special c6g.metal instance, which enables access to all cores and guarantees that

we have complete control of the node. Despite this, the c6g.metal is still running in a

virtual environment. We do not know the exact effect of this on the performance, but

AWS claims that the Nitro hypervisor delivers performance indistinguishable from the

bare-metal environment. To avoid the additional work of compilation in the cloud, the

binaries are compiled on the Juawei cluster with a static linking. Afterward, we transfer

the binaries to the AWS cloud and run them.

We gained access to the A64FX processor through the Ookami testbed at Stony Brook

University; the first A64FX implemented machine outside Japan. The Ookami HPE

Apollo 80 system features 174 A64FX processors, providing researchers access to this

novel architecture for various projects. For A64FX, we compile applications natively on

the A64FX machine. This is because we noticed poor performance in some instances for

statically linked binaries. Additionally, when we reduce the default vector length (512

bits), we rely on Linux’s prctl system call.

1https://github.com/binebrank/phd_scripts

https://github.com/binebrank/phd_scripts
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Porting of applications

4.1 OpenBLAS

Extending OpenBLAS to support a new microarchitecture is not trivial. The main work

involves adding specialized assembly kernels for various BLAS functions. Most important

are kernels for general and triangular matrix multiplication (GEMM and TRMM), which

are also reused to optimize other level-3 BLAS functions. In this section, we mainly

focus on DGEMM. There are many similarities between algorithms for different BLAS

routines, and a good understanding of DGEMM is a prerequisite for implementing other

functions. We give a detailed explanation of the SVE kernel for DGEMM and only

briefly present implementation changes for other functions. All code changes explained

here were contributed and merged into the OpenBLAS official repository. Work for single

and double precision real values (S, D) was accepted into the 3.19 release. Kernels for

complex numbers (C, Z) were introduced with release 3.20.

4.1.1 BLAS3 general algorithm

In this section, we explain the implementation of the DGEMM function which computes

C = αA×B+ βC. In the following paragraphs, matrices A, B and C are of size m× k,

k×n andm×n, respectively. α and β are both scalars. For the remainder of this chapter,

we will consider the case where α = β = 1. Computing a scalar-matrix product is not an

expensive part of the computation and can be done at different stages in the algorithm.

Therefore, we consider the case C += A×B. Although we focus on OpenBLAS, most of

the details described here also apply to other libraries that implement high-performance

BLAS.

65
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Figure 4.1 shows the pseudocode of the DGEMM algorithm, which is composed of six

nested for loops.

Figure 4.1: DGEMM algorithm pseudocode

Three outer loops (loop 1, 2, 3) partition the matrices A, B and C into smaller blocks

(see Figure 4.2). Loop 1 traverses over the dimension n, splitting matrices C and B

into submatrices of width nc. The next loop goes through dimension k. This partitions

matrix A into submatrices of width kc and current submatrix of B into blocks of size

kc × nc. Loop 3 iterates over submatrices of C and A and partitions them into blocks

of size mc × nc and mc × kc, respectively. We name the resulting matrix blocks Ac,

Bc and Cc. (Shown in the figure as blocks of green, orange, and blue colors.) In other

words, the three outer loops disassemble the matrix multiplication of whole matrices

into a set of smaller multiplications. Each block Cc is computed as a sum of matrix-

matrix multiplications of the corresponding blocks of A and B. When multithreading is

enabled, different block computations are assigned to different threads.

Figure 4.2: DGEMM - outer loops
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For further discussion, we will focus on a single instance of Cc, Ac and Bc, t.i. when

loop counters jc, kc and ic are fixed. We therefore compute

Cc += Ac ×Bc. (4.1)

It is well-known that accessing adjacent elements in memory is faster than accessing

elements in separated locations. Therefore, to ensure continuous data access in the

inner-most loop (loop 6, which is often called a microkernel), blocks Ac and Bc have

a unique data layout. During the execution of outer loops, elements of A and B are

reshuffled in the appropriate layout. This is done with packing functions. For matrix Ac,

the data is organized in row-panels, and within each row-panel, data is stored in column-

major order. On the other hand, the matrix Bc holds the data in column-panels, and

in each column-panel, data is stored in row-major order. This ordering of elements will

become more apparent when explaining the microkernel. Colored matrices in Figure 4.3

show the explained data layout.

Figure 4.3: DGEMM - inner loops

In OpenBLAS, the three inner loops are called a macrokernel and are implemented in
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assembly. 1 Loop 4 traverses through matrices Cc and Bc, splitting matrices into panels

of width nr (see Figure 4.3). Due to the reordering of elements, each panel Br has a

row-major ordering of elements. Loop 5 traverses in dimension mc, splitting Ac into

panels Ar of height mr, and panels of Cc into microtiles Cr of size mr × nr. Similarly

as Br, the panel Ar is a contiguous block with column-major ordering.

The inner-most loop, loop 6, updates the tile Cr. Each executed loop adds the new

product of Ar × Br to Cr. The loop runs over kc, and at each iteration, computes the

outer-product of a column of Ar and a row of Br. The result is accumulated into Cr. For

maximum performance, all operations are executed using SIMD instructions. To fully

utilize all register lanes, the parameter mr should be chosen as a multiple of the vector

length. In each iteration of the microkernel, values of Ar are loaded into a SIMD register

using normal ld1 instructions. At the same time, individual elements of Br are load-

replicated into a whole SIMD vector. Then, we compute the matrix multiplication by

issuing only multiply-accumulate operations. To maximize data reuse in caches, values

of Cr are stored in a set of predefined architectural registers during loop 6.

The parameters of matrix blocks and the size of the microtile are critical and have a

significant impact on performance. A study from Meng Low et al. [40] showed that

these parameters could be derived analytically from the hardware parameters. Here, we

only explain the reasoning behind these but refer to the paper for a complete derivation

of parameters. Parameters mr and nr determine the size of the microtile. These two

parameters depend on the latency of fmla operations, the number of SIMD execution

units, and the size of the SIMD vectors. Microtile dimensions need to be big enough

that no stalls occur in the SIMD pipelines when accumulating the results into registers

of Cr. This means that a single fmla operation should be completed by the time the

same register, holding values of Cr, is again updated. Therefore, the following condition

should be satisfied:

mr × nr ≥ NSIMD lSIMD latfmla (4.2)

Parameters mc, kc and nc are chosen for the best reuse of data in the cache. Tile Cr,

panels Ar and Br, and matrix blocks are reused different number of times. Different

matrix parts should be loaded to different cache levels for best performance and the least

number of cache misses. (More reused parts should stay in the lower caches, t.i. closer to

the core.) Analysis of the data reuse shows that the most reused part of the matrix is the

microtile Cr, followed by a panel Br, and matrix blocks Ac and Bc. Additionally, the size

of parts that are reused more often is smaller as we go from inner loops outwards. This

matches the cache hierarchy, where the fastest caches have the smallest size. Therefore,

1In the BLIS library, the algorithm is restructured so that only the microkernel is implemented in
assembly.
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different matrix parts are naturally mapped to different levels of cache. Most reused Cr

is stored in the registers, Br in the L1 cache, Ac in the L2 cache, and Bc in the L3 cache.

This is shown on Figure 4.4.

Figure 4.4: OpenBLAS GEMM data movement

The parameters kc, mc and nc are chosen so that Br, Ar, and Cr fit into the caches

accordingly. Additionally, one must be careful that loading data into the registers does

not evict matrix blocks out of their respective cache. For example, elements of Ar are

loaded from the L2 cache into registers during the microkernel. This should not evict

elements of Br from the L1 cache. For a similar reason, one cache line in the L1 cache

should be kept free for the update of Cr. Without going into details, we summarize that

the parameters kc, mc, and nc depend on the cache line size, the associativity, and the

size of L1, L2, and L3 caches, respectively. Again, we refer to [40] for a full analysis.
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4.1.2 Preserving the VLA feature

Before our work, OpenBLAS included many macrokernels targeting different architec-

tures. All implemented macrokernels targeted SIMD extensions that had a predefined

vector length. Parameters mr and nr were therefore hardcoded for each compilation

target. Adding support for SVE can be done in two different manners. One is to write

an assembly macrokernel for a specific SVE size. Such an approach would be the same

as existing target architectures and work only for machines with the same SVE size.

Therefore, it would lead to more code and less portable binaries. The second option is

to create a vector length agnostic macrokernel. Upon studying the DGEMM algorithm,

we discovered that a VLA kernel naturally extends the fixed size. The main idea is

to dynamically scale the dimension mr at runtime to the SVE size while keeping the

parameter nr fixed.1. This has one important consequence. Namely, the layout of block

Ac should also change depending on the SVE size. Figure 4.5 shows an example of such

scalable layout for three different SVE sizes (from smaller lSVE on the left to bigger lSVE

on the right).

Figure 4.5: Scalable layout of Ac

To separate SVE implementation, we added a new compilation target ARMV8SVE. This

target selects the right SVE macrokernel (see Section 4.1.3) and VLA packing functions

(see Section 4.1.4). OpenBLAS defines macros DGEMM UNROLL M and DGEMM UNROLL N

which are set tomr and nr dimensions of the microtile. In the case of SVE, DGEMM UNROLL M

macro has no meaning, and we refactor the code to remove any dependencies on this

value. For consistency reasons, this macro is still defined but not used anywhere. On

the other hand, DGMEM UNROLL N was set to eight.

1A similar approach was used by Nassyr in the BLIS library, see https://gitlab.jsc.fz-juelich.
de/epi-wp1-public/blis_sve

https://gitlab.jsc.fz-juelich.de/epi-wp1-public/blis_sve
https://gitlab.jsc.fz-juelich.de/epi-wp1-public/blis_sve
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The general form of the DGEMM function performs matrix multiplication for matrices

of both row-major and column-major order. Additionally, matrices can be transposed,

which is specified in the function’s input parameters. For each combination of these

parameters, packing operations transform the data layout to the Ac and Bc accordingly

to use the same macrokernel. Since mr dimension is scaled to lSVE , and nr dimension is

fixed, packing routines are separated for mc and nc dimensions. Whenever code unrolls

over dimension mc, we intercept this by calling the corresponding SVE copy functions

with scalable mr. (See Section 4.1.4) For packing in dimension nc, we rely on the

OpenBLAS generic packing functions. Additionally, this also requires modification of

the Automake and CMake build systems.

4.1.3 SVE assembly kernel

We write the SVE macrokernel for DGEMM in assembly. We implement two kernels,

one for mr = lSVE and one for mr = 2 lSVE . In both cases we set nr = 8. As

explained in the previous section, the macrokernel computes the inner three loops of the

algorithm (see Figure 4.3). The function begins by pushing the callee-saved registers on

the stack. Afterward, we construct loops 4, 5, and 6 by reserving individual general-

purpose registers for loop counters and block/panel sizes. Since loop 4 iterates over Ac

with steps n r, special care is taken for remainders in cases where n c is not a multiple

of n r. (Same for loop 5 when m c is not a multiple of m r.) For performance purposes

(to decrease the number of compare and branch instructions), we unroll loop 6 over

eight iterations. In the implementation, we rely heavily on macro definitions to shorten

the long assembly code. Finally, the callee-saved registers are popped from the stack to

preserve original values.

A snippet of the macrokernel code for size 2lSVE×8 is shown in Listing 4.1. This example

shows a part of macro definition KERNELv2x8 M1 which computes a single iteration of

loop 6. We see that elements of Ar are loaded with a ld1d instruction (lines 2 and 3)

which loads the data from contiguous locations in memory. Afterwards, the pointers to

Ar are updated (lines 4 and 5) to the next column of Ar. The rest of the code shows

the fmla operations that multiply columns of Ar and elements of Br and ld1rd load

instructions that load-replicate elements of Br. The important aspect of the kernel is

how to schedule instructions so that at least NSVE fmla instructions are issued every

cycle. The load operations take latld1 cycles to load the data to the SIMD register,

if data is in L1 cache. Therefore, between issuing the load instruction and the fmla

instruction that uses the same register, we must issue at least latld ×NSVE other fmla

instructions. For this reason, we always preload data to registers in advance. In our

example, we use registers z2 and z3 to hold elements of Ar. However, these registers
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are not used until the next iteration of loop 6 (after issueing 16 fmla instructions). This

gives at least eight cycles, until the registers z2 and z3 are used for the computation.

Similarly, fmla operations (after line 7) act on data stored in z0 and z1 which were

loaded with Ar elements in the previous iteration. The same also holds for registers

storing elements of Br. Consider the register z8 (used in fmla operations in lines 7 and

8). We issue the ld1rd instruction immediately after issuing the fmla operations, so that

z8 can be used in the next iteration.

1 .macro KERNELv2x8_M1

2 ld1d z2.d, p0/z, [pA1] // load values for next column of A_r

3 ld1d z3.d, p0/z, [pA2] // load values for next column of A_r

4 add pA1 , pA1 , vec_len , lsl #3 // pA1 = pA1 + vec_len * 8

5 add pA2 , pA2 , vec_len , lsl #3 // pA1 = pA1 + vec_len * 8

6

7 fmla z16.d, p0/m, z0.d, z8.d // multiply_accumulate

8 fmla z17.d, p0/m, z1.d, z8.d // multiply_accumulate

9 ld1rd z8.d, p0/z, [pB] // load replicate next value of B_r

10 fmla z18.d, p0/m, z0.d, z9.d // multiply_accumulate

11 fmla z19.d, p0/m, z1.d, z9.d // multiply_accumulate

12 ld1rd z9.d, p0/z, [pB, 8] // load replicate next value of B_r

13 fmla z20.d, p0/m, z0.d, z10.d // multiply_accumulate

14 fmla z21.d, p0/m, z1.d, z10.d // multiply_accumulate

15 ld1rd z10.d, p0/z, [pB , 16] // load replicate next value of B_r

16 fmla z22.d, p0/m, z0.d, z11.d // mutliply_accumulate

17 fmla z23.d, p0/m, z1.d, z11.d // mutliply_accumulate

18 ...

Listing 4.1: DGEMM macrokernel

Another major difference between the SVE kernel and traditional fixed-size SIMD ker-

nels is how loop 5 is implemented. Loop 5 traverses Ac in steps of mr. We consider

the case when mc is not a multiple of mr. For traditional architectures, OpenBLAS

implementation mandates that mr must always be a power of two. The remainder in

loop 5 is then computed separately for smaller powers of two. Figure 4.6 left illustrates

this example for the case when mr = 8 and mc = 23. After the loop over mr finishes,

additional iterations are done in steps 4, 2, and 1 (smaller powers of two). Such an

approach is necessary for some architectures with no masking instructions.

In the case of SVE, dealing with a remainder can be done more efficiently with a single

sweep across kc. For this, we create a predicate register with only the first mc mod lSVE

active bits. Then we use the same approach as for previous row-panels, but only compute

the results for the correct number of active lanes. Figure 4.6 right shows what predicate

registers are used in our example. Conceptually, this last iteration is not different from

previous iterations.
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Figure 4.6: SVE data layout of Ac

An important consequence of this idea is that the data layout for the SVE target changes.

For the mc dimension, the last few rows of Ac are grouped, whereas, in fixed-size SIMD,

they are separated in powers of two. In other words, the data is organized differently

even if the SVE size is the same as another SIMD extension (for example, 256-bit SVE

and AVX2). This requires specialized packing functions for SVE.

4.1.4 SVE intrinsic packing functions

To reshuffle data correctly into blocks Ac, we implemented vector length agnostic pack-

ing functions for SVE architecture. For DGEMM, two different packing functions are

necessary for various combinations of input parameters. First, dgemm tcopy is used for

cases when A is stored in column-major order and not transposed (or row-major order

and transposed). In this case, elements are in the correct order, and we only need to

gather different columns in row-panels of height lSVE . dgemm tcopy relies on normal

ld1 instructions. On the other hand, dgemm ncopy is used when ordering is row-major

and matrices are not transposed (or column-major and transposed). In this case, the

submatrix has to be transposed, which requires the use of gather-load instructions.

Listing 4.2 shows the dgemm tcopy kernel1. The kernel consists of two loops. The first

loop (line 5) traverses over panels Ar in steps of mr = lSVE . This is done in an SVE

fashion, each time incrementing the counter by the number of SVE lanes and updating

the predicate register. For each panel, the inner loop traverses in dimension kc and

copies the data from matrix A to the new columns of Ar. We see that each iteration of

the inner loop increments the pointer aoffset1 by the size of the leading dimension of

A to ensure that the correct elements of the next row are loaded.

1Some variable names have been changed for easier explanation.
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1 j = 0;

2 svbool_t pg = svwhilelt_b64(j, m_c);

3 active = svcntp_b64(svptrue_b64 (), pg);

4 do {

5

6 aoffset1 = aoffset;

7

8 uint64_t i_cnt = k_c;

9 while (i_cnt --) {

10 svfloat64_t a_vec = svld1(pg , aoffset1 );

11 svst1_f64(pg, (double *) boffset , a_vec );

12 aoffset1 += lda;

13 boffset += active;

14 }

15 aoffset += sve_size;

16

17 j += svcntd ();

18 pg = svwhilelt_b64(j, m_c);

19 active = svcntp_b64(svptrue_b64 (), pg);

20

21 } while (svptest_any(svptrue_b64 (), pg));

Listing 4.2: Function dgemm tcopy Figure 4.7: Function
dgemm tcopy

4.1.5 Triangular matrices

Expanding SVE to other forms of GEMM is effortful but does not present any significant

challenges. For SGEMM, this involves transforming all instructions in macrokernels and

packing functions from doubleword form to word. Macrokernels for complex numbers

(CGEMM and ZGEMM) are similar to DGEMM. The main idea is to create a macro for

complex multiply-add operation which is composed of three fmla and one fmls instruc-

tion. Afterward, this macro definition is used instead of the typical fmla instruction.

Of course, data layout has to be modified to account for real and imaginary compo-

nents of complex numbers. Another part of our work, which is more challenging, is

the VLA implementation of the BLAS3 functions for triangular matrices. OpenBLAS

includes specialized macrokernels for a TRiangular Matrix-Matrix (TRMM) multiplica-

tion.1 These macrokernels are also used in BLAS3 functions that operate on symmetric

matrices (SYMM, SYRK, SYR2K).

TRMM algorithm is similar to a GEMM algorithm explained in previous sections. The

main difference is that loop 6 stops at the diagonal. This enables us to quickly trans-

form the GEMM macrokernel to TRMM macrokernel by only changing the loop exit

1TRMM computes B = αop(A) × B for a m × n matrix B, and a unit or non-unit, lower or upper
triangular matrix A. op(A) potentially transposes the matrix A.
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conditions and correctly updating pointers to the next row-panels. However, the diag-

onal matrices for BLAS3 routines are stored in packed format (t.i. without any zeros).

To use the TRMM macrokernel, special trmm copy triangular packing functions store

the additional zeros above (below) the diagonal. This is shown in Figure 4.8. Due

to the modified VLA layout (see Figure 4.6), the generic trmm copy kernels for fixed-

size SIMD architectures do not work in our case. Here, we also implemented VLA

kernels for SVE. Because of the complexity of SVE implementation (each row would

require a different predicate register), we implemented these with scalar instructions.

Due to many input parameters of TRMM functions (lower/upper, unit/non-unit diago-

nal, row/column-major), separate packing functions must be implemented for different

combinations of these parameters.

Figure 4.8: OpenBLAS TRMM algorithm

Other work for the SVE port included macrokernels and packing functions for TRSM

and SYMM. We omit the details of these functions and refer to the source code.

4.2 GROMACS

This section gives an overview of the SIMD/SVE usage in GROMACS. The SVE port

was done by the Research Organization for Information Science and Technology (RIST)

(Tokyo University of Science). We modified a particular aspect of this implementation

which is explained in Section 4.2.3. Changes were contributed to the GROMACS official

repository.1

1https://gitlab.com/gromacs/gromacs/-/merge_requests/1991

https://gitlab.com/gromacs/gromacs/-/merge_requests/1991
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4.2.1 Compute patterns

The most compute-intensive part of a general MD simulation algorithm is the com-

putation of forces on each particle. Because the simulated systems can include up to

millions of particles and a nanosecond time scale, force computation is repeated exten-

sively throughout the simulation. GROMACS splits the total force on a single particle

into three main contributions:

� Forces from bonded interactions. Here, we focus on the covalent bond, which

groups electrons into shared electron pairs between atoms. Typically, this contri-

bution depends on a few neighboring atoms.

� Forces from non-bonded interactions. This force is caused by other particles in

the system and depends on the distance between particle pairs. A Lennard-Jones

potential is often a simple yet realistic model for such interactions.

� External and restraining forces. Researchers often use these forces to impose cer-

tain constraints on the system. The most common reason for this is to avoid

unwanted deviations or lock specific parameters to the experimental data.

Once the forces have been computed, the locations and the velocities of particles are

updated by numerically solving Newton’s equations of motion. Additionally, we can

use the computed data to calculate different statistical properties of the system (for

example, the total kinetic energy of particles or the pressure tensor).

The computation of forces between non-bonded atoms usually dominates the simula-

tion time. Each atom exerts a force on other atoms, which results in an O(n2) n-body

problem. Non-bonded forces are further divided into short-range and long-range forces.

GROMACS employs a modified Verlet algorithm to compute short-range forces between

particles. The key feature of this algorithm is that the pairs of particle-particle interac-

tions are replaced by pairs of tiny clusters of nearby particles. The size of each cluster

is determined at compile time to better match the size of the SIMD vectors (or GPU

threads) [41]. The interactions are then explicitly computed with SIMD instructions,

which removes the need for compiler auto-vectorization.

The main idea is shown in Figure 4.9. On the left, we see a classical Verlet algorithm. A

cut-off radius (orange line) and a buffer (dashed orange) determine the list of j -particles

used for computing the forces on the central orange i -particle. In practice, this leads

to two nested for loops, where the outer loop iterates over all i -particles and the inner

loop over all neighbors (j -particles). Unfortunately, such an approach leads to poor data

reuse because values of all j -particles are loaded for each iteration of the outer loop. In
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a modified algorithm (right side), the particles are grouped in small clusters. A cluster

with at least one particle within the buffered radius is included in the computation.

The outer loop traverses over all clusters, while the inner loop computes the forces for

all particles in the i -cluster (orange color) simultaneously. This maps well to SIMD

instructions and reduces the amount of data transferred from memory. For example, if

the cluster size is four, we can compute sixteen interactions by only loading values of

four particles. A cluster size of one corresponds to the original Verlet algorithm.

Figure 4.9: Classical and modified Verlet algorithm

Long-range forces are computed with a particle mesh Ewald algorithm [42]. The method

is based on the interpolation of reciprocal space Ewald sums. The total complexity of the

algorithm isO(Nlog(N)) and primarily relies on fast Fourier transforms. GROMACS, by

default, uses a mixed-precision mode. This means that most computations are performed

in single-precision, with only the most critical parts in double-precision. However, for

simulations that require complete double-precision computation, this is also possible.

To better understand the application profile, we inspect GROMACS using HPCToolkit.

We execute the benchmark on a single node (64 cores) of the Kunpeng 916 CPU. The

code was compiled with GCC for the Arm NEON SIMD target. We evaluate three

typical use cases:

� rnase cubic use case simulates ribonuclease (also abbreviated as RNAse) in a

water solvent in a cubic box domain. RNAse is an important enzyme in organisms

used for the degradation of RNA. The whole system is composed of 24000 particles.

� ion channel system simulates a membrane protein GluCL, a chloride channel in a

lipid bilayer. This system is an important use case for the pharmaceutical industry

and consists of roughly 150000 atoms.
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� benchRIB is a simulation of an E. coli ribosome in water. E. coli is a bacteria

commonly found in warm-blooded organisms, including humans. This use case is

the largest, with around two million atoms.

In Figure 4.10, we show a simple profile of GROMACS runs for three cases. We observe

that the N-body computation dominates the simulation time. Between 65 and 72% of

cycles are spent in the modified Verlet algorithm. Around 10% of cycles are spent in

the FFT kernel and between 15 to 25% in other parts of the code.

Figure 4.10: GROMACS profile

4.2.2 SIMD backend

The modified Verlet algorithm is closely connected to the SIMD architecture. To utilize

all lanes of SIMD registers during computation, the SIMD width must be a multiple of

the cluster size. In this way, the calculation of forces between particles fully maps to

SIMD instructions without any data shuffling in registers. Additionally, vectorization

becomes an intrinsic part of the algorithm. GROMACS always groups particles in

clusters of four. Additionally, it implements two different kernels of the Verlet algorithm:

� The 4xM kernel computes interactions between four i -particles and M j -particles

where M = lSIMD. The data of each i -particle is replicated over an entire SIMD

register, while the data from j -particles is loaded in separate lanes. The computa-

tion between elements, when lSIMD = 8, is shown in Figure 4.11. I -particles are

represented in orange color and j -particles in blue color. Black dots show units of

computation in the SIMD register.
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� The 2xMM kernel calculates interactions between four i -particles and M =

lSIMD/2 j -particles. The data from two i -paricles and M j -particles is duplicated

in the SIMD registers. This requires some additional instructions to combine val-

ues into both register halves. Note that the 2xMM kernel requires at least eight

lanes and is not possible for lSIMD = 4 (bSIMD = 128).

Figure 4.11: GROMACS SIMD computation

To map operations for force computation to SIMD instructions, GROMACS implements

a specialized SIMD library that leverages intrinsic functions. The library has a modular

design with an interface that acts as a wrapper for intrinsic functions. Each supported

architecture has a dedicated backend that maps high-level functions to the relevant

instructions on the underlying hardware. The backend is completely separated from the

non-bonded kernel, which is implemented only with wrapper functions. This enables

developers to add new non-bonded kernels without worrying about how the operations

translate to a particular target architecture. Similarly, adding new SIMD targets can be

done by only implementing the backend module using the intrinsic functions, and the

non-bonded kernels can use them immediately.

The target architecture is selected automatically for native builds or via build parameters

for cross-compilation. Currently, all major SIMD instruction sets are supported. This

includes SSE, AVX2, and AVX512 on x86 64 and NEON and SVE (since version 2021)

on Arm.
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1 #if GMX_DOUBLE

2 typedef SimdDouble SimdReal;

3 #else

4 typedef SimdFloat SimdReal;

5 #endif

6

7 namespace gmx

8 {

9

10 // Backend class for single precision

11 class SimdFloat

12 {

13 public:

14 SimdFloat () {}

15 ...

16 // constructors

17

18 // Intrinsic NEON SIMD register

19 float32x4_t simdInternal_;

20 };

21 ...

22

23

24 // overloading operator *

25 static inline

26 SimdFloat gmx_simdcall operator*

27 (SimdFloat a, SimdFloat b) {

28 return { vmulq_f32(a.simdInternal_ ,

29 b.simdInternal_) };

30 }

31

32 ...

Listing 4.3: SIMD backend

(NEON) in GROMACS

1 SimdReal sir_S0 , sir2_S0 , sir6_S0;

2 SimdReal sir_S1 , sir2_S1 , sir6_S1;

3 SimdReal sir_S2 , sir2_S2 , sir6_S2;

4 SimdReal sir_S3 , sir2_S3 , sir6_S3;

5

6 SimdReal FrLJ6_S0 , FrLJ12_S0 , frLJ_S0;

7 SimdReal FrLJ6_S1 , FrLJ12_S1 , frLJ_S1;

8 SimdReal FrLJ6_S2 , FrLJ12_S2 , frLJ_S2;

9 SimdReal FrLJ6_S3 , FrLJ12_S3 , frLJ_S3;

10

11 ...

12

13 sir_S0 = sig_S0 * rinv_S0;

14 sir_S1 = sig_S1 * rinv_S1;

15 sir_S2 = sig_S2 * rinv_S2;

16 sir_S3 = sig_S3 * rinv_S3;

17 sir2_S0 = sir_S0 * sir_S0;

18 sir2_S1 = sir_S1 * sir_S1;

19 sir2_S2 = sir_S2 * sir_S2;

20 sir2_S3 = sir_S3 * sir_S3;

21 sir6_S0 = sir2_S0 * sir2_S0 * sir2_S0;

22 sir6_S1 = sir2_S1 * sir2_S1 * sir2_S1;

23 sir6_S2 = sir2_S2 * sir2_S2 * sir2_S2;

24 sir6_S3 = sir2_S3 * sir2_S3 * sir2_S3;

25 FrLJ6_S0 = eps_S0 * sir6_S0;

26 FrLJ6_S1 = eps_S1 * sir6_S1;

27 FrLJ6_S2 = eps_S2 * sir6_S2;

28 FrLJ6_S3 = eps_S3 * sir6_S3;

29 FrLJ12_S0 = FrLJ6_S0 * sir6_S0;

30 FrLJ12_S1 = FrLJ6_S1 * sir6_S1;

31 FrLJ12_S2 = FrLJ6_S2 * sir6_S2;

32 FrLJ12_S3 = FrLJ6_S3 * sir6_S3;

Listing 4.4: 4xM kernel comput-

ing Lennard-Jones potential

Listing 4.31 shows the most important parts of the code describing the SIMD library.

Lines 1-5 define a new type name based on whether the simulation is performed in single

or double precision (GMX DOUBLE). In line 11 a class SimdFloat is defined for a NEON

SIMD extension set. This class has a member float32x4 t corresponding to the 128-bit

NEON register. In line 26, the * operator is overloaded by mapping the multiplication

to the SIMD fmul operation via vmulq f32 intrinsic function. Same is done for all other

operations including exponential functions. In Listing 4.4 we see how the SIMD library

is used in the 4xM nonbonded-kernel. This code snippet shows a part of the kernel which

computes the Lennard-Jones (LJ) force. In the computation, the code uses instances of

the SimdReal (SimdFloat) classes to ensure that SIMD operations are used. LJ force

1We exclude certain lines of code for simplification.
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is a computationally dominant factor due to coefficients with high powers (r6 and r12).

Lines 13-32 show how the force is computed simultaneously for four i -particles.

4.2.3 SVE specific code

Because SVE is vector length agnostic, the SVE implementation cannot be added sim-

ilarly to other SIMD ISAs. As discussed in Section 2.1.3.2, SVE SIMD types cannot

be used as members of a class due to their sizeless nature. A new CMake option,

DGMX_SIMD_ARM_SVE_LENGTH, was added to fix the SVE size at compile time. Our code

analysis has confirmed that the SVE implementation is of good quality and stable. All

instructions needed in the algorithm correctly map to SVE operations. However, we

did notice one suboptimal implementation detail when translating kernel functions into

intrinsic functions.

Initially, support for SVE was added via the GCC SIMD intrinsic types. When com-

piled, these are treated as SVE types from Arm C Language Extensions (ACLE) and

can be used interchangeably with SVE intrinsic functions. The reason for this is a

missed chance from the developers to use SVE fixed-size types directly with the at-

tribute arm_sve_vector_bits(..) as defined in ACLE for SVE chapter 3.7.3. Using

ACLE types, the code is not limited to only GCC.

1 class SimdDouble

2 {

3 private:

4 typedef svfloat64_t simdInternalType_

5 __attribute__ (( arm_sve_vector_bits(GMX_SIMD_ARM_SVE_LENGTH_VALUE )));

6

7 public:

8 SimdDouble () {}

9 SimdDouble(const double d) { this ->simdInternal_ = svdup_n_f64(d); }

10 SimdDouble(svfloat64_t simd) : simdInternal_(simd) {}

11 simdInternalType_ simdInternal_;

12 };

13

14 ...

15 static inline SimdDouble gmx_simdcall operator +( SimdDouble a, SimdDouble b)

16 {

17 svbool_t pg = svptrue_b64 ();

18 return { svadd_f64_x(pg , a.simdInternal_ , b.simdInternal_) };

19 }

20 ...

Listing 4.5: GROMACS SVE backend

Listing 4.5 shows an example of a fixed SVE implementation. In lines 4-5, svfloat64 t is

used as an intrinsic type for the SVE register. However, such type is fixed for a value
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specified at compile-time (DGMX_SIMD_ARM_SVE_LENGTH). In line 15, the + operator is

overloaded using svadd f64 x instruction which maps to SVE add operation.

4.3 GPAW

GPAW is written primarily in Python (using NumPy and SciPy), with the most performance-

critical kernels written in C. In addition, the application relies on several external li-

braries to speed up the computation, namely a BLAS library, FFTW, and LibXC. It is

also highly recommended to use MPI, BLACS, and ScaLAPACK for parallel simulations

with many nodes.

In code, there is no notion of explicit SIMD parallelization. GPAW, instead, relies on

compiler auto-vectorization. We have noticed two cases where vectorization is encour-

aged through #pragma omp simd. This resulted in a slight performance increase on the

Knights Landing architecture [43].

4.3.1 Application hot-spots

For our SIMD analysis, we focus on computationally expensive parts of GPAW, where

the application spends the most time. Therefore, we first analyze the application using

HPCToolkit. We rely on use cases from the Unified European Applications Benchmark

Suite (UEABS) to collect a profile. UEABS aims to provide a benchmark suite of cur-

rently relevant HPC applications. We use the smallest listed use case - the Carbon

Nanotube (CN) benchmark, which simulates 240 carbon atoms in a 6x6x10 nanotube

structure. It calculates the energy of a system’s ground state in a vacuum. The default

mode of the computation in the CN benchmark is based on a finite differences (FD) al-

gorithm. However, we modified the input configurations to also evaluate the benchmark

in the other two modes - PW and LCAO. We name different workloads as CN-FD, CN-

PW, and CN-LCAO. The runtime of the selected kernels on a full node of Kunpeng916

(64 cores) is shown in Table 4.1. FD and PW modes calculate the solution in 251 and

291 seconds. LCAO mode is significantly faster at 16 seconds.

CN-FD CN-PW CN-LCAO

251 291 16

Table 4.1: GPAW runtime (seconds) on Kunpeng 916

Figure 4.12 shows the percentage of cycles spent in external libraries. The profiles of

the three use cases are quite different. We observe that most of the time (around 40%)
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for FD and PW modes is spent in OpenBLAS. On the other hand, roughly 60% of the

LCAO mode is executed in the GPAW internal code. Additionally, LCAO mode relies

more on other python code (numpy, scipy), which we show as Other. FFTW3 calls are

observed only in the plane-waves mode.

Figure 4.12: GPAW profile

4.3.2 Selected GPAW kernels

Because the computation takes several minutes on a full node of Kunpeng 916, the CN

benchmark is too big to be evaluated in the Gem5 simulator. We considered reduc-

ing the number of atoms, but the runtimes were still not small enough for a feasible

simulation. Furthermore, we only want to focus on the GPAW internal code excluding

external libraries. (We have already studied OpenBLAS, and MPI & FFTW exceed

the scope of application analysis.) To solve this, we inspect the profiles generated by

HPCToolkit and select relevant GPAW functions where a sufficient amount of runtime

is spent during the computation. Furthermore, we try to choose interesting functions

in terms of vectorization. Upon our analysis, we have selected two functions from the

GPAW code that we will analyze in this thesis.

� Bmgs fd function (gpaw root/c/fd.c) consumes around 14% of total cycles in the

CN-FD benchmark. The function computes various stencil operations on a grid

and is used mostly in finite-difference calculations. In our case, we focus on the

Laplace operator.
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� Construct density function (gpaw root/c/lfc.c) is responsible for around 17%

of total cycles for the CN-LCAO use case. The function calculates the expected

value of the electron density from the density matrix.

4.3.2.1 Laplace operator (bmgs fd)

In the finite-difference mode of GPAW, the electronic structure calculations are per-

formed on a uniform real-space rectangular grid. Physical quantities, such as wave-

functions, electron densities, or potentials, are represented on grid points with linear

spacing. Physical coordinates of grid points are r(i, j, k) = (ihi, jhj , khk) where hi,j,k

are distances between the points and i, j, k = 1, 2....Nx,y,z. Throughout the simulation,

GPAW solves the Kohn-Sham and Poisson equations which both involve the Laplace

operator:

∇2 = (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
) (4.3)

Different discretizations can be used for applying the Laplace operator depending on

the unit cell and the order of finite-difference coefficients. GPAW relies on the compact

Mehrstellen-type stencil operators of the fourth order [44]. In particular, it uses two

stencil operators to solve the Kohn-Sham equation. The first stencil (see Figure 4.13

left) includes 19 points. This corresponds to a central point with six nearest neighbors

and twelve next nearest neighbors. The second operator includes only weights of the

central and nearest-neighboring points. For our work, we focus on the stencil with 19

points which is computationally more expensive.

Figure 4.13: GPAW 19 and 7-point stencil

Figure 4.14, left, shows the bmgs fd1 function. This function applies a stencil operator

to the points of a three-dimensional grid. A stencil operator is defined as a bmgsstencil

(Figure 4.14, right) struct. The main field of this struct is the number of stencil points

ncoefs in line 31. For each stencil point, the weights of the points and the offsets in

1A preprocessing macro expands Z(bmgs fd) to bmgs fd
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the global array are stored in coefs and offsets. Lastly, n[3] are the dimensions

of the grid, and j[3] are the strides of the global array in each dimension. In other

words, a bmgsstencil contains all information about the operator. GPAW includes

many stencils with a predefined size and coefficients. The bmgs fd function consists of

four nested for-loops. The three outer loops (line 15, 16, 20) traverse over all grid points

in three dimensions. For each grid point, the code first computes the indices i and j

for the current grid point in the input array a and the output array b. The innermost

loop (line 28) iterates over all stencil points. For our 19-point stencil, this loop has 19

iterations. The weights of stencil points are multiplied with their respective values and

accumulated in x. Finally, the result is stored in the output array b[j].

Figure 4.14: GPAW bmgs fd function

Next, we estimate the arithmetic intensity of the Bmgs fd kernel. First, we notice that

the computation of indices i and j is not expensive because the majority of calculations

(lines 22-24) can be computed outside of the loop. (Compilers successfully apply such

optimization.) Therefore, we focus on the inner-most loop and neglect the calculation

of i and j, and the memory write in line 29. In the inner-most loop, we have three

64-bit memory reads (a[i + s->offsets[c]], s->offsets[c], and s->coefs[c]) and

three arithmetic operations. There are different methods for counting the number of

operations, depending on which operations we count (integer or just floating-point). In

our analysis, we count both, but we restrict ourselves to only SVE instructions. All

three operations in line 28 are executed in SVE pipelines. (See assembly in Listing 4.6,

lines 4, 5, and 8.) This gives a lower bound:

AI ≥ 3

3× 8
=

1

8

op

Byte
(4.4)



Chapter 4. Porting of applications 86

This estimate does not consider any caching effects. We can create a tighter lower bound

by acknowledging that s->offsets[c] and s->coefs[c] stay in the L1 cache during

the entire kernel. Note that the entire bmgsstencil struct (Figure 4.14, right) has a

size of 344 bytes when coefs and offsets are arrays of size 19. This gives:

AI ≥ 3

8

op

Byte
(4.5)

The Bmgs fd kernel executes 19 memory reads (neglecting reads of struct s) per 1 mem-

ory write. However, we would like to point out that the elements a[i + s->offsets[c]]

represent data on the neighboring points of the current point of computation. Since the

Laplace operator (inner-most loop) traverses grid points in-order, many elements of ar-

ray a are cached and reused during iterations of outer loops. We analyze this from the

Gem5 measurements in Chapter 5.

1 .L6:

2 ld1d z0.d, p0/z, [x2 , x0, lsl 3] // load s->offsets[c] into z0

3 ld1d z1.d, p0/z, [x3 , x0, lsl 3] // load s->coefs[c] into z1

4 add z0.d, z3.d, z0.d // add i + s->offsets[c] into z0

5 add x0, x0, x5 // increment c by the number of lanes

6 ld1d z0.d, p0/z, [x4 , z0.d, lsl 3] // gather -load a[i + s->offsets[c]] into z0

7 fmul z0.d, z1.d, z0.d // multiply a[..] and s->coefs[c] into z0

8 fadda d2 , p0 , d2, z0.d // accumulate all lanes of z0 to d2

9 whilelo p0.d, w0, w1 // update predicate p0

10 b.any .L6 // branch

Listing 4.6: Compiler generated bmgs fd function

The GCC compiler succesfully vectorizes the inner-most loop (line 27) using SVE in-

structions. The compiler-generated code (with our comments) is shown in Listing 4.6.

Access to the array a is non-contiguous, which requires the use of gather-load instruc-

tions (line 6). To compute the running sum of products, the reduction instruction fadda

is used in line 8. This instruction computes the sum of values in an SVE register in-

order, which is necessary to preserve the order of computation and to comply with the

IEEE floating-point standard.1 The fadda instruction usually has high latency due to

sequential execution implementation. Typically, two times longer SVE width results

in two times fewer iterations. However, due to a small number of iterations (19), the

512-bit SVE executes three iterations while the 256-bit executes five (67% more). Only

three of eight lanes are active in the last iteration of 512-bit SVE.

An alternative SIMD approach is a vectorization of the outer loop in line 20. Figure 4.15

shows a visual representation of such approach for lSIMD = 4. In this case, the stencil

operator simultaneously updates values for four neighboring grid points (each point is

1This can be avoided with the use of -ffast-math flag, which generates tree-like order reduction.
This most likely improves performance, but it has the downside of a bigger floating-point error.



Chapter 4. Porting of applications 87

computed in a separate lane). Each iteration loads four values of the same adjacent

points in the SIMD register. Then, normal fmla operation is used to accumulate prod-

ucts. This approach avoids a reduction operation but requires a scatter-store operation

to store b[j]. However, this is indifferent to the inner-loop vectorization where a sepa-

rate memory flow is issued for each write of b[j]. In the code, developers try to enforce

a vectorization of the outer loop by using a #pragma omp simd directive. However, the

GCC compiler chooses not to vectorize this loop for SVE. (Optimization report does not

clearly explain why this is not possible.)

To analyze outer-loop vectorization’s effect, we vectorize the loop manually using intrin-

sic functions. The central concept of any outer-loop vectorization is executing the work

of the inner loop in each lane of the SVE register. Therefore, this is only possible if

the number of inner-loop iterations is constant with respect to the outer loop. In other

words, each lane of the SVE register must do an equal amount of work. In our example,

this is the case because s->ncoefs is constant.

Figure 4.15: Visualization of the outer-loop vectorization
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1 void bmgs_fd_sve (const bmgsstencil* s, const double* a, double* b)

2 {

3 /* Skip the leading halo area. */

4 a += (s->j[0] + s->j[1] + s->j[2]) / 2;

5

6 for (int i0 = 0; i0 < s->n[0]; i0++) {

7 for (int i1 = 0; i1 < s->n[1]; i1++) {

8 svint64_t sn1_vec = svdup_s64(s->n[1]);

9 svint64_t sn2_vec = svdup_s64(s->n[2]);

10 svint64_t sj1_vec = svdup_s64(s->j[1]);

11 svint64_t sj2_vec = svdup_s64(s->j[2]);

12

13 svint64_t i1_vec = svdup_s64(i1);

14 svint64_t i0_vec = svdup_s64(i0);

15 // calculate independent part for i

16 svint64_t temp2 = svadd_x(svptrue_b64 (), sj2_vec , sn2_vec );

17 svint64_t tempi1 = svmul_x(svptrue_b64 (), i1_vec , temp2);

18

19 svint64_t tempi_2 = svmul_x(svptrue_b64 (), sn1_vec , temp2);

20 tempi_2 = svadd_x(svptrue_b64 (), sj1_vec , tempi_2 );

21 svint64_t tempi2 = svmul_x(svptrue_b64 (), i0_vec , tempi_2 );

22

23 // ipart

24 svint64_t tempi = svadd_x(svptrue_b64 (), tempi2 , tempi1 );

25

26 // calculate independent part for j

27 svint64_t tempj1 = svmul_x(svptrue_b64 (), sn1_vec , sn2_vec );

28 svint64_t tempj2 = svmul_x(svptrue_b64 (), i1_vec , sn2_vec );

29 svint64_t tempj = svmla_x(svptrue_b64 (), tempj2 , i0_vec , tempj1 );

30

31 int64_t i2 = 0;

32 svbool_t pg = svwhilelt_b64(i2, sn2);

33 do {

34 svint64_t i2_vec = svindex_s64(i2, 1);

35 svint64_t i_vec = svadd_x(pg, i2_vec , tempi);

36 svint64_t j_vec = svadd_x(pg, i2_vec , tempj);

37

38 svfloat64_t x_vec = svdup_f64 (0.0);

39

40 for (int c = 0; c < s->ncoefs; c++) {

41 svfloat64_t scoefs_vec = svdup_f64(s->coefs[c]);

42 svint64_t soffsets_vec = svdup_s64(s->offsets[c]);

43 svint64_t load_ind = svadd_x(pg, i_vec , soffsets_vec );

44 svfloat64_t a_vec = svld1_gather_index(pg, &a[0], load_ind );

45

46 x_vec = svmla_x(pg, x_vec , a_vec , scoefs_vec );

47 }

48 svst1_scatter_index(pg, &b[0], j_vec , x_vec);

49

50 i2 += svcntd ();

51 pg = svwhilelt_b64(i2, sn2);

52 } while (svptest_any(svptrue_b64 (), pg));

53 }

54 }

55 }

Listing 4.7: Outer-loop vectorization of Bmgs fd
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The implementation is shown in Listing 4.7. The start of the outer loop is in line 32. This

loop is constructed with predicate-driven loop control. For each iteration, we update

the predicate register with a svwhilelt b64 function (lines 32 and 51) and increment the

loop counter with svcntd. In line 34, we use the svindex instruction to fill the SVE

register with an arithmetic integer sequence. Each lane holds the loop counter i2 of

the outer loop in a serial execution. Afterward, we first calculate the indices of the

input and output arrays i and j. These are computed for all lanes simultaneously in

lines 35 and 36. All parts of the loop-invariant calculation are moved outside of the

loop (lines 8 - 29). We then initialize an empty vector x vec which holds the values for

array b[j] before starting the inner loop, which goes over all stencil points. Constant

data (coefficient and the offset of a particular stencil point) is loaded using the svdup

instruction which duplicates a single value to a whole SVE register. When loading values

from array a, we use the svld1 gather index in line 28. For that, the indices are first

computed with a svadd x operation (line 43). A similar approach is used for storing

data with svst1 scatter index. Throughout the implementation, we use the -x form

of SVE instructions which leaves the inactive lanes undefined. The other options would

be to use the -m and -z forms (which merge the lanes or set them to zero). However,

we found that using -x forms produces the code with the least instructions in assembly.

4.3.2.2 Electron density (construct density)

In the LCAO mode of GPAW, the pseudo wavefunctions are represented as a linear

combination of localized atom-centered orbital functions∣∣∣ψ̃n

〉
=

∑
µ

cµn |Φµ⟩ . (4.6)

Whereas the real-space representation uses wavefunctions as variational parameters,

LCAO replaces these with a set of coefficients cµn. This changes the formulation of

Kohn-Sham equations which are solved in a matrix form. In this section, we focus on

the computation of pseudo electronic density, which is needed to calculate the expected

value of electron density at grid points. Pseudo density in LCAO mode is evaluated as

ñ(r) =
∑
µν

ρµνΦ
∗
µ(r)Φµ(r) +

∑
a

ñac (r). (4.7)

The second term is a separated contribution of each atom’s pseudo core state density in

a frozen core approximation. We refer to the work from Larsen et al. [45] for a detailed

derivation of this equation and an overview of LCAO mode in GPAW.
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Function construct density calculates the first part of the equation 4.7. The function

is composed of six nested for-loops. Loop 1 traverses over all boundary points in the

grid. For each boundary point, new volumes whose pseudo density we are calculating

are added to the list. Loops 2 and 3 traverse over all pairs of volumes in the list. Loop

4 traverses again over volumes, while loops 5 and 6 compute the interaction between

orbital functions. We omit the details of the algorithm’s implementation and only focus

on the inner-most loops. Figure 4.16 shows loops 3, 4, 5, and 6 of the algorithm. It is

the part of the function where most cycles are spent.

Figure 4.16: GPAW construct density function

The inner-most loop is composed of two multiplications and one addition. Similarly

to bmgs fd, the products from all iterations are accumulated. However, the access to

v2->A gm and rho mm is sequential which removes the need for gather-load instructions.

The main observation for the construct density function is that the number of itera-

tions in inner loops is minimal. For example, for the carbon-nanotube benchmark, the

number of iterations for the inner-most loop (line 523) is either one or three. (One for

exactly half executions and three for another half.) The same also holds for the loop

in line 522. A small number of iterations was also observed for other UEABS use cases

(copper filament and silicon cluster).

GCC 11.1.0 does not vectorize the inner-most loop with SVE instructions. The optimiza-

tion report (see Listing 4.8) states that vectorization is not possible due to a complicated

access pattern.

lfc.c:524:51: missed: failed: evolution of base is not affine.

lfc.c:523:35: missed: couldn ’t vectorize loop

lfc.c:524:39: missed: not vectorized: complicated access pattern.

Listing 4.8: GCC optimization report
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Again, we vectorize the function manually with SVE intrinsics. As for the bmgs fd

function, we consider different types of vectorization based on how many loops are

vectorized. We consider three cases, vectorization of one, two, and three loops. In the

case of two loops, our approach is the same as for the bmgs fd kernel. When vectorizing

three loops, we extend the idea of outer-loop vectorization one level higher. In this case,

code from all three loops is executed with SVE instructions. Each lane of the SVE

register corresponds to different loop iterations in line 521. The main problem with such

an approach is the construction of indices for gather-load instructions in the lower loop

levels.1

4.3.3 Benchmark extraction

To evaluate bmgs fd and construct density kernels in the Gem5 simulator, we extract

both functions into standalone benchmarks. This gives us more control over the code and

significantly reduces the simulation time. Additionally, we remove the dependence on

external libraries. To retain the realistic nature of CN-FD and CN-LCAO benchmarks,

we completely replicate the function’s execution profiles. In other words, the benchmarks

should exhibit the same memory pattern and number of loop iterations and function

calls. Therefore, we first record information about function calls, loop sizes, and all

array indices.

For the CN-FD workload, the bmgs fd function is executed 97211 times. We focus on

those calls that evaluate the 19-point stencil, which happens in 38880 cases. Since the

same work is done in each call, our benchmark can be scaled down by simply executing

fewer calls. For our Gem5 simulations, we set the number of iterations (calls to bmgs fd)

to ten. For a 19-point stencil, the grid size equals 79 × 79 × 124. However, each rank

computes values for a smaller grid due to domain decomposition. Although our Gem5

model comprises four cores, we configure the benchmark for the full grid size. Such a

scenario only simulates a bigger use case. Additionally, we note that the offset indices

s->offsets stay the same during the executions. (The ordering of grid points does not

change.)

Similarly, we record information for construct density in CN-LCAO mode. In this

case, the function is executed four times throughout the simulation. Compared to

bmgs fd the construct density function has a more complicated profile. The num-

ber of iterations for loops 2, 3, and 4 depends on the number of volumes added to the

list. In GPAW, all information about localized atomic orbitals is stored in LFCobject

struct. (See Figure 4.17.) To preserve the structure of loops, we extract the values of

1https://gitlab.jsc.fz-juelich.de/brank1/gpaw-benchmarks/-/blob/main/construct_

density/lfc.c

https://gitlab.jsc.fz-juelich.de/brank1/gpaw-benchmarks/-/blob/main/construct_density/lfc.c
https://gitlab.jsc.fz-juelich.de/brank1/gpaw-benchmarks/-/blob/main/construct_density/lfc.c
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all LFCObject fields. Afterward, we use this information to create an identical instance

of LFCobject in our benchmark. Furthermore, we decrease the number of iterations

of loop 1 (LFCObject->nB) from 1,593,344 to 100,000 to reduce simulation time. (We

compute pseudo density only for one part of the grid.)

Figure 4.17: GPAW LFCObject

Both benchmarks first allocate memory and initialize the grid/stencil data and informa-

tion about localized functions. The actual functions (bmgs fd and construct density)

are seperated in different files and compiled separately. This is necessary to avoid opti-

mizations, that are possible due to compile-time data initializiation in bmgsstencil and

LFCObject. Arrays holding physical properties (for example a and b arrays in bmgs fd

or v2->A gm and rho mm in construc density) are filled with random values, because

these do not change the execution profiles. Both benchmarks are available on Gitlab1.

4.4 MiniFE

MiniFE is a proxy application whose primary purpose is to evaluate different parallel

programming paradigms. Therefore, the code features many implementations targeting

OpenMP, pthreads, MPI, Intel’s TTB, CUDA, and Kokkos. However, SIMD was not

the focus of any implementation, and code relies on the compiler auto-vectorization to

generate efficient SIMD code.

4.4.1 Application chracteristics

The mini-app covers all essential parts of the real-world implicit Finite-Elements (FE)

applications. This covers the generation of the mesh, computation of the FEM operators,

1https://gitlab.jsc.fz-juelich.de/brank1/gpaw-benchmarks

https://gitlab.jsc.fz-juelich.de/brank1/gpaw-benchmarks
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and assembly of the sparse matrix with the corresponding right-hand side. Afterward,

the linear system is solved with a Conjugate Gradient (CG) method. The time needed for

FE assembly and CG method depends on the use case. For non-linear problems or prob-

lems with time-dependent coefficients, the matrix is frequently reassembled throughout

the simulation. In such cases, the FE assembly can take a significant portion of the run-

time, and it is worth studying its optimization. However, when solving static problems

or problems with very complex geometries, the matrix is usually assembled only once

and then solved many times. (For example, with different solvers or preconditioners.)

This usually results in a CG solver being predominant in the application. In our case,

we consider the latter scenario and study only the CG solver. More specifically, we focus

on the most intensive part of the CG solver, the computation of Sparse Matrix-Vector

Multiplication (SpMVM).

The only input to MiniFE is the grid size for the mesh. MiniFE solves a steady-state

heat conduction problem on a box-shaped domain. Input parameters nx, ny and nz

determine the number of cells in the x, y and z directions. The generated mesh is a

regular cartesian grid, t.i. all cells are cuboids with the same width, height, and depth.

The total number of cells equals nx×ny×nz. The number of vertices where the solution

is sought is

N = (nx + 1)× (ny + 1)× (nz + 1). (4.8)

This number also equals the number of equations in the linear system (degrees of free-

dom). The resulting sparse matrix is highly regular because of the mesh’s simple geom-

etry. For solving the heat equation, MiniFE uses a stencil with 27 points, which results

in a matrix with 27 nonzero elements in each row. (Less for vertices on the boundary.)

The matrix parameters for nx = ny = nz = 250 is shown on in Figure 5.2, right.



Chapter 4. Porting of applications 94

Figure 4.18: MiniFE output

Upon execution, MiniFE generates a YAML file containing information about the tim-

ings of the three main kernels. These are the generation of the matrix structure, the

assembly of finite elements, and the CG method. Additionally, the CG timing separates

the times needed for WAXPY, dot product, and matrix-vector multiplication. Figure 5.2

left shows a timing output for the same example run on one node of Kunpeng 916 CPU.

The CG method takes 53.6 seconds, 72% of the total runtime. Additionally, the time

for matrix-vector multiplication is 40.4 seconds, 75% of the whole CG method.

4.4.2 Sparse Matrix-Vector multiplication

Sparse matrix-vector multiplication is a widely used kernel in scientific applications. To

stay concise, we introduce the notation A × x = y, where A is a sparse matrix of size

N ×N and x and y are dense vectors of size N . We call the number of nonzero elements

of A Nnz and the number of nonzero elements per row Nnzr. Usually, the SpMVM

kernel is executed many times for the same matrix A and different x. Therefore, the

matrix A is stored in a compressed format to reduce space and enable a more efficient

multiplication. Many algorithms for computing this kernel exist, and each algorithm is

tightly connected to how we store the sparse matrix in memory.

All formats for sparse matrices reduce footprint by not storing zeros. The default format

in MiniFE is a Compressed Sparse Row (CSR)1, which is shown in Figure 4.19, in the

1Sometimes also called Compressed Row Storage (CRS)
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middle. In this format, we store only the nonzero elements. Each nonzero entry in the

matrix is stored in array val with row-major ordering. Additionally, array col stores

the respective column indeces of each non-zero element and array row stores pointers

to where each new row begins. Arrays val and col have sizes equal to Nnz and array

row is of size N + 1. (We store an extra pointer in the end which points beyond the

last element.) Algorithm for SpMVM multiplication with CSR matrix format is shown

in Listing 4.9. The first loop traverses over all rows of matrix A. With the second loop,

we go over all elements of a row, accumulating the sum of products of matrix A and x.

Due to the CSR format, the accesses to values of matrix A are contiguous. However,

access to array x is non-contiguous are requires the use of gather-load instructions.

for ( i = 0; i < N ; ++i ) {

y[i] = 0.0;

for ( j = row[i]; j < row[i+1]; ++j ) {

y[i] += val[j] * x[col[j]];

}

}

Listing 4.9: Matrix vector multiplication for CSR format

CSR matrix format is not very suitable for architectures with long SIMD vectors. The

main problem is that the vectorization of the inner loop requires SIMD reduction op-

erations which usually have high latency. We can partially mitigate this problem by

accumulating the partial sums of each iteration in a SIMD register and only using a

reduction operation at the end of the loop to sum all lanes to y[i]. However, when

Nnzr ≈ lSIMD, the overhead of a reduction operation still negatively impacts perfor-

mance. The second problem with the CSR format is that the Nnzr is usually not a

multiple to lSIMD. For very small Nnzr, it leads to SIMD instructions where only a few

lanes are active.

Figure 4.19: Default sparse formats in MiniFE
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The other format included in the MiniFE is an ELLPack (or ELL) format. In this

format, the values of A are stored in array val column-wise (see Figure 4.19, right side).

The values are padded with zeros to the maximum number of nonzero elements in a

row. The same is done for array col storing column indices. Because we store the same

number of elements per row, array row is redundant. The ELL SpMVM kernel is shown

in Listing 4.10. When vectorizing the inner loop, we do not need the reduction operation.

However, the sums are accumulated multiple times to the result y[i]. Additionally, we

compute a lot of products containing zeros for an irregular sparse matrix where Nnzr

changes frequently. This is further addressed in a Sliced ELLPack format (SELL).

// assume y[i] = 0.0 for all i

for ( int j = 0; j < max_row; ++j ) {

for ( int i = 0; i < N; ++i ) {

jj = i + N * j;

y[i] += val[jj] * x[col[jj]]

}

}

Listing 4.10: Matrix vector multiplication for ELL format

4.4.3 Sliced ELLpack and SELL-C-σ

The Sliced ELLPack (SELL) format improves the ELL format by splitting the matrix

A into slices of C rows. Each slice is stored in an ELL format and only padded to the

maximum element within each slice. Slices are stored contiguously for arrays val and

col. Additionally, we store the offset of each slice in an array slice offsets for easier

implementation. Figure 4.20 shows the sliced ELLPack format for C = 4 and C = 6.

When C = 1, SELL is equivalent to a CSR.

The SELL format has several advantages compared to ELL. Most importantly, this

format enables a very efficient SIMD vectorization. Usually, C is selected as lSIMD

to fully utilize all lanes in the SIMD register. Matrix-vector multiplication for each

slice can, therefore, be computed with a single loop, accumulating the products in a

SIMD register that holds all y[i] of a slice. Additionally, the number of padded zeros is

significantly reduced for matrices with only a few rows with big Nnzr. (Consider a case

where a single row of a matrix A has many more nonzero elements than all other rows.)
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Figure 4.20: Sliced ELLpack and SELL-C-σ

To further improve the storage efficiency, we can also apply the SELL-C-σ format. In

this format, rows are initially sorted by Nnzr in blocks of size σ. This groups rows with a

similar number of nonzero elements together, which reduces the zero padding. Usually,

σ is a multiple of C. Figure 4.20 right shows example when σ = 12 and σ = 24. When

σ = 1, the format is equivalent to SELL.

4.4.4 Intrinsic implementation (VLA SELL)

In MiniFE, an elementary geometry results in a highly regular sparse matrix. Almost all

rows (except those corresponding to vertices on the mesh boundary) contain 27 nonzero

elements. For the case of Nx = Ny = Nz = 60, only 6% of rows contain less than 27

nonzero elements. We conclude that for MiniFE, the additional work of sorting rows does

not outweigh the minor benefit of reduced storage. Therefore, we only implemented the

SELL format. To efficiently utilize different SVE sizes, we implemented a vector length

agnostic SELL, by setting C = lSVE .

MiniFE separates different matrix formats by a set of predefined macros. For example,

the CSR format is selected at compilation with a flag -DMINIFE CSR MATRIX. Throughout

the code, matrix operations (memory allocation, structure generation, SpMVM kernel,

etc.) are split depending on the chosen format. For our work, we have added a new

macro MINIFE SELL MATRIX and implemented the SELL format. The code is publicly

available. 1

MiniFE is written in C++ and heavily uses the C++ standard library. Namely, arrays

val, col and row are implemented as std::vector<T>. The class implementing the

1https://gitlab.jsc.fz-juelich.de/epi-wp1-public/minife

https://gitlab.jsc.fz-juelich.de/epi-wp1-public/minife
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SELL matrix is similar to CSR and ELL, but the vector holding row offsets is replaced

by a vector of slice offsets. Different slices are initialized with different OpenMP threads,

ensuring each thread allocates space in the local memory. To maximize utilization of SVE

registers, we set the slice size to the number of SVE lanes, which makes the algorithm

vector-length-agnostic. If the code is not compiled for SVE, a default C = 4 is used.

Listing 4.11 shows the intrinsic SVE implementation of a matrix-vector multiplication

for SELL format. The first loop in line 2 traverses over all slices. This loop is paral-

lelized with OpenMP, each thread computing result for its submatrix. For each slice, we

initialize an empty SVE register sum to accumulate partial results (line 3). The second

loop (line 6) traverses the values of each slice. For each iteration, values of A are loaded

contiguously from memory with ld1 instructions. For x, we first load the column indices

of A elements. Afterward, we use a gather-load instruction to gather elements of x into

an SVE register. Finally an fmla instruction is used to accumulate partial products to

sum. In line 13, the result is stored back to y.

1 #pragma omp parallel for

2 for(int slice_id =0; slice_id < num_slices; slice_id ++) {

3 svfloat64_t sum = svdup_f64 (0);

4 int C = svlen_f64 ();

5 svbool_t pg = svwhilelt_b64 (0, C);

6 for(int i=Asliceoffsets[slice_id ]; i<Asliceoffsets[slice_id +1];i += C){

7 svfloat64_t acofs = svld1(pg , &Acoefs[i]);

8 svuint64_t indices = svld1sw_u64(pg, &Acols[i]);

9 svfloat64_t xcofs = svld1_gather_index(pg, &xcoefs [0], indices );

10

11 sum = svmla_z(pg, sum , acofs , xcofs);

12 }

13 svst1(pg, &ycoefs[slice_id * C], sum);

14 }

Listing 4.11: SVE sliced ELLPack SpMVM
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Results & analysis

5.1 SVE ISA exploitation

5.1.1 Auto-vectorization

Table 5.1 reports the number of vectorized loops in TSVC by different compilers. FCC

vectorizes most loops (97), followed by GCC (94) and ACfL (93). However, for eleven

loops, ACfL recognizes an opportunity for vectorization but does not vectorize due

to the cost model predicting no benefit. However, in five of eleven cases, loops are

instead vectorized using NEON instructions. On the other hand, GCC and FCC do not

report any cases where vectorization is not beneficial. Figure 5.1 shows how vectorized

loops overlap between different compilers.1 A total of 115 loops were vectorized by

at least one compiler, and 80 loops were vectorized by all three. Recent studies [46]

also report similar numbers (95-111) for x86’s AVX-512 SIMD set. Therefore, the VLA

paradigm, introduced by SVE, does not introduce any significant drawbacks in terms

of vectorization. On top of that, we manually vectorized 21 more loops with intrinsic

functions giving 136 vectorizable loops. The code is available in Gitlab.2

GCC ACfL FCC Intrinsic

94 (+0) 93 (+11) 97 (+0) 136

Table 5.1: Number of vectorized loops

Figure 5.1: TSVC vectorization

1Figure 5.1 includes eleven loops where SVE vectorization was possible but not applied.
2https://gitlab.jsc.fz-juelich.de/brank1/tsvc_sve
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Table 5.2 shows the total runtime of the entire TSVC suite (151 loops) on the A64FX

processor. Here, tscalar and tvec refer to the accumulated time of all loops, with vector-

ization disabled and enabled, respectively. The fastest binary is produced by the Fujitsu

compiler (2.68s), followed by ACfL (2.92s) and GCC (3.73). Although this corresponds

with the number of vectorized loops, the result is partly also a consequence of a faster

scalar code. We observe that FCC uses aggressive loop-unrolling, and many loops are

automatically unrolled over a factor of two or four. This is reflected in the size of the

FCC’s binary, which is 2.2 and 2.9 times bigger than ACfL and GCC. Also, we note

that some loops take considerably longer time than others, so the total time is heavily

weighted towards a few computationally more expensive loops. Finally, tintrinsic is the

accumulated time for the case where 136 loops were vectorized with intrinsic functions.

This produces the fastest code (1.64-1.69s), with compilers showing little difference in

performance. Although this code is 40% faster than the code produced by FCC, the

difference mostly comes from additional vectorization. (tvec is dominated by loops that

are not vectorized.) In Table 5.3, we count the number of loops that achieve a vector

speed-up of at least 1.15, 2, 4, and 8. A 512-bit SVE gives for single-precision loops

ηmax = 16.

GCC ACfL FCC

tscalar 7.58 8.84 6.10

tvec 3.73 2.92 2.68

tinstrinsic 1.64 1.68 1.69

Table 5.2: TSVC total time (s)

GCC ACfL FCC

η ≥ 1.15 86 83 76

η ≥ 2 81 77 73

η ≥ 4 72 67 51

η ≥ 8 42 46 23

Table 5.3: TSVC speed-up

Compilation of the TSVC benchmark shows that compilers can exploit most features of

SVE. Here, we show four TSVC loops that show different exploitation of the SVE ISA.

Consider loop s111, shown in Listing 5.1. The loop counter is incremented by 2 in each

iteration and requires handling of data with stride 2. All three compilers vectorize this

loop. However, ACfL and FCC, based on the LLVM compiler technology, use a different

approach to GCC. GCC uses ld2 instructions to load elements of a and b, followed

by a scatter-store instruction. On the other hand, ACfL and FCC use normal ld1

load instructions that also load elements that are not needed. Afterward, zip and unzip

instructions are used to separate even and odd elements into different registers. The code

produced by GCC is roughly 20% faster. Listing 5.2 shows loop s4113 where a[ip[i]]

and b[ip[i]] results in a complex memory pattern. (Here, array ip is declared with a

keyword restrict which signals the compiler that no aliasing occurs.) All three compilers

successfully vectorize this loop with gather-load and scatter-store instructions.



Chapter 5. Results & analysis 101

1 for (int i = 1; i < LEN_1D; i += 2) {

2 a[i] = a[i - 1] + b[i];

3 }

Listing 5.1: Loop s111

1 for (int i = 0; i < LEN_1D; i++) {

2 a[ip[i]] = b[ip[i]] + c[i];

3 }

Listing 5.2: Loop s4113

Loop s314 (see Listing 5.3) requires transformation of if statement to a max reduction.

All compilers recognize this transformation and vectorize the loop with floating-point

maximum fmaxnmv instruction. Finally, loop s271 (see Listing 5.4) operates only on

elements of array where b[i] > 0. All compilers generate SVE cmpeq operations to

create a predicate register with only those active lanes that satisfy the condition. Such

predicate is then used in combination with the fmla instruction.

1 x = a[0];

2 for (int i = 0; i < LEN_1D; i++) {

3 if (a[i] > x) {

4 x = a[i];

5 }

6 }

Listing 5.3: Loop s314

1 for (int i = 0; i < LEN_1D; i++) {

2 if (b[i] > (real_t )0.) {

3 a[i] += b[i] * c[i];

4 }

5 }

Listing 5.4: Loop s271

Additionally, we have found many cases where compilers generate more complex SVE

instructions (rev, zip, splice, select, fnmls, ext, umulh). In all 151 loops, we have identified

only one case (s341 ), where compilers fail to spot a particular feature of SVE.

Loop s341 is shown in Listing 5.5. In this loop, all values of b which are greater than

zero are packed in the array a. At first, the loop seems hard to vectorize due to an

increment j++ which makes j depend on previous iterations. However, SVE includes

a compact instruction which concatenates active elements of the register and fills the

rest with zero. Therefore, we can first use a cmpgt instruction to find all lanes where

b[i] > 0.0f. Afterward, cntp instructions counts the number of active elements in a

predicate register. This information is used to store the right number of elements to a

and correctly increment j. The intrinsic implementation is shown in Listing 5.6.
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1 j = -1;

2 for (int i = 0; i < LEN_1D; i++) {

3 if (b[i] > 0.0f) {

4 j++;

5 a[j] = b[i];

6 }

7 }

Listing 5.5: Loop s341

1 do {

2 svfloat32_t bv = svld1_f32(pg, &b[i]);

3 cg = svcmpgt(pg, bv, zerov );

4 svfloat32_t res = svcompact_f32(cg, bv);

5 int inc_j = svcntp_b32(svptrue_b32 (), cg);

6 tg = svwhilelt_b32 (0, inc_j );

7 svst1(tg, &a[j], res);

8 j += inc_j;

9 i += svcntw ();

10 pg = svwhilelt_b32(i, LEN_1D );

11 } while (svptest_any(svptrue_b32 (), pg));

Listing 5.6: Vectorized loop s341

As stated before, we identified 21 loops that were not vectorized by any compiler, but

we managed to vectorize with SVE intrinsics. However, except for s341, missed oppor-

tunities do not originate from the SVE ISA. Instead, these loops require a specific code

transformation that compilers do not recognize. Here we give a brief overview of the

techniques that we used:

� Loop splitting is a technique where the loop is split into two separate loops.

We use this to vectorize loops where a straightforward vectorization fails due to a

specific iteration. This is because other iterations depend on it or the particular

iteration has different properties than other iterations. In most cases, vectorization

can still be applied if the special iteration is handled with scalar instructions. This

applies to loops s1113 and s281.

� Loop peeling is a special case of loop splitting where the first (or last) few itera-

tions are split from the loop and performed outside of the loop. Missed opportunity

for vectorization involving loop peeling was observed for loops s244, s254, s255,

s291, s292, and s293.

� Preloading is a technique where data is preloaded into a SIMD vector to store

the copy of the original data before it gets overwritten. Missed opportunity for

vectorization involving preloading was observed in s211, s1213, s241, s243, and

s1244.

� Searching loops are loops that search the first value in an array (and its cor-

responding index) that satisfies a certain condition. This applies to loops s332,

s481, s482, s3110, and s13110. A way to vectorize this loop is to use the SVE

vector compare operation to see if a searched value is in the current iteration. If

it is found, then we manually check values one by one and find the first that fits

the condition. The performance of such vectorization depends on the values of
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the array. If a searched value is not in the first few iterations, vectorized version

performs better.

� Some loops involve a combination of multiple techniques for a successful vector-

ization (for example, s126, s232, s2251 ).

5.1.2 Potential ISA extension

For cases where vectorization is not possible, we think about small changes in the SVE

ISA that could open new vectorization opportunities. One example where SVE is not

efficient are loops with a decrementing loop counter. For a VLA loop, whilelt and whilele

instructions are used to correctly set lanes in a predicate register. However, SVE omits

whilegt that would do this in a reverse order.1 Compilers still manage to vectorize loops

with a workaround. Consider loop s112 in Listing 5.7. The loop is trivial to vectorize due

to a single addition and no dependencies between iterations. However, a decrementing

loop counter makes it difficult to produce a VLA code. To solve this problem, compilers

rely on rev instruction that reverses the contents of the SVE register in each iteration.

This approach is shown in Listing 5.8 (four rev instructions are required). None of the

compilers has reversed the loop to an incremental order, although this is possible.

1 for (int i = LEN_1D - 2; i >= 0; i--)

2 {

3 a[i+1] = a[i] + b[i];

4 }

Listing 5.7: Loop s122

1 .LBB154_2:

2 rev p1.s, p0.s

3 ld1w { z0.s }, p1/z, [x9, x19 , lsl #2]

4 ld1w { z1.s }, p1/z, [x10]

5 add x8, x8, x21

6 whilelo p0.s, x8, x20

7 rev z0.s, z0.s

8 rev z1.s, z1.s

9 fadd z0.s, z1.s, z0.s

10 rev z0.s, z0.s

11 st1w { z0.s }, p1 , [x9]

12 addvl x9 , x9 , #-1

13 addvl x10 , x10 , #-1

14 b.mi .LBB154_2

Listing 5.8: ACfL compiled s122

Another possible improvement to ISA was found in loop s3112 (Listing 5.9) which

computes a prefix sum. Although there exist algorithms that compute a prefix sum using

SIMD instructions, they usually do that with partial sums in multiple sweeps. This could

be avoided with a hardware implementation of a prefix sum SVE instruction.2 Since

1Instructions whilegt and whilege were first introduced with SVE2.
2The idea of prefix sum hardware implementation was first introduced for vector computers in 1990

by Chatterjee et al.
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the fadda operation already exists, which computes a sum-reduction in-order, prefix

sums already appear naturally during the execution of this operation. Therefore, a

modification to a prefix sum does not seem far-fetched.

1 sum = (real_t )0.0;

2 for (int i = 0; i < LEN_1D; i++) {

3 sum += a[i];

4 b[i] = sum;

5 }

Listing 5.9: Loop s3112 Figure 5.2: Possible SVE prefix sum

Loop s342 (Listing 5.10) is opposite to s341 (Listing 5.5). Array b[j] is unpacked to

only positive values of a[i]. SVE does not include instructions that would unpack the

vector under predicate control (see a possible solution in Figure 5.3). Such instruction,

which would have an opposite effect than compact instruction, would be needed for

vectorizing the loop s342.

1 for (int i = 0; i < LEN_1D; i++) {

2 if (a[i] > (real_t )0.) {

3 j++;

4 a[i] = b[j];

5 }

6 }

Listing 5.10: Loop s342 Figure 5.3: Possible SVE unpack

Loop s258 is shown in Listing 5.11. The temporary variable s only changes value on

certain iterations. Such a loop could be vectorized if instructions existed that would

copy the last active element under predicate control. An example of such potential

instruction is presented in Figure 5.4.

1 for (int i = 0; i < LEN_2D; ++i) {

2 if (a[i] > 0.) {

3 s = d[i] * d[i];

4 }

5 b[i] = s * c[i] + d[i];

6 e[i] = (s + (real_t )1.) * aa[0][i];

7 }

Listing 5.11: Loop s258 Figure 5.4: Possible SVE last active
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5.2 Validation of the Gem5 model

To ensure that the Gem5 model operates in a realistic CPU architectural space, we test it

using a set of standard benchmarks. (See Section 2.2.1 for a more detailed description.)

First, we analyze the memory behavior by running STREAM and Tinymembench. As

explained in Chapter 3.3, the memory system of our Gem5 model (in particular, the

hardware prefetcher and the interconnect) is highly simplified. Therefore, even if the

measured memory bandwidth and latency resemble Graviton 2, many aspects of the

cache hierarchy are simulated differently than in the Neoverse N1. Afterward, we show

the results for the NAS Parallel Benchmark suite. For the compilation of three bench-

marks, we use GCC version 11.1.0. We compile the code on the Kunpeng 916 machine

for a generic ARMv8 target. For NEON binaries, we use the -O3 optimization without

any Kunpeng 916 specific optimizations. (The same binaries are used for Graviton 2

as for the Gem5 model when targeting NEON.) In the case of SVE, we added an extra

compilation flag -march=armv8.2-a+sve.

5.2.1 STREAM

First, we evaluate the STREAM benchmark compiled for NEON (without SVE). Single-

core results for both systems are shown in Figure 5.5. For the Gem5 model, we also

report the memory bandwidth if we disable the hardware prefetcher. Here, we report the

application-perceived bandwidth, which the STREAM benchmark writes on the output.

(See Section 2.2.1 for a detailed explanation.)

Figure 5.5: STREAM results (NEON binary)
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Graviton 2 obtains a bandwidth of around 32 GByte/s for copy and scale kernels and

23 GByte/s for add and triad kernels. Therefore, a single core is able to saturate more

than one memory channel (25.6 GByte/s). Gem5 model shows more consistent results,

ranging from 15.2 GByte/s for the scale kernel up to 17.6 GByte/s for the add kernel.

Disabling the hardware prefetcher reduces the bandwidth significantly. In this case,

the maximum observed bandwidth is 8.7 GByte/s for the triad. The results show that

the hardware prefetcher heavily influences the memory bandwidth for a single core. To

inspect this further, we look at the Gem5 reported sources of memory accesses over

the memory controller. Table 5.4 shows the number of read bytes and written bytes

by different sources for a single iteration of the triad kernel. Due to the write-allocate

cache policy, the total number of read bytes is close to 3×10, 000, 000×8 = 240 MByte,

which is expected. The hardware prefetcher reads 231.2 MByte, roughly 96.2% of the

data.

mem ctrls.bytesRead::cpu0.inst 2,752

mem ctrls.bytesRead::cpu0.data 8,811,968

mem ctrls.bytesRead::cpu0.prefetcher 231,202,368

mem ctrls.bytesRead::total 240,014,336

mem ctrls.bytesWritten::total 80,001,664

Table 5.4: Gem5 memory controller (STREAM triad)

Unfortunately, the Neoverse N1 core does not include any performance counters for

measuring the effectiveness of the hardware prefetcher. This includes the counters for

cache refills, which exclude those caused by the hardware prefetcher. However, consid-

ering a very regular access pattern of STREAM kernels, there is a strong indication

that hardware prefetching is also the leading cause of high single-core bandwidth on

Graviton 2.

Table 5.5 shows the results when running STREAM on a full node of Graviton 2 and

across all four cores of the Gem5 model. In Graviton 2, we observe a maximum re-

ported bandwidth of 175 GByte/s, which is roughly 85% of the theoretical peak (204.8

GByte/s)1. This exceeds the 75% limit, which is predicted by the write-allocate mech-

anism (See Section 2.2.1). To obtain a better memory bandwidth result, Graviton 2

applies the write streaming mode [47]. In this mode, the cache hierarchy does not

allocate the cache line when the entire cache line is overwritten. The Gem5 model’s

maximum measured bandwidth is 19.2 GByte/s (add and triad), 75% of the peak. For

the copy and scale kernels, the measured bandwidth is 17.8 GByte/s (67%) which is in

line with the write-allocate limit.

1Configuration of 8 DDR4-3200 channels gives a total of 8 * 1600 * 2 * 8 = 204.8 GByte/s
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Graviton 2 - 64 cores Gem5 - 4 cores

copy 170 17.8

scale 175 17.7

add 166 19.2

triad 174 19.2

Table 5.5: STREAM bandwidth for the full node

Finally, we report the effect of SVE size on the STREAM benchmark. In today’s multi-

core processor architectures, a single core usually cannot fully saturate the available

memory bandwidth. The reason for this is that the core cannot handle enough in-flight

memory requests (for example, due to a full LSQ). In this case, a bigger SIMD size

can increase the observed bandwidth because a single SIMD memory instruction can

transfer more data. Figure 5.6 shows the results for a binary compiled for an SVE

target. For the triad kernel, the 512-bit model performs 3% better than the 128-bit.

This is unsurprising because the 128-bit model can almost fully saturate the memory

bandwidth due to the hardware prefetcher. If we disable the hardware prefetcher, the

results change significantly. In this case, a bigger SVE improves the bandwidth. For

example, for the copy kernel, the performance improved from 5.6 to 11.0 to 14.7 GByte/s

for 128, 256, and 512-bit SVE lengths, respectively. The effect of a greater single-core

bandwidth for larger SVE size was also observed on the A64FX.

Figure 5.6: STREAM results (SVE binary)

Using the results of the STREAM triad, we estimate the ridge point (see Section 3.2.1)

of our single-core Gem5 architecture for different SVE sizes. The peak performance of
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a 128-bit SVE model is 20 GFlop/s1, which results in AI ≈ 1.05 Flop/Byte. When the

SVE size is 256 and 512 bits, the ridge point is approximately 2.1 and 4.2, respectively.

These numbers appear very low compared to real-life machines because of the high

single-core bandwidth. Usually, the ridge point is computed for a full node because

applications utilize all cores. For example, Graviton 2 obtains 174 GByte/s, roughly

2.7 GByte/s per core. This results in a ridge point of 7.4 Flop/Byte. When we take

into account four cores of the Gem5 model, the ridge point stands at 4.2, 8.3, and 16.7

Flop/Byte.

We also observed that the 128-bit SVE produces slightly better results than NEON. For

the case of the add kernel, the SVE binary reaches roughly 8% better bandwidth. When

analyzing the Gem5 reported counters, we noticed a strange artifact in the Gem5 model

which simulates NEON store instructions differently than SVE store instructions. The

number of committed instructions from the MemWrite operation class is twice as big as

SVE, see Table 5.6. (NEON store instructions are decoded into two scalar-store micro-

instructions.) As a result, the functional unit for memory operations is more occupied,

and there are more FuBusy events. To confirm that this behaviour is purely due to the

Gem5 and not the ISA, we have also inspected the assembly and ran the benchmark on

the A64FX. There, the difference between a NEON binary and an SVE binary executed

with 128-bit vectors is much smaller (less than 2%). The number of SVE committed

memory instructions in Gem5 follows the expected values.

NEON 128-bit SVE 256-bit SVE 512-bit SVE

commit::MemRead 10,000,170 10,000,170 5,000,170 2,500,170

commit::MemWrite 10,000,221 5,000,221 2,500,221 1,250,221

statFuBusy::MemWrite 1,075,700 64 34,447 28,367

Table 5.6: Memory instructions (STREAM triad)

5.2.2 Tinymembench

Figure 5.7 shows the memory latency measured with Tinymembench (compiled for the

Arm NEON target). We only report the number for dual memory access without huge

pages enabled. Overall, the Gem5 model behaves similarly to Graviton 2. When the

data fits in the L1 cache (1-64 kByte), the measured time is too low to be seen on the

plot. When the data is inside the L2 cache range (128 kByte - 1 MByte), the latency

increases to 4.5 ns for Graviton 2 and 3.5 ns for the Gem5 model. This result coincides

1Theoretical peak performance in Flop/s is calculated as ν × NSIMD × lSIMD × 2, where ν is the
clock frequency, NSIMD is the number of SIMD units, lSIMD is the number of 64-bit lanes and a factor
2 for fused multiply-add.
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nicely with the nine cycles for retrieving the data from the L2 cache, which Arm reports.

The figure also shows the effect of different L3/SLC cache sizes for the Graviton 2 and

the Gem5 model. We see a jump at 64 MByte for Graviton 2 because the total SLC

size is 32 MByte. For Gem5, the jump occurs at 16 MByte. Additionally, the latency

is increasing for a bigger array size that fits in the SLC for Graviton 2. This is due

to the mesh interconnect where the SLC is distributed among slices at each crosspoint.

Finally, caching effects are minimal for the 64 MByte array size, leading to a latency

between 80 and 90 ns when fetching data from the memory.

Figure 5.7: Tinymembench results

5.2.3 NAS parallel benchmarks

Figure 5.8 shows the results for all eight benchmarks of the NPB (compiled for the Arm

NEON target). The performance is reported in a million operations per second (MOp/s)

which is part of the NPB output. Overall, results from the Gem5 model largely resemble

results on the Graviton 2. We see a good correlation between the two systems for most

kernels (bt, ep, ft, lu, mg, sp). The difference between performance does not exceed 15%

for these cases. A somehow more significant difference is observed for CG and IS kernels.

Conjugate Gradient is a memory-bound kernel, and the lower performance in the Gem5

model is most likely the result of a smaller memory bandwidth. The biggest difference is

observed for the IS kernel (972 MOp/s on the Graviton 2 and 378 MOp/s in the Gem5).

We are aware that the model is behaving very differently than the Graviton 2 for this

specific kernel. However, unlike most selected applications, this kernel is performing
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integer computations with a random memory access. We decided not to investigate this

further and instead focus on selected applications and SVE.

Figure 5.8: NPB results

Apart from the performance of the NPB kernels, we also analyze the cache behavior.

As explained in Section 3.3.4, the cache configuration between the two systems is pretty

different. Therefore, rather than comparing the absolute results of two systems, we

would like to compare relative differences between different kernels on the same system.

Figure 5.9 shows the number of cache accesses for different cache levels. Due to different

environments, the number of cache accesses is measured differently on both systems.

In Gem5, we read the counters from the statistics output file. For Graviton 2, we

measure the selected hardware counters with the perf tool. (See [48] for a more detailed

description of the hardware counters on the Neoverse N1.) Table 5.7 shows the names

of specific counters that we measured. The number of L1 cache accesses is similar for

both systems. The number of L2 cache accesses is roughly 2 to 2.5 times bigger for

Graviton 2. However, we see an evident correlation between different NPB benchmarks

for both systems. The last level cache shows a different picture. Graviton 2 behaves

completely differently than our Gem5 model and we see no similarities between the two

systems. (Some kernels exhibit up to 10 times more cache accesses.) Unfortunately,

we could not identify the exact reason for such a large difference. We suspect that

the hardware prefetcher in Graviton 2 prefetches significantly more cache lines than

the Gem5 prefetcher. This further expresses the fact that simplications in the memory

system can lead to different results. However, considering the results of the NPB kernels,

the L3 cache accesses do not seem to massively affect the overall performance.
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Figure 5.9: NPB cache accesses

Neoverse N1 hardware counter Gem5 statistic

L1 0x04, L1 data cache access dcache.overallAccesses::total

L2 0x16, L2 cache access l2cache.overallAccesses::total

L3 0x36, Last level cache access, read l3cache.overallAccesses::total

Table 5.7: Measured cache-access statistics

5.3 Selected applications

In this section, we report and analyze the performance of selected applications. We

evaluate applications for three different SVE sizes in the Gem5 simulator: 128, 256, and

512 bits. Apart from the SVE size, the model is architecturally completely the same

for all SVE sizes1. Therefore, the difference in results is purely a consequence of the

different SVE lengths. For most figures, we also include the results for Graviton 2 and

A64FX processors for comparison.

1The only difference is the configuration of latencies for in-order reduction operations based on the
A64FX.
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5.3.1 OpenBLAS

5.3.1.1 DGEMM benchmark

Figure 5.10 shows the results of the DGEMM benchmark (see Section 3.2.3) for the three

systems. To account for different clock frequencies of Gem5/Graviton 2 and the A64FX

processor, we report the performance in Flop/cycle. The theoretical peak performance

for all systems is 8, 16, and 32 Flop/cycle for 128, 256, 512-bit SIMD, respectively.1 We

see that the performance scales well with the increasing SVE size in the Gem5 model. For

example, at 128-bit SVE, the performance reaches 7.58 Flop/cycle for N = 800, roughly

95% of the peak performance. This results is almost the same as the result on Graviton

2, despite it using NEON instructions. (On the figure, Gem5 plot coincides with the

Graviton 2 plot.) When we increase the SVE size to 256 bits, the maximum observed

performance is 14.75 Flop/cycle (92%). At 512 bits, the performance is slightly worse

at 82% of the theoretical peak. This leads to a relative vector speed-up of η256 = 1.95

(ϵ256 = 0.98) and η512 = 3.45 (ϵ512 = 0.86). For all cases, the best performance is

observed for the largest matrix size when N = 800. This suggests that the performance

would be even higher for bigger matrix sizes, but we did not evaluate it due to long

Gem5 simulation times.

Figure 5.10: OpenBLAS DGEMM results

1Theoretical peak performance in Flop/cycle is calculated as NSIMD × lSIMD × 2, where NSIMD

is the number of SIMD units, lSIMD number of 64-bit lanes and 2 for fused multiply-add. All three
machines have two SIMD units.
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For the A64FX processor, the performance is far from the theoretical peak (57.5%).

This is mainly because our SVE macrokernel is not well suited for such a processor. As

explained in Section 4.1, the size of the microkernel (mr and nr) depends on the number

of SVE units and the latency of the fmla instruction. For most Arm server processors,

the fmla latency is usually between 4-6 cycles, whereas for A64FX, it is 10 cycles1. Our

microkernel has a size 2v× 8, or 16× 8 for a 512-bit SVE, so the condition from Eq. 4.2

is not satisfied. A simple analysis of the microkernel shows that at peak performance,

the SVE register is updated once every eight cycles. Therefore, the SVE unit must write

back the result of the fmla operation in at least eight cycles to not introduce stalls in

the pipeline. The minimum microkernel size for the A64FX, which would not stall the

SVE unit, is 16×10. Additionally, related work from Nassyr2 shows that other advanced

optimizations must be used for a good performance on the A64FX (for example, a sector

cache).

To better understand the difference between SVE sizes, we look at main performance

counters reported by Gem5. Table 5.8 shows the main counters for one iteration of

DGEMM for N = 800. When doubling the SVE size, we observe that the number of

committed instructions is reduced by almost two. Therefore, SVE instructions domi-

nate the execution, confirming that the macrokernel is a central part of the DGEMM

execution. The majority of operations are multiply-accumulate and memory reads. We

also see that the number of committed instructions per cycle is 3.87 for 128-bit and 3.76

for 256-bit. This is close to the theoretical maximum of the Neoverse N1 because the

core’s frontend can only fetch and decode four instructions per cycle. However, the IPC

drops to 3.37 when increasing the SVE size to 512 bits.

SVE length 128 256 512

numCycles 135,698,359 69,962,138 39,409,718

committedInsts 525,166,248 263,609,448 132,831,048

ipc 3.87 3.77 3.37

committedInstType::SimdFloatMultAcc 258,240,000 129,120,000 64,560,000

committedInstType::MemRead 205,111,911 102,921,911 51,826,911

committedInstType::MemWrite 3,210,775 1,930,775 1,290,775

Table 5.8: DGEMM Gem5 counters

Next, we analyze the stalls in the rename stage. Table 5.9 shows the number of events

for full buffers and the execution of the rename stage. We observe a major increase

1The A64FX manual reports a latency of 9 cycles for the fmla instruction, but our experiments
shows it raises to 10 if both SVE units are fully occupied.

2https://www.youtube.com/watch?v=IwLm0Zt0E00
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in ROBFullEvents and fullRegistersEvents for the 512-bit SVE. This results in roughly

four million more stall (idle + block) cycles compared to the 256-bit SVE. On average,

each full-buffer event results in 5.7 stalled cycles.

iqFullEvents 0 0 0

lsqFullEvents 60 72 149

ROBFullEvents 69,964 63,836 187,894

fullRegistersEvents 308,887 457,957 1,197,679

rename.idleCycles 154,607 396,280 1,925,533

rename.blockCycles 2,252,847 2,531,461 4,982,041

rename.runCycles 132,864,490 66,445,929 30,052,108

rename.unblockCycles 416,999 580,452 2,442,690

rename.squashCycles 8,246 6,846 6,154

Table 5.9: DGEMM Gem5 rename stalls

To understand the reason for a different behavior of the 512-bit SVE, we inspect the

occupation of different functional units in the backend. Table 5.10 shows the relevant

counters from the model’s backend execution. We observe that the total number of

fuBusy events is proportional to the execution time (Brate ≈ 0.26 for all bSVE). For fmla

operations, fuBusy is well correlated with the number of committed fmla instructions.

However, the same is not true for memory read operations. When bSVE = 512, the

BMemRead increases from 7,443,836 to 8,471,654, despite the number of committed load

instructions decreasing by almost a factor of two.

SVE length 128 256 512

fuBusy 143,539,638 70,256,579 37,686,723

fuBusyRate 0.27 0.26 0.27

statFuBusy::SimdFloatMultAcc 127,245,555 61,951,084 28,625,298

statFuBusy::MemRead 14,760,146 7,443,836 8,471,654

statFuBusy::MemWrite 148,059 152,497 148,245

Table 5.10: DGEMM Gem5 backend counters

A poor DGEMM performance usually occurs because the memory subsystem does not

feed data to the core sufficiently fast. When waiting for data, the out-of-order window

grows, which explains an increased number of fullRegisterEvents. To confirm this for

the 512-bit SVE case, we analyze the performance of caches by looking at statistics of

entries in the LSQ. Table 5.11 shows relevant load-to-use latencies of the requests put in

the LSQ. A bigger SVE size increases the average latency of memory load instructions.
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For example, when bSVE = 128, the average latency to fetch data is 4.85 cycles, but for

256 and 512 bits, it rises to 5.49 and 7.47 cycles, respectively. Additionally, the standard

deviation also increases. The reason for increased load latency lies in the SIMD load

instructions. In the case of ideal scaling, the number of loads per cycle remains constant,

and a 512-bit unit would load twice as much data as a 256-bit unit. However, since the

cache line size remains constant, the number of cache lines to be loaded in the same

time would also have to double. Generally speaking, with the increasing SIMD width,

the core becomes more powerful but the bandwidth from L1 to L2 and beyond remains

unchanged.

SVE length 128 256 512

lsq0.blockedByCache 16,405 127,654 207,503

lsq0.loadToUse::samples 163,207,879 81,927,879 41,287,879

lsq0.loadToUse::mean 4.85 5.49 7.47

lsq0.loadToUse::stdev 4.81 7.49 13.79

lsq0.loadToUse::0-9 96.90% 93.34% 90.57%

lsq0.loadToUse::10-19 2.88% 5.27% 2.29%

lsq0.loadToUse::20-29 0.08% 0.85% 2.61%

lsq0.loadToUse::30-39 0.02% 0.22% 2.18%

lsq0.loadToUse::40-49 0.01% 0.02% 0.65%

lsq0.loadToUse::50-59 0.01% 0.02% 0.47%

Table 5.11: DGEMM Gem5 LSQ counters

For our 2V × 8 macrokernels in OpenBLAS, the maximum load latency for Ar and Br,

which does not stall the pipeline, is eight cycles. We see that for the 512-bit case, the

latency is close to this limit, and many load instructions most likely do not satisfy this

condition. We point out that some read requests refer to the loading of Cr, which can

be fulfilled with a higher latency. The table also shows the histogram of latencies. The

number of load requests that are completed in less than 10 cycles drops from 96.6% for

128-bit to 90.95% for the 512-bit case. We conclude that the pipeline stalls caused by the

load instructions are the leading cause of the poorer performance for 512-bit. Another

thing we notice in the LSQ behavior is the increased number of events where the load

instruction is not put in the LSQ due to blocked cache access. We have inspected the

behavior of the L1 data cache and found that the reason for blocked accesses is not

enough entries in the Miss Status Holding Register (MSHR).

The total utilized memory bandwidth is well below the maximum (around 1.5 GByte/s

for 512-bit SVE). Therefore, we believe that the poor performance for 512 bits could be

mitigated with a better prefetching (both in software and hardware). This is confirmed
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by looking at the number of useful hardware prefetches (Table 5.12). The coverage of

the hardware prefetcher drops from 84%, 82% to 75% for an increasing SVE size. We

see that for the L2 cache, more MSHR misses are caused by the core and less by the

hardware prefetcher. Additionally, Table 5.13 shows the number of cache refills for each

level. The SVE size does not majorly impact the overall data movement.

SVE length 128 256 512

mem ctrls.bwTotal::total 427,020,050 827,581,341 1,461,207,106

l2cache.prefetcher.pfUseful 983,875 959,370 854,980

l2cache.prefetcher.coverage 0.84 0.82 0.75

l2cache.overallMshrMisses::cpu0.inst 1 1 1

l2cache.overallMshrMisses::cpu0.data 186,533 208,872 238,938

l2cache.overallMshrMisses::cpu0.prefetcher 1,639,286 1,628,409 1,592,834

l2cache.overallMshrMisses::total 1,825,820 1,837,282 1,831,773

Table 5.12: DGEMM Gem5 hardware prefetcher

SVE length 128 256 512

dcache.replacements 9,492,264 9,493,410 9,468,353

l2cache.replacements 1,895,217 1,907,249 1,910,344

l3cache.replacements 294,065 294,294 295,387

Table 5.13: DGEMM Gem5 cache refills

Gem5 NSVE configuration

Lastly, we change the Gem5 model to study the effect of SVE units on the DGEMM

performance. We vary NSVE and bSVE while keeping the same theoretical peak perfor-

mance. Table 5.14 shows the results for three different configurations. The configuration

of four 128-bit SVE units is significantly slower. The main reason is the bottleneck in

the core’s frontend, which can only fetch and decode four instructions per cycle. At peak

performance, the kernel 2Vx8 would execute roughly six operations per cycle (four fmla

and two ld1rd, see Listing 4.1). Additionally, the 2v×8 macrokernel is too small for four

SVE units. (The condition in equation 4.2 is not satisfied for our kernel.) Configurations

2× 256 and 1× 512 perform almost identically. We also see that the fuBusyRate is sig-

nificantly lower for 128-bit, because of many SVE units. Finally, the load-to-use latency

increases for bigger SVE size, which we also observed in the previous simulations.
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SVE configuration 4× 128 bits 2× 256 bits 1× 512 bits

Flop/cycle 7.6 (47%) 14.75 (92%) 14.92 (93%)

ipc 3.87 3.76 1.93

fuBusyRate 0.04 0.26 0.52

lsq0.loadToUse::mean 4.85 5.49 6.38

Table 5.14: DGEMM Gem5 performance (different NSVE)

5.3.2 GROMACS

5.3.2.1 Nonbonded benchmark

GROMACS implements two different kernels for computing nonbonded interactions

(4xM and 2xMM). The 4xM kernel can be used for a SIMD size of 128 or 256 bits,

whereas the 2xMM kernel is used for 256 and 512-bit SIMD. We run all possible com-

binations of kernels and SVE sizes. To better understand the SVE utilization, we first

perform a static analysis using Armie. Armie is more appropriate for such analysis

because we can count individual SVE instructions. (Gem5 only reports the number of

instructions per operation class.) Table 5.15 shows the number of SVE and other instruc-

tions for four different SVE kernels (4000 particles). On average, 80% of the executed

instructions are SVE instructions. We see that the number of scalar and SVE instruc-

tions reduces with increasing SVE size for both kernels. The 2xMM kernel commits

fewer instructions than the 4xM for the same SVE size.

128-4xm 256-4xm 256-2xmm 512-2xmm

scalar 110,244,188 63,365,134 44,508,210 31,109,804

SVE 387,875,180 225,222,284 203,290,290 118,602,638

Table 5.15: GROMACS instructions

Table 5.16 shows the number of committed instructions for most important SVE instruc-

tions (4000 particles). The most executed instruction is the floating-point multiplication

fmul. This confirms our inspection of the Nbnxm kernel (see Listing 4.4 in Chapter 4.2.2)

where fmul instructions are heavily used for the computation of the Lennard-Jones po-

tential. In addition, the 4xM kernel uses significantly more ext operations for extracting

a vector from a pair of vectors and the faddv reduction operation. On the other hand,

2xMM uses more fadd operations. We also observe specific instructions executed only

for the 2xMM kernel and not for the 4xM. These instructions (insr, sel and splice) are

used to duplicate and merge data of two particle clusters into a single SVE register.
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Most used instruction, splice, copies all active elements of the first input operand to-

gether with the remaining lowest indexed elements of the second operand to the output

vector.

128-4xm 256-4xm 256-2xmm 512-2xmm

ext 34,690,460 20,145,370 2,083,088 1,198,400

fadd 427,980 416,430 17,908,800 10,413,928

faddv 4,166,232 2,396,912 427,980 416,430

fmad 36,532,818 21,014,826 18,640,860 10,742,032

fmla 17,627,470 10,143,574 8,439,284 4,837,168

fmul 120,059,800 69,194,580 60,086,964 34,652,814

insr 0 0 342,384 333,144

sel 0 0 1,041,544 599,200

splice 0 0 6,587,224 3,925,880

Table 5.16: GROMACS individual SVE instructions

In Figure 5.11, we see the results of the nonbonded benchmark for the Gem5 model and

selected hardware. Performance is reported in the number of computed particle pairs

per microsecond. We observe that results do not change when we increase the number

of particles. The performance scales well with the increasing SVE size for each kernel.

For the 4xM kernel, the performance rises from 111 to 189 pairs/usec (η256 = 1.70 and

ϵ256 = 0.85) when increasing the SVE size from 128 to 256 bits. The 2xMM kernel

also scales well from 256 (175 pairs/usec) to 512-bit SVE (302 pairs/usec). This gives

a speed-up of η512 = 2.72 and ϵ512 = 0.68 compared to a 128-bit SVE; however, we

are comparing two different kernels. For the same SVE size (256 bits), the 4xM kernel

performs 8% faster than the 2xMM, despite executing more instructions. Comparing

these results to real hardware, we observe a similar performance on the Graviton 2 (105

pairs/usec) as in our 128-bit model. The A64FX performance, on the other hand, does

not reflect the performance of the 512-bit SVE case. Although the core operates at a

lower frequency (1.8 GHz to 2.5 GHz), the 95 pairs/usec is approximately three times

worse.
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Figure 5.11: GROMACS results (nonbonded benchmark)

We try to better understand the performance of different SVE sizes by looking at the

simulation of 12000 particles. Table 5.17 shows the main Gem5 counters for four cases.

Overall, the 2xMM kernel exhibits less pressure on the SVE units (Brate = 0.30) com-

pared to the 4xM kernel (Brate = 0.54-0.59).

128-4xm 256-4xm 256-2xmm 512-2xmm

numCycles 563,818,836 330,754,181 357,226,320 208,065,513

committedInsts 1,416,203,491 818,442,221 702,378,351 422,129,231

fuBusy 831,618,075 446,318,355 211,787,091 129,621,491

fuBusyRate 0.59 0.54 0.30 0.30

Table 5.17: GROMACS Gem5 counters

Table 5.18 reports the number of relevant full-buffer events and the renaming statis-

tics. The number of events for a full reorder buffer decreases for the 2xMM kernel but

stays roughly the same for different SVE lengths. This suggests that ROBFullEvents

are caused by the scalar instructions. Additionally, the number of fullRegisterEvents is

reduced by approximately 40% when we double the SVE size. This number is well cor-

related with the number of committed instructions. However, it is significantly smaller

for the 4XM kernel than the 2xMM when bSVE = 256. These results are confirmed

when looking at the stall cycles in the rename stage. The number of blocked and idled

cycles decreases for a bigger SVE size but increases when we switch from the 4xM to

the 2xMM kernel. Other backend queues (IQ, LSQ) showed no bottlenecks.
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128-4xm 256-4xm 256-2xmm 512-2xmm

ROBFullEvents 9,007,535 9,365,214 1,467,094 1,531,062

fullRegistersEvents 42,741,116 25,093,946 45,993,720 26,929,854

rename.squashCycles 120,307 133,020 115,878 128,115

rename.idleCycles 41,238,533 22,445,194 36,376,003 21,129,170

rename.blockCycles 134,757,980 79,619,833 109,637,559 56,014,107

rename.runCycles 321,860,525 188,165,779 149,337,153 92,082,463

rename.unblockCycles 65,829,029 40,377,963 61,747,712 38,698,786

Table 5.18: GROMACS Gem5 rename stalls

Table 5.19 shows the number of fuBusy events for major operation classes. We see that

all dispatched SVE instructions exhibit the problem of unavailable functional units.

(Instructions can not be issued immediately when all operands are available.) This is

most evident for the fmul instruction. We conclude that insufficient execution units are

the main bottleneck of the nonbonded kernel.

128-4xm 256-4xm 256-2xmm 512-2xmm

statFuBusy::SimdAlu 13.24% 14.37% 14.77% 12.96%

statFuBusy::SimdMisc 14.86% 14.28% 18.41% 21.67%

statFuBusy::SimdFloatAdd 9.23% 10.71% 15.14% 14.31%

statFuBusy::SimdFloatAlu 8.74% 8.72% 6.82% 9.63%

statFuBusy::SimdFloatCmp 10.69% 7.97% 3.42% 5.75%

statFuBusy::SimdFloatMult 27.07% 28.16% 25.87% 23.05%

statFuBusy::SimdFloatMultAcc 10.60% 9.15% 7.34% 7.57%

statFuBusy::SimdFloatSqrt 0.65% 0.92% 1.62% 0.98%

statFuBusy::SimdFloatReduceAdd 0.28% 0.53% 1.34% 2.31%

statFuBusy::SimdTotal 95.37% 94.82% 94.74% 98.25%

Table 5.19: GROMACS Gem5 FuBusy events

We also look at the cache behavior in the Gem5 model. Major Gem5 cache counters

are shown in Table 5.20. Looking at the LSQ, we observe a small load-to-use latency

(4.31 cycles) which raises to 4.95 for the 512-bit 2xMM execution. Such small latency

means that most memory requests hit the L1 cache. This is confirmed by the number of

cache accesses, where more than 99% of accesses are in the L1. The SVE size and kernel

selection (4xM or 2xMM) also significantly impact the number of cache line refills. For

256-bit SVE, we notice an increased number of L1 and L2 cache replacements for the

2xMM kernel (42% more in L1 and 53% more in L2). When looking at individual kernels
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(4xM and 2xMM), longer SVE vectors reduce cache refills for roughly 25-35%. This is

expected because the kernel can compute more particle forces with less data transfer.

The number of L3 cache replacements is low, because the entire data fits in the L3 cache.

128-4xm 256-4xm 256-2xmm 512-2xmm

dcache.replacements 1,275,216 883,630 1,250,481 934,839

dcache.overallAccesses::total 298,344,195 173,975,370 123,444,661 122,708,715

l2cache.replacements 462,490 301,893 463,053 302,241

l2cache.overallAccesses::total 1,275,227 883,051 1,250,491 934,795

lsq0.loadToUse::mean 4.31 4.31 4.32 4.95

lsq0.loadToUse::stdev 1.31 1.25 1.44 1.59

Table 5.20: GROMACS Gem5 cache counters

Gem5 execution latency configuration

Next, we try to understand the poor performance of the A64FX processor. Since GRO-

MACS scales well with the SVE size, it is surprising that the performance of the A64FX

is similar to Graviton 2, which features four times shorter SIMD vectors. While inspect-

ing the SIMD implementation of the kernel, we noticed that large parts of code contain

chained SIMD operations. In these operations, the input operands depend on the result

of previous operations. A clear example of this is in Listing 4.4 in Section 4.2.2. A chain

of fmul operations is needed to calculate the high powers (r6 and r12) for the compu-

tation of the Lennard-Jones potential. In such kernels, performance is limited by the

dependencies on the critical path [49], where the latency of instructions plays a crucial

role. One major difference between the A64FX and Graviton 2 lies in the execution la-

tencies caused by long execution pipelines in the A64FX. To confirm this bottleneck, we

change the latencies of the FU pool in the Gem5 model to those of A64FX (see Table 2.4

on page 33 as an example). We repeat the simulation and observe how the performance

changes. Results are shown in Table 5.21. We see that longer execution latencies have a

huge effect on the result. The performance decreases by a factor of three, and Brate rises

from 0.30 to 1.03. Also, the number of ROBFullEvents and fullRegisterEvents increases

significantly.
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Instruction latencies Neoverse N1 backend A64FX backend

Useful pairs/usec 302 102

fuBusy 129,621,491 439,430,748

fuBusyRate 0.30 1.03

ROBFullEvents 1,531,062 2,184,763

fullRegistersEvents 26,929,854 40,481,520

Table 5.21: GROMACS 512-bit results (latency configuration)

Gem5 NSVE configuration

Lastly, we analyze how the execution is impacted by the number of SVE units. We

repeat the simulations with different combinations of SVE units and sizes. Table 5.22

shows the results for three different configurations.1 The best result is observed for a sin-

gle SVE unit with 512 bits (198 useful pairs/usec). For both nonbonded kernels, longer

vectors perform better, despite the configurations having the same output of Flop/cycle.

The worst performance is seen for four 128-bit SVE units (123 pairs/usec). As discussed

in the previous paragraph, the performance of nonbonded kernels is dominated by the

execution along the critical path. Such kernels do not benefit much from more SIMD

units because multiple critical path executions can overlap on the same execution unit.

However, a longer SIMD width benefits because the same path computes calculations

over more lanes. Unfortunately, the current 4xM kernel is not optimized for architec-

ture with four execution units. This would require a new kernel that would better utilize

instruction-level parallelism. Alternatively, it could also be done with a new SIMD back-

end where a SIMDReal class would include two register fields, and two SVE instructions

would be issued for each overloaded operation (see Listing 4.3 on page 80). Similarly to

OpenBLAS, we see significantly fewer fuBusy events for the 4x128 configuration.

SVE units 4x128 (4xM) 2x256 (4xM) 2x256 (2xMM) 1x512 (2xMM)

Useful pairs/usec 123 189 175 198

fuBusy 24,654,081 110,168,356 52,403,711 215,371,783

fuBusyRate 0.07 0.54 0.30 1.99

ROBFullEvents 2,086,002 2,184,736 384,969 840,548

fullRegistersEvents 7,908,093 6,305,978 11,763,431 12,739,242

Table 5.22: GROMACS results (NSVE configuration)

1Numbers for 256-bit SVE are different than in Table 5.17 because of a smaller input size.
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5.3.2.2 Ribonuclease

Our second use case is a ribonuclease protein simulation (RNAse) in a water solvent.

RNAse is an essential enzyme for a degradation of RNA in organisms. The whole system

comprises around 24000 atoms.

Figure 5.12 shows the performance in Gem5 and selected hardware for one, two, and four

cores. Performance of GROMACS is measured in the number of nanoseconds simulated

in one day (ns/day). Overall, the SIMD speed-up is smaller than for the nonbonded

benchmark. For single-threaded runs, doubling the SVE size from 128 to 256 and 256 to

512 increases the performance by 38% and 26%, respectively. (When running the 256-

bit SVE, the application selects the 4xM nonbonded kernel.) This leads to a parallel

efficiency of ϵ256 = 0.69 and ϵ512 = 0.43 compared to 128-bit SVE. 128-bit Gem5 model

performs similarly to Graviton 2, showing that SVE does not bring any considerable

performance changes compared to NEON if the vector length is the same. Performance

is also increased when we increase the number of cores. We see a 67-80% speed-up when

going from one to two cores and an additional 51-65% improvement when using four

cores.

Figure 5.12: GROMACS results (ribonuclease)

The main reason for a lower vector speed-up compared to the nonbonded benchmark is

a bigger portion of scalar code. Table 5.23 shows the number of scalar and SVE instruc-

tions measured with ArmIE. The proportion of SVE instructions ranges from 60.5% to

56.0% and 46.7% for SVE sizes of 128, 256, and 512 bits, respectively. Additionally, we
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also observe fewer scalar instructions when the SVE length is increased. The number of

scalar instructions decreases by 37% and 26%.

128 256 512

all 856,683,938 562,660,105 367,836,737

sve 517,873,934 315,340,191 171,939,465

scalar 338,810,004 247,319,914 195,897,272

% of sve 60.5% 56.0% 46.7%

Table 5.23: GROMCAS Ribonuclease instructions

Table 5.24 shows the main Gem5 counters. First, we compare the execution time (num-

Cycles) with the nonbonded benchmark for 12000 atoms (see Table 5.17). The total

simulation runtime is increased by a factor of 2.5, 3.1, and 3.9 for 128-, 256, and 512-bit

SVE (RNAse workload simulates 24000 atoms). We also observe that the bigger SVE

size reduces the stress on functional units. For example, when increasing SVE size, the

percentage of instructions waiting for the available FU drops from 46% to 39%, then to

29%. ROB is less occupied for bigger SVE sizes, as shown by ROBFullEvents. Addition-

ally, the number of fullRegisterEvents decreases by approximately 33% when increasing

SVE from 128 to 256 bits (41% in the nonbonded benchmark).

SVE length 128 256 512

numCycles 1,413,702,279 1,024,219,224 809,014,973

fuBusy 1,720,625,757 1,059,068,295 580,634,082

fuBusyRate 0.46 0.39 0.29

iqFullEvents 1 2 4

lsqFullEvents 116,402 105,689 201,644

ROBFullEvents 36,733,836 29,642,558 9,149,616

fullRegistersEvents 52,680,514 35,554,755 48,441,066

Table 5.24: GROMCAS Ribonuclease Gem5 backend

In Figure 5.13, we show the single-threaded performance for a box of water molecules

(without RNAse) of different sizes. Similar to earlier results, doubling the SVE size

results in roughly 40% and 30% performance improvement. The overall runtime is

inversely proportional to the number of atoms which means that the performance stays

constant for all input sizes.
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Figure 5.13: GROMACS results (water-box)

5.3.3 GPAW

In addition to studying the effect of different SVE lengths, GPAW also presents an op-

portunity to study different types of vectorization. For the Bmgs fd function, we split

the kernel into two cases, depending on which loop we vectorize (see Section 4.3.2.1).

To stay concise, we introduce the names Bf-1 and Bf-2. Bf-1 refers to the vectorization

of the innermost loop, while the Bf-2 applies vectorization of the outer loop (the loop

that surrounds the innermost loop). Similarly, for the kernel Construct density (see

Section 4.3.2.2), we introduce the notations Cd-1, Cd-2, and Cd-3, where the number

denotes the level of vectorization. For example, Cd-3 refers to the vectorization of the

inner-three loops. We want to remind the reader that the code performs the same algo-

rithm/computation in all cases. Different vectorizations only change how the calculation

is mapped to scalar and SIMD instructions. In all cases, we have manually vectorized

the loops with intrinsic functions and compiled the code with GCC version 11.1.0. Dif-

ferent vectorization cases are separated as different functions and chosen via a command

line argument.

5.3.3.1 Function Bmgs fd

The results for the Bmgs fd function are shown in Figure 5.14. We obtain better per-

formance for the outer loop vectorization for all SVE sizes. Bf-2 outperforms Bf-1 by

15%, 16%, and 37% for 128, 256, and 512-bit SVE, respectively. We also observe better
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performance for a larger SVE size for both cases. For the Bf-1, we have t128 = 0.164s

and t256 = 0.102s, giving η256 = 1.61. At bSVE = 512 the time further reduces to 0.085s

which leads to η512 = 1.93. A good speed-up is also observed for the outer loop vector-

ization. In this case, the runtime is improved from 0.14 (128 bits) to 0.054 (512 bits)

seconds. The vector speed-up equals η256 = 1.63 η256 = 2.59 in this case. Because the

outer loop can not be vectorized with NEON instructions, the Graviton 2 results are

shown only for the Bf-1, where the time is 7% lower than in the 128-bit Gem5 model.

Figure 5.14: GPAW results (Bmgs fd)

Table 5.25 shows the main Gem5 statistics for six cases. For both vectorizations, a bigger

SVE size reduces the number of committed instructions. We see a significant discrepancy

between committed instructions and micro-instructions for all cases. This is a result of

gather-load instructions, which are decoded into lSVE separate micro-instructions (one

memory access per lane). For the Bf-1, the number of committed micro-instructions per

cycle ranges between 2.40 and 2.49. For the outer loop vectorization (Bf-2), it is slightly

higher, averaging at 2.82.

Bf-1 Bf-2

SVE size 128 256 512 128 256 512

numCycles 410,458,778 254,751,418 212,896,148 349,412,874 215,876,830 135,534,916

committedInsts 867,572,637 480,630,637 325,853,837 860,269,047 430,763,427 222,938,127

committedOps 1,022,412,294 635,470,294 511,648,854 1,015,046,224 585,540,604 382,708,104

insts/cycle 2.11 1.89 1.53 2.46 2.00 1.64

ops/cycle 2.49 2.49 2.40 2.91 2.71 2.82

Table 5.25: GPAW Bmgs fd Gem5 counters
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Despite the kernel in the Bmgs fd appearing memory-bound (see arithmetic intensity in

Section 4.3.2.1), we see that the SVE size greatly impacts performance. To inspect this

further, we first analyze the cache behavior and the memory footprint. Table 5.26 shows

the most important counters for the LSQ, cache and memory-controller behavior for a

512-bit SVE execution. 128-bit and 256-bit SVE produce a similar memory footprint

with a smaller load-to-use latency and memory bandwidth. The main observation is

a small load-to-use latency of 4.34 and 5.95 cycles for different vectorizations. This

indicates that most cache accesses hit the L1 and L2 cache. This is confirmed when

looking at the LSQ, which completes 98% of load requests in less than ten cycles. Most

of the remaining requests are returned in less than twenty. The bottom half of the table

shows different causes of memory traffic over the memory controller. The hardware

prefetcher reads roughly 96-97% of data. This is likely due to the stencil operator’s

regular access pattern, which traverses grid points in order. Both types of vectorizations

exhibit the same memory access pattern. The overall memory bandwidth for different

SVE sizes ranges from 1.21 to 2.3 GByte/s for Bf-1 and from 1.42 to 3.67 GByte/s for

Bf-2. This is far below what we measured with the STREAM benchmark.

Vectorization Bf-1 Bf-2

lsq0.loadToUse::samples 232,291,491 191,974,601

lsq0.loadToUse::mean 4.34 5.95

lsq0.loadToUse::0-9 225,068,332 163,377,838

lsq0.loadToUse::10-19 7,117,072 28,404,291

dcache.replacements 8,146,005 8,145,213

l2cache.replacements 2,149,474 2,149,349

l3cache.replacements 2,138,443 2,138,389

mem ctrls.bytesRead::total 136,871,296 136,867,904

mem ctrls.bytesWritten::total 62,202,112 62,202,944

mem ctrls.bwTotal::total (GByte/s) 2.34 3.67

Table 5.26: GPAW Bmgs fd cache behaviour

Next, we estimate the arithmetic intensity of two kernels. We observe that the number

of bytes read from memory is only 2.2 times bigger than the number of written bytes. (In

the analysis in Section 4.3.2.1 we saw that the kernel loads 19 elements of the array a per

one stored element of the array b.) To count the number of operations, we look at the

number of committed instructions for each Gem5 operation class when bSVE = 512. (See

Table 5.27.) For analysis, we focus only on the SVE instructions (SIMD op. classes).

We count the number of add, fmul, fmla1, and fadda instructions multiplied by lSVE = 8.

1In case of a fused multiply-add, we multiply the number of instructions by two.
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This results in the following arithmetic intensity for both kernels:

AIBf-1 =
3× 23, 216, 520× 8

136, 871, 296 + 62, 202, 112
≈ 2.8

op

Byte
(5.1)

AIBf-2 =
(21, 032, 170 + 2× 18, 972, 640)× 8

136, 867, 904 + 62, 202, 944
≈ 2.4

op

Byte
(5.2)

The reason for a higher arithmetic intensity of the Bf-1 kernel lies in the last iteration

of the inner-loop where not all lanes of the SVE register are active. (In our analysis,

we count operations for all lanes of the SVE register even though some of these are

not active. For a 512-bit SVE, the last iteration of the inner-loop has only three active

lanes.) When bSVE = 128 and bSVE = 256 the arithmetic intensity of the Bf-1 is 2.4

and 2.5, respectively. For the Bf-2 kernel, the arithmetic intensity stays the same for

different SVE sizes since SVE instructions always operate on all lanes. (See Listing 4.7.)

Considering a ridge point for different SVE-size models (see Section 5.2.1), we see that

unlike the 512-bit model, the 128 and 256-bit models are compute bound.

OpClass (SVE inst.) Bf-1 Bf-2

SimdAdd (add) 23,216,520 21,032,170

SimdAlu (mov) 30,955,370 21,157,790

SimdCmp (b.any) 23,278,930 1,060,970

SimdMisc (mov (from scalar)) 7,738,840 62,410

SimdFloatMult (fmul) 23,216,520 0

SimdFloatMultAcc (fmla) 0 18,972,640

SimdFloatReduceAdd (fadda) 23,216,520 0

SimdPredAlu (whilelo) 30,955,360 10

MemRead 232,291,491 191,974,601

MemWrite 7,739,331 7,988,921

Table 5.27: GPAW Bmgs fd committed micro-instructions

Next, we inspect the number of FuBusy events for different operation classes (see Ta-

ble 5.28). We notice that the outer-loop vectorization (Bf-2) exhibits significantly less

stress on the SVE units. In the case of Bf-1, roughly 42% of FuBusy events happen for

SIMD operations and 58% due to MemRead operations. However, for Bf-2, almost all

events occur exclusively for load and store instructions. (94% for MemRead and 3% for

MemWrite.) A high number of MemRead operations results from gather-load instruc-

tions. For a 512-bit SVE, each gather-load instruction causes eight different memory

read operations (due to double-precision). Seeing a large number of FuBusy events, we

analyze the occupancy of SVE and load-store pipelines for both kernels.
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Bf-1 Bf-2

fuBusy 155,745,684 93,811,199

statFuBusy::IntAlu 1,628 1,123,562

statFuBusy::SimdAdd 9,251,765 808,851

statFuBusy::SimdAlu 12,807,543 1,075,235

statFuBusy::SimdCmp 10,586,539 2,713

statFuBusy::SimdMisc 17,729,352 558

statFuBusy::SimdFloatMult 14,650,685 0

statFuBusy::SimdFloatMultAcc 0 0

statFuBusy::SimdFloatReduceAdd 7,674 0

statFuBusy::SimdPredAlu 44,561 0

statFuBusy::MemRead 90,604,063 87,742,651

statFuBusy::MemWrite 66 2,995,764

Table 5.28: GPAW Bmgs fd Gem5 FuBusy counters

Bf-1 backend analysis

For the Bf-1 kernel, we focus on the occupancy of the SVE units. As explained in

Section 3.3.2, certain instructions are not pipelined and block the pipeline for the time

of execution. In Bf-1, the only such instruction is a reduction instruction fadda (part

of Op. class SimdFloatReduceAdd) which computes the sum of elements in the SVE

register. In the Gem5 model, these instructions stall the SVE unit by latfadda cycles,

depending on the SVE size. Combining Eq. 3.5 and 3.6 1, we get a lower bound as

tc ≥
µSVE + µSimdF loatReduceAdd × (latfadda − 1)

2
. (5.3)

Using this formula, we can calculate the minimum time for the Bf-1 kernel for a 512-

bit SVE: tc ≥ 147, 069, 170. This means that the model executes at 69% of the peak

performance (maximum throughput of SVE instructions). Similarly, we get 59% and

64% for 128 and 256 bits, respectively. Additionally, we observe that the Bf-1 kernel is

experiencing too few physical registers, which introduces many stall cycles in the rename

stage. Table 5.29 shows the number of FullRegistersEvents and rename statistics for

different SVE sizes. We see that the rename stage operates normally only in 60-68% of

the time.

1Term latfadda − 1 is due to fadda operations already being counted once in µSVE .
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SVE size 128 256 512

rename.fullRegistersEvents 38,979,769 8,117,884 5,504,907

rename.idleCycles 59,202,811 27,545,870 24,500,289

rename.blockCycles 73,296,649 68,128,957 61,385,997

rename.runCycles 216,461,856 131,829,038 105,504,189

rename.unblockCycles 61,424,975 27,175,110 21,433,082

Table 5.29: GPAW Bmgs fd Gem5 rename stage

Bf-2 backend analysis

Seeing that a high number of memory-read operations is the main bottleneck for Bf-

2, we analyze the occupation of load-store pipelines. We consider the case when the

throughput of memory operations limits the performance. In such a case, the lower

limit for the number of cycles is the execution where both memory units execute one

operation per cycle. From Eq. 3.7, we get

tc ≥
µMemRead + µMemWrite

2
. (5.4)

Using this formula for the 512-bit SVE Bf-2 gives tc ≥ 99, 981, 761. Therefore, the

Gem5 model executes at 74% of the maximum throughput. For 128 and 256 bits, we get

44% and 54%, respectively. Another interesting observation of the Bf-2 kernel was the

poor performance of the branch prediction mechanism. Table 5.30 shows the number of

branch mispredicts and the number of executed instructions. We see that roughly one

of every twenty branches is mispredicted. This might indicate that the misprediction

occurs on the last iteration of the inner-most loop (19 iterations). For the Bf-1 kernel,

the number of mispredicts was significantly smaller (less than 0.1%). However, we see

that the misprediction resulted only in between 2 and 4 squashed instructions in the

IEW stage.

SVE size 128 256 512

numBranches 81,322,845 40,693,937 21,034,846

branchMispredicts 3,932,853 1,998,143 1,061,988

decodedInsts 1,078,307,523 616,137,760 399,953,987

iew.dispatchedInsts 1,058,444,833 600,156,108 391,549,211

iew.writebackCount 1,030,794,701 589,976,783 385,382,610

committedOps 1,015,046,224 585,540,604 382,708,104

Table 5.30: GPAW Bf-2 branch prediction
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5.3.3.2 Function Construct density

The results for the Construct density function are shown in Figure 5.15. We present

results for three different loop vectorizations and SVE sizes. Additionally, due to a

small number of loop iterations in the function, we also show results for a scalar binary

(where we disabled vectorization). Unlike the Bmgs fd kernel, a bigger SVE does not

necessarily perform better. For the Cd-1, 256-bit SVE results in roughly 21% better

performance than 128 or 512 bits. A similar effect is observed for the Cd-2, where

the 256-bit case outperforms 128-bit and 512-bit by 18% and 9%. For the Cd-3, the

biggest SVE size results in worse performance. Additionally, the Cd-1 and Cd-2 show

similar performance, while the Cd-3 is slower. Also, the scalar code achieves the same

performance, showing that SIMD vectorization does not bring any benefit for such short

loops.

Figure 5.15: GPAW results (Construct density)

As explained in Section 4.3.2.2, the Construct density kernel is unsuitable for SIMD

vectorization due to the low number of iterations in the inner loops. The number of

iterations for the inner-most and the inner-second loop is either one or three (each

occurs in 50% of the call paths). In the case of three scalar loop iterations, this leads

to two SVE iterations for 128-bit and one SVE iteration for both 256 and 512-bit SVE.

Therefore, increasing the SVE size to 512 bits does not bring any benefit over the 256

bits. We confirm this by inspecting the number of committed SIMD instructions for

the Cd-1 kernel, which is shown in Table 5.31. The SVE execution profiles for 256

and 512-bit SVE are exactly the same (except for a few extra instructions in classes
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IntAlu, SimdAlu and MemRead). Comparing the number of committed instructions to

128-bit SVE, most SVE instructions are reduced by one-third. We also notice that SVE

instructions represent 16-19% of all instructions.

SVE size 128 256 512

Total 844,575,550 726,498,826 726,497,773

IntAlu 496,233,786 453,565,710 453,565,467

IntMult 21,872,148 21,872,148 21,872,148

FloatMisc 6,415,976 6,415,976 6,415,976

FloatAdd 984,994 984,994 984,994

FloatMisc 6,415,976 6,415,976 6,415,976

SimdAlu 5,881,108 5,880,460 5,880,136

SimdCmp 38,528,068 27,614,760 27,614,679

SimdMisc 1,976,484 1,976,484 1,976,484

SimdFloatMult 62,746,043 41,412,248 41,412,248

SimdFloatReduceAdd 32,111,767 21,198,621 21,198,621

SimdPredAlu 21,198,621 21,198,621 21,198,621

MemRead 119,955,342 98,128,402 98,128,078

MemWrite 36,651,401 26,230,752 26,230,752

Table 5.31: GPAW Cd-1 instructions

Despite the same number of committed instructions, the 512-bit Cd-1 performs roughly

20% slower than the 256-bit model. This is strange because the 512-bit model is ar-

chitecturally almost the same as the 256-bit and all loops are executed with the same

number of iterations. The only part, where the 512-bit Gem5 model differs from the

256-bit one is in the configuration of the fadda instruction latency. As described in Sec-

tion 3.3.2, we set the latencies of fadda instructions to reflect the SVE size (similar to

the A64FX). Despite only one or three lanes being active, the fadda latency is two times

bigger for a 512-bit SVE than 256-bit. Table 5.32 shows a number of FuBusy events per

operation class. We observe a big relative difference for the SimdFloatReduceAdd class

which counts the fadda instructions. Since this is the only difference between architec-

tures that impacts execution, we conclude that it is the main factor for a 20% slower

performance.
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SVE length 128 256 512

statFuBusy::SimdAlu 134,300 599,188 414,347

statFuBusy::SimdCmp 3,066,991 3,015,519 2,657,105

statFuBusy::SimdMisc 42,891 122,111 305,055

statFuBusy::SimdFloatMult 64,066 542,588 633,467

statFuBusy::SimdFloatReduceAdd 196 77,409 606,056

statFuBusy::SimdPredAlu 1,629,198 531,122 529,601

statFuBusy::MemRead 11,136,311 11,284,925 9,255,450

statFuBusy::MemWrite 512,470 660,245 714,173

Table 5.32: GPAW Cd-1 FuBusy events

We now focus on the effect of different vectorizations for the 256-bit SVE. Table 5.33

shows the most relevant Gem5 counters for the out-of-order execution. Comparing the

number of committed instructions, the Cd-2 and Cd-3 execute 10% fewer instructions

than Cd-1. However, the number of micro-instructions does not reflect that. For exam-

ple, for Cd-3, the number of micro-instructions is roughly 30% higher than for the other

two cases. Cd-2 vectorization also causes less pressure on the ROB.

256-bit Cd-1 Cd-2 Cd-3

numCycles 233,285,031 250,442,233 327,416,245

committedInsts 692,896,276 629,276,794 632,562,328

committedOps 696,144,592 712,847,979 1,006,042,148

fuBusy 36,812,713 84,790,051 182,810,014

fuBusyRate 0.5 0.11 0.18

iqFullEvents 0 0 0

lsqFullEvents 0 0 0

ROBFullEvents 6,013,365 622,587 11,218,974

fullRegistersEvents 16,672 16,090 286,467

Table 5.33: GPAW Construct density backend counters

Table 5.34 shows the number of committed instructions by operation class, reported by

Gem5. The first thing we notice is a big increase of SimdAlu and MemRead/MemWrite

operations for Cd-3. Integer arithmetic operations (SimdAlu) are used to create index

vectors for properly loading data in the SVE vector. In the case of Cd-3 vectorization,

we have three gather-load instructions in each iteration. Each gather-load requires a

different index vector assembled with SIMD integer instructions. This is a negative

consequence when vectorizing outer levels of nested loops. Like the Bf-1 kernel in the
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previous section, many memory operations occur due to gather-loads and scatter-stores.

However, here, we noticed that memory operations are issued for each lane of the SVE

register, regardless of whether the lane is active or inactive. This means that Gem5

issues eight operations for 512-bit SVE, despite only three of those required to fill the

SVE register. The total number of memory operations is 2.6 times higher for Cd-3

than for Cd-2. Applying the same analysis as for the Bf-1 kernel, we calculate that the

number of committed memory operations per cycle for Cd-3 is 0.92, 1.38, and 1.74 for

increasing SVE size. This means that the load-store pipelines are executing at 46, 69,

and 87 % of the maximum throughput for 128, 256, and 512 bits, respectively. For the

512-bit model, this is most likely the main performance bottleneck. Different type of

vectorization also impacts the floating-point operations. For Cd-1, the code relies on

fmul and reduction operation fadda. For Cd-2 and Cd-3, fadda is replaced by fmla but

at the expense of more gather-load operations.

Cd-2 Cd-3

128 256 512 128 256 512

total 865,031,294 712,847,979 794,242,130 950,649,443 1,024,068,776 1,385,305,193

IntAlu 476,177,604 383,134,734 383,134,491 344,187,693 306,982,778 302,381,452

SimdAlu 52,832,423 37,442,203 37,441,879 177,537,007 152,131,074 148,897,335

SimdMult 15,177,117 10,140,607 10,140,607 0 0 0

SimdMultAcc 0 0 0 42,969,764 36,367,376 35,528,030

SimdFloatMult 32,179,354 21,333,795 21,333,795 30,266,792 25,346,596 24,782,717

SimdFloatMultAcc 30,701,863 20,348,801 20,348,801 28,789,301 24,361,602 23,797,723

SimdFloatReduceAdd 1,477,491 984,994 984,994 1,477,491 984,994 984,994

MemRead 160,428,598 159,008,352 240,403,232 232,833,468 347,023,545 625,265,470

MemWrite 19,617,520 14,581,010 14,581,010 65,004,231 104,872,037 197,807,413

Table 5.34: GPAW Cd-2 and Cd-3 committed instructions

5.3.3.3 A64FX behavior

To confirm results in the simulator, we run the Bmgs fd and Construct density bench-

marks on the A64FX processor. We modified the code and added the option to set the

SVE length of the current process through the prctl function. This enables us to run

the benchmark for different SVE sizes.

Figure 5.16 shows the results for the Bmgs fd function. Although the overall runtime

is significantly slower, we see a similar behavior as the Gem5 model. Overall, the Bf-2

obtains much better performance for all SVE sizes. In the 512-bit SVE case, the Bf-2

is roughly seven times faster than the Bf-1. We also observe a better vector speed-up

when vectorizing the outer loop. In the Bf-1, the runtime reduces by 10% (7%) when

increasing the SVE size to 256 (512) bits. For the Bf-2, the performance rises by 97% and
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91%, respectively. We see that reduction operation (fadda) which is decomposed into

lSVE sequential micro-instructions presents a significant bottleneck. When we remove it

with the outer loop vectorization, it results in a much better performance. Figure 5.17

shows results for the Construct density function. Again, we see a substantially worse

performance for the Cd-3 kernel for all SVE sizes. On average, Cd-3 is 83% slower than

Cd-2, which obtains the best performance. When vectorizing the inner-most loop, the

512-bit SVE is 55% slower than the 256-bit.

Figure 5.16: GPAW A64FX results (Bmgs fd)

Figure 5.17: GPAW A64FX results (Construct density)
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Lastly, we discuss much lower performance than the Gem5 and Graviton 2 results. When

the SVE size is 512 bits, the Bf-1 performs roughly eight times slower. Bf-2 performs

two times slower. To inspect this further, we collect a set of hardware counters using

PAPI. Results are shown in Table 5.35. First, we report the number of L2 cache misses.

For all cases, it is approximately four times less than what we observe in the Gem5

model. This shows a similar behavior of both caches, considering the cache line size of

the A64FX is four times bigger (256 bits). We also look at the number of backend and

frontend stalls. In all cases, the number of backend stalls is very high. For the Bmgs fd

kernel, backend stalls occur in 67% and 59% of all cycles. On top of backend stalls, the

Construct density function also incurs many frontend stalls. Altogether, stalls represent

60%, 64%, and 75% of all cycles for Cd-1, Cd-2, and Cd-3, respectively.

Bf-1 Bf-2 Cd-1 Cd-2 Cd-3

real time nsec 764,594,308 121,721,527 792,873,344 470,573,373 828,450,671

PAPI TOT CYC 1,374,678,925 218,277,258 1,425,663,234 846,176,047 1,489,930,293

L2 MISS COUNT 557,340 568,341 82,601 80,565 77,807

STALL BACKEND 922,423,594 129,433,773 805,378,239 312,278,975 784,304,334

STALL FRONTEND 214,464 4,878,853 56,041,044 226,326,689 329,422,066

Table 5.35: GPAW A64FX PAPI counters

5.3.4 MiniFE

5.3.4.1 SpMVM

This section focuses on the SpMVM kernel in the Conjugate Gradient method in MiniFE.

First, we evaluate the SELL matrix format for various input (matrix) sizes. Figure 5.18

shows the time spent in matrix-vector multiplication (tMatV ec), which we read from the

YAML output file. The SpMVM time increases with the bigger input size, which is

expected. Looking at a single size, the performance in the Gem5 simulator depends on

the SVE size. We observe a 30% performance increase when doubling the SVE length

from 128 to 256 bits. Increasing it further to 512 bits improves performance by an

additional 20%. Both real-world systems perform better than their Gem5 counterparts.

On Graviton 2, the SpMVM time is roughly 40% lower than a 128-bit SVE model in

Gem5. The A64FX shows a 17% lower time than the 512-bit Gem5 model.
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Figure 5.18: MiniFE results (1 thread)

The CG method (and SpMVM) is a heavily memory-bound kernel. Therefore, to better

understand the performance, we first estimate the memory bandwidth during SpMVM.

The memory footprint of the matrix A is mA = Nnz × (8+4) Byte, where the first term

in the bracket corresponds to the values of non-zero entries and the second term their

column indices (value are stored as double and column indices as int). We neglect

the array of slice offsets. Similarly, we calculate the memory footprint for vector x as

mx = Nrow × 8. Afterward, we can calculate the attained bandwidth as

niters × (mA +mx)

tMatV ec
. (5.5)

Using this formula, the memory bandwidth of the SpMVM for input nx = 50 is 8.2, 11.8,

and 14.8 GByte/s for SVE of 128, 256, and 512 bits, respectively. This is slightly less than

what we observe using the STREAM benchmark. Similar numbers are also reported by

Gem5. Table 5.36 shows different statistics of data over the memory controller, reported

by Gem5. The total reported read bandwidth for 128-bit SVE is 8.5 GByte/s. For

256-bit and 512-bit SVE, the bandwidth rises to 12.1 GByte/s and 15.1 GByte/s, which

coincides with our calculation. (Slightly higher bandwidth over memory controller is due

to unused hardware prefetches.) The majority of data (95.5%) is read by the hardware

prefetcher.
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SVE length 128 256 512

mem ctrls.bytesRead::cpu.data 1,527,936 1,655,360 1,911,168

mem ctrls.bytesRead::cpu.prefetcher 42,084,160 42,092,992 41,794,752

mem ctrls.bytesWritten::total 4,222,592 4,222,848 4,222,656

mem ctrls.bwRead::cpu.data 296,699,253 458,052,663 661,174,408

mem ctrls.bwRead::cpu.prefetcher 8,172,030,015 11,647,500,893 14,459,022,137

mem ctrls.bwRead::total 8,468,741,696 12,105,588,975 15,120,218,687

mem ctrls.bwWrite::total 819,955,740 1,168,499,161 1,460,840,743

mem ctrls.bwTotal::total 9,288,697,436 13,274,088,137 16,581,059,430

Table 5.36: MiniFE SpMVM memory behavior

Figure 5.19: MiniFE effective bandwidth

Figure 5.19 shows the MiniFE effective bandwidth for the different grid sizes. (Dashed

lines represent the STREAM triad results.) We see that when the size of the grid is 10 or

20, the data fits in the cache which results in higher bandwidth. For larger workloads,

the attained bandwidth is 49, 70, and 88% of measured STREAM triad. Table 5.37

shows the main Gem5 counters during the SpMVM kernel. The majority of stalls in the

backend are caused by the memory reads. Additionally, we see a different behavior of

the ROB and LSQ for different SVE sizes. A big number of lsqFullEvents is the main

reason for not reaching a better memory bandwidth for a 512-bit case. These occur

due to individual memory reads of gather-load instructions (line 9 in Listing 4.11) that

require many entries in the LSQ. When reducing the SVE size to 256 bits, the bottleneck

moves to the ROB.
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SVE length 128 256 512

numCycles 12,874,451 9,034,769 7,226,414

committedInsts 18,591,352 9,353,515 4,679,536

committedOps 22,057,638 12,842,771 8,170,676

ipc 1.44 1.04 0.65

fuBusy 1,101,967 1,633,498 1,825,322

statFuBusy::MemRead 1,038,119 1,615,610 1,813,869

fuBusyRate 0.05 0.13 0.22

iew.iqFullEvents 1 0 0

iew.lsqFullEvents 0 0 1,007,675

rename.ROBFullEvents 840,676 407,980 112,163

rename.SQFullEvents 1,794 1,794 1,794

rename.fullRegistersEvents 367 631 368

Table 5.37: MiniFE SpMVM Gem5 counters

We try to understand LSQ/ROB behavior by applying the analysis described in Sec-

tion 3.5.2. Figure 5.20 shows the assembly code of the SpMVM kernel for SELL format

which we retrieved using the objdump command. The inner-most loop of the kernel is

composed of ten instructions (lines 8540 - 8549), three of which are memory loads. How-

ever, the load in line 8543 is a gather-load which is decoded in lSVE micro-instructions.

Therefore, the ratio of load operations µld to other operations is

µld
µ− µld

=
2 + lSVE

7
. (5.6)

This equals 0.57, 0.86, and 1.43 for 128, 256, and 512-bit SVE, respectively. In the last

case, the number becomes larger than the critical factor fLSQ = 1.29 (see Eq. 3.8), so

the bottleneck shifts from the ROB to the LSQ. Note that depending on how fast load-

requests are served, the ROB can still become full. (Gem5 also reports ROBFullEvents

for 512-bit SVE.)

Figure 5.20: SpMVM assembly kernel
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Figure 5.21 shows the effective memory bandwidth when running MiniFE across all cores.

In this case, MiniFE almost fully saturates the memory bandwidth for all three systems.

The result for the Gem5 model at nx = 50 is 21.4 GByte/s for all SVE sizes. For very

small input sizes, we observe a significant caching effect. Compared to our Gem5 model,

a higher bandwidth (lower SpMVM time) is observed for Graviton 2 (155.5 GByte/s)

and the A64FX (593 GByte/s). The STREAM bandwidth for triad kernel reaches 640

GByte/s on the A64FX.1 Here, we see a benefit of the A64FX’s HBM memory which is

even more apparent for a higher number of cores.

Figure 5.21: MiniFE effective bandwidth (full node)

Finally we compare performance for different sparse matrix formats. Here, we separate

SELL and two cases of CSR format. In CSR SpMVM (Listing 4.9 in Section 4.4.2), the

accumulation of products val[j] * x[col[j]] to y[i] can be done in two different

ways. The first is to use an in-order reduction operation in each SVE iteration. This

is the code that compilers generate when using -O3 optimization. We refer to it as

CSR-normal. The second is to use modulo unrolling with only one tree-order reduction

at the end of the inner loop. Such vectorization is generated under -ffast-math, and

we refer to it as CSR-fast. We give a detailed explanation in Appendix A.3. Table 5.38

shows the matrix-vector multiplication time for the case when the grid size nx = 50.

1Note that the A64FX processor can reach even higher bandwidth with special optimizations, for
example the dc zva instruction [50].
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1 core 4 cores

Gem5 512-bit A64FX Gem5 512-bit A64FX

CSR-normal 0.39 1.17 0.19 0.30

CSR-fast 0.36 0.79 0.19 0.20

SELL 0.29 0.24 0.20 0.06

Table 5.38: MiniFE SpMVM results

The results in the Gem5 simulator show that tree-like reduction with modulo unrolling

is approximately 8% faster. However, this would likely be higher for larger Nnzr (each

inner loop has at most 27 iterations). Additionally, the SELL format performs 34%

faster than CSR-fast. All matrix formats perform the same when using four cores due

to fully saturated memory bandwidth. The A64FX shows even stronger results in favor

of the SELL matrix format. In this case, the SpMVM time for the CSR-normal format

takes 1.17s, while the CSR-fast reduces the time to 0.79s. However, the SELL format

computes SpMVM in only 0.06s.





Chapter 6

Summary & conclusions

In this thesis, we have analyzed Arm’s novel SIMD architecture called Scalable Vector

Extension. We looked at selected HPC applications, ported them to SVE, and examined

how the performance changes with different SVE sizes. Furthermore, we have studied

how the SVE size impacts bottlenecks in different microarchitectural components.

Although SIMD parallelization is well exploited in HPC applications, a vector-length-

agnostic concept is not yet fully adopted. The most apparent aspect of SVE is the

possibility of running the same binary across systems with different SVE sizes. How-

ever, supercomputers rarely use software distributed in binary form due to their unique

designs and individually tuned compilations. Therefore, we think it is unlikely that the

HPC community would leverage the possibility of a shared VLA binary across different

systems. (This might be more applicable in the mobile market.) Furthermore, we ob-

served that developers often work around the VLA concept and use SVE as a traditional

fixed-size SIMD extension (for example, GROMACS). In our view, the more consider-

able benefit of a VLA ISA is that it forces developers not to make assumptions about the

SIMD length. This decreases dependence on specific hardware and makes algorithms

more portable. Another strong reason in VLA’s favor comes from the point of computer

architects, who can choose a suitable SIMD size within the scope of the same ISA.

After SVE was introduced in 2018, all major compilers quickly added support for SVE

assembly and auto-vectorization. This thesis analyzed GCC, Arm Compiler for Linux,

and Fujitsu compiler. When studying the compiler’s generated code, we observed no

cases where the VLA concept would hinder auto-vectorization. All three compilers can

exploit all features of SVE which we encountered in selected HPC applications (gather-

load, scatter-store, reduction, vector-compare). However, we also noticed one loop where

compilers failed to spot a particular SVE instruction and, therefore, a vectorization

opportunity. This should serve as an example that compilers may still miss complex SVE

143
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instructions. In the TSVC benchmark, compilers have successfully vectorized between

93 and 97 loops, with 115 loops being vectorized by at least one compiler. This is

comparable to the state-of-the-art x86 SIMD extensions. A slight drawback of SVE was

observed in loops with a decrementing loop counter. Here, compilers generated inefficient

code due to a missing instruction which was added in SVE2. On top of that, we have

found three cases where a minor modification of the ISA (adding a new instruction)

could open even more vectorization opportunities. We remind SVE designers about

the potential prefix-sum SIMD instruction, which appears naturally in many numerical

algorithms [51]. Since the fadda instruction (ordered sum-reduction) already exists, an

extension to a prefix-sum instruction does not seem far-fetched.

The first kernel which we analyzed was OpenBLAS’s implementation of DGEMM. (Main

results are shown in Table 6.1). Porting OpenBLAS functions to a new architecture is a

difficult process that requires a lot of debugging efforts. Here, the vector-length-agnostic

architecture is advantageous because the same assembly kernel works for all SVE sizes.

This does not mean that one kernel will achieve good performance across all SVE devices.

However, we see a significant benefit for developers because we can reuse complicated

parts of existing kernels and only modify specific aspects (for example, microkernel

dimension nr, prefetching, or unrolling) to tune it for another processor. Seeing that

the same kernel can perform well across various SVE sizes is very encouraging in this

sense. In DGEMM, software and hardware prefetching are crucial for good performance

(>90% of the peak). This is more evident for a bigger SVE size because of the higher

floating point performance and the same cache/memory bandwidth.1

Although DGEMM is a compute-bound kernel, the execution on a full node of a modern

server often uses a non-negligible portion of the available memory bandwidth. Let

us analyze this for the Neoverse N1 CPU. The measured STREAM bandwidth (174

GByte/s) results in roughly 2.7 GByte/s per-core memory bandwidth. On the other

hand, our Gem5 results show that the traffic over the memory controller for DGEMM

was between 0.4 and 1.5 GByte/s. We see that the 512-bit SVE Neoverse N1 architecture

would utilize around 55% of the available memory bandwidth when running DGEMM

on a full node of such architecture. Considering other factors like higher clock frequency

or more cores, it might be worthwhile to include the HBM technology for architectures

with bSVE ≥ 512. Another aspect of DGEMM is the high throughput of executed

instructions. In our simulations, we observed an ipc between 3.37 and 3.87. For such

cases, the core’s frontend must be able to feed the core with enough instructions not to

introduce stalls in the backend. This is even more important for future architectures

1Due to an increased data storage of a wider SVE register, the same number of SVE load instructions
loads more cache lines in the L1 cache. Therefore, the load-to-use latency of a core with wider SVE
vectors is bigger.
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with more than two SVE pipelines. For example, in the case of four SVE pipelines,

the SVE DGEMM kernel reaches six committed instructions per cycle at maximum

performance. Therefore, the computer architects should increase the decode and fetch

width to at least seven instructions per cycle in this specific case.

Porting

efforts

We wrote specialized SVE macrokernels for many BLAS3 routines

(GEMM, TRMM, and others). Vector-length-agnostic algorithm

naturally extends the algorithm for a fixed-width SIMD.

Performance &

SIMD scaling

Performance of DGEMM is proportional to the SIMD size and we

observed a very good scaling (η256 = 0.98 and η512 = 0.86). The

vector-length-agnostic kernel is able to reach good performance for

all tested SVE sizes (128, 256, 512 bits).

Prefetching The majority of the load requests hit the L1 cache. Data is

prefetched in software (with prefetch instructions) and by the hard-

ware prefetcher.

Out-of-order

buffers

When lSVE = 512, the number of FullRegistersEvents increased. On

average, such an event was resolved in approximately five to six cy-

cles.

Pipeline depth Latency of the fmla instruction impacts the correct microkernel size.

In the case of very deep pipelines (for example, on the A64FX) new

micro-kernels have to be written to reach a maximum throughput of

fmla operations. (For architectures with a similar latency, we may,

to some extent, reuse existing kernels.)

Number of

SIMD units

DGEMM has a high ratio of executed instructions per cycle. We

observed a slower performance for NSIMD = 4 and bSVE = 128. The

main bottleneck was insufficient fetch and decode width.

Table 6.1: Summary of DGEMM results

The next selected application was GROMACS. (See Table 6.2 for a summary of results.)

GROMACS fixes the SVE size at compile time and relies on fixed-size SVE intrinsic

types. This approach minimizes the porting effort since the application does not need

to be restructured to allow for sizeless types. Our results show that GROMACS is

compute-bound and benefits significantly from a bigger SIMD size. The main observed

bottleneck in the nonbonded benchmark was in preoccupied SVE units. (Instructions

could not be issued immediately when all operands are available.) Additionally, we

observed long chains of read-after-write dependencies in the assembly. Here, the latency

of SIMD instructions plays a significant role since faster writeback of results can free up

resources sooner. We confirmed this with results on the A64FX processor, which has



Chapter 6. Summary & conclusions 146

very deep execution pipelines. (Performance was three times slower than in our Gem5

model.) This should remind computer architects that latency and throughput can be

equally important when targeting different HPC applications. Ensuring low latency of

the most common floating point instructions (fmul, fadd, fmla) can significantly improve

performance in this particular case.

Porting

efforts

GROMACS relies on an internal SIMD library to map important

kernel operations to SIMD instructions. Due to sizeless SVE intrinsic

types, SVE size is fixed at compile-time and fixed-size SVE types are

used.

Performance &

SIMD scaling

Algorithm is compute-bound and we observed a good SIMD speed-up

(η256 = 1.70 and η512 = 2.72) for computation of nonbonded inter-

actions when increasing the SVE size. For a full protein simulation,

the speed-up was lower (η256 = 1.38 and η512 = 1.74).

Out-of-order

buffers

For all SVE sizes, we observed many ROBFullEvents and FullRegis-

tersEvents. This causes the rename stage to block until resources are

available (30-40% of cycles in renaming are stalled). The 4xM kernel

performs better than the 2xMM kernel when bSVE = 256.

Pipeline depth We observed worse performance for a model with longer pipelines

(higher execution latency of SIMD instructions). This is confirmed

when looking at the A64FX processor. Many parts of the nonbonded

kernel are latency limited and involve many chained operations with

read-after-write dependencies.

Number of

SIMD units

The performance dropped significantly for a configuration of four

128-bit SVE pipelines. Current nonbonded kernels are not optimized

for such a case (four SIMD units).

Table 6.2: Summary of GROMACS results

Busy backend resources broaden the out-of-order window (number of instructions in the

ROB) and negatively impact other pipeline stages. For example, we noticed an increased

number of events for fully occupied physical registers and ROB. On average, the penalty

for such events was between 2.7 and 3.4 cycles for different SVE sizes. This is less

compared to the DGEMM kernel, where the source of these events are load instructions.

(Load requests often take more cycles to complete.) Here, we suspect that the application

would benefit from a larger ROB size and/or more physical register. However, we did

not run such simulations and leave this for future work. Finally, we analyzed how the

performance changes with different configurations of NSVE and bSV E . We observed that

the configuration of four 128-bit SVE units is significantly slower than the 2x256 or 1x512
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case. The main reason for this result is that the current implementation of the Verlet

algorithm is not optimized for issuing so many instructions per cycle. Therefore, we

want to encourage developers to think about how GROMACS could utilize four SIMD

pipelines better. New kernels must likely be written to allow for a wider instruction-

level parallelism. Seeing that the number of fuBusy events is significantly lower for a

configuration of four SVE units, we believe that the proper implementation could make

a good use of such architecture.

Our third application, GPAW, depends on many external libraries, and the internal code

relies on the automatic vectorization of compilers. To simplify the analysis, we extracted

two GPAW internal functions for studying. The main results of the Bmgs fd function (a

stencil operator) are shown in Table 6.3. Simulations of the Bmgs fd kernel exposed the

drawbacks of SVE sequential instructions. We use this term to describe instructions that

are not pipelined or are decoded into multiple micro-instructions. One example of such

instruction is the fadda which computes the sum of all lanes in an SVE register. Such

instruction blocks the SVE unit for the duration of execution. (On A64FX, it is decoded

into lsve sequential micro-instructions, producing a similar effect.) We want to point out

that such instructions have a negative effect on performance, and the developers should

try to restructure the code to avoid them. If this is not possible, a faster faddv instruction

should be used, which has lower latency (but breaks the floating-point compliance). One

way to work around these instructions is to vectorize outer loops, which usually results

in gather-load and scatter-store memory operations.

Gather/scatter operations are frequently used to vectorize loops with sparse or irregular

data patterns, yet their effect is often poorly understood. Since such instructions are

decoded into lSVE micro-instructions, a separate memory flow is issued for each lane.1

This can exert high pressure on the load/store pipelines and the load/store queue. In-

deed, we observed such a case in the outer-loop vectorization of the Bmgs fd kernel,

where the performance was limited by the throughput of load/store pipelines. We want

to emphasize that in a vectorized loop with gather-load instructions, only a computa-

tional part of the loop is parallelized, whereas the memory part is still sequential. This

means that SVE pipelines are often underutilized since a majority of dispatched micro-

instructions are issued to load/store units. Such an effect is even more apparent when

the SVE size is big. Both developers and hardware architects should well understand

such problems. Developers should always strive to organize their data for sequential

access and minimize irregular access patterns. Here, tools like Spatter [52] can be used

to investigate the behavior of different gather/scatter patterns. On the other hand,

computer architects should include a sufficient number of load/store pipelines to handle

1There may be some flexibility on how these are implemented in the microarchitecture.
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many simultaneous memory requests. (For example, the Arm Neoverse V1 includes five

load/store pipelines, three more than the N1.)

Kernel

characteristics

The stencil operator exhibits a high data locality and most memory

requests hit the L1 cache. The measured arithmetic intensity ranged

between 2.4 and 2.8 Flop/Byte.

Outer-loop

vectorization

Vectorizing the outer loop improves performance from 15% to 36% for

different SVE sizes. The main benefit is the removal of the latency-

heavy non-pipelined fadda instruction (sum reduction).

Performance &

SIMD scaling

For both types of vectorizations, we observed higher performance for

a bigger SVE size. When vectorizing the inner loop, the speed-up

was η256 = 1.61 and η512 = 1.93, and for the outer loop η256 = 1.63

and η512 = 2.59.

Out-of-order

execution

When vectorizing the inner loop, the main bottleneck is in insuffi-

cient backend resources (SVE pipelines). This is mostly caused by

a blocked pipeline caused by the fadda instruction. When vectoriz-

ing the outer loop, the performance is limited by the throughout of

load-store pipelines. The main reason for this are the gather-load

instructions which are decoded into lSVE micro-operations.

Table 6.3: Summary of Laplace stencil (Bmgs fd) results

Porting

efforts

We implemented a VLA Sliced Ellpack format for storing sparse ma-

trices and the SpMVM kernel with SVE intrinsic functions. The

performance is higher than the default CSR format.

Performance &

SIMD scaling

Performance is limited by the memory bandwidth. For single-core

simulations, longer SVE vectors achieve higher memory bandwidth

which results in a better performance. In multi-core simulations,

longer vectors bring no benefit.

Out-of-order

execution

We observed ROBFullEvents for 128 and 256-bit SVE models. When

increasing the SVE size to 512 bits, the bottleneck shifts to lsq-

FullEvents. This can be predicted by the buffer sizes and the as-

sembly analysis.

Table 6.4: Summary of MiniFE results

The last application, MiniFE, was selected to investigate memory-bound kernels. (A

summary of the results is presented in Table 6.4.) We mainly focused on the sparse

matrix-vector multiplication, where we implemented the SELL matrix format. In the

results, we observed a significant SIMD speed-up for single-core simulations, the same as
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in the STREAM benchmark. Architecturally speaking, the SIMD vector length and the

memory bandwidth are separate entities. However, longer SIMD vectors will increase

the performance when a single core cannot fully utilize the available bandwidth. This

happens because the same number of in-flight memory requests can transfer more data.

Lastly, we discuss the opportunities for future work. First, we want to point out that this

thesis focused only on the first generation of SVE. SVE was superseded by SVE2, which

introduced new instructions. Therefore, our work on the TSVC benchmark could be

extended to SVE2 and potential improvements to the first version. Also, comparing our

findings thoroughly to other SIMD extensions (AVX-512) would be an interesting next

step. When analyzing HPC applications, we mainly relied on the Gem5 simulator due to

its flexibility and cycle-level details. In our simulations, we only varied the SVE size and

the number of SVE units, which is far less than what Gem5 is capable of. Since the SVE

size impacts the execution in other microarchitectural components, we could continue

the analysis by varying the size of other buffers (ROB, LSQ, physical registers). This

would deepen our analysis of potential benefits in the out-of-order execution. Although

we tried to configure the model with realistic parameters, the Gem5 model itself has

limitations. This raises the question of how well our results translate to real hardware.

With more SVE hardware coming to the market (AWS Graviton 3, NVIDIA Grace,

mobile implementations based on Cortex X2/X3), it would be worthwhile to confirm

the findings of this thesis by evaluating a larger variety of processors. Finally, the study

conducted in this thesis mainly focused on the application’s performance and how the

microarchitecture responds to different SVE sizes. However, configuring the SVE size

in real hardware has many consequences we did not address. For example, increasing

SVE size leads to more transistors, a larger die area, increased power consumption, and

more heat dissipation. In other words, bigger SVE vectors do not come without a cost.

Therefore, we should consider all these effects for a more comprehensive analysis of the

SVE size. (This would require other specialized simulators.)

Overall, we showed that Gem5 is a powerful simulator that can generate a wide range

of results. Our simulations show that a co-design analysis can provide valuable feed-

back for computer architects and software developers. We hope this thesis will reach

both and that some of our observations will support important decisions in future HPC

architectures.





Appendix A

SVE examples

A.1 DAXPY

Listing A.1 shows an SVE implementation of the DAXPY kernel. The DAXPY kernel

computes y = ax + y, where x and y are vectors of size n, and a is a scalar. Before

entering the main loop, we initialize a loop counter (stored in register x4) to 0 in line 3.

Next, we construct a predicate register p0 with the whilelt instruction. The whilelt

instruction (see Figure 2.3) calculates the number of iterations until the end of the loop

and activates the lanes of the predicate register accordingly. (The x3 register holds the

size of the array.) In addition, we load and replicate the value a in the register z2.

In the main loop, starting in line 6, we load the values x[i] and y[i] into registers z0 and

z1. Then, we use the fmla instruction to compute ax+ y, overwriting the result in the

z1 register. In line 10, we use st1d to store values back to array y. Line 11 contains the

instruction incd, which increments the loop counter in the register x4 by the number of

doublewords in the SVE vector. Afterward, we update the predicate register with the

new loop counter value and branch back if the first lane of the predicate register is active

(line 13). Note that the predicate-driven loop removes the need for loop tails. The last

iteration is the same as the previous ones but with a different predicate register.
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1 // x0 = x, x1 = y, x2 = a, x3 = n

2 .daxpy:

3 mov x4, #0 // initialize loop counter in x4 with 0

4 whilelt p0.d, x4, x3 // create a predicate register p0

5 ld1rd z2.d, p0/z, [x2] // replicate value a in all lanes of z3

6 .loop:

7 ld1d z0.d, p0/z, [x0, x4, lsl #3] // load values of x[i]

8 ld1d z1.d, p0/z, [x1, x4, lsl #3] // load values of y[i]

9 fmla z1.d, p0/m, z0.d, z2.d // compute y = a x + y

10 st1d z1.d, p0, [x1 , x4, lsl #3] // store results in y[i]

11 incd x4 // increment loop counter

12 whilelt p0.d, x4, x3 // update predicate register

13 b.first .loop // loop back

14 ret

Listing A.1: SVE DAXPY kernel

A.2 Array permutation

Gather-load and scatter-store instructions are used to load elements from non-contiguous

locations in memory. These instructions enable the vectorization of loops with complex

memory patterns. The vector that holds the indices of the memory locations is often

called an index vector. In Listing A.2 left, we see a simple loop that permutes the ele-

ments of the array b and stores them in the array a. On the right, we see a corresponding

SVE code of this loop. In each loop iteration, we first load elements perm[i] (indices)

in the register z0 (line 5). Afterward, the z0 register is used as an input to a second

ld1 instruction which gathers elements b[perm[i]], overriding register z0. Gather-load

and scatter-store use the same operation code, but take an extra SVE input register for

addressing mode.

1 for (int i = 0; i < n; i++) {

2 a[i] = b[perm[i]];

3 }

1 mov x4, 0

2 cntd x5

3 whilelo p0.d, wzr , w3

4 .L3:

5 ld1d z0.d, p0/z, [x2, x4, lsl 3]

6 ld1d z0.d, p0/z, [x1, z0.d, lsl 3]

7 st1d z0.d, p0, [x0, x4 , lsl 3]

8 add x4, x4, x5

9 whilelo p0.d, w4, w3

10 b.any .L3

Listing A.2: Array permutation in C (left) and SVE assembler (right)
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A.3 Sum reduction

A reduction instruction operates between lanes in the same SVE register. As discussed

in Section 2.1.2.3, we differentiate between in-order and tree-like reductions. We take

a simple example of computing the sum of elements in the array to demonstrate this.

Listing A.3 shows the code in C.

1 // assume sum and a[i] are double

2 for (int i = 0; i < n; i++) {

3 sum += a[i];

4 }

Listing A.3: Array sum

The floating-point addition is not commutative. Normally, compilers adhere to the

floating-point standard, which preserves the order of additions. We can bypass this

with the use of -ffast-math flag, which breaks the rule in favor of a better performance.

As a result, GCC compilations resuts in two different codes depending on whether the

-ffast-math flag is used. On the left side of Listing A.4, we see a standard approach

that preserves the order of summation. In each loop iteration, the fadda instruction is

used to compute a sum of lsve elements in the SVE register in order (line 4). Each time,

we add the result to the overall sum stored in the register d0. On the right side, we

show the generated code when we compile with the -ffast-math flag. This results in the

lsve-way modulo variable expansion. In each iteration, we add the intermediate results

to the SVE register z0 using a normal fadd instruction (element-wise addition). After

the loop, we use an additional tree-like reduction operation faddv to compute the final

sum (line 8). On SVE hardware, the second approach is usually faster due to the shorter

latency of the fadd compared to the fadda instruction.

1 .L3:

2 ld1d z1.d, p0/z, [x0 , x1, lsl 3]

3 add x1, x1, x2

4 fadda d0 , p0 , d0, z1.d

5 whilelo p0.d, w1, w3

6 b.any .L3

1 .L3:

2 ld1d z1.d, p0/z, [x0 , x1, lsl 3]

3 add x1, x1, x2

4 fadd z0.d, p0/m, z0.d, z1.d

5 whilelo p0.d, w1, w3

6 b.any .L3

7 ptrue p0.b, all

8 faddv d0 , p0 , z0.d

Listing A.4: Array sum in SVE
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A.4 Complex arithmetics

Let us consider the case of an element-wise multiplication of two vectors (a and b) with

complex numbers. Additionally, let us assume that the complex numbers are stored as an

Array of Structures (real components in the even elements and imaginary components in

the odd elements). The code is shown in Listing A.5. Here, we rely on complex numbers

from the C standard library.

1 void complex_multiply(double complex *a, double complex *b)

2 for (int i = 0; i < n; i++) {

3 a = a * b;

4 }

5 }

Listing A.5: Complex multiplication in C

There are two approaches to vectorizing the above loop with SVE. The first case is

shown in Listing A.6 (intrinsic code). (For readability, we only show the computation

of a single loop iteration.) In this case, we use an ld2 instruction which separates

real and imaginary components into two vectors in an SVE tuple. Afterward, we use

a combination of normal multiplications and additions to construct the result. The

resulting SVE vector is written back to memory with a scatter-store st2 instruction.

1 svfloat64x2_t a_v = svld2(pg, &a[i]);

2 svfloat64x2_t b_v = svld2(pg, &b[i]);

3

4 svfloat64_t res_r , res_i;

5 res_r = svmul_x(pg, a_v.v0, b_v.v0); // res.real = a.real * b.real

6 res_i = svmul_x(pg, a_v.v1, b_v.v0); // res.imag = a.imag * b.real

7 res_r = svmls_x(pg, res_real_vec , a_v.v0, b_v.v1); // res.real -= a.imag * b.imag

8 res_i = svmla_x(pg, res_imag_vec , a_v.v0, b_v.v1); // res.imag += a.real * b.imag

9

10 svst2(pg, &a[i], {res_real_vec , res_imag_vec });

Listing A.6: SVE complex multiplication (1)

Listing A.7 shows an alternative approach using SVE instructions for complex arith-

metics. The fcmla instruction assumes that the SVE register stores the real components

in even lanes and imaginary components in odd lanes. The third input operand is first

rotated by 0, 90, 180, or 270 degrees in polar representation.1 Then, the third operand

is multiplied with duplicated real (imaginary) components of the second operand when

rotation is 0 or 180 (90 or 270) degrees. The result is destructively added to the first

operand without intermediate rounding. Using the fcmla instructions, we do not need

1Hardware designers can implement rotation by a multiple of 90 degrees only with swapping and
negating real and imaginary components.
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to separate real and imaginary parts in two different SVE registers. Therefore, we can

use normal ld1 and st1 instructions to load and store values (see lines 1, 2, and 8).

1 svfloat64_t a_v = svld1(pg, &a[i]);

2 svfloat64_t b_v = svld1(pg, &b[i]);

3

4 svfloat64_t r = svdup (0.0f); // initialize res

5 r = svcmla_x(pg, r, a_v , b_v , 0); // res += a.real * b.real + I * a.real * b.imag

6 r = svcmla_x(pg, r, a_v , b_v , 90); // res += -a.imag * b.imag + I * a.imag * b.real

7

8 svst1(pg, &a[i], res_vec );

Listing A.7: SVE complex multiplication (2)

A.5 strlen function

Listing A.8 shows an SVE implementation of the strlen function, which returns the

length of a string.1 The main idea is that each iteration first uses the FFR load in-

struction to suppress possible segmentation faults (line 6). In line 7, we read the FFR

register and create a predicate register p1 that only holds valid memory requests before

checking for null characters in line 8. Finally, we create a predicate register p2 with the

brkbs instruction which activates all lanes until the null character and count number of

active lanes with the incp instruction (line 10).

1 strlen:

2 mov x1, x0

3 ptrue p0.b

4 mainloop:

5 setffr // initialize the ffr register

6 ldff1b z0.b, p0/z, [x1] // speculative load

7 rdffr p1.b, p0/z // read the ffr register

8 cmpeq p2.b, p1/z, z0.b, #0 // check for null characters

9 brkbs p2.b, p1/z, p2.b // activate lanes until first active

10 incp x1, p2.b // increment counter by the number of active lanes

11 b.last mainloop // branch back if all lanes are valid

12 sub x0, x1, x0 // calculate final length

13 ret

Listing A.8: SVE strlen function

1This implementation can be further optimized by separating the last iteration where the null char-
acter is found. This removes the counting of individual elements in all but last iteration. (See https:

//github.com/ARM-software/optimized-routines/blob/master/string/aarch64/strlen-sve.S)

https://github.com/ARM-software/optimized-routines/blob/master/string/aarch64/strlen-sve.S
https://github.com/ARM-software/optimized-routines/blob/master/string/aarch64/strlen-sve.S
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Gem5 configuration

B.1 Execution units

Listing B.1 shows the configuration of the execution units for the (Neoverse N1) Gem5

model.

1

2 # This class refers to FP/ASIMD 0/1

3 class O3_ARM_Neoverse_N1_FP(FUDesc ):

4 # copied from Neoverse V1 optimization guide ,

5 # latency taken for specific instruction is written in brackets

6 opList = [

7 OpDesc(opClass=’SimdAdd ’, opLat =2), # ASIMD arithmetic basis (add & sub)

8 OpDesc(opClass=’SimdAddAcc ’, opLat=4), # ASIMD absolute diff accum (vaba)

9 OpDesc(opClass=’SimdAlu ’, opLat =2), # ASIMD logical (and)

10 OpDesc(opClass=’SimdCmp ’, opLat =2), # ASIMD compare (cmeq)

11 OpDesc(opClass=’SimdCvt ’, opLat =3), # ASIMD FP convert to 64b (scvtf)

12 OpDesc(opClass=’SimdMisc ’, opLat=2), # ASIMD move , immed (vmov)

13 OpDesc(opClass=’SimdMult ’,opLat=4), # ASIMD integer multiply (mul)

14 OpDesc(opClass=’SimdMultAcc ’,opLat=4), # ASIMD multiply accumulate , (mla)

15 OpDesc(opClass=’SimdShift ’,opLat =2), # ASIMD shift by immed , (shl)

16 OpDesc(opClass=’SimdShiftAcc ’, opLat =4), # ASIMD shift accumulate (vsra)

17 OpDesc(opClass=’SimdSqrt ’, opLat=9), # ASIMD reciprocal estimate (vrsqrte)

18 OpDesc(opClass=’SimdFloatAdd ’,opLat=2), # ASIMD FP arithmetic (vadd)

19 OpDesc(opClass=’SimdFloatAlu ’,opLat=2), # ASIMD FP absolute value (vabs)

20 OpDesc(opClass=’SimdFloatCmp ’, opLat =2), # ASIMD FP comapre (fcmgt)

21 OpDesc(opClass=’SimdFloatCvt ’, opLat =3), # Aarch64 FP convert (fvctas)

22 OpDesc(opClass=’SimdFloatDiv ’, opLat =11, pipelined=False), # ASIMD (fdiv)

23 OpDesc(opClass=’SimdFloatMisc ’, opLat=2), # ASIMD (vneg)

24 OpDesc(opClass=’SimdFloatMult ’, opLat=4), # ASIMD FP (vmul)

25 OpDesc(opClass=’SimdFloatMultAcc ’,opLat=4), # ASIMD FP (vmla)

26 OpDesc(opClass=’SimdFloatSqrt ’, opLat=12, pipelined=False), # ASIMD (vsqrt)

27 OpDesc(opClass=’SimdReduceAdd ’, opLat =10), # SVE reduction , arithmetic (saddv)

28 OpDesc(opClass=’SimdReduceAlu ’, opLat =12), # SVE reduction , logical (andv)

29 OpDesc(opClass=’SimdReduceCmp ’, opLat=9), # SVE reduction , arithmetic (smaxv)

30 OpDesc(opClass=’SimdFloatReduceAdd ’, opLat=8, pipelined=False), # SVE (fadda)
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31 OpDesc(opClass=’SimdFloatReduceCmp ’, opLat=9), # SVE (fmaxv)

32 OpDesc(opClass=’FloatAdd ’, opLat=2), # Aarch64 FP arithmetic (fadd)

33 OpDesc(opClass=’FloatCmp ’, opLat=2), # Aarch64 FP compare (fccmpe)

34 OpDesc(opClass=’FloatCvt ’, opLat=3), # Aarch64 Fp convert (vcvt)

35 OpDesc(opClass=’FloatDiv ’, opLat=11, pipelined=False), # Aarch64 (vdiv)

36 OpDesc(opClass=’FloatSqrt ’, opLat=12, pipelined=False), # Aarch64 (fsqrt)

37 OpDesc(opClass=’FloatMultAcc ’, opLat =4), # Aarch64 Fp (vfma)

38 OpDesc(opClass=’FloatMisc ’, opLat=3), # Aarch64 miscelleaneaus

39 OpDesc(opClass=’FloatMult ’, opLat =3) ] # Aarch64 Fp multiply (fmul)

40 count = 2

41

42 # This class refers to pipelines Branch0 , Integer single Cycles 0,

43 # Integer single Cycle 1

44 class O3_ARM_Neoverse_N1_Simple_Int(FUDesc ):

45 opList = [ OpDesc(opClass=’IntAlu ’, opLat =1) ]

46 count = 3 # Aarch64 ALU (Unfortunately branches are put together with IntALU

47

48 # This class refers to pipelines integer single/multicycle 1

49 class O3_ARM_Neoverse_N1_Complex_Int(FUDesc ):

50 opList = [ OpDesc(opClass=’IntAlu ’, opLat =1), # Aarch64 Int ALU

51 OpDesc(opClass=’IntMult ’, opLat =2), # Aarch64 Int mult

52 OpDesc(opClass=’IntDiv ’, opLat=9, pipelined=False), # Aarch64 divide

53 OpDesc(opClass=’IprAccess ’, opLat =1) ] # Aarch64 Prefetch

54 count = 1 # 1 units

55

56 # This class refers to Load/Store0 /1

57 class O3_ARM_Neoverse_N1_LoadStore(FUDesc ):

58 opList = [ OpDesc(opClass=’MemRead ’),

59 OpDesc(opClass=’FloatMemRead ’),

60 OpDesc(opClass=’MemWrite ’),

61 OpDesc(opClass=’FloatMemWrite ’) ]

62 count = 2 #

63

64 # Extra class for predicate operations

65 class O3_ARM_Neoverse_N1_PredAlu(FUDesc ):

66 opList = [ OpDesc(opClass=’SimdPredAlu ’) ]

67 count = 1

68

69

70 class O3_ARM_Neoverse_N1_FUP(FUPool ):

71 FUList = [O3_ARM_Neoverse_N1_Simple_Int (),

72 O3_ARM_Neoverse_N1_Complex_Int (),

73 O3_ARM_Neoverse_N1_LoadStore (),

74 O3_ARM_Neoverse_N1_PredAlu (),

75 O3_ARM_Neoverse_N1_FP ()]

Listing B.1: Configuration of execution units and instruction latencies
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B.2 Caches

Listing B.1 shows the configuration of the cache levels for the (Neoverse N1) Gem5

model.

1 class O3_ARM_Neoverse_N1_ICache(Cache):

2 tag_latency = 1

3 data_latency = 1

4 response_latency = 1

5 mshrs = 8

6 tgts_per_mshr = 16

7 size = ’64kB’ # (1)

8 assoc = 4 # (1)

9 writeback_clean = False

10 prefetcher = StridePrefetcher(degree =1)

11

12 class O3_ARM_Neoverse_N1_DCache(Cache):

13 tag_latency = 3

14 data_latency = 3

15 response_latency = 1

16 tgts_per_mshr = 16

17 writeback_clean = False

18 size = ’64kB’ # (1)

19 mshrs = 20 # (1)

20 assoc = 4 # (1)

21 #prefetcher = StridePrefetcher(degree =16, latency = 1)

22

23 class O3_ARM_Neoverse_N1_L2(Cache ):

24 tag_latency = 5

25 data_latency = 5

26 response_latency = 2

27 mshrs = 46 # (1)

28 tgts_per_mshr = 16

29 clusivity = ’mostly_incl ’ # (1)

30 assoc = 8 # (1)

31 size = ’1MB’ # Graviton2

32 writeback_clean= True

33

34 class O3_ARM_Neoverse_N1_L3(L3Cache ):

35 tag_latency = 48

36 data_latency = 48

37 response_latency = 16

38 assoc = 16 # (1)

39 size = ’8MB’

40 clusivity = ’mostly_excl ’

41 mshrs = 128

Listing B.2: Cache configuration
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