
Efficient parallel implementations of
eigenproblems reduction.

Dissertation

Bergische Universität Wuppertal
Fakultät für Mathematik und Naturwissenschaften

eingereicht von Valeriy Manin, M. Sc.
zur Erlangung des Grades eines Doktors der Naturwissenschaften

Betreut durch Prof. Dr. Bruno Lang

Wuppertal, 24.02.2022

1

Contents

1 Introduction 3

2 Reduction of a generalized eigenproblem to a standard one 3
2.1 Cannon’s algorithm for full matrices 5

2.1.1 Cannon’s algorithm for square process grids 5
2.1.2 Cannon’s algorithm for rectangular process grids 7

2.2 A Cannon-type algorithm for multiplication 1 11
2.2.1 Initial skewing for multiplication 1 12
2.2.2 Local update for multiplication 1 13
2.2.3 Results for Multiplication 1 15
2.2.4 Setting up the process grid 18

2.3 Multiplication 2 . 20
2.3.1 Initial skewing for multiplication 2 20
2.3.2 Local update for multiplication 2 21
2.3.3 Results for Multiplication 2 24

2.4 Reduction in one function and back transformation 27
2.4.1 Combining both multiplications in one function 27
2.4.2 Additional memory requirements for buffering 28
2.4.3 Back transformation of eigenvectors 29
2.4.4 Results for a reduction to a standard form and for back

transformation. 30
2.4.5 Quality of the computed eigensystems 38

3 Reducing the bandwidth 39
3.1 Serial bandwidth reduction . 40
3.2 Exploiting parallelism between blocks 43
3.3 Efficient block transformations 49
3.4 Exploiting parallelism within each block 53

3.4.1 Choosing a block column to update 54
3.4.2 Communications between and inside the groups 55
3.4.3 Efficient block column update 56

3.5 Back transformation of eigenvectors 60
3.5.1 Efficient application of transformations 66

4 Conclusions 73

2

1 Introduction

This doctoral thesis is dedicated to extension of the ELPA library: a library
designed for solving generalized eigenvalue problems (GEPs) H z = λ S z and
standard eigenvalue problems (SEPs) A x = λ x efficiently on parallel computers.
The presented thesis is based on the two papers: [7] [8] and follows the text of
these publications in many aspects.

The GEPs originate often from electronic structure computations [17, 30,
23] with a significant portion of the overall calculations contained in so-called
self consistent field (SCF) cycles, which involve solving a sequence of generalized
hermitian positive definite (HPD) eigenproblems.

A usual way to solve a generalized hermitian eigenproblem includes the fol-
lowing steps:

• reduction to a standard form

• solving the obtained SEP for eigenvalues and eigenvectors

• back transformation of the eigenvectors in order to get eigenvectors of the
initial GEP.

To solve a SEP with a direct method, firstly a reduction of the problem
to a tridiagonal form should be done. Sometimes, the initial GEP or SEP is
not full, but has a banded form with a semi-bandwidth of order of hundreds
or thousands. In this case a reduction to a narrower band with the subsequent
tridiagonalization may be beneficial from the performance point of view.

This work is devoted to the two following aspects of the solution process:

• a reduction from the generalized form to a standard one and the following
back transformation of the computed eigenvectors.

• A reduction of the banded SEP to a task with narrower band and restore
of the eigenvectors of the initial problem.

An attempt to develop as efficient and scalable routines as possible was
made for the two above-mentioned tasks. The main emphasis of the presented
work was done on the implementation of methods and tricks to achieve the best
performance on the modern supercomputer systems. In the first chapter the
results for the generalized to standard eigenproblem reduction are presented
and in the second chapter the bandwidth reduction is discussed.

2 Reduction of a generalized eigenproblem to a
standard one

The object of investigation in this work is represented by a generalized eigen-
problem of a kind A(i)X(i) = BX(i)Λ(i), with n× n matrices A(i) and B being
hermitian (the real symmetric case is similar). B in addition is positive definite.
Λ(i) is a k × k diagonal matrix with the k ≤ n eigenvalues of interest on the
diagonal, and X(i) is an n× k matrix of associated B-orthogonal eigenvectors.
Although the presented in this work approach is efficient for a large variety of
different GEPs, a one important specificity of the eigenproblems arising in the

3

electronic structure computations is taken into account. Namely, the “overlap
matrix” B remains unchanged during all the iterations inside of a one SCF cy-
cle, whereas the “Hamiltonian” A(i) depends on the solution (X(i−1),Λ(i−1)) of
the previous problem. Thus, hundreds of the solutions with the same matrix B
but with different matrices A are required on each step of a simulation.

A reduction of a generalized eigenproblem to a standard one assumes calcu-
lation of representations of Ã and X̃ such that: AX = BXΛ⇒ ÃX̃ = X̃Λ.

The formulas for Ã and X̃ can be obtained through the following transfor-
mations:

• start with AX = BXΛ; do Cholesky decomposition of B = UHU (U is
upper triangular, and UH denotes the conjugate transpose of U) ⇒

• AX = UHUXΛ: multiply the both sides by U−H ⇒

• U−HAX = UXΛ: input and identity matrix in the form of U−1U between
A and X on the left side ⇒

• U−HAU−1UX = UXΛ: now denote Ã = U−HAU−1 and X̃ = UX and
obtain the desired SEP.

Thus, the GEP to SEP reduction and the subsequent solving of the SEP
and back transformation of the eigenvectors can be done as follows:

1. B ⇒ UHU

2. Optional: U ⇒ U−1 (explicit triangular matrix inversion)

3. A⇒ Ã = U−HAU−1

4. Solve the standard hermitian eigenproblem ÃX̃ = X̃Λ for X̃ and Λ

5. X = U−1X̃ (back transformation of the eigenvectors).

Step 3 can be implemented without explicitly building the upper triangular
matrix U−1 (see [26] for an overview of possible realizations), and this is done
in the function TwoSidedTrsm in the ELEMENTAL library [27] and PDSYNGST

in ScaLAPACK [6]. Then a triangular solve must be done for the back trans-
formation (step 5). This approach is particularly attractive if only a single
eigenproblem with matrices A and B must be solved.

However, for a sequence of eigenproblems with the same matrix B, steps 1
and 2 must be performed only once. Then, with the explicitly built U−1 steps 3
and 5 can be represented as multiplications by a triangular matrix. An efficient
implementation of such routines may be beneficial in comparison to the versions
without explicit calculation of U−1. This approach is followed in the ELPA
library [25] and in this work.

This section presents implementations of scalable routines to realize steps 3
and 5 based on Cannon’s algorithm for matrix multiplication. Cannon’s idea
was optimized for triangular matrices and an extension of Cannon’s algorithm
to the case of rectangular process grids was developed.

It will be shown, that such an approach may even be beneficial for solving a
single eigenproblem, because the gain obtained from the optimized steps 3 and
5 may outweigh the time spent for the explicit computation of U−1.

4

Note that the matrix U−1 in steps 3 and 5 is again upper triangular. To
simplify the notation it is assumed that U has been overwritten with U−1 and
simply a multiplication with U is considered, i.e., the reduction and back trans-
formation take the form Ã = UHAU and X = UX̃, respectively.

The amount of operations in step 3 can be reduced by using the symmetry
properties of the initial matrix A and of the output Ã. Since A is hermitian, so
is Ã = UHAU , and therefore it is sufficient to calculate only one triangle of Ã.
Step 3 may be implemented as a sequence of four substeps as follows:

(i) Compute the upper triangle Mu of M = AU (“multiplication 1” in follow-
ing); this takes approximately 2

3n
3 arithmetic operations.

(ii) Transpose Mu to obtain the lower triangle Ml of MH = UHAH = UHA.

(iii) Compute the lower triangle of Ã = MlU = UHAU (“multiplication 2” in
following; ≈ 1

3n
3 operations).

(iv) If the whole matrix Ã is needed for further computations, then reflect its
lower triangle across the diagonal.

Transposition [11] is a cheap operation in comparison to the multiplications,
and therefore an emphasis on efficient parallel routines for the triangular matrix
multiplications is done: multiplication 1 for computing the upper triangular part
of a product “hermitian full times upper triangular”, and multiplication 2 to
obtain the lower triangle of a product “lower triangular times upper triangular.”

For the back transformation to restore eigenvectors of the initial problem
(step 5) the function to compute a full result of the “upper triangular times
rectangular full” multiplication was implemented.

2.1 Cannon’s algorithm for full matrices

Firstly the general idea of the Cannon’s algorithm for matrix multiplications
should be presented. It is easier to explain the idea of the algorithm for square
matrices on square process grids. And then an extension of this approach to
the case of rectangular process grids will be demonstrated.

2.1.1 Cannon’s algorithm for square process grids

Cannon’s method [9] for a parallel matrix–matrix product A ·B on a square grid
of processes is summarized in Algorithm 1. As in most textbook descriptions
(e.g., [20]) it is at first assumed, that the matrices are partitioned into size-
(nb × nb) blocks on a pc × pc process grid, where nb = n/pc. Then each process
Pi,j , where 0 ≤ i, j < pc, initially holds exactly one block of the matrices,
namely Aloc ≡ Ai,j ≡ A(inb+1 : (i+1)nb, jnb+1 : (j+1)nb) and Bloc ≡ Bi,j ≡
B(inb + 1 : (i+ 1)nb, jnb + 1 : (j + 1)nb).

The first two lines of the algorithm represent an initial “skewing” of the
matrices, i.e., each process Pi,j in the ith process row circularly sends its Aloc

to the process i positions to its left, Pi,(j−i+pc) mod pc , and receives a new Aloc

from the process i positions to its right, Pi,(j+i) mod pc . Similarly, the jth block
column of B is shifted by j positions upward in the process grid, such that Pi,j
now holds Ai,(j+i) mod pc and B(j+i) mod pc,j ; see Figure 1. Further, on the k-th

5

Algorithm 1: Cannon’s algorithm for a square pc × pc process grid

1 Circular shift for matrix A (by i positions to the left in process row i);
2 Circular shift for matrix B (by j positions upward in process column j);
3 Cloc := 0;
4 for k = 0 to pc − 1 do
5 Local multiplication: Cloc := Cloc +Aloc ·Bloc;
6 Circular shift for A: Send current Aloc to left neighbour and receive

new Aloc from right neighbour;
7 Circular shift for B: Send current Bloc to upper neighbour and

receive new Bloc from lower neighbour;

8 end

iteration of the loop, Pi,j will hold Ai,(j+i+k) mod pc and B(j+i+k) mod pc,j , and
therefore at the end of the algorithm this process will have computed the (i, j)
block of the product A ·B

Cloc =

pc−1∑
k=0

Ai,j+i+kBj+i+k,j =

pc−1∑
m=0

Ai,mBm,j = (A ·B)i,j . (1)

A B

1

2

3

4,4
4,0

5,5
5,0

4,1

5,0
5,1

4,0
4,2

5,1
5,2

4,1
4,3

5,2
5,3

0,0
0,0

1,1
1,0

2,2
2,0

3,3
3,0

0,1
0,1

1,2
1,1

2,3
2,1

3,4
3,1

0,2
0,2

1,2

2,4
2,2

3,5
3,2

0,3
0,3

2,5
2,3

3,0
3,3

1,4
1,3

0,4
0,4

1,5
1,4

2,0
2,4

3,1
3,4

0,5
0,5

1,0
1,5

2,1
2,5

3,2
3,5

4,2
4,4

5,3
5,4

4,3
4,5

5,4
5,5

4

5

1,3

4,5

3
2

1

4
5

4,0
4,0

5,0
5,0

4,1

0,1
5,1

0,2
4,2

1,2
5,2

1,3
4,3

2,3
5,3

0,0
0,0

1,0
1,0

2,0
2,0

3,0
3,0

1,1
0,1

2,1
1,1

3,1
2,1

4,1
3,1

2,2
0,2

1,2

4,2
2,2

5,2
3,2

3,3
0,3

2,3

0,3
3,3

4,3
1,3

4,4
0,4

5,4
1,4

0,4
2,4

1,4
3,4

5,5
0,5

0,5
1,5

1,5
2,5

2,5
3,5

2,4
4,4

3,4
5,4

3,5
4,5

4,5
5,5

3,2

5,1

5,3

Figure 1: Distribution of the blocks of the matrices A and B after the initial
skewing for the case that every process holds exactly one block of each matrix.
For each block, the block number is shown with upright font, followed by the
process coordinates in slanted font. The numbers next to the arrows indicate
by how many positions the blocks in the respective block row (block column)
have been shifted to the left (upward).

In fact Algorithm 1 is applicable in a more general setting when every process
has more than one local block. Let A and B be distributed over a pc×pc process
grid in a 2D block cyclic way into size-(nb×nb) blocks with arbitrary block size
nb ≥ 1, i.e., Pi,j holds exactly those blocks A`,m and B`,m such that i ≡ `
mod pc and j ≡ m mod pc (“2D block cyclic” is the standard distribution for
matrices in ScaLAPACK and ELPA libraries). Then, for the example with pc = 6
shown in Figure 2, process P2,4 gets A from P2,(4+2)mod6 ≡ P2,0’ and B from
P(2+4)mod6,4 ≡ P0,4 during the skewing. As a result of the initial skewing P2,4

will hold Aloc =

[
A2,0 A2,6

A8,0 A8,6

]
and Bloc =

[
B0,4 B0,10

B6,4 B6,10

]
. Note that the local

6

block rows/columns are not shifted individually (as might be assumed from
Figure 2), but Aloc and Bloc are shifted as a whole. This keeps the local blocks
sorted by increasing row/column number. It is not hard to verify that during

the course of Algorithm 1, P2,4 computes its portion Cloc =

[
C2,4 C2,10

C8,4 C8,10

]
of

the product, and similarly for the other processes.

BA

3
2

1

4
5

3
2

1

4
5

4,0
4,0

5,0
5,0

4,1

6,1
5,1

6,2
4,2

7,2
5,2

7,3
4,3

8,3
5,3

0,0
0,0

1,0
1,0

2,0
2,0

3,0
3,0

1,1
0,1

2,1
1,1

3,1
2,1

4,1
3,1

2,2
0,2

1,2

4,2
2,2

5,2
3,2

3,3
0,3

2,3

6,3
3,3

4,3
1,3

4,4
0,4

5,4
1,4

6,4
2,4

7,4
3,4

5,5
0,5

6,5
1,5

7,5
2,5

8,5
3,5

0,6
0,0

1,6
1,0

2,6
2,0

3,6

1,7
0,1

3,7
2,1

4,7
3,1

2,7
1,1

2,8
0,2

3,8
1,2

4,8
2,2

5,8
3,2

3,9
0,3

4,9
1,3

5,9
2,3

3,3

4,a
0,4

5,a
1,4

2,4

7,a
3,4

5,b
0,5

7,b
2,5

8,b
3,5

6,b
1,5

6,8
4,2

7,8
5,2

7,9
4,3

8,9
5,3

8,a
4,4

9,a
5,4

9,b
4,5

a,b

8,4
4,4

9,4
5,4

9,5
4,5

a,5
5,5

4,6
4,0

5,6
5,0

5,7
4,1

6,7
5,1

3,2

6,a

6,9
3,0

5,1

5,5

a,0
4,0

b,0
5,0

4,1

0,1
5,1

0,2
4,2

1,2
5,2

1,3
4,3

2,3
5,3

6,0
0,0

7,0
1,0

8,0
2,0

9,0
3,0

7,1
0,1

8,1
1,1

9,1
2,1

a,1
3,1

8,2
0,2

1,2

a,2
2,2

b,2
3,2

9,3
0,3

b,3
2,3

0,3
3,3

a,3
1,3

a,4
0,4

b,4
1,4

0,4
2,4

1,4
3,4

b,5
0,5

0,5
1,5

1,5
2,5

2,5
3,5

6,6
0,0

7,6
1,0

8,6
2,0

9,6

7,7
0,1

9,7
2,1

a,7
3,1

8,7
1,1

8,8
0,2

9,8
1,2

a,8
2,2

b,8
3,2

9,9
0,3

a,9
1,3

b,9
2,3

3,3

a,a
0,4

b,a
1,4

2,4

1,a
3,4

b,b
0,5

1,b
2,5

2,b
3,5

0,b
1,5

0,8
4,2

1,8
5,2

1,9
4,3

2,9
5,3

2,a
4,4

3,a
5,4

3,b
4,5

4,b

2,4
4,4

3,4
5,4

3,5
4,5

4,5
5,5

a,6
4,0

b,6
5,0

b,7
4,1

0,7
5,1

9,2

0,a

0,9
3,0

b,1

5,5

1

2

3

4,4
4,0

5,5
5,0

4,1

5,6
5,1

4,6
4,2

5,7
5,2

4,7
4,3

5,8
5,3

0,0
0,0

1,1
1,0

2,2
2,0

3,3
3,0

0,1
0,1

1,2
1,1

2,3
2,1

3,4
3,1

0,2
0,2

1,2

2,4
2,2

3,5
3,2

0,3
0,3

2,5
2,3

3,6
3,3

1,4
1,3

0,4
0,4

1,5
1,4

2,6
2,4

3,7
3,4

0,5
0,5

1,6
1,5

2,7
2,5

3,8
3,5

0,6
0,0

1,7
1,0

2,8
2,0

3,9

0,7
0,1

2,9
2,1

3,a
3,1

1,8
1,1

0,8
0,2

1,9
1,2

2,a
2,2

3,b
3,2

0,9
0,3

1,a
1,3

2,b
2,3

3,3

0,a
0,4

1,b
1,4

2,4

3,1
3,4

0,b
0,5

2,1
2,5

3,2
3,5

1,0
1,5

4,0
4,2

5,1
5,2

4,1
4,3

5,2
5,3

4,2
4,4

5,3
5,4

4,3
4,5

5,4

4,8
4,4

5,9
5,4

4,9
4,5

5,a
5,5

4,a
4,0

5,b
5,0

4,b
4,1

5,0
5,1

4

5

1,3

2,0

3,0
3,0

4,5

5,5

1

2

3

a,4
4,0

b,5
5,0

4,1

b,6
5,1

a,6
4,2

b,7
5,2

a,7
4,3

b,8
5,3

6,0
0,0

7,1
1,0

8,2
2,0

9,3
3,0

6,1
0,1

7,2
1,1

8,3
2,1

9,4
3,1

6,2
0,2

1,2

8,4
2,2

9,5
3,2

6,3
0,3

8,5
2,3

9,6
3,3

7,4
1,3

6,4
0,4

7,5
1,4

8,6
2,4

9,7
3,4

6,5
0,5

7,6
1,5

8,7
2,5

9,8
3,5

6,6
0,0

7,7
1,0

8,8
2,0

9,9

6,7
0,1

8,9
2,1

9,a
3,1

7,8
1,1

6,8
0,2

7,9
1,2

8,a
2,2

9,b
3,2

6,9
0,3

7,a
1,3

8,b
2,3

3,3

6,a
0,4

7,b
1,4

2,4

9,1
3,4

6,b
0,5

8,1
2,5

9,2
3,5

7,0
1,5

a,0
4,2

b,1
5,2

a,1
4,3

b,2
5,3

a,2
4,4

b,3
5,4

a,3
4,5

b,4

a,8
4,4

b,9
5,4

a,9
4,5

b,a
5,5

a,a
4,0

b,b
5,0

a,b
4,1

b,0
5,1

4

5

7,3

8,0

9,0
3,0

a,5

5,5

5,3

Figure 2: Initial skewing of matrices A and B for a 2D block cyclic distribution.
The matrices A and B have 12 block rows and block columns, the process grid
is of size 6-by-6 (shown by thick black lines). For each block, the block number
is shown with upright font, followed by the process coordinates in slanted font.
The block indices are hexadecimal, i.e., a ≡ 10 and b ≡ 11. The numbers next
to the arrows indicate by how many positions the blocks in the respective block
row (block column) have been shifted to the left (upward). The blocks ending
up in P2,4 are shaded.

2.1.2 Cannon’s algorithm for rectangular process grids

In [24], Cannon’s algorithm has been generalized to rectangular pr × pc process
grids. Essentially, the process grid is emulating a virtual p × p grid, where p
is the least common multiple of pr and pc. Thus, p steps are needed in the
algorithm, each involving two shifts.

Consequently, the Cannon’s algorithm will not be efficient on the grids such
as “5 × 7”. However, usually there is no need to use such grids in practice.
In the following, the rectangular grids with the number of process columns
being a multiple of the number of rows are considered, with an aspect ratio
r = pc/pr ∈ N.

In this situation the algorithm from [24] would take pc steps. By contrast,
the method described below requires only pr steps and therefore reduces the
number of communication operations by a factor of r (with the same overall
communication volume), at the price of increased memory usage for keeping r
copies of A.

Since the rows of a matrix are distributed over pr process rows and columns
of the matrix are distributed over pc = r · pr process columns, every process

7

locally stores r times more rows than columns. In order to make a use of all
the locally available rows, the corresponding columns from r processes must be
combined for every process. That implies the additional memory usage for r
copies of A.

The Aloc of r processes will have to be combined during the skewing as it
is shown on Figure 3 for a case of pr = 3, pc = 6, i.e., r = 2, and matrices
with 12 block columns and rows. A 2D block cyclic distribution of the matrices
is assumed. Since a block column of Bloc contains r times more blocks than a
block row of Aloc, the Pi,j will in addition to the A blocks from Pi,j+i get the
A blocks of Pi,j+i+pr , Pi,j+i+2pr , . . . , Pi,j+i+(r−1)pr , where all column indices
must be taken modulo pc. This in turn implies that the r processes Pi,j , Pi,j+pr ,
. . . , Pi,j+(r−1)pr (with “stride” pr) will hold the same blocks of A, and these
correspond to the locally available block columns of B.

BA

1

2

1

2

1

2

1

2

2
1

2
1

0,0 0,1 0,2 0,3 0,4 0,5

0,0 0,1 0,2 0,3 0,4 0,5 0,0 0,1 0,2 0,3 0,4 0,5

1,0 1,1 1,2 1,3 1,4 1,5 1,0 1,1 1,2 1,3 1,4 1,5

1,0 1,1 1,2 1,3 1,4 1,5 1,0 1,1 1,2 1,3 1,4 1,5

2,0 2,1 2,2 2,3 2,4 2,5 2,0 2,1 2,2 2,3 2,4 2,5

2,0 2,1 2,2 2,3 2,4 2,5 2,0 2,1 2,2 2,3 2,4 2,5

0,0 0,1 0,2 0,3 0,4 0,5

2
1

2
1

4,0

5,0 6,1

6,2

7,2 5,3

0,0
0,0

1,0
1,0

2,0
2,0

3,0

1,1
0,1

2,1
1,1

3,1
2,1

4,1

2,2
0,2

1,2

4,2
2,2

5,2

0,3
0,3

2,3

3,3

1,3
1,3

0,4

1,4

2,4

0,5

1,5

2,5

0,6
0,0

1,6
1,0

2,6
2,0

3,6

1,7
0,1

3,7
2,1

4,7

2,7
1,1

2,8
0,2

3,8
1,2

4,8
2,2

5,8

0,3

1,3

2,3

0,4

1,4

2,4

0,5

2,5

1,5

6,8

7,8

4,6

5,6

5,7

6,7

3,2

5,1

a,0

b,0 0,1

0,2

1,2

a,3

b,3

6,0
0,0

7,0
1,0

8,0
2,0

9,0

7,1
0,1

8,1
1,1

9,1
2,1

a,1

8,2
0,2

1,2

a,2
2,2

b,2

6,3
0,3

8,3
2,3

9,3

7,3
1,3

0,4

1,4

2,4

0,5

1,5

2,5

6,6
0,0

7,6
1,0

8,6
2,0

9,6

7,7
0,1

9,7
2,1

a,7

8,7
1,1

8,8
0,2

9,8
1,2

a,8
2,2

b,8

0,3

1,3

2,3

0,4

1,4

2,4

0,5

2,5

1,5

0,8

1,8

a,6

b,6

b,7

0,7

9,2

b,1

4,1
1,0

5,2
2,0

1,1

5,3
2,1

4,3
1,2

5,4
2,2

4,4
1,3

5,5
2,3

0,0
0,0

1,1
1,0

2,2
2,0

3,0
0,0

0,1
0,1

1,2
1,1

2,1

3,1
0,1

0,2
0,2

1,2

2,4
2,2

3,2
0,2

0,3
0,3

2,5
2,3

3,3
0,3

1,4
1,3

0,4
0,4

1,5
1,4

2,6
2,4

3,4
0,4

0,5
0,5

1,6
1,5

2,7
2,5

3,5
0,5

0,6
0,0

1,7
1,0

2,8
2,0

3,6

0,7
0,1

2,9
2,1

3,7
0,1

1,8
1,1

0,8
0,2

1,9
1,2

2,a
2,2

3,8
0,2

0,9
0,3

1,a
1,3

2,b
2,3

0,3

0,a
0,4

1,b
1,4

2,4

3,a
0,4

0,b
0,5

2,1
2,5

3,b
0,5

1,0
1,5

4,9
1,2

5,a
2,2

4,a
1,3

5,b
2,3

4,b
1,4

5,0
2,4

4,0
1,5

5,1

4,5
1,4

5,6
2,4

4,6
1,5

5,7
2,5

4,7
1,0

5,8
2,0

4,8
1,1

5,9
2,1

1,3

2,0

3,9
0,0

4,2

2,5

a,1
1,0

b,2
2,0

1,1

b,3
2,1

a,3
1,2

b,4
2,2

a,4
1,3

b,5
2,3

6,0
0,0

7,1
1,0

8,2
2,0

9,0
0,0

6,1
0,1

7,2
1,1

8,3
2,1

9,1
0,1

6,2
0,2

1,2

8,4
2,2

9,2
0,2

6,3
0,3

8,5
2,3

9,3
0,3

7,4
1,3

6,4
0,4

7,5
1,4

8,6
2,4

9,4
0,4

6,5
0,5

7,6
1,5

8,7
2,5

9,5
0,5

6,6
0,0

7,7
1,0

8,8
2,0

9,6

6,7
0,1

8,9
2,1

9,7
0,1

7,8
1,1

6,8
0,2

7,9
1,2

8,a
2,2

9,8
0,2

6,9
0,3

7,a
1,3

8,b
2,3

0,3

6,a
0,4

7,b
1,4

2,4

9,a
0,4

6,b
0,5

8,1
2,5

9,b
0,5

7,0
1,5

a,9
1,2

b,a
2,2

a,a
1,3

b,b
2,3

a,b
1,4

b,0
2,4

a,0
1,5

a,5
1,4

b,6
2,4

a,6
1,5

b,7
2,5

a,7
1,0

b,8
2,0

a,8
1,1

b,9
2,1

7,3

8,0

9,9
0,0

a,2

2,5

2,3

4,4

5,4

6,4

7,4

8,4

9,4

a,4

b,4

0,4

1,4

2,4

3,4

7,5

9,5

1,5

5,5

6,5

8,5

a,5

b,5

0,5

2,5

3,5

4,5

4,3

5,b

7,b

8,b

6,b

9,b

a,b

b,b

1,b

0,b

4,a

5,a

7,a

8,a

9,a

6,a

a,a

b,a

0,a

3,9

4,9

5,9

7,9

8,9

6,9

9,9

a,9

b,9

0,9

1,9

2,9

1,a

2,a

3,a

2,b

3,b

4,b

b,1

2,3

blocks to exchange and combine

Figure 3: 2D block cyclic distribution of the matrices A and B on a rectangular
process grid after the skewing. A and B have 12 block rows and block columns
each, and the process grid is of size 3 × 6 (shown by thick black lines). Block
and process numbers, as well as communication distance (next to the arrows),
are denoted as in Figure 2. The blocks ending up in P2,4 are shaded.

Since the Aloc and Bloc are exchanged as a whole (all the local blocks to-
gether), the ascending order of the block rows in each Bloc is preserved, and
therefore the block columns of the combined Aloc must also be in ascending
order, thus making it possible to implement the local multiplication in a one
function call. This is achieved by interleaving the block columns of the Aloc

from the processes Pi,i+j , Pi,i+j+pr , . . . , Pi,i+j+(r−1)pr . Starting with the block
column that has the lowest global number, the first block of the first process is
copied at first, then the first block of the second process and so on till the first
block of the r− th process. Then the same for the second blocks of each process
is done and so on. For the 3× 6 grid shown in Figure 3, the skewing and com-

8

bination will lead to process P2,4 holding Aloc =

A2,0 A2,3 A2,6 A2,9

A5,0 A5,3 A5,6 A5,9

A8,0 A8,3 A8,6 A8,9

A11,0 A11,3 A11,6 A11,9

and Bloc =

B0,4 B0,10

B3,4 B3,10

B6,4 B6,10

B9,4 B9,10

.

P2,1 will hold the same Aloc, but a different Bloc.
For the matrix B the initial skewing proceeds in a standard way as for the

square process grids. If the rectangular grids with more process rows than
columns were used, then blocks of Bloc from different processes would be assem-
bled, whereas for the Aloc the skewing would be done in a standard way.

The resulting overall procedure is given in Algorithm 2. After skewing and
combining A as just described (lines 1 and 2) and a “standard” skewing of B
(line 3) the computations can be done as in Algorithm 1, in pr steps. However,
a more efficient scheme for the data transfers to left neighbours for A and to the
top neighbours for B matrices can be implemented. Namely, the non-blocking
send and receive operations should be used in order to overlap communications
and computations. This requires two buffers for each local matrix: one pair
of buffers is used for computation and sending (Aout

loc and Bout
loc), and in the

meantime the other couple of buffers can store the incoming data for the next
step (Ain

loc and Bin
loc). On the i−th step of the algorithm a process firstly initiates

sends of the Aout
loc and Bout

loc buffers to the neighbours and starts receives of data
for the next (i+ 1)− th iteration in the Ain

loc and Bin
loc buffers. Then the process

does the local calculations with the current blocks Aout
loc and Bout

loc . Hopefully, a
significant part of the previously initiated receives of the buffers for the (i+1)−th
step will be completed before the local calculations are finished. Then a swap
of pointers of the out and in buffers can be done, and the already received data
can be utilized for the local computations on the (i+ 1)− th step in parallel to
receiving data for the next (i+ 2)− th iteration in the receive buffers.

Using of such a scheme leads to optimized performance and scalability, how-
ever the benefits of such approach may differ and depend on the specific super-
computer configuration and interconnection scheme. This will be discussed in
more details in Section 2.2.

Note that the shifts in the last step can be dropped if distribution after
the initial skewing doesn’t need to be restored. Then the whole last iteration
i = pr − 1 is replaced with Cloc := Cloc +Aout

loc ·Bout
loc .

In the presented approach, each process receives every prth block column of
A, and therefore the amount of memory to store the local part of the matrix A
depends only on the number of process rows. It doesn’t make sense to increase
the number of process columns in order to reduce memory consumption to store
the matrix A: with the pc increased every process will receive the same overall
amount of blocks of Aloc, just from the increased number of sources. Thus, the
amount of process rows must be increased making r = pc/pr smaller if local
memory size is an issue.

As it was already mentioned, a similar scheme can be derived for pro-
cess grids where the number of rows is a multiple of the number of columns,
pr/pc ∈ N. Then B is replicated instead of A, and the Bloc are combined (and
interleaved) among all “stride-pc” processes within a column of the grid. In Sec-

9

Algorithm 2: Multiplication “full × full” on a pr × pc process grid
with non-blocking communication; (myRow,myCol) are the coordinates
of the current process

/* Initial skewing; the communication for the shift of the

Aloc and their combination (lines 1 and 2) can be done

together */

1 Shift Aloc to the left by myRow positions;
2 Combine my Aloc with those of PmyRow,myCol+pr mod pc , . . . ,

PmyRow,myCol+(r−1)pr mod pc and arrange the block columns by
increasing global number; this gives Aout

loc ; /* see main text for

more details */

3 Shift Bloc up by myCol mod pr positions; this gives Bout
loc ;

4 Cloc := 0;
5 for i = 0 to pr − 1 do

/* Initiate shift for A */

6 MPI Isend(Aout
loc) to my left neighbour, PmyRow,myCol−1 mod pc ;

7 MPI Irecv(Ain
loc) from my right neighbour, PmyRow,myCol+1 mod pc ;

/* Initiate shift for B */

8 MPI Isend(Bout
loc) to my upper neighbour, PmyRow−1 mod pr,myCol;

9 MPI Irecv(Bin
loc) from my lower neighbour, PmyRow+1 mod pr,myCol;

10 Cloc := Cloc +Aout
loc ·Bout

loc ;
11 MPI Wait() for A shift;
12 MPI Wait() for B shift;

13 Swap pointers Ain
loc ↔ Aout

loc and Bin
loc ↔ Bout

loc ;

14 end

10

tion 2.2.4 the respective advantages of both variants related to the generalized
to a standard eigenproblem reduction scheme will be presented.

Parallel matrix multiplication has been considered for decades, and several
approaches have been proposed for 2D block cyclically distributed full matrices.
They mainly differ in the way they bring together the corresponding blocks
needed for the local computations and in the order of the products calculations
in each process. Several approaches were realized in the ScaLAPACK library.

PUMMA (Parallel Universal Matrix Multiplication Algorithm) [12] extends
an earlier algorithm [18] to this distribution. In each step, it shifts the matrix A
along rows of the process grid, and in each column of the grid one process broad-
casts its local portion of B, and in our situation (pr × pc grid, pc = r · pr) the
algorithm would take pc steps. It would also be possible to shift B and broad-
cast A, leading to pr steps. SUMMA (Scalable Universal Matrix Multiplication
Algorithm) [19] uses an outer product approach, broadcasting block columns
of A and block rows of B (along rows and columns, resp., of the process grid).
These 2×dn/nbe broadcasts can be implemented in a pipelined fashion such that
they do not lead to a factor log p in the overall communication time. DIMMA
(Distribution-Independent Matrix Multiplication Algorithm) [10] essentially re-
arranges these broadcasts and aggregates the computation to optimize the local
GEMM performance and the overlapping of computation with communication.

Holding several copies of the matrices A and B may reduce the communica-
tion costs, as done in the so-called 3D and 2.5D algorithms [14, 22, 32]. The
former arranges the p processes in a three-dimensional p1/3 × p1/3 × p1/3 grid,
generates p1/3 copies of A and B by broadcasting along two axes from two-
dimensional “slices,” and then reduces the C blocks along the third dimension.
The latter allows to adjust the memory requirements to c ∈ {1, . . . , p1/3} copies
of A and B; they essentially run c “truncated” instances of Cannon’s algorithm
(not the full number of steps) on these copies and reduce the partial results at
the end.

An approach, which is presented in this work, does not involve collective
communications, thus making the synchronization points less strict. It also
allows overlapping of communications and computations in a natural way. All
together, it should lead to a better scalability and efficiency on large process
grids.

2.2 A Cannon-type algorithm for multiplication 1

This routine performs step (i) from Section 2, i.e. it computes the upper trian-
gular part Mu of M := AU , where U is and upper triangular matrix representing
the inverse of the Cholesky factor of the matrix B from the initial generalized
eigenproblem AX = BXΛ, A is a full symmetric matrix, and only the upper
triangular part of their product is to be computed.

The upper triangular structure of U and sufficiency to compute only the
upper triangular part of the result make it possible to save on the amount of
calculations and on the communication volume.

Essentially, the Algorithm 2 for Cannon’s matrix multiplication is applied,
with Bloc replaced by a buffer Ubuf (see discussion below) and suitable modifi-
cations to lines 3 and 10, realizing the initial skewing of the right operand (U)
and the local calculations respectively.

11

2.2.1 Initial skewing for multiplication 1

Since A is full, the initial skewing and combination for this matrix is done
exactly as described in Section 2.1.2 and Algorithm 2 with no changes. For U ,
the benefits of its triangular structure are used to reduce the communication
volume. Every process has to find its local nonzero blocks from the upper
triangular part of the matrix and pack them contiguously into a buffer Ubuf ,
which is then used for the skewing and the ensuing shifts. Indeed, two buffers
for each of the matrices are used, as it was described in Section 2.1.2. Because
of the upper triangular structure of U , different processes may have different
amount of the nonzero blocks. Since every process circularly receives all the
blocks of U from the processes of its column, each of the processes must allocate
Ubuf large enough to store the largest amount of the nonzero blocks among all
the processes of its column.

For the upper triangular matrices U and Mu the number of nonzero blocks
for the local block column jloc for any process Prow,col in an arbitrary pr × pc
grid (not necessarily pc a multiple of pr) can be found as follows:

numBlocks = βu(jloc, row, col) :=

⌈
col + jloc · pc − row + 1

pr

⌉
, (2)

where d·e denotes rounding upward to the nearest integer. For the illustration
of this rule the matrix Mu in Figure 4 can be observed, as Mu is also upper
triangular and non-skewed.

Here and in the following, a process is considered as belonging to the upper
part of the process grid, if its column index is not smaller than the row one (i.e.,
myCol ≥ myRow), and as belonging to the lower part of the grid otherwise. It
can be seen, that the processes of the upper part of the grid copy their local
blocks from the columns starting from the first one (jloc = 0), whereas the
processes from the lower part skip the first local block column, because there
are no nonzero blocks there in the upper part of a matrix (βu(0, ·, ·) = 0), and
start with jloc = 1 having r nonzero blocks with r = pc/pr.

The packing is summarized in Algorithm 3.

A U

* =

Mu

1

2

1

2

1

2

1

2

2
1

2
1

0,0 0,1 0,2 0,3 0,4 0,5

0,0 0,1 0,2 0,3 0,4 0,5 0,0 0,1 0,2 0,3 0,4 0,5

1,0 1,1 1,2 1,3 1,4 1,5 1,0 1,1 1,2 1,3 1,4 1,5

1,0 1,1 1,2 1,3 1,4 1,5 1,0 1,1 1,2 1,3 1,4 1,5

2,0 2,1 2,2 2,3 2,4 2,5 2,0 2,1 2,2 2,3 2,4 2,5

2,0 2,1 2,2 2,3 2,4 2,5 2,0 2,1 2,2 2,3 2,4 2,5

0,0 0,1 0,2 0,3 0,4 0,5

2
1

2
1

0,0 0,1 0,2 0,3 0,4 0,5

0,0 0,1 0,2 0,3 0,4 0,5 0,0 0,1 0,2 0,3 0,4 0,5

1,0 1,1 1,2 1,3 1,4 1,5 1,0 1,1 1,2 1,3 1,4 1,5

1,0 1,1 1,2 1,3 1,4 1,5 1,0 1,1 1,2 1,3 1,4 1,5

2,0 2,1 2,2 2,3 2,4 2,5 2,0 2,1 2,2 2,3 2,4 2,5

2,0 2,1 2,2 2,3 2,4 2,5 2,0 2,1 2,2 2,3 2,4 2,5

0,0 0,1 0,2 0,3 0,4 0,5

4,1
1,0

5,2
2,0

1,1

5,3
2,1

4,3
1,2

5,4
2,2

4,4
1,3

5,5
2,3

0,0
0,0

1,1
1,0

2,2
2,0

3,0
0,0

0,1
0,1

1,2
1,1

2,1

3,1
0,1

0,2
0,2

1,2

2,4
2,2

3,2
0,2

0,3
0,3

2,5
2,3

3,3
0,3

1,4
1,3

0,4
0,4

1,5
1,4

2,6
2,4

3,4
0,4

0,5
0,5

1,6
1,5

2,7
2,5

3,5
0,5

0,6
0,0

1,7
1,0

2,8
2,0

3,6

0,7
0,1

2,9
2,1

3,7
0,1

1,8
1,1

0,8
0,2

1,9
1,2

2,a
2,2

3,8
0,2

0,9
0,3

1,a
1,3

2,b
2,3

0,3

0,a
0,4

1,b
1,4

2,4

3,a
0,4

0,b
0,5

2,1
2,5

3,b
0,5

1,0
1,5

4,9
1,2

5,a
2,2

4,a
1,3

5,b
2,3

4,b
1,4

5,0
2,4

4,0
1,5

5,1

4,5
1,4

5,6
2,4

4,6
1,5

5,7
2,5

4,7
1,0

5,8
2,0

4,8
1,1

5,9
2,1

1,3

2,0

3,9
0,0

4,2

2,5

a,1
1,0

b,2
2,0

1,1

b,3
2,1

a,3
1,2

b,4
2,2

a,4
1,3

b,5
2,3

6,0
0,0

7,1
1,0

8,2
2,0

9,0
0,0

6,1
0,1

7,2
1,1

8,3
2,1

9,1
0,1

6,2
0,2

1,2

8,4
2,2

9,2
0,2

6,3
0,3

8,5
2,3

9,3
0,3

7,4
1,3

6,4
0,4

7,5
1,4

8,6
2,4

9,4
0,4

6,5
0,5

7,6
1,5

8,7
2,5

9,5
0,5

6,6
0,0

7,7
1,0

8,8
2,0

9,6

6,7
0,1

8,9
2,1

9,7
0,1

7,8
1,1

6,8
0,2

7,9
1,2

8,a
2,2

9,8
0,2

6,9
0,3

7,a
1,3

8,b
2,3

0,3

6,a
0,4

7,b
1,4

2,4

9,a
0,4

6,b
0,5

8,1
2,5

9,b
0,5

7,0
1,5

a,9
1,2

b,a
2,2

a,a
1,3

b,b
2,3

a,b
1,4

b,0
2,4

a,0
1,5

a,5
1,4

b,6
2,4

a,6
1,5

b,7
2,5

a,7
1,0

b,8
2,0

a,8
1,1

b,9
2,1

7,3

8,0

9,9
0,0

a,2

2,5
b,1

2,3

blocks to exchange and combine

−

− −

−

− −

0,0
0,0

−
1,0

−
2,0

−

1,1
0,1

−
1,1

−
2,1

−

2,2
0,2

1,2

−
2,2

−

0,3
0,3

2,3

3,3

1,3
1,3

0,4

1,4

2,4

0,5

1,5

2,5

0,6
0,0

1,6
1,0

2,6
2,0

3,6

1,7
0,1

3,7
2,1

4,7

2,7
1,1

2,8
0,2

3,8
1,2

4,8
2,2

5,8

0,3

1,3

2,3

0,4

1,4

2,4

0,5

2,5

1,5

6,8

7,8

4,6

5,6

5,7

6,7

−

−

− 0,1

0,2

1,2

−

−

−
0,0

−
1,0

−
2,0

−

−
0,1

−
1,1

−
2,1

−

−
0,2

1,2

−
2,2

−

−
0,3

−
2,3

−

−
1,3

0,4

1,4

2,4

0,5

1,5

2,5

6,6
0,0

−
1,0

−
2,0

−

7,7
0,1

−
2,1

−

−
1,1

8,8
0,2

−
1,2

−
2,2

−

0,3

1,3

2,3

0,4

1,4

2,4

0,5

2,5

1,5

0,8

1,8

−

−

−

0,7

−

−

2,3

4,4

−

−

−

−

−

−

−

0,4

1,4

2,4

3,4

−

−

1,5

5,5

−

−

−

−

0,5

2,5

3,5

4,5

−

5,b

7,b

8,b

6,b

9,b

a,b

b,b

1,b

0,b

4,a

5,a

7,a

8,a

9,a

6,a

a,a

−

0,a

3,9

4,9

5,9

7,9

8,9

6,9

9,9

−

−

0,9

1,9

2,9

1,a

2,a

3,a

2,b

3,b

4,b

−

−

−

− −

0,0
0,0

−
1,0

−
2,0

−

0,1
0,1

1,1
1,1

−
2,1

−

0,2
0,2

1,2

2,2
2,2

−

0,3
0,3

2,3

3,3

1,3
1,3

0,4

1,4

2,4

0,5

1,5

2,5

0,6
0,0

1,6
1,0

2,6
2,0

0,7
0,1

2,7
2,1

3,7

1,7
1,1

0,8
0,2

1,8
1,2

2,8
2,2

3,8

0,3

1,3

2,3

0,4

1,4

2,4

0,5

2,5

1,5

4,8

5,8

4,6

5,6

4,7

5,7

1,2

−

−

− −

−

−

−

−

−
0,0

−
1,0

−
2,0

−

−
0,1

−
1,1

−
2,1

−

−
0,2

1,2

−
2,2

−

−
0,3

−
2,3

−

−
1,3

0,4

1,4

2,4

0,5

1,5

2,5

6,6
0,0

−
1,0

−
2,0

−

6,7
0,1

−
2,1

−

7,7
1,1

6,8
0,2

7,8
1,2

8,8
2,2

−

0,3

1,3

2,3

0,4

1,4

2,4

0,5

2,5

1,5

−

−

−

−

−

−

−

−

3,4

4,4

−

−

−

−

−

−

−

0,4

1,4

2,4

5,5

−

−

3,5

4,5

−

−

−

−

0,5

1,5

2,5

−

3,b

5,b

6,b

4,b

7,b

8,b

9,b

b,b

a,b

3,a

4,a

6,a

7,a

8,a

5,a

9,a

a,a

−

3,9

4,9

5,9

7,9

8,9

6,9

9,9

−

−

0,9

1,9

2,9

0,a

1,a

2,a

0,b

1,b

2,b

−

−

2,3

3,6

Figure 4: Initial skewing of the matrices A and U and distribution of the result-
ing matrix Mu (upper triangle of M) on a 3 × 6 process grid (shown by thick
black lines). Block and process numbers, as well as communication distance
(next to the arrows), are denoted as in Figure 2. The blocks ending up in P2,4

are shaded. “−” marks a zero block, which is not touched.

12

Algorithm 3: Initial skewing of U for multiplication 1;
(myRow,myCol) are the coordinates of the current process. This
algorithm replaces line 3 in Algorithm 2.

/* Loop to form Ubuf block column by block column */

1 myBlockColsInU =
⌈
dn/nbe−myCol

pc

⌉
; /* number of block columns in

my Uloc */

2 Ubuf = ∅;
3 for jloc = 0 to myBlockColsInU− 1 do
4 numBlocks = βu(jloc,myRow,myCol) according to (2);
5 if (numBlocks > 0) then
6 append block column j of Uloc to the buffer Ubuf ;

/* numBlocks · n2b elements */

7 end

8 end
9 Shift Ubuf up by (myCol mod pr) positions; this gives Uout

buf ;

The skewing also bears potential for asynchronous communication. One
might just initiate the shift for Aloc and then overlap the actual communica-
tion with packing of local parts of U into Ubuf . However, the benefits of such
implementation are not significant. Communication time is an important issue
only for large process grids, but the initial skewing is almost negligible on such
grids, as compared to as many as pr shifts between the updates, with same
communication volume each.

2.2.2 Local update for multiplication 1

Benefits of the triangular structure of U and Mu in order to reduce amount of
arithmetic operations can not be used, if the local updates are done in a single
matrix product as in line 10 of Algorithm 2.

That is why it is needed to proceed by block columns, updating only the
upper triangle of Mu and using the corresponding block rows of A.

The processes from the upper part of the grid update Mu starting from the
first local block column, whereas the processes from the lower part compute Mu

starting from the second local block column, since there are no nonzero blocks of
Mu in their local data Mloc. In a similar way, the processes from the upper part
of the grid initially (before skewing) have blocks of U needed for the calculation
of the first local block columns of Mu, whereas the processes of the lower part
of the grid have no useful blocks of U needed to make an update of the first
local block columns Mu (it can be seen on the Figure 4 again).

That is why a process needs to determine the process row index of the
initial source of Uloc for each iteration of the algorithm (for each local update)
and compare it with its row index, taking into consideration the four following
cases:

• if both me and the source are from the upper part of the grid, then I update
Mloc starting from its first block column (since I am from the upper part
of the grid and the received Uloc also contains the needed blocks of U for
the first block column of Mu update, because the source is also from the
upper part of the grid); use all the block columns of the received Uloc.

13

• if both me and the source are from the lower part of the grid, then update
Mloc starting from its second block column (since I am from the lower part
of the grid); use all the block columns of the received Uloc (there are no
useless blocks there, because the source has skipped the first local block
column while copying Uloc to a buffer).

• if I am from the upper part of the grid but the source is from the lower
part, then update Mloc starting from its second block column (although I
am from the upper part of the grid, but the source has no relevant blocks
in Uloc to update the first local block column of Mu); use all the block
columns of the received Uloc.

• if I am from the lower part of the grid but the source is from the upper
part, then update Mloc starting from its second local block column (since
I am from the lower part of the grid); skip the first block column of the
received Uloc (the source is from the upper part, but I do not need to
update the first local block column of Mu). However, I can not throw the
first block column away from Uloc because it may be needed for the later
iterations, when this part of U reaches a process from the upper part of
the grid after some number of the shifts.

To illustrate this, the matrices from Figure 4 and two processes, P0,1 (from
the upper part of the grid) and P2,0 (from the lower part) are considered in
order to explain the four possible situations.

Since P0,1 belongs to the “upper part” of the grid (myRow ≤ myCol), accord-
ing to (2) the first column in Mloc is nonempty in this process; see Figure 5.a).
After the skewing, that is, in iteration i = 0 of Algorithm 2, P0,1 holds the Aout

loc

(after combination; cf. Section 2.1.2) and Ubuf that originally came from P0,1

(itself) and P1,1, respectively, and since P1,1 is also in the upper part of the
grid, Ubuf contains a block U1,1 from the first block column in P1,1’s Uloc; see
Figure 5.a1). Then the local update is performed in two steps,

M0,1 = M0,1 +A0,1 · U1,1

for the first block column in Mloc, andM0,7

M3,7

M6,7

 =

M0,7

M3,7

M6,7

+

A0,1 A0,4 A0,7

A3,1 A3,4 A3,7

A6,1 A6,4 A6,7

 ·
U1,7

U4,7

U7,7

for the second block column. In the final iteration, i = 2, the situation is similar;
see Figure 5.a3), whereas the Ubuf for i = 1 comes from P2,1, which is in the
lower part of the grid, and thus Ubuf does not contain a block from P2,1’s first
block column; see Figure 5.a2). Therefore the first block column of Mloc is not
updated in this case.

14

Figure 5: Local matrix data during Algorithm 2 after the initial skewing for two
processes, P0,1 in the “upper part” of the grid (i.e., myRow ≤ myCol), and P2,0

in the “lower part” (myRow > myCol). Pictures a) and b) show the local parts
of the matrix Mu that are held and updated by these processes, and pictures
a1)–a3) and b1)–b3) indicate the current contents of the buffers Aloc and Uloc

(more precisely, the Aout
loc and Uout

buf used for the update) available in the three
iterations i = 0 to 2. Below each of these buffers the process, from which it came
originally, is indicated. Thick horizontal lines are used when no block from a
block column of U had been packed into a Ubuf . Matrix sizes and process grid
are as in Figure 4. The block indices are hexadecimal, i.e., a ≡ 10 and b ≡ 11.

For P2,0 the situation is slightly different. Since P2,0 is in the lower part
of the grid, the first block column in its Mloc is empty and therefore is never
updated; see Figure 5.b). For i = 0 and i = 2 this matches the current Ubufs,
which also come from processes in the lower part of the grid and therefore do
not contain blocks from the first block column of Uloc; see Figure 5.b1) and b3).
By contrast, the Ubuf in iteration i = 1 comes from a process in the upper part,
and therefore it contains a block U0,0 from block column 0; see Figure 5.b2).
This block is ignored in the local update, but it cannot be deleted from Ubuf ,
because it might be needed in later local updates in other processes.

Algorithm 4 summarizes the local update.

2.2.3 Results for Multiplication 1

In this section the results obtained on the high performance computing sys-
tems of the two generations at the Max Planck Computing and Data Facility
(MPCDF) in Garching are presented. The discussed approach showed better
performance on the both configurations.

The older one was Hydra system with two 10-core Intel Ivy Bridge 2.4 GHz

15

Algorithm 4: One local update during multiplication 1; this algorithm
replaces line 10 in Algorithm 2. (myRow,myCol) are the coordinates of
the current process, and i is the loop counter from Algorithm 2.

/* Loop over the block columns of Mloc for the local update

*/

1 myBlockColsInM =
⌈
dn/nbe−myCol

pc

⌉
; /* number of block columns in

my Mloc */

2 for jloc = 0 to myBlockColsInM− 1 do
3 blocksToUpdate = βu(jloc,myRow,myCol) ; /* blocks in block

column jloc of Mloc */

4 origRowU = (myRow + myCol + i) mod pr ; /* row number of

origin process of Uout
buf */

5 blocksInUBuf = βu(jloc, origRowU,myCol) ; /* blocks in Uout
buf for

this block column */

6 if ((blocksToUpdate > 0) and (blocksInUBuf > 0)) then
7 Mact = Mact +Aact · Uact;

/* The ‘‘active’’ submatrices are

Mact ≡Mloc(0 : blocksToUpdate− 1, jloc),
Aact ≡ Aout

loc (0 : blocksToUpdate− 1, 0 : blocksInUBuf − 1),
Uact ≡ next blocksInUBuf blocks in Uout

buf ,

and indices refer to blocks, not to individual

entries */

8 end

9 end

processors on each node. The nodes are interconnected with the fast InfiniBand
FDR14 interconnect.

The new one was COBRA system. Each COBRA node contains two 20-core
2.4 GHz Intel Skylake processors, running a SUSE Linux Enterprise Server 12
SP3 operating system. As the usually used process numbers were represented
by powers of 2, 32 cores of each of the involved nodes were utilized. MPI
from the Intel Parallel Studio 2018.4 was applied, as well as the MKL from
the same release for local BLAS and ScaLAPACK functionality. The nodes are
interconnected with the fast OmniPath network.

The new algorithm was compared with two other functions, providing similar
functionality,

• PDTRMM from ScaLAPACK for triangular matrix multiplication, and

• elpa mult at b real double from the ELPA package, calculating the lower
triangular part of an “upper triangular transposed × full” matrix product
(with implicit transpositions).

All matrices were double precision real, the routines used only MPI paral-
lelization.

For most of the runs the process grid was chosen to be “as square as possible”,
i.e., pr × pr, if the process amount was a perfect square, and with two times
more process columns than rows, pr × 2pr, for the remaining values of p (all p
were powers of 2). However, some runs with the grids of the other configurations

16

were made. Sometimes the grids of the form of pr × 4pr may provide better
efficiency than the square ones for the new implementation. Also a comparison
of the “tall” grids (with pr larger than pc) with the ”wide” grids was interesting.
This will be discussed later.

The optimal block size, nb, for a given overall number of processes, p, and a
matrix size, n, may depend on many parameters, e.g., performance of the node-
local BLAS operations with respect to the shape and size of the local matrices
involved in them, the speed of collective and point-to-point communication op-
erations, cache size of the involved processors, etc.

For each p the fastest of three runs was reported. For some cases three block
sizes, nb = 32, 64, 128 were used and the best results among these runs (9 runs
in total) were chosen.

Figure 6 presents the results for matrix sizes of 15000 and 30000 on Cobra
machine.

64 128 256 512 1024 2048 4096 8192 16384

Number of procs

0.1

0.2

0.3

0.4

0.5

0.6

0.8

1

2

3

4

7

13

T
im

e
,
[s

e
c
.]

Cannons

ELPA

ScaLAPACK

32 64 128 256 512 1024 2048 4096 8192 16384

Number of procs

0.04

0.08

0.2

0.4

1

2

3

4

T
im

e
,
[s

e
c
.]

Cannons

ELPA

ScaLAPACK

Figure 6: Timings for multiplication 1 on Cobra. Upper: n = 30,000, nb is
taken the best among 32, 64 and 128. Lower: n = 15,000, nb = 64

Figure 7 presents the results for matrix size of 30000 on the previous Hydra
computing system.

17

64 256 1024 4096 16384

Number of procs

0.2

0.3

0.5

0.8

1

2

3

5

8

18

26

T
im

e
,

[s
e

c
.]

Cannons

ELPA

ScaLAPACK

Figure 7: Timings for multiplication 1 on Hydra. n = 30,000, nb = 64

It can be seen, that the Cannon’s version scales significantly better than
the other two implementations thanks to less strict synchronizations and asyn-
chronous communications. It delivered up to 2 times better performance for the
large process grids than the other two approaches.

2.2.4 Setting up the process grid

The speed of data transfers along process columns and rows of the grid typically
depends on the process ordering while the grid setup.

Let an amount of processes per node be denoted as pnode. Usually values of
pnode = 32 for Cobra and pnode = 16 for Hydra were used.

For the presented runs, a process distribution among nodes by contiguous
chunks was utilized, thus mapping Pk·pnode , . . . , P(k+1)·pnode−1 to the same node
k. Since the largest fraction of data transfers in the new implementation is repre-
sented by communications of a process with its neighbour, that helps to reduce
the inter nodes communication volume: a significant part of communications
takes place in the shared memory of a node or between physically closer nodes.
The last may be not always true if the system can not allocate the requested
number of nodes consecutively. However, for the majority of the experiments
the chunks of adjacent nodes were allocated to execute the programs.

A process grid was build using the routine BLACS GRIDINIT: the p = p∗ ·pnode
processes P0, . . . Pp−1 are configured as a pr × pc grid. With the presented
assumption, a column-wise grid configuration, Pi,j ≡ Pi+j·pr , leads to faster
communication along columns of the grid, since the processes in a column are
mapped to physically closer nodes or to the same node. Similarly, a row-wise
ordering of the processes, Pi,j ≡ Pi·pc+j , makes data transfers along rows to be
faster.

This is not important, if the communication volume along the process rows
and columns is the same. However, during “multiplication 1” blocks of a full
matrix A are transferred along process rows, whereas only an upper triangular
matrix U is moved within the columns. Thus, the communication volume along
grid rows is significantly larger than along grid columns, and therefore it is
reasonable to set up the grid with a row-wise ordering. In such a way, the
larger amount of data will be transferred along the faster direction. The impact

18

may be negligible for small grids, however with the process number increase
the right choice of the grid organization will have a significant influence on the
performance. Table 1 and Figure 8 show, that the row-wise variant of the grid
leads to 2.5 times better performance closer to the end of scaling.

Table 1: Timings (in seconds) for row-wise and column-wise ordering of the
processes in multiplication 1 on Cobra (matrix size n = 30,000, nb = 64).

Grid size row-wise column-wise
8 × 8 8.68 9.11

16 × 16 2.56 2.48
32 × 32 0.69 0.92
64 × 64 0.35 0.63

128 × 128 0.17 0.42

64 256 1024 4096 16384

Number of procs

0.1

0.2

0.4

0.6

0.8

1

2

3

10

T
im

e
,

[s
e

c
.]

row ordering

column ordering

Figure 8: Timings for multiplication 1 with Cannon’s algorithm on Cobra. n =
30,000, nb = 64. Row and column ordering of processes.

If a user wants to double the number of processes to utilze, he has a choice
whether the amount of process rows or columns to be increased. By increasing
number of processes for one of the grids dimensions, the communication volume
per process along this dimension will be proportionally decreased. For example,
if a grid gets two time more process rows, then every process will have two
times less local rows of a matrix with the unchanged amount of local columns.
Thus, the communication volume per process along rows will be decreased in
two times, whereas amount of data to be sent along process columns will remain
the same.

With the process grid being organized in the row-wise manner, it is better
to save on the column communications, because they are much slower. Con-
sequently, it is more efficient to double the number of process columns. That
is exactly an explanation why the “flat” grids with pr ≤ pc are preferred over
“tall” ones.

19

Figure 9 shows the timings for the “flat” and “tall” rectangular grids with
aspect ratios 2 in each case (pr × 2pr and 2pc × pc). For example, runs on the
16 × 32 and 32 × 16 grids are compared for the case of 512 processes. It can
be seen, that the flat grids are superior in comparison to the tall ones for large
process numbers. If communication within grid columns is faster, then tall grids
may be superior.

The flat grids provide better performance despite the fact, that by using
the tall grids the average communication volume per process would be reduced
more intensely than in a case of the flat grids. As it was already mentioned, the
flat and tall grids reduce communication volume per process along the process
columns and rows respectively. The full matrix A is being shifted along rows,
whereas the upper triangular matrix U is transferred along columns. Thus, halv-
ing the communication volume per process for A could be more desirable than
halving data transfers for U in case of identical communication rates along pro-
cess rows and columns. However, the benefits of the communication reduction
along slow column dimension outweigh the potential advantages of the process
rows increase.

This becomes even more obvious for multiplication 2, where the left operand
is also a triangular matrix, and the communication volumes along rows and
columns are identical.

128 512 2048 8192

Number of procs

0.2

0.3

0.4

0.5

0.8

2

3

10

T
im

e
,

[s
e

c
.]

Tall grid

Flat grid

Figure 9: Timings for multiplication 1 with Cannon’s algorithm on Hydra.
n = 30,000, nb = 64. Flat and tall grids.

2.3 Multiplication 2

This function performs step (iii) from Section 2, i.e., it calculates the lower

triangular part of Ã = MlU with Ml being lower triangular and U is the upper
triangular inverse of B’s Cholesky factor. For simplicity, just L instead of Ml

will be written in the following.

2.3.1 Initial skewing for multiplication 2

Since the second factor U in multiplication 2 is the same as in multiplication 1,
its skewing is done with Algorithm 3, first packing the local blocks tightly into a
buffer Ubuf and then shifting within the process column, yielding the initial Uout

buf

20

for the local updates. (The fact that U is the same in the both multiplications
can be used to partly or completely avoid communications for U during the
second multiplication. This idea will be presented later in Section 2.4.)

Now the other factor is also (lower) triangular, and the communication vol-
ume for the shifts can be reduced for the left operand also. Similarly to the
matrix U , each local portion Lloc of L is also packed into a buffer Lbuf before
the skewing along process rows; see lines 1 through 8 in Algorithm 5. As it was
shown in (2), for a grid with integer aspect ratio r = pc/pr the number of blocks
in the jlocth column of Prow,col’s Lloc is given by:

βl(jloc, row, col) =

⌈
n
nb

⌉
− row

pr

−
⌈

col− row

pr

⌉
− jloc · r, (3)

where the first term represents the maximum length of an Lloc column among all
processes of the current grid row, the second term takes a value from {0, . . . , r−
1} and accounts for missing blocks due to the lower triangular structure, and
the third term reflects the fact, that each local block column is r blocks shorter
than the previous one.

As described in Section 2.1.2, for the flat rectangular grids every process has
to combine blocks of L from r processes, and therefore also sends its Lbuf to r
processes. This is done in lines 9 through 28 of Algorithm 5, together with the in-
terleaving of the received block columns into a buffer Lout

buf (to preserve the global
order of the received blocks). For the computation of posout in lines 23 and 10
note that in the buffer Lout

buf , each column of L has one block less than the preced-
ing one, and the longest among these columns is the first one (jloc = 0) received
from that “skewing partner” PmyRow,myCol+myRow, . . . , PmyRow,myCol+myRow+(r−1)pr
which has the lowest column number; cf. also Figures 10 and 11. Thus the first
term in line 23 is the overall length of the buffer (in blocks), and the second
term gives the offset of the current block column from the end.

2.3.2 Local update for multiplication 2

The local update is similar to Algorithm 4 and works on Ãloc block column
by block column, with one important difference. The left factor Lact in each
update Ãact = Ãact+Lact ·Uact comes from a packed buffer with different leading
dimension for each block column in Lact. That is why an update for a block
column typically cannot be done in a single matrix multiplication, as in line 7
of Algorithm 4.

To give an example, consider the updates in iteration i = 1 in process P1,1;
see also Figures 10 and 11. While the first block column can be updated in a
single multiplication,

Ã1,1

Ã4,1

Ã7,1

Ã10,1

 =

Ã1,1

Ã4,1

Ã7,1

Ã10,1

+

L1,0

L4,0

L7,0

L10,0

 · [U0,1

]
,

the update of the second block column (only the lower triangle of the result is

21

Algorithm 5: Initial skewing of L for multiplication 2; (myRow,myCol)
are the coordinates of the current process, and r = pc/pr is the grid’s
aspect ratio.

/* Pack my own Lloc into the buffer Lbuf block column by

block column */

1 myBlockColsInL =
⌈
dn/nbe−myCol

pc

⌉
; /* number of block columns in

my Lloc */

2 Lbuf = ∅;
3 for jloc = 0 to myBlockColsInL− 1 do
4 numBlocks = βl(jloc,myRow,myCol) according to (3);
5 if (numBlocks > 0) then
6 append block column jloc of Lloc to the buffer Lbuf ;

/* numBlocks · n2b elements */

7 end

8 end
/* Shift the Lbufs by myRow positions to the left and

combine this skewing with interleaving data from r
processes with ‘‘stride’’ pr; collect all received data

in a buffer Lout
buf */

9 Lout
buf = ∅ ; /* will hold

maxBlocks·(maxBlocks+1)
2 blocks, each

containing n2b elements */

10 maxBlocks = βl(0,myRow, (myCol + myRow) mod pr)) according to (3) ;
/* longest column in Lout

buf */

11 for i = 0 to r − 1 do
/* Communication partners are at a distance

myRow (accounting for the shift) + i ·
pr (for combination) */

12 whereToSend = (myCol−myRow − i · pr + pc) mod pc;
13 fromWhereToReceive = (myCol + myRow + i · pr) mod pc;
14 if (whereToSend 6= myCol) then
15 Send Lbuf to PmyRow,whereToSend and receive Lin

buf from
PmyRow,fromWhereToReceive;

16 else
/* Then also fromWhereToReceive = myCol, i.e., I use my

own data */

17 Lin
buf = Lbuf ; /* Lbuf contains my portion of L before

shift; copy only pointer */

18 end

/* Append the contents of received Lin
buf to Lout

buf; posin

points to the next (jlocth) block column to extract

from Lin
buf; posin/out refer to nb × nb blocks, not

individual elements */

19 jloc = 0 ; posin = 0;

20 while (posin has not reached the end of Lin
buf) do

21 numBlocks = βl(jloc,myRow, fromWhereToReceive mod pc)
according to (3);

22 if (numBlocks > 0) then

23 posout = maxBlocks·(maxBlocks+1)
2 − numBlocks·(numBlocks+1)

2 ; /* see

main text for details */

24 Copy numBlocks blocks from Lin
buf (starting at block position

posin) to Lout
buf (starting at posout);

25 jloc = jloc + 1 ; posin = posin + numBlocks

26 end

27 end

28 end

22

needed, so only the last two rows of Lbuf are used),[
Ã7,7

Ã10,7

]
=

[
Ã7,7

Ã10,7

]
+

[
L7,0 L7,3 L7,6

L10,0 L10,3 L10,6

]
︸ ︷︷ ︸

Lact

·

U0,7

U3,7

U6,7

 =

=

[
Ã7,7

Ã10,7

]
+

[
L7,0

L10,0

]
·
[
U0,7

]
+

[
L7,3

L10,3

]
·
[
U3,7

]
+

[
L7,6

L10,6

]
·
[
U6,7

]
requires three multiplications, because even if all three block columns of Lact

comprise the same number of blocks (two), the distance from L7,0 to L7,3 in
Lout
buf is three blocks, and from L7,3 to L7,6 it is only two blocks.

AUL
~

0,0 0,1 0,2 0,3 0,4 0,5

0,0 0,1 0,2 0,3 0,4 0,5 0,0 0,1 0,2 0,3 0,4 0,5

1,0 1,1 1,2 1,3 1,4 1,5 1,0 1,1 1,2 1,3 1,4 1,5

1,0 1,1 1,2 1,3 1,4 1,5 1,0 1,1 1,2 1,3 1,4 1,5

2,0 2,1 2,2 2,3 2,4 2,5 2,0 2,1 2,2 2,3 2,4 2,5

2,0 2,1 2,2 2,3 2,4 2,5

0,0 0,1 0,2 0,3 0,4 0,5

2,0 2,1 2,2 2,3 2,4 2,5

0,0 0,1 0,2 0,3 0,4 0,5

0,0 0,1 0,2 0,3 0,4 0,5

1,0 1,1 1,2 1,3 1,4 1,5

1,0 1,1 1,2 1,3 1,4 1,5 1,0 1,1 1,2 1,3 1,4 1,5

2,0 2,1 2,2 2,3 2,4 2,5

2,0 2,1 2,2 2,3 2,4 2,5 2,0 2,1 2,2 2,3 2,4 2,5

2,0 2,1 2,2 2,3 2,4 2,5

0,0 0,1 0,2 0,3 0,4 0,5

1,0 1,1 1,2 1,3 1,4 1,5

0,0 0,1 0,2 0,3 0,4 0,5

0,0 0,1 0,2 0,3 0,4 0,5

0,0 0,1 0,2 0,3 0,4 0,5

1,0 1,1 1,2 1,3 1,4 1,5

1,0 1,1 1,2 1,3 1,4 1,5 1,0 1,1 1,2 1,3 1,4 1,5

2,0 2,1 2,2 2,3 2,4 2,5

2,0 2,1 2,2 2,3 2,4 2,5 2,0 2,1 2,2 2,3 2,4 2,5

2,0 2,1 2,2 2,3 2,4 2,5

0,0 0,1 0,2 0,3 0,4 0,5

1,0 1,1 1,2 1,3 1,4 1,5

0,0 0,1 0,2 0,3 0,4 0,5

* =

−

−

−

− −

0,0
0,0

−
1,0

−
2,0

−

0,1
0,1

1,1
1,1

−
2,1

−

0,2
0,2

1,2

2,2
2,2

−

0,3
0,3

2,3

3,3

1,3
1,3

0,4

1,4

2,4

0,5

1,5

2,5

0,6
0,0

1,6
1,0

2,6
2,0

0,7
0,1

2,7
2,1

3,7

1,7
1,1

0,8
0,2

1,8
1,2

2,8
2,2

3,8

0,3

1,3

2,3

0,4

1,4

2,4

0,5

2,5

1,5

4,8

5,8

4,6

5,6

4,7

5,7

1,2

−

−

− −

−

−

−

−

−
0,0

−
1,0

−
2,0

−

−
0,1

−
1,1

−
2,1

−

−
0,2

1,2

−
2,2

−

−
0,3

−
2,3

−

−
1,3

0,4

1,4

2,4

0,5

1,5

2,5

6,6
0,0

−
1,0

−
2,0

−

6,7
0,1

−
2,1

−

7,7
1,1

6,8
0,2

7,8
1,2

8,8
2,2

−

0,3

1,3

2,3

0,4

1,4

2,4

0,5

2,5

1,5

−

−

−

−

−

−

−

−

3,4

4,4

−

−

−

−

−

−

−

0,4

1,4

2,4

5,5

−

−

3,5

4,5

−

−

−

−

0,5

1,5

2,5

−

3,b

5,b

6,b

4,b

7,b

8,b

9,b

b,b

a,b

3,a

4,a

6,a

7,a

8,a

5,a

9,a

a,a

−

3,9

4,9

5,9

7,9

8,9

6,9

9,9

−

−

0,9

1,9

2,9

0,a

1,a

2,a

0,b

1,b

2,b

−

2,3

3,6

4,0

5,0 5,1

4,2

5,2 5,3

0,0
0,0

1,0
1,0

2,0
2,0

3,0

−
0,1

1,1
1,1

2,1
2,1

3,1

−
0,2

1,2

2,2
2,2

3,2

−
0,3

2,3

−
1,3

0,4

1,4

2,4

0,5

1,5

2,5

−
0,0

−
1,0

−
2,0

−

−
0,1

−
2,1

−

−
1,1

−
0,2

−
1,2

−
2,2

−

0,3

1,3

2,3

0,4

1,4

2,4

0,5

2,5

1,5

−

−

−

−

−

−

4,1

a,0

b,0 b,1

a,2

b,2

a,3

b,3

6,0
0,0

7,0
1,0

8,0
2,0

9,0

6,1
0,1

7,1
1,1

8,1
2,1

9,1

6,2
0,2

1,2

8,2
2,2

9,2

6,3
0,3

8,3
2,3

9,3

7,3
1,3

0,4

1,4

2,4

0,5

1,5

2,5

0,0

7,6
1,0

8,6
2,0

9,6

−
0,1

8,7
2,1

9,7

7,7
1,1

−
0,2

1,2

8,8
2,2

9,8

0,3

1,3

2,3

0,4

1,4

2,4

0,5

2,5

1,5

a,8

b,8

a,6

b,6

a,7

b,7

7,2

−

−

4,4

5,4

6,4

7,4

8,4

9,4

a,4

b,4

−

−

−

5,5

7,5

b,5

−

−

6,5

8,5

9,5

a,5

−

−

−

4,3

−

−

−

−

−

−

−

b,b

−

−

−

−

−

−

−

a,a

b,a

−

−

−

−

−

−

9,9

a,9

b,9

−

−

−

−

−

−

−

−

−

−

−

3,3

6,6

−

a,1

4,0

5,0 5,1

4,2

5,2 5,3

0,0
0,0

1,0
1,0

2,0
2,0

3,0

−
0,1

1,1
1,1

2,1
2,1

3,1

−
0,2

1,2

2,2
2,2

3,2

−
0,3

2,3

−
1,3

0,4

1,4

2,4

0,5

1,5

2,5

−
0,0

−
1,0

−
2,0

−

−
0,1

−
2,1

−

−
1,1

−
0,2

−
1,2

−
2,2

−

0,3

1,3

2,3

0,4

1,4

2,4

0,5

2,5

1,5

−

−

−

−

−

−

4,1

a,0

b,0 b,1

a,2

b,2

a,3

b,3

6,0
0,0

7,0
1,0

8,0
2,0

9,0

6,1
0,1

7,1
1,1

8,1
2,1

9,1

6,2
0,2

1,2

8,2
2,2

9,2

6,3
0,3

8,3
2,3

9,3

7,3
1,3

0,4

1,4

2,4

0,5

1,5

2,5

0,0

7,6
1,0

8,6
2,0

9,6

−
0,1

8,7
2,1

9,7

7,7
1,1

−
0,2

1,2

8,8
2,2

9,8

0,3

1,3

2,3

0,4

1,4

2,4

0,5

2,5

1,5

a,8

b,8

a,6

b,6

a,7

b,7

7,2

−

−

4,4

5,4

6,4

7,4

8,4

9,4

a,4

b,4

−

−

−

5,5

7,5

b,5

−

−

6,5

8,5

9,5

a,5

−

−

−

4,3

−

−

−

−

−

−

−

b,b

−

−

−

−

−

−

−

a,a

b,a

−

−

−

−

−

−

9,9

a,9

b,9

−

−

−

−

−

−

−

−

−

−

−

3,3

6,6

−

a,1

Figure 10: Distribution of the matrices L, U , and the lower triangle of Ã before
the skewing for multiplication 2 on a 3 × 6 process grid (shown by thick black
lines). Block and process numbers are denoted as in Figure 2. “−” marks a
zero block, which is not touched.

Figure 11: Local matrix data during Algorithm 2 after the initial skewing for
process, P1,1. The left picture shows the local part of the matrix Ã that is held
and updated by this process, and the remaining pictures indicate the current
contents of the buffers Lbuf and Ubuf (more precisely, the Lout

buf and Uout
buf used

for the update) available in the three iterations i = 0 to 2. Below each of
these buffers we indicate the process from which it came originally, and thick
horizontal lines are used when no block from a block column of L or U had
been packed into the buffer. The block indices are hexadecimal, i.e., a ≡ 10 and
b ≡ 11.

In general, blocksInUBuf multiplications for each of the block columns are
needed, where blocksInUBuf is the number of blocks in the jlocth column of Uout

buf ;

23

cf. line 5 of Algorithm 4. Therefore, line 7 of that algorithm must be replaced
with a straight-forward loop taking blocksInUBuf iterations. There is also a
possibility of blocksInUBuf = 0: the first block column in Mloc is not updated
during iteration i = 0 since there is no matching block in Uout

buf . In general,
the value blocksInUBuf can be easily found, if the global row index of the Ubuf

origin process is known. The block columns of Lact are readily accessed once
the quantity maxBlocks, the length of the first (and longest) block column in
the current Lout

buf , is known. This quantity must be determined w.r.t. the process
that built this buffer before the skewing, that is,

maxBlocks = βl(0,myRow, (myCol + myRow + i) mod pr)

in iteration i.
Since only blocks in the lower triangle of Ã are being updated, all currently

available U blocks will be used in the update. By contrast, in most cases not all
blocks of Lout

buf are used; again, these cannot be removed from the buffer because
they may be needed in later updates in other processes.

2.3.3 Results for Multiplication 2

The results obtained on the COBRA machine are presented on Figure 12 and
Figure 13.

There is no a specific function for a multiplication of two triangular matri-
ces with computing of only one triangle in ScaLAPACK. That is why the PDTRMM

function was used, as for the multiplication 1. Therefore a complexity of cal-
culations is twice as larger for the ScaLAPACK version than for the ELPA and
Cannon’s variants. This two times difference can be observed in the timings for
small process numbers.

The Cannon’s implementation delivers the best performance for all the grid
configurations. However, a drop of efficiency for the square grids of large sizes
can be seen. The detailed timings show, that there is a slowdown because of
high costs of data transfers along columns for the second matrix. That gives us
an idea to try the rectangular grids instead of the square ones. Namely, for the
4,096 processes a 32× 128 process grid was used instead of the 64× 64 one, and
for 16,384 processes the 64× 256 grid instead of a 128× 128 configuration was
applied. The corresponding results are presented on the lower plots of Figure 12
and Figure 13.

24

32 64 128 256 512 1024 2048 4096 8192 16384

Number of procs

0.1

0.2

0.4

0.8

1

2

4

8

10

21

T
im

e
,

[s
e

c
.]

Cannons

ELPA

ScaLAPACK

32 64 128 256 512 1024 2048 4096 8192 16384

Number of procs

0.1

0.2

0.4

0.7

1

2

4

5

10

20

T
im

e
,

[s
e

c
.]

Cannons with rectangular grid for 4K and 16K

ELPA

ScaLAPACK

Figure 12: Timings for multiplication 2 on Cobra. n = 30,000. Upper: nb is
taken the best among 32, 64 and 128. Use square grids where it is possible.
Lower: nb = 64, use rectangular grids for 4096 and 16384 processes.

64 128 256 512 1024 2048 4096 8192 16384

Number of procs

0.5

1

2

5

10

20

55

T
im

e
,

[s
e

c
.]

Cannons

ELPA

64 128 256 512 1024 2048 4096 8192 16384

Number of procs

0.5

1

2

5

10

20

55

T
im

e
,

[s
e

c
.]

Cannons with rectangular grid for 4K and 16K

ELPA

Figure 13: Timings for multiplication 2 on Cobra. n = 60,000, nb = 64. Upper:
use square grids where it is possible. Lower: use rectangular grids for 4096 and
16384 processes.

The results show a much better performance for the rectangular grids (Ta-
ble 2 and Table 3 for the 30,000 and 60,000 matrices sizes respectively). For the
other implementations a shift to the rectangular grids provides no advantage:

25

ELPA and ScaLAPACK benefit from the square grids mostly.

Table 2: Timings (in seconds) for rectangular and square grids for multiplication
2 (matrix size n = 30,000, block size nb = 64).

Grid size rectangular square
4096 0.2 0.3
16384 0.12 0.2

Table 3: Timings (in seconds) for rectangular and square grids for multiplication
2 (matrix size n = 60,000, block size nb = 64).

Grid size rectangular square
4096 0.85 1.77
16384 0.52 0.89

The benchmarks for the Hydra supercomputer system (Figure 14) for the
case of 30,0000 matrix size and the block-size of 64 are also presented. The
square grids were used where it was possible for runs on Hydra . It can be
seen, that there is no such a significant performance drop for the large square
grids on Hydra as it was on the Cobra machine. The reason for this may be
that we are still not in a communication dominant regime for 4,096 processes
in opposite to the situation observed of Cobra. That may happen due to the
slower processors of the previous generation on Hydra alongside with the similar
bandwidth of the interconnections among nodes. Obviously, a computer with
the faster processors comes earlier to the end of scaling, if the speed of data
transfers remains the same. A comparison of the timings for the different runs
with the small processes numbers indicates, that the Cobra’s processors are
almost 2 times more powerful than the ones of Hydra.

128 256 512 1024 2048 4096 8192 16384

Number of procs

0.2

0.5

1

2

4

10

15

T
im

e
,
[s

e
c
.]

Cannons

ELPA

ScaLAPACK

Figure 14: Timings for multiplication 2 on Hydra. n = 30,000, nb = 64. Use
square grids where it is possible.

26

2.4 Reduction in one function and back transformation

2.4.1 Combining both multiplications in one function

The two-sided triangular matrix multiplication A→ UHAU (with U being the
inverse of B’s Cholesky factor) includes the two already presented operations:
multiplication 1 and multiplication 2. In the previous chapters their efficiency
was analysed for the case, when the both operations were implemented as the
two separate functions.

However, it is possible to benefit from implementation of the two-sided tri-
angular matrix multiplication in a one function by significantly reducing the
communication volume along process columns.

Note, that the right operand U is same in the both multiplications. That
means, that exactly the same data transfers are carried out for U during the
initial skewing and circular shifts in the both routines. In order not to duplicate
these data exchange operations, the received blocks of U could be buffered
during multiplication 1 in local storage and later used for multiplication 2.

This approach can shift the end of scaling further and is designed to enhance
performance on large process grids with the communication time being dominant
in comparison to the calculations.

Whether all the received blocks of U or just some part of them must be
buffered, depends on the available memory size. The results for two versions of
the function are presented:

(A) No buffering at all. Even in this case a small speedup may be possible
thanks to an optimized memory allocation for buffers (only once for both
multiplications) and thus perhaps more efficient cache usage.

(B) Full buffering. Here all U blocks, which were received during multipli-
cation 1, are saved, and thus communications for U during the second
multiplication are avoided completely.

Of course, intermediate levels of buffering are also possible. In the presented
implementation it can be adjusted by a parameter, specifying how many of the
circular shifts should be stored. Versions with buffering of the initially skewed
matrices only and buffering of 50% of the shifts for matrix U were tried also
during test runs. Keeping only the skewed matrices provides almost no benefits
for large process grids, since the initial skewing represents relatively small part
of the overall communication volume. For example, in a case of pr = 128 there
128 shifts to be fulfilled with the same amount of data to be transferred as for
the initial skewing. Thus, less than 1% of communications can be avoided in this
case. The timings of the intermediate buffering runs were usually in between
the extreme cases and have never shown the best performance in comparison to
the two presented cases. That is why only the two extreme options are shown
with an advice: if the buffering idea helps to improve the runtime of the routine,
try to buffer as much shifts as it is allowed by the memory restriction.

In the Section 2.2.4 the process ordering to build a grid was discussed. A
conclusion was made, that it was better to organize the process grid in a way
making the data transfers along rows faster (thus making communications along
columns slower). Since the communications for U are done along columns, the
buffering idea helps to avoid exactly the slow communications, and only fast

27

data transfers along process rows are used for the second multiplication, what
is a significant benefit of the idea.

2.4.2 Additional memory requirements for buffering

In this chapter an upper bound for the additional memory, required to store
locally all the received blocks of U (full buffering), is estimated.

Firstly, the maximum number of blocks, that must be held in one process,
should be determined. Note, that due to the upward shifts for U during mul-
tiplication 1, an involved process will get the non-zero blocks of U from all the
processes of its process column. Thus, it will obtain the whole block-column of
U .

Therefore the largest buffer must be allocated in the processes holding the
longest block columns of the upper triangular matrix U , namely, the processes
holding the last (n∗ = dn/nbe)th block column, which contains n∗ blocks. Due
to the block cyclic distribution over the pr × pc grid, these processes also must
buffer every pcth block column to the left, containing n∗ − pc, n∗ − 2pc, . . . ,
blocks. In total, they hold k∗ = dn∗/pce nonempty block columns with a total
of

k∗−1∑
k=0

(n∗ − k · pc) = k∗n∗ − (k∗ − 1)k∗

2
· pc (4)

blocks, each containing n2b elements. This is just slightly more than the n(n +
1)/(2pc) elements that a perfectly balanced distribution of U ’s entries would
take.

The size of additional memory depends on the pc but not on the pr. It is
not possible to decrease the memory requirement by increasing the process rows
amount, because every process has to store the whole block columns of U in the
full buffering case anyway. Thus, in order to reduce the memory consumption
the process columns number must be enlarged, what also corresponds to the idea
of using the flat rectangular grids instead of the tall ones (see Section 2.2.4).

Table 4 presents the memory requirements in MB for the full buffering case.
Since buffering is a method to avoid data transfers, it helps to increase per-
formance in the communication dominant regimes mostly and is beneficial on
relatively large process grids only. In this case there should be enough memory
to run the algorithm. For example, for matrices of size n = 30,000 full buffering
is noticeably faster starting from 4,096 processes, corresponding to a 64 × 64
grid. Then at most 61.3 MB (1 MB = 10242 bytes) per process are required to
completely avoid communications along columns in the second multiplication,
and thus with 32 processes per node less than 2 out of the 96 GB (1 MB = 10243

bytes) of a COBRA node’s memory are consumed.
However, as it was already mentioned, it is also possible to use intermediate

levels of buffering, storing only some of the shifts of U . As a rough estimate,
buffering of a one shift requires amount of memory to store the local data of the
matrix U , what corresponds to pr “additional copies” of U for the full buffering
case. Sharper bounds similar to (4) may be used to adjust the buffering level
to the amount of available memory.

28

Table 4: Size of the required buffer for full buffering of U according to (4) in MB
per process (1 MB = 10242 bytes) for different numbers of process columns, pc,
and matrix sizes, n, with double precision real data, i.e., 8 bytes per element,
and block size nb = 64.

pc n = 30,000 n = 60,000 n = 100,000
8 437 1733 4796
16 222 874 2410
32 115 444 1217
64 61.3 230 621
128 34.6 123 323

2.4.3 Back transformation of eigenvectors

A Cannon-type algorithm can be also applied in step 5 from Section 2, the back
transformation X = U−1X̃ of the eigenvectors. Here, X is a matrix of the
desired eigenvectors of the initial generalized eigenproblem AX = BXΛ, X̃ are
the computed eigenvectors of the standard eigenproblem ÃX̃ = X̃Λ, and U is
the Cholesky factor of B.

As it was mentioned in Section 2, U−1 is calculated explicitly, and thus the
back transformation represents just a matrix product instead of a triangular
solve. Here again a multiplication of an upper triangular matrix by a full one
must be computed, what makes the task similar to the multiplication 1 algorithm
from Section 2.2. However, there are three differences. Firstly, for the back
transformation we have the upper triangular multiplier to the left and the full
matrix to the right in multiplication (it was vice versa for the multiplication
1 case). Secondly, the right operand is not necessarily a square matrix: if less

than 100 % of the eigenvectors are needed to be computed, then X and X̃ are
tall rectangular matrices. And finally, the full matrix must be computed as a
result, in contrast to a one triangle in multiplication 1.

The implementation is similar to multiplication 1 with the above mentioned
specificities taken into account. Note, that for the efficiency reasons it is better
to have a matrix with the smaller amount of elements to the right. As it
was mentioned in Section 2.2.4, a process grid is organized in a way to make
communications along the process rows faster than along the columns. Data
transfers (initial skewing and circular shifts) are carried out along rows for the
left matrix and along columns for the right operand. That is why it is beneficial
to have a smaller matrix to right.

For multiplication 1 it is fulfilled, since the left operand is represented by a
full square matrix and the right matrix is upper triangular. For the back trans-
formation it is also true, if the rectangular matrix X (right operand) has less

entries that the upper triangular factor U (left operand). Since there are n·(n+1)
2

nonzero elements in U , the condition is fulfilled, if less than n+1
2 eigenvectors

are needed to be restored (slightly more than 50% of the eigenvectors). As only
33% of them are usually needed in the target applications, the condition for the
efficient communications will be commonly satisfied on practice.

29

2.4.4 Results for a reduction to a standard form and for back trans-
formation.

The presented implementation of the generalized to standard eigenproblem re-
duction is compared with the PDSYNGST routine from ScaLAPACK and the multi-
plication functions from ELPA. The PDSYNGST routine is invoked with the UPLO

parameter equal to L in order to utilize the fast 2k rank updates.
The new routine for the eigenvectors back transformation is compared with a

triangular solve (routine PDTRTRS) from the ScaLAPACK library and with explicit
multiplication functions from the ELPA library. For the ScaLAPACK version the
triangular solve is applied, since no inverse of U is being computed explicitly by
the PDSYNGST function.

The Figure 15 shows the results for n = 15, 000, and nb = 64 on Cobra
supercomputer with 33% of eigenvectors to be restored. It can be seen, that
the Cannon’s algorithm delivers the best performance for all the process num-
bers. The buffering and no-buffering versions of the reduction provide a similar
efficiency for small amounts of processes (the buffering variant is slightly slower
due to a necessity to write some data in a buffer). However, at the end of
scaling the buffered version performs significantly faster (for 4,096 processes).
The results for a back transformation also show the superiority of the Cannon’s
implementation thanks to much better scalability after 256 processes already.

64 128 256 512 1024 2048 4096

Number of procs

0.08

0.2

0.3

0.7

1

2

3

T
im

e
,
[s

e
c
.]

Cannons no buffering

Cannons buffering

ELPA

ScaLAPACK

64 128 256 512 1024 2048 4096

Number of procs

0.03

0.05

0.1

0.2

0.4

1

T
im

e
,
[s

e
c
.]

Cannons

ELPA

ScaLAPACK

Figure 15: Timings in a case of n = 15,000, nb = 64 on Cobra. Upper: timings
for reduction to a standard form. Lower: timings for a back transformation,
restore 33% of eigenvectors.

The corresponding results for n = 30,000, are shown on Figure 16. One can
observe a significant advantage of the Cannon’s variant. The buffered version

30

of Cannon’s outperforms the no-buffered one starting from 4,096 processes and
allows to utilize more processes efficiently. The block size is taken the best
among 32, 64 and 128. However, the picture remains more or less the same for
all the tested block sizes.

64 128 256 512 1024 2048 4096 8192 16384

Number of procs

0.2

0.7

1

2

4

7

10

20

T
im

e
,
[s

e
c
.]

Cannons no buffering

Cannons buffering

ELPA

ScaLAPACK

64 128 256 512 1024 2048 4096 8192 16384

Number of procs

0.1

0.7

1

2

4

7

T
im

e
,
[s

e
c
.]

Cannons

ELPA

ScaLAPACK

Figure 16: Timings in a case of n = 30,000 on Cobra. nb is taken the best
among 32, 64 and 128. Upper: timings for reduction to a standard form. Lower:
timings for a back transformation, restore 33% of eigenvectors.

In Section 2.3.3 it was observed, that the multiplication results are better for
rectangular process grids in case of a large amount of processes, since it helped
to reduce the per-process communication volume in a slow direction, namely
along the columns. That makes it reasonable to try the reduction functions
on the rectangular grids for the cases of 4,096 and 16,384 processes. Since the
buffered version of the algorithm efficiently avoids data transfers along columns,
it is possible to expect an improved performance for the no-buffered variant only.
Table 5 shows the results for the no-buffered Cannon’s implementation with the
matrix size n = 30,000 and block size nb = 64.

Table 5: Timings (in seconds) for rectangular and square grids for reduction
to a standard form with the no-buffered Cannon’s algorithm (matrix size N =
30,000, nb = 64).

Grid size rectangular square
4096 0.54 0.64
16384 0.36 0.38

31

Sometimes a back transformation of 100% eigenvectors is required. Remind,
that the presented implementation of the Cannon’s algorithm enjoys the effi-
cient data transfers in the case, when the left matrix contains more elements
than the right operand. That leads to a larger data transfer volume along pro-
cess rows than along the columns, what is beneficial for the row-ordered grid
configurations which are used.

However, with 100% of eigenvectors to be restored, the right factor is a full
square matrix of size n×n, whereas the left matrix is an upper triangular matrix
having almost 2 times entries less. In this case a drop of performance can be
expected for the large grids. That is exactly the picture that can be seen on
the Figure 17, upper part: although the Cannon’s implementation is the fastest
one, it performs not enough efficiently closer to the end of scaling. It could
be possible to use the column-ordered grids to increase performance in such a
case, but that would lead to a sacrifice with the efficiency of the reduction to a
standard form, which benefits from the row-ordered grids. That is why in order
to reduce the along-columns communication costs, the rectangular grids instead
of the square ones could be used for the cases of 4,096 and 16,384 processes. The
Table 6 shows a superiority of the rectangular grids in this case: 10% and 13%
faster for 4,096 and 16,384 processes respectively. The corresponding plot with
the rectangular 4,096 and 16,384 grids is presented on Figure 17, lower part.
The ScaLAPACK and ELPA implementations do not benefit from the rectangular
grids because of symmetry of collective communications along process rows and
columns.

Alternatively, one might implement an optimized routine for right-multiplying
with a triangular matrix (similarly to the presented multiplication 1) and use

that routine to compute (X̃HU−H)H in the case with more that 50% of eigen-
values to be restored.

32

64 128 256 512 1024 2048 4096 8192 16384

Number of procs

0.3

0.7

1

2

4

7

10

18

T
im

e
,
[s

e
c
.]

Cannons

ELPA

ScaLAPACK

64 128 256 512 1024 2048 4096 8192 16384

Number of procs

0.3

0.7

1

2

4

7

10

18

T
im

e
,
[s

e
c
.]

Cannons

ELPA

ScaLAPACK

Figure 17: Back transformation of 100% of eigenvectors on Cobra, n = 30,000.
Upper: nb taken the best among 32, 64 and 128, use square grids where it
is possible. Lower: use rectangular grids for 4096 and 16384 processes with
nb = 64.

Table 6: Timings (in seconds) for rectangular and square grids for back trans-
formation of 100% of eigenvectors with the Cannon’s algorithm (matrix size
N = 30,000, block size nb = 64).

Grid size rectangular square
4096 0.53 0.59
16384 0.34 0.39

The results for larger matrices (n = 60,000) are shown on Figure 18. Again,
the Cannon’s implementations performs better than the other ones, both for
the eigenproblem reduction and eigenvectors back transformation. It should be
also mentioned, that the back transformation even of the 33% of eigenvectors is
slightly faster on the rectangular grids closer to the end of scaling.

33

128 256 512 1024 2048 4096 8192 16384

Number of procs

1

2

4

8

15

30

90

T
im

e
,
[s

e
c
.]

Cannons no buffering

Cannons buffering

ELPA

ScaLAPACK

128 256 512 1024 2048 4096 8192 16384

Number of procs

0.5

1

2

4

8

15

30

T
im

e
,
[s

e
c
.]

Cannons

ELPA

ScaLAPACK

Cannons rectangular grid

Figure 18: For a case of n = 60,000, nb = 64 on Cobra. Upper: reduction to a
standard form. Lower: a back transformation of 33% of eigenvectors.

Timings for a complex case are also presented. Since every complex mul-
tiplication requires 4 times more operations, but the communication volume is
increased in 2 times only, a scalability in this case should be better for all the
implementations. Figure 19 presents the corresponding results for n = 30,000
and block size of 64. The Cannon’s version significantly outperforms all the
other algorithms. The buffered variant of reduction is beneficial starting from
8,192 processes instead of 4,096 for the real case.

64 128 256 512 1024 2048 4096 8192 16384

Number of procs

0.5

1

2

4

7

10

20

55

T
im

e
,

[s
e

c
.]

Cannons no buffering

Cannons buffering

ELPA

ScaLAPACK

Figure 19: Timings for reduction to a standard form in a complex case on Cobra.
n = 30,000, nb = 64.

34

In addition to the Cobra machine, tests were done on the other supercom-
puters also. For example, for some of the runs the previous Hydra machine of
the Garching computer center was used. Each Hydra node consists of 2 Intel
Ivy Bridge (Xeon E5-2680v2) processors with 10 cores (2.8 GHz) each. The
interconnection between nodes is a fast InfiniBand FDR14 network.

The Cannon’s reduction routine showed the best performance (Figure 20).
The fully buffered Cannon’s version was almost 3 times faster than the ELPA

routines and almost 6 times faster than the ScaLAPACK implementation at the
end of scaling. The complex versions of the algorithms scaled predictably better
than the real ones.

128 256 512 1024 2048 4096 8192 16384

Number of procs

0.3

0.5

1

2

4

6

8

10

15

22

T
im

e
,
[s

e
c
.]

Cannons no buffering

Cannons buffering

ELPA

ScaLAPACK

128 256 512 1024 2048 4096 8192 16384

Number of procs

0.8

2

4

7

10

15

30

70

T
im

e
,
[s

e
c
.]

Cannons no buffering

Cannons with buffering

ELPA

Figure 20: Timings for reduction to a standard form on Hydra. n = 30,000, nb
= 64. Upper: double real case. Lower: double complex case.

Again, the row-wise ordering of processes delivered a better efficiency than
the column-wise one (Figure 21).

35

64 256 1024 4096 16384

Number of procs

0.4

0.7

1

2

8

32

T
im

e
,

[s
e

c
.]

Row ordering

Column ordering

Figure 21: Hydra: reduction to a standard form times. n = 30,000, nb = 64.

Remind, that the main application of the reduction routine is the SCF cycles
solutions with the hundreds of the general eigenvalue problems to the standard
ones transformations with the same matrix U . That is why the timings for
the inverse of U can be neglected since only one inverse for hundreds of the
reductions is done. However, the new approach may be competitive even for
a case of a single reduction. Figure 22 presents the generalized to standard
reduction plus inverse of U timings. For Cannon’s and ELPA these two steps are
done separately, whereas the ScaLAPACK approach does everything inside of a
one routine.

64 256 1024 4096 16384

Number of procs

1

2

4

8

10

20

49

T
im

e
,

[s
e

c
.]

Cannons

ELPA

ScaLAPACK

Figure 22: Timings for reduction to a standard form plus inverse of U on Hydra.
n = 30,000, nb = 64.

The measurements were also done for matrix sizes of 30,000 and 60,000 on
the K-computer of the Riken Advanced Institute for Computational Science
(Figure 23 and 24). Each node of the K-computer consists of a single 2.0 GHz
eight-core SPARC64 VIIIfx processor. The nodes are interconnected with the
Fujitsu’s proprietary torus fusion network. The idea of using the K-comp was

36

to utilize more processes for the large matrix size in order to reach the end of
scaling.

The new implementation delivered the best performance for all the runs on
K-computer also.

256 1024 4096 16384

Number of procs

0.5

1

2

3

4

8

12

18

28

T
im

e
,
[s

e
c
.]

Cannons no buffering

Cannons with buffering

ELPA

ScaLAPACK

256 1024 4096 16384

Number of procs

0.5

1

2

3

5

8

11

16

48

T
im

e
,
[s

e
c
.]

Cannons

ELPA

ScaLAPACK

Figure 23: K-comp: timings for n = 30,000, nb = 64. Upper: reduction to a
standard form. Lower: back transformation of 100% of eigenvectors.

4096 16384 65536 211600

Number of procs, log. scale

1.5

2

3

7

10

18

T
im

e
 i
n

 l
o

g
.

s
c
a

le
,

[s
e

c
.]

Without buffering

Full buffering

ELPA

Figure 24: K-comp: timings for reduction to a standard form. n = 60,000, nb
= 64.

37

2.4.5 Quality of the computed eigensystems

To assess the quality of the computed eigensystems, generalized eigenproblems
AX = BXΛ with different sizes and condition numbers have been solved. The
entries of the test matrices were chosen as follows: ai,j = cos i cos j + sin j sin i,
and B = B0 + σI, where b0i,j = sin j sin i and σ > 0. Thus, cond(B) can be
controlled by varying σ. Table 2.4.5 reports some of the results indicating that
the two methods with explicit inversion (ELPA and the new implementation)
perform comparably to ScaLAPACK (using implicit inversion). Note, that the
maximum computed eigenvalue λmax(A,B) is almost identical to cond(B) for
these matrices.

n λmax(A,B) Residual maxj ||Axj − Bxjλj ||2 B-orthonormality maxi,j |x
T
i Bxj − δi,j |

ScaLAPACK ELPA new ScaLAPACK ELPA new

1,000 5.01E+02 2.19E-12 3.28E-12 2.60E-12 1.35E-13 1.02E-14 1.24E-14

5.01E+05 6.44E-08 7.05E-08 6.21E-08 3.56E-12 4.06E-12 3.87E-12

5.01E+08 2.00E-03 3.60E-03 3.95E-03 3.39E-09 4.16E-09 3.27E-09

30,000 1.50E+04 8.15E-10 3.55E-10 4.07E-10 3.83E-11 2.78E-13 2.88E-13

1.50E+07 1.25E-05 2.52E-05 2.17E-05 3.97E-11 7.39E-12 7.54E-12

1.50E+10 3.57E-01 6.21E-01 1.35E+00 7.38E-09 7.54E-09 8.01E-09

Table 7: Maximum residuals and deviation from B-orthonormality for varying
dimensions n and condition numbers cond(B) ≈ λmax(A,B).

38

3 Reducing the bandwidth

A symmetric standard eigenproblem

A X = X Λ

is considered in this section with an additional assumption, that the matrix
A is banded with semi-bandwidth b.

Such matrices naturally arise in simulations describing interactions, which
vanish as the distance between partners grows. Usually a suitable reordering
of the elements is required to obtain the banded form of a matrix to be solved
([13]).

The bandwidth of a matrix in such calculations usually depends on the
dimensionality of a problem (e.g., 2D vs.or 3D), on the effective distance of
interaction, the way to reorder the elements. On practice, the target values of
the bandwidth are in range of hundreds or thousands.

An emphasis on direct eigensolvers is done in this work to solve the banded
symmetric eigenvalue problems. This approach is beneficial, if a significant por-
tion of the eigenvalues and eigenvectors is required. For example, in electronic
structure computations often from 10% to 30% of the eigenvectors are needed.

Direct eigensolvers [20] typically reduce the symmetric matrix to a tridiag-
onal form firstly by application of a unitary/orthogonal transformation: T =
QH

AT A QAT. After, the eigenproblem for the tridiagonal matrix is solved T XT =
XT Λ. Finally, the eigenvectors of the tridiagonal problem must be transformed
to the ones of the initial problem: XA = QAT XT. A very narrow-banded
(e.g., pentadiagonal) intermediate matrix might be used instead of a tridiag-
onal one [21].

The LAPACK [1], ScaLAPACK [6], and ELPA [25] libraries and the SBR toolbox [4,
3] (among others) contain routines for performing these steps. LAPACK and
SBR represent the serial implementations of the algorithms (however, a shared
memory parallelism via multi-threaded BLAS can be utilized), ScaLAPACK and
ELPA contain the parallel functions to exploit distributed memory parallelism of
modern supercomputers.

ELPA originally focused on full standard and generalized eigenvalue prob-
lems. With the ELPA-AEO project, support for banded problems has been,
and continues to be, added. The efficient parallel algorithms were implemented
to reduce banded generalized eigenproblems to equivalent standard ones with
keeping the banded structure (see [28, 29] for a description). Also a reduction of
a banded matrix to narrower-banded form was realised. This is the topic of the
present chapter: efficient parallel reduction of a banded matrix to the one with
the smaller bandwidth with eigenvalues being preserved. Also a fast routine to
restore eigenvectors of the initial banded matrix was implemented.

ELPA already provides an efficient routine for tridiagonalizing banded matri-
ces. However, it is optimized for small bandwidths only. A banded to tridiagonal
reduction algorithm allows only application of the level-2 BLAS operations [15,
16]. Thus, it cannot fully exploit the computing capabilities of today’s super-
computers. The degree of parallelism is O(n/b) for such a routine, what is also
a problem.

Until recently it was not a significant drawback, since banded matrices in
ELPA applications were presented as the intermediate result in the two-step

39

reduction of full matrices [25], with a small bandwidth b ∼ 32 to 64. This two-
step procedure includes a full to the banded matrix reduction as the first step
(with a small bandwidth) with a subsequent banded to tridiagonal reduction
on the second step. Consequently, a vast majority of operations was fulfilled
during the first stage, where the level-3 BLAS operations are applied. And only
the negligibly small portion of calculations is done on the second step, where
the performance is not high.

However, if the initial matrix has a banded form with a bandwidth of order
of hundreds or thousands, an appropriate algorithm should be implemented to
reduce the bandwidth to the values of ∼ 32 to 64, after that the routine for
tridiagonalization can be applied. This reduction to the narrower band must
exploit the level-3 BLAS operations and take the initial banded structure of a
matrix into account.

3.1 Serial bandwidth reduction

At first the serial reduction algorithm must be presented [3], because it is es-
sential for the following discussion on parallelization.

A serial algorithm for bandwidth reduction has been proposed with the SBR

toolbox [3, 4]. ELPA also contains a prototype parallel implementation by T.
Auckenthaler [2] featuring BLAS3 performance, but utilizing only one level of
parallelism and without the option of transforming back eigenvectors. In this
thesis techniques to improve the scalability and to utilize more processes dur-
ing the reduction are demonstrated. Also an efficient parallel algorithm for
transforming back the eigenvectors was developed.

As a demonstration example, the reduction scheme for a Hermitian banded
matrix A of size n = 40 with (semi-)bandwidth bA = 7 to a narrower-banded
matrix B with (semi-)bandwidth bB = 3 is presented. Since the both matrices
are Hermitian, only their lower triangles are taken into account.

The reduction proceeds by “sweeps”. During each sweep bB columns are
being reduced to bandwidth bB. In fact, the number of columns to be reduced
per sweep might be chosen more freely in an interval 1 ≤ nb ≤ bB. However,
for a simplicity reasons, and because small nb tend to diminish compute per-
formance, nb = bB is used both, for the idea presentation and for performance
measurements.

For the first sweep, the matrix is considered as a block tridiagonal matrix
with diagonal blocks Aii and subdiagonal blocks Ai+1,i. All the blocks are of
size bA × bA, except of the bB × bB block A00, the bA × bB block A10, and the
blocks AN,N−1 and ANN at the end of the band; cf. Figure 25.

40

A
00

A
10

A
11

A
21

A
32

A
22

A
33

A
NN

A
N,N−1

Figure 25: Block partition of the (lower part of) the band on the first sweep of
the reduction. All blocks are bA × bA, except for the first block column (width
bB) and block row N .

At first, a QR decomposition of the leading subdiagonal block is done: A10 =

Q
(1)
1 R

(1)
1 ; cf. Figure 26(a). Then the orthogonal factor is applied to A from the

both sides to preserve the eigenvalues of A. That means pre-multiplication of

block row 1 with Q
(1)
1

H
and post-multiplication of block column 1 with Q

(1)
1 and

leads to the structure shown in Figure 26(b). As a result, the subdiagonal block
A21 fills almost completely with the nonzero elements. In order to avoid the
fill-in spreading over the whole lower triangle of A, a critical part of the fill-in is
removed with a “bulge-chasing” scheme before continuing with the bandwidth
reduction.

More precisely, QR decomposition is applied to the first bB columns of A21,

an orthogonal factor Q
(1)
2 is obtained and is applied to block row and block

column 2 of A, what restores the original bandwidth bA in these bB columns,
but fills the next subdiagonal block A32; cf. Figure 26(c). Then this procedure
is repeated to remove the first bB columns of the new fill-in, leading to the next
subdiagonal block A43 to fill (cf. Figure 26(d)), and so on, until the end of the
band is reached; cf. Figure 26(e).

As a result, the first bB columns were reduced to the desired bandwidth
value and the algorithm can proceed to the next columns by shifting the block
decomposition by bB rows and bB columns (cf. Figure 26(f)). In a second sweep
the next bB columns of the matrix will be reduced to bandwidth bB.

41

QR

Q

SYM

POST

QH

(a) (b)

QH

Q

POST

SYM

PREQR

Q

QH

POST

PREQR

SYM

(c) (d)

(e) (f)

Figure 26: First sweep in the bandwidth reduction. (a) Initial QR decomposi-

tion of A10. (b) Applying the resulting Q
(1)
1 from both sides. (c), (d) Transfor-

mations 2 and 3 of the sweep, involving Q
(1)
2 and Q

(1)
3 . (e) Structure of the band

after the first sweep. (f) Shifting of the blocks for sweep 2. Dark grey indicates
entries that are modified during the respective step, and light grey is used for
the remaining nonzero entries.

Note that during the kth sweep a sequence Q
(k)
j , j = 1, 2, . . ., of orthogonal

transformations is generated and applied from both sides. For each Q
(k)
j this

42

involves three or four steps:

QR QR decomposition of the first bB columns of Aj,j−1 (for j = 1 this is the

whole block); this defines Q
(k)
j .

PRE Pre-multiply the remaining bA − bB columns of Aj,j−1 with Q
(k)
j

H
(for

j = 1 this operation is void).

SYM Apply Q from both sides to the diagonal block: Ajj := Q
(k)
j

H
Ajj Q

(k)
j .

POST Post-multiply the next subdiagonal block: Aj+1,j := Aj+1,j Q
(k)
j .

3.2 Exploiting parallelism between blocks

Consider now the operations applied to a particular block column j during the
kth sweep (cf. Figure 27): Ajj := QH

old Ajj Qold (SYM) and Aj+1,j := Aj+1,j Qold

(POST). The reflectors Qold ≡ Q
(k)
j for these operations had originated in the

neighbouring block column to the left. Further, the next transformation Qnew ≡
Q

(k)
j+1 is determined from the first bB columns of the subdiagonal block, Aj+1,j(:

, 1 : bB) =: Qnew R
(k)
j+1 (QR), and this new transformation is applied to the

remainder of the block, Aj+1,j(:, bB + 1 : bA) := QH
new Aj+1,j(:, bB + 1 : bA)

(PRE). The relative order of POST, QR, and PRE is fixed: at first the whole
Aj+1,j block must be updated with the POST operation, then the new reflectors
Qnew must be generated based on the first bB columns of the updated block,
and finally the PRE operation must be applied to the last bA − bB columns of
the Aj+1,j block. However, the SYM might be done any time, even after PRE,
since it operates with another block Aj,j .

POST

QH
old

Q
old

SYM

QH
new

PREQR

Figure 27: Operations applied to a particular block column j during the kth

sweep (with Qold ≡ Q
(k)
j and Qnew ≡ Q

(k)
j+1).

To explain the parallel implementation of the algorithm, the first sweep of
the algorithm is considered on a 1D process grid presented on Figure 28. Here
again, N = 40, bA = 7 and bB = 3. Matrix is distributed over a grid having 4
processes from P0 to P3 using a block cyclic data distribution: with p processes,
a process Pj holds block columns j, j + p, j + 2p, . . . of the band. In this case
processes from P0 to P2 store 2 local block columns each, whereas process P3 has
only one. Of course, the zero values are not stored: only the nonzero 2 · bA rows

43

are kept by each of the processes. Operations of the same colour are fulfilled
with the same reflectors Q.

At first a naive and not the most efficient implementation of the algorithm
is presented. In the following, some techniques to increase performance will be
discussed. The first 3 = bB rows of the matrix already have the bandwidth of 3
and are not touched, thus the first sweep affects the rows from 4 to 40 with all
the columns of the initial matrix. The sweep is started with the QR operation
(red one) on process P0. As a result, the rows from 4 to 6 of the matrix are also
banded with the bandwidth of bB and can be stored as an output. After this,
process P0 sends the reflectors to process P1. Process P1 receives the reflectors
and does the SYM and POST updates (red ones). Then it generates the new
reflectors with the QR operation (green one) and fulfills PRE operation (green
one) by applying these new reflectors. Then process P1 sends these reflectors to
process P2. Process P2 receives the reflectors and starts with its updates. And
so on till the end of the matrix.

When the end of the matrix is reached, then the first sweep is finished. On
the second sweep the columns from 4 to 40 and rows from 7 to 40 will be touched
(the whole picture is shifted by bB rows and columns to the right-bottom). The
second sweep starts with the QR update for block A(7 : 13, 4 : 6). Then the
SYM operation for the block A(7 : 13, 7 : 13) must be done and so on similarly
to the first sweep.

Figure 28: Data distribution for a one sweep.

However, SYM transformation for the A(7 : 13, 7 : 13) block cannot be ap-
plied as it is, because, as it was already mentioned, the matrix is not stored
globally as it is shown on the Figure 28, but only the 2 · bA rows of the matrix
are kept. In addition, application of the transformations to the block, which is
distributed over two different processes, would lead to unnecessary data trans-
fers, thus reducing performance of the implementation. That is why data is
firstly shifted by bB rows and columns to left-up before the second sweep. That

44

means, that every process must send the first bB columns of length bA + bB for
each of its local block columns to its left neighbour. After this, all the operations
can be done by processes locally on the second sweep.

Thus, update of a block requires communication of a process with its left
and right neighbours. If a j-th global block column must be updated on sweep
k, then the process, which stores this block column locally, has to receive the
following data before the update:

• reflectors Q from the left neighbour. These reflectors must originate from
an update of global block column j − 1 on sweep k. Process P0 does not
need to receive Q to update its first local block column (the 0-th global
block column of a matrix)

• bB columns from the right neighbour. These elements represent the first
bB columns after an update of the j + 1-th global block column on the
previous sweep k− 1. This receive is not needed for the first sweep. Also,
this receive is omitted, if the right neighbour doesn’t need to update the
j + 1-th global block column on this sweep.

A process has to send the following data after the update of its local block
column:

• reflectors Q to the right neighbour. This communication is required only
if the right neighbour updates the j + 1-th global block column on the
current sweep k (because of the band shifts to the left, the processes have
less local block columns to update as the sweep number grows)

• first bB columns of length bA + bB to the left neighbour, such that the left
neighbour could make an update of the j − 1-th global block column on
the next sweep k + 1. Of course, process P0 doesn’t need to fulfill this
data transfer for its first local block column (there is nothing to the left)
in the matrix.

A certain level of parallelism can be achieved by overlapping transformations
from different sweeps in a pipelined manner. The next sweep can be initiated
before the previous one is finished. In order to make an update on the k+ 1-th
sweep for a block column, the process has to receive reflectors from the left
neighbour and bB columns from the right neighbour. The conditions for this
are: the left neighbour has already fulfilled the QR operation on the k + 1-th
sweep for the corresponding block column and the right neighbour has updated
the first bB columns on the k-th sweep. Since every process may have many
local bock columns to update, these already updated block columns must be
adjacent to the current block column from left and right in the global matrix
representation.

Order of the block columns updates could look as follows (see Figure 29,
numbering is started from 0 for processes and from 1 for local block columnns):

1: Process P0 makes QR for columns 1 to 3 (sweep 1 for the 1-st local block
column) and sends reflectors to process P1.

2: Process P1 receives reflectors, updates columns from 4 to 10 (sweep 1 for
the 1-st local block column), sends reflectors to process P2 as well as the
first bB columns to process P0.

45

3: Process P2 receives reflectors, makes an update of columns from 11 to
17 (sweep 1 for the 1-st local block column), sends reflectors and first bB
columns of the updated block column to processes P3 and P1 respectively.
At the same time, while process P2 is working on its update, process P0

receives columns from P1 and makes QR operation (sweep 2 for the 1-st
local block column).

4: now process P3 can can join to the first sweep: it receives reflectors from
P2, makes update of columns from 18 to 24, sends reflectors to P0 and
the first bB columns to P2. At the same time, process P1 can start with
the update of its first local block column on the second sweep, because P0

(left neighbour) has already done an update of its first local block column
on sweep 2, and P2 (right neighbour) has done an update of its first block
column on sweep 1. So, P1 makes an update of its first local block column
for sweep 2 and sends the necessary data to processes P0 and P2.

5: since P3 has done an update for its block column on sweep 1, process P0

has reflectors to start an update of its second local block column (columns
from 25 to 31). At this time, P2 can make an update of its first local block
column on sweep 2 (the left neighbouring process P1 and right neighbour-
ing process P3 have done their updates on sweeps 2 and 1 respectively).

6: since P0 has already done an update for its second local block column
on sweep 1, process P1 can do the same now: it updates its second local
block column on sweep 1 (columns from 32 to 38). In parallel, process
P3 updates its local block column on sweep 2 (the needed updates on his
neighbours have already been done: P2 updated its first block column
on sweep 2 and P0 updated its second block column on sweep 1). And
simultaneously, process P0 can initiate sweep 3: make an update (just
QR) for its first local block column on sweep 3. It can be done, because
its right neighbour P1 has already finished with updating of its first block
column on sweep 2.

7: once P1 finished with update of its second local block column on sweep
1, process P2 can also update its second local block column. That will be
the last update for sweep 1. At this time, P0 can calculate for its second
block column on sweep 2, because P1 finished with update of its second
local block column on sweep 1 and P3 has updated its first block column
on sweep 2. Simultaneously, process P1 can start with updating of its first
local block column on sweep 3.

8: and so on. Overall, the degree of this inter-block parallelism is O(n/bA).

46

Figure 29: Timesteps for a pipelined parallel run of the bandwidth reduction.
By b.c. the local block columns of the processes are denoted.

Note, that on timestep 5 process P0 had a choice what of its local block
columns to update. Since its left neighbour (P3) has finished with update of its
block column 1 on sweep 1, process P0 can compute for its second block column
on sweep 1. But P0 can also update its first block column on sweep 3, because
its right neighbour (P1) has finished with its first block column on sweep 2.

In practice, the number of block columns usually exceeds amount of processes
leading to many local block columns stored and updated by each process. With
the number of local block columns per process increase, such situation becomes
more probable, what gives choice to a process what block column to update.
This provides additional freedom to update the local block columns not in some
a prescribed order, but to start with an update of that block column, for which
the required data (Qold from the left and bB columns from the right) is already
available.

This approach is implemented as follows: every process initiates an asyn-
chronous receive operation for each of its local block columns. Then it checks
in a pooling loop, if it has received all the necessary data from the left and from
the right for any of its local block columns (using the test operations). If data
is available for some of the block columns, the process starts with an update
of this block column immediately and initiates a new asynchronous receive for
this block column for the next sweep. Thus, a process will not wait until data
transfers required to update the i1-th local block column on sweep j1 is finished,
if data for an update of another i2-th local block column on sweep j2 is already
available.

The actual data transfers are asynchronous, with arrival of data directly
being followed by issuing the next receive. A process can receive data for
his local block columns updates in a background of computations: while up-
dating a block column on sweep k, a process receives data for the update of
this block column on the next sweep k + 1, as well as for the other its local
block columns, if the corresponding receive operations have already been initi-
ated for the other block columns. Thus, such approach essentially implements a
distributed-memory task-based execution model without requiring an associated
software framework.

Another improvement of the algorithm can be achieved by reordering of
operations during a local update in such a way, that the data sends to the

47

neighbours are initiated as fast as possible. Thus, the other processes can start
with their updates earlier. The optimal procedure is the following:

1 do POST operation

2 do QR and send the new reflectors to the right

3 do SYM operation using the old reflectors and send the first bB columns
of the block column to the left

4 do PRE operation by applying the new reflectors.

Algorithm 6 presents the whole procedure to update a block column. The
checks if a process has to send or receive data have been omitted in the algorithm
to keep it concise. As it was already mentioned, process P0 doesn’t need to
receive reflectors from the left to update its first local block column. Also,
processes need data from the left (reflectors) only and nothing from the right
for the first sweep. A process needs to send data to the right only if the right
neighbour has to update the corresponding block column on the next sweep
after shifting the band to the left through the processes. For example, process
P2 (Figure 28) will not update its second local block column (global columns
from 38 to 40) starting from the second sweep: only 37 columns will be processed
on the second sweep, 34 columns will be updated on the third sweep and so on.
In such a way, if the right neighbour does nothing for a specific block column any
more, then the reflectors are not sent to him, as well as receives of bB columns
are not initiated by its left neighbour for the globally adjacent block column.
In the presented case, P1 will not call the receive function for its second local
block column after the first sweep. However, it will continue receiving data for
its first local block column. All these checks are not presented in the algorithm
for a better readability.

Algorithm 6: Update of block column j according to sweep k, to be

executed in process Pj . The corresponding receives of Qold ≡ Q
(k)
j and

of bB columns of A from Pj−1 and Pj+1 respectively are finished.

1 initiate receive for next Q
(k+1)
j from the left ;

2 initiate receive for next columns from the right ;
3 do POST with Qold on subdiagonal block Aj+1,j ;

4 do QR on first bB columns of subdiagonal block Qnew ≡ Q
(k)
j+1 ;

5 send Qnew to right neighbour ;
6 do SYM with Qold on diagonal block Ajj ;
7 send first bB columns of Ajj and Aj+1,j to left neighbour ;
8 do PRE with Qnew on remaining bA − bB columns of subdiagonal block ;

The numerical experiments were performed on the COBRA system at the
Max Planck Computing and Data Facility (MPCDF), Garching. The COBRA
nodes, that were used, feature two Intel Xeon Gold 6148 (Skylake) processors,
each with 20 cores running at 2.4 GHz, and the nodes are connected with a 100
Gb/s OmniPath non-blocking, full fat tree interconnect. All computations were
done with double precision real data.

48

Figure 30 shows the strong scaling of the implementation for reducing ma-
trices of size n = 8Ki = 8,192, n = 16Ki = 16,384, and 32Ki = 32,768, and
initial bandwidths bA = 64, 128, 256 to bandwidth bB = 32. The data reveal
almost perfect scaling up to roughly n/4bA processes and a maximum speedup
close to n/2bA.

Figure 30: Strong scaling for the bandwidth reduction on COBRA (32 processes
per node).

Except for end-of-scaling effects, the timings also reflect the arithmetic com-
plexity of the reduction: doubling bA roughly doubles the time T (keeping
p fixed), whereas doubling n quadruples T , corresponding to the number of
floating-point operations being of order O(bAn

2) [3].

3.3 Efficient block transformations

The SYM, POST, QR, and PRE operations for each block column can be real-
ized in several ways [20].

Since every reflectors matrix Q
(k)
j represents result of a QR decomposition

of a block with at most bB columns, it is the product of at most bB Householder

matrices, Q
(k)
j = H1 · · ·Hm with m ≤ bB and Hi = I − yi τi yHi , where τi =

2/‖yi‖2 ∈ R.
One way to implement the updates is to apply these Householder transfor-

mations one-by-one, making use of the special structure of Hi. For example, the
POST operation can be done as follows: Hi: Aj+1,j := Aj+1,j Hi = Aj+1,j−zi yHi
for i = 1, . . . , n, where zi = Aj+1,j yi τi. The procedure for PRE is similar. Each
such update includes a bA × bA matrix-vector multiplication and a rank-1 up-
date per Householder transformation, thus making a total arithmetic complexity
equal to m · 4b2A arithmetic operations.

The SYM operation involves a two-sided application of a Householder trans-
formation and relies on a a Hermitian rank-2 update: Ajj := HHi Ajj Hi =
Ajj − yi vHi − vi yHi , with vi = zi− (τi (zHi yi)/2) · yi and zi = Ajj yi τi. Since the
diagonal blocks before and after updates are Hermitian, this procedure can be
implemented in a way to affect a one triangle (e.g. the lower one) of the Ajj
block. With such implementation, SYM also takes m·4b2A arithmetic operations.

49

Application of the Householder transformations one-by-one allows only using
level-2 BLAS operations [15, 16], with performance being far from the peak
performance on the current supercomputer systems due to less efficient memory
access. To utilize level-3 BLAS operations the WY representation can be used.

The compact WY representation [31] represents the product of Householder
transformations as H1 · · ·Hm = I − Y T YH , where Y = (y1, . . . , ym) is bA ×m
and T is an m × m triangular matrix. At first, matrix T must be generated.
Then, POST can be done as three matrix-matrix multiplications Aj+1,j :=
Aj+1,j − Z YH , where Z = V T and V = Aj+1,j Y, and similarly for PRE.

The triangular factor T can be generated from a given set y1, τ1, . . . , ym, τm
of Householder transformations with a LARFT routine of the LAPACK library [1].
To apply the compact WY representation to a matrix form left or right (PRE
and POST operations) the function LARFB can be used.

The LAPACK library contains no routine to realize the SYM update. Similarly
to the non-blocked case, the SYM operation Ajj := (I−Y T YH)H Ajj (I−Y T YH)
can be rewritten as a Hermitian rank-2m update Ajj := Ajj − Y VH − V YH ,
where V = Z− 1

2 Y S with S = WH Z, Z = Ajj W, and W = Y T. That involves
four matrix-matrix multiplications, with one triangular and one symmetric ma-
trix product among them. The increased performance of the level-3 BLAS
operations is achieved with a price of O(m2bA) additional operations per block
column. This is, however, negligible if m� bA.

In order to decrease amount of generations of matrix T from the Householder
reflectors, a process can send its already generated T to the right neighbour with
the reflectors together. Thus, the destination process can use the received ma-
trix T for its computations. That doesn’t increase the communication volume,
because T is a bB× bB upper triangular matrix and the reflectors are stored as a
bA × bB trapezoidal matrix. Consequently, it is possible to copy T to the upper
part of the reflectors array without loss of data and send the whole chunk of
data as a rectangular matrix to the right.

The timings presented on Figure 30 were obtained with the transformations
done as it was just explained. For the QR decomposition the LAPACK routine
DGEQRF was used. In the following we will call this a LAPACK-based version of
the algorithm.

Alternatively, one might consider the “standard” WY representation [5] for
a product of Householder transformations, H1 · · ·Hm = I + W YH , where again
Y = (y1, . . . , ym), and W is a bA ×m matrix. This approach has been realized
in the SBR toolbox for Successive Band Reduction [4, 3]. The SBR toolbox
provides routines GEWYG to generate the W factor, GEWY to apply the blocked
transform to a general matrix from the left or right (PRE and POST opera-
tions) and {Z,C}HEWY and {D,S}SYWY routines for applying it from both sides
to a complex Hermitian or real symmetrix matrix (SYM). Again, mainly level-3
BLAS operations are used, and O(m2bA) additional operations per block col-
umn are required, as compared to the non-blocked, level-2 BLAS approach.
This implementation is called the SBR-based version in the following.

Figure 31 compares the parallel performance of the bandwidth reduction us-
ing the SBR-based transformations with the LAPACK-based variant (the latter
data are identical with Figure 30) and a version from [2] made by Thomas Auck-
enthaler. This implementation relies on another way to distribute matrix and
uses different scheme of parallelization instead of the block cyclic distribution of
a matrix. Namely, for matrix size N and process number p, the first batch of Np

50

adjacent columns belongs to the first process, the second batch belongs to the
second process and so on. If N is not a multiple of p, then the largest amount
of columns is stored by the last process in order to achieve a better workload
balance.

Figure 31: Timings for 1D reduction, n = 16Ki. Upper: b = 256→ 32. Lower:
b = 64→ 32.

Such an approach has an obvious advantage: it leads to a better optimized
communication scheme. Since a process stores adjacent block columns of a
matrix, it doesn’t need to receive data from left and right neighbours for updates
of all of its block columns except of the first and last (boundary) ones. While the
amount of block columns per process stays relatively high, the new algorithms
partly compensate a necessity to receive data by a clever communication driven
choice of a local block column to update, combined with the asynchronous data
transfers. But with amount of local block columns per process decrease, the
new implementations suffer from a lack of flexibility in a choice of which of the
local block columns to update.

However, a data distribution used in the Auckenthalers’ implementation
leads to a worse workload balance. If every process has n local block columns
to update, then the last process will have n · r updates to do with r = bA

bB
,

the second-last process will have 2 · n · r updates to run, the next process will
participate in 3 · n · r updates and so on. Finally, the first process will have the

51

largest volume of calculations to do.
With r = bA

bB
and s = n

p·bA , the numbers of local updates can be calculated
as follows:

• First process, the new algorithm: p·r·s·(s+1)
2 ;

• First process, Auckenthalers algorithm: r · s ·
(
s · (p− 1) + s+1

2

)
• Last process, the new algorithm: r ·

(
s+ p·s·(s−1)

2

)
• Last process, Auckenthalers algorithm: r·s·(s+1)

2

Comparisons of the ratios of the local updates numbers for the first (most
loaded) and the last (less loaded) processes are presented on Figure 32. One
should not expect a strict dependency between the workload imbalance and the
algorithm performance thanks to the pipelined manner of the both implemen-
tations, and of the Auckenthalers realization in particular: the first process has
more job to do, but its starts calculations earlier and works on the new sweeps
while the last process is idle.

However, according to the Figure 32 one could expect the largest difference
in the workload balances between the two implementations for the middle range
of the process numbers. And that is exactly the area, where the new implemen-
tation outperforms the Auckenthalers one (cf. Figure 31). The effect is stronger
for a smaller bA, what implies more local block columns per process (lower part
of the figure) and less pronounced for a larger bA (upper part of the figure).

The new version cannot benefit from the communication driven implementa-
tion features on the grids of 2 processes, because the left and the right neighbours
are represented with the same process, what leads to the mostly predetermined
order of the local updates without a sufficient flexibility. Also, the workload
imbalance distinction between the new and Auckenthalers’ realizations is not
dramatic in this case.

With the close to maximal amount of processes, the Auckenthalers’ imple-
mentation is again better due to the facts, that firstly, an increase of the pro-
cess numbers leads to smaller amount of the local block columns per process,
implying a less flexible regime of our algorithm, and secondly, the workload
imbalances approach each other as the process number grows. At the very end
the data distribution schemes of the both implementations converge to the same
representation: one local block column per process.

52

2 4 8 16 32 64 128 256

Number of procs

1

3

7

15

25

42

64

100

170

256

R
a

ti
o

Our algorithm 64 -> 32

Auckenthalers algorithm 64 -> 32

Our algorithm 256 -> 32

Auckenthalers algorithm 256 -> 32

Figure 32: Ratios of numbers of updates for the most and less loaded processes.
A smaller ratio indicates better workload balance.

Comparing the SBR-based and the LAPACK-based versions one could notice
a slightly larger performance of the SBR-based implementation.

3.4 Exploiting parallelism within each block

In order to utilize more processors, each local update may be fulfilled on many
processes in parallel. To achieve this, every block column (only nonzero ele-
ments) is distributed on a separate process grid (sub-grid). That means, that
every block of size 2bA×bA is distributed on a pr×pc process sub-grid (or process
group) with torus wrapped mapping of size-bB blocks. Then the local updates
are done using the parallel multiplication routines. A process group may store
and update several block columns, but they are mapped on the process grid
separately one after another. For example, if a process group contains 2 block
columns with bA columns each, then initially the first bA columns are distributed
on the grid, and after the same is done with the last bA columns. This mapping
differs from what we would have, if we distributed the whole block of 2 · bA
columns over the process group.

The parallel running of the updates provides us an additional level of paral-
lelism by a price of some code complications. Now not just a one process must
decide which of its block columns to update (for which local block column it
has received all the necessary data: bB columns from the right neighbour and
reflectors Y with τ values from the left), but a group of processes must make
a decision cooperatively. The neighbours are not the single processes now, but
the process groups.

The updates of block columns are not done locally, but with the parallel
routines now. An efficient scheme of the update, allowing to avoid unnecessary
data transfers, will be presented in the next sections.

In addition, a shift of band to left-up looks more complicated for a 2D
case. For a 1D case it was enough for a process to receive data from the right

53

neighbour and copy it locally to a proper position in array. With a 2D data
distribution, a process has to choose a suitable process from the group to the
right (to determine a correct process row of the source). Also, an upward shift
of data must be done inside of a process group having more than one process
row. A scheme to avoid data transfers along process columns for such shifts will
also be presented.

3.4.1 Choosing a block column to update

Different processes play different roles in a group. The left-most processes of the
group receive Householder reflectors from the group to the left, and the right-
most processes receive the bB columns from the group to the right. The presented
implementation relies on an assumption, that if one process has finished with
the receive, then all the other processes of his column have also done or will
do it soon. That is why, a receiving of reflectors is checked only on one of the
left-most processes (namely, on the top-left process: it will be called left leader
of the group in the following). For the receiving from the right, the actual data
receives are tested on the top-right process (right leader of the group) only.
Under some circumstances (namely, if bA

bB
is a multiple of pc + 1) the left and

right leaders of the group are represented by the same process.
The left leader finds a local block column, for which the corresponding re-

ceive of reflectors is finished, and sends the index of the block column to the
right leader (this block column is a potential candidate to be updated, if the cor-
responding data from the right neighbouring group has arrived). Right leader
checks, if the corresponding receive from the right neighbour for this block col-
umn is fulfilled. If yes, it sends True to the left leader, and the index of the
block column to be updated is broadcasted over the process group (sub-grid).
All the processes, who took part in receives (left- and right- most processes of
the group), call the MPI Wait function to ensure a successful receive of elements
needed for the update. If the right leader has not yet received bB columns from
the right, it sends False to the left leader, and the left leader searches for the
next local block column with the finished receiving of reflectors Y from the left
neighbouring sub-grid.

If bA is not a multiple of bB, then not only the right-most processes of the
sub-grids receive data from the right, but the second-right processes do it also.
For example, if bA = 17 and bB = 4, then the right-most processes of the group
will receive 1 column, and the second-right processes will get 3 columns from
the sub-grid to the right. In such cases, when the second-right processes receive
more data than the right-most ones, we also need to ask them, if they have
finished with their receive (we ask a right sub-leader indeed: top process in the
second column from the right in the process group). If the second-right processes
of the sub-grid receive less data than the right-most ones, we do not ask them
about the receive: the probability is high, that they have already got all the
data, since their right neighbours in the sub-grid have completed a receive of
the larger amount of data from the same source during approximately the same
time. In this case the second-right processes simply call a MPI Wait function.

54

3.4.2 Communications between and inside the groups

In contrast to 1D case, where it was enough for a process to send the first bB
columns to the left neighbour, in a 2D case a process has to choose a proper
destination (process row) in a group to the left. Figure 33 shows two adjacent
process groups (the global picture can be found on Figure 28). The whole block
of 2 · bA rows is distributed over 3 process rows and consists of 2 parts with
bA rows each: the upper part, to which the SYM operation is applied, and the
lower one, which is updated with the POST, PRE and QR operations. The
dotted rectangle shows elements to be updated by the first process group on
the next sweep. For simplicity reasons it is assumed, that bA is a multiple of bB.
That means, that the left-most processes of group 2 send the updated columns
to the right-most processes of group 1 only.

Process with row index 0 needs to send its part of data to the starting process
having the lower part (this is process row 1 in our case). The row index of this
process can be calculated as PStartLow = (bAbB)%pr, where % represents a modulo
operation. Process of row 1 has to send data to the row 2 of the left neighbour
and so on. In general, every process can determine a row index of its destination
as (PStartLow + myRow)%pr.

Figure 33: Data transfers between adjacent process groups to realize a band
shift. By numbers from 0 to 2 the process rows are represented. The dotted
rectangle indicates elements to be updated on the group 1 during the next sweep.

After a block column is updated, the band is shifted left-up. For the 2D case
this shift not only includes communication with the neighbouring groups, but
data transfers inside of the group also. However, communications for the shift
up can be avoided (among process rows in groups).

According to Figure 33, if we had one additional block row of size bB in the
block, then it could be possible to shift a matrix descriptor instead of real data
transfers. A block column can be updated then as being distributed over the
same 3 process rows, but starting with row 1 instead of 0-th (it can be easily

55

achieved by changing the matrix descriptor slightly). Similarly, on the following
sweep, data can be treated as a matrix distributed over 3 processes with the
starting process row 2 (the last row in a grid). However, 2 additional block
rows are required in this case. For the next sweep, the block column is already
distributed starting with the 0-th process row. Thus, every process just needs
to shift its data locally by bB rows up to achieve desired distribution. In such
a way, having pr − 1 additional block rows (1 additional block row per process
is allocated), it is possible to completely avoid communications to represent a
vertical shift.

3.4.3 Efficient block column update

As it was discussed, the bandwidth reduction algorithm works on two parts of
the block column: upper part having bA rows is updated with the SYM oper-
ation, and on the lower part the operations QR, POST and PRE are fulfilled.
In order to achieve higher performance, these calculations must be parallelized
as much as possible. If enough process rows (≥ 2bA

bB
) are available, the separate

communicators for the upper and lower parts are built, and the updates are
fulfilled independently in parallel to each other (Figure 34, c) on these com-
municators. In this case two sub-grids are built on a process group, one above
another, instead of a single one. However, a communication free method to real-
ize the vertical shifts has a more complicated form in this case, because update
of a block column on the next sweep will include another set of process rows
than on the current one, namely, processes from 1 to 4 instead of the ones from
0 to 3. The corresponding idea will be presented in details later in Section 3.5.

During the first experiments on supercomputers it was noticed, that a QR
algorithm for one block column of size bA × bB (i.e. performing on one process
column) runs slowly. The variants of the algorithm with the QR step executed
on a single process show significantly better performance. 3 different variants
of this idea were implemented:

• OneDoes - OneSends: assemble the whole QR block of size bA × bB on a
single process; this process performs the QR operation of the whole block
and sends the reflectors by parts to all the needed destinations of the right
process group.

• AllDO - AllSend: assemble the whole QR block of size bA × bB on all the
processes of the first process column (left-most processes of the group);
every such process performs the QR operation of the whole block; every
such process sends its part of the reflectors to the right process group.

• OneDoes - AllSend: assemble the whole QR block of size bA×bB on a single
process; this process performs the QR operation of the whole block and
redistributes the reflectors over all the other processes of the first process
column; every process sends its part of the reflectors to the right process
group.

A motivation for the first variant is simple: communication volume for the
data assembling is reduced: it is cheaper to collect all the data on a single
process. It makes it also possible to run the QR operation fully in parallel to
the SYM calculation, if at least bA

bB
+ 1 process rows are available: it is simply

possible to choose a process, which is not involved in the SYM update, and to

56

run the QR operation on it (Figure 34, c). However, the obvious drawback of
the variant is that it is only a single process, who sends all the Householder
reflectors to the right group. It has to prepare data (copy operation) for all the
destinations and send it, while all the other processes of the column are idle.

That gives a motivation to involve all the processes of the left-most process
column in data sending of the reflectors. One obvious way could be to redis-
tribute results of the QR operation among all the processes of the column, and
then all such processes send their part of data to the right. This scheme still
allows to run QR in parallel to the SYM operation with relatively low process
rows number, but now we face the necessity of the additional communications
to redistribute data along process column. This step is poorly balanced, since
one process (one that performed the QR operation) has to participate in more
data transfers than the others.

Figure 34: Distribution of a block column over process groups with different
process rows numbers. a): update upper and lower blocks consecutively; b):
process 4 can make QR in parallel to the SYM update on processes from 0 to
3; c): updates of lower and upper parts run in parallel fully independently.

To avoid this disadvantage the AllDO - AllSend scheme was implemented.
The whole QR block is assembled on each of the processes of the first column.
After performing of the calculation, every process sends the needed part of
reflectors to the right. Such an approach leads to a better scalability with the
process groups increase, but it requires more communications among process
rows in order to collect the whole QR block on every process. That is why
one could expect a performance decrease for the process sub-grids having many
rows.

Application of the parallel ScaLAPACK routines on the sub-grids of process
groups would be not very efficient, because some of the operations involve just
tall or wide matrices distributed over one process column or row of the group.
Instead of calling the parallel matrix multiplication functions on the whole com-
municators of the groups, it is more efficient to do calculations locally and to
take care about the data transfers manually.

According to Section 3.3, the SYM update in the compact WY representa-
tion consists of the following steps:

1. W = YT: a multiplication of a bA× bB matrix Y, distributed over the first

57

process column of a group, by a bB × bB triangular matrix T.

2. Z = AjjW: a multiplication of a symmetric bA×bA matrix Ajj , distributed
over the process group, by a bA × bB matrix W; both Z and W are dis-
tributed over the first process column of a group.

3. S = WHZ: a multiplication of a bB × bA matrix WH by a bA × bB matrix
Z with a bB × bB matrix S as a result.

4. Z = Z − 1
2YS, with bB × bA matrices Z and Y distributed over the first

process column, and bB × bB matrix S

5. Ajj := Ajj − Y ZH − Z YH , a Hermitian rank-2m update

The first step is done as follows: the matrix T is broadcasted along the first
process column, and then every process of the column multiplies its local part of
matrix Y by T. For the second item a ScaLAPACK function P SYMM for symmetric
matrix multiplication is invoked on the whole process group.

Multiplication S = WHZ is calculated in the following way: every process
of the first process column multiplies locally its part of W with transposition
by its local part of Z. Then a collective reduction MPI Allreduce is called in
such a way, that the resulting S is available on every process of the first process
column. Now the 4-th step can be done purely locally: every process uses its
local blocks of Z and Y with the previously calculated S. The final step is done
with a ScaLAPACK routine P SYR2K invoked on all processes of a process group.

Figure 35 presents results of the 2D reduction using the 4-by-4 (upper part)
and 8-by-4 (lower part) process sub-grids (groups). bA = 512, bB = 32, n =
16Ki, tests were run on the Cobra supercomputer system. For example, a
run on the 64 processes in a case of 4-by-4 groups implies 4 sub-grids of 16
processes each. As expected, on the grids with a small number of process rows,
the AllDO - AllSend version delivers the best results for any amount of sub-
groups.

For the increased process rows number, the AllDO - AllSend implemen-
tation is predictably the slowest for a small amount of the process sub-grids:
gathering the QR blocks on all the process rows becomes expensive in this case.
However, this variant provides the best performance again with the increase of
the groups number due to a better scalability.

If the process rows number is increased over the bA
bB

value (over 16 in our case),
then the OneDoes - OneSends implementation delivers the best performance,
because the QR and SYM operations run in parallel in this case only: it is
possible to utilize one process to do the QR operation and send reflectors Y to the
right, while the other 16 process rows are working on the SYM update. For the
2 · bAbB process rows, the AllDO - AllSend variant is the fastest implementation

again, because two different grids with bA
bB

process rows each are used now for
updates of the upper and lower parts, thus running these updates in parallel for
all the versions. Table 8 presents results for 4 sub-grids of 17-by-4 and 32-by-4
for all the three variants of the algorithm.

58

64 128 256 512

Number of procs

0.5

1

1.5

2

2.5

3

3.5

T
im

e
,

[s
e

c
.]

All do QR - All send

One does QR - One sends

One does QR - All send

128 256 512 1024

Number of procs

0.5

1

1.5

2

2.5

3

T
im

e
,

[s
e

c
.]

All do QR - All send

One does QR - One sends

One does QR - All send

Figure 35: Timings on Cobra: reduction from bandwidth 512 to 32, n = 16Ki.
Upper: with the 4 x 4 sub-grids. Lower: with the 8 x 4 sub-grids.

AllDO - AllSend OneDoes - AllSend OneDoes - OneSends
groups 17× 4 2.979542 s 3.371378 s 2.634023 s
groups 32× 4 2.174447 s 2.228969 s 2.344752 s

Table 8: Timings on Cobra: reduction from bandwidth 512 to 32, n = 16Ki. 4
process groups (sub grids) were used for each run.

Figure 36 presents results for various configurations of the sub-grids. The
AllDO - AllSend implementation of the algorithm was chosen for these tests,
because it provides the best results among all the other variants. It is worth to

59

mention, that these results may be machine dependent. Since 32 processes per
node were used, all the groups configurations except of the 8×8 sub-grids make
updates in a shared memory without inter-nodes communications, whereas every
8× 8 sub-grid contains 64 cores and is distributed over 2 nodes, thus involving
inter-nodes data transfers for each update.

 4

 8

 16

 32

 64

 3 4 8 16 32 64 128 256 512 1024 2048

T
im

e
[s

ec
on

ds
]

Overall number of processes

Timings for reduction to bandwidth 32 (double real)

1 X 1
1 X 2
2 X 2
2 X 4
4 X 4
4 X 8
8 X 8

Figure 36: 2D reduction timings on COBRA, n = 16Ki, b = 512→ 32.

The 2D version of the reduction algorithm can also be compared with the 1D
variant showing the best performance for this case (Auckenthalers version) using
multithreaded BLAS in order to utilize more processor cores. Matrix size was
16 Ki , bA = 512, bB = 32. For the 1D version, 32 MPI processes with 1, 4 and
8 threads per process were used. Figure 37 shows, that the 2D implementation
is a more efficient way to use larger amount of computer resources.

64 128 256 512

Number of procs

0.5

1

1.5

2

2.5

3

3.5

T
im

e
,
[s

e
c
.]

All do QR - All send

Auckenthalers 1D

Figure 37: 2D and 1D timings comparison, n = 16Ki, b = 512→ 32.

3.5 Back transformation of eigenvectors

Once matrix A with bandwidth bA has been reduced to narrower band (bB),
B = QH

AB A QAB, and the requested eigenpairs of B have been determined,
B XB = Λ XB, the eigenvectors must be transformed back in order to find the
eigenpairs of the initial matrix A: XA = QAB XB. As pointed out in Section 3,
the reduction is done with a sequence of transformations, QAB = Q1 · · ·Qs (all

unitary/orthogonal transformations Q
(k)
j from all sweeps), and therefore the

back transformation becomes XA = Q1 · · ·Qs ·XB, meaning that all these trans-
formations must be applied to XB from the left (no conjugate transposing), and
in reverse order.

Note, that if some transformation Q` acted on bA rows (and columns) i1, . . . , i2
of the initial matrix A during the bandwidth reduction procedure, then it affects
just the same rows i1, . . . , i2 of X for the eigenvectors restore. That implies, that

60

if two different transformations updated not overlapping row ranges during the
bandwidth reduction procedure, then these transformations can be applied in-
dependently from each other and run fully in parallel during the eigenvectors
restore, because they will affect the row ranges which do not intersect. The row
ranges updated by different transformations during a one sweep are disjoint.
Thus we can proceed sweep-by-sweep (starting with the last sweep) and apply

transformations Q
(k)
1 , . . . ,Q

(k)
maxk in parallel and in any order.

This provides the first level of parallelism for the eigenvectors back trans-
formation procedure: every slice of bA rows of matrix X can be restored in
parallel to all the other slices one the same sweep. Additional parallelism can
be achieved by doing each transformation of every such slice in a distributed
way with many processes.

The transformations from the first reduction sweep affect the largest amount
of rows, therefore a description of the algorithm is started from these transfor-
mations. However, since the reflectors are applied in a reverse order, these
transformations are applied the last for the eigenvectors restore.

The matrix of eigenvectors X is assumed to be distributed in a block cyclic
manner with a distribution block size of bB over a pr × pc process grid, what is
a standard ScaLAPACK layout. For simplicity of presentation it is also assumed,
that X is distributed starting with the last process row of the grid, however this
requirement is not necessary for the implementation.

To simplify the presentation, the number of process rows is considered to be
a multiple of the ratio of initial to final bandwidth, pr = m ·ρ, where ρ = bA/bB.
This requirement allows to utilize m process groups with ρ process rows each.
Every such process group will apply transformations to a slice having bA rows
of X. Again, the developed routine is implemented to work with any process
rows numbers, but such an assumption allows to describe the idea of algorithm
in a clearer way.

The algorithm is presented for a case illustrated on Figure 38. The band-
width reduction was from bA = 128 to bB = 32 (what gives ρ = 4). With the
matrix size of n = 800 and k = 480 vectors to be back-transformed, X comprises
25× 15 size-bB blocks. A 12× 5 process grid is assumed: m = 3 process groups
of 4 × 5 each (every such process group is highlighted with its own colour on
Figure 38). Every such process group has its own dedicated MPI communicator
and represents a separated sub-grid of size ρ× pc. The first sub-grid comprises
processes with the rows indices from 0 to 3, the second group includes processes
with the rows indices from 4 to 7 and the last one has processes of rows from 8
to 11.

61

P0,0 P0,0 P0,0

P0,0 P0,0 P0,0

P0,1 P0,1 P0,1

P0,1 P0,1 P0,1

P0,2 P0,2 P0,2

P0,2 P0,2 P0,2

P0,3 P0,3 P0,3

P0,3 P0,3 P0,3

P0,4 P0,4 P0,4

P0,4 P0,4 P0,4

P1,0 P1,0 P1,0

P1,0 P1,0 P1,0

P1,1 P1,1 P1,1

P1,1 P1,1 P1,1

P1,2 P1,2 P1,2

P1,2 P1,2 P1,2

P1,3 P1,3 P1,3

P1,3 P1,3 P1,3

P1,4 P1,4 P1,4

P1,4 P1,4 P1,4

P2,0 P2,0 P2,0

P2,0 P2,0 P2,0

P2,1 P2,1 P2,1

P2,1 P2,1 P2,1

P2,2 P2,2 P2,2

P2,2 P2,2 P2,2

P2,3 P2,3 P2,3

P2,3 P2,3 P2,3

P2,4 P2,4 P2,4

P2,4 P2,4 P2,4

P3,0 P3,0 P3,0

P3,0 P3,0 P3,0

P3,1 P3,1 P3,1

P3,1 P3,1 P3,1

P3,2 P3,2 P3,2

P3,2 P3,2 P3,2

P3,3 P3,3 P3,3

P3,3 P3,3 P3,3

P3,4 P3,4 P3,4

P3,4 P3,4 P3,4

P4,0 P4,0 P4,0

P4,0 P4,0 P4,0

P4,1 P4,1 P4,1

P4,1 P4,1 P4,1

P4,2 P4,2 P4,2

P4,2 P4,2 P4,2

P4,3 P4,3 P4,3

P4,3 P4,3 P4,3

P4,4 P4,4 P4,4

P4,4 P4,4 P4,4

P5,0 P5,0 P5,0

P5,0 P5,0 P5,0

P5,1 P5,1 P5,1

P5,1 P5,1 P5,1

P5,2 P5,2 P5,2

P5,2 P5,2 P5,2

P5,3 P5,3 P5,3

P5,3 P5,3 P5,3

P5,4 P5,4 P5,4

P5,4 P5,4 P5,4

P6,0 P6,0 P6,0

P6,0 P6,0 P6,0

P6,1 P6,1 P6,1

P6,1 P6,1 P6,1

P6,2 P6,2 P6,2

P6,2 P6,2 P6,2

P6,3 P6,3 P6,3

P6,3 P6,3 P6,3

P6,4 P6,4 P6,4

P6,4 P6,4 P6,4

P7,0 P7,0 P7,0

P7,0 P7,0 P7,0

P7,1 P7,1 P7,1

P7,1 P7,1 P7,1

P7,2 P7,2 P7,2

P7,2 P7,2 P7,2

P7,3 P7,3 P7,3

P7,3 P7,3 P7,3

P7,4 P7,4 P7,4

P7,4 P7,4 P7,4

P8,0 P8,0 P8,0

P8,0 P8,0 P8,0

P8,1 P8,1 P8,1

P8,1 P8,1 P8,1

P8,2 P8,2 P8,2

P8,2 P8,2 P8,2

P8,3 P8,3 P8,3

P8,3 P8,3 P8,3

P8,4 P8,4 P8,4

P8,4 P8,4 P8,4

P9,0 P9,0 P9,0

P9,0 P9,0 P9,0

P9,1 P9,1 P9,1

P9,1 P9,1 P9,1

P9,2 P9,2 P9,2

P9,2 P9,2 P9,2

P9,3 P9,3 P9,3

P9,3 P9,3 P9,3

P9,4 P9,4 P9,4

P9,4 P9,4 P9,4

Pa,0 Pa,0 Pa,0

Pa,0 Pa,0 Pa,0

Pa,1 Pa,1 Pa,1

Pa,1 Pa,1 Pa,1

Pa,2 Pa,2 Pa,2

Pa,2 Pa,2 Pa,2

Pa,3 Pa,3 Pa,3

Pa,3 Pa,3 Pa,3

Pa,4 Pa,4 Pa,4

Pa,4 Pa,4 Pa,4

Pb,0 Pb,0 Pb,0

Pb,0 Pb,0 Pb,0

Pb,0 Pb,0 Pb,0

Pb,1 Pb,1 Pb,1

Pb,1 Pb,1 Pb,1

Pb,1 Pb,1 Pb,1

Pb,2 Pb,2 Pb,2

Pb,2 Pb,2 Pb,2

Pb,2 Pb,2 Pb,2

Pb,3 Pb,3 Pb,3

Pb,3 Pb,3 Pb,3

Pb,3 Pb,3 Pb,3

Pb,4 Pb,4 Pb,4

Pb,4 Pb,4 Pb,4

Pb,4 Pb,4 Pb,4

⇒

⇒

⇒

⇒

⇒

⇒

Q
(1)
1

Q
(1)
2

Q
(1)
3

Q
(1)
4

Q
(1)
5

Q
(1)
6

Figure 38: Distribution of a matrix X with 25× 15 blocks over a 12× 5 process
grid for back transformation (row indices are hexadecimal: a = 10 and b = 11).
The background shading corresponds to the sub-grids explained in the main

text. Left: Transformations Q
(1)
j from the first reduction sweep.

Recall, that transformations from the first reduction sweep affect all the rows
of matrix except of the first bB ones (the first block row). Thus, the data to be
updated is distributed over the 12 process rows starting from the 0-th one. Each
transformation updates bA consecutive rows of X, what corresponds to ρ block
rows, and these row ranges do not overlap. Therefore these transformations can
be applied simultaneously in parallel, if they are fulfilled by disjoint groups of
processes. Since there are m process groups of ρ × 5 each, m transformations

(Q
(1)
1 , Q

(1)
2 and Q

(1)
3 in our case) can be applied in parallel. Then another m

transformations can be applied, and so on, until the sweep is completed.
The second bandwidth reduction sweep (which precedes the first one in the

back transformation procedure) affects all the rows of a matrix except of the
first 2 block rows (2 · bB rows). Now data to be touched is distributed starting
with the 1-st process row instead of the 0-th one as it was for the first reduction
sweep. In order to update the slices of X on the previously used sub-grids

62

(having process rows {0..3}, {1..7} and {8..11}) we need to “roll” the matrix X
through the whole process grid by 1 block row upwards. That would include
data transfers and it should be avoided.

This can be achieved by moving the process groups, but not the matrix it-
self. Indeed, if we had the sub-grids having the following sets of process rows:
{1..4}, {5..8} and {9, 10, 11, 0}, than it could be possible to keep data in place.
The first such process group could update block rows from 2 to 5, the second
one - from 6 to 9 and so on. For the next sweep, the first 3 block rows will
be skipped and data to be affected is distributed starting with the 2-nd pro-
cess row. In order to apply the transformations without vertical shift of the
matrix rows, the sub-grids with the following sets of process rows are needed:
{2..5}, {6..9} and {10, 11, 0, 1}. For the next sweep the corresponding sets will
be {3..6}, {7..10} and {11, 0, 1, 2}. The following sweep can be done with the
very first configuration of sub-grids.

Thereby, every process will participate in ρ different sub-grids having differ-
ent row indices in every sub-grid. Before making an update of a X slice of bA
rows, a process has to determine a proper sub-grid to participate in. All these
sub-grids and communicators are established before the whole algorithm starts.
A total of ρ sets of m size ρ×pc sub-grids are created. Table 3.5 presents all the
required configurations for our demonstration case with the block row indices
to be transformed by every sub-grid.

Such approach allows to completely avoid data communication while shifting
from one sweep to another. Also, no additional memory allocation is needed:
data transfers are avoided for free. Exactly the same idea is realized in the
implementation of the bandwidth reduction for a case, when the upper and
lower parts of a block column are updated on the separate communicators in
parallel, i.e. with the process row number ≥ 2bA

bB
(see Section 3.4.2).

Sub-grid 0 Sub-grid 1 Sub-grid 2

(“blue”) (“green”) (“red”)

Set 0 process rows {0, 1, 2, 3} {4, 5, 6, 7} {8, 9, 10, 11}
block rows of X {1 . . . 4, 13 . . . 16} {5 . . . 8, 17 . . . 20} {0, 9 . . . 12, 21 . . . 24}

Set 1 {1, 2, 3, 4} {5, 6, 7, 8} {0, 9, 10, 11}
{2 . . . 5, 14 . . . 17} {6 . . . 9, 18 . . . 21} {0 . . . 1, 10 . . . 13, 22 . . . 23}

Set 2 {2, 3, 4, 5} {6, 7, 8, 9} {0, 1, 10, 11}
{3 . . . 6, 15 . . . 18} {7 . . . 10, 19 . . . 22} {0 . . . 2, 11 . . . 14, 23 . . . 24}

Set 3 {3, 4, 5, 6} {7, 8, 9, 10} {0, 1, 2, 11}
{4 . . . 7, 16 . . . 19} {8 . . . 11, 20 . . . 23} {0 . . . 3, 12 . . . 15, 24}

Table 9: Assignment of the process rows and the block rows of the matrix X
to the m = 3 sub-grids in each of the ρ = 4 sets. (Matrix and grid size as in
Figure 38.)

Note, that matrix X is usually distributed over a process grid starting with
the 0-th process row in contrast to our demonstration case, where the matrix
distribution starts with the 1-st row. In the presented implementation that
simply means, that the 1-st set of sub-grids will be chosen instead of the 0-th
one to apply transformations of the first reduction sweep.

63

Algorithm 7 gives a high-level summary of the back transformation within
each process. Note, that at most 2 · ρ process rows can be utilized for the band-
width reduction procedure, because 2 · bA matrix rows are stored and updated.
These rows are distributed with a block size of bB. However, the whole matrix X
with n rows is affected for the eigenvectors back transformation. Consequently,
much more process rows can and should be used. If a process row participated
in the bandwidth reduction, then a process of some column in this process row
may already have the needed Householder transformations in a form of reflec-
tors Y and triangular matrix T (and it for sure has the needed reflectors, if the
process rows amount was not larger than ρ, what means that every process row
participated in all the QR operations). On the contrary, the additional process
rows, which did not took part in the bandwidth reduction, will have to receive
the required transformations to apply them. Since progress is controlled by
communication, there is limited potential for asynchrony: some processes may
progress to the next sweep (if their whole new sub-grid can do so) while others
are still working on the previous sweep. However, the overlapping rows of X
must be updated in a certain prescribed order: the transformations from the
i+ 1-th reduction sweep must precede the ones from the i-th sweep.

Algorithm 7: Back transformation for one process

1 for sweep = last downto 1 do
2 adopt my sub-grid for this sweep: choose the proper communicator ;
3 for all transformations Y from this sweep do
4 if I have (parts of) Householder transforms for Y then
5 send them to needed destination ;
6 end
7 if I participate in applying Y then
8 if I do not have all data for Y then
9 receive them

10 end
11 apply Y (jointly with the whole sub-grid) ;

12 end

13 end

14 end

The algorithm can also be extended to the general situation where the above
assumptions (bA is a multiple of bB, and pr is a multiple of ρ = bA/bB) do not
hold.

If pr is not a multiple of ρ, then a process may participate in different sub-
grids during the same sweep (Figure 39). For example, processes of the 0-th row

are included both in the blue and red sub-grids to apply Q
(1)
1 and Q

(1)
3 transforms

respectively. That implies, that a suitable sub-grid (communicator) must be
adopted to apply every single transformation (instead of once per sweep). Also,
some processes may be idle while waiting the other members of its sub-grid. For
the case presented on Figure 39, the process rows from 0 to 3 and from 4 to

7 will simultaneously apply transforms Q
(1)
1 and Q

(1)
2 respectively, whereas the

process rows 8 and 9 will not be able to start with Q
(1)
3 , while process rows 0

and 1 are busy. After the first 2 sub-grids have finished with their updates, the

64

group of process rows {8, 9, 0, 1} starts with application of Q
(1)
3 and sub-gird

{2, 3, 4, 5} applies Q
(1)
4 . However, process rows 6 and 7 can not start with the

Q
(1)
5 update, because processes of the 8-th and 9-th rows are busy. In general,

it is better to use pr being a multiple of ρ to achieve maximal efficiency of the
algorithm implementation.

P9,0 P9,0 P9,0P9,1 P9,1 P9,1P9,2 P9,2 P9,2P9,3 P9,3 P9,3P9,4 P9,4 P9,4

P0,0 P0,0 P0,0P0,1 P0,1 P0,1P0,2 P0,2 P0,2P0,3 P0,3 P0,3P0,4 P0,4 P0,4

P1,0 P1,0 P1,0P1,1 P1,1 P1,1P1,2 P1,2 P1,2P1,3 P1,3 P1,3P1,4 P1,4 P1,4

P2,0 P2,0 P2,0P2,1 P2,1 P2,1P2,2 P2,2 P2,2P2,3 P2,3 P2,3P2,4 P2,4 P2,4

P3,0 P3,0 P3,0P3,1 P3,1 P3,1P3,2 P3,2 P3,2P3,3 P3,3 P3,3P3,4 P3,4 P3,4

P4,0 P4,0 P4,0P4,1 P4,1 P4,1P4,2 P4,2 P4,2P4,3 P4,3 P4,3P4,4 P4,4 P4,4

P5,0 P5,0 P5,0P5,1 P5,1 P5,1P5,2 P5,2 P5,2P5,3 P5,3 P5,3P5,4 P5,4 P5,4

P6,0 P6,0 P6,0P6,1 P6,1 P6,1P6,2 P6,2 P6,2P6,3 P6,3 P6,3P6,4 P6,4 P6,4

P7,0 P7,0 P7,0P7,1 P7,1 P7,1P7,2 P7,2 P7,2P7,3 P7,3 P7,3P7,4 P7,4 P7,4

P8,0 P8,0 P8,0P8,1 P8,1 P8,1P8,2 P8,2 P8,2P8,3 P8,3 P8,3P8,4 P8,4 P8,4

P9,0 P9,0 P9,0P9,1 P9,1 P9,1P9,2 P9,2 P9,2P9,3 P9,3 P9,3P9,4 P9,4 P9,4

P0,0 P0,0 P0,0P0,1 P0,1 P0,1P0,2 P0,2 P0,2P0,3 P0,3 P0,3P0,4 P0,4 P0,4

P1,0 P1,0 P1,0P1,1 P1,1 P1,1P1,2 P1,2 P1,2P1,3 P1,3 P1,3P1,4 P1,4 P1,4

P2,0 P2,0 P2,0P2,1 P2,1 P2,1P2,2 P2,2 P2,2P2,3 P2,3 P2,3P2,4 P2,4 P2,4

P3,0 P3,0 P3,0P3,1 P3,1 P3,1P3,2 P3,2 P3,2P3,3 P3,3 P3,3P3,4 P3,4 P3,4

P4,0 P4,0 P4,0P4,1 P4,1 P4,1P4,2 P4,2 P4,2P4,3 P4,3 P4,3P4,4 P4,4 P4,4

P5,0 P5,0 P5,0P5,1 P5,1 P5,1P5,2 P5,2 P5,2P5,3 P5,3 P5,3P5,4 P5,4 P5,4

P6,0 P6,0 P6,0P6,1 P6,1 P6,1P6,2 P6,2 P6,2P6,3 P6,3 P6,3P6,4 P6,4 P6,4

P7,0 P7,0 P7,0P7,1 P7,1 P7,1P7,2 P7,2 P7,2P7,3 P7,3 P7,3P7,4 P7,4 P7,4

P8,0 P8,0 P8,0P8,1 P8,1 P8,1P8,2 P8,2 P8,2P8,3 P8,3 P8,3P8,4 P8,4 P8,4

P9,0 P9,0 P9,0P9,1 P9,1 P9,1P9,2 P9,2 P9,2P9,3 P9,3 P9,3P9,4 P9,4 P9,4

P0,0 P0,0 P0,0P0,1 P0,1 P0,1P0,2 P0,2 P0,2P0,3 P0,3 P0,3P0,4 P0,4 P0,4

P1,0 P1,0 P1,0P1,1 P1,1 P1,1P1,2 P1,2 P1,2P1,3 P1,3 P1,3P1,4 P1,4 P1,4

P2,0 P2,0 P2,0P2,1 P2,1 P2,1P2,2 P2,2 P2,2P2,3 P2,3 P2,3P2,4 P2,4 P2,4

P3,0 P3,0 P3,0P3,1 P3,1 P3,1P3,2 P3,2 P3,2P3,3 P3,3 P3,3P3,4 P3,4 P3,4

⇒

⇒

⇒

⇒

⇒

⇒

Q
(1)
1

Q
(1)
2

Q
(1)
3

Q
(1)
4

Q
(1)
5

Q
(1)
6

Figure 39: Distribution of a matrix X with 25× 15 blocks over a 10× 5 process
grid for back transformation.

If bA is not a multiple of bB, then a process may be involved in the update
of two adjacent slices of X. In this case an update of the second slice cannot be
started before the update of the first one is finished (top process of the second
sub-grid is busy with the update of the first slice in a role of the bottom process
of the first sub-grid). Update of the third slice will start only when the update
of the second one is finished, and so on: on a high level algorithm performs in
a serial way. In order to avoid this, firstly the odd-numbered transformations
within each sweep must be applied, and then the even-numbered ones. The
updates of the first and of the third block rows for example, can be done in par-
allel since the corresponding sub-grids have no common process rows. However,

65

having bA as a multiple of bB increases performance of the implementation.

3.5.1 Efficient application of transformations

As it was for the bandwidth reduction, there are again different ways to apply
each transformation X(i1 : i2, :) := Q` · X(i1 : i2, :), on a ρ× pc sub-grid.

Q` represents the product of Householder transformations, which already had
been determined during the bandwidth reduction. ScaLAPACK library contains
a routine PDLARFB to apply Q` directly. In a case of eigenvectors back transfor-
mation this routine affects a relatively large bA × k block of X in contrast to a
small block of size bA× bA for the bandwidth reduction procedure. That is why
application of this function looks more promising for the eigenvectors restore.

Alternatively, it was also implemented a version with the parallel multiplica-
tions of the compact WY representation as it was described in the Section 3.3.
According to this procedure, application of the Householder reflectors from the
left is represented by the following multiplications:
X(i1 : i2, :) = X(i1 : i2, :)−WYHX(i1 : i2, :),
with W = YT. Here the updated block of X has a size of bA × k, W and Y
are bA × bB tall matrices, distributed over one process column, and T is a small
upper triangular matrix of size bB × bB.

This update can be realized with the following steps:

1. W = YT

2. V = −YHX(i1 : i2, :)

3. X(i1 : i2, :) = X(i1 : i2, :) + WV

The first item can be implemented as local multiplications by a triangular ma-
trix T on one process column. T must be broadcasted along this process column
before the calculations. For the last two operations the general matrix multi-
plication routines of the ScaLAPACK library can be utilized. This is not a very
efficient approach and it can be improved by several ideas. These improvements
will be presented one after another to observe the benefits of every idea sep-
arately. Finally, the best of the implementations will be compared with the
ScaLAPACK version using the PDLARFB function.

Performance of different versions will be demonstrated for a case of matrix
size 16Ki, bA = 512 and bB = 32. The corresponding ρ = bA

bB
is 16. 100% of

eigenvectors will be restored (k = n) on the COBRA supercomputer system.
Benchmarks for a version with the general matrix multiplications are presented
on Figure 40. The upper plot of the figure demonstrates scalability of the
implementation with pc growth for two different values pr of 4 and 32. The lower
plot presents efficiency of the algorithm as a function of pr with the constant
pc = 32.

66

Figure 40: Strong scaling for back transformation of all eigenvectors for the
first version of the algorithm. Upper plot: grids of 4 and 32 process rows with
different process columns numbers. Lower plot: different process rows numbers
with pc = 32.

The first naive implementation has poor scaling as pc grows. That happens
because the ScaLAPACK multiplications (items 2 and 3) are applied on wide pro-
cess grids (pc > pr). These routines provide lower efficiency for large rectangular
grids with a lot of process columns. Also, this implementation scales poorly with
the pr growth. As it was mentioned in Section 3.5, in order to guarantee that
every process row contains all the needed Householder transforms in some of
the processes of this row (different reflectors may belong to different processes
of the row), it is needed that a requirement pr ≤ ρ was true, because all the
process rows have participated in every QR operation in this case. However, if
a process row needs reflectors resulted in a QR operation, for which this process
row was not utilized, then the processes of this row have to receive the required
reflectors before the update. That causes a significant drop of efficiency on the
lower plot of Figure 40 for pr = 32 in comparison to the grid with pr = 16:
since the ρ value is 16, no communications for the Householder transforms are
needed for the cases of process rows number less or equal to 16.

At first, the problem of the algorithm scaling with the pr increase is solved.
Since all the needed reflectors are already available before the eigenvectors re-
store starts, and it is known, which of them will be needed on which processes

67

and in which order, it is possible to initiate all the sends and receives in the asyn-
chronous regime before the real calculations take place. On the computation
phase, if a process needs the specific reflectors in order to make a correspond-
ing calculation, it waits till the appropriate receive is finished and applies the
received reflectors. In practice, however, this receive is usually finished by the
moment it is needed. While working on first update, a process is receiving data
for the next updates. In the following this implementation is called a “send
ahead” version of the algorithm.

The results of such an approach are presented on Figure 41. There is pre-
dictably no difference between the first and the send ahead versions for 4 process
rows, because there are no communications for Householder transforms in cases
of pr ≤ ρ. However, for the grids with 32 process rows the send ahead imple-
mentation has significantly higher performance than the first naive version. The
lower picture of the figure shows scalability properties of the both implemen-
tations as a function of pr with constant pc. The both versions have the same
efficiency for all the cases with pr ≤ ρ, however for pr > ρ the new variant scales
noticeably better. Also, there is no efficiency drop after crossing the border of
pr = ρ.

Figure 41: Strong scaling for back transformation of all eigenvectors for the first
and send ahead versions of the algorithm. Upper plot: grids of 4 and 32 process
rows with different process columns numbers. Lower plot: different process rows
numbers with pc = 32.

Though a better scalability with the process rows growth was achieved, a
speed up with the process columns increase could be better. An attention should
be paid to the last two multiplications of the update: V = −YHX(i1 : i2, :) and
X(i1 : i2, :) = X(i1 : i2, :) + WV, where Y and W have size of bA × bB and are

68

distributed over every process column of a sub-grid (Y was broadcasted over all
the process columns and W was calculated on each of them on the first step
of the update). Result of the second multiplication V = −YHX(i1 : i2, :) has
shape of bB×k and distributed over the first process row of the sub-grid. Every
process column has to compute its block V of size bB × bB using Y and its own
block column of X. Thus, every process column has all the necessary data to
compute its part of V. That is also true for the last operation X(i1 : i2, :) =
X(i1 : i2, :) + WV of the update: every process column can compute its part of
X using its own parts of V and W only.

Thus, once the reflectors Y are broadcasted over the process columns, the
whole update can be done by each process column separately from the oth-
ers with no communications among them. That should be much more efficient
than applying the parallel multiplication routines on the whole sub-grids having
many process columns. For the presented implementation, the separate com-
municators with grids of size ρ× 1 are built for each of the process columns of
a sub-grid, and the multiplication functions are invoked on these one-column
grids. Figure 42 compares performance of this version with the send ahead im-
plementation (the new variant is called “updates on columns” implementation).

The upper plot of the figure shows, that the new version scales significantly
better than the old one as pc increases for all the presented values of pr. Sur-
prisingly, making computations on the process columns improves efficiency of
implementation with increase of process rows number also. Processes were or-
dered by column indices while building the global process grid in the presented
experiments. Increase of the process rows number leads to larger distances be-
tween processes of different columns in terms of global indexing. Since sub-grids,
which are used for computations, include all the pc process columns, that means
that processes of the same sub-grid belong to different nodes of the supercom-
puter system (not even adjacent ones), if pr exceeds amount of available cores
per node. That significantly slows down parallel routines running on the whole
sub-grids because of expensive inter nodes communications. Changing process
order from column-wise to row-wise would not solve the problem: distances be-
tween process rows (in terms of global indexing) would grow with increase of pc
in this case. However, processes of the same column are adjacent ones in the
case of column indexing. Running updates on the process columns separately
avoids data transfers among process columns, thus all the calculations can be
done on the nodes locally, if every node provides not less than ρ cores (since
ρ is a length of the process columns of sub-grids). That was the case for the
presented measurements.

69

Figure 42: Strong scaling for back transformation of all eigenvectors for the
send ahead and on-columns update versions of the algorithm. Upper plot: grids
of 4 and 32 process rows with different process columns numbers. Lower plot:
different process rows numbers with pc = 32.

The previously mentioned two multiplications V = −YHX(i1 : i2, :) and
X(i1 : i2, :) = X(i1 : i2, :) + WV can be further improved by optimizing commu-
nications on the process columns. During the first multiplication every process
calculates its part of V with the following summation (reduction) of the result
on the first process of the column. Then this matrix V is used for the second
multiplication, what implies data transfers from the first process of the column
to the other ones. That leads to redundant communications during these two
multiplications.

Performance of the computations can be improved by making communica-
tions manually and using LAPACK locally to realize calculations on the processes.
The scheme of computations on a process column looks as follows:

• Every process calculates its part of V using its local blocks of Y and X.

• The resulting matrix V is summed up on every process of the column with
the MPI Allreduce function.

• Every process updates its part of X locally according to the second multi-
plication.

70

In such a way, only one all-reduction communication operation of the bB×bB
block is required in order to implement the above mentioned multiplications.
This version is called “local updates” in the following.

Figure 43 presents efficiency comparison of the new version with the previ-
ous one (updates on columns). It can be seen, that the new version provides
slightly better performance for all the grid configurations. Efficiency benefit
is relatively small for the grid with 4 process row, because the applied idea
optimizes communications along process columns (among rows). With small
number of process rows this optimization is less significant. However, for the
larger values of pr the improvements are noticeable.

Figure 43: Strong scaling for back transformation of all eigenvectors for the
on-columns update and local updates versions of the algorithm. Upper plot:
grids of 4 and 32 process rows with different process columns numbers. Lower
plot: different process rows numbers with pc = 32.

In Section 3.3 it was mentioned, that it may be beneficial to reduce amount
of generations of matrix T by sending it with the Householder transformations to
the right neighbours. That doesn’t lead to increase of communication volume,
because T is copied as an upper triangular matrix to the upper part of the
trapezoidal matrix Y. All the previous implementations of the 2D algorithm
didn’t exploit this idea, but now it is possible to estimate the real improvements
of such an approach.

71

Figure 44 demonstrates comparisons of this implementation with the previ-
ous one (the new version is called “send T”). The new variant of the update
provides slightly better performance for all process grid configurations.

Figure 44: Strong scaling for back transformation of all eigenvectors for the
local updates and send T versions of the algorithm. Upper plot: grids of 4 and
32 process rows with different process columns numbers. Lower plot: different
process rows numbers with pc = 32.

Eventually, a comparison of the final implementation of the algorithm with
the version using the PDLARFB routine of ScaLAPACK to apply the Householder
transformations (the “ScaLAPACK backend” version in the following) is done.
For the ScaLAPACK implementation all the possible improvements from the
presented version have been applied, including send ahead idea for the House-
holder reflectors and updates on the process columns. Since the global communi-
cation schemes of the both implementations coincide, the performance difference
comes from different realizations of the Householder reflectors application on the
sub-grids.

Figure 45 presents the corresponding results. The mannual way to apply the
Householder transforms is slightly (for small pr) or noticeably (for larger process
rows numbers) faster than the PDLARFB function of ScaLAPACK. There exists
an older routine PDORM2R in the ScaLAPACK library to apply the Householder
reflectors, however it demonstrated significantly lower performance in the tests.

72

Figure 45: Strong scaling for back transformation of all eigenvectors for the
send T and ScaLAPACK update versions of the algorithm. Upper plot: grids
of 4 and 32 process rows with different process columns numbers. Lower plot:
different process rows numbers with pc = 32.

4 Conclusions

The fast and efficient functions have been implemented to speed up certain steps
of eigenvalues solvers. Namely, performance of eigenproblems reductions and of
the corresponding eigenvectors back transformations was increased.

The main emphasis was made on parallel performance of the algorithms on
modern supercomputers. By applying the most advanced features of the MPI

library, as well as introducing of tricks and fresh ideas it was possible to achieve
higher efficiency of the programs in comparison with the existing solutions.

The presented implementation of the generalized to standard eigenproblem
reduction and the corresponding restore of eigenvectors outperform the previous
solutions thanks to its following features:

• utilization of triangular structures and symmetry properties of the in-
volved matrices in order to reduce computational complexity and commu-
nication volume

• avoidance of the collective communications and of strict synchronization

73

points

• overlapping of calculations and communications where it is possible

• using the increased memory volume of the modern supercomputers to
avoid redundant communications (buffering idea)

• paying much attention to the process grids configurations according to
specific features of the tasks to be solved.

The implemented bandwidth reduction and the following back transforma-
tion of eigenvectors provide better efficiency as compared to the existing imple-
mentations due to:

• wide usage of asynchronous communications and early sends to realize
overlapping of communications and calculations

• data driven approach providing maximum of flexibility to the algorithm

• reducing amount of the communication operations by doing them manu-
ally where it is necessary and using local LAPACK routines instead of the
ScaLAPACK ones; shifting the process grids instead of sending data where
it is possible

• building the most suitable process grids to run certain parallel functions
on them (one-column grids)

• implementation of the algorithms to use level-3 BLAS functions.

Acknowledgments

This work was partly supported by the Federal Ministry of Education and Re-
search within the project “ELPA-AEO, Eigenvalue soLvers for Petaflop Appli-
cations – Algorithmic Extensions and Optimizations”under Grant 01IH15001.

The author wants to thank the Max Planck Computing and Data Facil-
ity (MPCDF), Garching, and the Riken Advanced Institute for Computational
Science, Kobe, for providing access to the COBRA, HYDRA and K computer
systems, respectively.

74

List of Figures

1 Distribution of the blocks of the matrices A and B after the initial
skewing for the case that every process holds exactly one block
of each matrix. For each block, the block number is shown with
upright font, followed by the process coordinates in slanted font.
The numbers next to the arrows indicate by how many positions
the blocks in the respective block row (block column) have been
shifted to the left (upward). 6

2 Initial skewing of matrices A and B for a 2D block cyclic dis-
tribution. The matrices A and B have 12 block rows and block
columns, the process grid is of size 6-by-6 (shown by thick black
lines). For each block, the block number is shown with upright
font, followed by the process coordinates in slanted font. The
block indices are hexadecimal, i.e., a ≡ 10 and b ≡ 11. The num-
bers next to the arrows indicate by how many positions the blocks
in the respective block row (block column) have been shifted to
the left (upward). The blocks ending up in P2,4 are shaded. . . . 7

3 2D block cyclic distribution of the matrices A and B on a rect-
angular process grid after the skewing. A and B have 12 block
rows and block columns each, and the process grid is of size 3×6
(shown by thick black lines). Block and process numbers, as well
as communication distance (next to the arrows), are denoted as
in Figure 2. The blocks ending up in P2,4 are shaded. 8

4 Initial skewing of the matrices A and U and distribution of the
resulting matrix Mu (upper triangle of M) on a 3×6 process grid
(shown by thick black lines). Block and process numbers, as well
as communication distance (next to the arrows), are denoted as
in Figure 2. The blocks ending up in P2,4 are shaded. “−” marks
a zero block, which is not touched. 12

5 Local matrix data during Algorithm 2 after the initial skewing for
two processes, P0,1 in the “upper part” of the grid (i.e., myRow ≤
myCol), and P2,0 in the “lower part” (myRow > myCol). Pictures
a) and b) show the local parts of the matrix Mu that are held
and updated by these processes, and pictures a1)–a3) and b1)–b3)
indicate the current contents of the buffers Aloc and Uloc (more
precisely, the Aout

loc and Uout
buf used for the update) available in the

three iterations i = 0 to 2. Below each of these buffers the process,
from which it came originally, is indicated. Thick horizontal lines
are used when no block from a block column of U had been packed
into a Ubuf . Matrix sizes and process grid are as in Figure 4. The
block indices are hexadecimal, i.e., a ≡ 10 and b ≡ 11. 15

6 Timings for multiplication 1 on Cobra. Upper: n = 30,000, nb is
taken the best among 32, 64 and 128. Lower: n = 15,000, nb = 64 17

7 Timings for multiplication 1 on Hydra. n = 30,000, nb = 64 . . . 18
8 Timings for multiplication 1 with Cannon’s algorithm on Cobra.

n = 30,000, nb = 64. Row and column ordering of processes. . . . 19
9 Timings for multiplication 1 with Cannon’s algorithm on Hydra.

n = 30,000, nb = 64. Flat and tall grids. 20

75

10 Distribution of the matrices L, U , and the lower triangle of Ã
before the skewing for multiplication 2 on a 3 × 6 process grid
(shown by thick black lines). Block and process numbers are
denoted as in Figure 2. “−” marks a zero block, which is not
touched. 23

11 Local matrix data during Algorithm 2 after the initial skewing for
process, P1,1. The left picture shows the local part of the matrix

Ã that is held and updated by this process, and the remaining
pictures indicate the current contents of the buffers Lbuf and Ubuf

(more precisely, the Lout
buf and Uout

buf used for the update) available
in the three iterations i = 0 to 2. Below each of these buffers
we indicate the process from which it came originally, and thick
horizontal lines are used when no block from a block column of
L or U had been packed into the buffer. The block indices are
hexadecimal, i.e., a ≡ 10 and b ≡ 11. 23

12 Timings for multiplication 2 on Cobra. n = 30,000. Upper: nb is
taken the best among 32, 64 and 128. Use square grids where it
is possible. Lower: nb = 64, use rectangular grids for 4096 and
16384 processes. 25

13 Timings for multiplication 2 on Cobra. n = 60,000, nb = 64. Up-
per: use square grids where it is possible. Lower: use rectangular
grids for 4096 and 16384 processes. 25

14 Timings for multiplication 2 on Hydra. n = 30,000, nb = 64. Use
square grids where it is possible. 26

15 Timings in a case of n = 15,000, nb = 64 on Cobra. Upper:
timings for reduction to a standard form. Lower: timings for a
back transformation, restore 33% of eigenvectors. 30

16 Timings in a case of n = 30,000 on Cobra. nb is taken the best
among 32, 64 and 128. Upper: timings for reduction to a standard
form. Lower: timings for a back transformation, restore 33% of
eigenvectors. 31

17 Back transformation of 100% of eigenvectors on Cobra, n =
30,000. Upper: nb taken the best among 32, 64 and 128, use
square grids where it is possible. Lower: use rectangular grids
for 4096 and 16384 processes with nb = 64. 33

18 For a case of n = 60,000, nb = 64 on Cobra. Upper: reduction
to a standard form. Lower: a back transformation of 33% of
eigenvectors. 34

19 Timings for reduction to a standard form in a complex case on
Cobra. n = 30,000, nb = 64. 34

20 Timings for reduction to a standard form on Hydra. n = 30,000,
nb = 64. Upper: double real case. Lower: double complex case. . 35

21 Hydra: reduction to a standard form times. n = 30,000, nb = 64. 36
22 Timings for reduction to a standard form plus inverse of U on

Hydra. n = 30,000, nb = 64. 36
23 K-comp: timings for n = 30,000, nb = 64. Upper: reduction to a

standard form. Lower: back transformation of 100% of eigenvectors. 37
24 K-comp: timings for reduction to a standard form. n = 60,000,

nb = 64. 37

76

25 Block partition of the (lower part of) the band on the first sweep
of the reduction. All blocks are bA× bA, except for the first block
column (width bB) and block row N 41

26 First sweep in the bandwidth reduction. (a) Initial QR decom-

position of A10. (b) Applying the resulting Q
(1)
1 from both sides.

(c), (d) Transformations 2 and 3 of the sweep, involving Q
(1)
2 and

Q
(1)
3 . (e) Structure of the band after the first sweep. (f) Shifting

of the blocks for sweep 2. Dark grey indicates entries that are
modified during the respective step, and light grey is used for the
remaining nonzero entries. 42

27 Operations applied to a particular block column j during the kth

sweep (with Qold ≡ Q
(k)
j and Qnew ≡ Q

(k)
j+1). 43

28 Data distribution for a one sweep. 44
29 Timesteps for a pipelined parallel run of the bandwidth reduction.

By b.c. the local block columns of the processes are denoted. . . 47
30 Strong scaling for the bandwidth reduction on COBRA (32 pro-

cesses per node). 49
31 Timings for 1D reduction, n = 16Ki. Upper: b = 256 → 32.

Lower: b = 64→ 32. 51
32 Ratios of numbers of updates for the most and less loaded pro-

cesses. A smaller ratio indicates better workload balance. 53
33 Data transfers between adjacent process groups to realize a band

shift. By numbers from 0 to 2 the process rows are represented.
The dotted rectangle indicates elements to be updated on the
group 1 during the next sweep. 55

34 Distribution of a block column over process groups with different
process rows numbers. a): update upper and lower blocks con-
secutively; b): process 4 can make QR in parallel to the SYM
update on processes from 0 to 3; c): updates of lower and upper
parts run in parallel fully independently. 57

35 Timings on Cobra: reduction from bandwidth 512 to 32, n =
16Ki. Upper: with the 4 x 4 sub-grids. Lower: with the 8 x 4
sub-grids. 59

36 2D reduction timings on COBRA, n = 16Ki, b = 512→ 32. . . . 60
37 2D and 1D timings comparison, n = 16Ki, b = 512→ 32. 60
38 Distribution of a matrix X with 25×15 blocks over a 12×5 process

grid for back transformation (row indices are hexadecimal: a = 10
and b = 11). The background shading corresponds to the sub-

grids explained in the main text. Left: Transformations Q
(1)
j from

the first reduction sweep. 62
39 Distribution of a matrix X with 25 × 15 blocks over a 10 × 5

process grid for back transformation. 65
40 Strong scaling for back transformation of all eigenvectors for the

first version of the algorithm. Upper plot: grids of 4 and 32
process rows with different process columns numbers. Lower plot:
different process rows numbers with pc = 32. 67

77

41 Strong scaling for back transformation of all eigenvectors for the
first and send ahead versions of the algorithm. Upper plot: grids
of 4 and 32 process rows with different process columns numbers.
Lower plot: different process rows numbers with pc = 32. 68

42 Strong scaling for back transformation of all eigenvectors for the
send ahead and on-columns update versions of the algorithm.
Upper plot: grids of 4 and 32 process rows with different process
columns numbers. Lower plot: different process rows numbers
with pc = 32. 70

43 Strong scaling for back transformation of all eigenvectors for the
on-columns update and local updates versions of the algorithm.
Upper plot: grids of 4 and 32 process rows with different process
columns numbers. Lower plot: different process rows numbers
with pc = 32. 71

44 Strong scaling for back transformation of all eigenvectors for the
local updates and send T versions of the algorithm. Upper plot:
grids of 4 and 32 process rows with different process columns
numbers. Lower plot: different process rows numbers with pc = 32. 72

45 Strong scaling for back transformation of all eigenvectors for the
send T and ScaLAPACK update versions of the algorithm. Upper
plot: grids of 4 and 32 process rows with different process columns
numbers. Lower plot: different process rows numbers with pc = 32. 73

List of Tables

1 Timings (in seconds) for row-wise and column-wise ordering of
the processes in multiplication 1 on Cobra (matrix size n =
30,000, nb = 64). 19

2 Timings (in seconds) for rectangular and square grids for multi-
plication 2 (matrix size n = 30,000, block size nb = 64). 26

3 Timings (in seconds) for rectangular and square grids for multi-
plication 2 (matrix size n = 60,000, block size nb = 64). 26

4 Size of the required buffer for full buffering of U according to (4)
in MB per process (1 MB = 10242 bytes) for different numbers
of process columns, pc, and matrix sizes, n, with double precision
real data, i.e., 8 bytes per element, and block size nb = 64. 29

5 Timings (in seconds) for rectangular and square grids for reduc-
tion to a standard form with the no-buffered Cannon’s algorithm
(matrix size N = 30,000, nb = 64). 31

6 Timings (in seconds) for rectangular and square grids for back
transformation of 100% of eigenvectors with the Cannon’s algo-
rithm (matrix size N = 30,000, block size nb = 64). 33

7 Maximum residuals and deviation fromB-orthonormality for vary-
ing dimensions n and condition numbers cond(B) ≈ λmax(A,B). 38

8 Timings on Cobra: reduction from bandwidth 512 to 32, n =
16Ki. 4 process groups (sub grids) were used for each run. 59

9 Assignment of the process rows and the block rows of the matrix
X to the m = 3 sub-grids in each of the ρ = 4 sets. (Matrix and
grid size as in Figure 38.) . 63

78

Bibliography

[1] E. Anderson et al. LAPACK Users’ Guide. 3rd. Philadelphia, PA: SIAM,
1999.

[2] Thomas Auckenthaler. “Highly Scalable Eigensolvers for Petaflop Appli-
cations”. Dissertation. München: Technische Universität München, 2013.
url: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:
%2091-diss-20130115-1115722-0-3.

[3] Christian H. Bischof, Bruno Lang, and Xiaobai Sun. “A Framework for
Symmetric Band Reduction”. In: ACM Trans. Math. Software 26.4 (Dec.
2000), pp. 581–601. doi: 10.1145/365723.365735.

[4] Christian H. Bischof, Bruno Lang, and Xiaobai Sun. “Algorithm 807: The
SBR Toolbox—Software for Successive Band Reduction”. In: ACM Trans.
Math. Software 26.4 (Dec. 2000), pp. 602–616. doi: 10.1145/365723.
365736.

[5] Christian Bischof and Charles Van Loan. “The WY Representation for
Products of Householder Matrices”. In: SIAM J. Sci. Stat. Comput. 8.1
(Jan. 1987), s2–s13.

[6] L. S. Blackford et al. ScaLAPACK Users’ Guide. Philadelphia, PA: SIAM,
1997. doi: 10.1137/1.9780898719642.

[7] Lang Bruno and Manin Valeriy. “Cannon-type triangular matrix multi-
plication for the reduction of generalized HPD eigenproblems to standard
form”. In: Parallel Computing (2019). doi: 10.1016/j.parco.2019.

102597.

[8] Lang Bruno and Manin Valeriy. “Efficient parallel reduction of bandwidth
for symmetric matrices”. In: Submitted to Parallel Computing (2022).

[9] Lynn Elliot Cannon. “A Cellular Computer to Implement the Kalman
Filter Algorithm”. PhD thesis. Bozeman, MT: Montana State University,
1969.

[10] Jaeyoung Choi. “A new parallel matrix multiplication algorithm on distributed-
memory concurrent computers”. In: Concurrency Computat.: Pract. Ex-
per. 10.8 (1998), pp. 655–670. doi: 10.1002/(SICI)1096-9128(199807)
10:8<655::AID-CPE369>3.0.CO;2-O.

[11] Jaeyoung Choi, Jack J. Dongarra, and David W. Walker. “Parallel Matrix
Transpose Algorithms on Distributed Memory Concurrent Computers”.
In: Parallel Comput. 21.9 (Sept. 1995), pp. 1387–1405. doi: 10.1016/

0167-8191(95)00016-H.

[12] Jaeyoung Choi, David W. Walker, and Jack J. Dongarra. “Pumma: Par-
allel Universal Matrix Multiplication Algorithms on Distributed Memory
Concurrent Computers”. In: Concurrency: Pract. Exper. 6.7 (Oct. 1994),
pp. 543–570. doi: 10.1002/cpe.4330060702.

[13] E. Cuthill and J. McKee. “Reducing the Bandwidth of Sparse Symmet-
ric Matrices”. In: Proc. 24th Nat. Conf. Assoc. Comput. Mach. Assoc.
Comput. Mach., 1969, pp. 157–172.

79

[14] Eliezer Dekel, David Nassimi, and Sartaj Sahni. “Parallel Matrix and
Graph Algorithms”. In: SIAM J. Comput. 10.4 (1981), pp. 657–675. doi:
10.1137/0210049.

[15] Jack J. Dongarra et al. “Algorithm 656—An Extended Set of Basic Linear
Algebra Subprograms: Model Implementation and Test Programs”. In:
ACM Trans. Math. Software 14.1 (Mar. 1988), pp. 18–32.

[16] Jack J. Dongarra et al. “An Extended Set of FORTRAN Basic Linear
Algebra Subprograms”. In: ACM Trans. Math. Software 14.1 (Mar. 1988),
pp. 1–17.

[17] V. Fock. “Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems”.
In: Z. Phys. 1930.1–2 (Jan. 1930), pp. 126–148. doi: 10.1007/BF01340294.

[18] G. C. Fox, S. W. Otto, and A. J. G. Hey. “Matrix Algorithms on a Hyper-
cube I: Matrix Multiplication”. In: Parallel Comput. 4 (1987), pp. 17–31.
doi: 10.1016/0167-8191(87)90060-3.

[19] R. A. van de Geijn and J. Watts. “SUMMA: Scalable Universal Ma-
trix Multiplication Algorithm”. In: Concurrency: Pract. Exper. 9.4 (Apr.
1997), pp. 255–274. doi: 10.1002/(SICI)1096-9128(199704)9:4<255::
AID-CPE250>3.0.CO;2-2.

[20] Gene H. Golub and Charles F. Van Loan. Matrix Computations. 4th.
Baltimore, MD: The Johns Hopkins University Press, 2013.

[21] Toshiyuki Imamura, Susumu Yamada, and Masahiko Machida. “Develop-
ment of a High-Performance Eigensolver on a Peta-Scale Next-Generation
Supercomputer System”. In: Progress in Nuclear Science and Technology
2 (2011), pp. 643–650.

[22] S. Lennart Johnsson. “Minimizing the communication time for matrix
multiplication on multiprocessors”. In: Parallel Comput. 19.11 (1993),
pp. 1235–1257. doi: 10.1016/0167-8191(93)90029-K.

[23] W. Kohn and L. J. Sham. “Self-Consistent Equations Including Exchange
and Correlation Effects”. In: Phys. Rev. 140.4A (1965), A1133–A1138.
doi: 10.1103/PhysRev.140.A1133.

[24] Hyuk-Jae Lee, James P. Robertson, and José A. B. Fortes. “Generalized
Cannon’s Algorithm for Parallel Matrix Multiplication”. In: Proc. ICS
’97, Intl. Conf. Supercomputing, July 7–11, 1997, Vienna, Austria. ACM
Press, 1997, pp. 44–51. doi: 10.1145/263580.263591.

[25] A. Marek et al. “The ELPA Library: Scalable Parallel Eigenvalue Solutions
for Electronic Structure Theory and Computational Science”. In: J. Phys.:
Condens. Matter 26.21 (May 2014), p. 213201. doi: 10 . 1088 / 0953 -

8984/26/21/213201.

[26] Jack Poulson, Robert A. van de Geijn, and Jeffrey Bennighof. Parallel
Algorithms for Reducing the Generalized Hermitian-Definite Eigenvalue
Problem. Technical Report TR-11-05. FLAME Working Note #56. The
University of Texas at Austin, Department of Computer Science, 2011.

[27] Jack Poulson et al. “Elemental: A New Framework for Distributed Mem-
ory Dense Matrix Computations”. In: ACM Trans. Math. Software 39.2
(Feb. 2013), 13:1–13:24. doi: 10.1145/2427023.2427030.

80

[28] Michael Rippl. “Parallel Algorithms for the Solution of Banded Symmetric
Generalized Eigenvalue Problems”. PhD thesis. Technische Universität
München, 2020.

[29] Michael Rippl, Bruno Lang, and Thomas Huckle. “Parallel Eigenvalue
Computation for Banded Generalized Eigenvalue Problems”. In: Parallel
Comput. 88 (Oct. 2019), p. 102542. doi: 10.1016/j.parco.2019.07.002.

[30] C. C. J. Roothaan. “Modern Developments in Molecular Orbital Theory”.
In: Rev. Mod. Phys. 23.2 (1951), pp. 69–89. doi: 10.1103/RevModPhys.
23.69.

[31] Robert Schreiber and Charles Van Loan. “A Storage-Efficient WY Rep-
resentation for Products of Householder Transformations”. In: SIAM J.
Sci. Stat. Comput. 10.1 (Jan. 1989), pp. 53–57.

[32] Edgar Solomonik and James Demmel. “Communication-optimal parallel
2.5D matrix multiplication and LU factorization algorithms”. In: Euro-Par
2011 Parallel Processing. 17th International Conference, Euro-Par 2011,
Bordeaux, France, August 29–September 2, 2011, Proceedings, Part II. Ed.
by Emmanuel Jeannot, Raymond Namyst, and Jean Roman. Vol. 6853.
LNCS. Berlin, Heidelberg: Springer, 2011, pp. 90–109. doi: 10.1007/978-
3-642-23397-5_10.

81

