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1. INTRODUCTION 

1.1. Radical Chemistry & Photochemistry 

Historically, the synthetic use of radical chemistry has been traditionally overlooked, and ionic 

chemistry has become the leading actor in both academia and industry.1,2 The inherent highly reactive 

nature of radical intermediates led to the misconception that these species were unpredictable and 

difficult to control. Consequently, the aim of exploiting them to develop new and reliable 

methodologies represented a difficult if not nearly impossible task. However, it only takes a brief look 

into the scientific literature to makes a case against these beliefs.3,4 There are indeed notorious 

examples worth mentioning. For example, the pinacol coupling reaction invented by Fittig in the last 

part of the 19th century,5 or the Wohl-Ziegler reaction at the down of the 20th century.6 Another key 

contribution was the “peroxide effect” defined by Kharasch.7 This helped scientists improve our 

understanding of the rules proposed by Markovnikov 60 years before,8 in which radicals were 

proposed as being the main cause of the anti-addition in the presence of peroxides species. The Birch 

reduction granted straightforward access to substituted 1,4-cyclohexadienes,9–14 and the thiol-

catalyzed methodology developed by Waters in the 50s promoted the homolytic cleavage of 

aldehydes, allowing the formation of acyl radicals.15,16 The list continues with even greater 

transformations like the Minisci reaction,17 the Barton-McCombie reaction,18 the SmI2 chemistry 

invented by Kagan19 or the Giese reaction.20 (Figure 1) 

 
 

Figure 1. Selected radical chemistry contributions during the las century. 
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is driven by the development of new technologies to generate reactive radical intermediates in a 

controlled fashion leading to greener, milder, and, overall, more efficient transformations.21 Among 

these new technologies, photochemistry has gained increased popularity over the last decades, as it 

allows for remarkably mild conditions for the controlled generation of open-shell species, thus 

avoiding the need for heating or the use of harsh chemicals that could lead to the decomposition of 

sensitive reaction components.22 

 

1.1.1. Origin and Renaissance of Visible Light as Driving Force 

Light has been playing a key role in the development of the human history since the discovery 

of fire to the definition of the photosynthetic mechanisms which governs the plants. Therefore, the 

aim of transforming such an abundant energy source into useful chemical energy has become one of 

the most important goals for scientists over the last century.23,24 One of the very first examples of 

these efforts in the organic chemistry field was presented by Giacomo Ciamician and Paolo Silber at 

the beginning of the 20th century.25 They documented one of the first photochemical organic 

transformation using ultra-violet (UV) light as main energy source. Despite of how innovative this 

technology was, there were a couple of drawbacks which could not be ignored: 

• Around 40% of the sunlight irradiance is filtered by the atmosphere, being considerably lower 

at the sea level. In addition, UV light represents only the 4-7% of the content of the sunlight,26 

thus restraining the possible development of industrial applications. 

• Most of the organic molecules absorb in the UV region (100-365 nm), meaning a lack of 

selectivity in molecules with sensitive functional groups, weak bonds, or high complexity. This 

is due to the high energy profile of the UV photons which prompt a considerable number of 

decomposition side-reactions (Figure 2). 

 
Figure 2. Solar emission spectrum. Measurements. [Card, A., Fitch, K., Kelly, D., Kemker, C., & Rose, K. (2014, March 21) 

Fondriest. Retrieved from Environmental Leading Center: https://www.fondriest.com/environmental-

measurements/parameters/weather/photosynthetically-active-radiation/] 
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These limitations helped to direct the scientists’ attention into a different frequency window 

of the sunlight: the visible light region (365-750 nm). Compared to the UV region, visible light 

constitutes around 44% of the sun irradiation, and its broad wavelength spectrum corresponds to 

specific energies (»70-115 kcal/mol) necessary to break a wide range of chemical bonds. Therefore, 

applying the right wavelength with the correct amount of energy could solve the selectivity problem.26 

However, the challenge was how take advantage of this region of the sunlight emission knowing, as 

mentioned above, that the absorption profile of most of the organic molecules corresponds to the UV 

region. To overcome this challenge, it is necessary to make use of chromophores or sensitizers which 

can absorb in the visible regium of the spectrum, and channel all that energy to ultimately perform 

the desired transformations. 

 

1.1.2. Photoredox Catalysis: From Ruthenium until today 

Nowadays, visible light photoredox catalysis represents one significant segment of 

photochemistry. It has become a wide branch which embraces all the methodologies that employ 

metal complexes and organic dyes as photosensitizers to perform otherwise energetically disfavored 

reactions.27–29 Such photocatalysts – in particular Ru-based polypyridyl complexes – have played an 

important role during the last 50 years in the development of new technologies for artificial 

photosynthesis, water splitting, and solar energy storage.30–34 Despite these advances, there had only 

been sporadic examples of the application of these complexes as photocatalysts in synthetic 

transformations.35–38 It was not until 2008 when this scenario changed dramatically with the 

publication of the seminal works by Yoon,39 MacMillan40 and Stephenson41 (Scheme 1). 

 
Scheme 1. Early example & seminal works in photoredox catalysis. 
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In these key publications one specific metal-polypyridyl complex, Ru(bpy)3Cl2 (bpy= 2,2’-

bipyridine), was used to promote three distinct transformations: a light-mediated intramolecular 

[2+2] cycloaddition, the asymmetric alkylation of aldehydes, and a reductive dehalogenation of alkyl 

halides. The variety of transformations shown in these representative examples highlights the 

versatile reactivity of this metal complex. The metal center of such complex can be replaced by other 

atoms, being iridium the most utilized one. Together, these two metals have played a key role in the 

development of a vast number of photochemical transformations during the last decades. 

To fully understand the mechanisms that govern these transformations, first we must 

consider the underlying photophysical properties of these metal-based catalysts (Figure 3). An iridium-

based complex will be considered for this purpose, specifically [Ir(dF(CF3)2ppy)2(dtbbpy)]PF6 

,(ppy=phenyl pyridine), (dtbbpy= diterbutyl bis-pyridine) due to its versatility as good oxidant and 

reductant and its use in subsequent chapter(s) of this thesis. 

Excitation is understood as the process where a molecule absorbs light in its ground state (S0). 

The photons from this light have a higher energy than the energy gap (Eg) between the highest 

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), therefore 

promoting the jump of one electron from the HOMO – in this case the t2g of the metal center – to the 

LUMO, the π* of the ligand in this example. This transition, known as a metal to ligand charge transfer 

(MLCT), switches the catalyst into its single excited state (S1) from which the electron has two different 

pathways for further reactivity: 

• Because the electron’s spin is paired with the one remaining in the ground state (S0), the 

former can return to S0 via radiative (fluorescence) or via non-radiative transitions (internal 

conversion). 

• The second possibility contemplates the spin change of the electron by an intersystem 

crossing (ISC) event which produces the low energy triplet excited state (T1). 
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Figure 3. Jablonski diagram and photocatalyst orbital profile. 
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Figure 4. Photocatalyst quenching cycles. 
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Finally, metal-free photocatalyst have been gaining attention during the last decade, 

displaying similar properties and reactivities than their metal-based counter parts. 

Organophotocatalyst as 9-mesityl-mehtyl-acridinium (Mes-Acr-Me),50 organic dyes as eosin Y,51,52 or 

1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN)53 and its derivatives are worth 

highlighting and could potentially decrease the dependance on precious metals.54 

 
Figure 5. Selected examples of transition metal-based and organophotocatalysts. 
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• Oxygen-centered nucleophiles, via their lone pairs. 

• Source of protons, due to the extensive polarization of O–H bonds. 

• Leaving groups in substitution reactions.  

However, in the latter case the intrinsic strength of the C–OH bond makes the hydroxyl moiety 

a very poor leaving group. Therefore, to perform interesting functional group interconversions (FGI) 

on alcohols it is necessary to derivatize the original alcohol into a more suitable leaving group. In this 
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field, one of the most useful transformations is the Mitsunobu reaction (Figure 6).60,61 Although very 

powerful, this reaction presents several disadvantages, such as the use of stoichiometric amounts of 

triphenylphosphine and diethylazodicarboxylate (DEAD) to activate the OH group, thus generating 

large amounts of triphenylphosphine oxide as side product.  

An alternative to the Mitsunobu reaction is the conversion of the hydroxyl group into halides 

or pseudo-halides, which are better leaving groups than the hydroxyl moiety, enabling further 

functionalization reactions. These processes generally proceed through nucleophilic substitution 

reactions via SN1 or SN2 pathways. However, while these strategies grant access to a wide range of 

useful and complex molecules, they present some limitations. For example, SN2 reactions often 

require the use of acidic conditions, which can promote the formation of olefinic side products via HX 

(X = halogen, OTs, OMs, etc.) elimination. Furthermore, reactions proceeding via a SN2 pathway are 

highly sensitive towards steric hindrance around the reactive center, so they proceed with difficulty 

in sterically demanding primary and secondary systems, and with extreme difficulty in tertiary 

systems. In the case of nucleophilic substitutions via SN1 mechanism, the main problems are related 

to the stabilization of the required intermediate carbocation, thus limiting the scope of their 

application to stabilized tertiary systems and highly activated alcohols (Figure 6).62 Moreover, by-

product formation via proton elimination to form olefins, or hydride and alkyl rearrangements can 

also occur.  

 
Figure 6. SN1 vs SN2 reactivity. 

 

Deoxygenative radical substitution reactions have arisen as an attractive alternative to 

overcome all limitations associated with SN1 or SN2 reactivities.63 The core idea behind these 

deoxygenative radical methodologies is the conversion of the hydroxyl group into a good leaving 

group, which can undergo facile mesolysis in the presence of a suitable radical initiator to generate a 

primary, secondary or tertiary open-shell species that can engage in further functionalization reactions 

(Scheme 2). This approach would overcome the steric limitations present in traditional nucleophilic 
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reactions, while also reducing the possibility of byproduct formation due to elimination reactions or 

rearrangements.  

 

1.2.2. Barton-McCombie reaction: Pioneering work 

The pioneers in the field of radical deoxyfunctionalization chemistry were Barton and 

McCombie. The authors published in 1975 their seminal deoxygenative method for the reduction of 

C–OH to C–H bonds, a process that replaces a hydroxyl group with hydrogen at a saturated carbon 

exploiting a free-radical chain reaction between O-thioacyl derivatives of secondary alcohols and 

Bu3SnH (Scheme 2).18 Arguably, this is one of the most employed technologies to perform this 

challenging transformation, being present in the total synthesis of numerous complex systems64–66. 

 
Scheme 2. Barton-McCombie reaction & examples in total synthesis. 
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based on their role in the catalytic cycle as electron acceptors (A) or electron donors (D). 

Representative examples of the main types of activating groups are shown in Figure 7.  

 

 
Figure 7. Common activators for radical deoxyfunctionalization reactions. 
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simplified version of “the Gibs energy of photoinduced electron transfer” equation (eq 1-2), where ℱ 
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Equation 1-2.  Gibbs energy of photoinduced electron transfer. 

With all this information, many authors have explored the implementation of these activators 

for the development of novel photoredox-mediated deoxyfunctionalization methodologies. Scheme 

3 illustrates some of the most representative examples of this strategy in the last decade, employing 

both oxidative and reductive quenching cycles.  

Considering the oxidative quenching cycle, in 2014 Fensterbank presented a Barton-

McCombie deoxygenation method that avoids the use of toxic tin reagents, using thiocarbamates as 

activators and Hünig’s base as hydrogen source.69 In 2015, Overman reported a convenient method 

for the direct construction of quaternary carbons from tertiary alcohols by visible-light photoredox 

coupling of tert-alkyl N-phthalimidoyl oxalate redox-active ester (RAE) intermediates with electron-

deficient alkenes (Michael acceptors).70 Similarly, Fu and coworkers have reported a novel and 

efficient visible-light photoredox method for the synthesis of internal alkynes containing quaternary 

carbons.71 Recently, Studer reported the deoxygenative borylation of tertiary alcohols,72 which were 

activated through the formation of methyl oxalates. In addition, this methodology was employed for 

the conversion of tertiary propargylic alcohols into allenyl boronic esters – the first radical approach 

reported towards these structures. 

Although synthetically useful, the methods reported by Overman and Fu specifically present 

one main drawback: N-phthalimidoyl oxalates can be difficult to synthesize and isolate due to their 

instability during aqueous workup or flash chromatography.73 With the aim of solving this problem, 

Overman, in collaboration with MacMillan, developed the use of simple cesium oxalate salts as radical 

precursors under photoredox conditions for the coupling of tertiary alkyl radicals with electron-

deficient alkenes.73 Furthermore, McMillan has expanded the use of these cesium oxalates as carbon 

radical fragments in metallaphotoredox catalysis for cross-coupling with a broad range of aryl 

halides.74 Similarly, Opatz has shown that these oxalates can be used in transition-metal-free 

decarboxylative photoredox coupling with aromatic nitriles.75 Finally, Overman has applied the use of 

cesium oxalate salt activators for the alkylation of basic heteroarenes via a Minisci-type reaction.76 All 

these methodologies mechanistically work via reductive quenching cycle. 
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Scheme 3. Representative examples of photoredox deoxyfunctionalization methodologies. 

 

In summary, all these representative examples show that radical deoxyfunctionalizations have 

arisen as a promising and advantageous technology to approach the development of novel and 

exciting functional group interconversion methodologies.  
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1.3. Amino Acids 

Over the 500 amino acids (AAs) founded in nature, the human body codes for only 20 and 

they are known as the natural or canonical AAs.77 This means that every protein in our bodies is made 

up by a combination of these 20 AAs, which are classified in two sub-groups: on one hand, non-

essential AAs are the ones that the body is able to synthesize and on the other hand, essential AAs 

are the ones which are impossible to synthesize in the human body and they have to be introduced 

through the diet (Figure 8).  

 
Figure 8. Proteogenic amino acids. 

 

AAs constitute one of the most versatile building blocks for chemical and biological syntheses, 

as demonstrated by their application in the synthesis of wide range of bioactive molecules, e.g. 
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However, AAs suffer from a facile degradation under biological conditions and, their 

unfavorable physical properties at the time of peptides design and construction, restrain their direct 

application in pharma. Thus, modification of the AAs side chains represents a potent strategy to 

improve their characteristics and implementation, opening the door to the development of new 

synthetic methodologies capable of granting rapid access to this fascinating family of compounds. 

As a result, such methodologies lead us to another class of these key structural motifs, not 

found in nature and only obtained through a synthetic pathway; unnatural amino acids (UAAs). UAAs 

are particularly important, as they often display distinct and improved properties when compared to 

their proteogenic counterparts. Between the strategies developed during the last decades, it is worth 

highlighting the use of enzymatic, and transition-metal-catalyzed processes80–83 or radical based 

strategies. 84,85 This last pathway gained value due to all the advantages that radical chemistry offers, 

including milder conditions, and a plethora of synthetic precursors available to generate open-shell 

species providing rapid access to libraries of novel UAAs and for the site-selective modification of 

peptides and proteins. All these methodologies will be discussed exhaustively during Chapter 5.  

 

1.4. Goals of the thesis 

Light-mediated methodologies have become very popular in the field of radical chemistry 

during the last decades due to the mild and controlled conditions that these strategies offer to 

generate open-shell species. The projects described in this thesis represent a modest contribution to 

this fascinating field, along with a better understanding and development of its applications in two 

main transformations: selective deoxyfunctionalizations of congested systems, and diastereoselective 

synthesis of novel unnatural amino acids (UAAs) structures. Chapter 2,3, and 4 focus on the former, 

whereas chapter 5 on the latter. 

Regarding deoxyfucntionalizations technologies, chapters 2 and 3 highlight the natural 

abundance of the hydroxyl moiety, which allows for the development of two straightforward 

functional group transformations: firstly, the formal deoxyfluorination of tertiary alcohols (Chapter 2), 

and secondly, the synthesis of novel saccharide based polycyclic scaffolds by using an intramolecular 

Minisci-type reaction (Chapter 3). Chapter 4 describes the synthesis and potential applications of a 

novel hypervalent iodine (III) reagent light-mediated radical deoxycyanation and electrophilic 

cyanations strategies. All these transformations were performed via oxalic or oxalate pre-activation 

of the corresponding alcohol substrates. 

Finally, chapter 5 stands out the advantages of photoredox catalysis in the synthesis of novel 

unnatural amino acids structures, with two novel methodologies via radical alkylation and acylation in 

a diastereoselective way.  
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2. FORMAL RADICAL DEOXYFLUORINATION OF TERTIARY 

ALCOHOLS 

2.1. The Fluorine Atom: Importance & Impact 

Despite the nonexistence of organofluoride compounds in Nature, the importance of the 

fluorine atom in organic molecules is a fact that has been well stablished during the last 60 years.86 Its 

presence and implementation on a large number of agrochemicals,87 organic dyes for new displays 

and solar cells,88 and pharmaceuticals89,90 supports such statement (Figure 9). In the case of 

pharmaceuticals, fluorine atoms play a significant role tuning the electronic and pharmacokinetic 

properties of potential drug candidates. The introduction of fluorinated motifs on a bioactive molecule 

often leads to the modification of its ADME (Administration, Distribution, Metabolism, Excretion) 

profile without disturbing the general characteristics of such molecules. 

 
Figure 9. Selected key fluorinated compounds with applications across several research fields 
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2.1.1. Strategies to introduce F atoms in organic molecules 

The direct consequence of this distinct fluorine effect has been the invention of a large 

number of strategies for the introduction of this privileged atom in organic molecules. Among them, 

nucleophilic deoxyfluorination methodologies have arisen as one of the most prominent strategies. 

This is mostly due to the natural abundance, as well as the unique reactivity of alcohols, which were 

already discussed in Chapter 1. The first known deoxyfluorination reagent was the gaseous SF4 

developed by Smith during the 1970s.91,92 Despite constituting an excellent reagent for 

deoxyfluorination reactions, SF4 is a toxic gas and difficult to manipulate, needing the use of metal 

autoclaves as reaction vessels. To solve this issue, in 1972 Middleton developed a novel, bench-stable 

reagent for nucleophilic deoxyfluorinations, diethylaminosulfur trifluoride (DAST).93 Traditionally, this 

has been the main reagent for deoxyfluorination of primary, secondary and tertiary alcohols. 

However, its inherent reactivity represents a drawback in terms of functional-group tolerance. Many 

other reagents have been developed during the subsequent decades, being worth highlighting the 

PyFluor developed by Doyle,94,95 or PhenoFluor96–100 and AlkylFluor by Ritter.101 These reagents 

represent a milder and more effective deoxyfluorination option, overcoming the limited functional-

group tolerance associated with DAST and its derivates (Figure 10).  

 
Figure 10. Deoxyfluorination reagents 
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Although very powerful, these new reagents are ineffective with sterically congested tertiary 

and neopentyl alcohols, mainly because they react through a SN2 pathway. Based on the topics 

discussed in Chapter 1, a radical deoxyfluorination approach might represent a complementing 

methodology with the potential to overcome the limitations associated to the existing nucleophilic 

strategies. In terms of radical fluorination methodologies, one reagent stands out over the rest: 

Selectfluor® (Figure 11). Selectfluor® is a non-toxic, air stable, crystalline solid commonly employed in 

2-electron processes as an oxidant or as an electrophilic fluorine source.102 Furthermore, it can also 

be involved in 1-electron processes, generating N-(chloromethyl)triethylenediamine radical dication 

(TEDA2+•), a unique species that displays different properties and reactivities than SelectFluor®.103 

Among distinct reactivity modes of TEDA2+•, its behavior as a single electron oxidant was key to the 

development of the novel radical deoxyfluorination strategy discussed in this chapter. 

 
Figure 11. SelectFluor® & TEDA2+• 
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Scheme 4. Radical fluorination examples 
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The combination of these salts with SelectFluor® might generate the open-shell tertiary alkyl 

radical species C via single electron oxidation event mediated by TEDA2+•. Then, an interaction with a 

second molecule of SelectFluor® might afford the desired tertiary fluorinated product. 

 
Figure 12. Stages of dexyfluorination method. 

 

During the development of this project, Dr. Frederick Ballaschk, Dr. Marcel Jaschinski, and Dr. 

Yasemin Özkaya helped me with the synthesis of the starting materials for the first examples of the 

scope. 

 

2.3. Optimization & scope 

To begin with this work, the pertinent optimization studies were carried out, crucial to finding 

the right conditions for the desired transformation (Table 1). The compound chosen as model 

substrate for such studies was cesium oxalate 1, as it possesses three potential reactive sites towards 

TEDA2+•: 1) the benzylic C–H bond, which is sensible to a hydrogen atom transfer (HAT) event,104,111,112 

2) an aromatic group, which could undergo radical amination in para position, and, finally, 3) the 

oxalate anion, which could undergo the desired single electron oxidation. The first reaction conditions 

that were tested consisted in the irradiation of 1 and SelectFluor® with a 32 W blue LED (lmax= 440 

nm) inside an EvoluChem™ PhotoRedOx Box for 16 h in a 1:1 mixture of 1,4-dioxane/H2O (Entry 1). 

The yield of the fluorinated product 2 with these initial conditions was 70%, analyzed by 19F-NMR using 

trifluorotoluene as internal standard. The next logic step was to evaluate the influence of the reaction 

time, which was reduced to 2.5 h without affecting the yield (Entry 2). Further analysis demonstrated 

that irradiation was essential for the successful outcome of the reaction (Entry 4) and heat could not 

promote this transformation (Entries 5-6). A subsequent solvent screening revealed that 1:1 mixture 

of acetone or acetonitrile with H2O increased the yield of the reaction up to 80% with only 1 h of 

irradiation (Entries 8-9).  
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Entry Selectfluor® (equiv.) Solvent (ratio, M) Reaction time (h) 2 (%)a 

1 2.5 1,4-dioxane:H2O (1:1, 0.1) 14 70 
2 2.5 1,4-dioxane:H2O (1:1, 0.1) 2.5 73 
3b 2.5 1,4-dioxane:H2O (1:1, 0.1) 2.5 71 
4c 2.5 1,4-dioxane:H2O (1:1, 0.1) 2.5 0 

5d 2.5 1,4-dioxane:H2O (1:1, 0.1) 2.5 0 
6e 2.5 1,4-dioxane:H2O (1:1, 0.1) 2.5 4 
7 2.5 EtOAc:H2O (1:1, 0.1) 1 18 
8 2.5 Acetone:H2O (1:1, 0.1) 1 79 
9 2.5 MeCN:H2O (1:1, 0.1) 1 80 

10 2.5 DME:H2O (1:1, 0.1) 1 43 
11 2.5 DMF:H2O (1:1, 0.1) 1 70 
12 2.5 DMA:H2O (1:1, 0.1) 1 30 
13 2.5 DCE:H2O (1:1, 0.1) 1 61 
14 2.5 Acetone (0.1) 1 0 
15 2.5 H2O (0.1) 1 0 

a) 19FNMR yields using trifluorotoluene as internal standard; b lmax = 405 nm; c) No light; d) No light, 30 °C; e) No light, 50 
°C 
Table 1. Optimization studies. 

 

With the optimal conditions in hand, the scope of this transformation was explored (Scheme 

5). First, compound 2 was successfully isolated in 74% yield. When an electron rich p-methoxy 

substituent was introduced in the phenyl ring, the reaction failed to afford the desired fluorinated 

product 3. The hypothesis behind this lack of reactivity is presumably a competing electron transfer 

event, where TEDA2+• oxidizes the electron-rich aromatic ring rather than the oxalate anion. This 

hypothesis was proven by running the standard reaction with 1 in the presence of 1 equiv. of anisole 

(E1/2
red = +1,79 V vs SCE),113 which afforded 2 in only 24% yield. Product 4 was isolated 81% high yield 

bearing a primary chloride. 1-adamantanol derivatives, important motifs in medicinal chemistry and 

industrial applications,114–118 also tolerated the deoxyfluorination conditions and product 5 bearing a 

benzylic amide was obtained in 57% yield. Different piperidine derivatives were also successfully 

fluorinated, both exocyclic (6-7) and endocyclic (8-9) examples bearing different N-protecting groups. 

Other ring sizes (10-11) and internal alkynes (12) were also tolerated, providing the desired products 

in moderate to good yields (42–58%). It is worth mentioning the excellent functional group tolerance 
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species by attacking the carbonyl position. ß-amino alcohol derivates (13-14) can be also employed as 
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a gram-scale reaction after 3 h of irradiation. In addition, the Mosher analysis was employed to 

demonstrate the stereoretention of this example. Such method was reported by Mosher in 1969, 
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resolving reagent.119,120 In the case of 14, the product was deprotected and the resulting amine was 

mixed with the enantiopure acyl chloride ®-(+)-MTPA-Cl. 19F NMR of the reaction showed formation 

of only one diastereoisomer of the desired Mosher’s amide 14b, proving the stereoretention of the 

reaction (see SI). Examples using basic heterocycles, such as pyrimidines (15), pyridines (16) and 

pyrazines (17a) were also fluorinated in 55%, 64% and 25% yield respectively. The reason of the low 

yield in case of the pyrazine example is because 17b was isolated as the main byproduct in 56% yield. 

The formation of this fused bicyclic molecule can be explained by a faster intramolecular radical 

cyclization event, followed by a re-aromatization by oxidation with Selectfluor®. 

To further expand the scope of the methodology, several (hetero)benzylic alcohols were also 

considered as potential substrates. Benzylic tetrahydropyran (18), as well as piperidine derivates (19-

21) were all isolated in good yields (52–74%), bearing phenyl and p-chloro substituents The change of 

the phenyl ring for a 3-pyridinil substituent did not affect the outcome of the reaction, obtaining the 

fluorinated product 22 in 52% yield. Compound 23 bearing a 2-pyridinyl motif was only obtained in 

15% yield, while more sterically congested benzylic fluoride 24 was afforded in 48% yield. 

Finally, tertiary propargylic alcohols were tested as interesting examples for the scope. The 

importance of the propargylic fluorides has been well stablished by their presence in biologically 

important compounds, e.g. insecticides, herbicides, and vitamins.121,122 Unfortunately, the existing 

nucleophilic strategies to obtain these substrates present a challenge due to competing elimination 

processes and 1,2-alkyl shifts.122 Satisfyingly, examples 25 and 26 were obtained in 25% and 23% yield 

respectively, demonstrating the versatility of this fluorination method. 
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Scheme 5. Scope & limitations of the reaction. 
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temperature, had only a small effect on the outcome. Therefore, these experiments confirmed the 

expected high selectivity of this transformation towards tertiary system (Scheme 6).  

 
Scheme 6. Selectivity studies.  
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Figure 13. Closed cycle vs. chain propagation cycle. 

 

In the early days of photoredox catalysis, light on/off experiments were used to determine 

whether a reaction proceeded via a radical chain pathway, assuming that if the reaction did not work 

in the dark, a radical chain was not possible. However, the lifetime of these processes stands in the 

range of seconds or nanoseconds, which makes difficult the final labelling of the cycle. Quantum yield 

(F) measurement proved to be a more reliable method for the identification of one or another 

pathway.125,126 F is defined as the mol of product formed for each mol of photons absorbed, meaning 

that the reaction would have three possible outcomes: 

• A maximum theoretical of F = 1 means that the reaction proceeds through a close 

cycle, where every photon absorbed generates one molecule of product. 

• F >> 1 would indicate that a self-propagating radical chain is the mechanism in action. 

• F << 1 does not discard the possibility of a radical chain process, although inefficient. 

This result is usually inconclusive, and more experiments should be run to clarify the 

reaction pathway. 

With all this information, the quantum yield of the present deoxyfluorination method was 

measured. Following the procedure described by Yoon,125 as series of data needs to be determined 

before performing the final quantum yield calculation. First, the photon flux of the lamps employed in 
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is formed in the presence of 1,10-phenanthroline ligand. The moles of FeII complex formed can be 

measured using eq. 3, and then this data allowed the photon flux calculation using eq. 4, where F is 

the quantum yield for the ferrioxalate actinometer (1.01 at lex = 437 nm), t is the irradiation time (70 
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s), and f is the fraction of light absorbed at lex = 437 nm by the ferrioxalate actinometer. This value is 

calculated using eq. 5 where A(440 nm) is the absorbance of the ferrioxalate solution at 440 nm. An 

absorption spectrum gave an A(440 nm) value of > 3, indicating that the fraction of absorbed light (f) 

is > 0.999. The photon flux was thus calculated (average of three experiments) to be 3.15 x 10-09 

einsteins s-1 

 

𝑚𝑜𝑙	𝐹𝑒** =	
𝑉 × ∆𝐴	(510	𝑛𝑚)

𝑙 × ℰ
 

 

Eq. 3 

 

 

𝑃ℎ𝑜𝑡𝑜𝑛	𝑓𝑙𝑢𝑥 =
𝑚𝑜𝑙	𝐹𝑒**

𝜙 × 𝑡 × 𝑓
 

 

Eq. 4 

 

 𝑓 = 1 −	10+(--.	01) 
 

Eq. 5 

 

Equation 3-5. Parameters for quantum yield calculation. 

 

After this calculation, the mol of product formed in this equation was calculated by 19F-NMR 

analysis of a 0.1 mmol scale standard reaction after irradiation at 440 nm for 60 s, affording 8% yield 

of the product. Finally, the quantum yield of our methodology was measured using eq. 6. Where the 

photon flux corresponds to the one calculated above, t is the reaction time (60 s) and f is the fraction 

of incident light absorbed by the reaction mixture, determined using eq. 5. An absorption spectrum 

of the reaction mixture gave an absorbance value of 0.00847 at 437 nm, thus f is 0.0193. Thus, the 

quantum yield of the reaction was F = 2185.4, showing that a very efficient radical chain mechanism 

governs this transformation.126 A further detailed protocol for the calculation of F was enclosed in the 

supporting information of this chapter.  

 

𝜙 =	
𝑚𝑜𝑙	𝑜𝑓	𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑓𝑜𝑟𝑚𝑒𝑑
𝑃ℎ𝑜𝑡𝑜𝑛	𝑓𝑙𝑢𝑥 × 𝑡 × 𝑓

 

 

Eq. 6 

 

Equation 6. Quantum yield. 

This result means that the formation of the aforementioned TEDA2+• species constitutes the 

initiation step of the radical chain mechanism, and two possible pathways could be considered for this 

step (Scheme 7): 

• Path A: Generation of TEDA2+• via formation of an electron-donor-acceptor (EDA) 

complex. In spite of EDA-complexes being studied since the 1950s,127,128 their 

importance has grown in the last 20 years because of the tendency to find new metal-

free photochemical methods.129 For the deoxyfluorination reaction, the formation of 

an EDA-complex (D) would be favored by the electrostatic interactions between the 
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corresponding oxalate (electron-rich or donor) and Selectfluor® (electron-poor or 

acceptor). Irradiation would promote the excitation of the EDA-complex, which under 

a subsequent SET event generates the tertiary alkyl radical species. The latter would 

be trapped by another molecule of Selectfluor® to afford the desired fluorinated 

product and TEDA2+• species. Once TEDA2+• is formed, it would oxidize a new molecule 

of the oxalate, stimulating the propagation of the radical-chain. 

• Path B: Generation of TEDA2+• via direct irradiation of Selectfluor®. This pathway 

contemplates the possibility of the homolytic cleavage of the N–F bond caused by the 

irradiation of Selectfluor® with blue LEDs. Hence, TEDA2+• would be generated and 

further react in a single-electron oxidation event with the oxalate species. After a 

double decarboxylation event, the tertiary radical would been generated and then it 

would react in the same fashion than in Path A to afford the desired fluorinated 

product and regenerating TEDA2+•. Reported methodologies by Lei130,131 and Jin132 

shown the possibility to access TEDA2+• by direct irradiation of Selectfluor® with blue 

LEDs to exploit it as a HAT catalyst.  

 
Scheme 7. Proposed mechanism pathways & mechanistic studies. 
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Further studies were conducted to determine which of these initiation pathways might be in 

operation in this reaction. One of these studies was the measurement of the UV/Vis spectra of 

Selectfluor®, 1 and the reaction mixture (Figure 14). The rationale behind this experiment is that if a 

potential EDA-complex would be formed, a new absorption band should appear in the spectrum when 

all the needed components are mixed. The result of the experiment was the observation of a new 

band starting at approximately l = 410 nm which also increase when the concentrations of 

Selectfluor® versus 1 (from 0.5 to 2.5 equiv.) were increased. This result suggests that the overlap 

between the absorption spectrum of the reaction mixture and the emission spectrum of blue LEDs 

with lmax = 405 nm is better, which would boost the outcome of the reaction. Therefore, different 

wavelengths of irradiation (lmax = 365, 405 and 440 nm) were tested under the standard conditions, 

revealing that all the reactions were complete after 30 min regardless the lmax employed. However, 

at shorter reaction times the highest yields were observed when blue LEDs with lmax = 405 nm were 

employed. All these results point towards Path A, proceeding through the formation of the EDA-

complex, as the initiation step. 

 
Figure 14. UV/Vis measurements & light sources. 

 

2.5. Summary & conclusions 

In summary, a formal and straightforward deoxyfluorination method was developed in the 
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step involved the synthesis of tertiary cesium oxalate salt from the corresponding tertiary methyl 

oxalates. In the subsequent step, the use of the good reductant fac-[Ir(ppy)3] photocatalyst in 

combination with Selectfluor® afforded the desired tertiary fluorinated product. Control reactions 

without the photocatalyst showed a notorious decrease of yield. My main hypothesis behind these 

drastically different results is a low concentration of the cesium oxalate salt species in the reaction 

when the mixture was irradiated, inhibiting the possible formation of the proposed EDA–complex.  

For MacMillan’s manuscript, the optimization studies were performed using a secondary 

activated alcohol as model substrate. The latter trends to possess higher oxidation potential and its 

rate of decarboxylation is considerably lower than in case of tertiary systems (see Section 2.2) , which 

explains the use of a more oxidant species, concretely the oxidized form of 

Ir[dF(OMe)ppy]2(dtbbpy)PF6, IrIV (E1/2[IrIV/IrIII] = –0.89 V vs. SCE).136  

 
Scheme 8. Complement deoxychlorination & deoxyfluorination methodologies. 

 

These methodologies further highlight the excellent selectivity towards tertiary alcohols and 

the metal-free profile of our method. Preliminary mechanistic studies support the formation of an 

EDA-complex which after irradiation generates the corresponding tertiary alkyl radical and TEDA2+•, 

key species of the reaction which affords the desired fluorinated product in a radical-chain 

mechanism. Nevertheless, generation of TEDA2+• after direct irradiation of Selectfluor® could not be 

discarded. Further studies, such as computational investigations using density functional theory (DFT) 

calculations should be performed to fully differentiate between both initiation pathways. 
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3. INTRAMOLECULAR MINISCI-TYPE REACTION FOR FUSED 

HETEROCYCLE SYNTHESIS AND MODIFICATION OF SACCHARIDES 

3.1. C–H functionalization of heterocycles 

Heterocycles constitute as one of the most ubiquitous frameworks in bioactive organic 

molecules, as demonstrated by their presence in the most essential living cell architectures, DNA and 

RNA chains, vitamins, and hormones, as well as in pharmaceuticals, herbicides, pesticides, and dyes 

(Figure 13).137–141  

 
Figure 13. Representative examples of bioactive molecules containing heterocyclic scaffolds. 

 

Therefore, a myriad of methodologies for the synthesis and modification of heterocycles have 

been developed over the years.142,143 Among all these protocols, there was one which drastically 
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employed for this transformation (Scheme 8).145 With this technology, the authors offered an 
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due to their poor nucleophilic character, in combination with the complexation of AlCl3 with the 

nitrogen atom of the basic heterocycle ring, avoiding the coordination with the alkyl chloride moiety 

and subsequent formation of the electrophilic carbocation.146,147 Thus, the Minisci reaction turned into 

the main methodology for the C–H alkylation of basic heteroarenes and a powerful tool in the 

medicinal chemistry field.  

Several methodologies have been reported since the publication of the original Minisci 

conditions, substituting carboxylic acids for more efficient radical precursors, and using thermal, 

electrochemical, and visible-light mediated conditions to promote the radical reaction.148 In 2017, 

Zeng and co-workers published one of the first examples using electrochemistry to couple acyl radicals 

and basic heterocycles using NH4I as redox catalyst.149 The same year, Molander and co-workers 

reported a metal-free and light-mediated Minisci-type reaction using alkyltrifluoroborates as efficient 

primary, secondary, and tertiary alkyl radical precursors.150 Later, Zard demonstrated the versatility of 

dilauroyl peroxide (DLP) and tertiary xanthates for the incorporation of quaternary centers into the 

heteroarene ring.151 In 2018, Phipps reported the first enantioselective Minisci-type protocols using a 

phosphorus-based chiral Brønsted acid as inducer of chirality and activator of the heteroarene core.152 

As mentioned in Chapter 1, Scheme 3, Overman reported the use of cesium oxalates as alkyl radical 

precursors in a light-mediated or thermal Minisici-type reaction.76 Finally, the Minisci reaction has also 

been implemented in multicomponent processes like the one recently published by Doyle, using diazo 

compound as efficient radical precursors via a proton-coupled electron transfer (PCET) event (Scheme 

9).153 
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Scheme 9. Original Minisci reaction and state of the art. 

While these intermolecular examples illustrate the importance and versatility of Minisci-type 

reactions, intramolecular versions of this reaction remain highly unexplored. The methodologies 

reported by Starr (in collaboration with Pfizer),154 Laha,155 and Sherwood and Xiao (Merck)156 

constitute the only examples of intramolecular Minisci-type reactions in the synthetic pool (Scheme 

10). In addition, Christman has recently applied the methodology developed by Starr in the total 

synthesis of Spongidine A,157 demonstrating the potential of intramolecular Minisci-type reactions for 

the synthesis of complex natural products, fused heterocycles, and structure modification of drug 

candidates.  
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Scheme 10. Intramolecular Minisci methodologies. 

 

Carbohydrates constitute the most abundant group of natural products. The reason of this 

abundance relies on the several connections that each of their monosaccharides ring units (pyranose 

and furanose) can offer.158,159 Moreover, the anomeric center of these rings further increases the 

complexity of such connections by differentiation via a and ß isometry. Therefore, carbohydrates play 

important physiological and pathophysiological roles, being present in many and diverse molecular 

forms, from glycans and glycoproteins to DNA chain structures. Furthermore, these privilege 

structures are founded among the most important drugs for the treatment of diabetes,160 influenza,161 

and thrombosis.162 Thus, it is easy to highlight the intrinsic potential in the development of strategies 

for their facile modification, taking advantage of the complexity of their units. In this way, a novel 

methodology for the synthesis of fused polycyclic systems might open the door to expand three-

dimensional chemical space for drug discovery.  
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3.2. Goals of the project 

All this information established the bases for the project of this chapter, which main goal was 

the development of a straightforward route for the synthesis of novel saccharide scaffolds. This route 

involves three consecutive synthetic steps; first, a nucleophilic aromatic substitution (SNAr) event 

provides the desired alcohol starting materials. Then, a subsequent activation of these alcohols 

prepares the substrates for the final ring closure via intramolecular Minisci-type reaction. As a result, 

novel polycyclic structures with potential applications in drug discovery and modification of ADME 

profile were synthesized following this short “total synthesis” pathway (Figure 15). 

 
Figure 15. Synthetic strategy to access. 

 

3.3. Optimization & Scope  

Furanose 27 and pyranose 28 were the saccharide models chosen to find the optimal 

conditions of the route showed in Scheme 11. In the case of 27, the pre-installed acetal protection of 
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hydride (NaH) to a solution of 27 in 1,4-dioxane, the corresponding carbanion was formed after H2 

evolution. Then, chloropyrazine was added to the mixture and after overnight reaction, the 

corresponding coupled product 29 was obtained in 75% yield. In case of 28, an extra acetal-protection 
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With the aim of surpass this limitation, oxalic acid formation was considered as an alternative 

activation method of the alcohol moiety. Thus, 29 and 31 reacted with oxalyl chloride in a 3:1 mixture 

of dichloromethane/ether (CH2Cl2/Et2O) to afford the corresponding oxalic acid species 33 and 34, 

respectively. By following this method, the synthetic route was shortened by one-step however no 

purification of the oxalic acid species was possible, due to their decomposition in column 

chromatography. 

 

 
Scheme 11. Polycyclic scaffolds route. 

 

Once 33 and 34 were synthesized, two different pathways were explored to perform the last 
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Considering the conditions reported by Overman,76 a mixture of 33, 

[Ir(dF(CF3)2ppy)2(dtbbpy)]PF6 (0.5 mol%) as photocatalyst, and 1.5 equivalents of ammonium 

persulfate ((NH4)2S2O8) as oxidant, was irradiated with a 32 W blue LED (lmax= 440 nm) inside an 

EvoluChem™ PhotoRedOx Box for 2 h at 42 ºC in DMSO (Table 2, entry 1), isolating the fused 

heterocycle 35 in 24% yield. This increase in the temperature should benefit the formation of the 

secondary alkyl radical species by favoring the decarboxylation rate of the alkoxycarbonyl radical 

species (see Chapter 2, Section 2.1). Under these conditions, the reaction should proceed through a 

mechanism similar than the one proposed by Glorius,163 where S2O8
2- acts as an efficient oxidative 

quencher of the photocatalyst (E1/2 (IrIV/*IrIII)= -0.89 V vs SCE)  producing the highly oxidizing sulfate 

radical anion SO4
−• (E1/2

ox = +2.5-3.1 V vs SCE).164 The later should react via HAT with the oxalic acid 33 

affording the desired secondary alkyl radical after double decarboxylation. Thus, the inefficiency and 

low yield of these conditions might indicate that higher temperatures should be employed to further 

improve the rate of the second decarboxylation. Therefore, we turned our attention towards the 

thermal conditions reported by Wang and co-workers.165 In this case, the authors employed oxalic 

acids as efficient radical precursors by increasing the time and the temperature of the reaction. 

Following this principle, a further increase of the temperature should lead to a decrease in reaction 

time, maintaining or even increasing the yields of the reaction. Hence, 33 was stirred with 1.5 

equivalents of (NH)4S2O8 in DMSO for 2 h at 100 ºC. Under these thermal conditions, 35 was 

successfully isolated in 40% yield, being alcohol 29 the only by-product of the reaction (Table 2, entry 

2). If we compare intermolecular vs intramolecular processes, the latter is favored by the formation 

of a low ring strain six-membered ring. However, the Minisci reaction often requires an excess of the 

nucleophilic radical source. This feature makes harder the coupling between the parties of the 

reaction when the stoichiometry between them is 1:1, as in an intramolecular case. This is a common 

trend in the reported intramolecular Minisci methodologies, and it might explain the reason of the 

moderate yields obtained. The presence of 29 was probably caused by decomposition of the oxalic 

acid moiety before the radical generation. Control experiments demonstrated not only that an acid 

additive was not necessary, but also that it dropped the yield of the reaction (Table 2, entry 3-5). An 

increase in the time of the reaction did not favor this transformation (Table 2, entry 6-8). Thus, the 

thermal conditions of entry 2 were considered as the optimal for the scope exploration of this 

intramolecular transformation. 
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Entry Catalyst 
(mol%) Solvent (M) Acid (equiv.) Oxidant (equiv.) Time (h) T (ºC) 35 (%) 

1 Ir-F (0.5) DMSO (0.1) - (NH4)2S2O8 (1.5) 2 42 24 
2 - DMSO (0.1) - (NH4)2S2O8 (1.5) 2 100 40 
3a - DMSO (0.1) TFA (1.0) (NH4)2S2O8 (1.5) 2 100 18a 

4a - DMSO (0.1) TFA (3.0) (NH4)2S2O8 (1.5) 2 100 8a 
5a - DMSO (0.1) TFA (5.0) (NH4)2S2O8 (1.5) 2 100 5a 
6 - DMSO (0.1) - (NH4)2S2O8 (1.5) 6 100 22b 
7b - DMSO (0.1) - (NH4)2S2O8 (1.5) 24 100 22b 

a) 0.1 mmol scale; b) 3.0 mmol scale  

Table 2. Optimization studies. 

 

Scheme 12 displays the scope of the methodology, with the overall yields for the three-step 

route shown under the synthesized compound, followed by the yields of each step of the route. Fused 

pyranose-based polycycle 36 was obtained in 32% yield for the intramolecular Minisci stage, in an 

overall yield of 16%. Several furanose-based oxalic acids were prepared following the same route 

employed for the synthesis of the saccharide models. Different electron-withdrawing (37-39) and 

electron-donating groups (40-42) were installed in the pyrazine core.  

 
Scheme 12. Scope of saccharides. 
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The pyrazine core was substituted for a pyridine ring bearing different functional groups at 

the 2-position (Scheme 13). In this case, both examples required extra steps to achieve the desired 

reactivity and regioselectivity, obtaining a six steps route for both examples. Tosylation166 and 

subsequent acylation167 of the free hydroxyl groups in the furanose ring 27 afforded the product 44. 

This double protection allows for the differentiation between the primary (OTs) and secondary 

position (OAc), preventing the formation complex mixtures during the first SNAr step of the route. As 

a result, compounds 45 and 46 were obtained in 58% and 50% yield respectively. After deprotection 

of the secondary hydroxyl moiety, (47, 48) the route continued with the same oxalic activation (49, 

50) and final intramolecular Minisci steps employed for the rest of the scope entries.  In the case of 

the 2-chloropyridine ring, the corresponding fused product 51 was isolated in 28% yield, together with 

18% of the minor C2-substituted regioisomer (51b) for the intramolecular Minisci step. The 2-

cyanopyrazine product 52 was obtained in 19% yield. 

 
Scheme 13. Scope of pyridine core saccharides. 
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It is worth highlighting three fundamental aspects of this methodology: 

• All the structures isolated following this 3-step route have not been synthesized 

before, being this the first time that they are reported. 

• In all cases, the final intramolecular Minisci conditions proceeded with complete 

diastereoretention (dr). This was analyzed by proton nuclear magnetic resonance (1H-

NMR) using 1,2,4,5-tetramethylbenzene as internal standard to monitor and confirm 

the yield of the reactions. The crystal structures of 35 and 36 were determined by X-

ray analysis to further demonstrate this excellent dr (Figure 16).  

• The major by-product obtained is the alcohol center via decomposition, giving the 

possibility of recycling this product via reactivation and subsequent ring-closure 

reaction.  

Bidimensional NMR analyses were also performed to further confirm the structures obtained 

by single crystal X-ray diffraction analysis (Figure 16). After elucidation of the NMR signals of 35 and 

36, NOESY experiments provided the key information to confirm the structure of both compounds. 

On one hand, the lack of correlation in 35 between the protons of the furanose ring (between 6 and 

7 with 8 and 10), along with the correlation between 6 and 7, supported the axial orientation of the 

position 6. On the other hand, for 36 the correlations observed between all the protons of the 

pyranose ring (6, 7, 8, and 10), especially between 6 and 7, and the no correlation with 11, 

demonstrated the equatorial orientation of 11 and the axial orientation of the fused ring bonds. 

 
Figure 16. X-ray structures and NMR elucidation of 35 and 36, & NOESY analysis. 
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Scheme 14. Scope of small rings. 
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Scheme 15. Scale up & derivatizations. 

 

3.4. Mechanistic studies & biological assays 

Having explored the scope of this intramolecular methodology, a series of reactions were 

carried out to demonstrate the radical character of this transformation and to propose a plausible 

mechanism. When the radical scavenger TEMPO (1.0-3-0 equiv.) was introduced, the formation of the 
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Scheme 16. Radical trapping & proposed mechanism. 
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cells, which translates in a better activity of the compound against that type of cells, in this case 

leukemic cells. The results of this analysis showed that compounds 49, 50, and 51 decrease the 

number of live cells moderately after 24 and 48 hours of incubation, while compound 37 exhibited a 

significant decrease. To further verify these results, the cell cultures were stained with 4ʹ,6-diamidino-

2-phenylindole (DAPI), a fluorescent stain that binds strongly with some regions of the DNA, checking 

their emission. This last assay corroborates the results obtained for 57, 58, and 59 while in the case of 
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37 was not conclusive. Finally, it is worth highlighting that the concentration of all these results were 

50 µM of the tested compounds, which is the highest concentration employed. Therefore, further 

structural modifications should be carried out in order to reduce possible off-target effects and 

toxicities in future assays. 

 
Scheme 17. Biological assays. 

 

3.5. Summary & conclusions 

In summary, a series of novel fused heterocycles were synthesized following a straightforward 

three-step route, with a final intramolecular Minisci reaction as focal point. This Minisci step 

proceeded under thermal conditions, using only the corresponding oxalic acid and (NH)4S2O8 as 

oxidant to afford novel polycyclic scaffolds with an excellent diastereoselectivity. This was further 

demonstrated by X-ray structure elucidation of compounds 35 and 36. The scalability and recyclable 

character of the developed route were tested, as well as the possible biological activity of the final 

polycyclic compounds. Further experiments would help to improve the results obtained during these 

experiments, e.g., further structure modification of the novel synthesized structures to boost their 

biological activity and gain additional insight into their potential biological interactions, or additional 

optimization studies to find a more scalable method.  
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4. RADICAL DEOXYCYANATION OF TERTIARY ALCOHOLS USING 

HYPERVALENT IODINE REAGENTS 

4.1. The Nitrile Group: Importance & impact 

Nitriles or cyanides represent an outstanding class of compounds both in chemistry and 

biology, widely used as important intermediates in the synthesis of pharmaceutical and agrochemical 

compounds.133-135 Therefore, many different synthetic methodologies have been developed for the 

introduction of this group into organic compounds. However, since the first synthesis of hydrogen 

cyanide by Scheele in 1782, by heating Prussian blue with sulfuric acid, the most common approach 

consists in the nucleophilic substitution of suitable leaving groups with cyanide ions, which usually 

requires the use of hazardous and highly toxic reagents (e.g. KCN, NaCN, (Me3Si)CN or Zn(CN)2) with 

troublesome storage and manipulations (Figure 17).173  Their toxicity relies on the formation of 

hydrogen cyanide by hydrolysis in the presence of moisture.174  

 
Figure 17. Classic deoxycyanation strategies & reagents. 

 

Although a myriad of leaving groups can be used for this transformation– such as, aryl 

sulfonates, esters, ethers, nitro and amino motifs, or diazonium salts – alkyl halides and alcohols are 

the most employed. Regarding alcohols, the transformation of hydroxyl groups into nitriles is an 

important method for the one carbon elongation of organic molecules. Unfortunately, these reactions 

suffer the already mentioned limitations associated with SN1 or SN2 pathways (see Chapter 1, Section 

1.2). In addition to these limitations, this type of reactions frequently requires the conversion of the 

hydroxyl group to a more easily removable leaving group, such as halides or sulfonates, before the 

reaction can take place. However, some direct methodologies have been reported during the last 

decades. Iranpoor and co-workers reported a one-pot deoxycyanation method under Mitsunobu 

conditions, i.e. using HCN/PPh3/DEAD, to deliver the corresponding nitriles in moderate yields.175 Oishi 

and co-workers developed an alternative aerobic oxidative approach using ammonia to achieve this 

transformation (Scheme 18).176 These two methodologies represent a huge improvement in the direct 
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cyanation of hydroxyl motifs. However, the use of Mitsunobu-type conditions in the case of Iranpoor’s 

methodology, or the presence of stoichiometric amounts of oxidants and reagents hampers their 

application towards tertiary systems. 

 
Scheme 18. One-pot deoxycyanation methodologies. 

 

4.2. Hypervalent iodine (III) compounds: Applications & derivates 

Hypervalent iodine (III) reagents represent a remarkable group of compounds which has 

grown in interest during the last decades due to its versatility, being able to act via ionic or radical 

pathways (Figure 18).173,177 The general structure of these reagents (67) presents a characteristic 

three-atom and 2-electrons pair R–I–X bond, generating by this combination a system considerably 

longer and weaker than its R–I or I–X equivalents.178,179 On one hand, the highly polarized system of 

this reagents enables their use as efficient electrophilic reagents to construct a wide range of systems, 

including C−CF3, heteroatom−CF3, C−Rf (Rf = perfluoroalkyl), heteroatom−Rf, C−N3,C−CN, S−CN, and 

C−X bonds (X = halides).180–182 On the other hand, its use in radical pathways has been achieved 

through two possibilities. In the first one, the homolytic cleavage of the weak I–X bond applying heat 

or light irradiation produces a biradical species A, which can be employed as efficient HAT reagent in 

further C–H functionalization strategies. In the second case, a SET reduction of the corresponding 

hypervalent reagent promotes the formation of the iodanyl radical B, which after subsequent 

degradation affords the anion C and the radical species II. The later can be then coupled with different 

acceptors, e.g. (hetero)arenes, alkenes Michael acceptors, or alkynes. In the second case, one of the 

possible agents which might produce this SET reduction is a photosensitizer. By choosing the right 

reagent, photosensitizer, light source, and solvent conditions, a wide range of transformations can 

take place in a mild fashion.183,184 Some hypervalent iodine (III) reagents worth highlighting include 

(diacetoxyiodo)benzene (PIDA) (68),185 (bis(trifluoroacetoxy)iodo)benzene (PIFA) (69), and the ones 

developed by Togni in the 2000s for trifluoromethylation methodologies bond formation (70, 

71),186,187 and Zhdankin in the 1990s for azidation (72) and cyanation (73) methodologies.188,189 
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Figure 18. Reactivity of hypervalent iodine (III) reagents. 

 

Regarding cyanation procedures, Waser and co-workers have demonstrated the use of 

cyanobenziodoxolone (CBX) Zhdankin’s reagent (66) as an efficient CN transfer reagent in a catalytic 

photoredox radical decarboxylative process (Scheme 19).190 In 2019, König and co-workers reported 

a visible-light decarboxylative cyanation method of aliphatic carboxylic acids, using riboflavin 

tetraacetate (RFTA) as photosensitizer.51 In this case, the reagent employed as cyanide source was 

tosyl cyanide instead of an hypervalent iodine (III) reagent. RFTA plays the role of photosensitizer and 

base at the same time, avoiding the use of stoichiometric bases to form the corresponding carboxylate 

species. Although effective methodologies, it is worth noticing that in most of the scope entries the 

generated radical was in a–position to a heteroatom. Only two examples of using a secondary and a 

tertiary carboxylic acid were reported in the König’s methodology. This reason led me to question that 

maybe a novel cyanation reagent might open the door to expand the scope of these cyanation 

methodologies. The structure of this novel reagent could be based on the hypervalent iodine (III) 

reagents due to their straightforward synthesis and high tunability. Moreover, the potential 

development of radical–fashion methodologies might translate into the use of milder cyanation 

conditions, avoiding the generation of toxic intermediates.  
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Scheme 19. Cyanation and azidation technologies reported by Waser and König. 

 

4.3. Goals of the project 

Based on this information, a design and synthesis of a novel electrophilic cyanation reagent is 

highly desirable. With Zhdankin’s reagent 65 as model reagent, I envisioned that by replacing the I–O 

bond for a I–NTs motif might afford a cyanobenziodazolone (CBZ) CN transfer reagent. The higher 

conjugation apported by the tosyl group might translate into a better stability. Its reactivity will be 

tested as a potential electrophilic radical CN transfer reagent. 

 

4.4. Synthesis of novel CBZ reagent and optimization of a photoredox 

deoxycyanation methodology 

The first stage to start this project was the synthesis of the novel CBZ reagent. The route 

chosen to achieve this goal was a modified version of the one utilized by Waser for the synthesis of 

the ABZ reagent 74 (Scheme 20).190 Commercially available 2-iodobenzoic acid was mixed with thionyl 

chloride in DMF to promote the formation of the corresponding acyl chloride. After 1 h, the solvent 

was removed in vacuo, and tosyl amine was added to same flask together with 4-

dimethylaminopyridine (DMAP) and triethyl amine, affording the tosyl amide 75 in quantitative yield. 

During the development of this project, Waser and coworkers reported a radical methodology for the 

azidation of cyclopropenes for the synthesis of quinoline derivatives.191 In this work, the authors 

proposed a modified procedure for the synthesis of the ABZ reagent 74, where the first step was 

replaced by the use of tosyl isocyanate and triethylamine to obtain the corresponding tosyl amide 75. 

This modified protocol was tested in our lab, obtaining 75 as expected in quantitative yield. Although 

both proposed steps work affording excellent yields, it is worth highlighting the higher simplicity of 

the second one, which avoids the necessity to pre-form the more reactive acyl chloride species. This 

advantage, along with the direct use of 75 and in subsequent steps, led me to choose this modified 

procedure as the preferred protocol for the preparation of 75. Once 75 was synthesized, it was mixed 
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with meta-chloroperbenzoic acid (mCPBA) in a solution of acetic acid and acetic anhydride, obtaining 

the cyclic compound 76 after 72 h in 36% yield. Finally, in the last step reported by Waser for the 

synthesis of azidation reagents 74, the authors mixed 76 with azido(trimethyl)silane (TMSN3) and 

catalytic amount of trifluoromethanesulfonate (TMSOTf) as Lewis acid activator in dichloromethane 

(CH2Cl2).192,193 In my case, substituting TMSN3 by trimethylsilyl cyanide (TMSCN) as nucleophilic source 

afforded the desired cyanating reagent 77 in nearly quantitative yield. Pertinent characterization 

analyses (NMR, HRMS) were performed to further confirm the structure of compound 77. 

   
Scheme 20. Route for the synthesis of 77. 

 

After its synthesis and characterization, I proceeded to investigate the use of 77 as an efficient 

CN transfer reagent in a straightforward, photoredox-catalyzed deoxycyanating methodology. To 

develop a selective method towards tertiary hydroxyl systems, cesium oxalates were selected as 

suitable radical precursors based on their already explained properties and the success obtained with 

previous methodologies (See Chapter 2)  

The optimization studies performed to find the best conditions for this transformation are 

displayed in Table 3. All the yields were calculated by gas chromatography with flame ionization 
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by 77 in acetonitrile. As a result, the solvent was replaced for more polar systems (Entries 2-4), being 

DMSO exhibiting the best results (Entry 4). An increase of the reaction concentration improved the 

I

O

OH

S
NCO

O O

2. TsNH2 (1.0 equiv.)
Et3N (2.5 equiv.)

CH2Cl2 (0.2 M), RT, 3 h

Quant.

1. SOCl2 (1.2 equiv.)
DMF (0.06 equiv.)

DMAP (0.05 equiv.)
Toluene/EtOAc (1:3) (0.36 M)

60 ºC, 1 h

Et3N (2.5 equiv.)

THF (0.35 M), RT, 2 h

(1.0 equiv.)

Quant.

I

O

NHTs

75
80 ºC, 72 h

36%

mCPBA (1.0 equiv.)

AcOH/Ac2O (1:1) (0.15 M)

NTsI
O

AcO

76 97%

TMSCN (1.5 equiv.)

CH2Cl2, (0.5 M), 0 ºC, 30 min

TMSOTf (5 mol%) NTsI
O

NC

77

NTsI
O

N3

74



Chapter 4: Radical Deoxycyanation 

 48 

yield of 78 to 60%. The use of different photosensitizer revealed that the organophotocatalyst 4CzIPN 

afforded equal results than the Ir-based photocatalyst Ir-F (Entry 9). Iridium is one of the rarest 

elements in the Earth’s crust, therefore its price is considerably high. As explained in Chapter 1, 4CzIPN 

represents a versatile free metal photosensitizer with similar properties than Ir-F. This free metal 

character constitutes a tremendous advantage in terms of scalability and industrial applications by 

decreasing the price of the overall process. By increasing the loading of the photosensitizer and the 

equivalents of 77 in a 1:1 mixture of DMSO/1,4-dioxane, the cyanated product 78 was successfully 

isolated in 64% yield (Entry 10). These conditions were tested using the CBX Zhdankin reagent 73 as 

CN transfer reagent, resulting in a decrease of the yield to 19% (Entry 11). Next, the ratio between 

oxalate 1 and CBZ reagent 77 was changed, resulting in 28% yield of 78 when 77 was used as the 

limiting reagent (Entry 12). Control experiments revealed the need of light and photocatalyst for the 

success of the reaction (Entry 13-14). 

  

Entry Catalyst 
(mol%) Solvent (M) CN reagent 

(equiv.) Time (h) T (ºC) 78 (%) 

1 Ir-F (1.0) MeCN (0.1) 77 (1.5) 16 25 0 
2 Ir-F (1.0) Acetone (0.1) 77 (1.5) 16 25 0 
3 Ir-F (1.0) DMF (0.1) 77 (1.5) 16 25 47 
4 Ir-F (1.0) DMSO (0.1) 77 (1.5) 16 25 55 
5 Ir-F (1.0) DMSO (0.2) 77 (1.5) 16 25 60 
6 Ir-F (1.0) DCE (0.2) 77 (1.5) 16 25 14 
7 Ir-F (1.0) THF (0.2) 77 (1.5) 16 25 17 
8 Ir-Me (1.0) DMSO (0.2) 77 (1.5) 16 25 36 
9 4 CzIPN (1.0) DMSO (0.2) 77 (1.5) 16 25 59 

10a 4 CzIPN (2.5) DMSO/1,4-dioxane (1:1) (0.2) 77 (2.0) 16 25 66 (64) 
11 4 CzIPN (2.5) DMSO/1,4-dioxane (1:1) (0.2) 73 (2.0) 16 25 19 
12b 4 CzIPN (2.5) DMSO/1,4-dioxane (1:1) (0.2) 77 (1.0) 16 25 28 
13 - DMSO/1,4-dioxane (1:1) (0.2) 77 (2.0) 16 25 3 
14c 4 CzIPN (2.5) DMSO/1,4-dioxane (1:1) (0.2) 77 (2.0) 16 25 2 

a) Isolated yield of 0.5 mmol scale in brackets; b) 78 as limitant reagent; c) No irradiation 

 
Table 3. Optimization studies. 
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With the optimal conditions in hand, the scope of this transformation was explored (Scheme 

21). Unfortunately, none of the scopes entries afforded positive results using the conditions selected 

after the optimization studies. This outcome led me to question which properties of the new 

compound 77 could affect the reactivity of the process. 

  
Scheme 21. Scope of the reaction 

 

4.5. CV measurements, proposed mechanisms & reactivity tests 

To gain further insight of the properties of 77 and the mechanism of the reaction, its reduction 

potential was measured by cyclic voltammetry. A stock solution of 77 and electrolyte [NH4][BF4] in 

DMSO was placed in a closed vial of an IKA ElectraSyn 2.0 device, using the reference electrode 

Ag/AgCl in a saturated solution of potassium chloride. The vial was purged with nitrogen and the 

solvent dry and degassed to prevent oxygen could interfere in the measurement. The result of this 

experiment determined a value of -0.80 V vs Ag/AgCl, which after conversion corresponds to -0.84 vs 

SCE (saturated calomel electrode), for the reduction potential of 77. This value makes 77 a relatively 

stronger oxidant than the Zhdankin’s reagent 73 (E1/2 
red= −0.92 V vs SCE).184 With this result in hand, 

a possible hypothesis was proposed for the reactivity exhibited by this methodology. Compound 77 is 
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by the excited state of the photocatalyst (E1/2 (*PC/PC–)= +1.35 V vs SCE). This simultaneous presence 

of both competing cycles might translate in diminished yields for the final cyanation product. 

Moreover, changes in the potential of the cesium oxalate substrates employed could further decrease 

the yield of the reaction, supporting this hypothesis. 
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Scheme 22. Competing mechanisms. 

 

Despite the unexpected outcome obtained for this radical deoxycyanation methodology, 77 

was further employed in non-radical reported methodologies to test its reactivity. In all these 

methodologies, the authors utilized the Zdhankin’s reagent 73 as the main electrophilic source of 

nitriles (Scheme 23). Therefore, replacing 73 for 77 could reveal a hint about its electrophilic character. 

The first conditions tested were reported by Waser and co-workers in 2019, where the authors 

reported a novel conditions for the synthesis of hydantoins,194  different from the ones published by 
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Scheme 23. Study of the reactivity of 77 as electrophilic cyanating reagent. 

4.6. Summary & conclusions 

In summary, a new nitrile hypervalent iodine (III) type reagent 77 was synthesized, with 

potential applications in several chemistry fields. The exploration of a formal photoredox 

deoxycyanation methodology using 77 cyanation reagent was carried out. Preliminary optimization 

and mechanistic studies revealed the oxidant profile of this new reagent compare with the Zdhankin’s 

reagent 73, proposing the existence of a competing cycle which might explain the inefficiency of the 

conditions employed for this deoxycyanation reaction. Reactivity studies were performed trying to 

gain more information about the properties of this new reagent. However, further experiments should 

carried out to obtain a profound insight into the properties and reactivity profile of 77. 
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5. RADICAL-BASED SYNTHESIS OF NOVEL UNNATURAL a-AMINO 

ACID SCAFFOLDS 

5.1. Unnatural a-amino acids (UUAs): Importance & main strategies 

for their synthesis 

UAAs, as described in Chapter 1, constitute an important group of molecules present in 

various fields, such as organic and medicinal chemistry, biology, and materials.77,197–200 This 

widespread presence, along with their distinct properties compared to their proteogenic 

counterparts, boosted the development of novel synthetic methodologies capable of granting rapid 

access to this fascinating family of compounds. The main retrosynthetic disconnection pathway 

involves the formation of an a-amino stereocenter by employing a chiral ligands and catalysts able to 

provide the correct asymmetric conditions (Figure 19).80–82,201–205 Although powerful methodologies, 

the design and synthesis of such chiral structures have a huge impact in terms of time/resource 

consuming. Therefore, straightforward methodologies to access UAAs without the necessity of a chiral 

catalyst are highly sought after.  

 
Figure 19. UAAs and main synthesis pathways. 

 

Radical chemistry offers exciting and highly attractive approaches to access new chemical 

space in a rapid fashion due, in part, to the plethora of synthetic precursors available to generate 

open-shell species.3 Thus, it is not surprising that researchers have exploited this versatility by 
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the field of peptide structure modification.84 During the last years, the objective of this structure 

modification has been the improvement of the permeability and stability, key characteristic in the 

design of more efficient peptidic drugs.211 Davis and co-workers have reported the use of alkyl 

bromides/iodides as efficient radical precursors for the side-chain modification of proteins.212 

Moreover, Roelfes and co-workers employed organoborates as radical precursors for the alkylation of 

antimicrobial peptides, and Jui and co-workers generated aminoalkyl radicals for the corresponding 

tertiary amines for their coupling in peptides structures.213 All these methodologies showed a perfect 

chemoselectivity toward the Dha rest present in the peptide structures. 

 
Scheme 24. Radical methodologies with Dha and peptide modification. 

 

The Beckwith-Karady alkene 87 is a chiral dehydroalanine derivative developed in the early 
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centers (either ketones or aldehydes), and 87.220 Finally, Tan and wo-workers recently reported the 

use of 4-acyl-1,4-dihydropyridines (acyl-DHPs) as efficient radical precursors for the acylation of 87.221 

The work of Overman and MacMillan using cesium oxalate salts as radical precursors of tertiary alkyl 

radicals presented one example in their scope of the efficient coupling with 87 as electron-deficient 

alkene.73  

 
Scheme 25. Diastereoselective syntheses of UAAs using 87. 
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Figure 20. Novel strategies developed for the synthesis of UAAs. 

 

5.3. Synthesis of a-UAAs via radical decarboxylative processes 

Before starting with any exploration or optimization of conditions, 87 had to be synthesized 

(Scheme 26). A modified version of the route previously reported by Jui was employed to achieve this 

goal.218 The first part of the route consisted in two steps performed in one pot, where S-benzyl-L-
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The last step of the route involves the desulfonylation of 90 using 1,8-diazabicyclo[5.4.0]undec-7-ene 
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Scheme 26. Synthesis of 87. 
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acids, I was synthesizing the entries corresponding to the carboxylic acids for the alkylation protocol. 

Primary (91), secondary (92-97), and tertiary (98-101) acids bearing a wide range of functional groups 

performed well with this transformation in moderate to excellent yields. It is worth highlighting 

examples like 93, where N-Boc protected L-proline was successfully coupled wearing a free hydroxyl 

group, or the bicyclo[1.1.1]pentane (BCP) example 101, an important group of saturated bioisosteres 

of benzenoids in medicinal chemistry and crop science. The diastereoselectivity of the products was 

calculated via 1H-NMR of the crude reaction mixture. 

 
[A] 1,4-dioxane; [B] DMSO  
Scheme 27. Scope of the reaction. 

 

5.4. Derivatizations & mechanistic studies  

To highlight the utility of this methodology, a series of derivatization reactions were performed. The 
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Scheme 28. Acidic deprotection. 
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demonstrated that light and photocatalyst were necessary for the alkylation conditions. However, 

when phenylglyoxylic acid and 2,6-lutidine as a base were irradiated in absence of photocatalyst, 

around 20-30% of the desired product was formed. To discover the role played by 2,6-lutidine, a set 

of test reactions were carried out. First, 2,6-lutidine was replaced for the inorganic base K2HPO4, and 

no product formation was observed after irradiation in absence of photocatalyst. Then, an aliphatic 

a-keto acid, such as 2-oxo-4-phenylbutanoic acid in combination with 2,6-lutidine, were irradiated in 

absence of photocatalyst, without formation of the desired product. The combination of these two 

results suggested the potential formation of an EDA-complex between the phenylglyoxylic acid and 

2,6-lutidine by aryl complexation of both molecules  

 
Scheme 29. Derivatizations and control experiments. 
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measurements supported this last result and proposed that both transformations could procced via 

radical chain mechanism. 

 

 
Figure 22. UV/Vis spectra measurements. 
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molecule during the protonation event, thus leading to the formation of the syn oxazolidinone 

species.214,215,226 NOESY experiments support the conformation of the final products. 

 
Scheme 30. Proposed mechanism for the decarboxylative syntheses of unnatural a-amino acids. 
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centered radical species A or B. (Figure 23).242 Therefore, by using this pathway is possible to avoid 

extra activation steps and use the readily available alcohols and carboxylic acids motifs as substrates. 

 
Figure 23. Retrosynthetic pathways for the synthesis of g-Oxo-a-amino acids. 
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coupling partners, obtaining interesting g-oxo-a-amino acid derivatives bearing 5- and 6-membered 

heterocycles. The scalability of this methodology was demonstrated by scaling the standard reaction 

with benzoic acid (102) up to 5.0 mmol, affording 1 in 95% (1.9 g) and 73% (1.4 g) yield using 0.5 mol% 

and 0.25 mol% of Ir−F, respectively. Some other substrates were tested to further check the reactivity 

and limitations of this methodology. The presence of sensitive positions towards radical addition, like 

the primary chlorine position in 110, or the alkene position in 111 might explain their lack of reactivity. 

The lower stabilization of 112 due to a lower conjugated system seems to be an impact factor under 

this reaction conditions. 1H-NMR analysis of 113 showed a complete decomposition of the pyrimidine 

core. Attempts to coupling picolinic (114), and dihydropyridine derivates (115) did not afford positive 

yields. 

  
Scheme 31. Scope of the reactions. 
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Wang,244 or N-bromosuccinimide (NBS)-Catalyzed α-hydroxylation of Ketones in DMSO reported by 

Jiao.245 As in the previous cases, no derivatized product was observed (Scheme 32). A possible 

hypothesis might be that the bulkiness of the benzyl chloroformate group produces a high steric 

hindrance next to the carbonyl position, inhibiting any possible reactivity.  

  
Scheme 32. Derivatization reactions. 
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These results, along with previously reported methodologies,242 allowed us to suggest a 

plausible mechanism disclosed in Scheme 34. First, PPh3 (E1/2 = +0.98 V vs SCE) is oxidized by the 

excited photocatalyst *IrIII (*E1/2 = +1.21 V vs SCE), generating the triphenylphosphine radical cation D 

and IrII. Then, D reacts with the corresponding carboxylic acid, affording the phosphoranyl radical 

cation E, which readily undergoes β-scission to deliver OPPh3 and the key acyl radical B. The latter 

adds to 87 to afford the radical intermediate F, which is subsequently reduced by IrII (E1/2 = −1.37 V vs 

SCE) via SET, delivering the targeted product after final protonation. The results obtained from the 

measurement of the quantum yield suggested (F = 13.5) the possible contribution of a radical chain 

pathway, where we suspected than 2,4,6-collidine seems to play a crucial role. This hypothesis was 

based on further analysis, where the reaction was performed using either superstoichiometric 

amounts of inorganic bases (Cs2CO3 or KH2PO4) or in the absence of bases, the yield of 102 dropped 

drastically. However, when the reaction was carried out with catalytic amounts of 2,4,6-collidine (20 

mol%), 102 was obtained in 20% yield after 1 h and in 79% yield in 3 h. Despite the fact we were not 

able to fully disclosed the nature of this radical chain, the information obtained during these last 

experiments encouraged us to tentatively proposed that a HAT or PCET event between F and the 

pyridinium species G would generate a highly oxidizing pyridinium radical cation H (E1/2 collidine ≥ +2 

V vs SCE),246 which would act as a chain carrier by oxidizing PPh3 to generate the key phosphoranyl 

radical cation D and regenerate the base. 

 
Scheme 34. Proposed mechanism. 
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5.7. Summary & conclusions 

In conclusion, after these two studies we have developed highly efficient, light-mediated 

methodologies for the radical alkylation and acylation of 87. Both methods displayed a high functional 

tolerance in synthetically useful yields with excellent diastereoselectivities for the straightforward 

construction of a wide range of novel unnatural a-amino acids. Additionally, the synthetic utility and 

scalability of these protocols was highlighted by a series of derivatization reactions. 

During the development of these methodologies, two other transformations using similar 

conditions were reported by Schubert,247 and Wang.248 In the first one, the authors employed the 

organophotocatalyst 4CzIPN to achieve the alkylation of 87, using carboxylic acids as alkyl radical 

precursors. In the second case, deuterated carboxylic acids were used for the synthesis of a-

deuterated UAAs (Scheme 35).  

 
Scheme 35. Further decarboxylative functionalizations  

 

Finally, both of our methodologies were highlighted in Synfacts,249,250 and Organic Process 

Research & Development (OPR&D),251,252 remarking the mild conditions and low catalyst loading, along 

with the variety of examples and derivatizations carried out and demonstrating their impact and 

potential application in the industry. 
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CONCLUSIONS 
The initial aims of the projects here compiled were successfully accomplished, as the with the 

development of a series of straightforward transformations was achieved. At the beginning, we were 

able to develop a novel formal radical deoxyfluorination methodology via oxalate salts activation of 

the corresponding tertiary alcohols. The ambition behind this was to overcome the limitations that 

the classical deoxyfluorination technologies presented for congested systems. Commercially available 

Selectfluor® was selected as an efficient fluorinating reagent for this selective metal-free functional 

group interconversion. Our investigations suggest a potential EDA-complex formation between the 

corresponding oxalate and Selectfluor® as main mechanistic pathway. Some events during the 

development of this first project encouraged us to further investigate the potential applications of 

radical deoxyfunctionalizations methodologies, summarized as follows. 

Firstly, the discovery of a major fused heterocycle by-product in a Minisci fashion pathway led 

us to question the optimization and application of a potential intramolecular Minisci methodology due 

to the presence of this transformation in the synthetic pool remains scarce. Hence, we have been able 

to optimize this technology and use it as key step in a three steps straightforward route for the 

synthesis of novel saccharide based polycyclic structures with perfect diastereoretention. Early 

biological studies suggested that further modification of these structures, e.g. fused ring size 

modification, or replacement of the ring heteroatom, might grant access to a wide library of polycyclic 

compounds. 

Secondly, the lack of efficient deoxycyanation methodologies, especially in the case of tertiary 

examples served to synthesize a novel cyanation hypervalent iodine (III) reagent by replacing the I–O 

bond of the well-known Zdhankin reagent for a more stable N-tosyl group. The reactivity of this novel 

compound was tested by developing a visible-light mediated deoxycyanation technology using the 

already employed cesium oxalates. However, preliminary cyclic voltammetry measurements revealed 

the more oxidant character of this reagent, which could explain the diminished reactivity with our 

conditions by the presence of competing cycles. Our resulting hypothesis is that the replacement of 

the carbonyl moiety of the five-membered ring for an imine rest might adjust its reduction potential, 

avoiding competing pathways. 

Furthermore, we have contributed to the field of the synthesis of novel unnatural amino acids 

(UUAs) by developing two novel visible-light protocols for the alkylation and acylation of the Beckwith-

Karady chiral dehydroalanine derivative. These two works represent a robust and reproducible 

pathway for the synthesis of such relevant structures in the development of peptidomimetic drugs. 
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6. SUPPORTING INFORMATION 

6.1. General information 

Commercial reagents and solvents were used as purchased. Unless otherwise noted, all 

reactions were carried out under an atmosphere of N2 in flame-dried glassware. The solvents used 

were purified by distillation over standard drying agents and were stored over molecular sieves or 

transferred under N2. Visible light from a compact fluorescent lamp (CFL) was provided by a standard 

household desk lamp fitted with a 23 W fluorescent light bulb. Blue LEDs (32 W, lmax = 440 nm and 18 

W, �max = 405 nm) were used for irradiation, in combination with an EvoluChem™ PhotoRedOx Box. 

The reaction temperature was kept at 27 °C by  the fans incorporated in the reactor.  

TLC were conducted with precoated glass-backed plates (silica gel 60 F254) and visualized by 

exposure to UV light (254 nm) or stained with ceric ammonium molybdate (CAM), basic potassium 

permanganate (KMnO4), nihydrin, or p-anisaldehyde solutions and subsequent heating. Flash column 

chromatography was performed on silica gel (40-60 μm), the eluent used is reported in the respective 

experiments. Abbreviations of solvents are as followed: PE: petroleum ether. 
1H NMR spectra were recorded with 400 MHz or 600 MHz instruments, 13C NMR spectra at 

101 MHz or 151 MHz. Chemical shifts are reported in ppm relative to the solvent signal, coupling 

constants J in Hz. Multiplicities were defined by standard abbreviations. Low-resolution mass spectra 

(LRMS) were recorded using a LC/MS-combination (ESI). High-resolution mass spectra (HRMS) were 

obtained using ESI ionization (positive) on a Bruker micrOTOF. 

 

6.2. LED’s emission spectra, standard reaction set up & gram-scale 

reaction set up 
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6.3. Chapter 2: Formal Radical Deoxyfluorination of Tertiary Alcohols 

6.3.1. General procedures 

General procedure for the synthesis of ethyl oxalates (GP1): A round-bottom flask (RBF) was charged 

with the corresponding tertiary alcohol (1.0 equiv.) and CH2Cl2 (0.1 M), followed by addition of 

triethylamine (1.2 equiv.) and DMAP (0.1 equiv.) and cooled to 0 °C. Next, ethyl chlorooxoacetate (1.2 

equiv.) was added dropwise and the reaction was stirred for 1 hour at room temperature and then 

quenched with saturated NH4Cl (aq.). Finally, the aqueous phase was extracted with CH2Cl2, the 

combined organic layers dried over Na2SO4 and concentrated under reduced pressure. The crude 

material was purified by flash column chromatography on silica gel.  

 

General procedure for the synthesis of cesium oxalates (GP2): To a RBF containing a solution of the 

corresponding oxalate in THF (1 M) was added a 1 N aq. solution of CsOH dropwise. The reaction was 

vigorously stirred at room temperature for 10 min. Afterwards the solvent was evaporated to deliver 

the corresponding Cs oxalate as a white solid. In certain cases, it was necessary to wash the aqueous 

phase with EtOAc or dichloromethane to obtain the pure products.  

 

6.3.2. Synthesis & characterization of starting materials 

 

2-methyl-4-phenylbutan-2-ol: MeMgBr (11 mL, 33 mmol, 2.2 equiv.) was added dropwise to a 0 °C 

solution of ethyl 3-phenylpropanoate (2.7 g, 15 mmol, 1.0 equiv.) in THF (30 mL, 0.5 M). The mixture 

was stirred at 0 °C for 1 h and then warmed up to room temperature. After 2 h the reaction was 

quenched with a saturated solution of NH4Cl (aq.), the product extracted with EtOAc (3 x 50 mL), and 

the combined organic layers dried over Na2SO4 and concentrated in vacuo. The crude mixture was 

purified by column chromatography using a 2:1 mixture of petrol ether/EtOAc to afford the desired 

product as a colorless oil in 83% yield (2.0 g, 12 mmol). The characterization matches the reported 

literature.253 
1H NMR (600 MHz, CDCl3): δ 7.30 (tt, J = 7.9, 1.8 Hz, 2H), 7.24 – 7.21 (m, 2H), 7.21 – 7.18 (m, 1H), 2.76 

– 2.69 (m, 2H), 1.83 – 1.79 (m, 2H), 1.31 (s, 6H). 
13C{1H} NMR (151 MHz, CDCl3): δ 142.6, 128.4, 128.3, 125.7, 70.8, 45.8, 30.8, 29.30. 

Rf (PE/EtOAc 2:1) = 0.46 [CAM] 
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Ethyl(2-methyl-4-phenylbutan-2-yl)oxalate: Synthesized following GP1 using 2-methyl-4-

phenylbutan-2-ol (2.4 g, 18 mmol, 1.0 equiv.). The pure product was isolated as a colorless oil in 78% 

yield (3.7 g, 14 mmol). The characterization matches the reported literature. 73 
1H NMR (600 MHz, CDCl3): δ 7.28 (t, J = 7.2 Hz, 2H), 7.19 (t, J = 7.2 Hz, 3H), 4.33 (q, J = 7.1 Hz, 2H), 2.73 

– 2.67 (m, 2H), 2.18 – 2.12 (m, 2H), 1.61 (s, 6H), 1.38 (t, J = 7.2 Hz, 3H). 
13C{1H} NMR (151 MHz, CDCl3): δ 158.7, 157.2, 141.7, 128.6, 128.5, 126.1, 86.7, 62.9, 42.6, 30.4, 25.9, 

14.1. 

Rf (PE/EtOAc 4:1) = 0.36 [CAM] 

 

Cesium 2-((2-methyl-4-phenylbutan-2-yl)oxy)-2-oxoacetate: Synthesized following GP2 using 

ethyl(2-methyl-4-phenylbutan-2-yl)oxalate (0.5 g, 1.8 mmol, 1.0 equiv.). The product was isolated as 

a white solid in 90% yield (0.6 g, 1.6 mmol). The characterization matches the reported literature.73  
1H NMR (400 MHz, DMSO-d6): δ 7.31 – 7.23 (m, 2H), 7.20 – 7.14 (m, 3H), 2.63 – 2.56 (m, 2H), 2.04 – 

1.96 (m, 2H), 1.41 (s, 6H). 
13C{1H} NMR (151 MHz, DMSO-d6): δ 167.4, 163.4, 142.2, 128.2, 128.1, 125.6, 79.9, 42.0, 29.5, 26.0. 

 

 
Ethyl (4-(4-methoxyphenyl)-2-methylbutan-2-yl) oxalate: To a solution of 4-(4-

methoxyphenyl)butan-2-one (1.7 mL, 10 mmol, 1.0 equiv.) in THF (20 mL, 0.5 M) was added dropwise 

a solution of MeMgBr (3 M in Et2O, 4.0 mL, 12 mmol, 1.2 equiv.) at 0 °C. The reaction mixture was 

stirred at 0 °C for 1 h and then warmed out to room temperature. After 2 h the reaction was quenched 

with a saturated solution of NH4Cl (aq.), the product extracted with EtOAc (3 x 50 mL), and the 

combined organic layers dried over Na2SO4 and concentrated in vacuo. The crude product was used 

in the next step without further purification.  

Synthesized following GP1 using 4-(4-methoxyphenyl)-2-methylbutan-2-ol (10 mmol, 1.0 equiv.). The 

pure product was isolated as a colorless oil in 83% yield (2.44 g, 8.3 mmol). 
1H NMR (600 MHz, CDCl3): δ 7.12 – 7.09 (m, 2H), 6.84 – 6.80 (m, 2H), 4.32 (q, J = 7.1 Hz, 2H), 3.78 (s, 

3H), 2.66 – 2.60 (m, 2H), 2.15 – 2.09 (m, 2H), 1.59 (s, 6H), 1.37 (t, J = 6.6 Hz, 3H). 
13C{1H} NMR (151 MHz, CDCl3) δ 158.7, 158.0, 157.2, 133.7, 129.4, 114.0, 86.7, 62.9, 55.4, 42.8, 29.4, 

25.9, 14.1. 

GCMS (FI): [m/z] calculated for C16H22O5 ([M]): 294.14672; found 294.14519. 

Rf (PE/EtOAc 4:1) = 0.4 [CAM] 
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Cesium 2-((4-(4-methoxyphenyl)-2-methylbutan-2-yl)oxy)-2-oxoacetate: Synthesized following GP2 

using ethyl (4-(4-methoxyphenyl)-2-methylbutan-2-yl) oxalate (1.0 g, 3.4 mmol, 1.0 equiv.).The 

product was isolated as a white solid in 94% yield (1.3 g, 3.2 mmol). 
1H NMR (600 MHz, DMSO-d6): δ 7.09 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 3.71 (s, 3H), 2.55 – 2.50 

(m, 2H), 2.00 – 1.93 (m, 2H), 1.41 (s, 6H). 
13C{1H} NMR (151 MHz, DMSO-d6): δ 167.5, 163.4, 157.3, 134.0, 129.0, 113.7, 80.0, 54.9, 42.3, 28.6, 

26.1. 

HRMS (ESI-neg): [m/z] calculated for C14H17O5 ([M-Cs]-): 265,1076; found 265.1081.  

 

 
6-chloro-2-cyclohexylhexan-2-ol: CyMgBr (1 M in Et2O, 12 mL, 12 mmol, 1.2 equiv.) was added 

dropwise to a 0 °C solution of 6-chlorohexan-2-one (1.3 mL, 10 mmol, 1.0 equiv.) in THF (20 mL, 0.5 

M). The mixture was stirred at 0 °C for 1 h and then warmed up to room temperature. After 2 h the 

reaction was quenched with a saturated solution of NH4Cl (aq.), the product extracted with EtOAc (3 

x 50 mL), and the combined organic layers dried over Na2SO4 and concentrated in vacuo. The crude 

mixture was purified by column chromatography to afford the desired product as a colorless oil in 33% 

yield (0.73 g, 3.3 mmol). 
1H NMR (600 MHz, CDCl3): δ 3.55 (t, J = 6.7 Hz, 2H), 1.84 – 1.75 (m, 5H), 1.75 – 1.70 (m, 1H), 1.70 – 

1.64 (m, 1H), 1.54 – 1.44 (m, 4H), 1.32 (tt, J = 12.0, 2.9 Hz, 1H), 1.27 – 1.18 (m, 2H), 1.16 – 1.10 (m, 

1H), 1.10 (s, 3H), 1.01 (dqd, J = 28.4, 12.2, 3.1 Hz, 2H). 
13C{1H} NMR (151 MHz, CDCl3): δ 74.5, 47.5, 45.1, 39.1, 33.4, 27.7, 27.0, 26.9, 26.9, 26.7, 24.1, 20.9. 

GCMS (FI): [m/z] calculated for C12H23ClO ([M]): 218.14374; found 218.14374. 

Rf (PE/EtOAc 10:1) = 0.25 [CAM] 

 

6-chloro-2-cyclohexylhexan-2-yl ethyl oxalate: Synthesized following GP1 with 6-chloro-2-

cyclohexylhexan-2-ol (0.65 g, 3.0 mmol, 1.0 equiv.). The product was isolated as a colorless oil in 51% 

yield (0.48 g, 1.5 mmol).  
1H NMR (600 MHz, CDCl3): δ 4.31 (q, J = 7.1 Hz, 2H), 3.54 (td, J = 6.6, 1.1 Hz, 2H), 2.10 – 2.03 (m, 1H), 

2.02 – 1.95 (m, 1H), 1.88 – 1.82 (m, 1H), 1.81 – 1.73 (m, 4H), 1.71 – 1.62 (m, 2H), 1.50 – 1.47 (m, 2H), 

1.46 (s, 3H), 1.36 (t, J = 7.2 Hz, 3H), 1.29 – 1.19 (m, 2H), 1.17 – 1.01 (m, 4H). 
13C{1H} NMR (151 MHz, CDCl3): δ 158.8, 157.2, 92.3, 62.8, 44.9, 44.5, 34.8, 32.8, 27.4, 27.2, 26.6, 

26.6, 20.8, 20.7, 14.1. 

HRMS (ESI): [m/z] calculated for C16H27ClNaO4 ([M+Na]+): 341,1496; found 341.1490. 
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Rf (PE/EtOAc 4:1) = 0.37 [CAM] 

 

Cesium 2-((6-chloro-2-cyclohexylhexan-2-yl)oxy)-2-oxoacetate: Synthesized following GP2 with 6-

chloro-2-cyclohexylhexan-2-yl ethyl oxalate (0.43 g, 1.3 mmol, 1.0 equiv.), the product was obtained 

as a colorless solid (0.55 g, 1.3 mmol, 96%). 
1H NMR (600 MHz, DMSO-d6): δ 3.61 (t, J = 6.7 Hz, 2H), 2.00 (tt, J = 11.9, 2.9 Hz, 1H), 1.86 (ddd, J = 

13.7, 9.3, 7.6 Hz, 1H), 1.75 – 1.56 (m, 8H), 1.38 (dq, J = 9.5, 7.4 Hz, 2H), 1.24 (s, 3H), 1.20 – 0.92 (m, 

5H). 
13C{1H} NMR (151 MHz, DMSO-d6): δ 167.4, 163.5, 45.3, 44.2, 34.7, 32.5, 26.7, 26.4, 26.3, 26.2, 26.1, 

20.6, 20.1. 

HRMS (ESI-neg): [m/z] calculated C14H22ClO4 ([M-Cs]-): 289,1207, found 289.1212. 

 

 
N-benzyl-3-hydroxyadamantane-1-carboxamide: 3-hydroxyadamantane-1-carboxylic acid (1.2 g, 6.0 

mmol, 1 equiv.) and benzyl amine (0.85 mL, 7.8 mmol, 1.3 equiv.) were dissolved in DMF (0.4 M, 15 

mL). At 0 °C, HATU (3.4 g, 9.0 mmol, 1.5 equiv.) and DIPEA (2.1 mL, 12 mmol, 2.0 equiv.) were added 

slowly. The reaction was stirred at room temperature for 18 h. Ethyl acetate and sat. sodium 

bicarbonate solution were added and the resulting phases were separated. The aqueous phase was 

extracted with ethyl acetate once and the combined organics were washed with aqueous hydrochloric 

acid (1 M) and brine, then dried over sodium sulfate, filtrated and the solvent removed under reduced 

pressure. The crude product was purified by column flash chromatography to yield the desired 

product as a yellow solid in 91% yield (1.5 g, 5.4 mmol).  
1H NMR (600 MHz, CDCl3): δ  7.35 – 7.31 (m, 2H), 7.29 – 7.23 (m, 3H), 5.88 (s, 1H), 4.43 (d, J = 5.6 Hz, 

2H), 2.33 – 2.23 (m, 2H), 1.83 (s, 2H), 1.82 – 1.75 (m, 4H), 1.74 – 1.67 (m, 4H), 1.61 – 1.58 (m, 2H), 1.44 

(dd, J = 22.2, 6.6 Hz, 1H). 
13C{1H} NMR (151 MHz, CDCl3): δ 176.4, 138.6, 128.9, 127.8, 127.6, 68.6, 47.0, 44.5, 43.6, 38.3, 35.2, 

30.5, 17.4. 

HRMS (ESI): [m/z] calculated for C18H23NNaO2 ([M+Na]+): 308.1621; Found: 308.1622 

Rf (DCM/MeOH 95:5) = 0.24 [UV] 

 

3-(benzylcarbamoyl)adamantan-1-yl ethyl oxalate: Synthesized following GP1 and using N-benzyl-3-

hydroxyadamantane-1-carboxamide (1.7 g, 6.0 mmol, 1.0 equiv.). The pure product was isolated as a 

white solid in 83% yield (1.9 g, 5.0 mmol).  
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1H NMR (600 MHz, CDCl3): δ 7.35 – 7.31 (m, 2H), 7.29 – 7.26 (m, 1H), 7.25 – 7.22 (m, 2H), 5.86 (s, 1H), 

4.42 (d, J = 5.6 Hz, 2H), 4.30 (q, J = 7.1 Hz, 2H), 2.38 – 2.33 (m, 2H), 2.30 (s, 2H), 2.24 (d, J = 11.4 Hz, 

2H), 2.15 (d, J = 10.8 Hz, 2H), 1.85 (d, J = 2.5 Hz, 4H), 1.71 – 1.62 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H). 
13C{1H} NMR (151 MHz, CDCl3): δ 175.6, 158.5, 156.8, 138.4, 128.9, 127.8, 127.7, 84.5, 63.0, 44.5, 43.7, 

42.5, 40.1, 38.2, 35.0, 30.7, 14.1. 

HRMS (ESI): [m/z] calculated for C22H27NNaO5 ([M+Na]+): 408.1781; Found: 408.1783. 

Rf (PE:EA) 70:30) = 0.14 [UV] 

 

Cesium 2-((3-(benzylcarbamoyl)adamantan-1-yl)oxy)-2-oxoacetate: Synthesized following GP2 using 

3-(benzylcarbamoyl)adamantan-1-yl ethyl oxalate (0.77 mg, 2.0 mmol, 1.0 equiv.). The pure 

compound was isolated as white solid in 85% yield (0.83 g, 1.7 mmol).  
1H NMR (600 MHz, CDCl3): δ 8.09 (t, J = 5.9 Hz, 1H), 7.30 (t, J = 7.7 Hz, 2H), 7.20 (t, J = 7.7 Hz, 3H), 4.25 

(d, J = 5.9 Hz, 2H), 2.20 (s, 2H), 2.12 (s, 2H), 2.01 (s, 4H), 1.74 (s, 4H), 1.63 – 1.51 (m, 2H). 
13C{1H} NMR (151 MHz, CDCl3): δ 175.5, 167.2, 163.1, 140.0, 128.1, 126.7, 126.4, 78.3, 43.3, 42.5, 41.9, 

40.2, 37.7, 34.8, 29.9. 

HRMS (ESI): [m/z] calculated for C20H22NO5 ([M-Cs]-): 356.1503; Found: 356.1503. 

 

 
Ethyl piperidine-4-carboxylate: Isonipecotic acid (2.6 g, 20 mmol, 1.0 equiv.) was dissolved in ethanol 

(abs., 50 mL). The solution was cooled to 0 οC and thionyl chloride (5.84 mL, 80.0 mmol, 4.0 equiv.) 

was added dropwise. Then the reaction mixture stirred and refluxed for 48 h. The solvent was 

removed in vacuo yielding a yellow oil, which was dissolved in EtOAc and washed with 10% NaOH 

(aq.). The organic layer was dried over Na2SO4 and concentrated in vacuo to afford ethyl piperidine-4-

carboxylate as a yellow oil in 74% yield (2.3 g,15 mmol). The characterization matches the reported 

literature.254  
1H NMR (600 MHz, CDCl3) δ 4.12 (q, J = 7.1 Hz, 2H), 3.08 (dt, J = 12.6, 3.7 Hz, 2H), 2.63 (td, J = 12.2, 2.7 

Hz, 2H), 2.39 (tt, J = 11.2, 3.9 Hz, 1H), 1.90 – 1.84 (m, 3H), 1.65 – 1.56 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H). 
13C{1H} NMR (151 MHz, CDCl3) δ 175.2, 60.4, 46.0, 41.7, 29.4, 14.4. 

Rf (PE/EtOAc 8:2) = 0.19 [UV] [KMnO4]. 

 

Ethyl 1-tosylpiperidine-4-carboxylate: To a solution of ethyl piperidine-4-carboxylate (0.94 mg, 6.0 

mmol, 1.0 equiv.) and triethylamine (1.2 mL, 9.0 mmol, 1.5 equiv.) in DCM (20 mL, abs.), tosyl chloride 

(1.7 g, 9.0 mmol, 1.5 equiv.) was added portionwise at 0 °C. The reaction was stirred 15 min at 0 °C 

and then 4 h at room temperature. 1 N HCl (aq.) was added to the reaction mixture and was stirred 
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vigorously. The aqueous layer was extracted with DCM (3 x 20 mL). Then, the combined organic layer 

was washed with brine, dried over Na2SO4, filtered, and concentrated under reduced pressure to give 

a colorless oil. The residue was purified by chromatography over silica to obtain the desired product 

as a white solid in 97% yield (1.8 g, 5.8 mmol). The characterization matches the reported literature.255  
1H NMR (600 MHz, CDCl3) δ 7.62 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 4.09 (q, J = 7.1 Hz, 2H), 3.63 

– 3.58 (m, 2H), 2.45 (td, J = 11.4, 3.0 Hz, 2H), 2.42 (s, 3H), 2.22 (tt, J = 10.6, 4.0 Hz, 1H), 1.98 – 1.91 (m, 

2H), 1.84 – 1.75 (m, 2H), 1.20 (t, J = 7.1 Hz, 3H). 
13C{1H} NMR (151 MHz, CDCl3) δ 173.9, 143.7, 133.4, 129.8, 127.8, 60.7, 45.5, 40.2, 27.6, 21.6, 14.2. 

Rf (PE/EtOAc, 6:4) = 0.51 [KMnO4]. 

 

2-(1-tosylpiperidin-4-yl)propan-2-ol: The ester (1.6 g, 5.0 mmol, 1.0 equiv.) was dissolved in THF (25 

mL, abs.), followed by addition of MeMgBr (5.0 mL, 3 M in Et2O, 15 mmol, 3.0 equiv.) dropwise at 0 °C 

under Ar. The reaction mixture was stirred 15 min at 0 °C and was then allowed to warm up to room 

temperature overnight. 1M HCl (aq.) was added slowly to the reaction mixture. The aqueous layer was 

extracted with EtOAc (3 x 50 mL). The combined organic layers were neutralized with saturated 

NaHCO3 (aq.), washed with brine, dried over Na2SO4, filtered, and concentrated under reduced 

pressure. The crude mixture was purified by flash chromatography on silica gel (PE/EtOAc 1:1) to give 

the desired tertiary alcohol as a white solid in 96% yield (1.4 g, 4.8 mmol). The characterization 

matches the reported literature.255 
1H NMR (600 MHz, CDCl3) δ 7.63 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.0 Hz, 2H), 3.93 – 3.80 (m, 2H), 2.42 

(s, 3H), 2.17 (td, J = 12.1, 2.5 Hz, 2H), 1.78 (d, J = 13.0 Hz, 2H), 1.45 – 1.35 (m, 3H), 1.17 (tt, J = 12.4, 

3.4 Hz, 1H), 1.12 (s, 6H). 
13C{1H} NMR (151 MHz, CDCl3) δ 143.5, 133.3, 129.7, 127.8, 72.1, 46.8, 46.8, 27.0, 26.4, 21.6. 

Rf (PE/EtOAc, 1:1) = 0.25 [CAM]. 

 

1-cyclohexyl-2-((3,3-diethoxypropyl)amino)-2-oxo-1-phenylethyl ethyl oxalate: Synthesized 

following GP1 using 2-(1-tosylpiperidin-4-yl)propan-2-ol (0.89 mg, 3.0 mmol, 1.0 equiv.). The product 

was obtained as a white solid in 84% yield (1.0 g, 2.5 mmol). 
1H NMR (400 MHz, CDCl3): δ 7.66 – 7.59 (m, 2H), 7.33 – 7.30 (m, 2H), 4.28 (q, J = 7.1 Hz, 2H), 3.91 – 

3.82 (m, 2H), 2.43 (s, 3H), 2.17 (td, J = 12.1, 2.5 Hz, 2H), 1.86 (tt, J = 12.2, 3.3 Hz, 1H), 1.76 – 1.69 (m, 

2H), 1.56 – 1.47 (m, 2H), 1.46 (s, 6H), 1.34 (t, J = 7.1 Hz, 3H). 
13C{1H} NMR (101 MHz, CDCl3) δ 158.5, 157.1, 143.7, 133.0, 129.7, 127.9, 88.6, 77.2, 63.0, 46.6, 44.1, 

26.1, 23.0, 21.6, 14.0. 

HRMS (ESI): (m/z) [M+Na]+ calculated for C19H27NNaO6S, 420.1451; found, 420.1455. 
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Rf (PE/EtOAc 1:1) = 0.49 [KMnO4]. 

 

Cesium 2-((2-methyl-4-(tosyloxy)pentan-2-yl)oxy)-2-oxoacetate: Synthesized following GP2 using 1-

cyclohexyl-2-((3,3-diethoxypropyl)amino)-2-oxo-1-phenylethyl ethyl oxalate (0.95 mg, 2.4 mmol, 1.0 

equiv.). The product was isolated as a white solid in 90% yield (1.1 g, 2.1 mmol). 
1H NMR (400 MHz, DMSO-d6): δ 7.61 (d, J = 8.2 Hz, 2H), 7.44 (d, J = 8.1 Hz, 2H), 3.70 (d, J = 11.6 Hz, 

2H), 2.40 (s, 3H), 2.07 (td, J = 12.3, 2.4 Hz, 2H), 1.81 (tt, J = 12.2, 3.3 Hz, 1H), 1.67 (d, J = 12.5 Hz, 2H), 

1.34 – 1.19 (m, 8H). 
13C{1H} NMR (101 MHz, DMSO-d6): δ 167.3, 163.2, 143.4, 132.4, 129.7, 127.4, 81.8, 46.3, 43.1, 25.2, 

23.2, 21.0. 

HRMS (ESI): [m/z] calculated for C17H22CsNO6S ([M-Cs]-): 368.1173; found, 368.1177. 

 

 
tert-Butyl 4-methyl piperidine-1,4-dicarboxylate: To a solution of 1-(tert-butoxycarbonyl)piperidine-

4-carboxylic acid (2.0 g, 8.7 mmol, 1.0 equiv.) in DMF (38 mL) was added potassium carbonate (1.2 g, 

8.7 mmol, 1.0 equiv.) and iodomethane (0.65 mL, 10 mmol, 1.2 equiv.). The reaction mixture was 

stirred for three hours at room temperature. The reaction was poured into 10% aqueous potassium 

carbonate (100 mL). The aqueous solution was extracted with EtOAc (3 x 50). The combined organic 

layers were washed with brine, dried over Na2SO4 and concentrated in vacuo. The crude product was 

purified via column chromatography to afford the desired product as a yellow liquid in 93% yield (1.9 g, 

8.1 mmol). 
1H NMR (600 MHz, CDCl3): δ 3.99 (s, 2H), 3.67 (s, 3H), 2.82 (t, J = 12.4 Hz, 2H), 2.43 (tt, J = 11.0, 3.9 Hz, 

1H), 1.88 – 1.81 (m, 1H), 1.70 – 1.55 (m, 2H), 1.44 (s, 9H) 
13C{1H} NMR (151 MHz, CDCl3): δ 174.9, 154.6, 79.5, 51.7, 41.0, 28.4, 27.9. 

Rf (PE/EtOAc 8:2)= 0.23 [Ninhydrin]) 

 

tert-Butyl 4-(2-hydroxypropan-2-yl)piperidine-1-carboxylate: The ester (1.1 g, 4.3 mmol, 1.0 equiv.) 

was dissolved in THF (22 mL, 0.2 M), followed by addition of MeMgBr (4.3 mL, 3 M in Et2O, 13 mmol, 

3.0 equiv.) dropwise at 0 °C under Ar. The reaction mixture was stirred 15 min at 0 °C and was then 

allowed to warm up to room temperature overnight. 1 M HCl (aq.) was added slowly to the reaction 

mixture. The aqueous layer was extracted with EtOAc (3 x 50 mL). The combined organic layers were 

neutralized with saturated NaHCO3 (aq.), washed with brine, dried over Na2SO4, filtered and 
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concentrated under reduced pressure. The product was isolated as a colorless liquid in 99% yield 

(1.0 g, 4.3 mmol, 99%) without further purification. 
1H NMR (600 MHz, CDCl3): δ 4.29 (q, J = 7.1 Hz, 2H), 4.22 – 4.12 (m, 2H), 2.65 (d, J = 10.4 Hz, 2H), 2.04 

(tt, J = 12.2, 3.3 Hz, 1H), 1.71 – 1.61 (m, 2H), 1.50 (s, 6H), 1.44 (s, 9H), 1.35 (t, J = 7.1 Hz, 3H), 1.27 (qd, 

J = 12.7, 4.4 Hz, 2H). 
13C{1H} NMR (151 MHz, CDCl3): δ 158.6, 157.1, 154.8, 89.0, 79.6, 62.9, 45.1, 44.0, 28.6, 26.6, 23.1, 

14.1. 

HRMS (ESI): [m/z] calculated [C13H25NNaO3][M+Na]+ 266.1727, found 266.1734. 

Rf (PE/EtOAc 6:4) = 0.16 [Ninhydrin] 

 

2-(1-(tert-butoxycarbonyl)piperidin-4-yl)propan-2-yl ethyl oxalate: Synthesized following GP1 using 

tert-butyl-4-(2-hydroxypropan-2-yl)piperidine-1-carboxylate (0.53 g, 2.2 mmol, 1.0 equiv.). The 

product was isolated as a colorless liquid in 69% yield (0.51 g, 1.5 mmol). 
1H NMR (600 MHz, CDCl3): δ 4.29 (q, J = 7.1 Hz, 2H), 4.22 – 4.12 (m, 2H), 2.65 (d, J = 10.4 Hz, 2H), 2.04 

(tt, J = 12.2, 3.3 Hz, 1H), 1.71 – 1.61 (m, 2H), 1.50 (s, 6H), 1.44 (s, 9H), 1.35 (t, J = 7.1 Hz, 3H), 1.27 (qd, 

J = 12.7, 4.4 Hz, 2H) 
13C{1H} NMR (151 MHz, CDCl3): δ 158.6, 157.1, 154.8, 89.0, 79.6, 62.9, 45.1, 44.0, 28.6, 26.6, 23.1, 14.1 

HRMS (ESI): [m/z] calculated [C17H29NNaO6][M+Na]+ 366.1887, found 366.1889. 

Rf (PE/EtOAc 4:1) = 0.21 [Ninhydrin] 

 

Cesium 2-((2-(1-(tert-butoxycarbonyl)piperidin-4-yl)propan-2-yl)oxy)-2-oxoacetate: Synthesized 

following GP2 with 2-(1-(tert-butoxycarbonyl)piperidin-4-yl)propan-2-yl ethyl oxalate (496 mg, 1.44 

mmol, 1.0 equiv.). The product was isolated as a white solid in 89% yield (576 mg, 1.29 mmol). 
1H NMR (600 MHz, DMSO-d6): δ 4.01 (d, J = 13.9 Hz, 2H), 2.63 – 2.59 (m, 2H), 2.03 (tt, J = 12.2, 3.2 Hz, 

1H), 1.62 (dt, J = 13.4, 2.8 Hz, 2H), 1.39 (s, 9H), 1.32 (s, 6H), 1.09 (qd, J = 12.6, 4.3 Hz, 2H). 
13C{1H} NMR (151 MHz, DMSO-d6): δ 167.3, 163.4, 153.7, 82.1, 78.4, 44.1, 40.1, 28.1, 26.0, 23.2 

HRMS (ESI-neg): [m/z] calculated C15H24NO6 ([M-Cs]-): 314.1609, found 314.1613. 

 
Cesium 2-((2-(1-(tert-butoxycarbonyl)piperidin-4-yl)propan-2-yl)oxy)-2-oxoacetate: First, 1-

(ethoxycarbonyl)-4-ethylpiperidin-4-yl ethyl oxalate was synthesized following GP1 with (0.5 g, 2.5 

mmol, 1.0 equiv.). The crude product was used in the next step without further purification.  

N
CO2Et

OCOCO2Et

N
CO2Et

OCOCO2Cs

0 °C to RT

DMAP, Et3N

THF/H2O
 RT

ClCOCO2Et CsOH.H2O

CH2Cl2
N
CO2Et

OH



Chapter 6: Supporting information 

 78 

Following GP2 with 2-(1-(tert-butoxycarbonyl)piperidin-4-yl)propan-2-yl ethyl oxalate (496 mg, 1.44 

mmol, 1.0 equiv.), the desired cesium oxalate salt was isolated as a white solid in 40% yield (400 mg, 

1.0 mmol). 
1H NMR (600 MHz, DMSO-d6): δ 4.02 (q, J = 7.1 Hz, 2H), 3.73 (d, J = 13.2 Hz, 2H), 2.10 (d, J = 13.3 Hz, 

2H), 1.86 (q, J = 7.5 Hz, 2H), 1.40 (ddd, J = 13.7, 11.8, 4.6 Hz, 2H), 1.17 (t, J = 7.1 Hz, 3H), 0.80 (t, J = 7.5 

Hz, 3H). 
13C{1H} NMR (151 MHz, DMSO-d6): δ 167.4, 163.1, 154.6, 79.5, 60.5, 40.1, 33.1, 29.4, 14.6, 6.9. 

 

 
Ethyl 4-benzyl-4-hydroxypiperidine-1-carboxylate: BnMgCl (2 M, 3 mL, 15 mmol, 3 equiv.) was added 

dropwise to a 0 ºC solution of ethyl 4-oxopiperidine-1-carboxylate (0.75 mL, 5 mmol, 1 equiv.) in THF 

(15 mL, 0.5 M). The mixture was stirred at 0 ºC for 30 min and then warmed up to 50 ºC. After 20 h 

the reaction was quenched with a saturated solution of NH4Cl (aq.), the product was extracted with 

EtOAc (3 x 20 mL), and the combined organic layers dried over Na2SO4 and concentrated in vacuo. The 

crude product was purified by flash column chromatography on silica gel using a 1:1 mixture of 

EtOAc/Cyclohexane to afford the desired product as a white solid in 36% yield (0.48 g, 1.8 mmol). 
1H NMR (400 MHz, CDCl3) δ 7.33 (ddt, J = 8.0, 6.5, 1.2 Hz, 2H), 7.29 – 7.24 (m, 1H), 7.21 – 7.16 (m, 2H), 

4.12 (qd, J = 7.2, 1.2 Hz, 2H), 3.91 (s, 2H), 3.14 (t, J = 12.7 Hz, 2H), 2.76 (s, 2H), 2.04 (s, 1H), 1.66 – 1.57 

(m, 2H), 1.54 – 1.46 (m, 2H), 1.26 (td, J = 7.1, 1.9 Hz, 3H), 1.22 (d, J = 0.8 Hz, 1H). 
13C NMR (101 MHz, CDCl3) δ 155.7, 136.0, 130.7, 128.6, 127.0, 69.5, 61.4, 60.5, 49.4, 39.9, 36.8, 14.9, 

14.3. 

HRMS (ESI): [m/z] calculated for C15H21NNaO3 [M+Na]+], 286.1419, found 286.1418. 

Rf (CH/EtOAc 1:1) = 0.41 [CAM] 

 

4-benzyl-1-(ethoxycarbonyl)piperidin-4-yl ethyl oxalate: Synthesized following GP1 using ethyl 4-

benzyl-4-hydroxypiperidine-1-carboxylate (0.48 g, 1.8 mmol, 1.0 equiv.). The pure product was 

isolated as a colorless oil in 25% yield (0.19 g, 0.53 mmol). 
1H NMR (600 MHz, CDCl3) δ 7.29 (ddt, J = 8.0, 6.5, 1.2 Hz, 2H), 7.27 – 7.24 (m, 2H), 7.15 – 7.11 (m, 2H), 

4.32 (q, J = 7.2 Hz, 2H), 4.11 (q, J = 7.1 Hz, 2H), 3.98 (s, 2H), 3.30 (s, 2H), 3.02 (s, 2H), 2.34 (dq, J = 14.6, 

2.8 Hz, 2H), 1.43 (s, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H). 
13C NMR (101 MHz, CDCl3) δ 158.31, 157.63, 155.58, 135.08, 130.58, 128.53, 127.22, 86.02, 63.11, 

61.55, 43.34, 39.47, 33.53, 27.08, 14.82, 14.10. 

HRMS (ESI): [m/z] calculated for C19H25NNaO6 [M+Na]+], 386.1580, found 386.1574. 
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Rf (CH/EtOAc 4:1) = 0.24 [CAM] 

 

Cesium 2-((4-benzyl-1-(ethoxycarbonyl)piperidin-4-yl)oxy)-2-oxoacetate: Synthesized following GP2 

with 4-benzyl-1-(ethoxycarbonyl)piperidin-4-yl ethyl oxalate (0.26 g, 0.7 mmol, 1.0 equiv.). The 

product was isolated as a white solid in 67 % yield (0.25 g, 0.53 mmol). 
1H NMR (600 MHz, DMSO-d6) δ 7.29 – 7.16 (m, 5H), 4.07 – 3.93 (m, 2H), 3.81 – 3.71 (m, 2H), 3.20 (s, 

2H), 2.96 (s, 2H), 2.05 (d, J = 15.1 Hz, 2H), 1.46 (ddd, J = 13.7, 12.0, 4.6 Hz, 2H), 1.15 (t, J = 7.0 Hz, 3H). 
13C NMR (151 MHz, DMSO) δ 167.6, 162.9, 154.6, 136.2, 130.5, 127.9, 127.5, 126.2, 79.3, 60.5, 42.1, 

33.3, 14.6. 

HRMS (ESI): [m/z] calculated for C17H21CsNO6 [M+], 468.0423, found 468.0418. 

 

 
tert-Butyl 2-hydroxy-2-methyl-7-azaspiro[3.5]nonane-7-carboxylate: MeMgBr (3 M in Et2O, 2.0 mL, 

6.0 mmol, 3.0 equiv.) was added dropwise to a 0 °C solution of tert-butyl-2-oxo-7-azaspiro[3.5]nonan-

7 carboxylate (0.48 g, 2.0 mmol, 1.0 equiv.) in THF (10 mL, 0.2 M). The mixture was stirred at 0 °C for 

1 h and then warmed up to room temperature. After 2 h the reaction was quenched with a saturated 

solution of NH4Cl (aq.), the product extracted with EtOAc (3 x 25 mL), and the combined organic layers 

dried over Na2SO4 and concentrated in vacuo. The crude mixture was purified by column 

chromatography to afford the desired product as a white solid in 80% yield (0.41 mg, 1.6 mmol). 
1H NMR (600 MHz, CDCl3): � 3.44 – 3.11 (m, 1H), 1.93 (q, J = 12.6 Hz, 4H), 1.71 (s, 1H), 1.61 – 1.59 (m, 

2H), 1.51 – 1.46 (m, 2H), 1.44 (s, 9H), 1.38 (s, 3H). 
13C{1H} NMR (151 MHz, CDCl3): ��155.1, 79.4, 69.0, 47.0, 39.1, 37.4, 31.1, 28.6, 28.4. 

LCMS (ESI): [m/z] calculated C14H26NO3 ([M+H+] ): 256.1913, found 256.2668 

Rf (PE/EtOAc 7:3) = 0.27 [CAM] 

 

7-(tert-butoxycarbonyl)-2-methyl-7-azaspiro[3.5]nonan-2-yl ethyl oxalate: Synthesized following 

GP1 with tert-Butyl-2-hydroxy-2-methyl-7-azaspiro[3.5]nonan-7 carboxylate (0.39 g, 1.5 mmol, 

1.0 equiv.). The product was obtained as a colorless liquid in 99% yield (0.54 g, 1.5 mmol). 
1H-NMR (600 MHz, CDCl3): δ 4.33 (q, J = 7.1 Hz, 2H), 3.30 (ddd, J = 10.8, 5.9, 3.2 Hz, 4H), 2.29 (d, 

J = 14.4 Hz, 2H), 2.18 – 2.12 (m, 2H), 1.63 (s, 3H), 1.55 (ddd, J = 18.9, 6.6, 4.0 Hz, 4H), 1.43 (s, 9H), 1.37 

(t, J = 7.2 Hz, 3H) 
13C{1H} NMR (151 MHz, CDCl3) δ 158.3, 156.8, 155.0, 80.4, 79.5, 63.1, 60.5, 44.9, 39.0, 37.0, 30.3, 

28.6, 26.3, 21.1, 14.3, 14.1. 

BocN

O

BocN

OH

BocN

OCOCO2Et

BocN

OCOCO2Cs

0 °C to RT 0 °C to RT

DMAP, Et3N

THF/H2O
 RT

MeMgBr

THF

ClCOCO2Et CsOH.H2O

CH2Cl2



Chapter 6: Supporting information 

 80 

HRMS (ESI): [m/z] calculated C18H29NNaO6 ([M+Na]+) 378.1887, found 378.1885. 

Rf (PE/EtOAc 8:2) = 0.4 [CAM] 

 

Cesium 2-((7-(tert-butoxycarbonyl)-2-methyl-7-azaspiro[3.5]nonan-2-yl)oxy)-2-oxoacetate: 

Synthesized following GP2 with 7-(tert-butoxycarbonyl)-2-methyl-7-azaspiro[3.5]nonan-2-yl ethyl 

oxalate (0.53 mg, 1.5 mmol, 1.0 equiv.). The product was obtained as a colorless solid in 87% yield 

(0.59 mg, 1.3 mmol). 
1H-NMR (600 MHz, DMSO-d6): � 3.24 – 3.03 (m, 4H), 2.06 (d, J = 13.8 Hz, 2H), 1.99 (d, J = 13.7 Hz, 2H), 

1.47 (s, 3H), 1.47 – 1.44 (m, 3H), 1.38 (s, 9H); 
13C{1H} NMR (151 MHz, DMSO-d6): � 166.6, 163.0, 153.9, 78.4, 74.5, 44.5, 29.9, 28.1, 26.5; 

HRMS (ESI-neg): [m/z] calculated C16H24NO6 ([M-Cs]-) 326.1609, found 326.1608. 

 

 
Ethyl ((5S,8R,9S,10S,13S,14S)-10,13,17-trimethyl-3-oxohexadecahydro-1H-

cyclopenta[a]phenanthren-17-yl) oxalate: Synthesized following GP1 using 17a-mehtylandostran-

17b-ol-3-one (0.5 g, 1.6 mmol, 1.0 equiv.). The pure product was isolated as a white solid in 77% yield 

(0.5 g, 1.24 mmol). 
1H NMR (400 MHz, CDCl3) δ 4.31 (q, J = 7.1 Hz, 2H), 2.45 – 2.29 (m, 2H), 2.29 – 2.22 (m, 1H), 2.20 – 

2.13 (m, 4H), 2.12 – 1.99 (m, 2H), 1.78 – 1.60 (m, 4H), 1.53 (dd, J = 4.2, 1.7 Hz, 1H), 1.50 (s, 4H), 1.45 – 

1.38 (m, 3H), 1.38 – 1.33 (m, 5H), 1.33 – 1.25 (m, 2H), 1.23 – 1.12 (m, 1H), 1.06 – 1.00 (m, 3H), 0.92 (s, 

4H), 0.76 (s, 1H). 
13C NMR (101 MHz, CDCl3) δ 211.9, 158.8, 157.5, 95.0, 62.8, 53.8, 49.3, 47.9, 46.9, 44.8, 38.7, 38.3, 

36.4, 36.1, 35.9, 32.1, 31.6, 31.0, 28.9, 23.7, 21.3, 21.1, 14.5, 14.1, 11.6. 

HRMS (APCI): [m/z] calculated for C24H37O5 [M+], 405.2641, found 405.2721. 

Rf (CH/EtOAc 3:2) = 0.55 [CAM] 

 

Cesium 2-oxo-2-(((5S,8R,9S,10S,13S,14S)-10,13,17-trimethyl-3-oxohexadecahydro-1H-

cyclopenta[a]phenanthren-17-yl)oxy)acetate: Synthesized following GP2 using ethyl 

((5S,8R,9S,10S,13S,14S)-10,13,17-trimethyl-3-oxohexadecahydro-1H-cyclopenta[a]phenanthren-17-

yl) oxalate (0.5 g, 1.24 mmol, 1.0 equiv.). The product was isolated as a white solid in 93% yield (0.58 

g, 1.16 mmol). 
1H NMR (600 MHz, DMSO-d6) δ 2.45 – 2.37 (m, 1H), 2.30 (t, J = 14.4 Hz, 1H), 2.09 (ddt, J = 15.2, 4.5, 

2.1 Hz, 1H), 1.99 – 1.91 (m, 3H), 1.89 (ddd, J = 14.8, 3.8, 2.2 Hz, 1H), 1.67 – 1.50 (m, 5H), 1.49 – 1.35 
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(m, 3H), 1.33 (s, 3H), 1.30 – 1.26 (m, 3H), 1.25 – 1.19 (m, 2H), 1.15 (ddd, J = 12.3, 10.3, 7.0 Hz, 1H), 

0.99 (s, 3H), 0.89 (tdd, J = 12.1, 9.3, 3.5 Hz, 1H), 0.79 (s, 3H), 0.76 – 0.68 (m, 1H). 
13C NMR (101 MHz, DMSO) δ 210.4, 167.3, 163.6, 88.6, 52.9, 48.6, 46.1, 46.0, 44.1, 37.9, 37.6, 36.5, 

35.4, 35.3, 31.7, 31.0, 28.3, 23.2, 21.2, 20.6, 14.0, 11.1. 

 

 
2-methyl-4-(pent-2-yn-1-yloxy)pentan-2-ol: 2-methylpentane-2,4-diol (1.92 mL, 15.0 mmol, 3.0 

equiv.) was added dropwise to a suspension of sodium hydride (400 g, 10.0 mmol, 2.0 equiv.) in THF 

(10.0 mL, 0.5 M) at 0 °C . The reaction mixture stirred for 30 min and then 1-bromopent-2-yne (511 

µL, 5.0 mmol, 1.0 equiv.) was added and the reaction mixture stirred for 4 h at room temperature. The 

reaction was quenched with water, the product extracted with EtOAc (3 x 25 mL), and the combined 

organic layers dried over Na2SO4 and concentrated in vacuo. The crude mixture was purified by column 

chromatography (PE:EtOAc 4:1) to afford the desired product as a colorless oil in 68% yield (630 mg, 

3.4 mmol). 
1H NMR (400 MHz, CDCl3): δ 4.23 (dt, J = 15.5, 2.2 Hz, 1H), 4.15 – 4.03 (m, 2H), 3.35 (bs, 1H), 2.21 (qt, 

J = 7.5, 2.2 Hz, 2H), 1.79 (ddd, J = 14.8, 10.7, 0.7 Hz, 1H), 1.50 (dd, J = 14.7, 2.6 Hz, 1H), 1.30 (s, 3H), 

1.20 (s, 3H), 1.15 (d, J = 6.0 Hz, 3H), 1.12 (t, J = 7.5 Hz, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 88.7, 75.3, 72.1, 70.4, 55.5, 49.0, 31.1, 28.4, 19.5, 13.8, 12.5. 

GCMS (FI): [m/z] calculated C11H19O2 ([M-H+]): 183.13850; found 183.13867 

Rf (PE/EtOAc 4:1) = 0.29 [KMnO4] 

Ethyl (2-methyl-4-(pent-2-yn-1-yloxy)pentan-2-yl) oxalate: Synthesized following GP1 with 2-methyl-

4-(pent-2-yn-1-yloxy)pentan-2-ol (0.60 mg, 3.2 mmol, 1.0 equiv.). The product was isolated as a 

colorless oil in 51% yield (0.69 g, 2.4 mmol).  
1H NMR (400 MHz, CDCl3): δ 4.30 (q, J = 7.1 Hz, 2H), 4.21 – 3.99 (m, 2H), 3.84 (dqd, J = 8.0, 6.1, 3.3 

Hz, 1H), 2.20 (qt, J = 7.5, 2.2 Hz, 2H), 2.10 (dd, J = 14.9, 8.0 Hz, 1H), 1.96 (dd, J = 14.8, 3.3 Hz, 1H), 

1.61 (s, 3H), 1.591 (s, 3H), 1.35 (t, J = 7.1 Hz, 3H), 1.18 (d, J = 6.2 Hz, 3H), 1.12 (t, J = 7.5 Hz, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 158.7, 157.2, 87.9, 86.6, 70.7, 62.8, 55.8, 47.1, 27.2, 25.8, 20.4, 

14.1, 13.9, 12.5. 

GCMS (FI): [m/z] calculated C15H24O5 ([M]): 284,16237; found 284.16237  

Rf (PE/EtOAc 4:1) = 0.5 [KMnO4] 
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Cesium 2-((2-methyl-4-(pent-2-yn-1-yloxy)pentan-2-yl)oxy)-2-oxoacetate: Synthesized following 

GP2 with ethyl (2-methyl-4-(pent-2-yn-1-yloxy)pentan-2-yl) oxalate (0.60 g, 2.1 mmol, 1.0 equiv.). The 

product was isolated as a white solid in 92% yield (0.75 g, 1.9 mmol). 
1H NMR (400 MHz, DMSO-d6): δ 4.13 – 3.99 (m, 2H), 3.78 – 3.60 (m, 1H), 2.20 (qt, J = 7.5, 2.2 Hz, 2H), 

1.92 (dd, J = 14.4, 4.0 Hz, 1H), 1.82 (dd, J = 14.4, 7.2 Hz, 1H), 1.42 (s, 3H), 1.40 (s, 3H), 1.09 (d, J = 6.1 

Hz, 3H), 1.06 (t, J = 7.5 Hz, 3H). 
13C{1H} NMR (101 MHz, DMSO-d6): δ 167.4, 163.3, 87.2, 79.8, 76.6, 70.5, 55.0, 46.8, 27.2, 25.9, 20.5, 

13.6, 11.6. 

HRMS (ESI-neg): [m/z] calculated C13H19O5 ([M-Cs]-): 255,1232, found 255.1238. 

 

 
1-(4-bromophenylsulfonamido)-2-methylpropan-2-yl ethyl oxalate: In a round-bottomed flask under 

N2 atmosphere, 4-bromobenzenesulfonyl chloride (1.3 g, 5.0 mmol, 1.0 equiv.) was slowly added to a 

mixture of triethylamine (0.8 mL, 6.0 mmol, 1.2 equiv.) and 1-amino-2-methylpropan-2-ol (0.4 g, 5.0 

mmol, 1.0 equiv.) in CH2Cl2 (10.0 mL, 0.5 M). The reaction was stirred at room temperature overnight, 

and then quenched with a saturated solution of NH4Cl (aq.). Upon extraction with CH2Cl2 (3 x 50 mL) 

and the combined organic layers dried over Na2SO4 and concentrated in vacuo to afford the crude 

product, which was used in the next step without further purification.  

Synthesized following GP1 using 4-bromo-N-(2-hydroxy-2-methylpropyl)benzenesulfonamide (5 

mmol, 1.0 equiv.). The pure product was isolated as yellowish oil in 32% yield (0.9 g, 2.2 mmol). 
1H NMR (400 MHz, CDCl3): δ 7.74 – 7.70 (m, 2H), 7.68 – 7.63 (m, 2H), 5.20 (t, J = 6.7 Hz, 1H), 4.31 (q, J 

= 7.2 Hz, 2H), 3.20 (d, J = 6.8 Hz, 2H), 1.56 (s, 6H), 1.36 (t, J = 7.2 Hz, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 157.9, 156.8, 139.3, 132.6, 128.6, 127.9, 85.3, 63.4, 51.9, 23.5, 14.0. 

 

Cesium 2-((1-(4-bromophenylsulfonamido)-2-methylpropan-2-yl)oxy)-2-oxoacetate: Synthesized 

following GP2 using ethyl 1-(4-bromophenylsulfonamido)-2-methylpropan-2-yl ethyl oxalate (0.8 g, 

1.9 mmol, 1.0 equiv.).The product was isolated as a white solid in 88% yield (1.0 g, 1.9 mmol). 
1H NMR (400 MHz, D2O): δ 7.81 (m, 4H), 3.27 (s, 2H), 1.53 (s, 6H). 
13C{1H} NMR (101 MHz, D2O): δ 166.2, 165.3, 139.6, 134.5, 130.1, 129.5, 85.4, 52.4, 24.5. 
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(S)-3-((tert-butoxycarbonyl)amino)-2-methyl-4-phenylbutan-2-yl ethyl oxalate: Synthesized 

following GP1 using (S)-tert-butyl (3-hydroxy-3-methyl-1-phenylbutan-2-yl)carbamate (7.9 mmol, 1.0 

equiv.). The pure product was isolated as white solid in 62% yield (1.8 g, 4.7 mmol). 
1H NMR (400 MHz, CDCl3): δ 7.30 (m, 2H), 7.20 (dd, J = 7.6, 2.3 Hz, 3H), 4.73 (d, J = 10.3 Hz, 1H), 4.34 

(q, J = 7.1 Hz, 2H), 4.05 (td, J = 10.7, 3.7 Hz, 1H), 3.15 (dd, J = 14.3, 3.6 Hz, 1H), 2.56 (dd, J = 14.2, 11.1 

Hz, 1H), 1.68 (s, 3H), 1.63 (s, 3H), 1.39 (t, J = 7.2 Hz, 3H), 1.26 (s, 9H). 

Rf (1:1 Cyclohexane/EtOAc) = 0.54 [p-Anisalaldehyde] 

 

Cesium (S)-2-((3-((tert-butoxycarbonyl)amino)-2-methyl-4-phenylbutan-2-yl)oxy)-2-oxoacetate: 

Synthesized following GP2 using (S)-3-((tert-butoxycarbonyl)amino)-2-methyl-4-phenylbutan-2-yl 

ethyl oxalate (4.7 mmol, 1.0 equiv.). The pure product was isolated as white solid in 98% yield (2.2 g, 

4.6 mmol). 
1H NMR (400 MHz, DMSO-d6): δ 7.33 – 7.15 (m, 5H), 6.68 (d, J = 9.8 Hz, 1H), 4.18 (ddd, J = 11.9, 9.8, 

2.3 Hz, 1H), 2.96 – 2.90 (m, 1H), 2.49 – 2.43 (m, 1H), 1.43 (s, 3H), 1.31 (s, 3H), 1.23 (s, 9H). 
13C{1H} NMR (101 MHz, DMSO-d6): δ 167.2, 163.2, 155.6, 139.7, 129.1, 128.9, 127.7, 127.7, 125.5, 

82.3, 77.4, 57.3, 34.0, 28.1, 23.8, 21.6. 

HRMS (ESI): [m/z] calculated for [C18H25CsNO6] ([M]): 484.0731; Found: 484.0732. 

 

 
4-((6-chloropyrimidin-4-yl)oxy)-2-methylpentan-2-ol: 2-methylpentane-2,4-diol (637 μL, 5.0 mmol, 

1.0 equiv.) was dissolved in THF (15 mL, 0.15 M) and sodium hydride (0.44 g, 11 mmol, 2.2 equiv.) was 

added slowly at 0 °C. The reaction mixture stirred for 20 min at room temperature, then 4,6-

dichloropyrimidine (0.75 g, 5.00 mmol, 1.0 equiv.) was added and the reaction mixture stirred for 4 h 

at room temperature. The reaction was quenched with water, the aqueous phase was extracted with 

EtOAc (3 x 10 mL), the organic phase was washed with brine, dried with Na2SO4 and evaporated in 

vacuo. The residue was purified by chromatography over silica to afford the desired product as a pale 

yellow oil in 20% yield (0.24 g, 1.0 mmol).  
1H NMR (400 MHz, CDCl3): δ 8.57 (d, J = 0.9 Hz, 1H), 6.72 (d, J = 0.9 Hz, 1H), 5.56 (ddd, J = 8.1, 6.2, 3.6 

Hz, 1H), 2.21 (bs, 1H), 2.04 (dd, J = 15.0, 8.1 Hz, 1H), 1.75 (dd, J = 14.9, 3.6 Hz, 1H), 1.38 (d, J = 6.2 Hz, 

3H), 1.25 (s, 3H), 1.22 (s, 3H). 
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13C{1H} NMR (101 MHz, CDCl3): δ 169.8, 161.2, 158.3, 108.5, 72.1, 70.2, 49.2, 30.1, 30.1, 21.6. 

HRMS (ESI): [m/z] calculated for C10H15ClN2NaO2 ([M+Na]+), 253.0714; found, 253.0720. 

 

4-((6-chloropyrimidin-4-yl)oxy)-2-methylpentan-2-yl ethyl oxalate: Synthesized following GP1 using 

4-((6-chloropyrimidin-4-yl)oxy)-2-methylpentan-2-ol (0.24 g, 1.0 mmol, 1.0 equiv.). The pure product 

was isolated as a colorless oil in 49% yield (0.17 g, 0.5 mmol). 
1H NMR (600 MHz, CDCl3) δ 8.54 (d, J = 0.9 Hz, 1H), 6.68 (d, J = 0.9 Hz, 1H), 5.60 (dqd, J = 9.2, 6.2, 3.0 

Hz, 1H), 4.28 (qd, J = 7.2, 1.1 Hz, 2H), 2.51 (dd, J = 15.3, 8.8 Hz, 1H), 2.10 – 2.01 (m, 1H), 1.58 (s, 3H), 

1.56 (s, 3H), 1.36 (d, J = 6.2 Hz, 4H), 1.34 (t, J = 7.2 Hz, 3H). 
13C NMR (101 MHz, CDCl3): δ 169.6, 160.9, 158.4, 158.3, 157.1, 108.4, 85.3, 70.7, 63.0, 45.6, 26.9, 26.2, 

21.2, 14.1. 

HRMS (ESI): [m/z] calculated for C14H19ClN2NaO5 [M+Na]+], 353.0880, found 353.0886. 

Rf (CH/EtOAc 1:1) = 0.56 [CAM] 

 

Cesium 2-((4-((6-chloropyrimidin-4-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetate: Synthesized 

following GP2 using 4-((6-chloropyrimidin-4-yl)oxy)-2-methylpentan-2-yl ethyl oxalate (0.17 g, 0.5 

mmol, 1.0 equiv.). The product was isolated as a white solid in 76% yield (0.16 g, 0.4 mmol). 
1H NMR (400 MHz, DMSO-d6) δ 8.65 (d, J = 0.9 Hz, 1H), 7.16 (d, J = 0.9 Hz, 1H), 5.43 (dddd, J = 8.1, 6.1, 

4.1, 2.3 Hz, 1H), 2.25 (dd, J = 14.9, 8.2 Hz, 1H), 2.12 (dd, J = 14.9, 3.7 Hz, 1H), 1.38 (s, 3H), 1.36 (s, 3H), 

1.30 (d, J = 6.2 Hz, 3H). 
13C NMR (101 MHz, DMSO) δ 169.30, 167.36, 163.08, 159.80, 158.35, 108.15, 78.93, 70.93, 45.09, 

26.85, 26.13, 20.71. 

HRMS (APCI): [m/z] calculated for C12H14ClN2O5 ([M-Cs]-), 301,7030, found 303.0764. 

 

 
4-((6-fluoropyridin-2-yl)oxy)-2-methylpentan-2-ol: 2-methylpentane-2,4-diol (140 µL, 1.0 mmol, 1.1 

equiv.) was dissolved in DMSO (1 mL, abs.) and sodium hydride (3.1 g, 16.5 mmol, 1.1 equiv.) was 

added slowly at room temperature. The reaction mixture stirred for 20 min at room temperature, then 

2,6-difluoropyridine (90.8 µL, 1.00 mmol, 1.0 equiv.) was added and the reaction mixture stirred for 

30 min at room temperature. The reaction was quenched with water, the aqueous phase was 

extracted with EtOAc (3 x 10 mL), the organic phase was washed with brine, dried with Na2SO4 and 

evaporated in vacuo. The residue was purified by chromatography over silica to afford the desired 

product as a pale yellow oil in 87% yield (0.19 g, 0.87 mmol). 
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1H NMR (600 MHz, CDCl3) δ 7.64 (q, J = 8.1 Hz, 1H), 6.56 (dd, J = 8.0, 1.5 Hz, 1H), 6.46 (dd, J = 7.8, 2.4 

Hz, 1H), 5.42 – 5.35 (m, 1H), 2.66 (s, 3H), 2.04 (dd, J = 14.9, 9.0 Hz, 1H), 1.72 (dd, J = 14.9, 3.3 Hz, 1H), 

1.35 (d, J = 6.1 Hz, 3H), 1.25 (s, 3H), 1.24 (s, 3H). 
13C{1H} NMR (151 MHz, CDCl3): δ 162.7 (d, JC–F = 147.0 Hz), 161.9 (d, JC–F = 107.1 Hz), 142.9 (d, JC–F = 8.1 

Hz), 108.0 (d, JC–F = 5.2 Hz) 100.3 (d, JC–F = 35.5 Hz) 70.8, 70.4, 49.2, 30.5, 29.5, 21.6. 

HRMS (ESI): [m/z] calculated for C11H16FNNaO2 ([M+Na]+), 236.1057; found, 236.1061. 

Rf (PE/EtOAc, 1:1) = 0.51 [UV] [KMnO4]. 

 

Ethyl (4-((6-fluoropyridin-2-yl)oxy)-2-methylpentan-2-yl) oxalate: According to GP1 using 4-((6-

fluoropyridin-2-yl)oxy)-2-methylpentan-2-ol (0.85 g, 4.0 mmol, 1.0 equiv.). The product was isolated 

as a pale yellow liquid in 90% yield (1.1 g, 3.6 mmol).  
1H NMR (400 MHz, CDCl3) δ 7.64 – 7.56 (m, 1H), 6.50 (ddd, J = 8.0, 1.7, 0.6 Hz, 1H), 6.42 (ddd, J = 7.8, 

2.6, 0.6 Hz, 1H), 5.44 – 5.34 (m, 1H), 4.27 (qd, J = 7.1, 1.5 Hz, 2H), 2.45 (dd, J = 15.1, 8.7 Hz, 1H), 2.08 

(dd, J = 15.1, 3.2 Hz, 1H), 1.59 (s, 3H), 1.57 (s, 3H), 1.35 (d, J = 2.4 Hz, 3H), 1.33 (d, J = 3.4 Hz, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 162.9 (d, JC–F = 137.3 Hz), 161.7 (d, JC–F = 116.2 Hz), 158.6, 157.2, 

142.7 (d, JC–F = 8.0 Hz), 107.8 (d, JC–F = 5.1 Hz), 99.9 (d, JC–F = 35.8 Hz), 85.9, 69.1, 62.9, 45.9, 27.0, 26.1, 

21.3, 14.0. 

HRMS (ESI): [m/z] calculated for C15H20FNO5 ([M+Na]+), 336.1218; found, 336.1219. 

Rf (PE/EtOAc, 8:2) = 0.34 [UV] [KMnO4]. 

 

Cesium 2-((4-((6-fluoropyridin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetate: According to GP2 

using ethyl (4-((6-fluoropyridin-2-yl)oxy)-2-methylpentan-2-yl) oxalate (0.63 g, 2.0 mmol, 1.0 equiv.). 

The product was isolated as a white solid in 85% yield (0.71 g, 1.7 mmol). 
1H NMR (400 MHz, DMSO-d6): δ 7.90 – 7.77 (m, 1H), 6.71 (ddd, J = 8.0, 1.8, 0.6 Hz, 1H), 6.65 (ddd, J = 

7.8, 2.4, 0.6 Hz, 1H), 5.21 – 5.07 (m, 1H), 2.17 – 2.08 (m, 2H), 1.41 (s, 3H), 1.35 (s, 3H), 1.27 (d, J = 6.1 

Hz, 3H). 
13C{1H} NMR (101 MHz, DMSO- d6): δ 167.3, 162.7, 162.47 (d, J = 140.5 Hz), 161.0 (d, J = 134.6 Hz), 

143.9 (d, J = 8.3 Hz), 107.9 (d, J = 4.8 Hz), 99.8 (d, J = 35.3 Hz), 79.3, 69.4, 45.7, 26.9, 25.9, 20.9. 

HRMS (ESI-neg): [m/z] calculated for C13H15CsFNO5 ([M-Cs]-), 284.0940; found, 284.0952. 
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Ethyl (2-methyl-4-(pyrazin-2-yloxy)pentan-2-yl) oxalate: 2-methylpentane-2,4-diol (1.4 mL, 11 mmol, 

1.1 equiv.) was dissolved in THF (1.0 mL) and sodium hydride (3.1 g, 16 mmol, 1.1 equiv., 60%) was 

added slowly at 0 °C. The reaction mixture was stirred for 1 h at room temperature, then 2-

iodopyrazine (987 µL, 10 mmol, 1.0 equiv.) was added dropwise and the reaction mixture stirred for 2 

h at room temperature followed by stirring at 50 °C for 12 h. After being cooled to room temperature, 

the reaction mixture was poured on ice and water and extracted with EtOAc (3 x 10 mL). The organic 

layer was washed with brine and dried over Na2SO4. Evaporation of the solvent and purification by 

column chromatography over silica gel gave 2-methyl-4-(pyrazin-2-yloxy)pentan-2-ol in 70% purity. 

This was used in the next step without further purification. 

According to GP1 using 2-methyl-4-(pyrazin-2-yloxy)pentan-2-ol (1.6 g, 5.6 mmol, 70%, 1.0 equiv.). 

The product was obtained as a colorless oil in 25% yield (0.73 g, 2.5 mmol).  
1H NMR (400 MHz, CDCl3) δ 8.12 (d, J = 1.4 Hz, 1H), 8.08 (d, J = 2.8 Hz, 1H), 8.05 (dd, J = 2.8, 1.4 Hz, 

1H), 5.55 – 5.42 (m, 1H), 4.27 (q, J = 7.1 Hz, 2H), 2.50 (dd, J = 15.2, 8.7 Hz, 1H), 2.10 (dd, J = 15.2, 3.1 

Hz, 1H), 1.59 (s, 3H), 1.58 (s, 3H), 1.36 (d, J = 6.2 Hz, 3H), 1.33 (t, J = 7.1 Hz, 3H). 
13C{1H} NMR (151 MHz, CDCl3) δ 159.6, 158.5, 157.2, 140.7, 136.6, 136.5, 85.7, 69.0, 62.9, 45.9, 27.0, 

26.1, 21.1, 14.1. 

HRMS (ESI): [m/z] calculated for C14H20N2NaO5 ([M+Na]+), 319.1265; found, 319.1264. 

Rf (PE/EtOAc 8:2) = 0.28 [UV] [KMnO4]. 

 

Cesium 2-((2-methyl-4-(pyrazin-2-yloxy)pentan-2-yl)oxy)-2-oxoacetate: Synthesized according to 

GP2 using ethyl (2-methyl-4-(pyrazin-2-yloxy)pentan-2-yl)-oxalate (0.59 mg, 2.0 mmol, 1.0 equiv.). The 

product was isolated as white solid in 86% yield (0.69 mg, 1.7 mmol). 
1H NMR (400 MHz, DMSO-d6): δ 8.24 (d, J = 1.4 Hz, 1H), 8.19 (dd, J = 2.8, 1.4 Hz, 1H), 8.15 (d, J = 2.8 

Hz, 1H), 5.40 – 5.22 (m, 1H), 2.26 – 2.12 (m, 2H), 1.40 (s, 3H), 1.36 (s, 3H), 1.29 (d, J = 6.2 Hz, 3H). 
13C{1H} NMR (101 MHz, DMSO-d6): δ 167.3, 163.2, 159.1, 140.7, 136.4, 135.9, 79.4, 69.1, 45.5, 26.9, 

26.0, 20.8. 

HRMS (ESI): (m/z) calculated for C12H15CsN2O5 ([M-Cs]-): 267.0986; found, 267.1013. 
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4-phenyltetrahydro-2H-pyran-4-ol: PhMgBr (6.0 mL, 18.0 mmol, 1.8 equiv.) was added dropwise to a 

0 °C solution of dihydro-2H-pyran-4(3H)-one (1.0 mL, 10 mmol, 1.0 equiv.) in THF (25 mL, 0.4 M). The 

mixture was stirred at 0 °C for 1 h and then warmed up to room temperature. After 2 h, the reaction 

was quenched with a saturated solution of NH4Cl (aq.), the product extracted with EtOAc (3 x 50 mL), 

and the combined organic layers dried over Na2SO4 and concentrated in vacuo. The crude mixture was 

purified by column chromatography using a 4:1 mixture of petrol ether/EtOAc to afford the desired 

product as a white solid in 73% yield (1.3 g, 7.3 mmol). The characterization matches the reported 

literature.256 
1H NMR (400 MHz, CDCl3): δ 7.53 – 7.48 (m, 2H), 7.42 – 7.35 (m, 2H), 7.32 – 7.26 (m, 1H), 3.95 (td, J = 

11.7, 2.2 Hz, 2H), 3.90 – 3.79 (m, 2H), 2.19 (ddd, J = 13.7, 12.0, 5.3 Hz, 2H), 1.75 – 1.67 (m, 2H), 1.65 

(bs, 1H). 
13C{1H} NMR (600 MHz, CDCl3): δ 148.0, 128.5, 127.3, 124.4, 70.7, 63.9, 38.8. 

Rf (PE/EtOAc 3:1) = 0.36 [CAM] 

 

Cesium 2-oxo-2-((4-phenyltetrahydro-2H-pyran-4-yl)oxy)acetate: Synthesized following GP1 using 4-

phenyltetrahydro-2H-pyran-4-ol (1.0 g, 5.6 mmol, 1.0 equiv.), ethyl oxalyl chloride (0.93 mL, 8.5 mmol, 

1.2 equiv.), Et3N (1.2 mL, 8.5 mmol, 1.2 equiv.) and DMAP (17 mg, 0.14 mmol, 2.5 mol%). The pure 

product was isolated as colorless oil in 54% yield (0.85 g, 3.0 mmol) after column chromatography 

using a 10:1 mixture of PE/EtOAc. 

Synthesized following GP2 using ethyl (4-phenyltetrahydro-2H-pyran-4-yl) oxalate (0.85 g, 3.0 mmol, 

1.0 equiv.). The product was isolated as a white solid in 86% yield (0.98 g, 2.6 mmol). 
1H NMR (400 MHz, DMSO-d6): δ 7.39 – 7.36 (m, 2H), 7.35 – 7.28 (m, 2H), 7.27 – 7.19 (m, 1H), 3.82 – 

3.63 (m, 4H), 2.28 – 2.18 (m, 2H), 2.00 (ddd, J = 13.7, 11.2, 5.5 Hz, 2H). 
13C{1H} NMR (101 MHz, DMSO-d6): δ 166.2, 162.8, 144.9, 128.0, 126.6, 124.3, 77.9, 62.6, 36.2. 

HRMS (ESI-neg): [m/z] calculated for C13H13O5 ([M-Cs]-): 249.0763; Found: 249.0768. 
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Ethyl 4-hydroxy-4-phenylpiperidine-1-carboxylate: PhMgBr (6.0 mL, 18 mmol, 1.8 equiv.) was added 

dropwise to a 0 °C solution of ethyl 4-oxopiperidine-1-carboxylate (2.2 mL, 15 mmol, 1.0 equiv.) in THF 

(50 mL, 0.3 M). The mixture was stirred at 0 °C for 1 h and then warmed up to room temperature. 

After 2 h the reaction was quenched with a saturated solution of NH4Cl (aq.), the product extracted 

with EtOAc (3 x 50 mL), and the combined organic layers dried over Na2SO4 and concentrated in vacuo. 

The crude mixture was purified by column chromatography to afford the desired product as a white 

solid in 43% yield (1.6 g, 6.4 mmol). 
1H NMR (400 MHz, CDCl3): δ 7.50 – 7.46 (m, 2H), 7.41 – 7.35 (m, 2H), 7.32 – 7.26 (m, 1H), 4.16 (q, J = 

7.1 Hz, 2H), 4.09 (d, J = 13.6 Hz, 2H), 3.30 (td, J = 13.0, 2.7 Hz, 2H), 2.02 (td, J = 13.3, 4.9 Hz, 2H), 1.79 

– 1.71 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 155.7, 148.0, 128.7, 127.5, 124.5, 71.7, 61.4, 40.1, 38.2, 14.9. 

HRMS (ESI): [m/z] calculated for C18H23NNaO6 ([M+Na]+): 372,1423; Found: 372.1429 

Rf (2:1 PE/EtOAc) = 0.36 [CAM] 

 

1-(ethoxycarbonyl)-4-phenylpiperidin-4-yl ethyl oxalate: Synthesized following GP1 using ethyl 4-

hydroxy-4-phenylpiperidine-1-carboxylate (1.5 g, 5.9 mmol, 1.0 equiv.). The pure product was isolated 

as colorless oil in 38% yield (0.75 g, 2.2 mmol). 
1H NMR (400 MHz, CDCl3): δ 7.47 – 7.37 (m, 4H), 7.35 – 7.30 (m, 1H), 4.36 (q, J = 7.1 Hz, 2H), 3.97 – 

3.91 (m, 2H), 3.87 (td, J = 11.6, 2.1 Hz, 2H), 2.57 (dq, J = 14.7, 2.6 Hz, 2H), 2.24 (ddd, J = 14.2, 11.4, 5.2 

Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 158.1, 156.5, 155.7, 142.0, 128.9, 128.4, 124.8, 84.5, 63.2, 61.6, 

39.8, 35.2, 27.1, 14.9, 14.1. 

HRMS (ESI): [m/z] calculated for C18H23NNaO6 ([M+Na]+): 372.1419; Found: 372.1418. 

Rf (4:1 PE/EtOAc) = 0.3 

 

Cesium 2-((1-(ethoxycarbonyl)-4-phenylpiperidin-4-yl)oxy)-2-oxoacetate: Synthesized following GP2 

using ethyl (4-phenyltetrahydro-2H-pyran-4-yl) oxalate (0.52 g, 1.5 mmol, 1.0 equiv.). The product was 

isolated as a white solid in 92% yield (0.62 g, 0.47 mmol). 
1H NMR (400 MHz, DMSO-d6): δ 7.39 – 7.34 (m, 2H), 7.32 (dd, J = 8.0, 7.2 Hz, 2H), 7.27 – 7.19 (m, 

1H), 4.06 (q, J = 7.0 Hz, 2H), 3.96 – 3.88 (m, 2H), 3.10 (s, 2H), 2.40 – 2.24 (m, 2H), 1.94 – 1.80 (m, 2H), 

1.20 (t, J = 7.1 Hz, 3H). 
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13C{1H} NMR (101 MHz, DMSO) δ 166.1, 162.7, 154.7, 144.7, 128.0, 126.7, 124.3, 78.4, 60.6, 35.20, 

30.63, 14.57. 

HRMS (ESI): [m/z] calculated for C16H18CsNNaO6 ([M+Na]+): 476.0081; Found: 476.0114. 

 

 
tert-Butyl 4-(4-chlorophenyl)-4-hydroxypiperidine-1-carboxylate: 4-(4-chlorophenyl)piperidin-4-ol 

was dissolved in dichloromethane (0.1 M, 100 mL). DIPEA (1.9 mL, 11 mmol, 1.1 equiv.) and (Boc)2O 

(2.5 g, 11 mmol, 1.1 equiv.) was added and the reaction was stirred at room temperature for 18 h. 

NH4Cl solution (25%) was added and the phases were separated. The aqueous phase was extracted 

with dichloromethane and the combined organics were washed with water and brine. Drying over 

sodium sulfate, filtration and evaporation of the solvent afforded the crude product, which was 

purified by column chromatography to yield the desired compound as white foam in 82% yield (2.5 g, 

8.2 mmol). The characterization matches the reported literature.257 

1H NMR (600 MHz, CDCl3): δ 7.42 – 7.38 (m, 2H), 7.34 – 7.29 (m, 2H), 4.01 (br s, 2H), 3.21 (br s, 2H), 

1.94 (br s, 2H), 1.69 (dd, J = 14.1, 2.3 Hz, 2H), 1.47 (s, 9H). 
13C{1H} NMR (151 MHz, CDCl3): δ 155.0, 146.8, 133.2, 128.7, 126.2, 79.8, 71.5, 38.3, 38.2, 28.6. 

Rf  (PE/EtOAc 1:1) = 0.49 [UV] 

 

1-(tert-butoxycarbonyl)-4-(4-chlorophenyl)piperidin-4-yl ethyl oxalate: Synthesized following GP1 

using tert-butyl 4-(4-chlorophenyl)-4-hydroxypiperidine-1-carboxylate (1.6 g, 5.0 mmol, 1.0 equiv.). 

The pure product was isolated as a white solid in 97% yield (2.0 g, 4.8 mmol).  
1H NMR (600 MHz, CDCl3): δ 7.37 – 7.33 (m, 4H), 4.35 (q, J = 7.2 Hz, 2H), 4.08 (br s, 2H), 3.19 (br s, 2H), 

2.58 (d, J = 13.1 Hz, 2H), 2.05 – 1.97 (m, 2H), 1.49 (s, 9H), 1.38 (t, J = 7.2 Hz, 3H). 
13C{1H} NMR (151 MHz, CDCl3): δ 157.9, 156.4, 154.8, 140.6, 134.3, 129.0, 126.4, 83.9, 80.1, 63.2, 39.4, 

35.1, 28.5, 14.0. 

HRMS (ESI): [m/z] calculated for C20H26ClNNaO6 ([M+Na]+): 434.1341; Found: 434.1361. 

Rf (PE:EA 9:1)= 0.18 [UV] 

 

Cesium-2-((1-(tert-butoxycarbonyl)-4-(4-chlorophenyl)piperidin-4-yl)oxy)-2-oxoacetate: 

Synthesized according to GP2 using 1-(tert-butoxycarbonyl)-4-(4-chlorophenyl)piperidin-4-yl ethyl 

oxalate (577 mg, 1.4 mmol, 1 equiv.). The product was isolated as white solid in 64% yield (462 mg, 

0.90 mmol).  
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1H NMR (600 MHz, CDCl3): δ 7.37 (s, 4H), 3.87 (br s, 2H), 3.03 (br s, 2H), 2.28 (d, J = 12.8 Hz, 2H), 1.83 

(td, J = 13.2, 4.4 Hz, 2H), 1.41 (s, 9H). 
13C{1H} NMR (151 MHz, CDCl3): δ 166.1, 162.5, 154.0, 143.7, 131.4, 128.0, 126.4, 78.7, 77.9, 40.0, 35.0, 

28.0. 

HRMS (ESI-neg): [m/z] calculated for C18H21ClNO6 ([M-Cs]-): 382.1063; Found: 382.1074. 

 

 
Cesium 2-((4-(4-chlorophenyl)-1-tosylpiperidin-4-yl)oxy)-2-oxoacetate: First, 4-(4-chlorophenyl)-1-

tosylpiperidin-4-yl ethyl oxalate was synthesized following GP1 using 4-(4-chlorophenyl)-1-

tosylpiperidin-4-ol (1.1 g, 3.1 mmol, 1.0 equiv.). The crude product was used in the next reaction 

without further purification. 

Cesium 2-((4-(4-chlorophenyl)-1-tosylpiperidin-4-yl)oxy)-2-oxoacetate was synthesized according to 

the GP2 using 4-(4-chlorophenyl)-1-tosylpiperidin-4-yl ethyl oxalate (3.1 mmol, 1.0 equiv.). After 

evaporation of the solvent, the crude solid was dissolved in H2O and washed with dichloromethane. 

The product was isolated as a white solid in 89% yield (1.5 g, 2.7 mmol). 
1H NMR (400 MHz, DMSO-d6): δ 7.67 (d, J = 8.3 Hz, 2H), 7.48 – 7.43 (m, 2H), 7.39 – 7.33 (m, 4H), 3.68 

– 3.59 (m, 2H), 2.61 (td, J = 12.2, 2.2 Hz, 2H), 2.43 (s, 3H), 2.41 – 2.33 (m, 2H), 2.07 – 1.94 (m, 2H). 
13C{1H} NMR (101 MHz, DMSO-d6): δ 165.8, 162.1, 143.5, 143.3, 133.2, 131.5, 129.9, 128.0, 127.3, 

126.3, 77.0, 41.7, 34.7, 21.0. 

HRMS (ESI-pos): [m/z] calculated for C20H19ClCsNNaO6S ([M+Na]+): 591.9568; found 591.9565 

 

 
1-(tert-butoxycarbonyl)-4-(pyridin-3-yl)piperidin-4-yl ethyl oxalate: In a round-bottomed flask, 4-

(pyridin-3-yl)piperidin-4-ol (0.53 g, 3.0 mmol, 1.0 equiv.) and NaOH (0.15 g, 3.7 mmol, 1.2 equiv.) were 

dissolved in a 1:1 mixture of 1,4-dioxane (2.0 mL) and water (2.0 mL) and cooled down to 0 °C. Then, 

(Boc)2O (1.0 g, 4.6 mmol, 1.5 equiv.) was added in one portion. The reaction was stirred at 0 °C for 2 

h and then diluted with 10 mL of water. The organic phase was extracted with EtOAc (3 x 30 mL), the 

combined organic layers dried over Na2SO4, filtered and concentrated to afford the crude product, 

tert-butyl 4-hydroxy-4-(pyridin-3-yl)piperidine-1-carboxylate, as a light orange solid, which was used 

in the next step without further purification. 
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1-(tert-butoxycarbonyl)-4-(pyridin-3-yl)piperidin-4-yl ethyl oxalate was synthesized following GP1 

using tert-butyl 4-hydroxy-4-(pyridin-3-yl)piperidine-1-carboxylate (3.0 mmol). The pure product was 

isolated as a sticky yellow oil in 53% yield (0.60 mg, 1.6 mmol) after column chromatography using a 

2:1 mixture of EtOAc/DCM, and basic work up with NaHCO3.  
1H NMR (400 MHz, CDCl3): δ 8.69 (d, J = 2.6 Hz, 1H), 8.57 (dd, J = 4.8, 1.5 Hz, 1H), 7.70 (ddd, J = 8.1, 

2.5, 1.6 Hz, 1H), 7.31 (ddd, J = 8.1, 4.8, 0.9 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 4.17 – 4.00 (m, 2H), 3.19 (t, 

J = 12.8 Hz, 2H), 2.66 – 2.56 (m, 2H), 2.12 – 1.96 (m, 2H), 1.47 (s, 9H), 1.37 (t, J = 7.1 Hz, 3H). 

HRMS (ESI): [m/z] calculated for [C19H27N2O6]+ ([M+H]+): 379,1869; Found, 379.1864. 

Rf (2:1 EtOAc/DCM) = 0.4 

 

Cesium 2-((1-(tert-butoxycarbonyl)-4-(pyridin-3-yl)piperidin-4-yl)oxy)-2-oxoacetate: Synthesized 

according to the GP2 using 1-(tert-butoxycarbonyl)-4-(pyridin-3-yl)piperidin-4-yl ethyl oxalate (600 

mg, 1.6 mmol, 1.0 equiv.). After evaporation of the solvent, the crude solid was dissolved in H2O and 

washed with dichloromethane. The product was isolated as a white solid in 92% yield (0.70 g, 1.5 

mmol). 
1H NMR (600 MHz, DMSO-d6): δ 8.59 (dd, J = 2.5, 0.8 Hz, 1H, CHAr), 8.45 (dd, J = 4.7, 1.6 Hz, 1H, CHAr), 

7.74 (ddd, J = 8.0, 2.5, 1.6 Hz, 1H, CHAr), 7.36 (ddd, J = 8.0, 4.7, 0.8 Hz, 1H, CHAr), 3.89 (s, 2H, CH2), 3.04 

(s, 2H, CH2), 2.35 – 2.31 (m, 2H, CH2), 1.96 – 1.86 (m, 2H, CH2), 1.42 (s, 9H, CH3). 
13C{1H} NMR (101 MHz, DMSO-d6): δ 166.1, 162.5, 154.0, 147.9, 146.0, 139.9, 132.2, 123.1, 78.8, 

77.2, 58.1, 34.84, 28.06. 

 

 
Ethyl (1-phenyl-2-(pyridin-2-yl)propan-2-yl) oxalate: Benzylmagnesium bromide (12.0 mL, 12 mmol, 

1.2 equiv.) was added dropwise to a 0 °C solution of ethyl 2-acetylpyridine (1.1 mL, 10 mmol, 1.0 

equiv.) in THF (20 mL, 0.5 M). The mixture was stirred at 0 °C for 1 h and then warmed up to room 

temperature. After 2 h the reaction was quenched with a saturated solution of NH4Cl (aq.), the product 

extracted with EtOAc (3 x 50 mL), and the combined organic layers dried over Na2SO4 and 

concentrated in vacuo. The crude mixture was used in the next step without further purification. 

Ethyl (1-phenyl-2-(pyridin-2-yl)propan-2-yl) oxalate was synthesized following GP1 using 1-phenyl-2-

(pyridin-2-yl)propan-2-ol (10 mmol, 1.0 equiv.). The pure product was isolated as yellow oil in 34% 

yield (1.1 g, 3.5 mmol). 
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1H NMR (400 MHz, CDCl3): δ 8.62 (ddd, J = 4.8, 1.8, 1.0 Hz, 1H), 7.58 (td, J = 7.7, 1.8 Hz, 1H), 7.22 – 

7.13 (m, 5H), 6.98 – 6.91 (m, 2H), 4.35 (q, J = 7.1 Hz, 2H), 3.49 (d, J = 13.8 Hz, 1H), 3.42 (d, J = 13.8 Hz, 

1H), 1.96 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 160.9, 158.1, 156.6, 149.0, 136.4, 135.7, 130.7, 128.0, 126.9, 122.5, 

120.3, 88.4, 63.1, 47.0, 23.4, 14.1. 

GCMS (FI): [m/z] calculated for C18H19NO4 ([M]): 313.13141; Found, 313.12870. 

 

Cesium 2-oxo-2-((1-phenyl-2-(pyridin-2-yl)propan-2-yl)oxy)acetate: Synthesized according to the 

GP2 using ethyl (1-phenyl-2-(pyridin-2-yl)propan-2-yl) oxalate (1.06 g, 3.4 mmol, 1.0 equiv.). The crude 

product was washed with Et2O to afford the desired product as a white solid in 70% yield (1.0 g, 2.3 

mmol). 
1H NMR (400 MHz, D2O) δ 8.53 (ddd, J = 5.1, 1.8, 0.9 Hz, 1H), 7.86 (td, J = 7.8, 1.8 Hz, 1H), 7.45 (ddd, J 

= 7.6, 5.0, 1.1 Hz, 1H), 7.39 (dt, J = 8.1, 1.0 Hz, 1H), 7.29 (dq, J = 8.8, 4.1, 3.4 Hz, 3H), 7.01 – 6.97 (m, 

2H), 3.47 (s, 2H), 1.94 (s, 3H). 

HRMS (ESI-pos): [m/z] calculated for C16H14CsNNaO4 ([M+Na]+): 439.9870; Found, 439.9879. 
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1-Cyclohexyl-1-phenylethanol: MeMgBr (6.0 mL, 18.0 mmol, 1.2 equiv.) was added dropwise to a 0 

°C solution of cyclohexyl(phenyl)methanone (2.8 mL, 15 mmol, 1.0 equiv.) in THF (50 mL, 0.3 M). The 

mixture was stirred at 0 °C for 1 h and then warmed up to room temperature. After 2 h the reaction 

was quenched with a saturated solution of NH4Cl (aq.), the product extracted with EtOAc (3 x 50 mL), 

and the combined organic layers dried over Na2SO4 and concentrated in vacuo. The pure product was 

isolated without further purification in quantitative yield. The characterization matches the reported 

literature.258 
1H NMR (400 MHz, CDCl3): δ 7.43 – 7.38 (m, 2H), 7.36 – 7.28 (m, 2H), 7.25 – 7.20 (m, 1H), 1.79 – 1.66 

(m, 3H), 1.60 (m, 4H), 1.53 (s, 3H), 1.25 – 0.90 (m, 5H). 

 

Cesium 2-(1-cyclohexyl-1-phenylethoxy)-2-oxoacetate: First, 1-cyclohexyl-1-phenylethyl ethyl 

oxalate was synthesized following GP1 using 1-cyclohexyl-1-phenylethanol (0.62 g, 3.0 mmol, 1.0 

equiv.). After workup with CH2Cl2 (15 mL x3) and H2O, the product was used in the next step without 

further purification.  

Cesium 2-(1-cyclohexyl-1-phenylethoxy)-2-oxoacetate was Synthesized following GP2 using 1-

cyclohexyl-1-phenylethyl ethyl oxalate (0.91 mg, 3.0 mmol, 1.0 equiv.). The product was isolated as a 

white solid in 66% (0.81 g, 2.0 mmol) yield after dissolving the solid in water, washing it with EtOAc 

and evaporating the solvent.  
1H NMR (400 MHz, CDCl3): δ 7.32 – 7.21 (m, 4H), 7.22 – 7.16 (m, 1H), 1.76 (s, 3H), 1.75 – 1.51 (m, 

5H), 1.44 – 1.34 (m, 1H), 1.18 – 0.77 (m, 5H). 
13C{1H} NMR (101 MHz, CDCl3): δ 166.4, 144.2, 127.3, 126.0, 125.2, 83.7, 49.5, 26.9, 26.3, 26.0, 26.0, 

25.9, 20.5. 

 

 

4-(3-chloro-2-fluorophenyl)-2-methylbut-3-yn-2-yl ethyl oxalate: Synthesized following GP1 with 4-

(3-Chloro-2-fluorophenyl)-2-methylbut-3-yn-2-ol (0.49 g, 2.2 mmol, 1.0 equiv.), the product was 

obtained as a colorless oil in 93% yield (0.67 g, 2.2 mmol). 
1H NMR (600 MHz, CDCl3): � 7.35 (ddd, J = 8.3, 6.9, 1.7 Hz, 1H), 7.32 (ddd, J = 7.8, 6.1, 1.7 Hz, 1H), 7.01 

(td, J = 7.9, 1.1 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 1.86 (s, 6H), 1.38 (t, J = 7.2 Hz, 3H). 
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13C{1H} NMR (151 MHz, CDCl3): � 158.55 (d, JC–F = 254.3 Hz), 158.0, 156.2, 132.0, 131.2, 124.4 (d, JC–F = 

4.9 Hz), 121.6 (d, JC–F = 17.2 Hz), 112.6 (d, JC–F = 15.8 Hz), 94.7 (d, JC–F = 3.9 Hz), 78.3, 75.9, 63.2, 28.7, 

14.1. 

HRMS (ESI): [m/z] calculated C15H14ClFNaO4 ([M+Na]+) 355.0457, found 355.0472. 

Rf (PE:EtOAc 8:2) = 0.59 [UV] 

 

Cesium 2-((4-(3-chloro-2-fluorophenyl)-2-methylbut-3-yn-2-yl)oxy)-2-oxoacetate: Synthesized 

following the general procedure D with 4-(3-Chloro-2-fluorophenyl)-2-methylbut-3-yn-2-yl ethyl 

oxalate (0.54 mg, 1.6 mmol, 1.0 equiv.), the product was obtained as a white solid in 80% yield (0.55 g, 

1.3 mmol). 
1H NMR (600 MHz, DMSO-d6): � 7.62 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.44 (ddd, J = 7.9, 6.4, 1.6 Hz, 1H), 

7.23 (td, J = 8.0, 1.0 Hz, 1H), 1.69 (s, 6H). 
13C{1H} NMR (151 MHz, DMSO-d6): δ 165.5, 162.1, 157.2 (d, J = 250.9 Hz), 132.2, 131.1, 125.6 (d, J = 

4.9 Hz), 120.1 (d, J = 17.1 Hz), 112.1 (d, J = 15.4 Hz), 97.9 (d, J = 3.8 Hz), 75.4, 70.0, 28.5. 

HRMS (ESI-neg): [m/z] calculated C13H9ClFO4 ([M-Cs]-): 283.0179, found 283.0190. 

 

 
Ethyl (4-(hex-1-yn-1-yl)tetrahydro-2H-pyran-4-yl) oxalate: nBuLi (2.5 M in hexane, 6.8 mL, 17.0 

mmol, 1.3 equiv.) was added dropwise to a -78 °C solution of dihydro-2H-pyran-4(3H)-one (1.4 mL, 15 

mmol, 1.0 equiv.) in THF (25 mL, 0.6 M). The mixture was stirred at -78 °C for 1 h and then warmed up 

to room temperature. After 2 h the reaction was quenched with a saturated solution of NH4Cl (aq.), 

the product extracted with EtOAc (3 x 50 mL), and the combined organic layers dried over Na2SO4 and 

concentrated in vacuo. The crude product was used in the next step without further purification. 

Synthesized following GP1 using 4-(hex-1-yn-1-yl)tetrahydro-2H-pyran-4-ol (15 mmol, 1.0 equiv.). The 

pure product was isolated as colorless oil in 89% yield (3.8 g, 13 mmol). 
1H NMR (400 MHz, CDCl3): δ 4.34 (q, J = 7.1 Hz, 2H), 3.87 (dt, J = 11.9, 4.3 Hz, 2H), 3.72 (ddd, J = 12.0, 

9.4, 2.8 Hz, 2H), 2.31 – 2.20 (m, 4H), 2.09 (ddd, J = 13.3, 9.5, 4.1 Hz, 2H), 1.47 (m, 2H), 1.47 – 1.41 (m, 

2H), 1.38 (t, J = 7.2 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H).  
13C{1H} NMR (101 MHz, CDCl3): δ 158.0, 156.0, 89.9, 77.5, 77.3, 77.2, 77.0, 76.8, 64.7, 63.2, 37.8, 30.6, 

22.1, 18.5, 14.1, 13.7. 

GCMS (FI): [m/z] calculated for C15H22O5: 282.14672; Found: 282.14672. 

Rf (4:1 PE/EtOAc) = 0.45 
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Cesium 2-((4-(hex-1-yn-1-yl)tetrahydro-2H-pyran-4-yl)oxy)-2-oxoacetate: Synthesized following GP2 

using ethyl (4-(hex-1-yn-1-yl)tetrahydro-2H-pyran-4-yl) oxalate (1.4 g, 5.0 mmol, 1.0 equiv.).The 

product was isolated as a white solid in 98% yield (1.9 g, 4.9 mmol). 
1H NMR (600 MHz, DMSO-d6): δ 3.74 (dt, J = 11.8, 4.3 Hz, 2H), 3.55 (ddd, J = 11.8, 9.4, 2.7 Hz, 2H), 2.23 

(t, J = 6.8 Hz, 2H), 2.09 – 1.96 (m, 2H), 1.86 (ddd, J = 13.2, 9.4, 4.0 Hz, 2H), 1.48 – 1.34 (m, 4H), 0.88 (t, 

J = 7.2 Hz, 3H). 
13C{1H} NMR (151 MHz, DMSO-d6): δ 165.4, 162.3, 86.7, 79.7, 71.0, 63.6, 37.6, 30.2, 21.2, 17.6, 13.4. 

HRMS (ESI-neg): [m/z] calculated for [C13H17O5] ([M-Cs]-): 253.1076; Found: 253.1081. 

 

 

Ethyl ((2S,5R)-2-isopropyl-5-methylcyclohexyl) oxalate: Synthesized following GP1 using 2-(4-

chlorophenyl)oct-3-yn-2-ol (0.78 g, 5.0 mmol, 1.0 equiv.). The pure product was isolated as colorless 

oil in >95% (1.3 g, 5.0 mmol) without purification. 
1H NMR (600 MHz, CDCl3): δ 4.85 (td, J = 11.0, 4.5 Hz, 1H), 4.34 (qd, J = 7.1, 0.9 Hz, 2H), 2.08 – 2.03 

(m, 1H), 1.89 (pd, J = 7.0, 2.8 Hz, 1H), 1.71 (dtd, J = 12.8, 6.1, 5.5, 3.0 Hz, 2H), 1.57 – 1.48 (m, 2H), 

1.38 (t, J = 7.2 Hz, 3H), 1.26 – 1.03 (m, 3H), 0.93 (d, J = 6.6 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H), 0.78 (d, J = 

7.0 Hz, 3H). 
13C{1H} NMR (151 MHz, CDCl3): δ 158.4, 157.8, 77.9, 63.1, 46.9, 40.4, 34.2, 31.6, 26.4, 23.6, 22.1, 

20.8, 16.4, 14.1. 

GCMS (FI): [m/z] calculated for C14H24O4: 256.17240; Found: 256.16746. 

 

Cesium 2-(((2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-2-oxoacetate: Synthesized following GP2 

using ethyl ((2S,5R)-2-isopropyl-5-methylcyclohexyl) oxalate (0.77 mg, 3.0 mmol, 1.0 equiv.). The 

product was isolated as a white solid in 93% yield (1.0 g, 2.8 mmol). The characterization matches the 

reported literature.133  
1H NMR (400 MHz, DMSO-d6): δ 4.50 (td, J = 10.9, 4.3 Hz, 1H), 1.94 – 1.75 (m, 2H), 1.62 (ddd, J = 

13.7, 9.9, 3.3 Hz, 2H), 1.49 – 1.37 (m, 1H), 1.35 – 1.25 (m, 1H), 1.09 – 0.90 (m, 2H), 0.87 (d, J = 6.6 Hz, 

3H), 0.84 (d, J = 7.1 Hz, 3H), 0.70 (d, J = 7.0 Hz, 3H). 
13C{1H} NMR (151 MHz, DMSO-d6): δ 167.1, 1628, 71.21, 46.6, 40.7, 33.8, 30.9, 25.4, 23.0, 21.9, 20.5, 

16.3. 
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Adamantan-1-ylmethyl ethyl oxalate: Synthesized following GP1 using adamantan-1-ylmethanol (830 

mg, 5.0 mmol, 1.0 equiv.). The pure product was isolated as colorless oil in quantitative yield (1.33 g, 

5 mmol) without purification. 
1H NMR (600 MHz, CDCl3): δ 4.36 (qd, J = 7.2, 0.8 Hz, 2H), 3.88 (s, 2H), 2.00 (t, J = 3.0 Hz, 3H), 1.79 – 

1.71 (m, 3H), 1.69 – 1.63 (m, 3H), 1.57 (d, J = 2.9 Hz, 6H), 1.39 (dd, J = 7.2, 0.7 Hz, 3H). 
13C{1H} NMR (151 MHz, CDCl3): δ 158.5, 158.2, 100.1, 76.3, 63.1, 39.2, 36.8, 33.6, 28.1, 14.1. 

GCMS (FI): [m/z] calculated for C15H22O4: 266.15636; Found: 266.15181. 

 

Cesium 2-(((2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-2-oxoacetate: Synthesized following GP2 

using ethyl ((2S,5R)-2-isopropyl-5-methylcyclohexyl) oxalate (0.8 mg, 3.0 mmol, 1.0 equiv.). The 

product was isolated as a white solid in 90% yield (1.0 g, 2.7 mmol). 
1H NMR (400 MHz, DMSO-d6): δ 3.53 (s, 2H), 1.99 – 1.90 (m, 3H), 1.68 (d, J = 12.4 Hz, 3H), 1.60 (d, J = 

12.0 Hz, 3H), 1.49 (s, 6H). 
13C{1H} NMR (151 MHz, DMSO-d6): δ 167.7, 162.8, 71.4, 58.0, 40.1, 38.7, 36.5, 32.8, 27.4, 14.2. 

HRMS (ESI-neg): [m/z] calculated for C13H17O4 ([M-Cs]-): 237.1132; Found: 237.1167. 

 
6.3.3. Synthesis & characterization of tertiary fluorides 

General procedure for the fluorination of tertiary cesium oxalates (GP3): An 8 mL Biotage® 

microwave vial was charged with the corresponding cesium oxalate (0.50 mmol, 1 equiv.) and 

Selecfluor® (0.44 g, 1.2 mmol, 2.5 equiv.) and sealed with a septum cap. The vial was put under vacuum 

for 5 min and refilled with N2. Afterwards, degassed H2O (2.5 mL) and acetone (2.5 mL) were added 

subsequently. The reaction mixture was then sparged with N2 for 2-5 min and irradiated with blue 

LEDs (lmax = 440 nm) for 2 h. Afterwards, the reaction was combined with a mixture of H2O and a 

saturated brine solution (ca. 15 mL) and the organic phase extracted with EtOAc (ca. 3 x 20 mL). The 

combined organic layers were dried over Na2SO4 and the solvent evaporated. The crude product was 

purified by column chromatography over silica gel to afford the desired tertiary fluoride. 
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(3-fluoro-3-methylbutyl)benzene (2): Synthesized following GP3 using cesium 2-((2-methyl-4-

phenylbutan-2-yl)oxy)-2-oxoacetate (0.18 g, 0.50 mmol, 1.0 equiv.). The reaction was performed 

twice, and the combined crude products purified by column chromatography. The product was 

isolated as a colorless oil in 76% yield (0.13 g, 0.76 mmol). The characterization data matches the 

reported literature.259 
1H NMR (400 MHz, CDCl3): δ 7.33 – 7.26 (m, 2H), 7.23 – 7.16 (m, 3H), 2.77 – 2.70 (m, 2H), 2.00 – 1.88 

(m, 2H), 1.44 (s, 3H), 1.39 (s, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 142.2, 128.6, 128.4, 126.0, 95.4 (d, J = 165.6 Hz), 43.5 (d, J = 23.0 

Hz), 30.4 (d, J = 5.4 Hz), 26.8 (d, J = 24.7 Hz). 
19F{1H} NMR (376 MHz, CDCl3): δ -138.80. 

Rf (PE/EtOAc, 10:1) = 0.5 [CAM] 

 

 
(6-chloro-2-fluorohexan-2-yl)cyclohexane (4): Synthesized following GP3 using cesium 2-((6-chloro-

2-cyclohexylhexan-2-yl)oxy)-2-oxoacetate (0.21 g, 0.50 mmol, 1.0 equiv.). The product was isolated as 

a colorless oil in 81% yield (90 mg, 0.41 mmol).  
1H NMR (400 MHz, CD3CN): δ 3.60 (t, J = 6.7 Hz, 2H), 1.83 – 1.45 (m, 12H), 1.30 – 1.10 (m, 5), 1.21 (d, 

J = 22.2 Hz, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 100.00 (d, J = 167.9 Hz), 46.97 (d, J = 21.8 Hz), 46.08, 37.47 (d, J = 

23.3 Hz), 33.67, 28.26 (d, J = 6.9 Hz), 27.62 (d, J = 5.4 Hz), 27.29, 27.21, 21.63 (d, J = 25.3 Hz), 21.26 (d, 

J = 4.6 Hz). 
19F{1H} NMR (376 MHz, CDCl3): δ -149.56. 

GCMS (FI): [m/z] calculated for C12H22ClF ([M]): 220.13941; Found: 220.13720. 

Rf (PE/EtOAc, 10:1) = 0.62 [CAM] 
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(1r,3s,5R,7S)-N-benzyl-3-fluoroadamantane-1-carboxamide (5): Synthesized following GP3 using 

cesium 2-(((1s,3r,5R,7S)-3-(benzylcarbamoyl)adamantan-1-yl)oxy)-2-oxoacetate (0.24 g, 0.50 mmol, 

1.0 equiv.). The product was isolated as a white solid in 57% yield (81 mg, 0.28 mmol).  
1H NMR (400 MHz, CDCl3): δ 7.37 – 7.30 (m, 2H), 7.30 – 7.22 (m, 3H), 5.91 (s, 1H), 4.43 (d, J = 5.5 Hz, 

2H), 2.37 (q, J = 3.5 Hz, 2H), 2.01 (d, J = 5.8 Hz, 2H), 1.88 (dd, J = 5.7, 3.1 Hz, 4H), 1.80 (t, J = 2.8 Hz, 

4H), 1.60 (d, J = 3.1 Hz, 2H). 
13C{1H} NMR (101 MHz, CDCl3): δ 175.7 (d, J = 1.9 Hz), 138.5, 128.9, 127.7, 127.6, 92.4 (d, J = 184.5 

Hz), 45.2 (d, J = 9.6 Hz), 44.4, 44.2, 43.6, 42.1, 41.9, 38.2 (d, J = 1.9 Hz), 35.0 (d, J = 2.0 Hz), 31.1 (d, J = 

9.9 Hz). 
19F{1H} NMR (376 MHz, CDCl3): δ -132.07. 

GCMS (FI): [m/z] calculated for C18H22FNO ([M]): 287.16854; Found: 287.17377. 

Rf (PE/EtOAc, 2:1) = 0.28 [CAM] 

 

 
4-(2-fluoropropan-2-yl)-1-tosylpiperidine (6): Synthesized following GP3 using cesium 2-oxo-2-((2-(1-

tosylpiperidin-4-yl)propan-2-yl)oxy)acetate (0.27 g, 0.50 mmol, 1.0 equiv.). The product was isolated 

as a white solid in 91% yield (0.15 g, 0.45 mmol). 
1H NMR (400 MHz, CDCl3): δ 7.67 – 7.62 (m, 2H), 7.34 – 7.29 (m, 2H), 3.91 – 3.83 (m, 2H), 2.43 (s, 

3H), 2.19 (td, J = 11.4, 2.3 Hz, 2H), 1.82 – 1.71 (m, 2H), 1.52 – 1.37 (m, 3H), 1.28 (s, 3H), 1.23 (s, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 143.60, 133.32, 129.72, 127.86, 96.71 (d, J = 167.2 Hz), 46.58, 45.38 

(d, J = 22.8 Hz), 26.25 (d, J = 6.3 Hz), 24.33 (d, J = 25.0 Hz), 21.64. 
19F{1H} NMR (376 MHz, CDCl3): δ -140.51. 

GCMS (FI): [m/z] calculated for C15H22NO2FS ([M]): 299.13553; Found: 299.13363. 

Rf (PE/EtOAc, 4:1) = 0.4 [CAM] 
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tert-butyl 4-(2-fluoropropan-2-yl)piperidine-1-carboxylate (7): Synthesized following GP3 using 

cesium 2-((2-(1-(tert-butoxycarbonyl)piperidin-4-yl)propan-2-yl)oxy)-2-oxoacetate (0.22 g, 0.5 mmol, 

1.0 equiv.). The product was isolated as a colorless oil in 41% yield (56 mg, 0.2 mmol). The 

characterization matches the reported literature.259 
1H NMR (400 MHz, CDCl3): δ 4.19 (d, J = 13.6 Hz, 2H), 2.64 (td, J = 12.9, 2.5 Hz, 2H), 1.70 (ddd, J = 

12.6, 3.2, 1.7 Hz, 2H), 1.45 (s, 9H), 1.32 (s, 3H), 1.27 (s, 3H), 1.26 – 1.18 (m, 2H). 
13C{1H} NMR (101 MHz, CDCl3): δ 154.9, 97.0 (d, J = 166.7 Hz), 79.5, 46.2 (d, J = 22.4 Hz), 44.1, 28.6, 

26.8 (d, J = 6.1 Hz), 24.6, 24.3. 
19F{1H} NMR (376 MHz, CDCl3): δ -140.74. 

GCMS (FI): [m/z] calculated for C13H24FNO2: 245.17911; Found: 245.18312. 

Rf (PE/EtOAc, 4:1) = 0.5 [CAM] 

 

 
Ethyl 4-ethyl-4-fluoropiperidine-1-carboxylate (8): Synthesized following GP3 using cesium 2-((1-

(ethoxycarbonyl)-4-ethylpiperidin-4-yl)oxy)-2-oxoacetate (0.20 g, 0.50 mmol, 1.0 equiv.). The product 

was isolated as a colorless oil in 35% yield (70 mg, 0.17 mmol).  
1H NMR (400 MHz, CDCl3): δ 4.19 – 4.09 (m, 2H), 3.98 (d, J = 12.7 Hz, 2H), 3.16 – 3.06 (m, 2H), 1.80 

(td, J = 10.6, 9.2, 4.7 Hz, 2H), 1.70 – 1.41 (m, 4H), 1.25 (td, J = 7.1, 0.6 Hz, 3H), 1.00 – 0.91 (m, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 155.7, 94.2 (d, J = 171.0 Hz), 61.4, 39.9 (d, J = 2.5 Hz), 34.1 (d, J = 

22.2 Hz), 33.1 (d, J = 22.9 Hz), 14.8, 7.2 (d, J = 5.6 Hz). 
19F{1H} NMR (376 MHz, CDCl3): δ -164.71. 

GCMS (FI): [m/z] calculated for C10H18NO2F ([M]): 203.13216; Found: 203.13221. 

Rf (PE/EtOAc, 4:1) = 0.37 [CAM] 
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Ethyl 4-benzyl-4-fluoropiperidine-1-carboxylate (9): Synthesized following GP3 using cesium cesium 

2-((4-benzyl-1-(ethoxycarbonyl)piperidin-4-yl)oxy)-2-oxoacetate (0.23 g, 0.50 mmol, 1.0 equiv.). The 

product was isolated as a colorless oil in 33% yield (44 mg, 0.16 mmol).  
1H NMR (400 MHz, CDCl3): δ 7.26 (s, 3H), 7.22 – 7.17 (m, 2H), 4.11 (q, J = 7.1 Hz, 2H), 3.98 (m, 2H), 

3.15 – 3.02 (m, 2H), 2.91 (d, JH–F = 22.0 Hz, 2H), 1.75 (m, 2H), 1.67 – 1.49 (m, 3H), 1.24 (t, J = 7.1 Hz, 

4H). 
13C{1H} NMR (101 MHz, CDCl3): δ 155.6, 135.6 (d, JC–F = 2.8 Hz), 130.5, 129.4, 128.7, 128.3, 127.0, 

93.7 (d, JC–F = 174.1 Hz), 61.5, 46.8 (d, JC–F = 22.1 Hz), 46.7, 39.8 (d, JC–F = 2.5 Hz), 34.6 (d, JC–F = 21.8 

Hz), 31.0, 14.8. 
19F{1H} NMR (376 MHz, CDCl3): δ -161.44. 

GCMS (FI): [m/z] calculated for C15H20NO2F ([M]): 265.14781; Found: 265.14930. 

Rf (PE/EtOAc, 4:1) = 0.37 [CAM] 

 

 
tert-butyl 2-fluoro-2-methyl-7-azaspiro[3.5]nonane-7-carboxylate (9): Synthesized following GP3 

using cesium 2-((7-(tert-butoxycarbonyl)-2-methyl-7-azaspiro[3.5]nonan-2-yl)oxy)-2-oxoacetate (0.23 

g, 0.50 mmol, 1.0 equiv.). The product was isolated as a colorless oil in 49% yield (62 mg, 0.24 mmol).  
1H NMR (400 MHz, CDCl3): δ 3.36 – 3.27 (m, 4H), 2.16 (m, 2H), 2.04 – 1.89 (m, 2H), 1.66 – 1.59 (m, 

2H), 1.50 – 1.42 (m, 14H). 
13C{1H} NMR (151 MHz, CDCl3) δ 155.1, 92.9 (d, J = 199.6 Hz), 79.5, 45.0, 44.8, 41.0, 40.8, 38.6, 37.1 

(d, J = 4.5 Hz), 29.0 (d, J = 7.0 Hz), 28.6, 27.4 (d, J = 25.8 Hz). 
19F{1H} NMR (376 MHz, CDCl3): δ -125.18. 

GCMS (FI): [m/z] calculated for C14H24FNO2 ([M]): 257.17911; Found: 257.18694. 

Rf (PE/EtOAc, 4:1) = 0.53 [CAM] 
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(5S,8R,9S,10S,13S,14S)-17-fluoro-10,13,17-trimethylhexadecahydro-3H-

cyclopenta[a]phenanthren-3-one (11): Synthesized following GP3 using cesium 2-oxo-2-

(((5S,8R,9S,10S,13S,14S)-10,13,17-trimethyl-3-oxohexadecahydro-1H-cyclopenta[a]phenanthren-17-

yl)oxy)acetate (0.25 g, 0.50 mmol, 1.0 equiv.). The product was isolated as a white solid in 58% yield 

(88 mg, 0.28 mmol). It was observed that the product decomposes in CDCl3, presumably due to traces 

of HCl, therefore the NMR spectra were recorded in CD3CN. 
1H NMR (400 MHz, CD3CN): δ 2.41 (dddd, J = 15.1, 14.0, 6.6, 0.9 Hz, 1H), 2.30 (ddd, J = 14.8, 13.8, 0.9 

Hz, 1H), 2.19 – 2.09 (m, 2H), 2.05 – 1.99 (m, 1H), 1.97 (dd, J = 3.9, 2.4 Hz, 1H), 1.91 – 1.79 (m, 1H), 1.76 

– 1.62 (m, 4H), 1.59 – 1.45 (m, 4H), 1.40 – 1.30 (m, 4H), 1.26 (d, J = 22.7 Hz, 3H), 1.23 – 1.15 (m, 1H), 

1.04 (s, 3H), 1.02 – 0.92 (m, 1H), 0.83 – 0.73 (m, 1H), 0.70 (d, J = 0.7 Hz, 3H). 
 13C{1H} NMR (101 MHz, CD3CN): δ 211.8, 107.3 (d, J = 173.5 Hz), 54.7, 51.1, 47.6, 45.3, 39.3, 38.7, 37.0, 

36.8, 36.6, 36.5, 32.7, 30.6 (d, J = 5.0 Hz), 29.7, 24.4 (d, J = 1.0 Hz), 21.6, 19.3 (d, J = 27.7 Hz), 15.7 (d, J 

= 5.6 Hz), 11.7. 
19F{1H} NMR (376 MHz, CD3CN): δ -142.10. 

HRMS(ESI): [m/z] calculated for C20H31FNaO ([M+Na]+): 329.2257; found 329.2253. 

Rf(CH/EtOAc 6:1) = 0.14 [CAM] 

 

 
1-((4-fluoro-4-methylpentan-2-yl)oxy)pent-2-yne (10): Synthesized following GP3 using cesium 2-((2-

methyl-4-(pent-2-yn-1-yloxy)pentan-2-yl)oxy)-2-oxoacetate (0.25 g, 0.64 mmol, 1.0 equiv.). The 

product was isolated as a white solid in 42% yield (50 mg, 0.27 mmol).  
1H NMR (400 MHz, CDCl3): δ 4.19 – 4.04 (m, 2H), 3.89 – 3.79 (m, 1H), 2.22 (qt, J = 7.5, 2.2 Hz, 2H), 

1.89 (ddd, J = 24.7, 14.8, 7.4 Hz, 1H), 1.74 (td, J = 14.7, 4.0 Hz, 1H), 1.43 (d, J = 10.3 Hz, 3H), 1.38 (d, J 

= 10.6 Hz, 3H), 1.19 (dd, J = 6.1, 0.6 Hz, 3H), 1.14 (t, J = 7.5 Hz, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 95.24 (d, J = 164.2 Hz), 87.90, 70.80 (d, J = 5.5 Hz), 55.87, 48.27 (d, J 

= 22.5 Hz), 28.68 (d, J = 24.4 Hz), 26.28 (d, J = 24.8 Hz), 20.49, 13.90, 12.57. 
19F{1H} NMR (376 MHz, CDCl3): δ -133.73. 

GCMS (FI): [m/z] calculated for C11H18FO ([M-H+]): 185.13417; Found: 185.13542. 

Rf (PE/EtOAc, 2:1) = 0.77 [CAM] 
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4-bromo-N-(2-fluoro-2-methylpropyl)benzenesulfonamide (13): Synthesized following GP3 using 

cesium 2-((1-(4-bromophenylsulfonamido)-2-methylpropan-2-yl)oxy)-2-oxoacetate (0.26 g, 0.5 mmol, 

1.0 equiv.). The product was isolated as a white solid in 35% yield (55 mg, 0.17 mmol).  
1H NMR (400 MHz, CDCl3): δ 7.74 – 7.70 (m, 2H), 7.69 – 7.64 (m, 2H), 4.76 (t, J = 6.5 Hz, 1H), 3.07 (dd, 

J = 19.8, 6.5 Hz, 2H), 1.37 (d, JH–F = 21.4 Hz, 7H). 
13C{1H} NMR (101 MHz, CDCl3): δ 139.21, 132.64, 128.66, 127.89, 94.61 (d, JC–F = 168.3 Hz), 51.81 (d, 

JC–F = 22.5 Hz), 24.53 (d, JC–F = 23.9 Hz). 
19F{1H} NMR (376 MHz, CDCl3): δ -145.15. 

Rf (PE/EtOAc, 4:1) = 0.37 [CAM] 

 

 
(S)-tert-butyl (3-fluoro-3-methyl-1-phenylbutan-2-yl)carbamate (14): Synthesized following GP3 

using cesium (S)-2-((3-((tert-butoxycarbonyl)amino)-2-methyl-4-phenylbutan-2-yl)oxy)-2-oxoacetate 

(0.24 g, 0.5 mmol, 1.0 equiv.). The reaction was performed twice and the combined crude products 

purified by column chromatography. The product was isolated as a white solid in 95% yield (133 mg, 

0.47 mmol).  
1H NMR (400 MHz, CDCl3) δ 7.30 – 7.24 (m, 3H), 7.23 – 7.15 (m, 3H), 4.47 (d, J = 10.1 Hz, 1H), 4.06 – 

3.81 (m, 1H), 3.15 (dd, J = 14.3, 3.8 Hz, 1H), 2.57 (t, J = 12.7 Hz, 1H), 1.44 (dd, J = 23.1, 21.7 Hz, 6H), 

1.26 (s, 10H).  
13C NMR (101 MHz, CDCl3): δ 155.7, 138.4, 129.3, 128.4, 126.4, 97.2 (d, J = 171.1 Hz), 79.3, 58.0 (d, J = 

23.0 Hz), 36.1, 28.3, 25.1 (d, J = 24.2 Hz), 24.3 (d, J = 24.3 Hz). 
19F{1H} NMR (376 MHz, CDCl3) δ -152.54. 

HRMS(ESI): [m/z] calculated for C16H24FNNaO2 ([M+Na]+), 304.1689, found 304.1683. 

Rf(Cyclohexane/EtOAc 4:1) = 0.5 [Ninhydrin] 

 

 

 

 

 

 

N
H F

S
O

O
Br

F

NHBoc



Chapter 6: Supporting information 

 103 

 
4-chloro-6-((4-fluoro-4-methylpentan-2-yl)oxy)pyrimidine (15): Synthesized following GP3 using 

cesium 2-((4-((6-chloropyrimidin-4-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetate (86 mg, 0.20 

mmol, 1.0 equiv.). The product was isolated as a colorless oil in 55 % yield (24 mg, 0.11 mmol). 
1H NMR (400 MHz, CDCl3): δ 8.55 (d, J = 0.9 Hz, 1H), 6.69 (d, J = 0.9 Hz, 1H), 5.57 (dqd, J = 7.8, 6.2, 4.0 

Hz, 1H), 2.12 (ddd, J = 25.0, 15.0, 7.8 Hz, 1H), 1.92 (td, J = 15.3, 4.1 Hz, 1H), 1.40 (d, J = 6.6 Hz, 3H), 1.37 

(dd, J = 6.2, 0.7 Hz, 3H), 1.34 (d, J = 6.4 Hz, 3H). 
13C NMR (101 MHz, CDCl3) δ 169.7, 161.0, 158.4, 108.3, 94.4 (d, JC–F = 166.3 Hz), 70.9 (d, JC–F = 4.2 Hz), 

47.1 (d, JC–F = 22.7 Hz), 28.3 (d, JC–F = 24.5 Hz), 26.4 (d, J = 24.9 Hz), 21.2 (d, JC–F = 1.4 Hz). 
19F{1H} NMR (376 MHz, CDCl3) δ -136.52. 

Rf(Cyclohexan/EtOAc 4:1) = 0.54 [CAM] 

 

 

2-fluoro-6-((4-fluoro-4-methylpentan-2-yl)oxy)pyridine (16): Synthesized following GP3 using cesium 

2-((4-((6-fluoropyridin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetate (0.21 g, 0.50 mmol, 1.0 

equiv.). The reaction was performed twice and the combined crude products purified by column 

chromatography. The product was isolated as a colorless oil in 64% yield (0.14 g, 0.64 mmol).  
1H NMR (400 MHz, Chloroform-d) δ 7.61 (dt, J = 8.5, 7.9 Hz, 1H), 6.53 (ddd, J = 8.0, 1.7, 0.6 Hz, 1H), 

6.42 (ddd, J = 7.7, 2.6, 0.6 Hz, 1H), 5.36 (dqd, J = 7.9, 6.1, 4.0 Hz, 1H), 2.11 (ddd, J = 24.5, 14.8, 7.9 Hz, 

1H), 1.91 (td, J = 14.9, 4.1 Hz, 1H), 1.42 (s, 3H), 1.39 – 1.32 (m, 6H). 
13C{1H} NMR (101 MHz, CDCl3:) δ 162.41 (d, J = 240.0 Hz), 162.4 (d, J = 13.6 Hz), 142.7 (d, J = 8.1 Hz), 

107.7 (d, J = 5.2 Hz), 99.8 (d, J = 35.8 Hz), 94.9 (d, J = 165.3 Hz), 69.4 (d, J = 5.0 Hz), 47.4 (d, J = 22.8 

Hz), 28.4 (d, J = 24.5 Hz), 26.4 (d, J = 24.8 Hz), 21.3 (d, J = 1.2 Hz). 
19F{1H} NMR (376 MHz, CDCl3): δ -69.92, -134.61. 

GCMS (FI): [m/z] calculated for C11H15F2NO ([M]): 215.11217; Found: 215.11180. 

Rf (PE/EtOAc, 10:1) = 0.66 [CAM] 
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2-((4-fluoro-4-methylpentan-2-yl)oxy)pyrazine (17a) and 6,8,8-trimethyl-7,8-dihydro-6H-

pyrano[2,3-b]pyrazine (17b): Synthesized following GP3 using cesium 2-((2-methyl-4-(pyrazin-2-

yloxy)pentan-2-yl)oxy)-2-oxoacetate (0.20 g, 0.50 mmol, 1.0 equiv.). The reaction was performed 

twice and the combined crude products purified by column chromatography. The products were 

isolated as colorless oils in 25% (50 mg, 0.25 mmol) and 56% yield (100 mg, 0.25 mmol) respectively.  

 

2-((4-fluoro-4-methylpentan-2-yl)oxy)pyrazine (17a) 
1H NMR (400 MHz, CDCl3): δ 8.14 (d, J = 1.3 Hz, 1H), 8.08 (d, J = 2.9 Hz, 1H), 8.06 (dd, J = 2.8, 1.4 Hz, 

1H), 5.45 (dqd, J = 7.8, 6.2, 4.0 Hz, 1H), 2.14 (ddd, J = 25.4, 14.9, 7.8 Hz, 1H), 1.94 (td, J = 14.9, 4.1 Hz, 

1H), 1.41 (d, J = 6.5 Hz, 3H), 1.39 – 1.33 (m, 6H). 
13C{1H} NMR (101 MHz, CDCl3): δ 159.8, 140.8, 136.5, 136.4, 94.7 (d, J = 165.6 Hz), 69.2 (d, J = 4.6 

Hz), 47.3 (d, J = 22.7 Hz), 28.5 (d, J = 24.5 Hz), 26.3 (d, J = 24.9 Hz), 21.1 (d, J = 1.4 Hz). 
19F{1H} NMR (376 MHz, CDCl3): δ -135.60. 

GCMS (FI): [m/z] calculated for C10H15FN2O ([M]): 198.11684; Found: 198.11724. 

Rf (PE/EtOAc, 4:1) = 0.39 [CAM] 

 

2-((4-fluoro-4-methylpentan-2-yl)oxy)pyrazine (17b) 
1H NMR (400 MHz, CDCl3): δ 8.12 (d, J = 2.5 Hz, 1H), 7.98 (d, J = 2.5 Hz, 1H), 4.48 (dqd, J = 10.5, 6.2, 

3.2 Hz, 1H), 1.91 – 1.76 (m, 2H), 1.48 (d, J = 6.2 Hz, 3H), 1.38 (s, 3H), 1.36 (s, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 157.0, 147.5, 140.5, 137.2, 70.7 44.5, 34.7, 30.1, 28.4, 21.5. 

GCMS (FI): [m/z] calculated for C10H14N2O ([M]): 178.11061; Found: 178.10993. 

Rf (PE/EtOAc, 4:1) = 0.18 [CAM] 

 

 
4-fluoro-4-phenyltetrahydro-2H-pyran (18): Synthesized following GP3 using cesium 2-oxo-2-((4-

phenyltetrahydro-2H-pyran-4-yl)oxy)acetate (0.19 g, 0.50 mmol, 1.0 equiv.). The product was isolated 

as a white solid in 66% yield (60 mg, 0.33 mmol). It was observed that the product decomposes in 

CDCl3, presumably due to traces of HCl, therefore the NMR spectra were recorded in toluene-d8. 
1H NMR (400 MHz, Tol-d8): δ 7.21 – 7.17 (m, 2H), 7.15 – 7.12 (m, 2H), 7.07 – 7.02 (m, 1H), 3.81 – 3.66 

(m, 4H), 1.92 – 1.70 (m, 2H), 1.62 – 1.52 (m, 2H). 
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13C{1H} NMR (101 MHz, Tol-d8): δ 144.9 (d, J = 21.8 Hz), 137.5, 128.5 (d, J = 1.0 Hz), 124.2 (d, J = 9.0 

Hz), 93.5 (d, J = 174.9 Hz), 63.7, 37.5 (d, J = 23.0 Hz). 
19F{1H} NMR (376 MHz, Tol-d8): δ -160.94. 

GCMS (FI): [m/z] calculated for C11H13FO ([M]): 180.09504; Found: 180.09244. 

Rf (PE/EtOAc, 4:1) = 0.47 [CAM] 

 

 
Ethyl 4-fluoro-4-phenylpiperidine-1-carboxylate (19): Synthesized following GP3 using cesium 2-((1-

(ethoxycarbonyl)-4-phenylpiperidin-4-yl)oxy)-2-oxoacetate (0.23 g, 0.50 mmol, 1.0 equiv.). The 

product was isolated as a colorless oil in 73% yield (92 mg, 0.36 mmol).  
1H NMR (400 MHz, CDCl3): δ 7.41 – 7.33 (m, 4H), 7.36 – 7.28 (m, 1H), 4.18 (m, 4H), 3.29 – 3.19 (m, 

2H), 2.13 – 1.88 (m, 4H), 1.29 (t, J = 7.1 Hz, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 155.7, 144.1 (d, J = 21.4 Hz), 128.6 (d, J = 1.2 Hz), 127.9 (d, J = 1.4 

Hz), 124.0 (d, J = 9.2 Hz), 94.3 (d, J = 174.8 Hz), 61.6, 40.0 (d, J = 2.1 Hz), 36.7 (d, J = 22.9 Hz), 14.9. 
19F{1H} NMR (376 MHz, CDCl3): δ -162.66. 

GCMS (FI): [m/z] calculated for C14H18NO2F ([M]): 251.13216; Found: 251.13094. 

Rf (PE/EtOAc, 4:1) = 0.50 [CAM] 

 

 
tert-butyl 4-(4-chlorophenyl)-4-fluoropiperidine-1-carboxylate (20): Synthesized following GP3 using 

cesium 2-((1-(tert-butoxycarbonyl)-4-(4-chlorophenyl)piperidin-4-yl)oxy)-2-oxoacetate (0.26 g, 0.50 

mmol, 1.0 equiv.). The reaction was performed twice and the combined crude products purified by 

column chromatography. The product was isolated as a colorless oil in 64% yield (0.21 g, 0.64 mmol).  
1H NMR (400 MHz, CDCl3): δ 7.37 – 7.32 (m, 2H), 7.32 – 7.27 (m, 2H), 4.20 – 4.04 (m, 2H), 3.16 (t, J = 

12.2 Hz, 2H), 2.08 – 1.83 (m, 4H), 1.49 (s, 9H). 
13C{1H} NMR (101 MHz, CDCl3): δ 154.9, 142.7 (d, J = 22.1 Hz), 133.8, 128.8, 125.5 (d, J = 9.2 Hz), 94.1 

(d, J = 175.3 Hz), 80.0, 39.8, 36.66 (d, J = 22.5 Hz), 28.6. 
19F{1H} NMR (376 MHz, CDCl3): δ -162.50. 

GCMS (FI): [m/z] calculated for C16H21ClFNO2 ([M]): 313.12448; Found: 313.12968. 

Rf (PE/EtOAc, 10:1) = 0.35 [CAM] 
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4-(4-chlorophenyl)-4-fluoro-1-tosylpiperidine (21): Synthesized following GP3 using cesium 2-((4-(4-

chlorophenyl)-1-tosylpiperidin-4-yl)oxy)-2-oxoacetate (0.28 g, 0.50 mmol, 1.0 equiv.). The product 

was isolated as a white solid in 52% yield (95 mg, 0.26 mmol). 
1H NMR (400 MHz, CDCl3): δ 7.69 (m, 2H), 7.40 – 7.31 (m, 4H), 7.26 (m, 2H), 3.82 (ddt, J = 11.9, 4.8, 1.9 

Hz, 2H), 2.69 (td, J = 12.2, 2.7 Hz, 2H), 2.46 (s, 3H), 2.16 (dtd, J = 39.5, 13.5, 13.0, 5.1 Hz, 2H), 2.05 – 

1.95 (m, 2H). 
13C{1H} NMR (101 MHz, CDCl3): δ 143.9, 133.4, 129.9, 128.9, 127.9, 125.4 (d, J = 9.4 Hz), 93.1 (d, J = 

176.1 Hz), 42.4 (d, J = 1.6 Hz), 36.4 (d, J = 22.5 Hz), 21.7. 
19F NMR (376 MHz, CDCl3): δ -162.17 (tt, JH–F = 39.7, 10.2 Hz). 

Rf (Cyclohexane/EtOAc, 4:1) = 0.5 [CAM] 

 

 
tert-butyl 4-fluoro-4-(pyridin-3-yl)piperidine-1-carboxylate (22): Synthesized following GP3 using 

cesium 2-((1-(tert-butoxycarbonyl)-4-(pyridin-3-yl)piperidin-4-yl)oxy)-2-oxoacetate (0.24 g, 0.50 

mmol, 1.0 equiv.). The product was isolated as a colorless oil in 52% yield (73.5 mg, 0.26 mmol).  
1H NMR (600 MHz, CDCl3): δ 8.63 (d, J = 2.4 Hz, 1H), 8.56 (dd, J = 4.9, 1.6 Hz, 1H), 7.69 (dt, J = 8.0, 2.0 

Hz, 1H), 7.31 (dd, J = 8.0, 4.8 Hz, 1H), 4.16 – 4.12 (m, 2H), 3.17 (s, 2H), 2.03 – 1.86 (m, 4H), 1.48 (s, 9H). 
13C{1H} NMR (151 MHz, CDCl3): δ 154.83, 149.21, 145.85 (d, J = 9.2 Hz), 139.57 (d, J = 21.6 Hz), 131.98 

(d, J = 9.6 Hz), 123.42, 93.32 (d, J = 175.8 Hz), 80.06, 39.92, 39.47, 36.61, 36.47, 28.58. 
19F{1H} NMR (376 MHz, CDCl3): δ -164.27. 

GCMS (FI): [m/z] calculated for C15H21FN2O2 ([M]): 280.15871; Found: 280.16511. 

Rf (EtOAc) = 0.35 [CAM] 

 

 
2-(2-fluoro-1-phenylpropan-2-yl)pyridine (23): Synthesized following GP3 using cesium 2-oxo-2-((1-

phenyl-2-(pyridin-2-yl)propan-2-yl)oxy)acetate (0.21 g, 0.50 mmol, 1.0 equiv.). The product was 

isolated as a colorless oil in 15% yield (15 mg, 0.07 mmol).  
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1H NMR (400 MHz, CDCl3):δ 8.61 (ddt, J = 4.8, 1.9, 1.0 Hz, 1H), 7.62 (td, J = 7.7, 1.8 Hz, 1H), 7.35 (ddt, 

J = 8.0, 2.0, 1.0 Hz, 1H), 7.23 – 7.19 (m, 3H), 7.19 – 7.16 (m, 1H), 7.08 (ddd, J = 6.4, 2.4, 1.1 Hz, 2H), 

3.43 – 3.24 (m, 2H), 1.72 (d, J = 22.4 Hz, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 163.06 (d, JC–F = 27.2 Hz), 148.7 (d, JC–F = 2.6 Hz), 136.6 (d, JC–F = 2.0 

Hz), 136.3, 130.7, 127.9, 126.6, 122.2, 119.2 (d, JC–F = 10.7 Hz), 99.29 (d, JC–F = 171.4 Hz), 46.9 (d, JC–F = 

21.8 Hz), 26.0 (d, JC–F = 23.8 Hz). 
19F{1H} NMR (376 MHz, CDCl3) δ -153.90. 

GCMS (FI): [m/z] calculated for C14H14NF ([M]): 215.11103; Found: 215.11435. 

Rf (PE/EtOAc, 4:1) = 0.39 [CAM] 

 

 
(1-cyclohexyl-1-fluoroethyl)benzene (24): Synthesized following GP3 using cesium 2-(1-cyclohexyl-1-

phenylethoxy)-2-oxoacetate (0.20 g, 0.50 mmol, 1.0 equiv.). The product was isolated as a colorless 

oil in 48% yield (50 mg, 0.24 mmol). It was observed that the product decomposes in CDCl3, 

presumably due to traces of HCl, therefore the NMR spectra were recorded in acetone-d6. 
1H NMR (400 MHz, Acetone-d6): δ 7.39 – 7.31 (m, 4H), 7.30 – 7.23 (m, 1H), 1.85 – 1.61 (m, 4H), 1.59 

(s, 3H), 1.29 – 0.96 (m, 5H). 
13C{1H} NMR (101 MHz, Acetone-d6): δ 145.6 (d, J = 21.9 Hz), 128.7 (d, J = 1.7 Hz), 127.8 (d, J = 1.2 

Hz), 125.5 (d, J = 10.0 Hz), 100.0 (d, J = 173.8 Hz), 48.6 (d, J = 23.2 Hz), 28.0 (d, J = 4.5 Hz), 27.6 (d, J = 

4.5 Hz), 27.1 (d, J = 3.5 Hz), 27.0, 24.6, 24.4. 
19F{1H} NMR (376 MHz, Acetone-d6): δ -154.19. 

Rf (PE/EtOAc, 10:1) = 0.62 [CAM] 

 

 

 
1-chloro-2-fluoro-3-(3-fluoro-3-methylbut-1-yn-1-yl)benzene (25): Synthesized following GP3 using 

4-(3-chloro-2-fluorophenyl)-2-methylbut-3-yn-2-yl ethyl oxalate (0.21 g, 0.50 mmol, 1.0 equiv.). The 

reaction was performed twice and the combined crude products purified by column chromatography. 

The product was isolated as a colorless oil in 25% yield (55.0 mg, 0.25 mmol).  
1H NMR (400 MHz, CDCl3): δ 7.43 – 7.29 (m, 2H), 7.04 (td, J = 7.9, 1.2 Hz, 1H), 1.78 (s, 3H), 1.73 (s, 

3H). 
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13C{1H} NMR (101 MHz, CDCl3): δ 158.6 (d, J = 252.2 Hz), 131.9 (d, J = 2.6 Hz), 131.3, 124.44 (d, J = 5.0 

Hz), 121.7 (d, J = 17.3 Hz), 112.6 (d, J = 19.1 Hz), 95.8 (d, J = 29.7 Hz), 87.6 (d, J = 165.2 Hz), 77.6 (d, J 

= 8.9 Hz), 29.4, 29.11. 
19F{1H} NMR (376 MHz, CDCl3): δ -111.45 (d, J = 1.6 Hz), -127.20 (d, J = 1.1 Hz). 

GCMS (FI): [m/z] calculated for C11H9ClF2 ([M]): 214.03608; Found: 214.03409. 

Rf (PE/EtOAc, 4:1) = 0.52 [CAM] 

 

 

4-fluoro-4-(hex-1-yn-1-yl)tetrahydro-2H-pyran (26): Synthesized following GP3 using cesium 2-((4-

(hex-1-yn-1-yl)tetrahydro-2H-pyran-4-yl)oxy)-2-oxoacetate (0.19 g, 0.50 mmol, 1.0 equiv.). The 

product was isolated as a colorless oil in 23% yield (21.0 mg, 0.11 mmol). It was observed that the 

product decomposes in CDCl3, presumably due to traces of HCl, therefore the NMR spectra were 

recorded in toluene-d8. 
1H NMR (400 MHz, Tol-d8): δ 3.71 – 3.62 (m, 2H), 3.51 (ddd, J = 12.0, 6.0, 4.7 Hz, 2H), 1.96 (td, J = 6.9, 

5.8 Hz, 2H), 1.89 – 1.79 (m, 4H), 1.39 – 1.17 (m, 4H), 0.82 – 0.72 (m, 3H). 
13C{1H} NMR (101 MHz, Tol-d8): δ 137.47, 88.08 (d, J = 9.3 Hz), 87.09 (d, J = 172.2 Hz), 80.14 (d, J = 

30.3 Hz), 38.73 (d, J = 22.6 Hz), 30.82 (d, J = 2.3 Hz), 22.18, 18.42 (d, J = 2.7 Hz), 13.60. 
19F{1H} NMR (376 MHz, Tol-d8): δ -135.98 (bs). 

GCMS (FI): [m/z] calculated for C11H17OF ([M]): 184.12634; Found: 184.12814. 

Rf (PE/EtOAc, 4:1) = 0.62 [CAM] 

 

6.3.4. Determination of enantiomeric purity  

100 mg (0.35 mmol) of 14 were stirred in a 1:1 mixture of TFA/CH2Cl2 (1 mL, 0.35 M) and the reaction 

monitored by TLC. After ~ 2 h, the reaction was quenched with a saturated solution of K2HCO3 (5 mL) 

and the organic phase extracted with CH2Cl2 (3 x 10 mL). The combined organic layers were dried over 

Na2SO4 and the solvent evaporated. The 1H NMR of the crude product showed clean 14a (63%, 40 mg, 

0.22 mmol). Next, in an NMR tube, the crude product (25 mg, 0.13 mmol, 1.0 equiv.) was reacted with 

(R)-(+)-MTPA-Cl (28 µL, 0.11 mmol, 1.1 equiv.) and Et3N (15 µL, 0.11 mmol, 1.1 equiv.) in CD3CN. After 

20 min the 19F NMR of the reaction showed formation of only diastereoisomer of the desired Mosher’s 

amide 14b, thus supporting that the deoxyfluorination reaction proceeds with stereoretention on the 

a-amino stereocenter. 
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Figure S1. 19F NMR spectra of 14, 14a and 14b. 

 

6.3.5. Competition experiments  

Tertiary vs primary & secondary oxalates: A 4 mL vial was charged with 1 (37 mg, 0.10 mmol, 1 equiv.), 

Selectfluor® (88 mg, 0.25 mmol, 2.5 equiv.) and 0.1 mmol (1.0 equiv.) of the corresponding primary or 

secondary oxalate, and sealed with a septum cap. The vial was put under vacuum for 5 min and refilled 

with N2. Afterwards, degassed H2O (0.50 mL) and acetone (0.50 mL) were added subsequently. The 

reaction mixture was then sparged with N2 for 2-5 min and irradiated with blue LEDs (lmax = 440 nm) 

for 1 h. Afterwards, the reaction was diluted with EtOAc (1 mL) and trifluorotoluene (12.5 µL, 0.1 

mmol, 1.0 equiv.) were added. The organic phase was transferred to an NMR tube containing CDCl3 

(0.2 mL) and the 19F NMR of the mixture was recorded with a relaxation time of 20 sec, to accurately 

calculate the yield. 
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Figure S2. Selectivity studies.  

 

Reaction with primary and secondary oxalates in isolation: A 4 mL vial was charged with the 

corresponding oxalate (0.10 mmol, 1 equiv.), Selectfluor® (88 mg, 0.25 mmol, 2.5 equiv.) and sealed 

with a septum cap. The vial was put under vacuum for 5 min and refilled with N2. Afterwards, degassed 

H2O (0.50 mL) and acetone (0.50 mL) were added subsequently. The reaction mixture was then 

sparged with N2 for 2-5 min and irradiated with blue LEDs (lmax = 440 nm) for 1 h. Afterwards, the 

reaction was diluted with EtOAc (1 mL) and trifluorotoluene (12.5 µL, 0.1 mmol, 1.0 equiv.) were 

added. The organic phase was transferred to an NMR tube containing CDCl3 (0.2 mL) and the 19F NMR 

of the mixture was recorded with a relaxation time of 20 sec, to accurately calculate the yield. For the 

reactions at 42 °C the fan of the EvoluChem™ PhotoRedOx Box was turn off.  

 

6.3.6. Reactions in presence of TEMPO 

A 4 mL vial was charged with 1 (37 mg, 0.10 mmol, 1 equiv.), Selectfluor® (88 mg, 0.25 mmol, 2.5 

equiv.) and TEMPO (0.1 or 0.3 mmol, 1.0 or 3.0 equiv.) and then sealed with a septum cap. The vial 

was put under vacuum for 5 min and refilled with N2. Afterwards, degassed H2O (0.50 mL) and acetone 

(0.50 mL) were added subsequently. The reaction mixture was then sparged with N2 for 2-5 min and 

irradiated with blue LEDs (lmax = 440 nm) for 1 h. Afterwards, the reaction was diluted with EtOAc (1 

mL) and trifluorotoluene (12.5 µL, 0.1 mmol, 1.0 equiv.) were added. The organic phase was 

transferred to an NMR tube containing CDCl3 (0.2 mL) and the 19F NMR of the mixture was recorded 

with a relaxation time of 20 sec, to accurately calculate the yield. No product formation was observed 

in both experiments. 
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Figure S3. Scheme of reaction in the presence of TEMPO 

 

6.3.7. UV/Vis absorption spectra 

UV/vis absorption spectra were recorded using a Mettler Toledo UV5 spectrophotometer. The 

samples were measured in UV quartz cuvettes (chamber volume = 1.4 mL, H × W × D = 46 mm × 12.5 

mm, 12.5 mm) fitted with a PTFE stopper. Stock solutions of oxalate 1 and Selectfluor®, were prepared 

with the same concentration used in the reaction in the presence of air using 1,4-dioxane/H2O (1:1). 

as solvent. 

 
Figure S4. UV/Vis absorption spectra at different concentrations of Selectfluor® 
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Figure S5. Overlap between the absorption spectra of the reaction mixture and the emission spectra of blue LEDs of lmax = 

405 and 440 nm. 

6.1.1. Influence of light source 

The influence of the wavelength of irradiation over the reaction was investigated by irradiating the 

reaction mixture with blue LEDs of �max = 365, 405 and 440 nm. 4 independent reactions were 

performed under the standard reaction conditions – 1 (0.1 mmol), Selectfluor® (0.25 mmol), acetone 

(0.5 mL), water (0.5 mL) – and stopped at regular intervals, i.e., 1, 5, 10 and 20 min reaction time. Once 

the reactions were stopped, EtOAc (1 mL) and trifluorotoluene (12.5 µL, 0.1 mmol) were added and 

the reaction yield measured by 19F NMR with a relaxation time of 20 sec.  

 

 

Figure S6. Influence of the wavelength of irradiation on the reaction 
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6.3.8. Light ON/OFF Experiments 

The reaction was carried out in an NMR tube using 1 (37 mg, 0.10 mmol, 1.0 equiv.), Selectfluor® (88 

mg, 0.25 mmol, 2.5 equiv.) in a dry and degassed acetone-d6/D2O mixture (1 mL, 1:1, 0.1 M). The NMR 

was irradiated with an 18 W blue LED (�max = 405 nm). The experiment shows that without irradiation, 

the reaction does not proceed. 

 
Figure S7. Light ON/OFF experiments with irradiation from 18 W blue LED (lmax = 405 nm). 

 

6.1.2. Quantum yield determination 

According to the procedure of Yoon,125 the photon flux of the LED (lmax = 440 nm) was determined by 

standard ferrioxalate actinometry.260,261 A 0.15 M solution of ferrioxalate was prepared by dissolving 

potassium ferrioxalate trihydrate (0.73 g) in H2SO4 (10 mL of a 0.05 M solution). A buffered solution of 

1,10-phenanthroline was prepared by dissolving 1,10-phenanthroline (25 mg) and sodium acetate (5.6 

g) in H2SO4 (25 mL of a 0.50 M solution). Both solutions were stored in the dark. To determine the 

photon flux of the LED, the ferrioxalate solution (1.0 mL) was placed in a cuvette and irradiated for 70 

seconds at lmax = 440 nm. After irradiation, the phenanthroline solution (175 µL) was added to the 

cuvette and the mixture was allowed to stir in the dark for 1.0 h to allow the ferrous ions to completely 

coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A non-

irradiated sample was also prepared and the absorbance at 510 nm was measured. Conversion was 

calculated using eq. 1. 

 

N N
ClB

1

Selectfluor®

2

Irradiation = 5 min
96% conversion

In the dark for 10 min
80% conversion

Irradiation = 90 sec
80% conversion

Irradiation = 10 sec
0% conversion

In the dark for 10 min
0% conversion

Irradiation = 0 sec
0% conversion
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mol	Fe34 =	 !•∆#(%&'	)*),•-     (eq. 3) 

where V is the total volume (0.001175 L) of the solution after addition of phenanthroline, ∆A is the 

difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, l is the path 

length (1.00 cm), and ε is the molar absorptivity of the ferrioxalate actinometer at 510 nm (11,100 

Lmol-1cm-1).  With this data, the photon flux can be calculated using eq. 2. 

Photon	flux = 	*./	0123

4•5•6     (eq. 4) 

where F is the quantum yield for the ferrioxalate actinometer (1.01 at lex = 437 nm),260 t is the 

irradiation time (70 s), and f is the fraction of light absorbed at �ex = 437 nm by the ferrioxalate 

actinometer. This value is calculated using eq. 3 where A (440 nm) is the absorbance of the ferrioxalate 

solution at 440 nm. An absorption spectrum gave an A (440 nm) value of > 3, indicating that the 

fraction of absorbed light (f) is > 0.999. 

f = 	1 − 10+(--.	01)    (eq. 5) 

The photon flux was thus calculated (average of three experiments) to be 3.15 x 10-09 einsteins s-1 

 

Determination of the reaction quantum yield 

A reaction under the standard conditions using 1 (37 mg, 0.1 mmol, 1 equiv.) and Selectfluor® (88 mg, 

0.25 mmol, 2.5 equiv.) was irradiated at 440 nm for 60 sec. Afterwards, the reaction was diluted with 

EtOAc (1 mL) and trifluorotoluene (12.5 µL, 0.1 mmol, 1.0 equiv.) were added. The organic phase was 

transferred to an NMR tube containing CDCl3 (0.2 mL) and the 19F NMR of the mixture was recorded 

with a relaxation time of 20 sec, to accurately calculate the yield. This afforded 2 in 8% yield (8 x 10-6 

mol). The reaction quantum yield (F) was determined using eq. 4 where the photon flux is 3.15 x 10-

09 einsteins s-1 (determined by actinometry as described above), t is the reaction time (60 s) and f is 

the fraction of incident light absorbed by the reaction mixture, determined using eq. 3. An absorption 

spectrum of the reaction mixture gave an absorbance value of 0.00847 at 437 nm, thus f is 0.0193. 

 

 Φ =	*./	.6	78.9:;<	6.8*=9
>?.<.)	6/:@•5•6     (eq. 6) 

 

The reaction quantum yield (F) was thus determined to be 2185.4. 
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6.3.9. 1H, 13C and 19F NMR Spectra 

6.3.9.1. Starting materials 

Ethyl (4-(4-methoxyphenyl)-2-methylbutan-2-yl) oxalate  
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Cesium 2-((4-(4-methoxyphenyl)-2-methylbutan-2-yl)oxy)-2-oxoacetate 

 

 
 
 
 
 
 
 
 



Chapter 6: Supporting information 

 117 

6-chloro-2-cyclohexylhexan-2-ol 
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6-chloro-2-cyclohexylhexan-2-yl ethyl oxalate 
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Cesium 2-((6-chloro-2-cyclohexylhexan-2-yl)oxy)-2-oxoacetate 
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N-benzyl-3-hydroxyadamantane-1-carboxamide 
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3-(benzylcarbamoyl)adamantan-1-yl ethyl oxalate 
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Cesium 2-((3-(benzylcarbamoyl)adamantan-1-yl)oxy)-2-oxoacetate 
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1-cyclohexyl-2-((3,3-diethoxypropyl)amino)-2-oxo-1-phenylethyl ethyl oxalate 

 

 
 
 
 
 
 
 
 



Chapter 6: Supporting information 

 124 

Cesium 2-((2-methyl-4-(tosyloxy)pentan-2-yl)oxy)-2-oxoacetate 
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tert-Butyl 4-methyl piperidine-1,4-dicarboxylate 
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tert-Butyl 4-(2-hydroxypropan-2-yl)piperidine-1-carboxylate 
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2-(1-(tert-butoxycarbonyl)piperidin-4-yl)propan-2-yl ethyl oxalate 
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Cesium 2-((2-(1-(tert-butoxycarbonyl)piperidin-4-yl)propan-2-yl)oxy)-2-oxoacetate 
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Ethyl 4-benzyl-4-hydroxypiperidine-1-carboxylate 
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4-benzyl-1-(ethoxycarbonyl)piperidin-4-yl ethyl oxalate 
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Cesium 2-((4-benzyl-1-(ethoxycarbonyl)piperidin-4-yl)oxy)-2-oxoacetate 
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tert-Butyl 2-hydroxy-2-methyl-7-azaspiro[3.5]nonane-7-carboxylate 
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7-(tert-butoxycarbonyl)-2-methyl-7-azaspiro[3.5]nonan-2-yl ethyl oxalate 
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Cesium 2-((7-(tert-butoxycarbonyl)-2-methyl-7-azaspiro[3.5]nonan-2-yl)oxy)-2-oxoacetate 
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Ethyl ((5S,8R,9S,10S,13S,14S)-10,13,17-trimethyl-3-oxohexadecahydro-1H-
cyclopenta[a]phenanthren-17-yl) oxalate 
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cesium 2-oxo-2-(((5S,8R,9S,10S,13S,14S)-10,13,17-trimethyl-3-oxohexadecahydro-1H-
cyclopenta[a]phenanthren-17-yl)oxy)acetate 
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2-methyl-4-(pent-2-yn-1-yloxy)pentan-2-ol 
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Ethyl (2-methyl-4-(pent-2-yn-1-yloxy)pentan-2-yl) oxalate 
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Cesium 2-((2-methyl-4-(pent-2-yn-1-yloxy)pentan-2-yl)oxy)-2-oxoacetate 

 

 
 
 
 
 
 
 
 



Chapter 6: Supporting information 

 140 

1-(4-bromophenylsulfonamido)-2-methylpropan-2-yl ethyl oxalate 
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Cesium 2-((1-(4-bromophenylsulfonamido)-2-methylpropan-2-yl)oxy)-2-oxoacetate 
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(S)-3-((tert-butoxycarbonyl)amino)-2-methyl-4-phenylbutan-2-yl ethyl oxalate 
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cesium (S)-2-((3-((tert-butoxycarbonyl)amino)-2-methyl-4-phenylbutan-2-yl)oxy)-2-oxoacetate 
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4-((6-chloropyrimidin-4-yl)oxy)-2-methylpentan-2-yl ethyl oxalate 
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Cesium 2-((4-((6-chloropyrimidin-4-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetate 
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4-((6-fluoropyridin-2-yl)oxy)-2-methylpentan-2-ol 
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Ethyl (4-((6-fluoropyridin-2-yl)oxy)-2-methylpentan-2-yl) oxalate 
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Cesium 2-((4-((6-fluoropyridin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetate 
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Ethyl (2-methyl-4-(pyrazin-2-yloxy)pentan-2-yl) oxalate 
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Cesium 2-((2-methyl-4-(pyrazin-2-yloxy)pentan-2-yl)oxy)-2-oxoacetate 
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Cesium 2-oxo-2-((4-phenyltetrahydro-2H-pyran-4-yl)oxy)acetate 
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Ethyl 4-hydroxy-4-phenylpiperidine-1-carboxylate 
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1-(ethoxycarbonyl)-4-phenylpiperidin-4-yl ethyl oxalate 
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Cesium 2-((1-(ethoxycarbonyl)-4-phenylpiperidin-4-yl)oxy)-2-oxoacetate 
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1-(tert-butoxycarbonyl)-4-(4-chlorophenyl)piperidin-4-yl ethyl oxalate 
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Cesium 2-((1-(tert-butoxycarbonyl)-4-(4-chlorophenyl)piperidin-4-yl)oxy)-2-oxoacetate 
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1-(tert-butoxycarbonyl)-4-(pyridin-3-yl)piperidin-4-yl ethyl oxalate 

 
Cesium 2-((1-(tert-butoxycarbonyl)-4-(pyridin-3-yl)piperidin-4-yl)oxy)-2-oxoacetate 
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Ethyl (1-phenyl-2-(pyridin-2-yl)propan-2-yl) oxalate 
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Cesium 2-oxo-2-((1-phenyl-2-(pyridin-2-yl)propan-2-yl)oxy)acetate 
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Cesium 2-(1-cyclohexyl-1-phenylethoxy)-2-oxoacetate 
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4-(3-chloro-2-fluorophenyl)-2-methylbut-3-yn-2-yl ethyl oxalate 
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Cesium 2-((4-(3-chloro-2-fluorophenyl)-2-methylbut-3-yn-2-yl)oxy)-2-oxoacetate 
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Ethyl (4-(hex-1-yn-1-yl)tetrahydro-2H-pyran-4-yl) oxalate 
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Cesium 2-((4-(hex-1-yn-1-yl)tetrahydro-2H-pyran-4-yl)oxy)-2-oxoacetate 
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Ethyl ((2S,5R)-2-isopropyl-5-methylcyclohexyl) oxalate 
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Adamantan-1-ylmethyl ethyl oxalate 
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Cesium 2-(((2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-2-oxoacetate 
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6.3.9.2. Products 

(3-fluoro-3-methylbutyl)benzene (2) 
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(6-chloro-2-fluorohexan-2-yl)cyclohexane (4) 
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 (1r,3s,5R,7S)-N-benzyl-3-fluoroadamantane-1-carboxamide (5) 
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4-(2-fluoropropan-2-yl)-1-tosylpiperidine (6) 
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tert-butyl 4-(2-fluoropropan-2-yl)piperidine-1-carboxylate (7) 
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Ethyl 4-ethyl-4-fluoropiperidine-1-carboxylate (8) 
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ethyl 4-benzyl-4-fluoropiperidine-1-carboxylate (9) 
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tert-butyl 2-fluoro-2-methyl-7-azaspiro[3.5]nonane-7-carboxylate (10) 
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(5S,8R,9S,10S,13S,14S)-17-fluoro-10,13,17-trimethylhexadecahydro-3H-
cyclopenta[a]phenanthren-3-one (11) 
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1-((4-fluoro-4-methylpentan-2-yl)oxy)pent-2-yne (12) 
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Chapter 6: Supporting information 

 183 

4-bromo-N-(2-fluoro-2-methylpropyl)benzenesulfonamide (13): 
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tert-butyl (S)-(3-fluoro-3-methyl-1-phenylbutan-2-yl)carbamate (14): 
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4-chloro-6-((4-fluoro-4-methylpentan-2-yl)oxy)pyrimidine (15) 
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2-fluoro-6-((4-fluoro-4-methylpentan-2-yl)oxy)pyridine (16): 
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2-((4-fluoro-4-methylpentan-2-yl)oxy)pyrazine (17a) 
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2-((4-fluoro-4-methylpentan-2-yl)oxy)pyrazine (17b) 
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4-fluoro-4-phenyltetrahydro-2H-pyran (18) 
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Ethyl 4-fluoro-4-phenylpiperidine-1-carboxylate (19) 
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tert-butyl 4-(4-chlorophenyl)-4-fluoropiperidine-1-carboxylate (20) 
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4-(4-chlorophenyl)-4-fluoro-1-tosylpiperidine (21) 
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tert-butyl 4-fluoro-4-(pyridin-3-yl)piperidine-1-carboxylate (22) 
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2-(2-fluoro-1-phenylpropan-2-yl)pyridine (23) 

 

 



Chapter 6: Supporting information 

 200 

 
 (1-cyclohexyl-1-fluoroethyl)benzene (24): 
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1-chloro-2-fluoro-3-(3-fluoro-3-methylbut-1-yn-1-yl)benzene (25) 
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4-fluoro-4-(hex-1-yn-1-yl)tetrahydro-2H-pyran (26) 
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6.4. Chapter 3: Intramolecular Minisci-Type Reaction for Fused 

Heterocycle Synthesis and Modification of Saccharides 

6.4.1. General procedures 

General procedure for the nucleophilic aromatic substitution (SNAr) with saccharides (GP4): A round-

bottom flask (RBF) was charged with the corresponding alcohol (1.2 equiv.) was dissolved in 1,4-

dioxane (0.2 M) and cooled to 15 °C. NaH (1.2 equiv.) was added portion-wise and the reaction was 

stirred at room temperature (RT) for 1 h (H2 evolution). The reaction was cooled to 15 °C and the 

corresponding chloro-N-heteroaromatic ring (1.0 equiv.) was added dropwise. The reaction was 

stirred at RT for 16h, then quenched with H2O (10 mL). The crude product was extracted with EtOAc 

(20 mL × 3), and the organic layer was dried over Na2SO4. Purification by column chromatography over 

silica gel afforded the desired product. 

 

General procedure for the nucleophilic aromatic substitution (SNAr) with small alcohols (GP5): A 

round-bottom flask (RBF) was charged with the corresponding alcohol (2.0 equiv.) was dissolved in 

DMSO (0.4 M) and cooled to 15 °C. NaH (2.0 equiv.) was added portion-wise and the reaction was 

stirred at room temperature (RT) for 1 h (H2 evolution). The reaction was cooled to 15 °C and the 

corresponding chloro-N-heteroaromatic ring (1.0 equiv.) was added dropwise. The reaction was 

stirred at RT for 16h, then quenched with H2O (10 mL). The crude product was extracted with EtOAc 

(20 mL × 3), and the organic layer was dried over Na2SO4. Purification by column chromatography over 

silica gel afforded the desired product. 

 

General procedure for the synthesis of oxalic acids (GP6): Under N2, a RBF was charged with the 

corresponding tertiary alcohol (1.0 equiv.) and Et2O:CH2Cl2 (3:1, 0.2 M). Next, oxalyl chloride (2.0 

equiv.) was added dropwise and the reaction was stirred at RT for 16 h. H2O (10 mL each 3 mmol) was 

added slowly, and the mixture was stirred at 0 ºC for 40 min. Finally, the aqueous phase was extracted 

with EtOAc (15 mL x 3), the combined organic layers dried over Na2SO4 and concentrated under 

reduced pressure. The crude material was used in the next step without any further purification. 
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6.4.2. Synthesis & characterization of oxalic acids 

 
(3aS,5S,6R,6aS)-2,2-dimethyl-5-((pyrazin-2-yloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-ol: 

Synthesized following GP4 using 2-chloropyrazine (1.0 equiv., 3 mmol, 0.27 mL) to afford the desired 

product as a white solid in 78% yield (0.62 g, 2.34 mmol). 
1HNMR(400 MHz, Chloroform-d) δ 8.31 (d, J = 1.4 Hz, 1H), 8.19 (d, J = 2.9 Hz, 1H), 8.05 (dd, J = 2.9, 1.4 

Hz, 1H), 5.96 (d, J = 3.6 Hz, 1H), 4.77 (dd, J = 11.5, 8.0 Hz, 1H), 4.60 (d, J = 3.7 Hz, 1H), 4.52 – 4.46 (m, 

1H), 4.43 (ddd, J = 8.0, 4.7, 2.4 Hz, 1H), 4.12 (d, J = 2.5 Hz, 1H), 1.54 – 1.48 (m, 3H), 1.33 (d, J = 0.7 Hz, 

3H). 
13C NMR(101 MHz, Chloroform-d) δ 159.7, 139.8, 137.3, 136.7, 112.0, 104.9, 85.3, 78.8, 74.5, 63.0, 

27.0, 26.4. 

HRMS(ESI): [m/z] calculated forC12H16N2NaO5 ([M+Na]+): 291.0951; Found: 291.0949. 

Rf  (CH2Cl2/EtOAc, 1:1) = 0.4 [CAM] 

 

2-(((3aS,5S,6R,6aS)-2,2-dimethyl-5-((pyrazin-2-yloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-

yl)oxy)-2-oxoacetic acid: Synthesized following GP6 using (3aS,5S,6R,6aS)-2,2-dimethyl-5-((pyrazin-2-

yloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-ol (1.0 equiv., 2.34 mmol, 0.62 g) to afford the 

desired product as a white solid in 90% yield (0.70 g, 2.11 mmol). The product was used in the next 

sept with any further purification. 
1HNMR(600 MHz, Chloroform-d) δ 8.23 (dd, J = 3.0, 1.4 Hz, 1H), 8.15 (d, J = 1.4 Hz, 1H), 8.05 (d, J = 2.9 

Hz, 1H), 5.69 (dqd, J = 10.3, 6.2, 1.8 Hz, 1H), 4.12 (q, J = 7.1 Hz, 1H), 2.97 (dd, J = 15.7, 10.3 Hz, 1H), 

1.70 (dd, J = 15.6, 1.8 Hz, 1H), 1.55 (s, 3H), 1.37 (d, J = 6.2 Hz, 3H) 

HRMS(ESI): [m/z] calculated for C14H17N2O8 ([M]+): 341.0983; Found: 341.0979. 
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(3aS,4S,6R,7R,7aS)-4-methoxy-2,2-dimethyl-6-((pyrazin-2-yloxy)methyl)tetrahydro-4H-

[1,3]dioxolo[4,5-c]pyran-7-ol: Synthesized following GP4 using 2-chloropyrazine (1.0 equiv., 3 mmol, 

0.27 mL) to afford the desired product as a white solid in 64% yield (0.56 g, 1.92 mmol). 
1HNMR(600 MHz, Chloroform-d) δ 8.33 (d, J = 1.4 Hz, 1H), 8.17 (d, J = 2.9 Hz, 1H), 8.08 (dd, J = 2.9, 1.4 

Hz, 1H), 4.96 (s, 1H), 4.79 (dd, J = 12.1, 4.4 Hz, 1H), 4.56 (dd, J = 12.1, 2.6 Hz, 1H), 4.21 – 4.13 (m, 2H), 

3.84 (ddd, J = 9.7, 4.4, 2.6 Hz, 1H), 3.65 – 3.60 (m, 1H), 3.42 (s, 3H), 1.46 (s, 3H), 1.35 – 1.33 (m, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 160.4, 140.5, 136.8, 136.3, 109.8, 98.9, 78.0, 75.6, 69.0, 68.9, 66.0, 

55.3, 28.1, 26.2. 

HRMS(ESI): [m/z] calculated forC14H20N2NaO6 ([M+Na]+): 335.1219; Found: 335.1214. 

Rf  (CH2Cl2/EtOAc, 1:1) = 0.22 [CAM] 

 

2-(((3aS,4S,6R,7R,7aS)-4-methoxy-2,2-dimethyl-6-((pyrazin-2-yloxy)methyl)tetrahydro-4H-

[1,3]dioxolo[4,5-c]pyran-7-yl)oxy)-2-oxoacetic acid: Synthesized following GP6 using 

(3aS,4S,6R,7R,7aS)-4-methoxy-2,2-dimethyl-6-((pyrazin-2-yloxy)methyl)tetrahydro-4H-

[1,3]dioxolo[4,5-c]pyran-7-ol (1.0 equiv., 1.92 mmol, 0.56 g) to afford the desired product as a  pale 

white solid in 79% yield (0.58 g, 1.52  mmol). 
1HNMR(600 MHz, Chloroform-d) δ 8.27 (s, 1H), 8.22 (d, J = 2.7 Hz, 1H), 8.11 (d, J = 2.9 Hz, 1H), 5.30 

(dd, J = 10.3, 7.7 Hz, 1H), 5.01 (s, 1H), 4.64 (dd, J = 11.4, 4.2 Hz, 1H), 4.45 (dd, J = 11.4, 6.0 Hz, 1H), 4.39 

(dd, J = 7.8, 5.4 Hz, 1H), 4.20 (s, 1H), 4.15 (ddt, J = 17.3, 14.3, 6.3 Hz, 2H), 3.44 (s, 3H), 1.60 (s, 3H), 1.37 

(s, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 160.3, 158.5, 142.2, 134.4, 134.2, 110.5, 98.4, 75.9, 75.3, 74.6, 

66.2, 64.6, 55.4, 27.9, 26.5. 

HRMS(ESI): [m/z] calculated for C16H21N2O9 ([M+]+): 385.1270; Found: 385.1242. 
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(3aS,5S,6R,6aS)-5-(((6-chloropyrazin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-ol: Synthesized following GP4 using 2,6-dichloropyrazine (1.0 equiv., 3 mmol, 0.45 g) 

to afford the desired product as a yellowish solid in 58% yield (0.53 g, 1.74 mmol). 
1HNMR(600 MHz, Chloroform-d) δ 8.19 (d, J = 1.6 Hz, 2H), 5.97 (d, J = 3.6 Hz, 1H), 4.72 (dd, J = 11.5, 

6.7 Hz, 1H), 4.59 (d, J = 3.6 Hz, 1H), 4.52 (dd, J = 11.5, 5.4 Hz, 1H), 4.45 (ddd, J = 6.7, 5.3, 2.5 Hz, 1H), 

4.23 (d, J = 2.6 Hz, 1H), 1.51 (s, 3H), 1.33 (d, J = 0.7 Hz, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 158.8, 145.2, 136.0, 133.6, 112.1, 104.9, 85.4, 78.4, 74.9, 64.2, 

26.9, 26.3. 

HRMS(ESI): [m/z] calculated for C12H15ClN2NaO5 ([M+Na]+): 325.0571 ; Found: 325.0562 . 

Rf  (cyclohexane /EtOAc, 1:3) = 0.53 [CAM] 

 

2-(((3aS,5S,6R,6aS)-5-(((6-chloropyrazin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid: Synthesized following GP6 using (3aS,5S,6R,6aS)-5-(((6-

chloropyrazin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (1.0 equiv., 1.74 

mmol, 0.53 g) to afford the desired product as a  pale white solid in 84% yield (0.55  g, 1.46  mmol). 
1HNMR (600 MHz, Chloroform-d) δ 8.21 (s, 1H), 8.13 (s, 1H), 6.05 (d, J = 3.7 Hz, 1H), 5.48 (d, J = 2.8 Hz, 

1H), 4.76 (dd, J = 11.6, 4.7 Hz, 1H), 4.70 – 4.59 (m, 3H), 1.55 (s, 3H), 1.35 (s, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 159.3, 157.9, 157.8, 134.4, 132.2, 112.8, 104.9, 83.2, 78.8, 66.1, 

63.7, 26.8, 26.4, 26.3, 15.1. 

HRMS(ESI): [m/z] calculated for C14H15ClN2NaO8 ([M+Na]+): 397.0414; Found: 397.0409. 
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6-(((3aS,5S,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-

yl)methoxy)pyrazine-2-carbonitrile: Synthesized following GP4 using 6-chloropyrazine-2-carbonitrile 

(1.0 equiv., 3 mmol, 0.42 g) to afford the desired product as a white solid in 40% yield (0.35 g, 1.2 

mmol). 
1HNMR (600 MHz, Chloroform-d) δ 8.49 (d, J = 11.0 Hz, 2H), 6.00 (d, J = 3.7 Hz, 1H), 4.71 (dd, J = 11.6, 

5.2 Hz, 1H), 4.60 (dd, J = 11.6, 6.6 Hz, 1H), 4.57 (d, J = 3.6 Hz, 1H), 4.52 (ddd, J = 6.6, 5.1, 2.8 Hz, 1H), 

1.52 (s, 3H), 1.34 – 1.33 (m, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 159.3, 140.8, 140.5, 125.9, 115.3, 112.3, 105.1, 85.5, 78.1, 75.4, 

65.2, 26.9, 26.3. 

HRMS(ESI): [m/z] calculated for C13H15N3NaO5 ([M+Na]+): 316.0912; Found: 316.0904. 

Rf  (cyclohexane /EtOAc, 1:3) = 0.45 [CAM] 

 

2-(((3aS,5S,6R,6aS)-5-(((6-cyanopyrazin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid: Synthesized following GP6 using 6-(((3aS,5S,6R,6aS)-6-

hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)methoxy)pyrazine-2-carbonitrile (1.0 

equiv., 1.2 mmol, 0.42 g) to afford the desired product as a brownish solid in 65% yield (0.28  g, 0.76  

mmol). 
1HNMR (600 MHz, Chloroform-d) δ 8.48 (d, J = 6.5 Hz, 2H), 6.05 (d, J = 3.7 Hz, 1H), 5.47 (d, J = 2.7 Hz, 

1H), 4.71 (ddd, J = 18.5, 6.6, 3.3 Hz, 3H), 4.63 – 4.59 (m, 1H), 1.56 (s, 3H), 1.35 (s, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 157.4, 157.3, 140.4, 140.1, 112.9, 105.0, 83.1, 78.8, 76.5, 66.1, 

64.0, 26.8, 26.3, 15.1, 1.2. 

HRMS(ESI): [m/z] calculated for C15H15N3NaO8 ([M+Na]+): 388.0750; Found: 388.0751. 
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1-(6-(((3aS,5S,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-

yl)methoxy)pyrazin-2-yl)ethan-1-one: Synthesized following GP4 using 1-(6-chloropyrazin-2-

yl)ethan-1-one (1.0 equiv., 3 mmol, 0.47 g) to afford the desired product as a yellow solid in 51% yield 

(0.47 g, 1.53 mmol). 
1HNMR(600 MHz, Chloroform-d) δ 8.78 (d, J = 1.3 Hz, 1H), 8.28 (d, J = 1.3 Hz, 1H), 5.98 (d, J = 3.6 Hz, 

1H), 4.83 (dd, J = 11.7, 7.1 Hz, 1H), 4.59 (d, J = 3.8 Hz, 2H), 4.47 (ddd, J = 7.0, 5.4, 2.5 Hz, 1H), 4.18 (d, 

J = 2.5 Hz, 1H), 2.66 (s, 3H), 1.51 (s, 3H), 1.33 (d, J = 0.8 Hz, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 198.1, 161.3, 142.4, 140.9, 134.9, 112.1, 104.9, 85.3, 78.5, 74.8, 

64.1, 27.0, 26.3, 26.1. 

HRMS(ESI): [m/z] calculated for C14H18N2NaO6 ([M+Na]+): 333.1057; Found: 333.1057. 

Rf  (cyclohexane /EtOAc, 1:3) = 0.49 [p-Anisaldehyde] 

 

2-(((3aS,5S,6R,6aS)-5-(((6-acetylpyrazin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid: Synthesized following GP6 using 1-(6-(((3aS,5S,6R,6aS)-6-

hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)methoxy)pyrazin-2-yl)ethan-1-one (1.0 

equiv., 1.53 mmol, 0.47 g) to afford the desired product as an orange solid in 36% yield (0.21  g, 0.55  

mmol). 
1HNMR(600 MHz, Chloroform-d) δ 8.74 (d, J = 1.3 Hz, 1H), 8.45 (d, J = 1.3 Hz, 1H), 5.99 (d, J = 3.9 Hz, 

1H), 5.26 (d, J = 2.6 Hz, 1H), 4.72 (d, J = 3.9 Hz, 1H), 4.68 – 4.63 (m, 2H), 4.53 (d, J = 4.1 Hz, 1H), 2.58 

(s, 3H), 1.45 (s, 3H), 1.27 (s, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 197.4, 141.6, 140.6, 134.4, 111.4, 104.5, 85.0, 82.3, 78.1, 78.0, 

76.3, 64.2, 26.3, 26.0, 25.8, 14.1. 
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(3aS,5S,6R,6aS)-5-(((6-(1H-pyrazol-1-yl)pyrazin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-ol: Synthesized following GP4 using 2-chloro-6-(1H-pyrazol-1-yl)pyrazine (1.0 equiv., 

3 mmol, 0.53 g) to afford the desired product as a white solid in 35% yield (0.35 g, 1.05 mmol). 
1HNMR(400 MHz, Chloroform-d) δ 8.97 (s, 1H), 8.43 (dd, J = 2.6, 0.7 Hz, 1H), 7.76 (dd, J = 1.7, 0.7 Hz, 

1H), 6.47 (dd, J = 2.7, 1.6 Hz, 1H), 5.72 (d, J = 3.6 Hz, 1H), 5.13 (dd, J = 3.6, 1.0 Hz, 1H), 4.82 – 4.75 (m, 

2H), 4.38 – 4.32 (m, 1H), 3.69 (d, J = 4.4 Hz, 1H), 1.59 (s, 3H), 1.38 – 1.32 (m, 3H). 
13C NMR(101 MHz, Chloroform-d) δ 154.8, 144.9, 143.3, 131.8, 128.5, 127.8, 112.1, 108.7, 105.1, 85.7, 

73.4, 66.3, 46.9, 26.9, 26.2. 

HRMS(ESI): [m/z] calculated for C15H18N4NaO5 ([M+Na]+): 357.1169; Found: 357.1165. 

Rf  (cyclohexane /EtOAc, 1:3) = 0.4 [p-Anisaldehyde] 

 

2-(((3aS,5S,6R,6aS)-5-(((6-(1H-pyrazol-1-yl)pyrazin-2-yl)oxy)methyl)-2,2-

dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid:  

Synthesized following GP6 using (3aS,5S,6R,6aS)-5-(((6-(1H-pyrazol-1-yl)pyrazin-2-yl)oxy)methyl)-2,2-

dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (1.0 equiv., 1.05 mmol, 0.36 g) to afford the desired 

product as an orangish solid in 85% yield (0.21  g, 0.90  mmol). 
1HNMR(600 MHz, Chloroform-d) δ 8.74 (s, 1H), 8.37 (d, J = 2.6 Hz, 1H), 8.18 (s, 1H), 7.77 (d, J = 1.5 Hz, 

1H), 6.49 (t, J = 2.1 Hz, 1H), 6.08 (d, J = 3.7 Hz, 1H), 5.54 (d, J = 2.9 Hz, 1H), 4.85 (dd, J = 11.4, 5.1 Hz, 

1H), 4.74 – 4.70 (m, 2H), 4.67 (dd, J = 11.4, 4.3 Hz, 1H), 1.56 (s, 3H), 1.36 (s, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 158.6, 158.2, 145.4, 143.5, 130.7, 127.9, 124.5, 112.7, 108.9, 

105.0, 83.3, 78.7, 76.7, 63.2, 26.8, 26.3. 
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(3aS,5S,6R,6aS)-2,2-dimethyl-5-((quinoxalin-2-yloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-ol: 

Synthesized following GP4 using 2-chloroquinoxaline (1.0 equiv., 3 mmol, 0.49 g) to afford the desired 

product as a yellowidh solid in 52% yield (0.59 g, 1.56 mmol). 
1HNMR (400 MHz, Chloroform-d) δ 8.54 (s, 1H), 8.06 (dd, J = 8.3, 1.4 Hz, 1H), 7.82 – 7.76 (m, 1H), 7.74 

– 7.68 (m, 1H), 7.62 (ddd, J = 8.4, 7.0, 1.5 Hz, 1H), 5.99 (d, J = 3.6 Hz, 1H), 5.00 (dd, J = 11.6, 8.7 Hz, 

1H), 4.64 (d, J = 3.6 Hz, 1H), 4.56 (dd, J = 11.6, 4.3 Hz, 1H), 4.47 (ddd, J = 8.7, 4.4, 2.4 Hz, 1H), 4.12 (d, 

J = 2.4 Hz, 1H), 1.52 (s, 3H), 1.33 (d, J = 0.7 Hz, 3H). 
13C NMR(101 MHz, Chloroform-d) δ 156.9, 139.8, 139.1, 131.0, 129.3, 127.5, 126.5, 112.0, 104.8, 85.3, 

79.0, 74.3, 62.9, 27.1, 27.0, 26.3. 

HRMS(ESI): [m/z] calculated for C16H18N2NaO5 ([M+Na]+): 341.1119; Found: 341.1108. 

Rf  (cyclohexane /EtOAc, 1:3) = 0.5 [p-Anisaldehyde] 

 

2-(((3aS,5S,6R,6aS)-2,2-dimethyl-5-((quinoxalin-2-yloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-

yl)oxy)-2-oxoacetic acid: Synthesized following GP6 using (3aS,5S,6R,6aS)-2,2-dimethyl-5-

((quinoxalin-2-yloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-ol (1.0 equiv., 1.56 mmol, 0.59 g) to 

afford the desired product as an yellowish solid in 89% yield (0.53  g, 1.4  mmol). 
1HNMR (600 MHz, Chloroform-d) δ 8.67 (s, 1H), 7.97 (dd, J = 8.3, 1.4 Hz, 1H), 7.87 (dd, J = 8.4, 1.3 Hz, 

1H), 7.71 (ddd, J = 8.4, 7.0, 1.4 Hz, 1H), 7.55 (ddd, J = 8.4, 7.0, 1.4 Hz, 1H), 6.11 (d, J = 3.8 Hz, 1H), 5.59 

(d, J = 2.9 Hz, 1H), 5.06 (dd, J = 12.3, 4.5 Hz, 1H), 4.81 (dd, J = 12.3, 3.1 Hz, 1H), 4.76 (d, J = 3.8 Hz, 1H), 

4.71 (dt, J = 4.6, 3.0 Hz, 1H), 1.57 (s, 3H), 1.37 (s, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 157.3, 140.8, 138.2, 131.2, 127.8, 127.6, 127.0, 112.6, 104.8, 83.5, 

79.0, 63.0, 26.9, 26.3. 

HRMS(ESI): [m/z] calculated for C18H19N2O8 ([M]+): 391.1137; Found: 391.1136. 
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(3aS,5S,6R,6aS)-5-(((6-bromoquinoxalin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-ol: Synthesized following GP4 using 6-bromo-2-chloroquinoxaline (1.0 equiv., 3 mmol, 

0.73 g) to afford the desired product as a white solid in 60% yield (0.71 g, 1.8 mmol). 
1HNMR(400 MHz, Chloroform-d) δ 8.52 (s, 1H), 7.98 (d, J = 2.1 Hz, 1H), 7.90 (d, J = 8.8 Hz, 1H), 7.69 

(dd, J = 8.8, 2.1 Hz, 1H), 5.99 (d, J = 3.6 Hz, 1H), 4.95 (dd, J = 11.6, 8.1 Hz, 1H), 4.63 (d, J = 3.7 Hz, 1H), 

4.61 – 4.56 (m, 1H), 4.49 (ddd, J = 8.2, 4.7, 2.5 Hz, 1H), 4.15 (d, J = 2.5 Hz, 1H), 1.52 (s, 3H), 1.34 (d, J = 

0.7 Hz, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 157.3, 140.1, 140.1, 138.0, 131.0, 130.5, 129.1, 125.1, 112.1, 

104.9, 85.3, 78.7, 74.5, 63.3, 27.0, 26.3. 

HRMS(ESI): [m/z] calculated for C16H18BrN2O5 ([M+]+): 397.0394; Found: 397.0394. 

Rf  (cyclohexane /EtOAc, 1:1) = 0.33 [UV/CAM] 

 

2-(((3aS,5S,6R,6aS)-5-(((6-bromoquinoxalin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid: Synthesized following GP6 using (3aS,5S,6R,6aS)-5-(((6-

bromoquinoxalin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (1.0 equiv., 1.8 

mmol, 0.71 g) to afford the desired product as an brown solid in 88% yield (0.75  g, 1.6  mmol). 
1HNMR(600 MHz, Chloroform-d) δ 8.61 (s, 1H), 8.03 (d, J = 2.1 Hz, 1H), 7.80 (d, J = 8.8 Hz, 1H), 7.62 

(dd, J = 8.8, 2.2 Hz, 1H), 6.10 (d, J = 3.8 Hz, 1H), 5.57 (d, J = 2.9 Hz, 1H), 4.99 (dd, J = 12.1, 4.6 Hz, 1H), 

4.78 – 4.73 (m, 2H), 4.71 (dt, J = 4.6, 3.4 Hz, 1H), 1.57 (s, 3H), 1.36 (s, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 158.3, 158.1, 157.6, 141.4, 140.8, 138.9, 135.7, 131.2, 130.8, 

130.1, 128.5, 125.3, 112.9, 112.7, 104.9, 83.4, 79.3, 79.0, 76.8, 63.2, 26.8, 26.8, 26.3. 
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((3aS,5S,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)methyl 4-

methylbenzenesulfonate:  To a RBF containing a solution of furanose saccharide 27 (1.0 equiv., 10 

mmol,  1.9 g), Et3N (5.4 equiv., 54 mmol, 7.5 mL) in THF (10 mL) a solution of tosyl chloride (1.1 equiv., 

11 mmol, 2.1 g) in THF (15 ml) was added slowly at 0 ºC. Then, the reaction mixture was stirred at RT 

for 16 h.  Afterwards, the reaction was dried under vacuum and solved in EtOAc. The resulting mixture 

was washed with H2O, saturated solution of NaHCO3 and brine. The organic phase extracted with 

EtOAc (ca. 3 x 20 mL). The combined organic layers were dried over Na2SO4 and the solvent evaporated 

to afford the desired product 43 as a white solid in 82% yield (2.8 g, 8.2 mmol). The product was used 

in the next step with any further purification. The spectroscopic data are consistent with those 

previously reported.166 
1HNMR (400 MHz, Chloroform-d) δ 7.81 (s, 2H), 7.36 (dd, J = 8.6, 0.8 Hz, 2H), 5.87 (d, J = 3.6 Hz, 1H), 

4.50 (d, J = 3.6 Hz, 1H), 4.38 – 4.28 (m, 3H), 4.14 (d, J = 5.2 Hz, 1H), 2.45 (s, 3H), 1.46 (s, 3H), 1.30 (s, 

3H). 

 

(3aS,5S,6R,6aS)-2,2-dimethyl-5-((tosyloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-yl acetate: To 

a RBF containing a solution of ((3aS,5S,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-5-yl)methyl 4-methylbenzenesulfonate (1.0 equiv., 8.2 mmol, 2.8 g) in anhydrous 

pyridine (41 mL), acetic anhydride (1.2 equiv., 9.8 mmol, .92 mL) was added under N2 at 0 ºC. The 

reaction mixture was stirred at RT for 24 h. Afterwards, the solvent was removed under vacuo and the 

resulting crude was solve in EtOAc (30 ml). This organic phase was washed with NaHCO3, and brine, 

and then it was separated. The solvent was removed in vacuo to afford the product 44  as a yellow oil 

in 97% yield (3.12 g, 8.05 mmol). The product was used in subsequent steps with any further 

purification. The spectroscopic data are consistent with those previously reported.167 
1HNMR(600 MHz, Chloroform-d) δ 7.79 (d, J = 8.4 Hz, 2H), 7.35 (dt, J = 8.0, 0.8 Hz, 2H), 5.85 (d, J = 3.6 

Hz, 1H), 5.19 (d, J = 3.1 Hz, 1H), 4.48 (d, J = 3.7 Hz, 1H), 4.43 (td, J = 6.1, 3.1 Hz, 1H), 4.26 – 4.14 (m, 

2H), 2.45 (s, 3H), 2.03 (s, 3H), 1.46 (s, 3H), 1.29 (d, J = 0.7 Hz, 3H). 
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(3aS,5S,6R,6aS)-5-(((2-chloropyridin-3-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl acetate: Synthesized following GP4 using 3-chloropyrazin-2-ol (1.0 equiv., 2.6 

2 mmol, 0.24 g) and 44 (1.2 equiv., 2.2 mmol, 0.85 g) to afford the desired product as an oily yellowish 

solid in 57% yield (0.49 g, 1.5 mmol). 
1HNMR(600 MHz, Chloroform-d) δ 8.34 (s, 1H), 8.19 (d, J = 5.1 Hz, 1H), 7.35 (d, J = 5.1 Hz, 1H), 5.98 (d, 

J = 3.7 Hz, 1H), 5.36 (d, J = 3.2 Hz, 1H), 4.73 (td, J = 5.9, 3.2 Hz, 1H), 4.58 (d, J = 3.7 Hz, 1H), 4.36 (dd, J 

= 9.9, 6.0 Hz, 1H), 4.30 (dd, J = 9.9, 5.9 Hz, 1H), 2.06 (s, 3H), 1.55 (s, 3H), 1.34 (s, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 169.8, 151.5, 143.2, 136.3, 133.8, 125.5, 112.7, 105.1, 83.5, 76.5, 

67.6, 26.9, 26.4, 20.8. 

Rf  (cyclohexane /EtOAc, 1:3) = 0.41 [UV/p-Anisaldehyde] 

 

(3aS,5S,6R,6aS)-5-(((2-chloropyridin-3-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-ol: To a RBF, a solution of (3aS,5S,6R,6aS)-5-(((2-chloropyridin-3-yl)oxy)methyl)-2,2-

dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl acetate (1. Equiv.,1.55 mmol, 0.49 g) in methanol (2.1 

mL) sodium methoxide (1 equiv., 1 mmol, 54 mg) was added. The reaction mixture was stirred at RT 

for 30 min, afterwards the solvent was removed in vacuo and H2O (20 mL) and CH2Cl2 were added. 

The organic layer was extracted with CH2Cl2 (3 x 15 mL) and the solvent was removed in vacuo to 

afford the desired product as a white solid in 83% yield (0.36 g, 1.28 mmol). The product was used in 

the next step with any further purification. 
1HNMR (400 MHz, Chloroform-d) δ 8.33 (s, 1H), 8.16 (d, J = 5.1 Hz, 1H), 7.31 (d, J = 5.1 Hz, 1H), 6.01 

(d, J = 3.6 Hz, 1H), 4.60 (d, J = 3.7 Hz, 1H), 4.58 – 4.53 (m, 1H), 4.51 – 4.40 (m, 3H), 1.53 (s, 3H), 1.35 

(d, J = 0.8 Hz, 3H). 
13C NMR(101 MHz, Chloroform-d) δ 151.2, 143.2, 135.9, 133.2, 125.3, 112.2, 105.2, 85.5, 78.1, 75.4, 

67.7, 27.0, 26.4. 

HRMS(ESI): [m/z] calculated for C13H17ClNO5 ([M]+): 302.0790; Found: 302.0790. 
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2-(((3aS,5S,6R,6aS)-5-(((2-chloropyridin-3-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid: Synthesized following GP6 using (3aS,5S,6R,6aS)-5-(((2-

chloropyridin-3-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-ol (1.0 equiv., 1.28 

mmol, 0.36 g) to afford the desired product as an yellowish solid in 81% yield (0.35  g, 1.03  mmol). 
1HNMR (400 MHz, Chloroform-d) δ 7.93 (dd, J = 4.7, 1.5 Hz, 1H), 7.21 (dd, J = 8.2, 1.6 Hz, 1H), 7.14 (dd, 

J = 8.2, 4.7 Hz, 1H), 5.99 (d, J = 3.6 Hz, 1H), 4.60 (d, J = 3.6 Hz, 1H), 4.58 – 4.53 (m, 1H), 4.49 (d, J = 2.8 

Hz, 1H), 4.31 (qd, J = 9.5, 5.8 Hz, 2H), 1.53 (s, 3H), 1.33 (s, 3H). 
13C NMR (101 MHz, Chloroform-d) δ 150.7, 140.9, 123.5, 120.8, 112.2, 105.1, 85.4, 78.1, 74.9, 66.4, 

27.0, 26.3. 

 

 
(3aS,5S,6R,6aS)-5-(((2-chloropyridin-3-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl acetate: Synthesized following GP4 using 3-hydroxypyrazine-2-carbonitrile (1.0 

equiv., 2 mmol, 0.24 g) and 44 (1.2 equiv., 2.2 mmol, 0.85 g) to afford the desired product as an oily 

yellowish solid in 50% yield (0.33 g, 1 mmol). 
1HNMR(600 MHz, Chloroform-d) δ 8.32 (dd, J = 3.9, 1.9 Hz, 1H), 7.48 – 7.43 (m, 2H), 5.97 (d, J = 3.7 Hz, 

1H), 5.36 (d, J = 3.2 Hz, 1H), 4.71 (td, J = 5.4, 3.3 Hz, 1H), 4.60 (d, J = 3.7 Hz, 1H), 4.35 (d, J = 5.4 Hz, 2H), 

2.09 (s, 3H), 1.54 (s, 3H), 1.33 (d, J = 1.0 Hz, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 169.8, 157.8, 143.5, 127.8, 124.4, 121.1, 114.9, 112.8, 105.0, 83.5, 

76.7, 67.1, 38.6, 26.9, 26.4, 20.9. 

HRMS(ESI): [m/z] calculated for C16H18N2NaO6 ([M+Na]+): 357.1063; Found: 357.1057. 

Rf  (cyclohexane /EtOAc, 1:3) = 0.33 [UV/p-Anisaldehyde] 

 

3-(((3aS,5S,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-

yl)methoxy)picolinonitrile: To a RBF, a solution of ((3aS,5S,6R,6aS)-5-(((2-chloropyridin-3-

yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl acetate (1. Equiv.,1. mmol, 0.33 g) in 

methanol (2.1 mL) sodium methoxide (1 equiv., 1 mmol, 54 mg) was added. The reaction mixture was 

stirred at RT for 30 min, afterwards the solvent was removed in vacuo and H2O (20 mL) and CH2Cl2 

were added. The organic layer was extracted with CH2Cl2 (3 x 15 mL) and the solvent was removed in 

vacuo to afford the desired product as a white solid in 80% yield (0.26 g, 0.8 mmol). The product was 

used in the next step with any further purification. 
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1HNMR (400 MHz, Chloroform-d) δ 8.31 (t, J = 2.9 Hz, 1H), 7.48 (d, J = 2.9 Hz, 2H), 5.99 (d, J = 3.6 Hz, 

1H), 4.62 – 4.56 (m, 2H), 4.49 (t, J = 3.7 Hz, 1H), 4.42 (dd, J = 6.0, 1.5 Hz, 2H), 1.54 – 1.51 (m, 3H), 1.34 

(d, J = 0.7 Hz, 3H). 
13C NMR(101 MHz, Chloroform-d) δ 157.9, 143.5, 128.0, 124.2, 120.9, 115.1, 112.4, 105.2, 85.5, 78.1, 

77.5, 77.2, 76.8, 75.0, 66.8, 27.0, 26.4. 

HRMS(ESI): [m/z] calculated for C14H16N2NaO5 ([M+Na]+): 315.0950; Found: 315.0951. 

 

2-(((3aS,5S,6R,6aS)-5-(((2-cyanopyridin-3-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid: Synthesized following GP6 using  

3-(((3aS,5S,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-

yl)methoxy)picolinonitrile (1.0 equiv., 0.8 mmol, 0.26 g) to afford the desired product as an orange 

solid in quantitative yield (0.29  g, 0.8  mmol). The product was used in the next step with any further 

purification 
1HNMR (400 MHz, Chloroform-d) δ 8.34 (dt, J = 4.3, 2.2 Hz, 1H), 7.49 (q, J = 1.7, 1.1 Hz, 2H), 6.04 (d, J 

= 3.8 Hz, 1H), 5.54 (d, J = 3.2 Hz, 1H), 4.79 (dd, J = 5.5, 3.1 Hz, 1H), 4.70 (d, J = 3.7 Hz, 1H), 4.46 (ddd, J 

= 14.2, 9.2, 5.1 Hz, 2H), 4.13 (q, J = 7.1 Hz, 1H), 1.57 (s, 3H), 1.36 (s, 3H). 

 

 
2-((2-methyl-4-(pyrazin-2-yloxy)pentan-2-yl)oxy)-2-oxoacetic acid: To a RBF containing cesium 2-((2-

methyl-4-(pyrazin-2-yloxy)pentan-2-yl)oxy)-2-oxoacetate (1.0 equiv., 1 mmol, 0.4 g), aqueous HCl (1 

M, 10 mL) was added and the reaction was stirred vigorously. After 10 min, the reaction mixture was 

extracted with EtOAc (10 mL x 3). The organic layer was separated, dried over Na2SO4 and the solvent 

was removed in vacuo to afford the desired product as a yellow solid in 95% yield (0.26 g, 0.95 mmol) 

The product was used in the next step with any further purification. 
1HNMR(600 MHz, Chloroform-d) δ 8.23 (dd, J = 3.0, 1.4 Hz, 1H), 8.15 (d, J = 1.4 Hz, 1H), 8.05 (d, J = 2.9 

Hz, 1H), 5.69 (dqd, J = 10.3, 6.2, 1.8 Hz, 1H), 4.12 (q, J = 7.1 Hz, 1H), 2.97 (dd, J = 15.7, 10.3 Hz, 1H), 

1.70 (dd, J = 15.6, 1.8 Hz, 1H), 1.55 (s, 3H), 1.37 (d, J = 6.2 Hz, 3H) 
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4-((6-chloropyrazin-2-yl)oxy)-2-methylpentan-2-ol: Synthesized following GP5 using 2,6-

dichloropyrazine (1.0 equiv., 3.0 mmol, 0.45 g), 2-methyl-2,4-pentandiol (1.2 equiv., 3.6 mmol, 0.46 

mL) and NaH (1.2 equiv., 3.6 mmol, 86.4 mg) at 50 °C for 16 h. The crude product was purified by flash 

column chromatography (cyclohexane/EtOAc, 1:1 to afford the desired product as a pale-yellow oil in 

44% yield (0.3 g, 1.32 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 8.13 (d, J = 0.6 Hz, 1H), 8.07 (d, J = 0.6 Hz, 1H), 5.47 – 5.37 (m, 1H), 

2.06 (dd, J = 14.9, 8.2 Hz, 1H), 1.77 (dd, J = 14.9, 3.6 Hz, 1H), 1.39 (d, J = 6.1 Hz, 3H), 1.26 (d, J = 5.7 Hz, 

6H). 
13C NMR (101 MHz, Chloroform-d) δ 158.73, 145.57, 135.32, 133.71, 71.83, 70.30, 49.25, 30.18, 30.08, 

21.44. 

HRMS (ESI): [m/z] calculated for C10H15ClN2NaO2 ([M+Na]+): 253.0714; Found: 253.0714. 

Rf  (Cyclohexane/EtOAc, 1:1) = 0.4 [CAM] 

 

2-((4-((6-chloropyrazin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetic acid: Synthesized following 

GP6 using 4-((6-chloropyrazin-2-yl)oxy)-2-methylpentan-2-ol (1.0 equiv., 1.32 mmol, 0.31 g) to afford 

the desired product 2B as an off-yellow solid in 83% yield (0.33 g, 1.1 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 8.07 (s, 1H), 8.03 (s, 1H), 5.60 (ddd, J = 10.0, 6.1, 2.1 Hz, 1H), 2.87 

(ddd, J = 15.6, 10.0, 1.7 Hz, 1H), 1.79 (dt, J = 15.7, 1.8 Hz, 1H), 1.66 (s, 3H), 1.57 (s, 3H), 1.38 (d, J = 6.1 

Hz, 3H). 
13C NMR (101 MHz, Chloroform-d) δ 159.30, 158.97, 157.88, 146.47, 133.17, 132.43, 85.13, 70.57, 

45.01, 26.94, 26.41, 21.03. 

HRMS (ESI): [m/z] calculated for C12H16ClN2O5 ([M+Na]+): 303.0734; Found: 303.0742. 
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2-methyl-4-((5-(trifluoromethyl)pyrazin-2-yl)oxy)pentan-2-ol:  

Synthesized following GP5 using 5-chloro-2-trifluoromethylpyrazine (1.0 equiv., 3.0 mmol, 0.27 mL) 

and 2-methyl-2,4-pentandiol (2.0 equiv., 6.0 mmol, 0.77 mL) at RT for 16 h. The crude product was 

purified by flash column chromatography (cyclohexane/EtOAc, 4:1) to afford the desired product as a 

yellow oil in 74% yield (0.58 g, 2.2 mmol). 
1HNMR (600 MHz, Chloroform-d) δ 8.45 (s, 1H), 8.21 (d, J = 1.3 Hz, 1H), 5.55 (dqd, J = 12.2, 6.2, 3.5 Hz, 

1H), 2.09 (dd, J = 15.0, 8.2 Hz, 1H), 1.80 (dd, J = 15.0, 3.5 Hz, 1H), 1.40 (d, J = 6.2 Hz, 3H), 1.26 (d, J = 

14.5 Hz, 6H). 
13C NMR(151 MHz, Chloroform-d) δ 138.83, 138.80, 136.50, 71.90, 70.27, 49.22, 30.25, 30.07, 21.42. 
19F NMR (376 MHz, Chloroform-d) δ -66.76. 

HRMS (ESI): [m/z] calculated for C11H15F3N2NaO2 ([M+Na]+): 287.0982; Found: 287.0978 

Rf  Cyclohexane/EtOAc, 4:1) = 0.29 [CAM].  

 

2-((2-methyl-4-((5-(trifluoromethyl)pyrazin-2-yl)oxy)pentan-2-yl)oxy)-2-oxoacetic acid: Synthesized 

following GP6 using 2-methyl-4-((5-(trifluoromethyl)pyrazin-2-yl)oxy)pentan-2-ol (1.0 equiv., 2.2 

mmol, 0.58 g) to afford the desired product as a yellow oil in 81% yield (0.6 g, 1.78 mmol).  
1HNMR (600 MHz, Chloroform-d) δ 8.44 (s, 1H), 8.19 (d, J = 1.3 Hz, 1H), 5.59 (ddt, J = 9.1, 6.1, 3.1 Hz, 

1H), 2.56 (dd, J = 15.4, 8.6 Hz, 1H), 2.09 (dd, J = 15.4, 3.2 Hz, 1H), 1.62 (d, J = 11.2 Hz, 6H), 1.40 (d, J = 

6.2 Hz, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 161.01, 157.94, 157.26, 138.99, 136.35, 122.69, 120.88, 86.42, 

70.48, 45.76, 26.56, 26.26, 21.04. 
19F NMR (376 MHz, Chloroform-d) δ -66.57. 

HRMS(ESI): [m/z] calculated for C13H15F3N2NaO5 ([M+Na]+): 359.0827; Found: 359.0825. 
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6-((4-hydroxy-4-methylpentan-2-yl)oxy)pyrazine-2-carbonitrile: Synthesized following GP5 using 6-

chloropyrazine-2-carbonitrile (1.0 equiv., 3.0 mmol, 0.29 mL) and 2-methyl-2,4-pentandiol (2.0 equiv., 

6.0 mmol, 0.77 mL) at rt for 16 h. The crude product was purified by flash column chromatography 

(cyclohexane/EtOAc, 4:1) to afford the desired product as a pale yellow oil in 20% yield (0.13 g, 0.59 

mmol). 
1H NMR (400 MHz, Chloroform-d) δ 8.44 (d, J = 0.6 Hz, 1H), 8.33 (d, J = 0.6 Hz, 1H), 5.49 (dtt, J = 12.2, 

6.2, 3.1 Hz, 1H), 2.08 (dd, J = 14.9, 8.3 Hz, 1H), 1.79 (dd, J = 15.0, 3.5 Hz, 1H), 1.40 (d, J = 6.1 Hz, 3H), 

1.27 (d, J = 4.9 Hz, 6H). 
13C NMR (101 MHz, Chloroform-d) δ 159.17, 140.72, 140.19, 126.26, 115.58, 72.27, 70.33, 49.09, 

30.39, 29.98, 21.17. 

HRMS (ESI): [m/z] calculated for C11H15N3NaO2 ([M+Na]+): 244.1061; Found: 244.1056. 

Rf  Cyclohexane/EtOAc, 1:1) = 0.35 [CAM].  

 

2-((4-((6-cyanopyrazin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetic acid: Synthesized following 

GP6 using 6-((4-hydroxy-4-methylpentan-2-yl)oxy)pyrazine-2-carbonitrile (1.0 equiv., 0.54 mmol, 0.12 

g) to afford the desired product as an off-white solid in 66% yield (103 mg, 0.35 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 8.41 (d, J = 0.6 Hz, 1H), 8.32 (d, J = 0.5 Hz, 1H), 5.51 (ddd, J = 9.0, 

6.1, 2.9 Hz, 1H), 2.58 (dd, J = 15.4, 8.9 Hz, 1H), 2.05 (dd, J = 15.4, 3.0 Hz, 1H), 1.59 (d, J = 14.2 Hz, 6H), 

1.38 (d, J = 6.2 Hz, 3H). 
13C NMR (101 MHz, Chloroform-d) δ 159.04, 158.05, 140.80, 139.97, 126.14, 115.60, 84.95, 70.91, 

45.57, 26.73, 26.42, 20.88. 

HRMS (ESI): [m/z] calculated for C13H15N3NaO5 ([M+Na]+): 316.0892; Found: 316.0904. 
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4-((6-(1H-pyrazol-1-yl)pyrazin-2-yl)oxy)-2-methylpentan-2-ol: Synthesized following GP5 using 2-

chloro-6- (1H-pyrazol-1-yl)pyrazine (1.0 equiv., 3.0 mmol, 0.54 g) and 2-methyl-2,4-pentandiol (2.0 

equiv., 6.0 mmol, 0.77 mL) at rt for 16 h. The crude product was purified by flash column 

chromatography (cyclohexane/EtOAc, 4:1) to afford the desired product as a pale yellow oil in 54% 

yield (0.43 g, 1.63 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 8.81 (d, J = 0.6 Hz, 1H), 8.39 (dd, J = 2.6, 0.7 Hz, 1H), 8.05 (d, J = 

0.6 Hz, 1H), 7.76 (dd, J = 1.7, 0.7 Hz, 1H), 6.48 (dd, J = 2.7, 1.7 Hz, 1H), 5.54 – 5.44 (m, 1H), 2.09 (dd, J 

= 14.9, 8.8 Hz, 1H), 1.78 (dd, J = 14.9, 3.3 Hz, 1H), 1.42 (d, J = 6.1 Hz, 3H), 1.26 (d, J = 7.7 Hz, 6H). 
13C NMR (101 MHz, Chloroform-d) δ 157.80, 144.74, 143.05, 132.46, 127.43, 125.57, 108.41, 71.15, 

70.27, 49.12, 30.33, 29.94, 21.25. 

HRMS (ESI): [m/z] calculated for C13H18N4NaO2 ([M+Na]+): 285.1319; Found: 285.1322. 

Rf  (Cyclohexane/EtOAc, 1:1) = 0.45 [CAM] 

 

2-((4-((6-(1H-pyrazol-1-yl)pyrazin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetic acid: Synthesized 

following GP6 using 4-((6-(1H-pyrazol-1-yl)pyrazin-2-yl)oxy)-2-methylpentan-2-ol (1.0 equiv., 1.63 

mmol, 0.43 g) to afford the desired product as an off-yellow solid in 68% yield (0.37 g, 1.11 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 8.73 (s, 1H), 8.38 (dd, J = 2.7, 0.7 Hz, 1H), 8.05 (s, 1H), 7.77 (dd, J 

= 1.6, 0.7 Hz, 1H), 6.51 (dd, J = 2.7, 1.7 Hz, 1H), 5.69 – 5.60 (m, 1H), 2.95 – 2.85 (m, 1H), 1.85 (dd, J = 

15.6, 1.9 Hz, 1H), 1.67 (s, 3H), 1.59 (s, 3H), 1.43 (d, J = 6.2 Hz, 3H). 
13C NMR (101 MHz, Chloroform-d) δ 158.66, 158.15, 145.76, 143.44, 130.76, 127.47, 123.32, 108.80, 

100.15, 84.73, 70.07, 45.12, 26.95, 26.60, 21.08. 

HRMS (ESI): [m/z] calculated for C15H19N4O5 ([M+Na]+): 335.1343; Found: 335.1350. 
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2-methyl-4-(quinoxalin-2-yloxy)pentan-2-ol: Synthesized following GP5 using 2-chloroquinoxaline 

(1.0 equiv., 3.0 mmol, 0.49 g) and 2-methyl-2,4-pentandiol (2.0 equiv., 6.0 mmol, 0.77 mL) at 50 °C for 

16 h. The crude product was purified by flash column chromatography (cyclohexane/EtOAc, 4:1) to 

afford the desired product as a red oil in 78% yield (0.58 g, 2.35 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 7.98 – 7.94 (m, 1H), 7.82 (dd, J = 8.2, 1.4 Hz, 1H), 7.61 (ddd, J = 

8.4, 6.9, 1.5 Hz, 1H), 7.53 (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), 4.68 (do, J = 8.0, 6.2 Hz, 1H), 1.97 – 1.93 (m, 

2H), 1.55 (d, J = 6.3 Hz, 6H), 1.45 (s, 3H). 
13C NMR (101 MHz, Chloroform-d) δ 154.78, 150.85, 140.52, 139.45, 129.71, 128.47, 127.20, 126.77, 

71.12, 44.44, 35.72, 29.75, 28.51, 21.76. 

HRMS (ESI): [m/z] calculated for C14H18N2NaO2 ([M+Na]+): 269.1268; Found: 269.1260. 

Rf  (Cyclohexane/EtOAc, 1:1) = 0.32 [CAM]. 

 

2-((2-methyl-4-(quinoxalin-2-yloxy)pentan-2-yl)oxy)-2-oxoacetic acid: Synthesized following GP6 

using 2-methyl-4-(quinoxalin-2-yloxy)pentan-2-ol (1.0 equiv., 2.35 mmol, 0.58 g) to afford the desired 

product as an off-yellow solid in 80% yield (0.60 g, 1.88 mmol). 
1H NMR (600 MHz, Chloroform-d) δ 8.48 (s, 1H), 7.84 (dd, J = 8.4, 4.6 Hz, 2H), 7.67 (t, J = 7.7 Hz, 1H), 

7.44 (t, J = 7.7 Hz, 1H), 5.88 (td, J = 6.3, 3.0 Hz, 1H), 3.01 (dd, J = 15.7, 10.3 Hz, 1H), 1.80 (d, J = 15.7 Hz, 

1H), 1.70 (s, 3H), 1.61 (s, 3H), 1.45 (d, J = 6.1 Hz, 3H). 
13C NMR (151 MHz, Chloroform-d) δ 159.78, 158.35, 157.22, 141.02, 139.12, 136.40, 130.77, 127.38, 

127.16, 127.09, 84.84, 69.42, 45.03, 27.15, 26.40, 21.08. 

HRMS (ESI): [m/z] calculated for C16H19N2O5 ([M+Na]+): 319.1286; Found: 319.1288. 
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4-((7-bromoquinoxalin-2-yl)oxy)-2-methylpentan-2-ol: Synthesized following GP5 using 7-bromo-2-

chloroquinoxaline (1.0 equiv., 3.0 mmol, 0.73 g) and 2-methyl-2,4-pentandiol (2.0 equiv., 6.0 mmol, 

0.77 mL) at 50 °C for 48 h. The crude product was purified by flash column chromatography 

(cyclohexane/EtOAc, 4:1) to afford the desired product as a red oil in 64% yield (0.62 g, 1.9 mmol). 
1H NMR 400 MHz, Chloroform-d) δ 8.42 (s, 1H), 8.00 (dd, J = 8.2, 1.5 Hz, 1H), 7.80 (ddd, J = 8.3, 1.4, 

0.6 Hz, 1H), 7.65 (ddd, J = 8.3, 7.0, 1.5 Hz, 1H), 7.55 (ddd, J = 8.3, 7.0, 1.4 Hz, 1H), 5.64 – 5.54 (m, 1H), 

2.13 (dd, J = 14.9, 6.9 Hz, 1H), 1.82 (dd, J = 14.9, 4.2 Hz, 1H), 1.47 (d, J = 6.2 Hz, 3H), 1.29 (s, 3H), 1.24 

(s, 3H). 
13C NMR(101 MHz, Chloroform-d) δ 157.18, 140.57, 137.64, 130.32, 130.27, 129.51, 124.45, 71.15, 

70.28, 54.04, 49.51, 30.43, 29.86, 21.85. 

HRMS (ESI): [m/z] calculated for C14H17BrN2NaO2 ([M+Na]+): 347.0366; Found: 347.0366. 

Rf  (Cyclohexane/EtOAc, 1:1) = 0.4 [CAM]. 

 

2-((4-((7-bromoquinoxalin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetic acid: Synthesized 

following GP2 using 4-((7-bromoquinoxalin-2-yl)oxy)-2-methylpentan-2-ol (1.0 equiv., 1.9 mmol, 0.62 

g) to afford the desired product as a black solid in 93% yield (0.7 g, 1.76 mmol). 
1H NMR(600 MHz, Chloroform-d) δ 8.42 (s, 1H), 8.02 (d, J = 2.1 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.53 

(dd, J = 8.8, 2.1 Hz, 1H), 5.83 (dqd, J = 12.3, 6.1, 1.9 Hz, 1H), 2.91 (dd, J = 15.7, 9.9 Hz, 1H), 1.86 (dd, J 

= 15.7, 2.0 Hz, 1H), 1.69 (s, 3H), 1.61 (s, 3H), 1.44 (d, J = 6.2 Hz, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 159.20, 157.95, 157.53, 141.71, 139.77, 130.50, 129.86, 128.73, 

124.85, 85.31, 69.79, 45.18, 26.92, 26.45, 21.05. 

HRMS (ESI): [m/z] calculated for C16H18BrN2O5 ([M+Na] +): 397.0389; Found: 397.0394.  
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5,5,5-trifluoro-2-methyl-4-(pyrazin-2-yloxy)pentan-2-ol: Synthesized following GP5 using 5-chloro-2-

trifluoromethylpyrazine (1.0 equiv., 3.0 mmol, 0.27 mL) and 1,1,1-trifluoro-4-methylpentane-2,4-diol 

(2.0 equiv., 6.0 mmol, 1.03 g) at rt for 16 h. The crude product was purified by flash column 

chromatography (cyclohexane/EtOAc, 4:1) to afford the desired product as a yellow oil in 43% yield 

(0.32 g, 1.28 mmol). 
1HNMR (400 MHz, Chloroform-d) δ 8.32 (d, J = 1.5 Hz, 1H), 8.25 (d, J = 2.7 Hz, 1H), 8.12 (dd, J = 2.8, 1.4 

Hz, 1H), 6.10 – 6.01 (m, 1H), 2.14 (dd, J = 15.2, 9.4 Hz, 1H), 2.04 (dd, J = 15.2, 2.0 Hz, 1H), 1.32 (s, 3H), 

1.22 (s, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 158.85, 140.37, 138.44, 136.15, 41.27, 40.31, 32.15, 30.57, 29.68, 

27.70. 
19F NMR (376 MHz, Chloroform-d) δ -78.55. 

HRMS(ESI): [m/z] calculated for C10H14F3N2O2 ([M+Na]+): 251.1002; Found: 251.1002. 

Rf  (Cyclohexane/EtOAc, 1:1) = 0.3 

 

2-oxo-2-((5,5,5-trifluoro-2-methyl-4-(pyrazin-2-yloxy)pentan-2-yl)oxy)acetic acid: Synthesized 

following GP6 using 5,5,5-trifluoro-2-methyl-4-(pyrazin-2-yloxy)pentan-2-ol (1.0 equiv., 1.28 mmol, 

0.32 g) to afford the desired product as a yellow solid in 97% yield (0.4 g, 1.24 mmol). 
1HNMR(600 MHz, Chloroform-d) δ 8.25 (dd, J = 2.9, 1.4 Hz, 1H), 8.21 (d, J = 1.4 Hz, 1H), 8.11 (d, J = 2.9 

Hz, 1H), 6.31 (dd, J = 10.7, 6.3 Hz, 1H), 2.98 (dd, J = 15.7, 10.5 Hz, 1H), 1.96 (d, J = 15.6 Hz, 1H), 1.71 (s, 

3H), 1.67 (s, 3H). 
13C NMR(151 MHz, Chloroform-d) δ 159.28, 159.25, 157.60, 141.97, 135.07, 133.92, 124.89, 123.02, 

83.34, 38.09, 26.98, 25.52. 
19F NMR (376 MHz, Chloroform-d) δ -77.71. 

HRMS(ESI): [m/z] calculated for C12H14F3N2O5 ([M+Na]+): 323.0853; Found: 323.0849. 
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1-phenyl-3-(pyrazin-2-yloxy)propan-1-ol: Synthesized following GP5 using 2-chloropyrazine (1.0 

equiv., 3.6 mmol, 0.32 mL) and 1-phenyl-3-(pyrazin-2-yloxy)propan-1-ol (1.2 equiv., 4.3 mmol, 0.65 g) 

at rt for 16 h. The crude product was purified by flash column chromatography (cyclohexane/EtOAc, 

4:1) to afford the desired product as a yellow oil in 74% yield (0.59 g, 2.6 mmol). 
1HNMR (400 MHz, Chloroform-d) δ 8.24 (d, J = 1.4 Hz, 1H), 8.13 (d, J = 2.8 Hz, 1H), 8.07 (dd, J = 2.8, 1.4 

Hz, 1H), 7.42 – 7.32 (m, 4H), 7.32 – 7.27 (m, 1H), 4.90 (d, J = 6.9 Hz, 1H), 4.63 (ddd, J = 11.0, 7.1, 6.1 

Hz, 1H), 4.39 (dt, J = 11.0, 5.5 Hz, 1H), 2.27 – 2.16 (m, 2H), 1.56 (s, 1H). 

Rf (Cyclohexane/EtOAc, 1:1) = 0.3 [UV/CAM] 

 

2-oxo-2-(1-phenyl-3-(pyrazin-2-yloxy)propoxy)acetic acid: Synthesized following GP6 using 1-phenyl-

3-(pyrazin-2-yloxy)propan-1-ol (1.0 equiv., 2.6 mmol, 0.59 g) to afford the desired product as an 

orange solid in 97% yield (0.69 g, 2.5 mmol). The product was used in the next step with any further 

purification. 
1HNMR (400 MHz, Chloroform-d) δ 8.29 (d, J = 1.3 Hz, 1H), 8.19 – 8.15 (m, 1H), 8.11 (d, J = 2.9 Hz, 1H), 

7.43 (d, J = 7.5 Hz, 2H), 7.38 (t, J = 7.5 Hz, 2H), 7.33 (dd, J = 8.8, 5.9 Hz, 1H), 6.19 (dd, J = 8.8, 4.3 Hz, 

1H), 4.55 (ddd, J = 11.2, 7.1, 4.2 Hz, 1H), 4.47 (ddd, J = 11.3, 7.4, 4.1 Hz, 1H), 2.60 (ddt, J = 15.7, 7.7, 

4.0 Hz, 1H), 2.39 (ddd, J = 15.3, 7.5, 3.9 Hz, 1H). 

 

 

 

 

 

Cl Cl

O

O

(2.0 equiv.)

Et2O:CH2Cl2 (3:1, 0.2 M)
RT, 16 h

(2.0 equiv.)

DMSO (0.4 M)
RT or 50 ºC, 16 h

HO Ph

OH

NaH (2.0 equiv.)

N

N

Cl N

N

O Ph

OH

N

N

O Ph

O

O

O

OH



Chapter 6: Supporting information 

 226 

6.4.3. Synthesis & characterization of polycyclic scaffolds 

General procedure for the intramolecular Minisci reaction (GP7): An 8 mL BiotageR microwave vial 

was charged with the corresponding oxalic acid (0.50 mmol, 1 equiv.), (NH4)2S2O8 (171.15 mg, 0.75 

mmol, 1.5 equiv.) and sealed with a septum cap. The vial was put under vacuum for 5 min and refilled 

with N2. Afterwards, dry DMSO (5 mL) was added. The reaction mixture was then sparged with N2 for 

2-5 min and stirred at 100 ºC for 2 h. Afterwards, the reaction was quenched carefully at RT with 

NaHCO3 (aq.) (ca. 15 mL) and the organic phase extracted with EtOAc (ca. 3 x15 mL). The combined 

organic layers were washed with brine, dried over Na2SO4 and the solvent evaporated. The crude 

product was purified by column chromatography over silica gel to afford the desired fused 

heterocycle. 

 

(6aS,7aR,10aR,10bS)-9,9-dimethyl-6a,7a,10a,10b-tetrahydro-6H-[1,3]dioxolo [4'',5'':4',5'] 

furo[3',2':4,5]pyrano[2,3-b]pyrazine (35):  

 
Synthesized following GP7 using 2-(((3aR,5R,6S,6aR)-2,2-dimethyl-5-((pyrazin-2-

yloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid (1.0 equiv., 0.5 mmol, 102.6 

mg). The product was isolated as a yellowish solid in 40% yield (40.1 mg, 0.2 mmol) 
1H NMR (600 MHz, Chloroform-d) δ 8.24 (d, J = 2.5 Hz, 1H), 8.14 – 8.08 (m, 1H), 5.72 (d, J = 3.6 Hz, 1H), 

5.14 – 5.06 (m, 1H), 4.78 (ddd, J = 4.7, 2.1, 1.2 Hz, 1H), 4.77 – 4.73 (m, 1H), 4.37 – 4.24 (m, 1H), 3.67 

(d, J = 4.6 Hz, 1H), 1.59 (s, 3H), 1.34 (d, J = 0.7 Hz, 3H). 
13C NMR (151 MHz, Chloroform-d) δ 157.2, 141.9, 138.7, 136.3, 112.1, 105.2, 86.0, 73.5, 65.9, 47.3, 

27.0, 26.3. 

HRMS (ESI): [m/z] calculated for C12H15N2O4 ([M+Na]+): 251.1026; Found: 251.1026. 

IR ṽ [cm−1] 2977.70 (m), 2942.62 (m), 2896.16 (m) ,1727.27 (m), 1426.54 (s), 1373.85 (s), 1284.08 (s), 

1208.94 (s), 1165.32 (s), 1100.80 (s), 1059.46 (s), 1012.77 (s), 906.97 (s), 861.85 (s), 823.34 (s), 727.99 

(s), 558.45 (s), 522.92 (s), 469.06 (s). 

Rf  (CH2Cl2/EtOAc, 1:1) = 0.4 [UV/CAM] 
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3aS,4S,5aS,11bS,11cS)-4-methoxy-2,2-dimethyl-3a,4,5a,6,11b,11c-hexahydro-[1,3] 

dioxolo[4'',5'':4',5']pyrano[3',2':4,5]pyrano[2,3-b]pyrazine (36): 

 
Synthesized following GP7 using 2-(((3aS,4S,6R,7R,7aS)-4-methoxy-2,2-dimethyl-6-((pyrazin-2-

yloxy)methyl)tetrahydro-4H-[1,3]dioxolo[4,5-c]pyran-7-yl)oxy)-2-oxoacetic acid (1.0 equiv., 0.5 mmol, 

147.1 mg). The product was isolated as a yellowish solid in 31% yield (47.3 mg, 0.15 mmol). 
1H NMR (600 MHz, Chloroform-d) δ 8.26 (d, J = 2.5 Hz, 1H), 8.12 (dd, J = 2.5, 0.9 Hz, 1H), 5.08 (ddd, J = 

7.4, 3.4, 0.9 Hz, 1H), 4.67 (s, 1H), 4.50 – 4.41 (m, 2H), 4.37 – 4.31 (m, 1H), 4.23 (d, J = 7.5 Hz, 1H), 3.69 

(ddt, J = 7.6, 3.2, 1.0 Hz, 1H), 3.49 (s, 3H), 1.46 – 1.41 (m, 3H), 1.29 – 1.26 (m, 3H). 
13C NMR (151 MHz, Chloroform-d) δ 158.3, 150.7, 141.2, 138.6, 138.3, 110.3, 99.9, 74.4, 73.1, 67.9, 

63.5, 56.4, 35.2, 26.4, 24.6. 

HRMS (ESI): [m/z] calculated for C16H21N2O9 ([M]+): 385.1242; Found: 385.1036. 

IR ṽ [cm−1] 3330.92 (w), 2969.64 (s), 2931.65 (m), 2883.09 (m), 1466.14 (m), 1408.10 (m), 1377.76 

(s), 1307.22 (m), 1159.44 (s), 1127.76 (s), 950.20 (s), 816.39 (s),633.45 (s), 487.41 (m), 425.24 (m). 

Rf  (CH2Cl2/EtOAc, 1:1) = 0.49 [UV/CAM] 

 

(6aS,7aR,10aR,10bS)-3-chloro-9,9-dimethyl-6a,7a,10a,10b-tetrahydro-6H-[1,3]dioxolo 

[4'',5'':4',5']furo[3',2':4,5]pyrano[2,3-b]pyrazine (37): 

 
Synthesized following GP7 using 2-(((3aR,5R,6aR)-5-(((6-chloropyrazin-2-yl)oxy)methyl)-2,2-

dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid (1.0 equiv., 0.5 mmol, 138.1 mg). 

The product was isolated as a yellowish solid in 49% yield (67.3 mg, 0.24 mmol). 
1H NMR (600 MHz, Chloroform-d) δ 8.24 (s, 1H), 5.72 (d, J = 3.6 Hz, 1H), 5.07 (d, J = 3.6 Hz, 1H), 4.80 – 

4.74 (m, 2H), 4.32 (d, J = 12.6 Hz, 1H), 3.64 (d, J = 4.5 Hz, 1H), 1.58 (s, 3H), 1.34 (s, 3H). 
13C NMR (151 MHz, Chloroform-d) δ 156.2, 145.9, 137.9, 134.0, 112.4, 105.3, 85.9, 73.3, 66.5, 47.1, 

27.1, 26.5. 

HRMS (ESI): [m/z] calculated for C12H14ClN2O4 ([M+Na]+): 285.0638; Found: 285.0637. 

IR ṽ [cm−1] 3329.57 (w), 2969.62 (s), 2931.84 (m), 2883.03 (m), 1465.99 (m), 1377.72 (s), 1307.00 (m), 

1159.50 (s), 1127.78 (s), 950.20 (s), 816.35 (s), 638.90 (m), 487.25 (m), 424.50 (m). 

Rf  (CH2Cl2/EtOAc, 1:1) = 0.65 [UV/CAM] 
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(6aS,7aR,10aR,10bS)-9,9-dimethyl-6a,7a,10a,10b-tetrahydro-6H-[1,3]dioxolo [4'',5'':4',5'] 

furo[3',2':4,5]pyrano[2,3-b]pyrazine-3-carbonitrile (38): 

 
Synthesized following GP7 using 2-(((3aR,5R,6aR)-5-(((6-cyanopyrazin-2-yl)oxy)methyl)-2,2-

dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid (1.0 equiv., 0.5 mmol, 137.6 mg). 

The product was isolated as a yellow foam in 31% yield (43 mg, 0.15 mmol). 
1H NMR (600 MHz, Chloroform-d) δ 8.54 (s, 1H), 5.72 (d, J = 3.6 Hz, 1H), 5.11 (d, J = 3.6 Hz, 1H), 4.86 – 

4.77 (m, 2H), 4.40 (d, J = 12.9 Hz, 1H), 3.70 (d, J = 4.5 Hz, 1H), 1.59 (s, 3H), 1.35 (s, 3H). 
13C NMR (151 MHz, Chloroform-d) δ 156.8, 141.5, 126.9, 115.0, 112.4, 105.0, 85.8, 72.6, 66.4, 60.5, 

47.8, 26.8, 26.3.. 

HRMS (ESI): [m/z] calculated for C13H13N3NaO4 ([M+Na]+): 298.0804; Found: 298.0798. 

IR ṽ [cm−1] 3332.50 (w), 2969.66 (s), 2932.14 (m), 2883.21 (m), 1466.10 (m), 1408.33 (s), 1377.76 (m), 

1307.22 (s), 1159.45 (s), 1127.74 (s), 950.19 (s), 816.35 (m), 632.52 (m), 487.45 (m), 424.24 (m). 

Rf  (CH2Cl2/EtOAc, 1:1) = 0.5 [UV/p-anisaldehyde]] 

 

1-((6aS,7aR,10aR,10bS)-9,9-dimethyl-6a,7a,10a,10b-tetrahydro-6H-[1,3]dioxolo [4'',5'':4',5'] 

furo[3',2':4,5]pyrano[2,3-b]pyrazin-3-yl)ethan-1-one (39): 

 
Synthesized following GP7 using 2-(((3aR,5R,6aR)-5-(((6-acetylpyrazin-2-yl)oxy)methyl)-2,2-

dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid (1.0 equiv., 0.5 mmol, 146.1 mg). 

The product was isolated as a yellowish solid in 18% yield (25.7 mg, 0.095 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 8.81 (d, J = 1.0 Hz, 1H), 5.75 (d, J = 3.6 Hz, 1H), 5.14 (d, J = 3.7 Hz, 

1H), 4.89 – 4.79 (m, 2H), 4.43 – 4.36 (m, 1H), 3.72 – 3.67 (m, 1H), 2.68 (s, 3H), 2.66 – 2.64 (m, 1H), 1.61 

(s, 3H), 1.39 (s, 3H). 
13C NMR (101 MHz, Chloroform-d) δ 159.1, 143.1, 142.2, 134.4, 112.3, 105.1, 86.0, 73.0, 66.3, 47.3, 

26.9, 26.4, 26.0. 

HRMS (ESI): [m/z] calculated forC14H16N2NaO5 ([M+Na]+): 315.0957; Found: 315.0951. 

IR ṽ [cm−1] 3333.41 (w), 2969.68 (s), 2931.84 (m), 2883.04 (m), 1466.12 (m), 1408.03 (m), 1377.82 (s), 

1340.12 (m), 1306.75 (m), 1159.48 (s), 1127.75 (s), 1107.98 (s), 950.17 (s), 816.35 (s), 637.96 (m), 

487.45 (m), 424.78 (m). 
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Rf  (CH2Cl2/EtOAc, 1:1) = 0.47 [UV/p-anisaldehyde]] 

 

(6aS,7aR,10aR,10bS)-9,9-dimethyl-3-(1H-pyrazol-1-yl)-6a,7a,10a,10b-tetrahydro-6H-[1,3] 

dioxolo[4'',5'':4',5']furo[3',2':4,5]pyrano[2,3-b]pyrazine (40): 

 
Synthesized following GP7 using 2-(((3aR,5R,6aR)-5-(((6-(1H-pyrazol-1-yl)pyrazin-2-yl)oxy)methyl)-

2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid (1.0 equiv., 0.5 mmol, 158.2 

mg). The product was isolated as a yellowish solid in 48% yield (76.1 mg, 0.24 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 8.98 (s, 1H), 8.44 (dd, J = 2.7, 0.7 Hz, 1H), 7.77 (dd, J = 1.7, 0.7 Hz, 

1H), 6.48 (dd, J = 2.7, 1.7 Hz, 1H), 5.73 (d, J = 3.6 Hz, 1H), 5.13 (dd, J = 3.6, 1.0 Hz, 1H), 4.84 – 4.75 (m, 

2H), 4.36 (d, J = 12.2 Hz, 1H), 3.69 (d, J = 4.5 Hz, 1H), 1.60 (s, 3H), 1.37 – 1.33 (m, 3H). 
13C NMR (101 MHz, Chloroform-d) δ 154.8, 143.3, 131.9, 128.5, 127.9, 112.2, 108.7, 105.2, 85.8, 73.4, 

66.3, 47.0, 27.0, 26.3.. 

HRMS (ESI): [m/z] calculated forC15H16N4NaO4 ([M+Na]+): 339.1069; Found: 339.1064 

IR ṽ [cm−1] 3329.97(w), 2969.65 (s), 2931.98 (m), 2883.19 (m), 1466.12 (m), 1377.71(s), 1307.25 (s), 

1159.47 (s), 1127.74 (s), 950.20 (s), 816.39 (s), 635.94 (m), 486.98 (m), 424.47 (m). 

Rf  (CH2Cl2/EtOAc, 1:1) = 0.56 [UV/p-anisaldehyde]] 

 

(3aR,4aS,12bS,12cR)-2,2-dimethyl-3a,4a,12b,12c-tetrahydro-5H-[1,3]dioxolo[4'',5'':4',5'] 

furo[3',2':4,5]pyrano[2,3-b]quinoxaline (41): 

 
Synthesized following GP7 using 2-(((3aS,5S,6aS)-2,2-dimethyl-5-((quinoxalin-2-

yloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid (1.0 equiv., 0.5 mmol, 150.2 

mg). The product was isolated as a yellowish solid in 54% yield (54.1 mg, 0.27 mmol). 
1H NMR (600 MHz, Chloroform-d) δ 7.99 (dd, J = 8.3, 1.3 Hz, 1H), 7.87 (dd, J = 8.4, 1.3 Hz, 1H), 7.69 

(ddd, J = 8.4, 6.9, 1.4 Hz, 1H), 7.63 – 7.58 (m, 1H), 5.74 (d, J = 3.6 Hz, 1H), 5.31 (d, J = 3.6 Hz, 1H), 4.92 

– 4.82 (m, 2H), 4.47 (dd, J = 13.2, 1.6 Hz, 1H), 3.83 (d, J = 4.4 Hz, 1H), 1.62 (s, 3H), 1.38 (s, 3H). 
13C NMR (151 MHz, Chloroform-d) δ 141.0, 140.1, 139.8, 130.7, 128.4, 127.8, 127.6, 112.2, 105.2, 86.7, 

73.3, 66.0, 48.4, 27.0, 26.4. 
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HRMS (ESI): [m/z] calculated for C16H17N2O4 ([M]+): 301.1183; Found: 301.1177. 

IR ṽ [cm−1] 3332.89 (w), 2969.64 (s), 2931.80 (m), 2883.13 (m), 1466.14 (m), 1408.33(m), 1377.74 (m), 

1339.94 (s), 1307.23 (s), 1159.46 (s), 1127.75 (s), 1108.09 (s), 950.20 (s), 816.38 (s), 633.91 (m), 487.35 

(m), 424.08 (m). 

Rf  (CH2Cl2/EtOAc, 1:1) = 0.51 [UV/CAM] 

 

(3aR,4aS,12bS,12cR)-10-bromo-2,2-dimethyl-3a,4a,12b,12c-tetrahydro-5H-[1,3]dioxolo 

[4'',5'':4',5']furo[3',2':4,5]pyrano[2,3-b]quinoxaline (42): 

 
Synthesized following GP7 using 2-(((3aS,5S,6aS)-5-(((6-bromoquinoxalin-2-yl)oxy)methyl)-2,2-

dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid (1.0 equiv., 0.5 mmol, 189.6 mg). 

The product was isolated as a yellow solid in 33% yield (63.1 mg, 0.16 mmol). 
1H NMR (600 MHz, Chloroform-d) δ 8.03 (d, J = 2.1 Hz, 1H), 7.84 (d, J = 8.9 Hz, 1H), 7.68 (dd, J = 8.9, 

2.1 Hz, 1H), 5.74 (d, J = 3.8 Hz, 1H), 5.28 (d, J = 3.6 Hz, 1H), 4.90 – 4.83 (m, 2H), 4.48 (d, J = 12.6 Hz, 

1H), 3.78 (d, J = 4.3 Hz, 1H), 1.61 (s, 3H), 1.37 (s, 3H) 
13C NMR (151 MHz, Chloroform-d) δ 154.8, 141.7, 140.2, 138.8, 131.2, 130.0, 129.6, 124.8, 112.3, 

105.1, 86.6, 73.0, 66.1, 48.3, 26.9, 26.3. 

HRMS (ESI): [m/z] calculated for C16H16BrN2O4 ([M+Na]+): 379.0289; Found: 379.0288 

IR ṽ [cm−1] 3333.07 (w), 2969.64 (s), 2932.08 (m), 2883.10 (m), 1466.13 (m), 1408.20 (s), 1377.73 (m), 

1339.95 (s), 1159.48 (s), 1127.74 (s), 950.20 (s), 816.38 (s), 634.27 (w), 487.40 (m), 424.64 (m). 

Rf  (CH2Cl2/EtOAc, 1:1) = 0.6 [p-anisaldehyde] 

 

(6aS,7aR,10aR,10bS)-4-chloro-9,9-dimethyl-6a,7a,10a,10b-tetrahydro-6H-[1,3] 

dioxolo[4'',5'':4',5']furo[3',2':4,5]pyrano[2,3-c]pyridine (51): 

 
Synthesized following GP7 using 2-(((3aR,5R,6aR)-5-(((2-chloropyridin-3-yl)oxy)methyl)-2,2-

dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid (1.0 equiv., 0.5 mmol, 141.9 mg). 

The product was isolated as yellowish solid in 28% yield (39.4 mg, 0.14 mmol). 
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1H NMR (600 MHz, Chloroform-d) δ 7.97 (d, J = 5.0 Hz, 1H), 7.13 (dd, J = 5.0, 0.9 Hz, 1H), 5.77 (d, J = 

3.6 Hz, 1H), 4.72 (dd, J = 12.0, 2.8 Hz, 3H), 4.10 (d, J = 12.2 Hz, 1H), 3.51 (d, J = 4.9 Hz, 1H), 1.58 (s, 3H), 

1.35 (s, 3H). 
13C NMR (151 MHz, Chloroform-d) δ 147.2, 140.9, 140.7, 128.8, 123.2, 112.4, 105.3, 87.0, 73.3, 66.0, 

43.6, 27.0, 26.4. 

HRMS (ESI): [m/z] calculated for C13H15ClNO4 ([M+Na]+): 284.0684; Found: 284.0684. 

IR ṽ [cm−1] 3333.65 (w), 2969.65 (s), 2932.04 (m), 2883.12 (m), 1466.15 (m), 1408.15 (s), 1377.77 (m), 

1340.01 (s), 1307.07 (s), 1159.48 (s), 1127.74 (s), 1108.12 (s), 950.20 (s), 816.37 (s), 637.33 (w), 487.49 

(m), 424.02 (m). 

Rf  (CH2Cl2/EtOAc, 1:1) = 0.5 [UV/p-anisaldehyde]] 

Spectroscopic data for 51ʹ:  
1H NMR (400 MHz, Chloroform-d) δ 8.02 (dd, J = 4.7, 1.5 Hz, 1H), 7.29 (dd, J = 8.2, 1.6 Hz, 1H), 7.21 

(dd, J = 8.2, 4.7 Hz, 1H), 6.01 (d, J = 3.6 Hz, 1H), 4.60 (d, J = 3.6 Hz, 1H), 4.56 (ddd, J = 5.9, 5.0, 2.8 Hz, 

1H), 4.48 (dd, J = 4.8, 2.8 Hz, 1H), 4.38 (dd, J = 5.5, 2.7 Hz, 2H), 2.60 (d, J = 4.9 Hz, 1H), 1.53 (s, 3H), 1.35 

(d, J = 0.7 Hz, 3H). 
13C NMR (101 MHz, Chloroform-d) δ 150.7, 141.5, 123.4, 121.0, 112.2, 105.1, 85.5, 75.5, 66.8, 27.0, 

26.4. 

HRMS (ESI): [m/z] calculated for C16H16BrN2O4 ([M]+): 379.0289; Found: 379.0288. 

IR ṽ [cm−1] 3329.92 (w), 2969.65 (s), 2932.07 (m), 2883.43 (m), 1466.05(m), 1377.71 (s), 1303.61(m), 

1159.54 (s), 1127.76 (s), 950.21 (s), 816.43 (s), 616.38 (w), 487.07 (m), 424.65 (m). 

Rf  (CH2Cl2/EtOAc, 1:1) = 0.32 [UV/p-anisaldehyde]] 

 

(6aS,7aR,10aR,10bS)-9,9-dimethyl-6a,7a,10a,10b-tetrahydro-6H-[1,3]dioxolo [4'',5'':4',5'] 

furo[3',2':4,5]pyrano[2,3-c]pyridine-4-carbonitrile (52): 

 
Synthesized following GP7 using 2-(((3aR,5R,6S,6aR)-5-(((2-cyanopyridin-3-yl)oxy)methyl)-2,2-

dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid (1.0 equiv., 0.5 mmol, 145 mg). 

The product was isolated as a pale-yellow solid in 19% yield (21 mg, 0.095 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 8.26 (d, J = 4.8 Hz, 1H), 7.40 (dd, J = 4.9, 1.1 Hz, 1H), 5.77 (d, J = 

3.6 Hz, 1H), 4.80 – 4.71 (m, 3H), 4.18 (dd, J = 12.4, 1.0 Hz, 1H), 3.52 (d, J = 4.8 Hz, 1H), 1.58 (s, 3H), 1.37 

– 1.35 (m, 3H). 
13C NMR (101 MHz, Chloroform-d) δ 154.2, 143.2, 129.1, 127.5, 123.5, 114.8, 112.5, 105.1, 86.9, 77.5, 

77.2, 76.8, 72.6, 66.1, 42.9, 26.9, 26.4. 
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HRMS (ESI): [m/z] calculated for C14H14N2NaO4 ([M+Na]+): 297.0846; Found: 297.0846. 

IR ṽ [cm−1] 3333.20 (w), 2969.65 (s), 2931.82 (m), 2883.23 (m), 1466.18 (m), 1408.17 (s), 1377.74 (m), 

1307.23 (s), 1159.45 (s), 1127.75 (s), 950.21 (s), 816.38 (s), 632.53 (w), 487.23 (m), 424.31 (m). 

Rf  (CH2Cl2/EtOAc, 1:1) = 0.47 [UV/CAM] 

 

6,8,8-trimethyl-7,8-dihydro-6H-pyrano[2,3-b]pyrazine (53): 

 
Synthesized following GP7 using 2-((2-methyl-4-(pyrazin-2-yloxy)pentan-2-yl)oxy)-2-oxoacetic acid 

(1.0 equiv., 0.5 mmol, 134.1 mg). The product was isolated as a yellow oil in 57% yield (51.2 mg, 0.28 

mmol). 
1H NMR (400 MHz, CDCl3): δ 8.12 (d, J = 2.5 Hz, 1H), 7.98 (d, J = 2.5 Hz, 1H), 4.48 (dqd, J = 10.5, 6.2, 

3.2 Hz, 1H), 1.91 – 1.76 (m, 2H), 1.48 (d, J = 6.2 Hz, 3H), 1.38 (s, 3H), 1.36 (s, 3H). 
13C{1H} NMR (101 MHz, CDCl3): δ 157.0, 147.5, 140.5, 137.2, 70.7 44.5, 34.7, 30.1, 28.4, 21.5. 

HRMS (ESI): [m/z] calculated forC10H15N2O ([M]+): 179.1179; Found: 179.1175. 

IR ṽ [cm−1] 3334.90 (w), 2969.52 (s), 2932.07 (m), 2882.93(m), 1465.72 (m), 1410.04 (m), 1377.88 (s), 

1308.70 (m), 1159.64 (s), 1127.91 (s), 950.14 (s), 816.38 (s), 627.40 (w), 487.10 (m), 425.15 (m). 

Rf  (Cyclohexane/EtOAc, 4:1) = 0.18 [CAM] 

 

2-chloro-6,8,8-trimethyl-7,8-dihydro-6H-pyrano[2,3-b]pyrazine (54): 

 
Synthesized following GP7 using 2-((4-((6-chloropyrazin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-

oxoacetic acid (1.0 equiv., 0.5 mmol, 151.4 mg). The product was isolated as a pale yellow oil in 55% 

yield (59.6 mg, 0.28 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 8.12 (s, 1H), 4.50 (dqd, J = 11.4, 6.2, 2.5 Hz, 1H), 1.87 (dd, J = 14.2, 

2.4 Hz, 1H), 1.82 – 1.75 (m, 1H), 1.48 (d, J = 6.2 Hz, 3H), 1.37 (s, 3H), 1.35 (s, 3H). 
13C NMR (101 MHz, Chloroform-d) δ 155.76, 145.15, 144.04, 135.97, 71.50, 44.22, 34.54, 29.96, 28.27, 

21.32. 

HRMS (ESI): [m/z] calculated for C10H14ClN2O ([M+Na]+): 213.0793; Found: 213.0789. 

IR ṽ [cm−1] 2975 (w), 2933 (w), 2870 (w), 1737 (m), 1703 (m), 1536 (s), 1370 (s), 1245 (s), 1224 (s), 

1201 (s), 1162 (s), 1084 (s), 1038 (s), 982 (s), 960 (m), 900 (m), 877 (m), 689 (m), 529 (m). 

Rf  (Cyclohexane/EtOAc, 1:1) = 0.5 [CAM]. 
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6,8,8-trimethyl-3-(trifluoromethyl)-7,8-dihydro-6H-pyrano[2,3-b]pyrazine (55): 

 
Synthesized following GP7 using 2-((2-methyl-4-((5-(trifluoromethyl)pyrazin-2-yl)oxy)pentan-2-

yl)oxy)-2-oxoacetic acid (1.0 equiv., 0.5 mmol, 168.2 mg). The product was isolated as a pale yellow 

oil in 37% yield (45.5 mg, 0.19 mmol). 
1H NMR (600 MHz, Chloroform-d) δ 8.36 (s, 1H), 4.59 (dqd, J = 12.4, 6.2, 2.2 Hz, 1H), 1.93 (dd, J = 14.2, 

2.2 Hz, 1H), 1.85 (dd, J = 14.3, 11.6 Hz, 1H), 1.53 (d, J = 6.2 Hz, 3H), 1.43 (s, 3H), 1.39 (s, 3H). 
13C NMR (151 MHz, Chloroform-d) δ 158.63, 147.79, 138.14, 136.44, 136.21, 71.76, 43.98, 35.02, 

29.89, 28.04, 21.42. 
19F NMR (376 MHz, Chloroform-d) δ -67.76. 

 

6,8,8-trimethyl-7,8-dihydro-6H-pyrano[2,3-b]pyrazine-2-carbonitrile (56): 

 
Synthesized following GP7 using 2-((4-((6-cyanopyrazin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-

oxoacetic acid (1.0 equiv., 0.5 mmol, 146.7 mg). The product was isolated as a pale yellow oil in 49% 

yield (50.8 mg, 0.25 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 8.43 (s, 1H), 4.83 – 4.34 (m, 1H), 2.12 – 1.73 (m, 2H), 1.66 – 1.16 

(m, 10H). 
13C NMR (101 MHz, Chloroform-d) δ 156.62, 152.78, 140.48, 125.54, 115.52, 71.87, 43.67, 35.57, 

29.85, 27.97, 21.33. 

HRMS (ESI): [m/z] calculated for C11H13N3NaO ([M+Na]+): 226.0947; Found: 226.0951. 

IR ṽ [cm−1] 2976 (m), 2936 (m), 2871 (m), 2236 (m), 1726 (w), 1539 (s), 1472 (m), 1434 (m), 1400 (m), 

1321 (m), 1261 (s), 1193 (s), 1094 (s), 1043 (s), 931 (s), 905 (m), 861 (m), 664 (s), 533 (s), 462 (s). 

Rf  (Cyclohexane/EtOAc, 1:1) = 0.33 [CAM]. 
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6,8,8-trimethyl-2-(1H-pyrazol-1-yl)-7,8-dihydro-6H-pyrano[2,3-b]pyrazine (57): 

 
Synthesized following GP7 using 2-((4-((6-(1H-pyrazol-1-yl)pyrazin-2-yl)oxy)-2-methylpentan-2-

yl)oxy)-2-oxoacetic acid (1.0 equiv., 0.5 mmol, 167.2 mg). The product was isolated as a pale yellow 

oil in 59% yield (73.3 mg, 0.30 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 8.88 (s, 1H), 8.46 (dd, J = 2.6, 0.7 Hz, 1H), 7.74 (dd, J = 1.6, 0.7 Hz, 

1H), 6.45 (dd, J = 2.7, 1.7 Hz, 1H), 4.56 (dqd, J = 10.7, 6.2, 2.9 Hz, 1H), 1.91 – 1.88 (m, 1H), 1.87 – 1.79 

(m, 1H), 1.54 (d, J = 6.2 Hz, 3H), 1.43 (s, 3H), 1.40 (s, 3H). 
13C NMR (101 MHz, Chloroform-d) δ 154.62, 144.23, 143.63, 142.80, 127.62, 126.76, 108.19, 71.46, 

44.62, 34.58, 30.03, 28.53, 21.49. 

HRMS (ESI): [m/z] calculated for C13H16N4NaO ([M+Na]+): 267.1216; Found: 267.1216. 

IR ṽ [cm−1] 2973 (m), 2930 (m), 1553 (m), 1522 (m), 1429 (m), 1394 (s), 1324 (m), 1262 (m), 1184 (s), 

1137 (s), 1064 (s), 1034 (s), 933 (m), 889 (m), 756 (s), 649 (s), 604 (s), 529 (s). 

Rf  (Cyclohexane/EtOAc, 1:1) = 0.5 [CAM]. 

 

2,4,4-trimethyl-3,4-dihydro-2H-pyrano[2,3-b]quinoxaline (58): 

 
Synthesized following GP7 using 2-((2-methyl-4-(quinoxalin-2-yloxy)pentan-2-yl)oxy)-2-oxoacetic acid 

(1.0 equiv., 0.5 mmol, 159.2 mg). The product was isolated as a pale yellow oil in 53% yield (60.5 mg, 

0.27 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 7.98 – 7.94 (m, 1H), 7.82 (dd, J = 8.2, 1.4 Hz, 1H), 7.61 (ddd, J = 

8.4, 6.9, 1.5 Hz, 1H), 7.53 (ddd, J = 8.3, 6.9, 1.5 Hz, 1H), 4.68 (do, J = 8.0, 6.2 Hz, 1H), 1.97 – 1.93 (m, 

2H), 1.55 (d, J = 6.3 Hz, 6H), 1.45 (s, 3H). 
13C NMR (101 MHz, Chloroform-d) δ 154.78, 150.85, 140.52, 139.45, 129.71, 128.47, 127.20, 126.77, 

71.12, 44.44, 35.72, 29.75, 28.51, 21.76. 

HRMS (ESI): [m/z] calculated for C14H17N2O ([M+Na]+): 229.1336; Found: 229.1335. 

IR ṽ [cm−1] 2980 (m), 2956 (m), 2931 (m), 2898 (m), 2865 (m), 1694 (s), 1570 (m), 1459  (m), 1405 (s), 

1305 (s), 1269 (m), 1219 (m), 1126 (m), 1083 (s), 975 (m), 767 (s), 603 (s), 523 (m). 

Rf  (Cyclohexane/EtOAc, 1:1) = 0.35 [CAM]. 
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7-bromo-2,4,4-trimethyl-3,4-dihydro-2H-pyrano[2,3-b]quinoxaline (59): 

 
Synthesized following GP7 using 2-((4-((7-bromoquinoxalin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-

oxoacetic acid (1.0 equiv., 0.5 mmol, 198.6 mg). The product was isolated as a red oil in 44% yield 

(67.6 mg, 0.22 mmol). 
1H NMR (600 MHz, Chloroform-d) δ 7.94 (d, J = 2.2 Hz, 1H), 7.79 (d, J = 8.8 Hz, 1H), 7.59 (dd, J = 8.9, 

2.2 Hz, 1H), 4.67 (ddd, J = 10.1, 6.3, 3.9 Hz, 1H), 1.98 – 1.88 (m, 2H), 1.53 (d, J = 6.3 Hz, 3H), 1.50 (s, 

3H), 1.42 (s, 3H). 
13C NMR (151 MHz, Chloroform-d) δ 155.27, 151.28, 141.44, 138.12, 130.21, 129.76, 129.46, 123.50, 

71.33, 44.17, 35.76, 29.60, 28.36, 21.69. 

HRMS (ESI): [m/z] calculated for C14H16BrN2O ([M+Na]+): 307.0434; Found: 307.0441. 

IR ṽ [cm−1] 2976 (m), 2960 (m), 2934 (m), 2857 (m), 1572 (s), 1469 (m), 1404 (s), 1348 (s), 1319 (s). 

1203 (s), 1139 (s), 1087 (s), 1041 (s), 911 (s), 867 (m), 819 (s), 784 (s), 677 (s), 586 (m), 516 (s). 

Rf (Cyclohexane/EtOAc, 1:1) = 0.3 [CAM]. 

HRMS (ESI): [m/z] calculated for C11H14F3N2O ([M+Na]+): 247.1047; Found: 247.1053. 

IR ṽ [cm−1] 2969 (m), 2935 (m), 2871 (m), 1783 (s), 1723 (s), 1574 (s), 1552 (s), 1456 (s), 1400 (s), 1331 

(s), 1287 (s), 1210 (m), 1124 (m), 1101 (m), 1036 (m), 933 (m), 717 (s), 635 (s), 521 (s). 

Rf  (Cyclohexane/EtOAc, 1:1) = 0.45 [CAM] 

 

8,8-dimethyl-6-(trifluoromethyl)-7,8-dihydro-6H-pyrano[2,3-b]pyrazine (60): 

 
Synthesized following GP7 using 2-oxo-2-((5,5,5-trifluoro-2-methyl-4-(pyrazin-2-yloxy)pentan-2-

yl)oxy)acetic acid (1.0 equiv., 0.5 mmol, 161.1 mg). The product was isolated as a pale yellow oil in 

27% yield (32.5 mg, 0.14 mmol). 
1H NMR (600 MHz, Chloroform-d) δ 8.24 (d, J = 2.4 Hz, 1H), 8.09 (dd, J = 2.6, 1.2 Hz, 1H), 4.76 – 4.64 

(m, 1H), 2.13 – 2.06 (m, 2H), 1.50 (d, J = 1.3 Hz, 3H), 1.41 (d, J = 1.3 Hz, 3H). 
13C NMR (151 MHz, Chloroform-d) δ 154.84, 146.47, 141.10, 138.80, 71.82, 35.10, 34.04, 29.39, 27.78. 
19F NMR (376 MHz, Chloroform-d) δ -78.56 (d, J = 5.7 Hz). 

HRMS (ESI): [m/z] calculated for C10H12F3N2O ([M+Na]+): 233.0889; Found: 233.0896. 

IR ṽ [cm−1] 3054 (m), 2966 (m), 2931 (m), 2870 (m), 1540 (s), 1476 (s), 1453 (m), 1401 (m), 1291 (m), 

1267 (m), 1159 (m), 1128 (m), 1104 (s), 1027 (s), 905 (m), 852 (m), 731 (s), 676 (s), 519 (s). 

Rf  (Cyclohexane/EtOAc, 1:1) = 0.4 [CAM] 
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(S)-8-phenyl-7,8-dihydro-6H-pyrano[2,3-b]pyrazine (61): 

 
Synthesized following GP7 using 2-oxo-2-(1-phenyl-3-(pyrazin-2-yloxy)propoxy)acetic acid (1.0 equiv., 

0.5 mmol, 151.1 mg). The product was isolated as a pale-yellow oil in 19% yield (20 mg, 0.095 mmol). 
1H NMR (400 MHz, Chloroform-d) δ 8.17 (d, J = 2.5 Hz, 1H), 8.10 (dd, J = 2.5, 0.9 Hz, 1H), 7.35 – 7.26 

(m, 3H), 7.08 – 7.04 (m, 2H), 4.43 – 4.38 (m, 3H), 2.54 – 2.39 (m, 1H), 2.32 – 2.21 (m, 1H). 
13C NMR (101 MHz, Chloroform-d) δ 158.5, 143.1, 142.0, 141.5, 138.0, 128.9, 128.5, 128.5, 127.1, 65.0, 

44.2, 31.0. 

Rf  (CH2Cl2/EtOAc, 4:1) = 0.35 [UV/CAM] 

 

 

6.4.4. Derivatization reactions: Deprotection: 

 
In a 20 mL microwave vial, the 35 (111.4 mg, 0.45 mmol, 1.0 equiv.) was dissolved in H2O (15 mL) and 

resin Dowex-50 (100 mg, 0.27 mmol, 0.6 equiv.) (previously washed with 10% HCl, H2O, EtOH, and 

Et2O) was added. The reaction was stirred at 50 ºC for 16 h. After this time, the resin was filtered off 

and washed with NH4OH (3 mL). The solvent was removed in vacuo afford the desired deprotected 

product 62 as an orange solid in quantitative yield as 2:1 diasteromeric mixture (92.8 mg, 0.45 mmol). 
1H NMR (600 MHz, Chloroform-d) δ 8.25 (d, J = 2.5 Hz, 1H), 8.14 (dd, J = 2.5, 0.9 Hz, 1H), 8.08 (dd, J = 

2.6, 1.0 Hz, 1H), 5.37 (d, J = 4.0 Hz, 1H), 4.88 (ddd, J = 5.8, 3.2, 2.1 Hz, 1H), 4.52 (dd, J = 12.6, 3.2 Hz, 

1H), 4.49 (t, J = 3.6 Hz, 1H), 4.25 (dd, J = 12.5, 2.2 Hz, 1H), 4.23 – 4.19 (m, 1H), 3.66 (dd, J = 6.2, 3.1 Hz, 

1H). 

HRMS (ESI): [m/z] calculated for C9H10N2NaO4 ([M+Na]+): 233.0533; Found: 233.0531. 
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6.4.5. 1H and 13C–NMR Spectra 

6.4.5.1. Starting materials 

(3aS,5S,6R,6aS)-2,2-dimethyl-5-((pyrazin-2-yloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-ol:  

 
 

 

O

HO
O

O
O

N

N



Chapter 6: Supporting information 

 238 

2-(((3aS,5S,6R,6aS)-2,2-dimethyl-5-((pyrazin-2-yloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-

yl)oxy)-2-oxoacetic acid:  

 
(3aS,4S,6R,7R,7aS)-4-methoxy-2,2-dimethyl-6-((pyrazin-2-yloxy)methyl)tetrahydro-4H-

[1,3]dioxolo[4,5-c]pyran-7-ol:  
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2-(((3aS,4S,6R,7R,7aS)-4-methoxy-2,2-dimethyl-6-((pyrazin-2-yloxy)methyl)tetrahydro-4H-

[1,3]dioxolo[4,5-c]pyran-7-yl)oxy)-2-oxoacetic acid:  
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3aS,5S,6R,6aS)-5-(((6-chloropyrazin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-ol:  
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2-(((3aS,5S,6R,6aS)-5-(((6-chloropyrazin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid:  
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6-(((3aS,5S,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-

yl)methoxy)pyrazine-2-carbonitrile:  
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2-(((3aS,5S,6R,6aS)-5-(((6-cyanopyrazin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid:  
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1-(6-(((3aS,5S,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-

yl)methoxy)pyrazin-2-yl)ethan-1-one: 
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2-(((3aS,5S,6R,6aS)-5-(((6-acetylpyrazin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid:  
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(3aS,5S,6R,6aS)-5-(((6-(1H-pyrazol-1-yl)pyrazin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-ol:  
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2-(((3aS,5S,6R,6aS)-5-(((6-(1H-pyrazol-1-yl)pyrazin-2-yl)oxy)methyl)-2,2-

dimethyltetrahydrofuro[2,3-d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid:  
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(3aS,5S,6R,6aS)-2,2-dimethyl-5-((quinoxalin-2-yloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-ol:  

 

O

HO
O

O
O

N

N



Chapter 6: Supporting information 

 249 

 
 

2-(((3aS,5S,6R,6aS)-2,2-dimethyl-5-((quinoxalin-2-yloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-

yl)oxy)-2-oxoacetic acid:  
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(3aS,5S,6R,6aS)-5-(((6-bromoquinoxalin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-ol:  
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2-(((3aS,5S,6R,6aS)-5-(((6-bromoquinoxalin-2-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid:  
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((3aS,5S,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl)methyl 4-

methylbenzenesulfonate:  
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(3aS,5S,6R,6aS)-2,2-dimethyl-5-((tosyloxy)methyl)tetrahydrofuro[2,3-d][1,3]dioxol-6-yl acetate:  

 
 

(3aS,5S,6R,6aS)-5-(((2-chloropyridin-3-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl acetate:  

 

O

AcO
O

O
TsO

O

AcO
O

O
O

N Cl



Chapter 6: Supporting information 

 254 

 
 

(3aS,5S,6R,6aS)-5-(((2-chloropyridin-3-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-ol:  
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2-(((3aS,5S,6R,6aS)-5-(((2-chloropyridin-3-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid:  
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(3aS,5S,6R,6aS)-5-(((2-chloropyridin-3-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl acetate:  
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3-(((3aS,5S,6R,6aS)-6-hydroxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-

yl)methoxy)picolinonitrile:  
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2-(((3aS,5S,6R,6aS)-5-(((2-cyanopyridin-3-yl)oxy)methyl)-2,2-dimethyltetrahydrofuro[2,3-

d][1,3]dioxol-6-yl)oxy)-2-oxoacetic acid: 
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2-((2-methyl-4-(pyrazin-2-yloxy)pentan-2-yl)oxy)-2-oxoacetic acid:  
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4-((6-chloropyrazin-2-yl)oxy)-2-methylpentan-2-ol:  
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2-((4-((6-chloropyrazin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetic acid:  
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2-methyl-4-((5-(trifluoromethyl)pyrazin-2-yl)oxy)pentan-2-ol:  
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2-((2-methyl-4-((5-(trifluoromethyl)pyrazin-2-yl)oxy)pentan-2-yl)oxy)-2-oxoacetic acid:  
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6-((4-hydroxy-4-methylpentan-2-yl)oxy)pyrazine-2-carbonitrile:  
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2-((4-((6-cyanopyrazin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetic acid:  
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((6-(1H-pyrazol-1-yl)pyrazin-2-yl)oxy)-2-methylpentan-2-ol:  

 

 
 

 

 

 

N

N ON
N

OH



Chapter 6: Supporting information 

 268 

2-((4-((6-(1H-pyrazol-1-yl)pyrazin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetic acid:  
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2-methyl-4-(quinoxalin-2-yloxy)pentan-2-ol:  
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2-((2-methyl-4-(quinoxalin-2-yloxy)pentan-2-yl)oxy)-2-oxoacetic acid:  
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4-((7-bromoquinoxalin-2-yl)oxy)-2-methylpentan-2-ol:  
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2-((4-((7-bromoquinoxalin-2-yl)oxy)-2-methylpentan-2-yl)oxy)-2-oxoacetic acid:  
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5,5,5-trifluoro-2-methyl-4-(pyrazin-2-yloxy)pentan-2-ol:  
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2-oxo-2-((5,5,5-trifluoro-2-methyl-4-(pyrazin-2-yloxy)pentan-2-yl)oxy)acetic acid:   
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6.4.5.2. Products 

(6aS,7aR,10aR,10bS)-9,9-dimethyl-6a,7a,10a,10b-tetrahydro-6H-[1,3]dioxolo [4'',5'':4',5'] 

furo[3',2':4,5]pyrano[2,3-b]pyrazine (35):  
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3aS,4S,5aS,11bS,11cS)-4-methoxy-2,2-dimethyl-3a,4,5a,6,11b,11c-hexahydro-[1,3] 

dioxolo[4'',5'':4',5']pyrano[3',2':4,5]pyrano[2,3-b]pyrazine (36):  
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(6aS,7aR,10aR,10bS)-3-chloro-9,9-dimethyl-6a,7a,10a,10b-tetrahydro-6H-[1,3]dioxolo 

[4'',5'':4',5']furo[3',2':4,5]pyrano[2,3-b]pyrazine (37):  
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(6aS,7aR,10aR,10bS)-9,9-dimethyl-6a,7a,10a,10b-tetrahydro-6H-[1,3]dioxolo [4'',5'':4',5'] 

furo[3',2':4,5]pyrano[2,3-b]pyrazine-3-carbonitrile (38): 
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1-((6aS,7aR,10aR,10bS)-9,9-dimethyl-6a,7a,10a,10b-tetrahydro-6H-[1,3]dioxolo [4'',5'':4',5'] 

furo[3',2':4,5]pyrano[2,3-b]pyrazin-3-yl)ethan-1-one (39):  
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(6aS,7aR,10aR,10bS)-9,9-dimethyl-3-(1H-pyrazol-1-yl)-6a,7a,10a,10b-tetrahydro-6H-[1,3] 

dioxolo[4'',5'':4',5']furo[3',2':4,5]pyrano[2,3-b]pyrazine (40):  
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(3aR,4aS,12bS,12cR)-2,2-dimethyl-3a,4a,12b,12c-tetrahydro-5H-[1,3]dioxolo[4'',5'':4',5'] 

furo[3',2':4,5]pyrano[2,3-b]quinoxaline (41):  
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(3aR,4aS,12bS,12cR)-10-bromo-2,2-dimethyl-3a,4a,12b,12c-tetrahydro-5H-[1,3]dioxolo 

[4'',5'':4',5']furo[3',2':4,5]pyrano[2,3-b]quinoxaline (42):  
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(6aS,7aR,10aR,10bS)-4-chloro-9,9-dimethyl-6a,7a,10a,10b-tetrahydro-6H-[1,3] 

dioxolo[4'',5'':4',5']furo[3',2':4,5]pyrano[2,3-c]pyridine (51):  
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(6aS,7aR,10aR,10bS)-9,9-dimethyl-6a,7a,10a,10b-tetrahydro-6H-

[1,3]dioxolo[4'',5'':4',5']furo[3',2':4,5]pyrano[3,2-b]pyridine (51’):  
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(6aS,7aR,10aR,10bS)-9,9-dimethyl-6a,7a,10a,10b-tetrahydro-6H-[1,3]dioxolo [4'',5'':4',5'] 

furo[3',2':4,5]pyrano[2,3-c]pyridine-4-carbonitrile (52):  
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6,8,8-trimethyl-7,8-dihydro-6H-pyrano[2,3-b]pyrazine (53):  
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2-chloro-6,8,8-trimethyl-7,8-dihydro-6H-pyrano[2,3-b]pyrazine (54):  
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6,8,8-trimethyl-3-(trifluoromethyl)-7,8-dihydro-6H-pyrano[2,3-b]pyrazine (55):  
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6,8,8-trimethyl-7,8-dihydro-6H-pyrano[2,3-b]pyrazine-2-carbonitrile (56):  
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6,8,8-trimethyl-2-(1H-pyrazol-1-yl)-7,8-dihydro-6H-pyrano[2,3-b]pyrazine (57):  
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2,4,4-trimethyl-3,4-dihydro-2H-pyrano[2,3-b]quinoxaline (58):  
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7-bromo-2,4,4-trimethyl-3,4-dihydro-2H-pyrano[2,3-b]quinoxaline (59):  
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8,8-dimethyl-6-(trifluoromethyl)-7,8-dihydro-6H-pyrano[2,3-b]pyrazine (60):  
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(S)-8-phenyl-7,8-dihydro-6H-pyrano[2,3-b]pyrazine (61):  
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6.5. Chapter 4: Radical Deoxycyanation of Tertiary Alcohols using 

Hypervalent Iodine Reagents 

6.5.1. Synthesis of CBZ reagent 78. 

 2-iodo-N-tosylbenzamide (75): 

 
Following the procedure reported by Waser,[184] To a solution of 2-iodobenzoic acid (4.96 g, 20 

mmol, 1.0 equiv.) and tosyl isocyanate (3.05 mL, 20 mmol, 1.0 equiv.) in THF (57 mL) Et3N (2.8 mL, 20 

mmol, 1.0 equiv.) was added dropwise. The reaction mixture was diluted with EtOAc (86 mL) and 

washed with HCl (1N) (2x35 mL) and brine (50 mL). The organic layer was dried over MgSO4, filtered 

and concentrated under vacuum to afford 2-iodo-N-tosylbenzamide (75) in quantitative yield (8.02 g, 

19.9 mmol) as a yellow thick solid. The compound was used without further purification. The 

spectroscopic data are consistent with those previously reported.191 
1H NMR (400 MHz, CDCl3) δ 8.30 (s, 1H), 8.12 – 7.97 (m, 2H), 7.84 (dd, J = 7.9, 0.9 Hz, 1H), 7.44 – 7.35 

(m, 4H), 7.15 (ddd, J = 8.0, 6.8, 2.4 Hz, 1H), 2.46 (s, 3H). 

 

3-oxo-2-tosyl-2,3-dihydro-1H-1λ3-benzo[d][1,2]iodazol-1-yl acetate (76): 

 
A solution of 22-iodo-N-tosylbenzamide (75) (8.02 g, 19.9 mmol) and 3-chloroperbenzoic acid (4.6 g, 

20 mmol, 1equiv, ca 75% purity) in acetic acid (67 mL) and acetic anhydride (67 mL) was heated at 

80°C for 72h. The reaction mixture was diluted with ether (63 mL), cooled to -20°C. The formed solid 

was filtered off, washed with ether and dried under vacuum to give 3-oxo-2-tosyl-2,3-dihydro-1H-1λ3-

benzo[d][1,2]iodazol-1-yl acetate (76) (3.31 g, 7.2 mmol) as a white solid. The compound was used 

without further purification. The spectroscopic data are consistent with those previously reported.191 
1H NMR (600 MHz, DMSO-d6) δ 8.01 – 7.96 (m, 2H), 7.95 – 7.90 (m, 2H), 7.87 (dd, J = 8.9, 1.0 Hz, 1H), 

7.76 (td, J = 7.4, 0.9 Hz, 1H), 7.46 – 7.42 (m, 2H), 2.39 (s, 3H), 2.26 (s, 3H). 

 

 

 

 

I

O

NHTs

NTsI
O

AcO



Chapter 6: Supporting information 

 326 

3-oxo-2-tosyl-2,3-dihydro-1H-1λ3-benzo[d][1,2]iodazole-1-carbonitrile (78): 

 
Caution: For safety reasons, the reaction was carried out behind an antiblast shield. To a solution of 

76  (3.0 g, 6.5 mmol, 1.0 equiv.) in dichloromethane (13 mL), cooled to 0°C cyano(trimethyl)silane 

(1.22 mL, 9.75 mmol, 1.5 equiv) was added dropwise, followed by 1 drop of trimethylsilyl 

trifluoromethanesulfonate (5.8 µL, 32.0 μmol, 0.005 equiv.). The reaction mixture was stirred at 0°C 

for 30 minutes. The formed solid was filtered off, washed with cold dichloromethane and ether and 

dried under vacuum to afford the CBZ reagent 78 in 97% yield (2.68 g, 6.3 mmol, 90% purity) as a white 

solid.  
1H NMR (400 MHz, DMSO-d6) δ 8.47 – 8.41 (m, 1H), 8.06 (dd, J = 7.5, 1.8 Hz, 1H), 7.99 (ddd, J = 8.4, 

7.3, 1.8 Hz, 1H), 7.91 – 7.81 (m, 3H), 7.43 – 7.37 (m, 2H), 2.38 (s, 3H). 
13C{1H} NMR (101 MHz, CDCl3) δ 161.6, 143.7, 137.1, 136.8, 133.1, 132.0, 131.2, 129.4, 128.7, 127.6, 

117.3, 92.8, 21.0. 

HRMS (ESI): [m/z] calculated for C15H11IN2NaO3S [M+Na]+], 448.9427, found 448.9420. 

 

6.5.2. Synthesis & characterization of products 

General procedure for the cyanation of tertiary cesium oxalates (GP8) 

An 8 mL Biotage® microwave vial was charged with the corresponding cesium salt (0.5 mmol, 1.0 

equiv.), 78 (426,2 mg, 1.0 mmol, 2.0 equiv.)4CzIPN (9.9 mg, 2.5 µmol, 2.5 mol%), and sealed with a 

septum cap. The vial was put under vacuum for 1 min and refilled with N2 (x 3). Afterwards, a 1:1 

mixture of degassed DMSO:1,4-dioxane (2.5 mL, 0.2 M) was added. The reaction mixture was then 

sparged with N2 for 2-5 min and irradiated with blue LEDs (lmax = 440 nm) at RT for 16 h. Afterwards, 

the reaction was combined with a mixture of H2O and a saturated brine solution (ca. 10 mL) and the 

organic phase extracted with EtOAc (ca. 3 x 10 mL). The combined organic layers were dried over 

Na2SO4, and the solvent evaporated. The crude product was purified by column chromatography over 

silica gel to afford the desired product. 
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2,2-dimethyl-4-phenylbutanenitrile (80): 

 
Synthesized following GP8 using cesium 2-((2-methyl-4-phenylbutan-2-yl)oxy)-2-oxoacetate 1 (184 

mg, 0.5 mmol, 1.0 equiv.). The pure product was isolated as a pale-yellow oil in 64% yield (55,4 mg, 

0.32 mmol). The spectroscopic data are consistent with those previously reported.262 
1H NMR (600 MHz, CDCl3) δ 7.30 (dd, J = 8.6, 6.6 Hz, 2H), 7.24 – 7.18 (m, 3H), 2.83 – 2.77 (m, 2H), 1.87 

– 1.79 (m, 2H), 1.41 (s, 6H). 

 

ethyl 4-cyano-4-phenylpiperidine-1-carboxylate (81): 

 
Synthesized following GP8 using cesium 2-((1-(ethoxycarbonyl)-4-phenylpiperidin-4-yl)oxy)-2-

oxoacetate (227 mg, 0.5 mmol, 1.0 equiv.). The pure product was isolated as a yellow oil in 13% yield 

(16.7 mg, 0.065 mmol). The spectroscopic data are consistent with those previously reported.263 
1H NMR (400 MHz, CDCl3) δ 7.40 – 7.31 (m, 5H), 4.22 – 4.16 (m, 2H), 4.13 (q, J = 2.8 Hz, 2H), 3.69 (t, J 

= 5.7 Hz, 2H), 2.55 (s, 2H), 1.30 (d, J = 7.1 Hz, 3H), 1.26 (d, J = 1.5 Hz, 2H). 

 

6.5.3. Cyclic voltammetry measurements of 78. 

An IKA ElectraSyn 2.0 electrochemical reactor was employed with a 3-electrode cell configuration: 

glassy carbon (working electrode), Pt wire as (control electrode), and Ag/AgCl (KCl, 3 M aq.) as 

(reference electrode) was used for the measures. Tetrabutyl ammonium tetrafluoroborate (0.1 M in 

DMSO) was used as an electrolyte. CBZ reagent 78 (25.6 mg, 0.06 mmol) was dissolved in a stock 

solution of tetrabutyl ammonium tetrafluoroborate (0.01 M, 6 mL in DMSO) and was degassed by 

bubbling N2 directly before measuring. 
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Ph CN
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Figure S8. Cyclic voltammogram of 78. 

 

The result of this experiment determined a value of -0.80 V vs Ag/AgCl, which after conversion 

corresponds to -0.84 vs SCE (saturated calomel electrode), for the reduction potential of 78 
 

6.5.4. Reactivity test reactions. 

tert-butyl (R)-5-methyl-2,4-dioxoimidazolidine-1-carboxylate (83): 

 
A 5 mL Biotage® microwave vial was charged with (tert-butoxycarbonyl)-D-alanine (57 mg, 0.3 mmol, 

1.0 equiv.), 78 (192 mg, 0.45 mmol, 1.5 equiv.), DMAP (46 mg, 0.375 mmol, 1.25 equiv.), and sealed 

with a septum cap. The vial was put under vacuum for 1 min and refilled with N2 (x 3). Afterwards, 

degassed THF (1.5 mL, 0.2 M) was added. The reaction mixture was then sparged with N2 for 2-5 min 

and stirred at room temperature for 16 h. After this time, the solvent was  in vacuo and the crude 

product was purified by column chromatography over silica gel to afford 83  as a yellow solid in 51% 

yield and 82% purity (41 mg, 0.15 mmol). The product contains ~18% of by-product 75. The 

spectroscopic data are consistent with those previously reported.194 
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1H NMR (400 MHz, CDCl3) δ 4.44 (q, J = 6.9 Hz, 1H), 2.44 (d, J = 15.4 Hz, 1H), 1.61 (d, J = 6.9 Hz, 3H), 

1.56 (d, J = 0.9 Hz, 9H). 

 

(S)-tetrahydro-1H-pyrrolo[1,2-c]imidazole-1,3(2H)-dione (84): 

 

Synthesized following the same procedure employed for 83 using L-proline (34.5 mg, 0.3 mmol, 1.0 

equiv.). The pure product was isolated as white solid in 65% yield and 81% purity (34.2 mg, 0.19 mmol). 

The product contains ~18% of by-product 75. The spectroscopic data are consistent with those 

previously reported.194 
1H NMR (400 MHz, CDCl3) δ 4.19 – 4.08 (m, 1H), 3.70 (dt, J = 11.3, 7.7 Hz, 1H), 3.23 (ddd, J = 11.3, 8.3, 

4.6 Hz, 1H), 2.46 (s, 1H), 2.30 – 2.21 (m, 1H), 2.20 – 2.02 (m, 2H), 1.86 – 1.72 (m, 1H). 

 

6.5.5. 1H and 13C–NMR Spectra 

2-iodo-N-tosylbenzamide (75):  
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3-oxo-2-tosyl-2,3-dihydro-1H-1λ3-benzo[d][1,2]iodazol-1-yl acetate (76):  

 
 

3-oxo-2-tosyl-2,3-dihydro-1H-1λ3-benzo[d][1,2]iodazole-1-carbonitrile (78):  
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2,2-dimethyl-4-phenylbutanenitrile (80):  

 
 

 

 

CN
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ethyl 4-cyano-4-phenylpiperidine-1-carboxylate (81):  

 
 

tert-butyl (R)-5-methyl-2,4-dioxoimidazolidine-1-carboxylate (83):  
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(S)-tetrahydro-1H-pyrrolo[1,2-c]imidazole-1,3(2H)-dione (84):  
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6.6. Chapter 5.3: Synthesis of a-UAAs via radical decarboxylative 

processes 

6.6.1. Synthesis of Beckwith-Karady alkene 87 

Benzyl (2S,4R)-4-((benzylsulfonyl)methyl)-2-(tert-butyl)-5-oxo-oxazolidine-3-carboxylate 

 
S-benzyl-L-cysteine (10.0 g, 48.0 mmol, 1 eq.) was treated with a solution of sodium hydroxide (1.9 g, 

48.0 mmol, 1 equiv.) in water (300 mL) and evaporated until dryness via rotary evaporation leaving a 

white solid. A solution of pivalaldehyde (10.5 mL, 96 mmol, 2 equiv.) in cyclohexane (500 mL) was 

added to the solid and the mixture stirred and refluxed in presence of a Dean-Stark separator for 5 

days (the reaction was followed by 1H NMR). The reaction mixture was then cooled down and 

evaporated to dryness to achieve the crude imine as a pale-yellow gum. The crude was suspended in 

anh. CH2Cl2 (300 mL) and treated with benzyl chloroformate (13.7 mL, 96 mmol, 2 equiv.) at 0 °C. After 

stirring for 2 days, the reaction was quenched with 1 M NaOH (1 x 250 mL), the organic phase was 

dried over Na2SO4 and filtered. The solvent was removed via rotary evaporation, afterwards the 

concentrate was quickly filtered through a silica column (cyclohexane/EtOAc 1:1) to achieve the 

corresponding diastereomeric mixture of oxazolidinone intermediate (26 g; Rf = 0.25, 

Cyclohexane:EtOAc, 4:1 ) as a brown oil after concentration in vacuo, which was used in the next step 

without further purification. The crude was dissolved in CH2Cl2 (500 mL), treated with mCPBA (≥77%, 

35.2 g, 157.18 mmol, 2.5 equiv.) and stirred for 18 h at room temperature. The reaction was washed 

with 1M NaOH (3 x 200 mL), then the organic phase was dried over Na2SO4and concentrated in vacuo. 

Purification via flash column chromatography (cyclohexane:EtOAc, 20:1 – 2.3:1) afforded the desired 

product as a pale yellow oil in 43 % yield (9.26 g, 20.78 mmol) over three steps. The spectroscopic data 

are consistent with those previously reported.218 
1H NMR (600 MHz, CDCl3) δ =7.44 – 7.32 (m, 10H), 5.62 (s, 1H), 5.28 (d, J=12.0, 1H), 5.21 (d, J=12.0, 

1H), 5.08 (dd, J=8.0, 4.1, 1H), 4.66 (d, J=14.1, 1H), 4.42 (d, J=14.1, 1H), 3.44 (dd, J=15.3, 8.0, 1H), 3.15 

(ddd, J=15.3, 4.1, 1.5, 1H), 0.89 (s, 9H). 
13C{1H} NMR (151 MHz, CDCl3) δ =170.8, 155.4, 135.0, 131.1, 129.3, 129.2, 129.0, 128.9, 

128.9, 128.1, 97.0, 69.1, 60.6, 53.8, 52.9, 37.3, 24.7. 

Rf  (cyclohexane/EtOAc, 4:1) = 0.14 [p-Anisaldehyde] 
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benzyl (S)-2-(tert-butyl)-4-methylene-5-oxooxazolidine-3-carboxylate (88) 

 
Benzyl (2S,4R)-4-((benzylsulfonyl)methyl)-2-(tert-butyl)-5-oxo-oxazolidine-3-carboxylate (9.26 g, 

20.78 mmol, 1 equiv.) was dissolved in CH2Cl2 (260 mL) and cooled in an ice bath, then DBU (6.20 mL, 

41.57 mmol, 2 equiv.) was added dropwise via syringe. The mixture was stirred for 45 min at 0 °C and 

quenched with sat. aq. NH4Cl (100 mL) while still in the ice bath. The organic phase was extracted with 

sat. aq. NH4Cl (3 x 200 mL), dried over Na2SO4 and the solvent was removed via rotary evaporation. 

The crude was quickly filtered through a silica column (cyclohexane /EtOAc 1:1) to provide 87 in 92 % 

yield (5.54 g, 19.14 mmol) as a yellowish solid after concentration in vacuo. The spectroscopic data 

are consistent with those previously reported.218 
1H NMR (600 MHz, CDCl3) δ =7.42 – 7.34 (m, 5H), 5.72 (s, 1H), 5.69 (s, 1H), 5.31 - 5.21 (m, 2H), 0.93 (s, 

9H). 
13C{1H} NMR (151 MHz, CDCl3) δ =164.7, 134.9, 130.3, 129.0, 128.9, 128.8, 104.5, 94.2, 77.4, 68.9, 

38.8, 24.5. 

Rf  (cyclohexane /EtOAc, 4:1) = 0.45 [p-Anisaldehyde] 

 

6.6.2. Synthesis & characterization of products 

General procedure 9 (GP9) – Alkylation 

An 8 mL Biotage® microwave vial was charged with the corresponding acid (1.0 mmol, 2.0 equiv.), Dha 

1 (145 mg, 0.50 mmol, 1.0 equiv.), Ir-F (5.5 mg, 5µmol, 2 mol%), K2HPO4 (209 mg, 1.2 mmol, 2.4 equiv.), 

and sealed with a septum cap. The vial was put under vacuum for 1 min and refilled with N2 (x 3). 

Afterwards, degassed 1,4-dioxane (5.0 mL, 0.1 M) was added. The reaction mixture was then sparged 

with N2 for 2-5 min and irradiated with blue LEDs (�max = 440 nm) at 42 °C for 16 h. Afterwards, the 

reaction was combined with a mixture of H2O and a saturated brine solution (ca. 15 mL) and the 

organic phase extracted with EtOAc (ca. 3 x 20 mL). The combined organic layers were dried over 

Na2SO4 and the solvent evaporated. The crude product was purified by column chromatography over 

silica gel to afford the desired product. 

 

General procedure 10 (GP10) – Alkylation 

An 8 mL Biotage® microwave vial was charged with the corresponding acid (1.0 mmol, 2.0 equiv.), Dha 

1 (145 mg, 0.50 mmol, 1.0 equiv.), Ir-F (5.5 mg, 5µmol, 2 mol%), K2HPO4 (209 mg, 1.2 mmol, 2.4 equiv.), 

and sealed with a septum cap. The vial was put under vacuum for 1 min and refilled with N2 (x 3). 

Afterwards, degassed DMSO (2.5 mL, 0.2 M) was added. The reaction mixture was then sparged with 
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N2 for 2-5 min and irradiated with blue LEDs (�max = 440 nm) at 42 °C for 16 h. Afterwards, the reaction 

was combined with a mixture of H2O and a saturated brine solution (ca. 15 mL) and the organic phase 

extracted with EtOAc (ca. 3 x 20 mL). The combined organic layers were dried over Na2SO4 and the 

solvent evaporated. The crude product was purified by column chromatography over silica gel to 

afford the desired product. 

 

Benzyl (2S,4S)-4-(4-bromophenethyl)-2-(tert-butyl)-5-oxooxazolidine-3-carboxylate (91)  

 

Synthesized following GP9 using 4-bromophenylacetic acid (215 mg, 1.0 mmol, 2.0 equiv.). The pure 

product was isolated as a yellow oil in 81% yield (187 mg, 0.41 mmol) 
1H NMR (600 MHz, CDCl3) δ 7.43 – 7.33 (m, 5H), 7.29 (dd, J = 7.3, 2.2 Hz, 2H), 7.04 (d, J = 7.9 Hz, 2H), 

5.54 (s, 1H), 5.13 (s, 2H), 4.23 (s, 1H), 2.95 – 2.78 (m, 2H), 2.23 – 2.07 (m, 2H), 0.96 (s, 10H). 
13C{1H} NMR (151 MHz, CDCl3): δ 172.5, 156.0, 135.3, 131.7, 130.4, 128.9, 128.7, 120.2, 96.4, 68.5, 

37.2, 34.6, 31.7, 25.1. 

HRMS (ESI): [m/z] calculated for C23H26BrNNaO4 [M+Na]+], 482.0937, found 482.0936. 

Rf  (Cyclohexane /EtOAc 6:1) = 0.27 [UV] 

 

Benzyl (2S,4S)-4-((1-(tert-butoxycarbonyl)piperidin-4-yl)methyl)-2-(tert-butyl)-5-oxooxazolidine-3-

carboxylate (92) 

 
Synthesized following GP9 using 1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid (215 mg, 1.0 

mmol, 2.0 equiv.). The pure product was isolated as a yellow oil in 95% yield (231 mg, 0.49 mmol)  
1H NMR (600 MHz, CDCl3) δ 7.41 – 7.32 (m, 6H), 5.56 (s, 1H), 5.20 – 5.10 (m, 2H), 4.33 (d, J = 7.8 Hz, 

1H), 3.99 (d, J = 13.2 Hz, 2H), 2.60 (dd, J = 28.2, 15.0 Hz, 2H), 1.86 – 1.75 (m, 2H), 1.69 (p, J = 6.6, 6.2 

Hz, 2H), 1.46 (s, 10H), 1.12 – 0.99 (m, 2H), 0.96 (s, 10H). 
13C{1H} NMR (151 MHz, CDCl3) δ 172.9, 156.1, 154.9, 135.2, 129.0, 128.9, 96.5, 79.4, 68.7, 55.0, 43.8, 

40.4, 37.1, 33.0, 32.4, 31.9, 28.6, 27.6, 25.1. 

HRMS (ESI): [m/z] calculated for C26H38N2NaO6 [M+Na]+], 497.2622, found 497.2623. 

[𝛂]𝑫𝟐𝟎	: + 18.2 (r = 1.01, CH2Cl2) 

Rf  (Cyclohexane /EtOAc 4:1) = 0.13 [p-anisaldehyde] 
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(2S,4S)-benzyl 4-(((4R)-1-(tert-butoxycarbonyl)-4-hydroxypyrrolidin-2-yl)methyl)-2-(tert-butyl)-5-

oxooxazolidine-3-carboxylate (93): 

 
Synthesized following GP9 using (4R)-1-(tert-butoxycarbonyl)-4-hydroxypyrrolidine-2-carboxylic acid 

(231 mg, 1.0 mmol, 2.0 equiv.). Product 30 was obtained as a 1:1 diastereomeric mixture – calculated 

from the 1H NMR of the crude reaction mixture. The mixture of diastereoisomers was isolated as a 

white solid in 80% yield (190 mg, 0.40 mmol). 
1H NMR (400 MHz, CDCl3 – both isomers): δ 7.44 – 7.33 (m, 7H), 5.58 (s, 0.47H), 5.55 (s, 1H), 5.22 – 

5.12 (m, 3H), 4.52 – 4.16 (m, 4.29 H), 3.53 (dd, J = 12.1, 5.0 Hz, 1.46 H), 3.35 (q, J = 10.9, 7.5 Hz, 1.46 

H), 2.66-2.40 (m, 1.26 H), 2.32 – 2.17 (m, 1H), 2.13 – 1.95 (m, 1.91 H), 1.94-1.78 (s, 1.68 H), 1.43 (s, 

14H), 1.03 – 0.91 (m, 14H). 
13C{1H} NMR (101 MHz, CDCl3 – both isomers) δ 172.95, 172.34, 156.14, 155.82, 154.88, 154.76, 

154.38, 135.29, 129.13, 129.03, 129.01, 128.94, 128.92, 96.88, 96.41, 79.84, 77.36, 70.65, 69.87, 

68.79, 55.19, 55.10, 54.78, 54.41, 53.81, 40.21, 37.88, 37.61, 37.30, 37.18, 28.66, 28.54, 25.03, 24.97. 

HRMS (ESI): [m/z] calculated for C25H36N2NaO7 [M+Na]+], 499.2415, found 499.2426. 

Rf  (Cyclohexane /EtOAc 1:1) = 0.18 [CAM] 

 

Benzyl (2S,4S)-2-(tert-butyl)-4-((3-methylenecyclobutyl)methyl)-5-oxooxazolidine-3-carboxylate 

(94) 

 
Synthesized following GP9 using 3-methylenecyclobutanecarboxylic acid (112 mg, 1.0 mmol, 2.0 

equiv.). The pure product was isolated as a yellow oil in 25% yield (44.1 mg, 0.12 mmol)  
1H NMR(400 MHz, CDCl3) δ 7.42 – 7.33 (m, 5H), 5.55 (s, 1H), 5.24 – 5.09 (m, 2H), 4.72 (dp, J = 7.2, 2.3 

Hz, 2H), 4.18 (q, J = 6.8 Hz, 1H), 2.84 – 2.69 (m, 2H), 2.68 – 2.57 (m, 1H), 2.39 – 2.25 (m, 2H), 2.10 (ddd, 

J = 14.1, 7.7, 6.7 Hz, 1H), 1.96 (ddd, J = 13.7, 8.7, 6.6 Hz, 1H), 0.97 (s, 9H). 
13C{1H} NMR (101 MHz, CDCl3) δ 172.8, 156.1, 146.4, 135.3, 128.9, 128.9, 128.8, 106.4, 96.6, 68.6, 

56.1, 39.7, 37.7, 37.1, 37.0, 27.4, 25.1 

HRMS (ESI): [m/z] calculated for C21H27NNaO4 [M+Na]+], 380.1832, found 380.1833. 

[𝛂]𝑫𝟐𝟎	: + 21.8 º (� = 1.04, CH2Cl2) 

Rf  (Cyclohexane /EtOAc 6:1) = 0.35 [p-anisaldehyde] 
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Benzyl (2S,4S)-2-(tert-butyl)-4-(cyclobutylmethyl)-5-oxooxazolidine-3-carboxylate (95)  

 
Synthesized following GP9 using cyclobutanecarboxylic acid (100 mg, 1.0 mmol, 2.0 equiv.). The pure 

product was isolated as a yellow oil in 80% yield (137 mg, 0.40 mmol) 
1H NMR (400 MHz, CDCl3) δ 7.44 – 7.33 (m, 5H), 5.54 (s, 1H), 5.17 (d, J = 2.2 Hz, 2H), 4.16 (dd, J = 7.7, 

6.6 Hz, 1H), 2.65 (hept, J = 8.0 Hz, 1H), 2.11 – 1.97 (m, 3H), 1.94 – 1.74 (m, 3H), 1.67 – 1.58 (m, 2H), 

0.96 (s, 9H). 
13C{1H} NMR (101 MHz, CDCl3) δ 173.0, 156.1, 135.4, 128.8, 128.8, 96.5, 68.5, 55.7, 40.3, 37.1, 32.8, 

28.3, 27.7, 25.1, 18.4. 

HRMS (ESI): [m/z] calculated for C20H27NNaO4 [M+Na]+], 368.1832, found 368.1851. 

[𝛂]𝑫𝟐𝟎	: + 19.8 (r = 1.04, CH2Cl2) 

Rf  (Cyclohexane /EtOAc 6:1) = 0.38 [UV] 

 

Benzyl (2S,4S)-4-((1-(tert-butoxycarbonyl)azetidin-3-yl)methyl)-2-(tert-butyl)-5-oxooxazolidine-3-

carboxylate (96) 

 
Synthesized following GP9 using 1-Boc-azetidine-3-carboxylic acid (201 mg, 1.0 mmol, 2.0 equiv.). The 

pure product was isolated as a yellow oil in 93% yield (207 mg, 0.46 mmol) 
1H NMR (400 MHz, CDCl3) δ 7.43 – 7.32 (m, 5H), 5.56 (s, 1H), 5.25 – 5.10 (m, 2H), 4.19 (t, J = 7.3 Hz, 

1H), 4.00 (t, J = 8.2 Hz, 2H), 3.57 (dt, J = 9.1, 4.7 Hz, 2H), 2.21 (dt, J = 14.4, 7.3 Hz, 1H), 2.15 – 2.00 (m, 

1H), 1.44 (s, 9H), 0.96 (s, 9H). 
13C{1H} NMR (101 MHz, CDCl3) δ 172.2, 156.1, 135.1, 129.0, 129.0, 128.8, 96.7, 79.5, 68.8, 55.9, 54.6, 

54.0, 37.7, 37.10, 28.6, 26.5, 25.1. 

HRMS (ESI): [m/z] calculated for C24H34N2NaO6 [M+Na]+], 469.2309, found 469.2318. 

[𝛂]𝑫𝟐𝟎	: + 15.5 (r = 1.07, CH2Cl2) 

Rf  (Cyclohexane /EtOAc 4:1) = 0.32 [Ninhydrin] 
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Benzyl (2S,4S)-2-(tert-butyl)-4-(cyclopropylmethyl)-5-oxooxazolidine-3-carboxylate (97)  

 
Synthesized following GP9 using cyclopropanecarboxylic acid (215 mg, 2.5 mmol, 5.0 equiv.). The pure 

product was isolated as a yellow oil in 20% yield (33.3 mg,0.20 mmol) 
1H NMR (400 MHz, CDCl3) δ 7.41 – 7.32 (m, 5H), 5.56 (s, 1H), 5.22 – 5.10 (m, 2H), 4.40 (dd, J = 8.2, 5.9 

Hz, 1H), 2.07 – 1.96 (m, 1H), 1.49 (ddd, J = 14.3, 8.6, 5.9 Hz, 1H), 1.12 – 1.00 (m, 1H), 0.96 (s, 9H), 0.44 

(dd, J = 8.0, 1.3 Hz, 2H), 0.09 (dd, J = 8.9, 3.7 Hz, 2H). 
13C NMR (101 MHz, CDCl3) δ 172.9, 156.2, 135.4, 128.8, 128.7, 96.4, 68.5, 57.9, 38.6, 37.2, 25.1, 8.4, 

5.7, 4.6. 

HRMS (ESI): [m/z] calculated for C19H25NNaO4 [M+Na]+], 354.1676, found 354.1688. 

[𝛂]𝑫𝟐𝟎	: + 27.6 (r  = 1.04, CH2Cl2) 

Rf  (Cyclohexane /EtOAc 6:1) = 0.36 [p-anisaldehyde] 

 

Benzyl (2S,4S)-2-(tert-butyl)-4-(((1s,3S)-3-hydroxyadamantan-1-yl)methyl)-5-oxooxazolidine-3-

carboxylate (98) 

 
Synthesized following GP9 using 3-hydroxyadamantane-1-carboxylic acid (196 mg, 1.0 mmol, 2.0 

equiv.). The pure product was isolated as a yellow solid in 73% yield (162 mg, 0.38 mmol)  
1H NMR (400 MHz, CDCl3) δ 7.41 – 7.31 (m, 5H), 5.55 (s, 1H), 5.22 – 5.10 (m, 2H), 4.47 – 4.38 (m, 1H), 

1.90 (s, 3H), 1.75 (dd, J = 14.3, 8.5 Hz, 1H), 1.68 (s, 1H), 1.65 (s, 2H), 1.59 – 1.52 (m, 6H), 1.52 – 1.47 

(m, 3H), 0.96 (s, 10H). 
13C NMR (101 MHz, CDCl3) δ 173.6, 155.8, 135.3, 129.1, 128.9, 128.8, 96.1, 68.5, 52.8, 49.4, 42.5, 37.1, 

37.0, 32.9, 28.7, 25.1. 

[𝛂]𝑫𝟐𝟎	: + 27.8 º (r = 1.00, CH2Cl2) 

Rf  (Cyclohexane/EtOAc 6:1) = 0.45 [p-anisaldehyde/CAM] 
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Benzyl (2S,4S)-2-(tert-butyl)-4-neopentyl-5-oxooxazolidine-3-carboxylate (99) 

 
Synthesized following GP9 using pivalic carboxylic acid (102 mg, 1.0 mmol, 2.0 equiv.). The pure 

product was isolated as a yellow oil in 48% yield (83.5 mg, 0.24 mmol)  
1H NMR (400 MHz, CDCl3) δ = 7.42 – 7.32 (m, 5H), 5.55 (s, 1H), 5.23 – 5.12 (m, 2H), 4.37 (dd, J = 8.2, 

3.0 Hz, 1H), 1.90 (dd, J = 14.2, 8.1 Hz, 1H), 1.67 (dd, J = 14.3, 3.1 Hz, 1H), 0.99 (s, 9H), 0.96 (s, 9H). 
13C{1H} NMR (101 MHz, CDCl3) δ = 173.5, 155.9, 135.4, 129.0, 128.8, 128.8, 96.2, 68.5, 54.5, 48.4, 37.1, 

31.0, 29.8, 25.2. 

HRMS (ESI): [m/z] calculated for C20H29NNaO4 = 370.1989; found: 370.1989 

[𝛂]𝑫𝟐𝟎	: + 30.06 (r  = 1.15, CH2Cl2) 

Rf  (Cyclohexane/EtOAc, 4:1) = 0.38 [p-Anisaldehyde] 

 

Benzyl (2S,4S)-4-((1-((tert-butoxycarbonyl)amino)cyclobutyl)methyl)-2-(tert-butyl)-5-

oxooxazolidine-3-carboxylate (100) 

 
Synthesized following GP9 using 1-N-Boc-amino-cyclobutanecarboxylic acid (215.3 mg, 1.0 mmol, 2.0 

equiv.). The pure product was isolated as a yellow oil in 65% yield (150 mg, 0.33 mmol). 
1H NMR (600 MHz, CDCl3) δ 7.43 – 7.32 (m, 5H), 5.58 (s, 1H), 5.18 (d, J = 4.6 Hz, 2H), 4.41 (s, 1H), 2.42 

– 2.18 (m, 4H), 2.06 (d, J = 9.2 Hz, 2H), 1.87 (s, 2H), 1.43 (s, 9H), 0.96 (s, 9H). 

HRMS (ESI): [m/z] calculated for C25H36N2NaO6 [M+Na]+], 483.2466, found 483.2475. 

[𝛂]𝑫𝟐𝟎	: + 21.0 º (r = 1.02, CH2Cl2) 

Rf  (CH/EtOAc 6:1) = 0.29 [UV/Ninhydrin] 

 

Benzyl (2S,4S)-2-(tert-butyl)-4-((3-(methoxycarbonyl)bicyclo[1.1.1]pentan-1-yl)methyl)-5-

oxooxazolidine-3-carboxylate (102) 

 

Synthesized following GP9 using 3-(Methoxycarbonyl)bicyclo[1.1.1)pentane-1-carboxylic acid (170 

mg, 1.0 mmol, 2.0 equiv.). The pure product was isolated as a yellow solid in 45% yield (92.8 mg, 0.22 

mmol). 
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1H NMR (400 MHz, CDCl3) δ 7.43 – 7.32 (m, 5H), 5.53 (s, 1H), 5.17 (d, J = 2.7 Hz, 2H), 4.25 (dd, J = 9.2, 

3.6 Hz, 1H), 3.66 (s, 3H), 2.12 (dd, J = 14.5, 9.2 Hz, 1H), 2.01 (d, J = 9.5 Hz, 7H), 0.94 (s, 9H). 
13C{1H} NMR (101 MHz, CDCl3) δ 172.5, 155.7, 135.3, 128.9, 128.9, 128.8, 96.4, 68.6, 55.1, 52.4, 51.7, 

38.4, 37.8, 37.2, 35.8, 25.0. 

HRMS (ESI): [m/z] calculated for C23H29NNaO6 [M+Na]+], 438.1887, found 438.1879. 

[𝛂]𝑫𝟐𝟎	: + 15.0 (r = 1.05, CH2Cl2) 

Rf  (Cyclohexane /EtOAc 4:1) = 0.28 [CAM] 

 

6.6.3. Derivatization reactions: deprotection: 

 
Deprotection under acidic conditions: In a 4 mL vial, 102 (35.0 mg, 0.09 mmol) was dissolved in a 

mixture of 1,4-dioxane (1.0 mL) and conc. HCl (2.0 mL) and stirred at 80 °C for 2 h. The reaction was 

monitored by TLC. Afterwards, the solvent was evaporated in the rotavapor. Then cyclohexane was 

added to resulting solid (3 x 2.0 mL) and evaporated in the rotavapor to azeotrope any water residues 

to afford the desired a-amino acid salt 103 as an off-white solid in 96% yield (20.0 mg, 0.087 mmol). 

The characterization data matches the reported literature.227 
1H NMR (400 MHz, DMSO-d6) δ 8.48 (s, 3H), 8.02 – 7.97 (m, 2H), 7.73 – 7.67 (m, 1H), 7.57 (t, J = 7.7 

Hz, 2H), 4.33 (t, J = 5.0 Hz, 1H), 3.80 – 3.68 (m, 2H). 
13C{1H} NMR (101 MHz, DMSO-d6) δ 196.0, 170.2, 135.4, 133.9, 128.9, 128.0, 47.8, 38.4. 

 

6.6.4. Reactions in presence of TEMPO 

 
A 4 mL vial was charged with phenylglyoxylic acid (22.5 mg, 0.15 mmol, 1.5 equiv.), Dha 1 (29 mg, 0.1 

mmol, 1.0 equiv.), Ir-F (1.1 mg, 1 µmol, 1 mol%), TEMPO (46.8 mg, 0.3 mmol, 3.0 equiv.) ,and sealed 

with a septum cap. The vial was put under vacuum for 1 min and refilled with N2 (x 3). Afterwards, 2,6-

lutidine (23 µL, 0.2 mmol, 2.0 equiv.) and degassed 1,4-dioxane (0.5 mL, 0.2 M) were added. The 

reaction mixture was then sparged with N2 for 2-5 min and irradiated with blue LEDs (lmax = 440 nm) 

for 16 h. Afterwards, the reaction was diluted with EtOAc (1 mL) and methyl laureate (25 µL, 0.1 mmol, 

1,4-dioxane (0.1 M), 80 ºC, 2 h NH3

OH

OHCl (2.0 mL)
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1.0 equiv.) was added as internal standard. An aliquot of the mixture was then analyzed by GC-FID. No 

product formation was observed.  

 

6.6.5. Quantum yield determination 

According to the procedure of Yoon,125 the photon flux of the LED (lmax = 440 nm) was determined by 

standard ferrioxalate actinometry.260,261 A 0.15 M solution of ferrioxalate was prepared by dissolving 

potassium ferrioxalate trihydrate (0.73 g) in H2SO4 (10 mL of a 0.05 M solution). A buffered solution of 

1,10-phenanthroline was prepared by dissolving 1,10-phenanthroline (25 mg) and sodium acetate (5.6 

g) in H2SO4 (25 mL of a 0.50 M solution). Both solutions were stored in the dark. To determine the 

photon flux of the LED, the ferrioxalate solution (1.0 mL) was placed in a cuvette and irradiated for 70 

seconds at lmax = 440 nm. After irradiation, the phenanthroline solution (175 µL) was added to the 

cuvette and the mixture was allowed to stir in the dark for 1.0 h to allow the ferrous ions to completely 

coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A non-

irradiated sample was also prepared and the absorbance at 510 nm was measured. Conversion was 

calculated using eq. 1. 

mol	Fe34 =	 !•∆#(%&'	)*),•-     (eq. 3) 

where V is the total volume (0.001175 L) of the solution after addition of phenanthroline, ∆A is the 

difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, l is the path 

length (1.00 cm), and ε is the molar absorptivity of the ferrioxalate actinometer at 510 nm (11,100 

Lmol-1cm-1).261 With this data, the photon flux can be calculated using eq. 2. 

Photon	flux = 	*./	0123

4•5•6     (eq. 4) 

where F is the quantum yield for the ferrioxalate actinometer (1.01 at lex = 437 nm),260 t is the 

irradiation time (120 s), and f is the fraction of light absorbed at lex = 437 nm by the ferrioxalate 

actinometer. This value is calculated using eq. 3 where A(440 nm) is the absorbance of the ferrioxalate 

solution at 440 nm. An absorption spectrum gave an A(440 nm) value of > 3, indicating that the fraction 

of absorbed light (f) is > 0.999. 

 

f = 	1 − 10+(--.	01)    (eq. 5) 

The photon flux was thus calculated (average of three experiments) to be 1,1917E-09 einsteins s-1 
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Determination of the reaction quantum yield 

 

Using GP-9: A reaction under the standard conditions using 1 (29 mg, 0.1 mmol, 1 equiv.) and 

phenylglyoxylic acid (22.5 mg, 0.15 mmol, 1.5 equiv.) was irradiated at 440 nm for 3600 sec. 

Afterwards, the reaction was diluted with EtOAc (1 mL) and methyl laureate (25 µL, 0.1 mmol, 1.0 

equiv.) was added as internal standard. An aliquot of the mixture was then analyzed by GC-FID and 

the yield or conversion calculated from the corresponding calibration curve. This afforded 2 in 26% 

yield (3 x 10-5 mol). The reaction quantum yield (F) was determined using eq. 4 where the photon flux 

is 1.44 x 10-07 einsteins s-1 (determined by actinometry as described above), t is the reaction time (3600 

s) and f is the fraction of incident light absorbed by the reaction mixture, determined using eq. 3. An 

absorption spectrum of the reaction mixture gave an absorbance value of 4.18468 at 437 nm, thus f 

is 0.9999. 

 Φ =	*./	.6	78.9:;<	6.8*=9
>?.<.)	6/:@•5•6     (eq. 4) 

The reaction quantum yield (F) was thus determined to be 6.06. 

 

Using GP-10: A reaction under the standard conditions using 1 (29 mg, 0.1 mmol, 1 equiv.) and 4-

bromophenyl acetic acid (43 mg, 0.20 mmol, 2.0 equiv.) was irradiated at 440 nm for 3600 sec. 

Afterwards, the reaction was diluted with EtOAc (1 mL) and methyl laureate (25 µL, 0.1 mmol, 1.0 

equiv.) was added as internal standard. An aliquot of the mixture was then analyzed by GC-FID and 

the yield or conversion calculated from the corresponding calibration curve. This afforded 17 in 40% 

yield (4 x 10-5 mol). The reaction quantum yield (F) was determined using eq. 4 where the photon flux 

is 1.44 x 10-07 einsteins s-1 (determined by actinometry as described above), t is the reaction time (3600 

s) and f is the fraction of incident light absorbed by the reaction mixture, determined using eq. 3. An 

absorption spectrum of the reaction mixture gave an absorbance value of 4.09989 at 437 nm, thus f 

is 0.9999. 

 Φ =	*./	.6	78.9:;<	6.8*=9
>?.<.)	6/:@•5•6     (eq. 6) 

The reaction quantum yield (F) was thus determined to be 9.32. 
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6.6.6. 1H and 13C–NMR Spectra 

Benzyl (2S,4S)-4-(4-bromophenethyl)-2-(tert-butyl)-5-oxooxazolidine-3-carboxylate (91)  
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Benzyl (2S,4S)-4-((1-(tert-butoxycarbonyl)piperidin-4-yl)methyl)-2-(tert-butyl)-5-oxooxazolidine-3-
carboxylate (92) 
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(2S,4S)-benzyl 4-(((4R)-1-(tert-butoxycarbonyl)-4-hydroxypyrrolidin-2-yl)methyl)-2-(tert-butyl)-5-
oxooxazolidine-3-carboxylate (93): 
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Benzyl (2S,4S)-2-(tert-butyl)-4-((3-methylenecyclobutyl)methyl)-5-oxooxazolidine-3-carboxylate 
(94) 
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Benzyl (2S,4S)-2-(tert-butyl)-4-(cyclobutylmethyl)-5-oxooxazolidine-3-carboxylate (95)  
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Benzyl (2S,4S)-4-((1-(tert-butoxycarbonyl)azetidin-3-yl)methyl)-2-(tert-butyl)-5-oxooxazolidine-3-
carboxylate (96) 
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Benzyl (2S,4S)-2-(tert-butyl)-4-(cyclopropylmethyl)-5-oxooxazolidine-3-carboxylate (97)  
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Benzyl (2S,4S)-2-(tert-butyl)-4-(((1s,3S)-3-hydroxyadamantan-1-yl)methyl)-5-oxooxazolidine-3-
carboxylate (98) 
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Benzyl (2S,4S)-2-(tert-butyl)-4-neopentyl-5-oxooxazolidine-3-carboxylate (99) 
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Benzyl (2S,4S)-4-((1-((tert-butoxycarbonyl)amino)cyclobutyl)methyl)-2-(tert-butyl)-5-
oxooxazolidine-3-carboxylate (100) 

 

 
 

 

  

N O

O

Cbz
tBu

NHBoc



Chapter 6: Supporting information 

 355 

Benzyl (2S,4S)-2-(tert-butyl)-4-((3-(methoxycarbonyl)bicyclo[1.1.1]pentan-1-yl)methyl)-5-
oxooxazolidine-3-carboxylate (101) 
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6.7. Chapter 5.5: Synthesis of g-Oxo-a-amino acids via radical 

acylation process 

6.7.1. Synthesis & characterization of products 

General Procedure 11 (GP11). 

 An 8 mL Biotage microwave vial was charged with the corresponding carboxylic acid (0.75 mmol, 1.5 

equiv.), 88 (145 mg, 0.50 mmol, 1.0 equiv.), PPh3 (235 mg, 0.9 mmol, 1.8 equiv.), Ir−F (5.5 mg, 5 μmol, 

1 mol%), and sealed with a septum cap. The vial was put under a vacuum for 1 min and refilled with 

N2 (× 3). Afterward, 2,4,6-collidine (132 μL, 1.0 mmol, 2.0 equiv.) and degassed 1,4-dioxane (2.5 mL, 

0.2 M) were added. The reaction mixture was then sparged with N2 for 2−5 min and irradiated with 

blue LEDs (λmax = 440 or 450 nm) in an EvoluChem PhotoRedOx Box for 24 h. Finally, the solvent was 

evaporated, and the crude reaction mixture was purified by column chromatography over silica gel to 

afford the desired product.  

 

General Procedure 12 (GP12).  

An 8 mL Biotage microwave vial was charged with the corresponding carboxylic acid (0.75 mmol, 1.5 

equiv.), 88 (145 mg, 0.50 mmol, 1.0 equiv.), PPh3 (235 mg, 0.9 mmol, 1.8 equiv.), Ir−F (5.5 mg, 5 μmol, 

1 mol%), and sealed with a septum cap. The vial was put under a vacuum for 1 min and refilled with 

N2 (× 3). Afterward, 2,4,6-collidine (132 μL, 1.0 mmol, 2.0 equiv.) and degassed DMF (2.5 mL, 0.2 M) 

were added. The reaction mixture was then sparged with N2 for 2−5 min and irradiated with blue LEDs 

(λmax = 440 or 450 nm) in an EvoluChem PhotoRedOx Box for 24 h. Finally, the solvent was evaporated, 

and the crude reaction mixture was purified by column chromatography over silica gel to afford the 

desired product. 

 

(2S,4S)-2-(tert-Butyl)-5-oxo-4-(2-oxo-2- phenylethyl)oxazolidine-3-carboxylate (102):  

 
In 0.5 mmol scale: Synthesized following GP11 using benzoic acid (90 mg, 0.75 mmol 1.5 equiv.). The 

crude product was purified by flash column chromatography (cyclohexane/EtOAc, 4:1) to provide 1 as 

a yellow oil in 95% yield (190 mg, 0.48 mmol). The spectroscopic data are consistent with those 

previously reported.222 
1H NMR (400 MHz, CDCl3) δ 7.94−7.88 (m, 2H), 7.62−7.55 (m, 1H), 7.49−7.42 (m, 2H), 7.32−7.27 (m, 

3H), 7.24−7.20 (m, 2H), 5.61 (s, 1H), 5.24 (dd, J = 6.9, 5.0 Hz, 1H), 5.11 (d, J = 12.1 Hz, 1H), 5.00 (d, J = 

12.1 Hz, 1H), 3.56 (dd, J = 16.4, 6.9 Hz, 1H), 3.38 (dd, J = 16.4, 5.0 Hz, 1H), 1.02 (s, 9H). 
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In 5.0 mmol scale: Synthesized following GP11 using benzoic acid (916 mg, 7.5 mmol 1.5 equiv.) and 

Ir−F (28 mg, 25 μmol, 0.5 mol%). The crude product was purified by flash column chromatography 

(cyclohexane/EtOAc, 4:1) to provide 1 as a yellow oil in 97% yield (1.9 g, 4.8 mmol).  

 

In 5.0 mmol scale: Synthesized following GP11 using benzoic acid (916 mg, 7.5 mmol 1.5 equiv.) and 

Ir−F (14 mg, 12.5 μmol, 0.25 mol %) for 72 h. The crude product was purified by flash column 

chromatography (cyclohexane/EtOAc, 4:1) to provide 1 as a yellow oil in 73% yield (1.4 g, 3.6 mmol). 

 

Benzyl (2S,4S)-4-(2-(4-bromophenyl)-2-oxoethyl)-2-(tert-butyl)- 5-oxooxazolidine-3-carboxylate 

(104): 

 

Synthesized following GP11 using 4-bromobenzoic acid (151 mg, 0.75 mmol, 1.5 equiv.). The crude 

product was purified by flash column chromatography (cyclohexane/EtOAc, 10:1) to provide 106 as a 

yellow oil in 74% yield (175 mg, 0.37 mmol).  
1H NMR (600 MHz, CDCl3) δ 7.73 (d, J = 8.6 Hz, 2H), 7.57 (d, J = 8.6 Hz, 2H), 7.31 (d, J = 1.5 Hz, 3H), 

7.24−7.17 (m, 2H), 5.61 (s, 1H), 5.18 (dd, J = 6.9, 5.1 Hz, 1H), 5.10 (d, J = 12.0 Hz, 1H), 5.01 (d, J = 12.0 

Hz, 1H), 3.49 (dd, J = 16.2, 6.9 Hz, 1H), 3.33 (dd, J = 16.2, 5.1 Hz, 1H), 1.01 (s, 9H).  
13C{1H} NMR (101 MHz, CDCl3) δ 193.9, 172.0, 155.6, 135.1, 135.1, 132.2, 129.8, 128.8, 128.8, 128.8, 

128.6, 110.0, 96.5, 68.5, 53.8, 41.9, 37.6, 24.9.  

IR ṽ [cm−1] = 2963 (w), 2874 (w), 1791 (s), 1719 (m), 1688 (m), 1584 (s), 1581 (m), 1457 (m), 1393 (m), 

1343 (m), 1286 (m), 1235 (m), 1173 (m), 1120 (m), 1068 (m), 1042 (m), 989 (w), 823 (m), 733 (m), 697 

(s), 509 (s), 453 (s).  

HRMS (ESI): [m/z] calculated for C23H24BrNNaO5 ([M + Na]+) 496.0729, found 496.0730.  

[𝛂]𝑫𝟐𝟎	: +40.5 (ρ = 0.93, CH2Cl2). 

Rf  (cyclohexane/EtOAc, 4:1) = 0.62 [p-Anisaldehyde]. 
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Benzyl (2S,4S)-2-(tert-butyl)-4-(2-(4-formylphenyl)-2-oxoethyl)- 5-oxooxazolidine-3-carboxylate 

(105): 

 
Synthesized following GP11 using 4-formylbenzoic acid (113 mg, 0.75 mmol 1.5 equiv.). The crude 

product was purified by flash column chromatography (cyclohexane/EtOAc, 4:1) to provide 107 as a 

yellow oil in 10% yield (21.2 mg, 0.05 mmol). 
1H NMR (600 MHz, CDCl3) δ 10.10 (s, 1H), 8.01 (t, J = 8.1 Hz, 2H), 7.94 (d, J = 8.4 Hz, 2H), 7.30 (dd, J = 

5.1, 2.1 Hz, 3H), 7.25−7.20 (m, 2H), 5.63 (s, 1H), 5.21 (dd, J = 7.0, 5.0 Hz, 1H), 5.11 (d, J = 12.0 Hz, 1H), 

5.03 (d, J = 12.1 Hz, 1H), 3.57 (dd, J = 16.3, 7.0 Hz, 1H), 3.41 (dd, J = 16.3, 5.0 Hz, 1H), 1.02 (s, 9H). 
13C{1H} NMR (101 MHz, CDCl3) δ 194.4, 191.5, 171.9, 155.6, 140.5, 139.4, 135.1, 130.0, 128.8, 128.8, 

128.6, 96.5, 68.6, 53.8, 42.4, 37.6, 27.1, 24.9.  

HRMS (ESI): [m/z] calculated for C24H25NNaO6 ([M + Na]+) 446.1574, found 446.1573. 

Rf  (cyclohexane/EtOAc, 4:1) = 0.16 [p-Anisaldehyde]. 

 

Benzyl (2S,4S)-2-(tert-butyl)-4-(2-(2-chlorophenyl)-2-oxoethyl)- 5-oxooxazolidine-3-carboxylate 

(106): 

 

Synthesized following GP11 using 2-chlorobenzoic acid (117.4 mg, 0.75 mmol, 1.5 equiv.). The crude 

product was purified by flash column chromatography (cyclohexane/EtOAc, 10:1) to provide 108 as a 

yellow oil in 95% yield (203 mg, 0.47 mmol). 
1H NMR (600 MHz, CDCl3) δ 7.47 (d, J = 7.7 Hz, 1H), 7.41−7.39 (m, 2H), 7.33 (s, 5H), 7.32−7.28 (m, 1H), 

5.61 (s, 1H), 5.22 (t, J = 6.1 Hz, 1H), 5.20−5.12 (m, 2H), 3.51−3.48 (m, 2H), 0.97 (s, 9H).  
13C{1H} NMR (101 MHz, CDCl3) δ 197.4, 172.1, 155.6, 138.5, 135.3, 132.4, 131.3, 130.7, 130.0, 128.8, 

128.7, 128.6, 127.2, 96.4, 68.5, 53.7, 45.8, 37.6, 24.9.  

HRMS (ESI): [m/z] calculated for C23H24ClNNaO5 ([M + Na]+) 452.1215, found 452.1235. 

 IR ṽ [cm−1] = 2968 (w), 1791 (s), 1716 (s), 1589 (s), 1392 (m), 1345 (m), 1284 (m), 1176 (m), 1120 (m), 

1076 (m), 1040 (m), 976 (m), 757 (m), 697 (m), 697 (s), 633 (m).  

[𝛂]𝑫𝟐𝟎	= +47.2 (ρ = 1.03, CH2Cl2). 

Rf  (cyclohexane/EtOAc, 4:1) = 0.45 [p-Anisaldehyde]. 
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Benzyl (2S,4S)-2-(tert-butyl)-4-(2-(1,3-dimethyl-1H-pyrazolo[3,4- b]pyridin-5-yl)-2-oxoethyl)-5-

oxooxazolidine-3-carboxylate (107) and Benzyl (2S,4S)-2-(tert-butyl)-4-(2-(4-chloro-1,3-dimethyl-

1H- pyrazolo[3,4-b]pyridin-5-yl)-2-oxoethyl)-5-oxooxazolidine-3-car- boxylate (107’): 

 
 Synthesized following GP12 using 4-Chloro-1,3- dimethylpyrazolo[3,4-b]pyridine-5-carboxylic acid 

(169 mg, 0.75 mmol 1.5 equiv.), and irradiating for 48 h. The crude product was purified by flash 

column chromatography (cyclohexane/EtOAc, 2:1) to provide 100 a yellow foam in 39% (98 mg, 0.20 

mmol) and 100’ as a yellow solid in 18% yield (45 mg, 0.10 mmol).  

Spectroscopic data for 107: 
1H NMR (600 MHz, CDCl3) δ 9.05 (d, J = 2.0 Hz, 1H), 8.49 (d, J = 2.0 Hz, 1H), 7.23 (q, J = 2.9 Hz, 3H), 7.19 

(dd, J = 6.8, 3.1 Hz, 2H), 5.64 (s, 1H), 5.26 (dd, J = 6.8, 5.2 Hz, 1H), 5.11−5.01 (m, 2H), 4.11 (s, 3H), 3.59 

(dd, J = 16.0, 6.8 Hz, 1H), 3.43 (dd, J = 16.0, 5.2 Hz, 1H), 2.59 (s, 3H), 1.04 (s, 9H).  
13C{1H} NMR (101 MHz, CDCl3) δ 193.2, 172.0, 155.7, 152.2, 149.5, 143.2, 135.0, 130.8, 128.7, 128.6, 

128.5, 125.1, 114.8, 96.5, 68.5, 54.0, 42.0, 37.6, 33.9, 24.9, 12.6. 

HRMS (ESI): [m/z] calculated for C25H28N4NaO5 ([M + Na]+) 487.1957, found 487.1952.  

IR ṽ [cm−1] = 2961 (s), 2926 (s), 1790 (w), 1719 (w), 1678 (w), 1599 (w), 1564 (m), 1520 (m), 1478 (m), 

1392 (w), 1281 (w), 1177 (w), 1121 (m), 1041 (w), 983 (w), 748 (m), 697 (w), 578 (m), 503 (m), 456 

(m), 428 (m). 

 [𝛂]𝑫𝟐𝟎	 = +40.1 (ρ = 0.92,CH2Cl2). 

Rf  (cyclohexane/ EtOAc, 1:1) = 0.33 [p-Anisaldehyde]. 

Spectroscopic data for 107ʹ:  
1H NMR (400 MHz, CDCl3) δ 8.67 (s,1H), 7.40−7.29 (m, 1H), 7.27 (tdd, J = 4.6, 3.4, 2.0 Hz, 4H), 5.63 (s, 

1H), 5.23 (dd, J = 6.9, 5.4 Hz, 1H), 5.14 (d, J = 1.0 Hz, 2H), 4.07 (s, 3H), 3.60 (dd, J = 16.3, 6.9 Hz, 1H), 

3.53 (dd, J = 16.3, 5.5 Hz, 1H), 2.73 (s, 3H), 1.00 (s, 9H).  
13C{1H} NMR (101 MHz, CDCl3) δ 195.0, 171.9, 155.6, 152.3, 151.0, 142.9, 138.0, 135.1, 128.7, 128.7, 

128.6, 126.1, 113.2, 96.5, 68.6, 54.2, 45.9, 37.6, 34.0, 24.9, 15.1.  

HRMS (ESI): [m/z] calculated for C25H27ClN4NaO5. ([M + Na]+) 521.1562, found 521.1560.  

IR ṽ [cm−1] = 2962 (s), 2874 (s), 1791 (m), 1717 (w), 1582 (s), 1547 (m), 1515 (w), 1456 (w), 1391 (m), 

1332 (w), 1285 (w), 1234 (w), 1175 (w), 1117 (m), 1038 (w), 729 (w), 697 (w), 582 (m), 503 (m). 

[𝛂]𝑫𝟐𝟎	= +38.1 (ρ = 0.96, CH2Cl2). 

Rf  (cyclohexane/EtOAc, 1:1) = 0.43 [p-Anisaldehyde].  
 

N
O

O

O

Cbz
tBu

N
N
N

H N
O

O

O

Cbz
tBu

N
N
N

Cl



Chapter 6: Supporting information 

 361 

Benzyl (2S,4S)-2-(tert-butyl)-5-oxo-4-(2-oxo-2-(thiophen-2-yl)- ethyl)oxazolidine-3-carboxylate 

(108): 

 
Synthesized following GP11 using thiophene-2-carboxylic acid (96 mg, 0.75 mmol 1.5 equiv.). The 

crude product was purified by flash column chromatography (cyclohexane/EtOAc, 4:1) to provide 110 

as a yellow oil in 71% yield (134 mg, 0.35 mmol). 
1H NMR (600 MHz, CDCl3)  δ 7.71− 7.64 (m, 2H), 7.33−7.27 (m, 3H), 7.24 (dd, J = 6.7, 2.9 Hz, 2H), 7.12 

(dd, J = 4.9, 3.8 Hz, 1H), 5.61 (s, 1H), 5.18−5.09 (m, 2H), 5.00 (d, J = 12.1 Hz, 1H), 3.47 (dd, J = 15.7, 6.6 

Hz, 1H), 3.30 (dd, J = 15.6, 5.6 Hz, 1H), 1.01 (s, 9H). 
13C{1H} NMR (101 MHz, CDCl3) δ 187.6, 171.9, 155.7, 143.7, 135.3, 134.5, 132.3, 128.8, 128.7, 128.5, 

128.4, 96.5, 68.4, 54.1, 42.6, 37.6, 24.9.  

HRMS (ESI): [m/z] calculated for C21H23NNaO5S ([M + Na]+) 424.1190, found 424.1189.  

IR ṽ [cm−1] = 2962 (s), 2874 (s), 1791 (m), 1717 (w), 1582 (s), 1547 (m), 1515 (w), 1456 (w), 1391 (m), 

1332 (w), 1285 (w), 1234 (w), 1175 (w), 1117 (m), 1038 (w), 729 (w), 697 (w), 582 (m), 503 (m). 

[𝛂]𝑫𝟐𝟎	 = +26.6 (ρ= 0.93, CH2Cl2). 

Rf  (cyclohexane/EtOAc, 4:1) = 0.20 [p-Anisaldehyde]. 

 

Benzyl 2-(tert-butyl)-4-(2-(4,5-dihydrofuran-3-yl)-2-oxoethyl)-5- oxooxazolidine-3-carboxylate 

(109): 

 
Synthesized following GP11 using 4,5-dihydro-furan-3-carboxylic acid (86 mg, 0.75 mmol 1.5 equiv.), 

and irradiating for 48 h. The crude product was purified by flash column chromatography 

(cyclohexane/EtOAc, 2:1) to provide 112 as a yellow oil in 31% yield (60 mg, 0.15 mmol).  
1H NMR (400 MHz, CDCl3)  δ 7.40−7.31 (m, 5H), 7.26−7.25 (m, 1H), 5.59 (s, 1H), 5.15 (s, 2H), 5.08 (dd, 

J = 7.1, 5.3 Hz, 1H), 4.56−4.46 (m, 2H), 3.08 (dd, J = 15.2, 7.1 Hz, 1H), 2.95 (dd, J = 15.2, 5.3 Hz, 1H), 

2.87− 2.70 (m, 2H), 0.98 (s, 9H).  
13C{1H} NMR (101 MHz, CDCl3) δ 189.6, 172.1, 158.5, 155.8, 135.5, 128.8, 128.7, 128.5, 120.4, 96.4, 

73.8, 68.4, 54.2, 42.4, 37.5, 27.4, 24.9.  

HRMS (ESI): [m/z] calculated for C21H25NNaO6 ([M + Na]+) 410.1585, found 410.1574. IR ṽ [cm−1] = 

2968 (s), 1790 (w), 1716 (w), 1648 (m), 1604 (w), 1392 (m), 1334 (m), 1291 (m), 1178 (m), 1129 (w), 

1042 (m), 910 (m), 728 (w), 697 (w), 456 (m).  
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[𝛂]𝑫𝟐𝟎	= +35.2 (ρ = 1.05, CH2Cl2). 

Rf  (cyclohexane/EtOAc, 1:1) = 0.33 [p- Anisaldehyde].  

 

6.7.2. Derivatization reactions: deprotection: 

General Procedure 13 (GP13): 

 

In a 4mL vial, the corresponding oxazolidinone was dissolved in a mixture of 1,4-dioxane (1.0 mL) and 

conc. HCl (2.0 mL) and stirred at 80 °C in an oil bath for 2 h, monitoring by TLC. Afterwards, the reaction 

was concentrated in vacuo. To the resulting solid, cyclohexane (3 × 2.0 mL) was added and evaporated 

in vacuo to azeotrope any water residues, affording the desired α-amino acid salts.  

 

(S)-2-Amino-4-(2-hydroxyphenyl)-4-oxobutanoic acid hydrochloride salt (116): 

 
Synthesized following GP13 to afford the desired α-amino acid salt 119 as an off-yellow solid in 97% 

yield (35.5 mg, 0.136 mmol).  
1H NMR (400 MHz, D2O) δ 7.98 (dd, J = 8.1, 1.6 Hz, 1H), 7.70 (ddd, J = 8.4, 7.3, 1.6 Hz, 1H), 7.18−7.07 

(m, 2H), 4.53 (t, J = 5.3 Hz, 1H), 3.98 (d, J = 5.3 Hz, 2H).  
13C{1H} NMR (101 MHz, D2O) δ 204.5, 173.9, 162.1, 139.4, 132.5, 122.0, 120.8, 119.6, 50.9, 40.2.  

HRMS (ESI) [m/z] calculated for C10H11ClNO4  

([M]−) 244.0383, found 244.0382.  

[𝛂]𝑫𝟐𝟎	= +26.7(ρ = 0.30, MeOH). 

 

(S)-2-Amino-4-(2-chlorophenyl)-4-oxobutanoic acid hydrochloride salt (117): 

 
Synthesized following GP13 to afford the desired α-amino acid salt 120 as an off-brown solid in 

quantitative yield (27.0 mg, 0.11 mmol).  
1H NMR (400 MHz, D2O) δ 7.80 (dt, J = 7.7, 1.1 Hz, 1H), 7.69−7.61 (m, 2H), 7.55 (dt, J = 7.7, 4.3 Hz, 1H), 

4.50 (t, J = 5.3 Hz, 1H), 3.90 (d, J = 5.3 Hz, 2H).  

The characterization data matches the reported literature.264 
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(S)-2-Amino-4-oxo-4-(pyridin-3-yl) butanoic acid hydrochloride salt (118): 

 
 Synthesized following GP13 to afford the desired α-amino acid salt 121 as an off-brown solid in 95% 

yield (45.0 mg, 0.18 mmol). 
1H NMR (400 MHz, D2O) δ 8.15−8.09 (m, 2H), 7.37−7.29 (m, 2H), 4.45 (dd, J = 5.8, 4.7 Hz, 1H), 3.93− 

3.83 (m, 2H).  

The characterization data matches the reported literature.231 

 

6.7.3. Reactions in presence of TEMPO 

 
A 4 mL vial was charged with benzoic acid (22.5 mg, 0.15 mmol, 1.5 equiv.), 88 (29 mg, 0.1 mmol, 1.0 

equiv.), PPh3 (47 mg, 0.27 mmol, 1.8 equiv.), Ir-F (1.1 mg, 1 µmol, 1 mol%), and TEMPO (46.8 mg, 0.3 

mmol, 3.0 equiv.), and sealed with a septum cap. The vial was put under vacuum for 1 min and refilled 

with N2 (x 3). Afterwards, 2,4,6-collidine (25 µL, 0.2 mmol, 2.0 equiv.) and degassed 1,4-dioxane (0.5 

mL, 0.2 M) were added. The reaction mixture was then sparged with N2 for 2-5 min and irradiated 

with blue LEDs (lmax = 440 nm) for 16 h. Afterwards, the reaction was diluted with EtOAc (1 mL) and 

methyl laureate (25 µL, 0.1 mmol, 1.0 equiv.) was added as internal standard. An aliquot of the mixture 

was then analysed by GC-FID. No product formation was observed. 

 

6.7.4. Quantum yield determination 

Following the procedure of Yoon,125 the photon flux of the LED (lmax = 440 nm) was determined by 

standard ferrioxalate actinometry.260,261 A 0.15 M solution of ferrioxalate was prepared by dissolving 

potassium ferrioxalate trihydrate (0.73 g) in H2SO4 (10 mL of a 0.05 M solution). A buffered solution of 

1,10-phenanthroline was prepared by dissolving 1,10-phenanthroline (25 mg) and sodium acetate (5.6 

g) in H2SO4 (25 mL of a 0.50 M solution). Both solutions were stored in the dark. To determine the 

photon flux of the LED, the ferrioxalate solution (1.0 mL) was placed in a cuvette and irradiated for 

120 seconds at lmax = 440 nm. After irradiation, the phenanthroline solution (175 µL) was added to 

the cuvette and the mixture was allowed to stir in the dark for 1 h to allow the ferrous ions to fully 

coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A non-
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irradiated sample was also prepared, and the absorbance was measured at 510 nm. Conversion was 

calculated using eq. 1. 

mol	Fe34 =	 !∆#(%&'	)*)
,-     (eq. 3) 

where V is the total volume (0.001175 L) of the solution after addition of phenanthroline, �A is the 

difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, l is the path 

length (1.00 cm), and ε is the molar absorptivity of the ferrioxalate actinometer at 510 nm (11,100 

Lmol-1cm-1). With this data, the photon flux was calculated using eq. 2. 

Photon	flux = 	*./	0123

456     (eq. 4) 

where F is the quantum yield for the ferrioxalate actinometer (1.01 at lex = 437 nm), t is the irradiation 

time (120 s), and f is the fraction of light absorbed at lex = 437 nm by the ferrioxalate actinometer. 

This value was calculated using eq. 3 where A (440 nm) is the absorbance of the ferrioxalate solution 

at 440 nm. An absorption spectrum gave an A (440 nm) value of > 3, indicating that the fraction of 

absorbed light (f) is > 0.999. 

f = 	1 − 108+(--.	01)    (eq. 5) 

The photon flux was thus calculated (as an average of three experiments) to be 8.24081 x 10-10 

einsteins s-1 

Determination of the reaction quantum yield 

 

Using GP11: A reaction under the standard conditions using 1 (29 mg, 0.1 mmol, 1 equiv.) and benzoic 

acid (18.3 mg, 0.15 mmol, 1.5 equiv.) was irradiated at 440 nm for 3600 sec. Afterwards, the reaction 

was diluted with EtOAc (1 mL) and methyl laureate (25 µL, 0.1 mmol, 1.0 equiv.) was added as internal 

standard. An aliquot of the mixture was then analysed by GC-FID and the yield/conversion was 

calculated from the corresponding calibration curve. This afforded 2 in 40 % yield (4 x 10-5 mol). The 

reaction quantum yield (F) was determined using eq. 4, where the photon flux 8.24081 x 10-10 

einsteins s-1 (determined by actinometry as described above), t is the reaction time (3600 s) and f is 

the fraction of incident light absorbed by the reaction mixture, determined using eq. 3. An absorption 

spectrum of the reaction mixture gave an absorbance value of 2.19444 at 437 nm, thus f was 

determined to be a value of 0.9936. 

 Φ =	*./	.6	78.9:;<	6.8*=9
>?.<.)	6/:@56     (eq. 6) 

Hence, the reaction quantum yield (F) was thus determined to be 13.57. 
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6.7.5. 1H and 13C–NMR Spectra 

(2S,4S)-2-(tert-Butyl)-5-oxo-4-(2-oxo-2- phenylethyl)oxazolidine-3-carboxylate (102):  
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Benzyl (2S,4S)-4-(2-(4-bromophenyl)-2-oxoethyl)-2-(tert-butyl)- 5-oxooxazolidine-3-carboxylate 

(104):  
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Benzyl (2S,4S)-2-(tert-butyl)-4-(2-(4-formylphenyl)-2-oxoethyl)- 5-oxooxazolidine-3-carboxylate 

(105):  
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Benzyl (2S,4S)-2-(tert-butyl)-4-(2-(2-chlorophenyl)-2-oxoethyl)- 5-oxooxazolidine-3-carboxylate 

(106):  
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Benzyl (2S,4S)-2-(tert-butyl)-4-(2-(1,3-dimethyl-1H-pyrazolo[3,4- b]pyridin-5-yl)-2-oxoethyl)-5-

oxooxazolidine-3-carboxylate (107):  
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Benzyl (2S,4S)-2-(tert-butyl)-4-(2-(4-chloro-1,3-dimethyl-1H- pyrazolo[3,4-b]pyridin-5-yl)-2-

oxoethyl)-5-oxooxazolidine-3-car- boxylate (107’):  
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Benzyl (2S,4S)-2-(tert-butyl)-5-oxo-4-(2-oxo-2-(thiophen-2-yl)- ethyl)oxazolidine-3-carboxylate 

(108):  
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Benzyl 2-(tert-butyl)-4-(2-(4,5-dihydrofuran-3-yl)-2-oxoethyl)-5- oxooxazolidine-3-carboxylate 

(109):  
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(S)-2-Amino-4-(2-hydroxyphenyl)-4-oxobutanoic acid hydrochloride salt (116):  
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(S)-2-Amino-4-(2-chlorophenyl)-4-oxobutanoic acid hydrochloride salt (117):  

 
 

S)-2-Amino-4-oxo-4-(pyridin-3-yl)butanoic acid hydrochloridesalt (118):  
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