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Abstract

The last decade has witnessed a growing interest in autonomous driving appli-
cations. For this reason, vehicles have been equipped with more and more sensors
– such as camera, lidar and radar – that enable perception of the surrounding en-
vironment. These sensors, however, provide raw data which do not automatically
solve the perception tasks. Therefore, it is necessary the application of processing
algorithms in order to extract information of interest, like the position of a vehicle
or the color of a traffic light. This report is intended to provide innovations in the
field of environment perception for automotive applications, with specific focus on
Deep Learning (DL)/Machine Learning (ML) algorithms and radar data.

The first contribution presented in this document concerns the semantic seg-
mentation of automotive radar point clouds. It consists in an architecture based on
neural networks (NNs) that evolves the state-of-the-art by addressing intrinsic prop-
erties of the radar sensor. The resulting method, called RadarPCNN, proves superior
performance on a custom dataset composed on real-world radar reflections. It ex-
ploits a pre-processing module to learn insightful object-related signatures from the
radar features. Furthermore, it leverages the PointNet++ [64] framework, adopting
the mean-shift (MS) algorithm during the sampling stage to optimize usage of the
scarce spatial information. Finally, an attention mechanism is designed to merge
local information extracted at different stages. All the solutions devised to improve
the semantic segmentation performance on radar point clouds are validated and
results effective, improving the state-of-the-art performance.

The stunning ability of point-wise processing methods to correctly classify object-
reflections, notably pedestrians, has fueled the interest for a deeper investigation.
Indeed, pedestrians are objects which are very difficult to recognize from radar data,
due to their weak signature from the sensor perspective. For this reason, it has
been decided to conduct a survey on the usage of radar features for the pedestrian
detection task. The characteristics of PointNet++ [64], PointNet [65] and random
forest (RF) are evaluated. It is proved that Doppler represents the most informative
feature for the task. Moreover, it is shown that PointNet++ has unique usages of
the radar features compared with the other approaches. Indeed, it is the only tested
method to exploit the spatial point position to infer the pedestrian class prediction.
Finally, it is shown that, despite Doppler severely influences the precision of the
algorithm, the spatial coordinates are important to achieve high recall scores.

Though semantic segmentation provides details about the objects-distribution in
the scene, it does not deliver exhaustive descriptions. For this reason, it has been de-
cided to design a point-wise processing architecture that produce object-estimations
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from raw radar point clouds. The proposed system optimizes the state-of-the-art
radar solution [92] by means of a two-stage procedure. The first stage proposes
points as object center-proposals and move them closer to the true center of the re-
spective object. The second stage leverages the outputs of the first stage to estimate
the object box-parameters. In particular, it discards the template-based formula-
tion from the prior art in favor of a regression-aided one. Furthermore, it adopts a
spherical regression task to estimate the box-orientation. Finally, the addition of a
confidence output score enables filtering of the box-predictions in a post-processing
step. The proposed model is compared with the prior art, proving better detec-
tion performance and box-accuracy, while using less operations. Moreover, it is
successfully evaluated on a multi-class object recognition task, with various input
settings.

Finally, limitations and weaknesses of DL/ML techniques are addressed. In par-
ticular, adversarial examples, i.e. malicious inputs purposefully altered to fool the
system into a wrong outcome. This document introduces a novel adversarial detec-
tor that relies on statistical information from the training-set to identify malicious
samples. Given an input, it extracts a signature by leveraging the prediction of a NN
to several distorted versions. Then, it uses a novel metric to compare the signature
with a class representative vector and compute the detection score. The proposed
method results very effective in various attack settings, achieving state-of-the-art
detection performance.
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Chapter 1

Introduction

The automotive sector represents one of the fastest growing industries in the world.
In particular, the last decade has shown an increasing interest in autonomous (or
self-driving) vehicles which represent the major innovation in the sector. This tech-
nological advancement has the potential to produce more comfortable services, but
also to address and solve critical safety concerns. Indeed, studies have shown that
the majority of car accidents can be attributed to human errors which could have
been prevented by machine operating in their place [27].

In order to achieve fully-autonomous driving capabilities, a system must be able
to build an environmental model: i.e. obtain a complete picture of what is going
on around it. This can be accomplished by means of sensors. Modern vehicles are
equipped with a broad package of sensors, ranging from camera to lidar, radar and
ultrasonic. Each sensor has its own perks. For instance, camera generates very ac-
curate semantic information, enabling the discrimination of target properties – e.g.
colors – which is not possible with other sensors. Lidar provides highly precise rang-
ing information, detecting the presence of objects up to hundreds of meters away.
Radar is less accurate than lidar, but covers larger distances and provides velocity
information. Ultrasonic sensors describe the immediate neighborhood of the vehicle
with very high precision. Nevertheless, it is the combination of all these compo-
nents that enables detailed perception of the surrounding environment. Indeed, by
equipping a vehicle with a suite of sensors, it is possible to detect distant objects as
well as recognize traffic signs, thus providing the means for achieving human-level
awareness of both the scene and its actors.

In humans, sensing and perception processes happen seamlessly: one glance at
the scene and the targets of interest are suddenly spotted and recognized. The same
does not hold true for sensors. They are devices that sense the environment, pro-
ducing as output data that need to be elaborated in order to extract the information
of interest. In autonomous vehicle systems, sensor-data are generally transmitted
to a perception module. This contains the algorithms which process the data and is
responsible for extrapolating the knowledge required to build a model of the environ-
ment. For this reason, the task performed by the perception module is considered
highly safety-critical. Note, indeed, that most autonomous functionalities builds on
its outputs, which directly determine the actions to undertake for a smooth drive.

There exist a vast variety of algorithms for processing automotive sensor data.
However, in the last decades, Artificial Intelligence (AI) methods have emerged
among the others for their abilities to solve very advanced and complicated tasks.
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They are designed to mimic the human awareness-building process: supported by
Machine Learning (ML)/Deep Learning (DL) technologies, these algorithms have
the ability to learn from experience. As a result, these methods can produce very
detailed descriptions of the scene: e.g. they can provide information about the
limits of the roadway as well as detect position and shape of relevant objects along
with their future behaviors. Therefore, AI enables the perception module to build
an accurate and reliable model of the surrounding environment, which can then be
used to take appropriate actions. For instance, the vehicle control system can steer
the wheel to make a turn when approaching a bend or execute an emergency braking
to avoid a kid which has abruptly entered the roadway.

1.1 This Dissertation

The perception system of autonomous vehicles offers various interesting research
topics. This report is focused on the algorithms, rather than the sensing elements
feeding the module. In particular, it has been decided to study the opportunities
offered by the radar sensor, investigating possible methods to leverage the data for
various perception tasks. From an algorithmic perspective, instead, it has been
decided to focus on AI technologies, investigating their ability to operate on the
radar domain and addressing their limitations and weaknesses.

1.1.1 Motivations and Applications

Among the various sensors with which a vehicle is equipped, radar has unique prop-
erties. Indeed, despite it provides less accurate ranging information than lidar, it
possesses certain characteristics which are not found in other sensors. For instance,
radar maintains reliable and robust measurements in a broad range of operating
conditions [103]. Camera and lidar rely on visible light to collect data. This makes
them very similar to the human sensing system, but forces the same drawbacks.
Indeed, critical weather conditions – such as fog or heavy rain – significantly dete-
riorates the capacity of the sensors to observe the environment. Even worse effects
take place in case of direct sunlight or very dark environments1, with the sensors
resulting completely blind. Contrarily, radar is barely affected by adverse operating
conditions. For this reason, it can support semi-autonomous applications, providing
a valid backup to the human driver when the visibility is scarce. Other unique prop-
erties of radar sensors can be found in their measurements. Indeed, it can record
targets up to few hundreds of meters away. In addition, it can instantaneously mea-
sure velocity, a very characteristic target property which results very helpful during
the perception stage. Finally, radar can be placed behind vehicle body panels –
away from dirt and water – and is substantially cheaper than lidar technologies.

Over the course of the years, radar has been progressively more involved in
the automotive industry, enabling a broad variety of applications. A well-know
example is the Adaptive Cruise-Control (ACC) system [17] which can be found in
many consumer vehicles. ACC allows the vehicle to adapt its velocity based on
the traffic conditions around. In order to determine the action to take, it relies
on radar sensors to detect objects and keep track of their distance to the vehicle.

1Lidar can work in scarce visibility conditions (e.g. nighttime) as it is its own source of light.
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Solutions like the ones proposed in chapters 3 and 5 can be used to assist this
functionality. Another widespread application which is supported by radar is the
Automatic Emergency Braking (AEB) system [28]. AEB works as an emergency
functionality, breaking off in case an obstacle is detected on the roadway in the
immediate proximity of the vehicle. Studies have proved that AEB systems have
the ability to avoid serious accidents [39], saving lives in case pedestrians are involved
[34]. For these reasons, it is important to obtain a better understanding about how
the perception module operates, especially for the detection of vulnerable road user
(VRU) such as pedestrians, as proposed in chapter 4.

The applications mentioned so far require that the vehicle pays attention to
a specific region of the surrounding environment. Since the task is limited to a
handful of different outcomes, it can be efficiently executed by means of traditional
algorithms. However, in order to enable more advanced applications, it is necessary
to solve more complicated perception tasks. This can be achieved by means of AI
solutions. AI algorithms differ from traditional methods as they use programs that
do not provide instruction about how to perform the task. Indeed, an AI algorithm
consists in a set of rules that specify the process for learning patterns from the data.
Once identified the most relevant patterns and their relation with the solution of
the task, the algorithm builds a model which contains the rules to best execute
it. This procedure provides a major advantage over traditional algorithms, as the
programmer does not need to cover every corner case. Indeed, traditional programs
require hard-coding of the rules to follow, covering every probable scenario that the
system might encounter. Instead, by learning from the data, AI algorithms can
generalize their knowledge about the task to manifold scenarios.

In the last decades, AI solutions have spread across a broad range of sectors.
They have been adopted as virtual voice assistants [51] as well as for performing
medical diagnosis [57]. Yet, it is only in the recent years that they have found their
place in the automotive industry [22, 38], enabling various advanced applications
such as driver-monitoring [117], traffic sign recognition [95] and classification of
different road users [98]. For instance, in a Traffic Sign Recognition (TSR) system
[95] the algorithm takes as input a raw image and outputs the traffic sign contained.
In this way, the vehicle can take appropriate actions to comply with the Highway
Code – e.g. adjusting the velocity to respect a 50 km/h speed-limit sign.

Finally, this report provides an investigation on AI applied to camera-data. Cam-
era is a sensor which complements very well with radar. Indeed, it does not provide
any ranging or velocity information, but enables discrimination of various object
properties which are not detectable with other sensors. For instance, camera al-
lows recognition of traffic signs or the color of a traffic light. In addition, AI is
renowned for working particularly well on camera-data, as certified by the extensive
literature research [124, 115, 101, 100, 66]. Consequently, it is possible to perform
a deeper investigation on the algorithm, capturing fine details about its operations.
For instance, camera-data enables the exposure of weaknesses and limitations of this
algorithm, which can then be addressed and solved, as proposed in chapter 6.

1.1.2 Challenges

The last decades have witnessed an unprecedented expansion of AI, establishing new
benchmarks in various tasks. Yet, although research and advancements on certain
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domains have grown rapidly, others have been lagged behind. Due to the shortage
of publicly available data, radar falls in this latter category, showing a significant
underdevelopment in terms of AI solutions. Therefore, despite the ability of AI to
generalize to other domains, the major challenge faced in this report is represented
by the limited availability of research in the radar domain.

Radar provides data in two different formats: low-level Range-Doppler maps
(RD-maps) or point clouds. The former have some similarities to camera-data:
they are both structured data-formats which are well-suited for being processed
with standard AI techniques. However, radar ”images” display the energy distri-
bution across range and velocity spectrum, which is drastically different than the
information-content of conventional camera-images. Point clouds, instead, lacks the
structure proper of image-data, thus preventing the adoption of standard camera-
based techniques. In order to process point clouds, therefore, it is necessary to
explore AI techniques devised for other domains. Lidar is another sensor which
produces data in the form of point clouds. Since it presents a comprehensive lit-
erature research, it would be straightforward to utilize lidar-based AI techniques
on radar point clouds. However, the information provided by these two sensors are
critically different. Lidar point clouds contain several millions of points which ac-
curately follow the boundaries of the objects. As a result, it is possible to leverage
information of proximity between points to recover details from the data. Contrar-
ily, radar point clouds are sparser: the targets are represented by dozens of points
and the information is embedded in the radar features rather than the point spatial
distribution. Furthermore, compared to both camera and lidar, the radar sensing
technology provides data which are inherently noisy. Because of all these reasons, it
is not possible to simply generalize AI algorithms to radar data, but it is necessary
to perform some tweaks to accommodate the characteristics of the sensor.

1.1.3 Achievements

The next chapter provides a brief overview about the theoretical concepts behind
the work in this report. Then, the remaining chapters describe the work performed
during the PhD period, which can be summarized with the key achievements listed
below:

� Development of a novel point-wise processing DL method for semantic seg-
mentation of raw radar point clouds. It is shown the importance of adapting
the algorithm to the sensor properties to achieve an efficient processing.

� Assessment of the usage of radar features in point-wise processing DL methods
for the detection of pedestrians. It is proved the major role played by the radar
Doppler feature in various processing schemes.

� Development of a novel point-wise processing DL method for multi-class object
detection from raw radar point clouds. It is proved the ability of DL to produce
accurate box-predictions for different objects using radar point clouds.

� Development of an advanced defensive strategy to counteract the effect of
adversarial examples. It is shown how it is possible to detect malicious samples
using statistics from the training-set.
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Chapter 2

Theoretical Background

The progressively growing interest in autonomous vehicle applications has dramat-
ically increased the research in both radar and ML/DL. Though radar has always
been extensively used in the automotive industry – mostly due to its low costs –, it is
only in the recent years that researchers have started to use it for environment per-
ception tasks. At the same time, the last decades have witnessed the explosion of DL
algorithms which have shown superior performance in various perception problems,
such as classification or object detection, thus enabling a broad variety of applica-
tions. This chapter has the goal to provide the reader with a brief overview about
the theoretical concepts which are behind the scientific contributions presented in
the remainder of the document.

2.1 Radar

RAdio Detection And Ranging, abbreviated radar, is a low-cost sensor which com-
bines reliability under various weather conditions (e.g. rain/fog) with the ability to
perform instantaneous velocity measurements. These aspects make it particularly
well-suited for automotive applications which require sensing of the environment.

Radar perceives the environment by radiating electromagnetic (EM) waves which
bounce off targets and are collected back by the sensor. Based on the sensor technol-
ogy, the transmitted (Tx) signal can have different patterns. The resulting received
(Rx) signal, instead, often maintains similar characteristics to the Tx one, but it is
altered by the presence of targets. Consequently, by processing the received signal,
it is possible to recover information about the surrounding environment. Histori-
cally, radar has commonly been used to determine the range distance between target
and sensor. Consider, for instance, a pulse-radar. This sensor operates by issuing
a signal in a defined time window. Then, it switched to an idle state, awaiting for
the reflected signal. Since the EM wave needs to physically move (at light speed)
from the sensor to target and back, it is possible to determine the distance between
sensor and target by measuring the time delay between Tx and Rx signal – a.k.a.
round-trip delay. Another information that can be recovered from the Rx signal
is the target radial velocity1. Indeed, if the signal is reflected by a moving target, it
experiences a perturbation – generally in frequency – which is proportional to the
relative radial velocity between target and sensor. This instantaneous velocity mea-

1Not every radar technology can measure this property.
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sure is very interesting for various applications, as it enables the distinction between
moving and stationary targets without requiring them to be observed over time.

Despite, during the course of the years, scientists have developed several sensor
technologies, this report focuses on Frequency-Modulated Continuous-Wave (FMCW)
radar, as it is the technology adopted in the research proposed herein, as well as the
most widespread in the automotive industry for environment perception tasks.

2.1.1 FMCW Radar: Sensor and Signal

FMCW radars have the advantage of simultaneously measuring target range and
relative velocity with high accuracy and resolution. Contrarily to pulse-radars, sen-
sors of the Continuous-Wave (CW) family radiate power continuously, instead of
switching between transmission and idle state. This aspect results in safer opera-
tions, as the total transmitted power is not concentrated in a small time window,
thus reducing the peak of radiated power. However, in order to make measurements
technically possible, CW sensors require changes in frequency (or phase) to provide
the necessary timing mark.

The FMCW technology adopts changes in frequency: the sensor radiates a signal
using different frequencies over time. One of the most common signal pattern in
automotive is the saw-tooth modulation, which consists in the transmission of a
signal (a.k.a. chirp) with a frequency ramp. Figure 2.1 shows an example for this
configuration. Note how the Tx signal (black) starts at a specific frequency. Then, it
increases over time, until it reaches its maximum value – defined by the bandwidth
parameter B. The total amount of time required to transmit the signal, Tchirp, is
called chirp time. Afterwards, the signal switches back to the initial frequency,
marking the start of the transmission of the next chirp. When the signal hits a
target and comes back at the sensor, it experiences a time delay ∆t proportional to
the traveled path. This delay produces an instantaneous frequency mismatch ∆f
(also called beat frequency) between Tx (black) and Rx (gray) signal that can be

!

"

#

$%ℎ'()

*+

*,

,-

Figure 2.1: Saw-tooth modulated FMCW radar signal. The Tx signal (black) con-
sists in a ramp sweeping frequencies in the bandwidth B. The Rx signal (gray)
experiences a frequency shift ∆f proportional to the round-trip time delay ∆t. The
Doppler effect produces a frequency shift fD corrupting the range measurement.
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measured to determine target ranging information.
Formally, it is possible to recover the range distance from time measurements as

R =
c ·∆t

2
, (2.1)

where c represents the velocity of light in the propagation medium and ∆t the round-
trip time delay. However, in a FMCW radar, ∆t is not directly observed, as the
beat frequency ∆f is measured. Let now k be the slope of the ramp in fig. 2.1, B
the bandwidth of the signal (or frequency sweep) and Tchirp the chirp time. It is
possible to write the round-trip time delay as

∆t =
∆f

k
where k =

B

Tchirp
, (2.2)

which allows eq. (2.1) to be rewritten in terms of the frequency measurement, i.e.

R =
c ·∆f
2 · k . (2.3)

In order to achieve a correct range measurement, FMCW radar needs the Rx signal
to return before the next chirp is transmitted. Therefore, the maximum range that
can be measured without ambiguity depends on the chirp time as

Rmax =
c · Tchirp

2
. (2.4)

For the range resolution, instead, the slope k represents the key parameter as, given
a fixed time delay, steeper slopes result in higher frequency shifts. Consequently, to
increase the resolution while maintaining the range limits, it is necessary to increase
the bandwidth B of the signal.

The derivation made so far holds true for stationary targets. In case the reflecting
target, instead, has a not null radial velocity, an additional phenomenon must be
considered. Indeed, the Rx signal experience a frequency shift fD – a.k.a Doppler
frequency shift – which translates the whole signal down or up in frequency,
depending on the object’s movement – i.e. away or towards the sensor. Although
this effect produces an alteration in the range measurement, generally, the Doppler
shift is so small compared to the beat frequency that can be safely neglected in
eq. (2.3). Figure 2.1 contains a graphical example of the Doppler frequency shift.

In order to recover velocity information, FMCW radar uses consecutive chirps to
exploit the fact that a moving object changes its position over time. In automotive
sensors, the chirp time is generally few milliseconds or lower [46], therefore, the
target movement between consecutive chirps will be very limited – at 100 km/h, it
travels less than 3 cm, assuming Tchirp = 1 ms. As a result, the Doppler frequency
shift will be so smaller than the beat frequency that can be considered as a phase
shift. For this reason, once calculated the range distance, it is possible to obtain
the Doppler frequency shift, fD, by analyzing the residual oscillation in the signal2.
Then, the target relative radial velocity can be calculated as

vD = −fD · λ
2

, (2.5)

2More details in section 2.1.2.
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where λ is the signal wavelength. The resolution of the measurement depends on
the number of consecutive chirps observed for its computation, n, as

vDres =
λ

2 · Tf
=

λ

2 · n · Tchirp
, (2.6)

where Tf = n ·Tchirp is the so-called frame time. Note how the higher n, the better
the resolution but the longer the signal is observed before obtaining the target
velocity – thus affecting the instantaneity of the process. Finally, since the velocity
is the result of a phase measurement, to avoid ambiguity it is necessary that the
phase difference between adjacent chirps is lesser than π. Therefore, it is possible
to define the maximum unambiguous velocity as

vDmax =
λ

4 · Tchirp
, (2.7)

which happens when the Doppler frequency shift produced matches half the chirp
time frequency – i.e. fD = 1

2·Tchirp . Note how, given a fixed velocity, the lower the

chirp time, the smaller the target movement between adjacent chirps and the lower
the phase shift. Therefore, fast chirp signal requires a higher velocity to produce
a phase shift greater than π. Another interpretation considers that the chirp time
has influence on the phase sampling frequency: the lower it is, the more samples are
produced.

In order to conclusively locate the target in the scene, its angular displacement
w.r.t. the sensor has to be determined. As any other radar technology, FMCW radar
solves this task by measuring the angle-of-arrival (AoA) of the Rx signal. However,
to accomplish this, the sensor must be composed of multiple antenna elements.

Figure 2.2 describes the framework for AoA measurements, where the sensor is
represented by the three antennas at the bottom. The EM wave reflected by the
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Figure 2.2: AoA framework. The target S reflects the Tx EM wave. When it gets
back to the sensor (bottom), a flat wavefront can be assumed. Each antenna element
receives the signal with a different phase-shift ∆φ, proportional to θ – i.e. the AoA.
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target S radiates with circular fronts. However, as the signal travels in the space,
it achieves the far field conditions3 and the wavefront can be assumed flat [21].
When the signal approaches the radar, it is sensed by each antenna element with
a time delay proportional to θ, the AoA. In the example depicted in fig. 2.2, the
reflected wave hits the right-most antenna element first and then gets to the ones on
the left– as it must travel a longer path. This additional time delay affects the range
measurement, however, similarly to the Doppler effect, the resulting frequency shift
is so small that can be considered as a phase shift. Formally, given the distance d
between adjacent antennas, it is possible to express the phase shift as

∆φ =
2πd sin θ

λ
. (2.8)

Therefore, once measured ∆φ, it is possible to invert eq. (2.8) to obtain θ. In
practice, since radar are generally made-up of several antennas, advanced algorithms
are used to extrapolate the AoA4. Angle resolution and field-of-view (FoV), instead,
are defined during the design phase as they depend on the geometry of the elements.

2.1.2 Processing Chain

FMCW radars have the advantage of performing most of the processing in the digital
domain. Therefore, the required hardware is very minimal. Figure 2.3 contains the
analog processing scheme5. A ramp signal steers the Voltage-Controlled Oscillator
(VCO) that generates the Tx signal. The Rx signal is then mixed with the Tx one
and fed to a low-pass filter (LPF). As the mixing operation generates a signal with
two frequency components (sum and difference of the input signals frequencies),
the LPF is necessary to filter out the high frequency component. The output of
this down-mixing operation is a signal which oscillates at the beat frequency ∆f .
Finally, the resulting signal is discretized by an Analog-to-Digital Converter (ADC)
to enable digital processing. The top part of fig. 2.4 illustrates an example of the
whole process. The top graph plots the frequency of Tx (black) and Rx (gray)
signals over time. The center graph reports the signal resulting from the frequency-
difference between Tx and Rx signal. Note how it oscillates at a constant frequency,
i.e. the beat frequency ∆f . Finally, the bottom graph plots the amplitude of the
down-mixed signal and shows the samples collected by the ADC.

The discretized signal contains a collection of samples in the time domain. How-
ever, the ranging information of the target are encoded in the frequency. To ana-
lyze its spectrum, the signal can be processed with the Discrete Fourier Transform
(DFT), which is efficiently performed in the digital domain by the Fast Fourier
Transform (FFT). This operation produces a digital signal which contains the en-
ergy distribution over the frequency domain. Therefore, it is possible to measure
the target range by using the frequency associated with the sample which has the
highest energy. In practice, as shown in the bottom part of fig. 2.4, the samples from
every chirp in a frame are collected and arranged in a matrix. Then, a DFT across
its columns extracts the beat frequency and the ranging information is computed
by means of eq. (2.3).

3In automotive applications far field conditions are achieved after few centimeters.
4More details in section 2.1.2.
5Detailed aspects of the hardware are not reported as they are out-of-the-scope of this report.
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Figure 2.3: FMCW radar analog processing. A voltage ramp steers a VCO. The Rx
signal is down-mixed with the Tx one to recover the beat frequency. After filtering
out the high frequency component, the signal is converted by a ADC.
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Figure 2.4: FMCW radar processing example. Tx (black) and Rx (gray) signals are
down-mixed together generating a signal which oscillates at the beat frequency. This
signal is discretized and arranged in a matrix where each column contains samples
from the same chirp period. DFT across the columns of the matrix (red marked
cells) extracts ranging information. A second DFT across the rows of the matrix
which results from the first DFT (green marked cells) produces velocity information.
The outcome of this operation is the RD-map.
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In the previous section, it has been shown that the relative motion between
sensor and target produces a phase shift. This, in turn, causes a residual fluctuation
in the range spectrum across consecutive chirps, embedding information about the
target radial velocity. Therefore, it is possible to use a DFT to recover the frequency-
content and determine the Doppler shift. In particular, as shown in the bottom part
of fig. 2.4, the DFT is performed across the rows of the data matrix in the center – i.e.
produced by the first DFT. Finally, eq. (2.5) can be leveraged to obtain the relative
radial velocity. In literature, range (column-wise) and Doppler (row-wise) DFTs are
also known as fast-time and slow-time DFT, as they are performed, respectively,
across samples of the same chirp and consecutive chirps. At this point, it is generated
the so-called Range-Doppler map (RD-map), containing energy distribution across
range and velocity plane. Figure 2.5A showcases an example of an RD-map.

As mentioned in the previous section, FMCW radars require several antenna
elements to enable angle detection. Therefore, the processing described so far must
be repeated for each sensing element. The samples of the same range-Doppler cell
from different antennas constitute a new signal containing angular information, also
known as beam-vector (BV). As the spatial displacement of the antennas results
in a phase delay proportional to the AoA, it is possible to recover the angular in-
formation by conducting a spectral analysis on every BV. Though FFT represents
a valid candidate, more sophisticated techniques are usually involved to solve this
task. In automotive radars, commonly used methods are MUltiple SIgnal Charac-
terization (MUSIC) [10], Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) [14] and their derivations [73, 36, 113].

In practice, the large number of cells in the RD-map makes unfeasible to process
every BV with such demanding algorithms. However, as can be noted from fig. 2.5A,
a RD-map generally contains many empty cells. Therefore, a common technique
consists in filtering the input so that only BVs containing a signal will be processed
with the AoA algorithm. In the radar domain, a widely adopted algorithm for
discriminating relevant from noisy cells is the Constant False-Alarm Rate (CFAR)

(A) RD-map. (B) Point cloud.

Figure 2.5: Radar data. The same scene represented by RD-map (front-right sensor)
and point cloud. Best viewed in colors.
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Figure 2.6: Overview of FMCW radar digital processing chain. The discretized
signal is processed with two dimensional DFT (fast- and slow-time) to produce RD-
maps. The CFAR algorithm detects target signals from noisy ones. Finally, an AoA
algorithm extracts angular information to generate a point cloud of detections.

[11]. It is an adaptive method that computes detections by comparing the energy of
the cell-under-test (CUT) with the energy of the neighboring cells. More precisely,
it compares the energy of the CUT with a threshold computed as the mean of the
energy of the neighboring cells, scaled by a constant. This latter is proportional to
the required false-alarm probability, thus enabling the user to set the strictness of
the detection process. Note how the threshold dynamically changes for each cell,
thus selecting local peaks that rise from the noise floor. Finally, every cell that has
an energy higher than the threshold is considered a detection and the corresponding
BV fed to the AoA algorithm that resolves the angle.

Figure 2.6 contains the whole radar processing chain. The outputs of this process
are radar detections, i.e. a list of points determined by the measured range-Doppler-
angle coordinates plus associated energy – a.k.a. radar-cross section (RCS). Since
radars are often used in multi-sensor systems, it is convenient to map the polar-
domain range-angle information to the Cartesian domain. In this way, indeed, by
selecting a global reference system, it is possible to merge the measurements from
different radars in a single data-list. As a result, the environment surrounding
the sensors can be represented by means of a list of points: each point determines a
physical target in the scene, located at the corresponding XY position. Furthermore,
by means of Doppler and RCS measurements, it is possible to provide information
about other properties of the targets like speed and exposure/material. This data-
format is commonly referred to as point cloud. Figure 2.5B showcases an example
of radar point clouds.

2.2 Deep Learning

Deep Learning (DL) is a branch of Machine Learning (ML). ML enables the solution
of tasks which are too complex to be solved with programs of fixed rules designed
by humans. However, ML algorithms are not powerful enough to effectively perform
very complicated Artificial Intelligence (AI) tasks that involve high-dimensional data
– e.g. speech recognition or object detection. DL has been designed to overcome
the limitation of ML with high-dimensional data and the associated computational
costs [49]. Yet, the basic concepts of ML applies to DL as well.

Essentially, ML algorithms are programs that can learn from data. According to
Mitchell [19], “A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks T,
as measured by P, improves with experience E”. In this definition, T is the goal the
system aims to achieve, P a metric that quantifies how well the task is performed
and E the process that enables the system to learn. For instance, a program learns
to preform a classification task (T) if the classification accuracy (P) increases as it
experiences the input-label pairs in the dataset (E).
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Based on the type of experience steering the learning process, ML algorithms can
be divided in unsupervised or supervised. The former learn by collecting useful
properties from a dataset of many samples. For instance, clustering algorithms [5,
16] learn to group samples together based on their similarity in feature space. The
latter, instead, experience a dataset composed of input-label pairs, such that the
algorithm can learn the task by comparing its output with the corresponding target
label. Random forest [20] is an example of supervised method, learning to threshold
the input features to predict the proper output. In a nutshell, given a sample x of
the dataset X , unsupervised methods attempt to learn the data distribution p(x)
by capturing interesting properties of the dataset. On the other hand, supervised
methods are provided with the desired output y, therefore, they attempt to estimate
the probability p(y|x) by learning from the input-label association. The fact that
the system has access to the target label y can be seen as a teacher instructing it
on the task, hence the term supervised.

The next sections are dedicated to the key concepts of DL, describing neural
network (NN) models and the algorithms used for learning.

2.2.1 Neural Network

Neural networks, also known as multi-layer perceptrons (MLP), are the building
block of DL techniques. Ultimately, a NN aims at approximating a function f ∗ such
that, when queried with an input sample x, it produces an output y = f(x;θ) as
close as possible to the target function output f ∗(x). The parameters θ are learned
to shape f as the most accurate approximation of the target function f ∗.

NNs are called neural because they are inspired by neuroscience to resemble the
brain: neuron-like units (or nodes) are connected to each other by means of synaptic-
like weights. However, it is the term network which tells more about this algorithm.
It derives from the structure of NNs, which is a composition of several functions.
Indeed, the final NN function, f(x;θ), is generally constructed by chaining together
several function:

f(x;θ) = f3(f2(f1(x;θ1);θ2);θ3) . (2.9)

In this case, f1 is called the input layer, f3 the output layer and f2 the hidden
layer. The more functions are chained, the deeper is the model. Figure 2.7A shows
the graph related to the function in eq. (2.9) – implemented as a fully-connected
(FC) network with three output nodes.

By inspecting a single unit in an FC model, it is possible to gather more informa-
tion about the basic operation of NNs. FC nets are a kind of NN where each node
in layer l receives as input the output of every node from the previous layer l − 1.
Let xl−1 be the input at layer l, it is possible to write the output (or activation)
of the i-th node at layer l as

xli = h(xl−1;θli) = σ(wli · xl−1 + bli) = σ(
∑

j

wlij · xl−1j + bli) , (2.10)

where σ(·) is a non-linear function, also called activation function, and the pa-
rameters θli are the bias bli and the weights vector (or kernel) wli – containing
the weights that multiply every feature of the input xl−1. Figure 2.7B graphically
depicts the operation in eq. (2.10): the edges connecting the previous layer to the
respective node account for the weights wli, whilst the node is responsible for adding
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(A) FC network. (B) Single unit operation.

Figure 2.7: Graphical illustration of a fully-connected NN.

the bias bli and applying the non-linearity. Therefore, the core operation of NNs con-
sists in a simple weighted combination of the previous layer outputs, filtered by a
non-linearity. However, what defines this algorithm is its ability to learn the values
of the weights that produce the desired final outcome.

Another convenient mathematical representation of NN involves matrix notation.
By considering all the units in layer l, it is possible to express the whole layer output
as

xl = h(xl−1;θl) = σ(W lTxl−1 + bl) , (2.11)

where σ(·) operates element-wise, each column of W l contains the weights related
to a single node and each row of bl the bias. Finally, by chaining eq. (2.11) from the
input layer (l = 1) to the output layer (l = L), it is possible to compute the overall
function f that represents the network.

During the course of the years, several models have spawned from FC networks,
using eq. (2.10) as its core operation. Hereafter, it is provided a description of two
very popular models.

Convolutional Neural Network Convolutional neural networks (CNNs) [13],
are models specialized for processing structured inputs such as time-series data or
images. The intuition behind CNNs relies in the different interaction between input-
output nodes: each unit no longer receives as input every activation in the previous
layer but only a localized subset of them. Specifically, convolution layers use kernels
of predefined shape to span the input, thus resulting in its weights being shared
across different regions of the input. This property is very useful as it allows them
to scale well to data with large and variable size. Over the last decades, CNNs have
proven tremendously effective on images and have been used in a broad variety of
applications, notably image classification.

Recurrent Neural Network All the neural networks described so far belongs to
the feed-forward family – i.e. they can be associated to an acyclic graph where
the information flows in one direction: from the input to the output. Recurrent

14



neural networks (RNNs) [9], are models including feedback connections that inject
information extracted from previous inputs into the processing of the current sample.
This characteristic makes RNNs well-suited for processing sequential data, such as
videos, containing temporal information. The core concept consists in the presence
of a state s in the network which holds information describing the previous samples
seen by the model. Then, the network output can be written as a function of both
the current input xt and the state from the previous sample st−1, as shown in
eq. (2.12a). At the same time, the network needs to update its state in order to
incorporate information extracted from the current input, as shown in eq. (2.12b),

yt = f(xt, st−1;θf ) , (2.12a)

st = g(xt, st−1;θg) . (2.12b)

During the years, several variants of RNNs have been developed to improve the abil-
ity to learn from temporal information [18]. Nowadays, RNNs are very widespread,
finding application in a variety of ordinary tasks like language translation.

2.2.2 Stochastic Gradient Descent and Back-propagation

The previous section stated that the parameters of a NN can be learned. In a DL
framework, the learning procedure is called training, as in this process the model is
instructed on how to perform its task. Specifically, at the output layer is instantiated
an objective function, commonly referred to as loss or cost function, which
tells how bad the current parameters configuration is at performing the task. For
example, in a supervised learning framework, the objective function is typically built
by comparing the network output to a training sample with the associated label.
The lower the objective function is, the closer output and target are. During the
training process, it is addressed an optimization problem that allows the network
to adapt its parameters in order to minimize the cost function. Hence, steering the
output to be as close as possible to the ground-truth (GT) label.

Among the various optimization techniques, DL usually adopts gradient-based
solutions. The optimization theory tells us that the local gradient is very informative
in a minimization/maximization problem: it indicates the slope of the function at
a specific point. Therefore, one could minimize a function by simply following the
opposite direction of the gradient. Indeed, considering a scalar problem where f ′

indicates the derivative of f w.r.t. to x, for many ε small enough holds true that

f
(
x− ε sign(f ′(x)

)
< f(x) . (2.13)

Let now L(θ) be the objective function to minimize and θ the network parame-
ters. Bearing in mind that the gradient is a vector of partial derivatives, it is possible
to rewrite an expression similar to eq. (2.13) in vector notation, i.e.

L
(
θ − ε ∇θL(θ)

)
< L(θ) . (2.14)

The training process attempts to find the configuration θ∗ of the network parameters
that minimize the objective function, namely it tries to solve

θ∗ = arg min
θ
L(θ) . (2.15)
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Exploiting the property in eq. (2.14), it is possible to solve the optimization prob-
lem in eq. (2.15) by iteratively applying eq. (2.16) to follow the gradient direction
downhill

θ(t+1) ← θ(t) − ε ∇θL(θ(t)) . (2.16)

The update rule in eq. (2.16) is known as gradient descent, or method of steep-
est descent, and ε is commonly referred to as learning rate. Note how this
method requires the gradient to be computed at every update step.

In a DL framework, the cost function is usually built-up as sum of per-sample
cost functions over the training dataset X . Equation (2.17) provides an example of
cost function for a supervised learning model, where L(·) is a per-sample loss

L(θ) = E(x,y)∼X [L(x, y,θ)] =
1

N

N∑

i=1

L(x(i), y(i),θ) . (2.17)

By differentiating the loss function in eq. (2.17), it is possible to obtain the signal in
eq. (2.18), which requires computation of the gradient for each sample in the dataset

∇θL(θ) = E(x,y)∼X [∇θL(x, y,θ)] =
1

N

N∑

i=1

∇θL(x(i), y(i),θ) . (2.18)

In practice, calculation of the gradient as in eq. (2.18) is hardly ever possible on
DL datasets, as computational costs grow linearly with dataset dimension N – i.e.
as O(N). Therefore, the standard gradient descent algorithm – with update rule in
eq. (2.16) – would take excessively long to perform a single training step.

To overcome this limitation, DL algorithm generally relies on a variant of gra-
dient descent: stochastic gradient descent (SGD). SGD exploits the fact that the
gradient signal is an expectation, as shown by eq. (2.18). Consequently, it can be
approximated using a subset of the training samples. In more details, this algorithm
requires to query the network with a small batch of inputs. Then, it performs the
update step in eq. (2.16) using as gradient an estimate calculated as

ĝ = E(x,y)∼B[∇θL(x, y,θ)] =
1

n

n∑

i=1

∇θL(x(i), y(i),θ) , (2.19)

where B = {(x(1), y(1)), . . . , (x(n), y(n))} is the current batch of n input-label pairs
uniformly sampled from the training set. Since n is often chosen such that n� N ,
B is commonly known as mini-batch. Though the gradient estimated in eq. (2.19)
is more noisy than the gradient in eq. (2.18) – it is computed on a limited amount
of samples –, it makes possible to scale the problem to be O(1) w.r.t. the dataset
dimension. Nowadays, SGD is extensively used in the DL community, enabling
networks to learn from huge datasets, composed of up to millions of samples.

SGD provides the instructions to analytically compute the gradient. However,
DL networks are very deep, therefore, numerical calculation of such quantity can
be exhaustive. The back-propagation algorithm provides the numerical rules for
gradient computation throughout the network. It exploits the chain rule to decom-
pose gradient computation of a composite functions into intermediate derivatives.
Consider, without loss of generality, the scalar version of the network in eq. (2.9),
where the NN function f is composed of three chained functions f1, f2 and f3, with
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Figure 2.8: Computational graph of a network during training. The dashed gray
arrows show the back-propagation path with corresponding derivatives.

scalar parameters θ1, θ2 and θ3 and output activations a1, a2 and a3, respectively.
Figure 2.8 shows the computational graph of the network during training. Given
the loss ` = L(f(x), y) = L(a3, y), it is possible to compute the update term for the
parameter θ1 of the input layer as

d`

dθ1
=

d`

da3

da3
dθ1

(2.20a)

=
d`

da3

da3
da2

da2
dθ1

(2.20b)

=
d`

da3

da3
da2

da2
da1

da1
dθ1

. (2.20c)

Notice how the derivative has been broken down into several sub-derivatives. The
term d`

da3
contains the error signal resulting from the comparison prediction-label.

The term da1
dθ1

computes the derivative of the input function f1 w.r.t. its parameter

θ1. Finally, the terms da3
da2

and da2
da1

are the derivative of the layer functions f3 and
f2, respectively, w.r.t. their inputs. These two are responsible for propagating the
error signal from the output layer, back into the network, towards the input layer.

The back-propagation algorithm allows the error signal to flow from output to
input while it keeps track of the intermediate derivatives. In this way, it is not
necessary to compute all the derivatives from scratch, thus reducing the computa-
tional complexity. Notice, indeed, how it is possible to reuse the first two terms of
eq. (2.20b) to compute the update term for the parameter θ2. The back-propagation
paradigm is crucial as it enables to train very deep models with a reasonable amount
of resources. Together with SGD, it is the core tool that allows DL to successfully
perform advanced, complicated tasks and generalize to a broad variety of domains.

2.2.3 Tasks

Over the last years, DL has been gradually more involved in various applications,
using different type of sensors [124, 115, 57, 51, 112, 89]. Its ability to generalize
to unseen data with minimal problem modeling requirements, makes this family
of algorithms particularly well suited to solve complex tasks. In this section, the
most common tasks which can be tackled with DL solutions, especially NNs, are
introduced.

Classification It is the most common task in the DL area. In this task, the
model has to associate the input with one of d classes or categories. For instance, a
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classification task might require the algorithm to label an input image as containing
dogs or cats. Therefore, the model is asked to estimate a function f : Rm → [0, 1]d

such that, when queried with a m-dimensional input, it outputs a score for every
one of d classes. A common interpretation of the output score is as probability
of the input to belong to the specific class. During the years, researchers have
collected several datasets targeting the classification task [45, 26, 29]. As an example,
CIFAR10 [26] provides image-label pairs of common objects like planes or ships.

Regression This kind of task challenges the algorithm to produce a continuous
output: the model is asked to predict the exact value of a property of the input,
such as the length or width of a vehicle. It can be formalized as the estimation of
a function f : Rm → R. Compared with classification, regression tasks are more
difficult, as the network has to produce a precise value, rather than selecting within a
pool of possible outcomes. Nowadays, there are several datasets providing regression
tasks [42, 33]. For instance, Brown et al. [33] collected a dataset containing time
series data of the Dow Jones Industrial Index, enabling future stock price predictions.

Semantic Segmentation It extends the classification task to the whole input do-
main. Specifically, it asks to classify every part of the input according to d semantic
classes. Segmentation tasks are very common with point cloud data, where the task
consists in the classification of every point. Formally, given an input with N points
and m features, a model that performs a semantic segmentation task estimates a
function f : RN×m → [0, 1]N×d such that every point gets a classification score
for every output class. Another task from this family is instance segmentation,
which requires not only to classify every point as a class, but also to specify the
different physical instances they belong to.

Object Detection It represents the ultimate solution to environment perception
problems. It combines classification and regression tasks to locate, shape and cate-
gorize the objects of interest present in the input. In this task, the model is asked
to estimate a function f : RN×m → RM×k × [0, 1]M×d, where M is the number of
objects, k the parameters to regress and d the classes of objects of interest. For
instance, the task can require to predict the position of vehicles and pedestrians in
the input, along with their dimension – i.e. length, width and height. N can be
both the number of points in a point cloud or the number of pixel in an image,
while m represents the features associated to each point/pixel. Object detection is
a very complex but informative task which can enable a variety of applications. For
this reason, the research community is very active in this area, with several dataset
available. As an example, NuScene [105] is an automotive dataset providing camera,
lidar and radar data collected in urban scenes along with annotated objects.

2.3 Deep Learning on Radar

The limited availability of public datasets has significantly slowed down the adoption
of DL in the radar domain. However, the recent years have witnessed an intensifica-
tion of the research in this topic. Indeed, concerning the automotive industry, the
unique properties of radar can play an important role in the arm-race to autonomous
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driving solutions. Fueled by these ambitions, researchers have successfully engaged
in the development of various DL techniques to effectively consume radar data.
In this section, the main DL approaches for processing radar data are introduced,
providing details about the state-of-the-art methods.

2.3.1 Classical Approaches

Historically, radar utilization in environment perception systems involved the gener-
ation of occupancy grid-maps (OGMs) [30, 35]. OGMs [12] integrate measurements
over time to create a map representing the surrounding environment. The resulting
grid contains the probability of obstacles being present at every cell location. During
the years, researchers have leveraged the radar features to improve the OGM rep-
resentation. For instance, amplitude grid-maps [48], which use the measured RCS
values, confer to each cell fine details about the obstacles. Due to its structured na-
ture, such data-format can be processed with conventional CNNs to perform tasks
like semantic segmentation or object detection [61, 62, 99, 114]. However, though
this approach results very successful on static objects, it struggles on dynamic ones,
since their movement generates tails corrupting the map.

To overcome these limitations, scientists have proposed to process radar point
clouds in a three-stage approach [78]. In the first stage, a clustering algorithm
groups together detections with similar properties. Then, features of points be-
longing to the same group are leveraged to extract a cluster signature. Finally, a
classification model determines the cluster class based on its signature. An example
of this approach can be found in [67], where the authors used Density Based Spatial
Clustering for Applications with Noise (DBSCAN) [16] at the clustering stage and
a long-short term memory (LSTM) network [18] for classification.

Classical radar processing approaches use DL solutions only at the classification
stage, therefore, they cannot exploit the full strength of such techniques. Yet, more
recent works have proved that it is possible to consume radar data using end-to-end
DL methods, thus leveraging their ability to learn from low-level data. The next
sections provide an overview on state-of-the-art approaches that fully rely on DL to
process radar data.

2.3.2 Point Cloud Approaches

Point cloud is a typical yet efficient data representation for radar. Indeed, contrarily
to OGMs, point clouds do not directly represent void region of the space, as they
are defined as a collection of point-measurements. However, the most successful DL
methods do no scale-well to such unstructured data. As an example, CNNs – which
are the state-of-the-art solution – owe their popularity to remarkable achievements
in image processing. Therefore, new techniques have been designed to enable the
adoption of DL on point clouds.

There are two main techniques for point cloud processing: grid-based and point-
wise. Grid-based approaches convert the point cloud in a structured input, so that
conventional methods, like CNNs, can be applied. Specifically, the point cloud is
fitted into a grid and the point features are encoded into the cells. Based on the
encoding process, it is possible to differentiate between 3D and multi-view methods.
The former use 3D voxel-encoding to enable the deployment of 3D CNNs [88, 56].
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The latter use 2D pixel-encoding to obtain images that can be processed with con-
ventional CNNs [72, 87]. Multi-view methods repeat the encoding process several
times in order to gather different snapshots of the input. Then, features from every
view are fused to recover 3D information. Grid-based methods have proven domi-
nating performance on tasks like shape recognition, semantic/part segmentation and
object detection. Yet, the grid-resolution parameter results in a trade-off between
computational demands (small cells) and information loss (big cells).

Point-wise processing approaches avoid the information-computation trade-off by
consuming raw point clouds. However, since the input received by these methods is
a list – whose entries are the point with associated features –, the network adopted
are constrained to be order-invariant. Note, indeed, how it is possible to generate
a different input by reshuffling the order of the list-entries. Yet, the new list rep-
resents the very same physical point cloud, therefore, the algorithm has to produce
a similar outcome. Despite the order-invariance constraint hampers the design of
point-wise architectures, the literature proves that they can achieve state-of-the-art
performance on complex tasks like semantic/part segmentation and classification
[65, 64, 74, 68]. Additionally, the processing performed by such methods is efficient,
maintaining a low computational complexity without discarding input information.

A sensor which can be associated with radar is lidar (LIgth Detection And Rang-
ing). Despite it possesses different intrinsic properties, indeed, it produces data in
the form of point clouds that describe the surrounding environment. Due to the
limited availability of public radar datasets and the wide popularity of lidar, both
grid-based and point-wise approaches discussed so far have first found application
on lidar-data. However, during the recent years, the research community has shown
increasing interest in radar, thus pushing the development of DL-based solutions for
radar point clouds. In particular, researchers have focused on point-wise processing
approaches, mainly for twofold reasons:

� Radar is a unique sensor, intrinsically different than lidar. The point clouds
produced by radar are very sparse, generally orders of magnitude sparser than
lidar ones. This aspect severely affects grid-based methods, which would result
in many empty grid-cells and/or resolution degradation [93].

� Radar already provides grid-data in the form of RD-maps. Therefore, rather
than encoding point-information into grid-cells, a more effective processing
would use RD-maps as input [89, 97]. Section 2.3.3 provides an overview on
these approaches.

For these reasons, hereafter, it has been focused on point-wise processing techniques,
describing the state-of-the-art in this area and their application on radar data.

PointNet PointNet [65] is a milestone among point-wise processing methods. The
authors designed an order-invariant architecture by leveraging two building-blocks:
shared FC layers and max-pooling. In more details, they noted that, by sharing
the weights of the kernel across all points, it is possible to learn the same high level
representation for every point, regardless of its position in the list. Additionally,
they found out that a symmetric function can extract global information from the
point cloud. Therefore, they adopted max-pooling to leverage the features of all
the points. Then, the global signature can either be used for classification purposes
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Figure 2.9: PointNet architecture. Shared FC layers ensure learning of order-
invariant features. Max-pooling extracts a global descriptor from point-features.
By means of a shared FC classification network it is possible to perform classifica-
tion or segmentation. The ⊕ symbol defines the concatenation operation.

or appended to the features of each point to perform semantic/part segmentation.
Figure 2.9 shows the architecture. PointNet has proven capable to consume raw
point clouds, showing good performance in both classification and segmentation
tasks. However, it fails to encode information of proximity between points, which
represents a key aspect for the solution of more complex tasks.

PointNet++ PointNet++ [64] represents the current state-of-the-art in the field
of point-wise processing. The authors noted that CNNs are so successful because of
their ability to hierarchically encode local low-level structures into high-level pat-
terns. Therefore, they designed an evolution of the PointNet architecture, by using
a hierarchical encoder-decoder structure that can learn from geometric information.
To maintain the ability to consume raw point clouds, they defined two building-
blocks: set-abstraction (SA) and feature-propagation (FP) layers. SA layers are
used in the encoder section to learn high-level representations, whilst FP layers
propagate it back to the lower levels in the decoder section. In more details, SA
layers perform three operations: sampling, grouping and feature extraction. The
first process selects a sub-set of the input points by means of the farthest point sam-
pling (FPS) algorithm, thus uniformly covering the input points. Then, the points
which lie in the neighborhood of the selected ones are grouped together. Finally, an
order-invariant feature extraction module encodes the neighborhood cluster into a
single feature-vector. PointNet is used for this purpose. Figure 2.10 depicts a visual
example. FP layers perform an inverse distance weighted interpolation to propagate
the high level information into the original point locations. Skip connections from
corresponding SA-FP pairs enrich the point signatures, boosting the information
flow. PointNet++ is the most popular architecture among point-wise approaches.

Radar solutions The first works proposing the application of point-wise tech-
niques to process radar point clouds adopt conventional methods. Schumann et
al. [81] deployed a PointNet++ architecture to segment radar reflections accord-
ing to six classes: pedestrian, pedestrian group, bike, truck, car and static. This
work proved that point-wise architectures can generalize well to radar point clouds,
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Input Point Cloud Sampling Feature ExtractionGrouping

Figure 2.10: PointNet++ SA layer operations. The sampling process selects some
of the input points (star-marked). Then, the points which lie nearby are grouped
together, forming a local point cloud. Finally, the local point clouds are processed
with PointNet to extract a signature for each group.

despite they have been designed for other domains. Other researchers enhanced
the PointNet++ framework by introducing radar-related hand-crafted statistics like
point density [93]. They targeted the semantic segmentation task between vehicles
and guardrails. The authors proved that it is possible to improve the system per-
formance by adapting the network to address the nature of radar data. Braun et al.
[118] showed that it is possible to process radar point clouds with a different archi-
tecture. They adopted PointCNN [74] and addressed the task of detecting moving
vehicle and pedestrian points. Other works, focused on solving more complicated
tasks. Schumann et al. [114] addressed the whole scene understanding task. They
used an OGM-based solution to gather insights about the stationary objects in the
scene. Additionally, they designed a novel point-wise architecture to detect dynamic
objects. The authors tampered the PointNet++ framework by introducing a mem-
ory point cloud. This allowed the network to infer the final output based on inputs
seen in the past. The authors targeted the instance segmentation task and proved
that point-based architectures can perform such complex tasks. Danzer et al. [92]
addressed the object detection task with radar data. They used a PointNet model
to detect the points that belong to a vehicle. Then, they estimated the correspond-
ing oriented bounding-box (BB). This work proved that it is possible to predict 2D
object boxes from radar point clouds. Successively, Dreher et al. [109] compared the
model proposed in [92] with a grid-based approach, proving that the former detects
objects more effectively on radar point clouds.

2.3.3 Range-Doppler Map Approaches

An interesting DL approach for radar consists in processing low-level data. Indeed,
Range-Doppler maps are image-like, structured inputs easily consumed by neural
networks. By concatenating the RD-maps generated by every antenna it is possible
to achieve a full 3D radar cube. However, it is worth stressing out that radar
signals live in the polar domain. Therefore, in order to process the radar cube with
conventional, Cartesian-based DL solutions, customizations are required.

Major et al. [97] designed an architecture that can detect objects from the
raw radar cube. Their implementation relies on CNNs to process 2D views of the
input cube: the range-antenna-Doppler (RAD) cube is split into RA, RD and AD
views by summing up the signal power over the excluded dimension. To address the
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polar nature of the data, they resorted to the convolution implementation in [76],
appending the pixel coordinates to each cell. As a result, the convolution output
is conditioned on the location where the kernel is applied. The high-level features
learned from the 2D views of the input are then merged together and propagated
to the original location by means of a decoder 3D CNN. Finally, the latent features
learned in the polar domain are interpolated bi-linearly in a Cartesian grid and
processed with an 3D LSTM network to produce object box proposals. This work
proved that it is possible to detect objects directly from the radar cube. Additionally,
the authors concluded that it is extremely important to take into consideration the
polar nature of the data.

In another work, Brodeski et al. [89] developed a DL framework to extract
detection from the radar cube. The system consists in a 2-stage approach. The first
stage segments the range-Doppler image – using antenna as channel axis – with a 2D
CNN-based encoder-decoder architecture. As a result, every location in the RD-map
is classified as object or non-object. Then, the second stage, receives as input the
3×3 crop of the RD-image, centered on the object cells, and estimates their angular
content (azimuth and elevation) via a CNN. The global signature learned in the
first-stage network is included at this stage to enrich the context information. The
authors evaluated their system on calibration data collected in anechoic chambers,
proving its ability to estimate the correct target position.
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Chapter 3

RadarPCNN: an Innovative

Architecture for Semantic

Segmentation of Radar Point

Clouds

Radar point clouds contain information about the location of targets around the
sensor as well as the target themselves. In autonomous vehicle applications, com-
mon targets include, but are not limited to, vehicles, pedestrians and bikes. The
semantic segmentation task allows the discrimination of points generated by differ-
ent object categories, thus providing insights about the targets distribution in the
scene. Furthermore, its output can be used to enrich the point cloud, enabling the
solution of more complicated tasks like object detection or instance segmentation.

This chapter investigates the effectiveness of DL solutions on radar data. It
begins with a brief presentation of the point cloud semantic segmentation task.
Then, it introduces novel solutions, specifically designed for radar applications, that
improve both efficiency and effectiveness of point-based processing schemes. Sec-
tion 3.3 describes both the dataset and the settings used during the evaluation.
Finally, the last section reports the results of the experiments, proving the validity
of the proposed solutions.

The following own contributions are provided in this chapter:

� Development of RadarPCNN, a novel NN-based point-wise processing archi-
tecture for semantic segmentation of radar point clouds.

� Introduction of a pre-processing module, encoding radar-related information
into point-descriptors.

� Development of an attention mechanism, enabling smart combination of mul-
tiple point-signatures.

� Adoption of the mean-shift (MS) algorithm [5] as sampling method in the
PointNet++ framework.

� Assessment of the network operations such as grouping process and usage of
radar Doppler feature.
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� Analysis of the network errors through visual investigations.

� Study of the radar similarity between pedestrians and bushes.

The results in this chapter were previously published in [108] and [120].

3.1 Point Cloud Semantic Segmentation

Point clouds provide a detailed description of the space surrounding the sensor.
By leveraging information about 3D structures and objects, it is possible to solve
environment perception tasks, such as object detection, instance or semantic seg-
mentation. This latter consists in the classification of each point, according to a set
of classes, thus providing information about the location of the targets. It is possible
to provide a formal definition of the semantic segmentation task. Let’s consider an
unordered collection of N ∈ N points xi ∈ Rm, i = 1, . . . , N , whose elements are
the 2D/3D spatial coordinates with annexed features. The semantic segmentation
task can be defined as the problem of estimating the function f : RN×m → RN×d

such that every input point is associated with one of d semantic classes.
There exist several methods that can be used to semantically segment a point

cloud. The most simple solution consists in using each point’s features to infer the
output class. For this purpose, it is possible to use algorithms like random forest
(RF) [20] or Support Vector Machine (SVM) [15]. The former processes the points’
features with a set of learned threshold to determine the class prediction. The
latter performs its task by finding the hyperplane which best separates the input
data-points, based on their features. Though very straightforward, however, these
methods do not perform very well – as shown in section 3.4 –, due to the lack of
context in the inference process. More advanced solutions make use of clustering
algorithms – like DBSCAN [16] – to group together points with similar properties.
Then, new features are computed from points belonging to the same cluster and
used as input to either RF, SVM or NN models, which predict a class for the whole
cluster [67, 78]. By propagating the cluster predicted class to every associated
point, it is possible to semantically segment the whole point cloud. However, despite
introducing context information in the decision process, these techniques still depend
on the correctness of the clustering algorithm.

The most recent and efficient solutions involve NN-based architectures. As de-
scribed in section 2.3.2, there are two main families. Grid-based methods resort to
grids to exploit the strength of computer vision (CV) approaches. However, these
methods can output a semantic segmentation grid rather than points. A workaround
consists in assigning to each point which fall in a given cell the class prediction of the
cell. Note that grid-based algorithms are strongly characterized by the cell resolu-
tion: the smaller the cells, the lower the minimum distance allowed between objects
of different classes, but the higher the computational overhead – due to empty cells
with no points. The second family of algorithms that can be used for semantic seg-
mentation purposes are the point-wise processing methods. These methods consume
raw point clouds, therefore, they produce as output a class for every input point.

Among the various existing point-wise processing methods, PointNet++ [64]
represents the current state-of-the-art. It has been designed to replicate the op-
erations of traditional CNNs, in particular, their ability to hierarchically abstract
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low-level structures into high-level patterns1. However, the original purpose of this
architecture has been to process lidar point clouds, which differ substantially from
radar ones. Indeed, radar has the ability to measure object-related attributes, which
results in additional features like Doppler and RCS. On the other hand, lidar has
higher spatial precision which results in high-density point clouds. Therefore, it is
necessary to adapt the architecture before deploying it on radar data. Neverthe-
less, several works have demonstrated that PointNet++ can generalize well to radar
point clouds [81, 93], achieving dominating semantic segmentation performance.

3.2 RadarPCNN

PointNet++ has proved to be an effective tool for consuming radar point clouds. It
is characterized by its ability to use structural information. Indeed, by processing
local groups of points, it enables the extraction of high-level local descriptors from
low-level patterns. For instance, consider a scene containing the corner of a building,
like in fig. 3.1. In order to recognize the whole object, the system must have a field-
of-view (FoV) broad enough to asses both straight parts and the corner. By breaking
down the input in local groups of points, it is possible to distribute the task. In
this way, points locally scattered to form an L-like shape hints the presence of a
corner. On the other hand, points in a straight line suggests the presence of an
edge. Therefore, it is possible to encode this information in high-level signatures,
providing a local descriptions of the environment.

Radar, however, provides weak structural information. Due to technology limi-
tations, it usually generates point clouds with lower density than lidar ones. This
effect is visible in fig. 3.1. It shows a point cloud recorded with lidar (left) and radar
(right). Both images describe the same scene, where the ego-vehicle is turning left
at a crossroad. Note how much denser is the lidar point cloud compared to the

1The interested reader is referred to section 2.3.2 for a detailed description of PointNet++.
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(B) Radar point cloud.

Figure 3.1: Lidar and radar point clouds describing the same scene where the ego-
vehicle is turning left at a crossroad. Black rectangles represent objects of interest.
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radar one, providing very detailed shape information. Back to the building’s corner
example, it is possible to observe that lidar accurately depicts the contours of the
buildings. On the other hand, radar is not so precise: it provides a fairly good
appearance of the corner in front of the ego-vehicle, but it is difficult to visualize
the exact location of the other three corners. Consequently, since PointNet++ re-
lies mostly on spatial structural information to perform its task, it is believed that,
although effective, it represents a sub-optimal solution for processing radar data.

Radar has other advantages over lidar, like the ability to operate in hard weather
conditions and to measure object-related attributes. This latter, in particular, can
be leveraged to increase the efficiency of the processing scheme. Indeed, it is cru-
cial that the underlying characteristics of the sensor are addressed and exploited
by the network. This section introduces RadarPCNN, a novel point-wise processing
architecture specifically-designed for semantic segmentation of radar point clouds.
RadarPCNN uses a pre-processing module to leverage object-related features and
enrich the input points signature. Moreover, it is proposed to use mean-shift (MS)
[5] to improve the usage of the scarce structural information provided by radar. The
PointNet++ scheme is adopted to enable consumption of raw point clouds. How-
ever, the hierarchical structure is discarded in favor of an object-oriented configura-
tion. Finally, an attention mechanism is proposed to fuse information extracted at
different levels within the network. Figure 3.2 contains the developed architecture.

3.2.1 Pre-processing Module

The most important radar characteristic that can be exploited during processing
lies in its features. Radar provides two highly-informative target-related attributes:
Doppler and radar-cross section (RCS). The Doppler feature contains dynamic in-
formation about the target. It generates as a frequency shift, proportional to the
relative radial velocity between sensor and target. This attribute can be used to
distinguish moving from stationary objects. RCS, instead, provides information
about the nature and pose of the target. It can be interpreted as an energy-like
attribute of the radar signal: metallic targets produce high RCS values while hybrid
targets, like pedestrians, generate lower values. However, it is also dependent on the
target pose, as it is proportional to the area irradiated by the radar signal. When
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Figure 3.2: RadarPCNN architecture. The proposed pre-processing module learns
features for each point. Mean shift is used to alter the sampling process of a single-
stage PointNet++. An attention mechanism fuses point signatures and a shared
FC-network produces the class scores. Best viewed in color.
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combined together, Doppler and RCS build-up a signature for specific objects. For
instance, pedestrians have a broad Doppler-spectrum and weak RCS values [31],
while metallic poles share a static Doppler with fairly constant RCS values.

Classical radar processing methods usually rely on clustering algorithms to lever-
age this information [78]. First, they group together detections which share similar
underlying statistics – e.g. spatial proximity. Then, they build a signature that
describes the cluster, by collecting statistics over the features of the points in each
group. However, these approaches are sub-optimal, as they rely on the clustering al-
gorithm to group together points related to each other – e.g. generated by the same
object. This opens-up to the possibility of outliers which can potentially corrupt
the cluster signature and, eventually, lead to erroneous final predictions. Finally,
it is worth noting that each radar reflection carries relevant target-related features.
Since the ability to exploit all the available information represents a crucial aspect
for an efficient processing, therefore, it is important that the algorithm possesses the
means to leverage this data.

NNs are notoriously good at extracting high-dimensional descriptors from low-
level features. Therefore, in a point-wise processing framework, it is possible to
leverage this property to encode informative radar measurements into meaningful
point-signatures. In this section, a novel data-learned pre-processing module is
proposed. It adopts a FC-network to generate high-dimensional point-descriptors
based on single-point radar features. In more details, given the generic i-th point
with input features xi ∈ Rm – containing x, y, Doppler and RCS –, the proposed
pre-processing module uses a shared FC-network – with trainable parameters Pp –,
to build a new point-signature xip ∈ Rm′ , i.e.

xip = fp(x
i;Pp) = ReLU

(
P3

T ReLU
(
P2

T ReLU
(
P1

Txi + p1
)

+ p2
)

+ p3
)
, (3.1)

where Pp = {P1,P2,P3,p1,p2,p3} and the Rectified Linear Unit (ReLU) is used
as activation function – i.e. ReLU(x) = max(x, 0). Note how the new features com-
puted for every point are based uniquely on the radar measurements of the specific
point. In this way, the module is forced to learn the task of extracting knowl-
edge from the radar features, as it cannot rely on any other information source.
Moreover, neighboring points, with dominating features, cannot eclipse the radar
measurements of the current point. Notice also, in eq. (3.1), how the parameter-set
Pp is shared across all points. Nevertheless, every point receives a unique signature,
steered by its own input features. Figure 3.3 shows the operations of the proposed
pre-processing module. Since it has been designed to produce an output that pre-
serves the spatial structure of the input point clouds, the original point locations
result unaltered by this operation.

per-point shared
FC layers

Figure 3.3: The proposed pre-processing module. The input features of every point
are combined, by means of a shared FC-network, to obtain a richer feature-set.
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The pre-processing module described in this section enables the network to ex-
ploit the information embedded in the features of every input point. It provides as
output a point cloud with a deeper feature-set, encoding the radar perspective of the
objects. As a result, the deeper, latent point cloud retains the radar structural in-
formation, but has new point-descriptors that increases the distance between points
with diverse radar properties, thus facilitating the classification task. Finally, due
to the simplicity of the process, it is possible to easily plug the proposed solution to
every point-wise processing architecture, improving their classification performance,
as shown in section 3.4.

3.2.2 Altered PointNet++

RadarPCNN adopts the pre-processing module described in section 3.2.1. It gener-
ates deeper point clouds, abstracting the radar perception of the targets, however,
it does not use any context information. Despite radar provides sparser point clouds
than other sensors, to achieve an optimal processing scheme, it is important to ex-
ploit structural information. Indeed, by analyzing the features of points close to
each other, it is possible to collect useful insights. For instance, consider a point
with the common properties of a pedestrian – bearing in mind that pedestrians
have specific radar characteristics [24, 31]. Since pedestrians are often located be-
sides static objects – e.g. buildings, traffic-lights or stationary vehicles – additional
details can be collected by studying the neighboring points. In particular, if detec-
tions of stationary objects lie nearby, it is possible to encode this knowledge and
strengthen the point signature. The next stage of the network has been designed
to extract context information. Specifically, it has the goal to generate descriptive
classification features that enable the detection of the most interesting objects in
the scene.

Among various possible solutions, it has been decided to adopt the PointNet++
framework for two reasons. In this way, indeed, RadarPCNN can process raw point
clouds and, at the same time, inherits the ability to extract information from local
neighborhoods. However, it has been decided to alter the standard architecture in
order to take into account the lower density of radar point clouds. In particular, the
sampling process in the SA layers has been altered by means of mean-shift (MS)
and the hierarchical structure is discarded in favor of an object-oriented approach.

The PointNet++ framework consists in an encoder-decoder structure. Its oper-
ations are depicted inside the orange rectangles in fig. 3.2. The encoder section has
the task of embedding context information into local descriptors. SA layers are used
as building blocks. They perform three operations: sampling, grouping and feature
extraction. Formally, consider an input point cloud X = {xi ∈ Rm, i = 1, . . . , N}.
The sampling process selects a collection of points SSA ⊂ X as center of the local
descriptors. Then, for each representative point xj ∈ SSA, the grouping process
clusters together all the points xi ∈ X that lie in its neighborhood. A distance
function and a search range define the neighborhood area. Therefore, the outcome
of the grouping process is a collection of |SSA| local point clouds

GjSA = {xi ∈ X | d(xi,xj) < r} ∀ xj ∈ SSA , (3.2)

where |·| is the set-size operator – returning the number of elements in the set –, d(·, ·)
a suitable distance function and r the search range. Finally, the feature extraction
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process abstracts the local point clouds, by encoding their structural information
into local descriptors. In order to perform this task, a local shared PointNet [65]
network is deployed, using shared FC-networks and the max-pooling operator – as
illustrated in fig. 2.9. As a result, the output of an SA layer consists in a point cloud
XSA, with locations defined by the points xj ∈ SSA and features calculated as

xjSA = MaxPool
(
ReLU

(
WSA

TGj +BSA

))
∀ xj ∈ SSA , (3.3)

where Gj is the matrix whose columns contain the points xi ∈ GjSA – the set of
neighbors of xj – and WSA and BSA the learnable parameters of the FC-network
– weights and biases, respectively. MaxPool is the max-pooling operator used to
return the maximum value in each row. Note that, since the output of an SA layer
is still a point cloud, it is possible to stack multiple SA layers by feeding the output
of one layer as input to the next one.

The decoder section of the PointNet++ framework, instead, propagates the high-
level signatures back at the input point locations. FP layers are the building blocks
used to perform this task. They execute an inverse-distance weighted interpolation
followed by a learning stage. Consider, without loss of generality, a framework with
a single encoder-decoder layer. In this case, X is the input of the SA layer and XSA

represents both the output of the SA layer and the input of the FP layer. Therefore,
the FP layer’s objective consists in propagating the information encoded in XSA

into the point locations in X . The first step consists in grouping together, for each
point xj ∈ X , the three closest points xiSA ∈ XSA – a.k.a. nearest-neighbors –
according to a given distance function d(·, ·), i.e.

GjFP = {{xi1SA,xi2SA,xi3SA} ∈ XSA | max
i∈{i1,i2,i3}

dji < djk ∀ xkSA ∈ XSA\GjFP } , (3.4)

where · \ · is the set-difference operator2 and dji
M
= d(xj ,xiSA) for notation con-

venience. Then, the high-level features of the points in GjFP are propagated by
means of an inverse-distance weighted interpolation. This procedure results in a
point cloud PFP , whose points have the same spatial location of the points xj ∈ X ,
but features computed as

xjfeat =
( ∑

xi
g∈Gj

FP

1

d(xj ,xig)

)−1
·
∑

xi
g∈Gj

FP

1

d(xj ,xig)
· xig ∀ xj ∈ X . (3.5)

Notice that the first term on the right-hand side of eq. (3.5) operates as a normal-
ization factor, as it contains the sum of the inverse distances. In this way, the closer
the point xig is to the new point xj , the higher its impact on the resulting signature

will be. Next, the features of the points xj ∈ X – i.e. the SA layer input – are
concatenated with the features of the points in the interpolated point cloud PFP .
This skip-connection ensures propagation of the single-points low-level signatures.
Finally, new point descriptors are calculated by sharing an FC-network across all
points, i.e.

xjFP = ReLU
(
WFP

T · [xjp
T
,xj

T
]T + bFP

)
∀ (xjp, x

j) ∈ (PFP , X ) , (3.6)

2The set-difference operator is defined such that A \ B = {x ∈ A | x /∈ B}.
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where WFP and bFP are learnable weight and bias parameters of the FC-network.
Note that the point cloud produced as output of the framework, XFP , has points at
the same location of the input point cloud X . However, as the point-descriptors are
computed using eq. (3.6), they combine single-point and local structural information.
The same derivation can be extended to a multiple SA-FP layers architecture, by
coupling the corresponding encoder-decoder layers.

RadarPCNN uses an altered version of the PointNet++ framework to address the
properties of the radar sensor. Standard SA layers use the farthest point sampling
(FPS) algorithm [7] in the sampling process. FPS works by first selecting a point
at random. Next, it selects the point which lies the farthest from the first point. It
continues to iteratively select the point that has the largest cumulative distance from
all the points already present in the list, until it is filled with the number of points
requested as input. Due to its ability to sample uniformly from the input space,
FPS is well-suited for very dense point clouds, where the objective is to represent
the same information with a lower amount of points. Radar, however, provides
sparse data with very localized information. Therefore, it is possible to optimize
the usage of structural information by exploring regions with high point-density.
For this reason, it has been decided to tamper the sampling process, replacing the
standard FPS method with the mean-shift (MS) clustering algorithm [5]. MS allows
the localization of local maxima of the distribution defined by a set of observations.
It operates by applying a given kernel function k(x−xi;h) to each data-point xi. In
this way, it is possible to determine the value of the distribution f(x) at the nearby
locations x around xi. Then, by summing-up the contribution of every data-point,
MS builds-up the data distribution f(x), i.e.

f(x) =
∑

i

k(x− xi;h) , (3.7)

where h > 0 is the bandwidth parameter, controlling the kernel’s width. Finally, it
is possible to use an iterative optimization algorithm to find the locations of the local
maxima in f(x). Figure 3.4 contains a graphical representation of the procedure.

In RadarPCNN, it is proposed to use MS to sample locations of the space where
there is a high concentration of points. Therefore, point locations xi ∈ X are

0 1 2 3 4 5 6 7 8 9

1
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5

Figure 3.4: Mean shift algorithm applied to a one-dimensional problem. The red
points represent the data observations xi. The black-dotted lines are the kernels
applied to each data-point. Gaussian kernels in eq. (3.8) are used, with h = 0.8 and
c = h

√
π. The green curve is the distribution f(x) computed as in eq. (3.7). The

blue points are the local maxima selected by the algorithm. Best viewed in color.
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used as observation of the distribution f(x). In particular, kernels are centered at
each point location and summed-up to build f(x). Then, the local maxima of the
resulting distribution are used as representative points in the SA layer – i.e. to define
SSA. The proposed solution adopts multidimensional Gaussian kernels, defined as

k(x− xi;h) =
c

h
√
π
e−
‖x−xi‖22

h2 . (3.8)

In eq. (3.8), ‖·‖2 is the L2-norm operator, therefore, xi acts as the mean parameter
of the Gaussian function, while the bandwidth parameter h is proportional to the
standard deviation σ – i.e. h2 = 2σ2. The constant c is used to normalize the
function – e.g. by setting c = h

√
π, the kernel output is constrained in the range

(0, 1). It is also worth noting how the bandwidth parameter enables control over
the total amount of points produced by MS: the lower it is, the smaller the width of
the kernel is, thus the closer two points must be to sum-up their contributions. To
understand this effect, it is possible to study the behavior of the algorithm at the
two extremes. Large values of h produce wide kernels. As it approaches infinity, the
kernel becomes flat, i.e.

lim
h→∞

c

h
√
π
e−
‖x−xi‖22

h2 = 0 , (3.9)

thus, every point is affected by any other point, regardless of their relative position.
This configuration, however, sums-up to a constant distribution function, hence
producing no local maxima solution. Therefore, it produces the same output of the
FPS algorithm when 0 points are requested. On the other hand, as h gets smaller,
the kernel starts to shrink, until it becomes an impulse. Formally, indeed,

lim
h→0

c

h
√
π
e−
‖x−xi‖22

h2 = δ(x− xi) , (3.10)

where δ(x− xi) is the Dirac delta centered at xi, namely,

δ(x− xi) =

{
∞, if x = xi,

0, otherwise .
(3.11)

In this configuration, contributions of different points cannot sum-up, as the kernel
has infinitesimal width. Therefore, eq. (3.7) generates a distribution which has peaks
at the location of the data-observations and is null elsewhere. Since this function
has local maxima located at all the input point locations, this is tantamount to the
FPS algorithm, when it is requested to sample all the input data-points.

Although, under special configurations, MS can be equivalent to FPS, the two
algorithms are significantly different. Indeed, in normal settings, MS samples repre-
sentative points from high-density regions, respecting the distribution of the input
data. On the other hand, FPS performs a uniform sampling, covering the whole
input as much as possible. Moreover, note that MS can produce as output clus-
ters, assigning the input points according to the cluster they contributed to. Yet,
RadarPCNN does not use this information to avoid incurring in the limitation of
the clustering algorithm. The grouping process, therefore, remains unaltered. Here,
the Euclidean distance is used to define the neighborhood area. Formally, given the
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coordinates (xi, yi, zi) of the i-th point xi and the coordinates (xj, yj, zj) of the j-th
point xj , it is defined as

dE(xi,xj) = ‖xi − xj‖2 =
√
x2 + y2 + z2 , (3.12)

where x = xi−xj and y, z are computed accordingly. Although other solutions have
been implemented to improve the grouping stage, the Euclidean distance provides
the best performance – further details in section 3.4.2. About the decoder section of
the framework, unaltered FP layers are used, maintaining all the original operations.

Finally, it has been observed that SA layers work by encoding dense, low-level
data into sparser high-level point clouds. In order to avoid further sparsification
of the input in the hidden-layers, it has been decided to abandon the hierarchical
PointNet++ structure. In this way, indeed, it is possible to avoid sub-sampling
from a sub-set of the input points, operation that might prove fatal on sparse radar
data. Instead, it has been used two independent, object-focused, single layer mini-
PointNet++ – as illustrated in top and bottom branch of fig. 3.2. In particular, one
network is configured to focus on small objects such as pedestrians, bikes, etc (top
branch). It uses a dense sampling strategy (MS with bandwidth 2.0) and groups
points in small neighborhood areas (below 2 meters around the representative point).
The other network (bottom branch), instead, is set-up to extract information from
larger objects such as cars, trucks, etc. Therefore, it uses a higher MS bandwidth
value (i.e. 8.0) to produce sparser representative point clouds. Then, it uses larger
neighboring areas to group together nearby points (4 to 8 meters). As a result, the
output of this stage of RadarPCNN consists in two point clouds X1 and X2, sharing
the same point locations. Yet, they provide different point descriptors, as they use
diverse settings to encode context-related information.

3.2.3 Attention Mechanism

In order to semantically segment a point cloud, it is necessary to produce a signa-
ture for each point, containing relevant information for the classification task. The
processing scheme of RadarPCNN presented so far, has been designed to extract
both single-point and context-based information. However, since it uses two altered
PointNet++ networks, it generates two signatures for every input point. Therefore,
RadarPCNN requires a module that has the ability to combine different informative
patterns into a single point-descriptor. Note that it is possible to accomplish this
task using very simple methods. For instance, a suitable solution consists in the
addition operation. Indeed, by summing element-wise two equally-sized vectors, it
is possible to merge them into a single one. However, this operation can potentially
destroy part of the information present in the vectors. Another simple solution is
represented by the concatenation operation. As this method chains together the
two vectors, it does not alter its elements, hence preserving all the information. Yet,
it increases the dimensionality of the output vector, thus raising the computation
complexity of the algorithm. Moreover, as it just propagates the two vectors, it
leaves the filtering task entirely to the final classification network.

Similarly to [87], RadarPCNN has the ability to decide the best combination
of the two point-signatures. Indeed, it is equipped with the attention mechanism
in fig. 3.5. This module collects, for each point, the different signatures extracted
by top (green point) and bottom (red point) branch. Then, it fuses their features
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Figure 3.5: Attention mechanism. It fuses together different signatures of the same
point through a learned weighted combination. Best viewed in color.

together by means of a learned weighted combination. An FC-network is used to
compute the weights, sharing its parameters across the different signatures of every
point. Formally, given the i-th point and the features xi1 ∈ X1 and xi2 ∈ X2 learned
in the two altered PointNet++, it calculates the scalar attention weights wi1 and wi2
as

wi1 = fa(x
i
1;A,a) = σ

(
aT ReLU

(
ATxi1

))
and wi2 = fa(x

i
2;A,a) , (3.13)

where A and a are learnable parameters of the FC-network and σ(·) the sigmoid ac-
tivation function – i.e. σ(x) = (1+e−x)−1. Notice how the same network parameters
are used to compute the attention weights of both vectors. Moreover, as they are
independent from the index i, they are shared across all points in the point cloud.
In this way, the network cannot be biased towards signatures from a specific branch.
Therefore, it learns to compute the weights based on the saliency of the patterns
present in the vectors. Finally, the signatures xi1 and xi2 are merged into a single
classification vector xiATT (orange point) by means of a weighted combination, i.e.

xiATT = wi1 · xi1 + wi2 · xi2 . (3.14)

The proposed attention mechanism enables the network to perform an intelligent
fusion. Similarly to the addition operation, it performs a linear combination of the
two vectors. However, it explores the features of the signatures to generate the
weights. Therefore, it can decide to increase the contribution of the vector with
more relevant patterns for the final task, thus filtering out information.

3.2.4 Classification Network

The attention mechanism outputs a point cloud XATT with points located as in
the input point cloud X . Each point, has a descriptor vector, computed as in
eq. (3.14), encoding radar-specific point-properties as well as context information
gathered from small and large objects. This point cloud is fed to a classification
network to produce the final semantic segmentation scores. It consists in a multi-
layer FC-network shared across the points, i.e.

xjo = WO3

T ReLU
(
WO2

T ReLU
(
WO1

Txj + bO1

)
+ bO2

)
∀ xj ∈ XATT , (3.15)

Notice that no activation function is used at the last layer of the classification
network. In this way, it is possible to cast either a multi-class classification problem
or several – dependent or not – binary ones.
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The output point cloud XO is made-up of points which maintains the input point
locations, but features xi ∈ Rd, where d represents the number of output semantic
classes. Therefore, every feature of the points in XO holds a non-normalized score
associated with one output class. Generally, the higher the score is, the more certain
the network is about predicting a specific class. Finally, it is worth noting that, as
every layer entails a differentiable operation, the whole network can be trained in
an end-to-end fashion. Therefore, the output segmentation loss can be used to train
the network, without the need of any intermediate loss.

3.3 Experimental Setup

This section reports the experimental setup adopted during the evaluation process.
The proposed solutions are tested on a two-class semantic segmentation task. In
particular, RadarPCNN has been trained to recognize detections from moving pedes-
trians or moving vehicles. Points generated by other objects in the scene or clutter
are assigned to the negative background class. Results are reported in terms of pre-
cision, recall and F1 score on the two positive classes. Recall measures the ability
of the network to recognize all points of a given class, while precision quantifies the
correctness of the predictions. F1 score provides a summary of the network perfor-
mance, as it calculates the harmonic mean between precision and recall. Formally,
it is possible to define precision (Pr), recall (Re) and F1 score as

Pr =
TP

TP + FP
, Re =

TP

TP + FN
and F1 =

2
1
Pr

+ 1
Re

= 2 · Pr ·Re

Pr +Re

, (3.16)

where TP , FP and FN are, respectively, true positive, false positive and false
negative samples3. Note that the denominator of the precision formula corresponds
to the total amount of positive predictions, while in the recall formula, it contains
the total amount of positive samples. In order to extract the results, the multi-class
task has been cast into two binary problems. For instance, the results collected
on the pedestrian class consider pedestrian points as positive, and both vehicles
and other points as negative. In addition, the macro-average version of the metrics
are reported, to provide an overview of the network performance on the multi-class
task. They are computed by averaging the single-class results, without considering
the amount of positive samples – i.e. each class provides an equal contribution. For
completeness, confusion matrices are also provided, showing the distribution of the
network predictions on all three classes – i.e. pedestrian, vehicle and other. Finally,
as part of a visual investigation, semantic segmentation predictions on real-world
radar point clouds are included.

3.3.1 Dataset

The evaluation of the proposed solutions suffers from the shortages of publicly avail-
able radar datasets. To circumvent this obstacle, a customary solution consists in the
adoption of simulated (or synthetic) data. By means of a computer-run simulation,
indeed, it is possible to reproduce the environment where the system is supposed to

3TP are positive samples correctly predicted, FP are negative samples erroneously predicted as
positive and FN are missed positive samples, predicted as negative.
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operate as well as the resulting sensor readings. For instance, an urban scene can
be reconstructed around the ego-vehicle and the corresponding radar measurements
can be simulated. However, although synthetic results can provide significant in-
sights to steer the early stages of development, they are not sufficient to fully assess
the performance of a system. Indeed, simulations provide a simplified version of the
real-world environment, neglecting complex, non-linear effects that would influence
the sensor operations in the real-world. This holds particularly true for radar, which
is exposed to several factors hard to implement in a simulated environment. For
instance, the radar signal is significantly affected by marginal details such as mate-
rial of the target and/or roughness of the reflective surface. This introduces a gap
between real-world and synthetic data, leading to biased evaluation results.

For these reasons, it has been decided to collect a proprietary dataset. In partic-
ular, a fleet of vehicles were equipped with six FMCW 77GHz radars and deployed
to record real-world radar reflections in urban scenes under clear, rainy and cloudy
weather conditions. The sensors were mounted uniformly on the vehicles. Fig-
ure 3.6A shows the specific configuration, which consists in two front radars off-set
by ±60°, two lateral sensors and two rear sensor off-set by ±120°. Note that this
mounting setting results in blind spots in front and rear of the vehicle, extending
for 2.7 m circa. Yet, as shown in fig. 3.6B, it enables coverage of most of the scene
around the ego-vehicle with at least two sensors. In this way, it is possible to intro-
duce the necessary redundancy to guarantee operational safety of the system even
under the scenario of a malfunctioning sensor. Each radar collected reflections from
targets up to 90 meters, in a field-of-view of ±75°. The total perception area of the
vehicles and its distribution across sensors is shown in fig. 3.6B. The highest Doppler
resolution is 0.13 m/s, while in range it is 30 cm. Azimuth resolution is fixed at
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Figure 3.6: Sensor mounting configuration and coverage. The ego-vehicle is shown
at the origin. Different sensors are represented by triangle markers with different
colors, oriented according to the sensor. Colored lines indicate the boundaries of the
FoV. Gray regions shows the area covered by the sensors. Darker gray areas result
from the superposition of multiple sensors. Best viewed in color.
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±7.5°. The recording frequency is 20 Hz. In total, the collected dataset counts 84
video sequences and more than 40 million points, annotated as pedestrian, vehicle
or other/clutter. BB labels are used to represent objects in the scene and associate
every point with the corresponding class. In particular, every point is located in the
scene: if it falls inside a BB, it is labeled as the corresponding object class; otherwise
it is labeled as other/clutter. Since pedestrians have very small sizes – the average
BB size is 70 cm –, their BB boundaries are extended by 30 cm to avoid mislabeling
of points just outside them. Manual-human labels as well as computer-generated
ones are adopted.

Automotive radar point clouds generally contain weak stationary object infor-
mation. Although OGM algorithms can enable the extraction of static context, the
detection of stationary objects is a very challenging task. Indeed, they do not have a
unique radar signature, as they share the same Doppler of other still instances (e.g.
buildings). In addition, the sparsity of radar point clouds prevents the accumula-
tion of enough local points, thus hindering the extraction of shape patterns. For
this reason, is has been decided to focus on moving objects. In this setup, a critical
decision consists in the definition of moving object. As vehicles and pedestrians have
significantly different velocity profiles, it has been decided to use different thresh-
olding configurations. In particular, a pedestrian is considered moving if it has a
ground-truth velocity greater than 0.5 m/s, while for vehicles is used a threshold
value of 2.5 m/s. Note that the velocity threshold is a very sensitive parameter, as
wrong settings can either create a trivial problem or mislabel stationary objects as
moving. However, its configuration affects the evaluation mostly from a numerical
perspective. Indeed, regardless of the threshold values, the network can correctly
classify points from objects with low velocity as moving – as shown in section 3.4.3.
Consequently, reflections from objects with velocity values below the selected thresh-
olds are forced to be transparent during both training and evaluation process. Yet,
points from objects that do not move at all in the scene – e.g. parked vehicles, poles,
trees – are assigned to the other/clutter class. Table 3.1 contains the point distri-
bution in the dataset. Note that both train and test set have similar distributions
of class-points and rainy/cloudy/clear scenes.

3.3.2 Settings

The video sequences in our dataset are divided in frames. Since each frame contains
only a few hundred radar-detections, similarly to [81], it has been decided to enrich
the input by aggregating points from previous frames. A window of 200 ms is used
and points from past frames are shifted to compensate for the ego-vehicle movement.
Note that, despite this solution does not introduce shape patterns, it increases the
input point cloud context representation. Due to the low elevation resolution of the

Table 3.1: Distribution of points in the dataset. Percentage and total number of
points are reported.

Set Moving Pedestrian Moving Vehicle Other & Clutter

Train 2.26% (721 865) 6.12% (1 955 937) 91.62% (29 282 877)
Test 1.40% (142 647) 5.63% (574 321) 92.98% (9 493 667)
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sensor, it has been decided to discard this point feature. Therefore, the input point
cloud has four features: x and y spatial coordinates, RCS and Doppler. This latter
is used as z-spatial-coordinate to increase the geometric distance between objects
with different velocity profiles. Specifically, the ego-compensated Doppler value
is adopted, containing the measured radial relative target’s velocity, compensated
by the ego-velocity – i.e. absolute radial velocity. RCS is the only point-feature.
The input is set to have a fixed amount of 1200 points. Since the primary goal is
the detection of moving objects, the ego-compensated Doppler feature is used to
sample with importance: i.e. reflections with large Doppler values are prioritized by
receiving higher sampling probabilities. Consequently, if the input has more than
1200 points, it is more likely to retain radar-reflections from moving instances4.
Conversely, if less than 1200 points are available, reflections are duplicated in the
same fashion. In this way, it is possible to increase the positive classes population,
hence reducing a critical aspect such as the class imbalance of the task.

RadarPCNN has been designed to process raw point clouds. Therefore, it re-
ceives as input the list of 1200 points with four features (3 + 1). The pre-processing
module uses three FC layers with 8, 16 and 32 channels, respectively. As a result,
its output consists of a point cloud with 1200 points and 3 + 32 features. The two
altered PointNet++ use different SA-layer configurations. One uses 500 represen-
tative points, three grouping areas (0.5, 1 and 2 meters) and outputs a point cloud
with 3 + 192 channels. The other uses 150 representative points, grouping areas
of 4, 6 and 8 meters and 3 + 384 output channels. The representative points are
produced using MS. If more than the requested points are generated, FPS is used
to select among them. Conversely, if less points are available, FPS is used to fill
the gaps, selecting from the input points. Both altered PointNet++ use the same
FP-layer configuration, producing a list of 1200 points with 3 + 128 features. The
attention mechanism adopts three FC-layers of size 8, 4, and 4 to produce the atten-
tion weights. Another FC-layer is then used to increase the point-features to 256.
Finally, the classification network has two layers of 64 and 32 channels – interleaved
by dropout with rate 0.5 –, before the output layer.

As shown in table 3.1, the points in the dataset are not evenly distributed across
the three classes of the task. Note, for instance, how the negative class has much
more samples than the two positive ones. This situation, a.k.a. class imbalance,
poses serious difficulties in the learning process. Indeed, the lower availability of
samples makes it more complicated for the network to learn the properties specific
for a class. Therefore, it will develop a bias towards the class with the highest
amount of observations – i.e. majority class. It is not uncommon, however, to
have imbalanced datasets, especially for semantic segmentation tasks, where the
minority class often includes the objects of interest. Consider, for example, an
autonomous vehicle in an urban environment. Here, it is reasonable to assume
that pedestrians will contribute to a lower amount of observations compared with
other objects, e.g. cars or buildings. Nevertheless, pedestrians detection is a critical
task to ensure safety operations of the system. Dataset imbalance represents a
well-established problem in the DL community, so that researchers have developed
various countermeasures, applicable at different stages, to mitigate its effects [116,
94]. In this work, it has been decided to operate in both design and training stages.

4Bear in mind that Doppler represents a radial velocity measure. Therefore, objects that move
in tangential direction result in stationary Doppler values.
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During the design phase, the output layer of the network has been customized
to reduce bias toward the negative class (other/clutter). Specifically, the multi-
class classification problem has been discarded in favor of multiple binary tasks.
Though the dataset provides three classes, only two binary tasks are addressed,
targeting the positive classes – i.e. – pedestrian vs non-pedestrian and vehicle vs
non-vehicle. Sigmoid is used as output activation function to constrain the prediction
scores within the [0, 1] interval. Therefore, two scores are calculated for every point,
holding the probability of pedestrian and vehicle class prediction. Since the semantic
segmentation task at hand is mutually exclusive5, the final class prediction will
be the one achieving the highest score. However, in case the highest score does
not exceed the threshold of 0.5, the negative class will be predicted. In this way,
it is possible to train the negative class indirectly from both binary tasks. As a
consequence, the network does not need to learn properties of the negative class.
Rather, it has to recognize when a sample does not have the properties of a positive
class. Finally, note that the two binary tasks are even more imbalanced than the
original task. However, during training, it is easier to counteract a binary imbalanced
problem than a multi-class one. To do so, the two tasks are trained using different,
independent objective functions. Specifically, focal loss [110] has been used, as it
is well-known for dealing with extreme class imbalance configurations. It addresses
an objective function that enables down-scaling of the gradient contribution from
member of the majority class. At the same time, it forces the network to learn from
hard examples, by increasing its impact in the training procedure. Formally, given
the output prediction score p ∈ [0, 1] with associated ground-truth value y ∈ {0, 1},
focal loss is computed as

FL(p, y) = FL(pt) = αt(1− pt)γCE(pt) , (3.17)

where γ ≥ 0 is the focusing parameter, CE(p, y) = CE(pt) = − log(pt) the cross-
entropy loss function [2] and pt, αt defined, for convenience, as

pt =

{
p, if y = 1,

1− p, otherwise,
and αt =

{
α, if y = 1,

1− α, otherwise .
(3.18)

The parameter α ∈ [0, 1] weights the contribution of samples from different classes.
Instead, the factor (1− pt)γ modulates the standard cross-entropy loss by reducing
the contribution from easy examples. For the proposed dataset, α has been set to
0.85 for the vehicle task and 0.9 for pedestrians, while γ has been set to 2 for both.

In order to set the hyper-parameters of the model, five-fold cross-validation is
performed. That is, the train-set is split in five non-overlapping sets and, in turn,
one is used as validation-set and the remaining to train the model. The network
parameters are changed until they do not lead to performance improvements any
longer. During the evaluation process, the networks are trained on the whole train-
set for 20 epochs. The network configuration achieving the best performance is then
selected and tested 10 times on the test-set to average out the sources of randomness.
Mean values are finally reported, while standard deviations – always below 0.1% –
are omitted for clarity.

5Points cannot have multiple class predictions as one excludes the others.
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3.3.3 Benchmarking Solutions

In this work, it is addressed the task of detecting moving instances from classes
such as vehicle and pedestrian. However, radar has the ability to measure dynamic
properties of the objects. In particular, the Doppler measurement provides infor-
mation about relative radial velocity. This aspect raises logical questions about
the potential triviality of the task. Indeed, one might think that a simple thresh-
olding technique, using Doppler as input, would suffice to separate moving from
stationary object-points. For this reason, it has been decided to use a random forest
(RF) model [20] to perform the proposed semantic segmentation task. RF is an
ensemble-based, advanced thresholding ML technique using a collection of decision
trees [6, 8] to infer the classification output. After experiencing a labeled dataset,
decision tree models can classify a sample by comparing its input features with a
set of learned thresholds. RF leverages the output of several decision trees to com-
pute a low-variance prediction. Further details are provided in section 4.2.4. Since
its processing include thresholding of the Doppler feature, the complexity of this
algorithm should suffice to solve a trivial problem.

In order to establish the validity of RadarPCNN and the solutions proposed
herein, it is necessary to compare its performance with a benchmark. In the field of
point-wise processing, PointNet++ represents the state-of-the-art static architecture
for consuming radar point clouds. In particular, Schumann et al. have recently
tested its ability to perform a multi-class semantic segmentation task [81]. Therefore,
it has been decided to use this architecture implementation as benchmark. Minor
modifications have been taken to adapt both input and output model interfaces to
the task at hand. Specifically, it has been accounted for the reduced number of input
points – halving the number of representative points in the SA-layers – and output
classes – halving the size of the FC-classification-network. In details, the model
consists of 3 encoder-decoder layers. The SA-layers use, respectively, 512, 256 and
128 representative points and outputs 192, 192 and 256 features. All layers use two
grouping areas, with increasing radii: i.e. the first 1 and 3 meters, the second 2
and 4 meters and the last layer 3 and 6 meters. Standard FPS is used as sampling
strategy. The FP-layers use 256, 128 and 128 output channels, respectively. Finally,
the classification FC-network has two layers of size 128 and 64 channels, interleaved
by dropout with rate 0.5. The final output layer has 2 nodes, associated with the
positive classes of the task, using the same configuration of RadarPCNN – described
in section 3.3.2.

During experimentation, it has been found out that the PointNet++ network
used as benchmark has a much higher capacity than RadarPCNN. Indeed, as shown
in table 3.2, it has more than 2× the amount of parameters of RadarPCNN and
uses 1.5× its number of floating-point operations (FLOPS). However, in order to
enable fair comparison, it is crucial to use models with similar capacity, as bigger
models usually lead to better generalization results6. For this reason, it has been
designed a shallow version of PointNet++. In particular, the depth of the model has
been reduced, removing one layer in both encoder and decoder sections. Therefore,
the model has two SA-layers, set similarly to RadarPCNN. In details, the first SA
layer uses 500 representative points and 128 output features, while the second uses

6The model capacity must be appropriate for the problem, as too big models suffer from over-
fitting. A typical example is a high-degree polynomial model fit to noisy observations of a linear
distribution.
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150 points and 256 output channels. The search areas are set as in RadarPCNN.
The hierarchical processing structure proper of PointNet++ has been retained, as
well as the standard FPS sampling strategy. The decoder layers take as input the
output of the corresponding encoder layer and produce, respectively, point clouds
with 500/1200 points and 3 + 128/64 features. Finally, the classification network is
configured as in RadarPCNN. As shown in table 3.2, this shallow PointNet++ ar-
chitecture has a capacity that matches RadarPCNN, thus enabling fair comparison.

Ultimately, it has been decided to evaluate the shallow version of PointNet++
equipped with the proposed pre-processing module – (sh. + pr.) in table 3.2.
Though this model has a capacity slightly higher than RadarPCNN, it enables in-
vestigation of the pre-processing module’s properties. Indeed, by analyzing the
impact on the performance of the model, it is possible to evaluate its ability to
generalize to other point-wise processing architectures. The same configuration of
the pre-processing module used in RadarPCNN has been adopted.

3.4 Results

Table 3.2 reports the semantic segmentation results of the evaluated models. The
first row shows the performance of RF, providing information about the potential
triviality of the task. Note how, compared with other more advanced solutions,
it achieves considerably inferior performance. This proves that the problem is not
trivial, as moving objects cannot be detected by a thresholding operation on the
radar features. Analyzing the results in more details, it is possible to note that RF
can achieve competitive performance on the moving vehicle class, while struggling
to detect pedestrians. This is attributed to the different velocity profiles of the two
classes. Indeed, vehicles present a strong velocity signature: when moving, they
often assume high speeds, thus neatly differing from stationary targets. Conversely,
pedestrians exhibit lower velocities, therefore, it is more complicated to characterize
them through this property. Table 3.2 also shows that RF’s performance suffers from
poor precision. This is attributed to the simplicity of the algorithm, which uses only
thresholding operations to infer the output class. Indeed, this prevents the model
from using context information, thus failing to filter out potential outliers – e.g. the
result of intrinsic radar effects like multi-path propagation. As an example, consider
a single point, with high Doppler, immersed in a cluster of stationary points. Since it
shares the same characteristics of moving points, the model cannot infer the correct
point-class without using context information. Finally, bear in mind that recall and
precision are strongly correlated metrics. Therefore, to obtain appreciable recall
values, it is necessary to tune down the precision, thus allowing a higher number
of false positive predictions. In thresholding-based systems, this trade-off has a
straightforward interpretation. Indeed, it is possible to increase the precision by
using a stricter threshold-configuration for the positive classes. For the problem
at hand, however, a low-recall high-precision model would be useless, as most of
the objects would go by undetected. Nevertheless, note how both precision and
recall scores are consistently below those produced by the best models in the table.
Conclusively, though RF proves the non-triviality of the problem, its performance
suggest the presence of a dominant feature – most likely the radar Doppler. This
aspect increases the importance of an efficient processing scheme which captures,
along with structural context, the information provided by the sensor.
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Among NN-based solutions in table 3.2, RadarPCNN achieves the best semantic
segmentation results. It shows superior performance on both vehicle and pedestrian
classes. Interestingly, despite its higher capacity, the PointNet++ implementation
from [81] exhibits poorer performance than RadarPCNN. It shows competitive re-
sults on the pedestrian-point detection task, but underperforms on the vehicle class.
This suggests that RadarPCNN executes a more efficient radar point cloud process-
ing, achieving better performance with less capacity. The third row contains the
results of the shallow PointNet++ architecture. It experiences an expected per-
formance degradation when compared with the original network. Both classes are
affected, though the pedestrian class sustains a more noticeable drop. This effect is
attributed to the reduced model capacity. Indeed, since the network uses less param-
eters – with the same processing scheme –, it can store less information-patterns, thus
resulting in loss of generalization power. Yet, these results rule out the overfitting
problem on the original PointNet++ network. Otherwise, the shallow model would
have produced either improved or equal performance, as reduction of the model
capacity is a common countermeasure against overfitting. Finally, note how this ar-
chitecture and RadarPCNN use a similar amount of parameters/FLOPS. Therefore,
the shallow PointNet++ network represents a fair comparison for validation of the
proposed architecture. Since the results in table 3.2 show that RadarPCNN signifi-
cantly outperforms the shallow PointNet++ network, they prove that the proposed
solution exceeds its benchmark on semantic segmentation of radar point clouds.

The fourth row in table 3.2 contains the results of the shallow PointNet++ net-
work equipped with the proposed pre-processing module. This architecture shows
very competitive performance, challenging the superiority of RadarPCNN. However,
the most interesting insights can be gathered by comparing its results with the ones
from the previous PointNet++ models. Note, here, the performance boost produced
by the pre-processing module over the shallow PointNet++ network, dramatically
improving precision and recall scores on both classes. This proves the good trans-
ferability properties of the pre-processing module: it can be successfully plugged
to other point-wise processing architectures, enhancing their ability to learn from
radar features. In addition, these results suggest that the proposed module succeeds
in abstracting the radar perspective of the object, producing point descriptors that
facilitates the semantic segmentation task. Other interesting observations can be
collected by examining the capacity of the networks. Indeed, the introduction of
the pre-processing module increases both number of parameters and FLOPS. How-
ever, this configuration still shows lower complexity than the original PointNet++
model – it has less than half parameters. Nevertheless, it results in better perfor-
mance, thus proving that the proposed module is not only effective but also efficient.
Finally, it is worth noting how, despite using circa 15% more parameters, the im-
proved version of shallow PointNet++ cannot outperform RadarPCNN. This hints
that, though the pre-processing module plays a major role, all the proposed solu-
tions are effective, optimizing the usage of radar point cloud information. Therefore,
RadarPCNN performs an efficient processing, requiring a lower model capacity to
obtain improved performance.

Another metric provided in table 3.2 is the inference time – i.e. the amount
of time required by the model to perform the prediction on a single input. The
results reported for RF cannot be compared, as they have been measured on CPU.
Yet, this model produces much poorer semantic segmentation performance than the
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NN-based solutions. Note how the inference time performance of the networks are
directly correlated to their capacity: i.e. bigger models require more time to produce
an output. However, this observation does not always hold true. Indeed, when a
model is deployed on GPUs, its operations are not all executed in a sequential
fashion, but they are parallelized based on the architecture structure. Among the
tested models, RadarPCNN is the fastest approach. This is attributed to the non-
hierarchical network structure. Indeed, given enough computational resources, the
two altered PointNet++ mini-networks can be run in parallel, due to their mutual
independence. Interestingly, the shallow PointNet++ network is almost 2 ms slower,
despite its lower amount of FLOPS. That is because the encoder-decoder operations
cannot be parallelized: every layer must wait for the output of the previous layer.
Finally, note how the pre-processing module increases the inference time of the
shallow PointNet++ model. Since it has to be run before the main network, it adds
sequential operations, accounting for 2 ms circa. Nevertheless, this increment is
justified by the huge improvement in terms of semantic segmentation performance.

3.4.1 Confusion Matrices

A confusion matrix (CM) provides quantitative information about the predictions of
a classification algorithm. It is useful to detect prediction errors, such as confusion
across different classes, and check the presence of eventual biases – i.e. the tendency
to predict a given class. Figure 3.7 displays the CMs produced by both RadarPCNN
and PointNet++ [81]. Each row of the matrices contains all the samples of a single
ground-truth class, while each column contains all the samples predicted as a given
class. As a result, each column of a given row shows how samples of the same class are
predicted by the network. Likewise, each row of the same column reports the ground-
truth class of all points predicted as the same class. For instance, the cell identified
by the second-row third-column refers to pedestrian-points, classified as vehicle-
points. The number in brackets shows the total amount of pedestrian samples that
are classified as vehicles. Instead, the percentage refers to the proportion of ground-
truth pedestrian-points for which the vehicle class has been predicted. Therefore,
the diagonal of a matrix displays information about correct predictions, while all
the other cells provides quantitative details about the model errors. Note that a
perfect model would produce an identity matrix, with 1 – or 100% – on the diagonal
and 0% everywhere else. Moreover, note that the percentage values reported on the
diagonal correspond to the recall rates.

The CMs showed in fig. 3.7 confirm the insights collected from table 3.2. Notice,
indeed, how RadarPCNN outperforms PointNet++ [81], producing higher percent-
ages on the diagonal as well as lower percentages on the non-diagonal cells. By an-
alyzing more accurately the scores in the error-related cells, it is possible to gather
further insights about the network. Hereafter, it has been focused on the CM from
RadarPCNN. Note how, in total, only 6.5% circa of the points in the test-set are
erroneously classified by the proposed approach. In the 2×2 lower-right sub-matrix,
it is possible to examine the error distribution over positive classes. Note how the
confusion between them accounts only for a limited amount of errors. Indeed, they
generate confusion factors below 2%, indicating that only a small portion of sam-
ples from the positive classes are mistakenly classified as the wrong positive class.
In addition, less than 11K of points account for such errors, representing only 0.1%
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Figure 3.7: Confusion matrices of RadarPCNN and PointNet++ [81]. The color-
map shows the points count: the darker the color, the higher the points number (in
brackets). Best viewed in color.

of the test-samples. This suggests that the network has a good knowledge about
the difference between the two positive classes. The same observations cannot be
repeated for the other error-sources. Indeed, almost 5% of errors committed by
the network consist of positive class predictions of samples from the negative class.
Though these errors do not affect the network recall rates, they severely harm the
positive class precision rates. The remaining 1.4% circa of the errors are negative
class predictions of positive samples. Note that they account for a consistent portion
of the positive ground-truth samples – almost 23% and 8%, respectively, for pedes-
trians and vehicles. Yet, they hardly affect the precision rate of the negative class,
as they constitute as low as 1.3% of the predictions. The strong class-imbalance
present in the dataset plays a central role in the latter two error-sources. Indeed,
the negative class is exceedingly overpopulated, with only less than 10% of the
samples contributing to the positive classes. This disparity severely hardens the
learning process, leaving the network marginally biased towards the negative class,
despite the countermeasures implemented. As support to this thesis, note how the
network is very confident about the negative class. It can achieve 95% recall and
98% precision, though this task has been learned indirectly. Similar considerations
can be repeated for the CM from PointNet++ [81]. However, a significant differ-
ence can be observed in the vehicle ground-truth row. Here, note how, compared
with RadarPCNN, twice as many points are misclassified as negative samples – i.e.
160K vs 80K. This dramatically reduces the recall score on the vehicle class, leading
PointNet++ [81] to worse performance, as can be also noted in table 3.2. Finally,
note that there exists some discrepancy between the CMs in fig. 3.7 and table 3.2
in terms of numerical results. This is due to the evaluation method, as the results
reported in the table are averaged across 10 test iterations, while CMs are computed
over a single evaluation.

3.4.2 Ablation Studies

The previous sections have proved the ability of RadarPCNN to efficiently process
radar point clouds. Additionally, it has been possible to assess the validity of the
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proposed pre-processing module, by plugging it to a PointNet++ architecture. The
main objective of this section is to evaluate the effectiveness of the other proposed
solutions. In particular, results collected over ablation studies are reported and
analyzed to determine the impact of every solution on the network performance.

Fusion method. RadarPCNN uses two parallel branches to extract multiple
object-related point-descriptors. Then, as described in section 3.2.3, it uses an
attention mechanism to combine them into single point-signatures. However, this is
not the only method capable to accomplish this task. In this section, the proposed
attention mechanism is compared with two different approaches: addition and con-
catenation. The former sums-up the features learned for the same point, while the
latter chains them together, producing a double-sized point-signature. Note how
both approaches are less smart than the attention mechanism. Indeed, they do not
involve any form of learning. Yet, all methods are well-suited to fuse multiple point-
signatures. Table 3.3 contains the results of the experiment, where RadarPCNN has
been trained and evaluated with the different fusion methods. The addition method
proves to be the weakest solution among the configurations tested, showing the poor-
est semantic segmentation scores. This is attributed to the extreme simplicity of
the method. Indeed, it performs a plain sum over the features, thus destroying po-
tentially relevant information. Conversely, the concatenation approach shows very
competitive results, achieving performance comparable to the attention mechanism
on both classes. From a complexity point-of-view, addition proves to be the cheap-
est solution. The proposed attention mechanism follows very closely, using only
1.2K more parameters. Finally, note how the concatenation method significantly
increases the network capacity. This is attributed to the increased dimensionality
of its output. Indeed, in order to maintain all the information of the input vec-
tors, it produces double-sized point signatures. As a consequence, the classification
network requires more parameters/operations to reduce the dimensionality of the
latent point cloud. Note that, since the operations introduced can be parallelized,
the inference time is not affected in the same fashion – it increases by only 0.2 ms
w.r.t. the addition method, though there are circa 30K more parameters. Yet,
despite the increased capacity, this model configuration cannot outperform the orig-
inal RadarPCNN implementation. Furthermore, note how the complexity increases
even more severely when multiple point-signatures are fused by concatenation, thus
undermining the ability to deploy this method. Conclusively, the results in table 3.3
prove that the attention mechanism is the best fusion solution for RadarPCNN,
producing the highest F1 scores with a reasonable amount of parameters. In par-
ticular, they suggest that RadarPCNN benefits from the filtering performed by the
attention mechanism, which retains the most relevant information for the semantic
segmentation task.

Sampling method. In order to improve the usage of radar spatial context infor-
mation, RadarPCNN modifies the sampling process in the SA layers. Specifically,
it replaces the standard farthest point sampling (FPS) algorithm with mean-shift
(MS). This section proposes an investigation to assess the effectiveness of this so-
lution. In particular, it provides a comparison on the performance of RadarPCNN
using FPS and MS as sampling strategy. Several SA layer configurations are tested,
varying the number of representative points used in the two altered PointNet++.
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The bandwidth parameter, h in eq. (3.8), has been changed to achieve the desired
amount of points with MS. FPS, instead, expects as input a parameter specifying
the amount of points to sample, therefore, no further tuning of the method has been
necessary. All model configurations have been trained from scratch and evaluated as
specified in section 3.3.2. Figure 3.8 contains the results of the experiment, plotting
the F1 scores collected on the positive classes with four different model configura-
tions. Macro-average scores are also plotted to provide insights about the overall
performance. Details about the model configurations are reported on the abscissa
axis. They specify the total number of representative points sampled in the two
altered PointNet++ – i.e. top/bottom branch of fig. 3.2, respectively. For instance,
500/150 indicates the RadarPCNN configuration described in section 3.3.2, where
one branch samples 500 points and the other 150.

The graph shows that MS (solid line) constantly outperforms FPS (dashed) in
all the model configurations tested. In the best performing setting (500/150), the
difference between MS and FPS proves to be relatively small, accounting for less
than 1%, on average. This is attributed to the strong similarity between the two
algorithms when used to sample a large amount of points. Indeed, as the the num-
ber of representative points increases, the methods have less degrees-of-freedom,
thus resulting in similar outputs. This behavior becomes even more tangible when
the two algorithms are forced to operate with singular settings. Bearing in mind
that, in MS, a lower bandwidth produces more points, by setting this parameter to
an infinitesimal value it is possible to generate a very localized kernel, as derived
in eq. (3.10). Consequently, MS is forced to produce exactly the same output of
FPS when asked to sample all the points in the input. Remarkably, however, MS
shows very impressive results when the number of representative points decreases.

sampling 500 / 150 400 / 100 300 / 75 200 / 50

Vehicle 82.88% 82.42% 82.23% 81.74% a Mean-Shift Vehicle

Pedestrian 59.27% 57.36% 56.41% 52.16% b Mean-Shift Pedestrian

Average 71.08% 69.89% 69.32% 66.95% c Mean-Shift Average

Vehicle 82.05% 82.39% 81.41% 81.43% d Mean-Shift Vehicle

Pedestrian 58.68% 55.82% 47.51% 47.56% e Mean-Shift Pedestrian

Average 70.37% 69.11% 64.46% 64.50% f Mean-Shift Average

Mean-Shift

FPS

45%
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Figure 3.8: Comparison between MS and FPS under various configurations of the
number of representative points. Best viewed in color.
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In this configurations, it has a significant impact on the performance, limiting the
drop caused by sparser sampling strategies. Note, indeed, how the solid blue curve
remains almost flat until the 300/75 configuration: here, MS experiences a degra-
dation lower than 2%, compared with the nearly 6% drop shown by FPS. This
suggests that, by attending highly populated locations, MS optimizes the usage of
spatial relationship in sparse radar data. Conversely, FPS proves to be better-suited
when used in dense sampling strategies, due to its ability to uniformly cover the in-
put space. Indeed, it shows good performance with high number of representative
points, but misses relevant scene information when deployed in sparse sampling set-
tings, thus inevitably leading to wrong point-class predictions. Similar observations
can be collected by analyzing the curves of the positive classes separately. They
show distinct behaviors when sparse sampling strategies are adopted: vehicles are
hardly affected, while the performance on pedestrians is severely harmed. This is
attributed to the considerably different sizes between instances of the two classes,
resulting in diverse object-related point-density signatures in the input. Indeed,
pedestrians are often represented by one or few reflections. Consequently, a sparser
sampling strategy critically decreases the probability of selecting points for pedes-
trian instances. Though this consideration holds true for both methods, however,
the ability of MS to respect the input data distribution allows it to consider small
clusters, thus sampling representative points that describe the space around pedes-
trians. Contrarily, vehicles generally produces few dozens of reflections, especially
when fast moving, Hence, they do not suffer from the same effect, resulting almost
unaffected by changes in the sampling density. Finally, it is worth noting that the
number of representative points strongly affects the model complexity. Therefore,
the ability of MS to operate with sparse sampling settings represents a critical prop-
erty, especially in resource-limited embedded systems.

To conclude the comparison between MS and FPS, it has been decided to examine
their output and collect qualitative insights. Figure 3.9 contains an example of the
representative points sampled with both MS and FPS on the same radar scene. FPS
samples 150 points, while MS uses a bandwidth h = 8.0. Figures 3.9A and 3.9B
display the radar point cloud used as input to the network (colored dots) as well as
the representative points (red stars). Instead, figs. 3.9C and 3.9D showcase only the
representative points. Note how FPS samples uniformly from the input: fig. 3.9D
has points scattered around to cover most of the space, regardless of the shape
present in the scene. Conversely, MS is more object-centered, as it provides points
for almost every instance present in the scene (black boxes) – fig. 3.9C. Note how,
despite generating more points, FPS cannot sample points for every object. In
addition, note how the the output of MS results more clean than the one from FPS.
Indeed, fig. 3.9C enables the visualization of the road boundaries, while in fig. 3.9D
they are corrupted by the points evenly sampled. Further visualization results are
provided in appendix A.1.

Grouping method. RadarPCNN adopts two altered PointNet++ networks to
extract context information. Their encoder sections rely on SA layers, which per-
form three operations: sampling, grouping and feature extraction – as described in
section 3.2.2. In this section different grouping techniques are investigated to gather
insights about this process. In particular, the experiment proposed herein consists
in tampering the the SA layers in RadarPCNN by changing the distance function
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Figure 3.9: Examples of representative points sampled with MS and FPS. Radar
reflections are represented with points, colored based on their RCS value. Red stars
show the space location sampled. Objects present in the scene are marked with
black boxes. Best viewed in color.

d(·, ·) in eq. (3.2). The different model configurations are then trained and evaluated
following the guidelines in section 3.3.2.

Figure 3.10 displays the grouping methods used in this experiment. The stan-
dard method proposed in [64] is used as benchmark. It consists in a spherical-based
grouping process, gathering neighbors which lie in a sphere around the representa-
tive point. The Euclidean distance defined in eq. (3.12) is used to determine the
boundaries of the search area. Note that, in this implementation, every spatial axis
is considered equally important. Figure 3.10A shows a 2D example of the stan-
dard spherical-based grouping method, where circles represent the 2D projections
of sphere boundaries. In order to evaluate the ability of the network to learn at
the grouping stage, it has been decided to propose an advanced ellipsoidal-based
grouping technique. It represents a generalization of the standard spherical-based
approach, as it extends eq. (3.12) with the introduction of additional parameters.
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Input Point Cloud Sampling Spherical Ellipsoid(A) Spherical-based.Input Point Cloud Sampling Spherical Ellipsoid(B) Ellipsoidal-based.

Figure 3.10: 2D examples of the proposed grouping techniques. Black-dots represent
the data-points, while white stars indicate representative points. Dashed-shapes
represent the neighborhood boundaries. Circles account for 2D projections of 3D
spheres, while ellipses illustrate 2D projections of ellipsoids.

Specifically, it computes the distance as

dEll(xi,xj) =
√
αe(x · cosφ+ y · sinφ)2 + βe(x · sinφ− y · cosφ)2 + γez2 , (3.19)

where αe ≥ 0, βe ≥ 0, γe ≥ 0 and φ ∈ [0, π
2
] are custom scalar parameters. The

notation conventions in eq. (3.12) are adopted – i.e. x, y and z computed as the
distance between the i-th and j-th point, along the corresponding axis. Note that
eq. (3.19) describes the boundaries of a rotated 3D ellipsoid. In particular, the
parameters αe, βe and γe allow scaling along the respective axis, while φ rotates the
search space in the XY plane. It has been purposefully decided to prevent rotation
along the z axis. This is because it is not expected a linear relation between point
location and radial velocity – bear in mind that the input point clouds adopt the
Doppler feature as z-coordinate. A side effect of this design choice consists in the
reduction of the grouping process complexity. Figure 3.10B depicts a 2D example
of the ellipsoidal-based method, where 3D ellipsoids are replaced with ellipses. Note
how this technique enables the network to favor the aggregation of points along a
specific, custom direction of the space. Moreover, note how eq. (3.12) represents a
special case of eq. (3.19), where αe = βe = γe = 1 and φ = 0.

During this experiment, three model configurations are compared. Figure 3.11
contains details about the implementation of the associated grouping processes.
One model uses the standard spherical-based grouping with the Euclidean distance
in eq. (3.12) – fig. 3.11A. The other two use eq. (3.19) to set-up a dynamic and a
static ellipsoid grouping method. The dynamic method defines the ellipsoid param-
eters αe, βe, γe and φ as trainable and regresses them using a NN. As depicted in
fig. 3.11B, it first groups the neighboring points using the spherical-based method
(dotted circle). Specifically, given the search range value ri, it uses eq. (3.2) with
r = 1.5 · ri and the Euclidean distance function in eq. (3.12). Then, the local neigh-
borhood is fed to a NN that estimates the values of the four parameters. Finally, it
performs the grouping in eq. (3.2) with r = ri and the ellipsoid distance function in
eq. (3.19), using the learned parameter-setup. This neighborhood (dashed ellipse)
is the one used to encode local context information in the SA layer. To regress
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(A) Spherical. (B) Dynamic Ellipsoid. (C) Static Ellipsoid.

Figure 3.11: 2D examples of the grouping configuration implemented. The same
color coding of fig. 3.10 is adopted. The gray box represents a vehicle. The spherical
method uses a simple sphere. The dynamic ellipsoid method has the ability to learn
the parameters of the ellipsoid. The static method uses five different configurations
and learns the best combination through an attention mechanism.

the parameter values, it is adopted a shallow PointNet architecture, followed by an
FC-network. In more details, after computing 16 and 8 features for every point in
the neighborhood, max-pooling is applied to obtain an 8-features-sized signature.
Then, three FC-layers of size 8, 4 and 4 channels, respectively, are used to generate
the parameter scores. The output layer uses a sigmoid activation function to con-
strain the predictions in the range [0, 1]. The score of the parameter φ is multiplied
by π

2
to cover the whole valid angular domain, while the scaling parameters αe, βe

and γe are limited by a lower bound of 0.1 · ri to avoid values too close to 0. Note
that the parameter values are computed based on the neighboring point distribu-
tion. Therefore, this grouping method enables the network to learn a search area
shape that allows aggregation of relevant points, filtering out potential outliers. For
instance, consider the example in fig. 3.11B, where the representative point (white
star) belongs to a wall. The dynamic ellipsoid grouping method enables the network
to regress the flat ellipse which contains only wall-points, discarding points from the
nearby vehicle (gray box). In this way, the SA layer can learn a descriptor for the
wall which is unaffected by vehicle-points. The radius of the preliminary spherical
grouping has been set to r = 1.5·ri in order to use a broader local area for the param-
eter estimation task. Finally, it is worth stressing out that each representative point
has its own parameters, regressed based on the local point distribution. The static
method, instead, uses multiple settings of the ellipsoid parameters. Specifically, it
uses five search area configurations. One uses the Euclidean distance in eq. (3.12) –
i.e. αe = βe = 1, φ = 0. The remaining four adopt ellipsoids defined by αe = 0.5 and
βe = 2, rotated by π

4
each – i.e. φ ∈ {0, π

4
, π
2
, 3π

4
}. It has been decided to not apply

any scaling along the Z axis – i.e. γ = 1. Figure 3.11C depicts the 2D projection of
the search areas. Note how a rotation of π

2
is tantamount to switch the value of the

parameters αe and βe. Therefore, the ellipse described by the configuration αe = 0.5,
βe = 2, φ = 3π

4
coincides with one generated by αe = 2, βe = 0.5, φ = π

4
– where φ

is in the valid range interval [0, π
2
]. The five local neighborhoods are then fed to the

feature extraction module to encode context-related information. Finally, an atten-
tion mechanism, similar to the one described in section 3.2.3, is used to combine the
features learned in every configuration. The same settings used in RadarPCNN are
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adopted for the attention network, though five signatures have to be fused together
instead of two. This method, similarly to the dynamic one, has the ability to learn
the search area based on the point distribution. Indeed, the attention mechanism
enables the network to select the configuration which results in the most informative
descriptor. Yet, it is constrained to a fixed set of configurations.

Table 3.4 contains the results collected from this experiment. The standard
spherical grouping method proves superior semantic segmentation performance, sig-
nificantly outperforming the two ellipsoid-based methods in both positive classes.
This is attributed to two different reasons: one connected to the network operations
and the other related to the back-propagation gradient flow. Note that RadarPCNN
uses SA-layers with PointNet as feature extractor. This module performs its task
in two steps. Shared FC-layers learn new signatures for every point in the neigh-
borhood. Then, max-pooling filters this information by retaining, for each feature,
the maximum value across all points in the neighborhood. In this way, only the
points which produce maximum feature-wise values provide a contribution to the
representative point signature. Consequently, the network has a way for selecting
the most relevant neighboring points. In addition, note that the grouping operation
is a mere selection process, which does not involve any transformation of the input.
Therefore, there is no direct gradient signal flowing in, thus hindering the optimiza-
tion process. This latter observation is confirmed by the results of model using the
dynamic ellipsoid method. It uses the loss function to estimate the best ellipsoid
parameters configuration. However, it achieves very poor performance, thus indi-
cating that it cannot properly solve the parameter estimation task. The results of
this experiment suggests that RadarPCNN does not need a perfect grouping pro-
cess, since it adopts other procedures to filter eventual neighboring outliers. For this
reason, it has been decided to adopt the standard spherical-based method to per-
form the grouping procedure. Finally note how, despite leading to worse semantic
segmentation performance, the models using ellipsoid-based grouping show higher
complexity than the spherical one.

Doppler experiments. Radar point clouds contain information about object-
related properties. Doppler represents the most valuable measurement, providing
information about the velocity profile of a target. This section is dedicated to an
investigation on the network usage of radar velocity measurements. The ability to
measure velocity is a very interesting radar property. Doppler is computed exploiting
the frequency shift caused by the difference in velocity between sensor and target.
More precisely, it represents a measure of the relative radial object speed. Since
every radar reflection possesses a Doppler measurement, the most simple practice
consists in using it as additional point feature. However, providing the network with
relative velocity information might be misleading. Therefore, a different approach
consists in using the absolute radial velocity. This can be computed by compensating
the sensor-motion – i.e. subtracting the radial component of the ego-vehicle velocity
to the measured Doppler. There are several ways to perform this task. In this work,
odometry data are used to estimate the ego-vehicle velocity. As a result, every
radar reflection is provided with an ego-compensated Doppler measurement, thus
well-suited to be used as point feature. Furthermore, note how an object is strongly
characterized by its velocity, differentiating it from other nearby objects. For this
reason, another way of using the Doppler information is as z spatial point coordinate
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– bear in mind that the sensors used herein provide poor elevation resolution.

This section proposes an analysis on the performance of RadarPCNN while using
the Doppler feature in different configurations. In this way, it is possible to gather
insights about the impact of this feature on the network. Four models have been
evaluated, using both relative and ego-compensated Doppler either as point-feature
or z-coordinate. Table 3.5 contains the result of the experiment. Note how the net-
work performance benefit from absolute velocity measurements. In both its usage
configurations, the ego-compensated Doppler introduces significant improvements,
increasing of circa 10% the F1 score produced by the uncompensated Doppler fea-
ture. This effect is not surprising. Indeed, consider an object that moves at the
same speed of the ego-vehicle. It produces radar reflections with Doppler holding
null velocity measurements. As a consequence, the network is not able to detect that
the object is moving, as it has no information about the ego-velocity. Interestingly,
both classes benefit from usage of the absolute velocity in similar ways. Concerning
the usage of the Doppler feature, incorporation in the point-coordinates proves to
yield advantages over its adoption as point-feature. This effect is attributed to the
additional spatial separation, introduced by the Doppler coordinate, between points
of objects with different speed. Indeed, consider, for instance, a vehicle driving-
by a parked car. Although these two instances are close to each other in the XY
plane, they possess completely different velocity profiles. Therefore, by setting the
Doppler as z-coordinate, it is possible to force an additional physical separation be-
tween points from the two different objects. Considering the internal operations of
RadarPCNN, there are two processes that can take advantage of this setup. Indeed,
it enables the sampling process to sample representative points for close-by objects
with different speed. At the same time, it helps the grouping process to produce
cleaner clusters, reducing the probability of finding points from objects with diverse
velocity profiles in the same group. Furthermore, note how pedestrians result more
affected by this configuration, experiencing 2× the improvement that the vehicle
class does. This is attributed to the nature of the objects of this class. Indeed,
despite pedestrians have a weaker velocity signature than vehicles, they are often
found near stationary objects, such as building walls. Therefore, there are more
cases in which the spatial separation introduced by the Doppler feature plays a fun-
damental role. Finally, note how the model using the ego-compensated Doppler as
z-coordinate is able to achieve superior performance, combining the benefits of both
configurations. For this reason, it has been decided to use this setup in RadarPCNN.

3.4.3 Visual Analysis

Visual investigations are very useful for gathering fine details about the network
operations. They provide qualitative results, enabling the identification of corner-
case situations which affect the algorithm output. This section reports insights
collected from a visual examination of RadarPCNN predictions on test-set samples.
Figure 3.12 displays an example. BBs indicate the presence of a ground-truth object,
while points, colored based on the network prediction, represent the input radar
point cloud – see caption for further details about color-coding. The ego-vehicle is
moving in an urban scenario, with pedestrians on the curbstones (red BBs on left
and right), moving vehicles (yellow BBs in front and rear), standing vehicles at a
traffic light (gray BBs in rear) and a slow moving vehicle that is starting its motion
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Figure 3.12: RadarPCNN predictions. Yellow/red points are moving vehi-
cle/pedestrian predictions. Ground-truth BBs follow the same color-map. Gray
BBs belong to stationary vehicles, while orange BBs mark vehicles with absolute
speed between 1 and 2.5 m/s. The z-component is zeroed and aligned with the road
for visualization clarity. Left. Front/rear camera view. Right. 3D visualization.
Best viewed in color.

(orange BB in rear). Note how the network is able to correctly classify most of the
points, detecting moving instances of both pedestrian and vehicle classes. Moreover,
note the yellow points just outside the BBs of the three cars in front of the ego-
vehicle. They are still classified as moving vehicles. However, these are not wrong
predictions. Indeed, from the camera view, it is possible to notice that there is no
other object in their neighborhood. Therefore, they are considered radar-related
artifacts, possibly the result of multi-path propagation. Finally, it is worth noting
the yellow points inside the orange BB. Remarkably, RadarPCNN recognizes that
these reflections belong to a moving vehicle, though they are not labeled as moving
– because the object’s speed is below the designed threshold. This suggests that the
network’s concept of a moving instance is not strictly correlated to the threshold
values set during training. Yet, the gray points inside the gray BBs prove that the
network is able to distinguish static from dynamic instances. Further visualization
results containing RadarPCNN predictions are provided in appendix A.2.

Case of study: bushes as pedestrians. The visual analysis conducted high-
lighted the ability of the network to generalize to the proposed semantic segmenta-
tion task. In addition, it revealed the source of a systematic error: sometimes the
pedestrian class is mistakenly predicted for bushes reflections. Figure 3.13 contains
an example from the test-set. The ego-vehicle is standing after a traffic light which
has just turned green. Note that RadarPCNN can predict the correct class for most
of the points, including the pedestrian on the left and the slow moving vehicles in
front. Yet, there is a small cluster of red points on the right of the ego-vehicle,
without any nearby BB. From the top-left image (right-facing camera), it is possible
to notice the presence of bushes around the red points. To assess whether this is
an algorithm-specific issue, the same visual analysis has been repeated for predic-
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Figure 3.13: RadarPCNN predictions. Bushes points on the right of the ego-vehicle
predicted as pedestrian. The same color-coding as in fig. 3.12 is adopted. Left.
Right/front camera view. Right. 3D visualization. Best viewed in color.

tions from PointNet++ [81]. However, it has been observed that both networks are
affected by similar error sources, thus suggesting that they are not related to the
algorithm. Another theory assumes that these errors are sensor-related. Indeed, it
has been noted that bushes have different moving parts which produce fluctuations
in the Doppler measurements. Other studies have shown that this effect can be
found in radar measurements of pedestrians [78]. Therefore, it has been proposed
to attribute the prediction errors to a strong radar similarity between instances of
these two classes.

In order to prove this theory, an additional experiment has been performed.
It has been decided to compare the Doppler distributions generated by different
classes of ground-truth objects: i.e. misclassified bushes, correctly classified sta-
tionaries and GT pedestrians. In more detail, first, it has been collected a set of
200 bushes points from the test-set mistakenly predicted as pedestrians. Then, the
ego-compensated Doppler distribution is computed from the values associated to
the points in the set. The same operations are repeated for reflections from station-
ary object correctly classified as the negative class – buildings and parked vehicles
points are used. Figure 3.14 plots the results of the experiment. Note that, due
to the low amount of samples, the Doppler distributions are plotted as histograms.
The Doppler distribution of ground-truth pedestrian points (black dotted line) is
reported for reference – all pedestrian points in the test-set are used. It is worth
noting how stationary objects exhibit a very narrow Doppler spectrum: nearly 90%
of the collected points assume a Doppler value in the interval [−0.2, 0.2] m/s. Con-
trarily, despite presenting a major concentration around the stationary Doppler
value, bushes show a wider spectrum, with values scattered from −1.6 to +1 m/s.
Notably, their histogram has a strong resemblance with the pedestrian distribution,
thus confirming the Doppler similarity between these two classes. Furthermore, note
how bushes and pedestrians share similar spatial properties. Indeed, they can often
be found nearby static objects – like the building in fig. 3.13. Consequently, it is
possible to attribute the reason of the confusion between bushes and pedestrians to
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the radar perspective of the two objects, which sometimes does not provide enough
information to differentiate each other. However, this aspect does not produce a
major effect, as most of the times RadarPCNN is able to correctly classify bushes
as the negative class, as proved by the gray points from the hedge on the front-
right of the ego-vehicle in fig. 3.13. Further visual examples about wrong pedestrian
predictions of bush points are provided in appendix A.3.

Figure 3.14: Histogram of Doppler values from bushes points falsely predicted as
pedestrian (orange bars) and stationary points correctly predicted (blue hatched
bars). The black dotted line shows as reference the distribution of Doppler values
from GT pedestrian points. Best viewed in color.
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Chapter 4

A Survey on the usage of Radar

Features in Pointnets for

Pedestrian Detection

The previous chapter proves that the performance of point-wise processing tech-
niques on radar data can be improved by leveraging intrinsic properties of the sen-
sor. In this way, it is possible to achieve reliable detection of nearby objects, such as
vehicles and pedestrians, thus enabling environment perception solutions based on
radar. However, in an autonomous vehicle scenario, there are specific targets whose
recognition is of upmost importance. An example is represented by vulnerable road
user (VRU) objects, of which pedestrians are the most common instance. Members
of this group are particularly exposed to faulty operations of autonomous vehicle
systems. In addition, their small sizes limit the ability of the sensor to observe them,
thus hardening the recognition task. Consequently, it is critical to study and assess
the decision process which leads to the detection of these instances.

In this chapter, it is provided a focus on the ability of point-wise processing meth-
ods to detect pedestrians. In particular, it has been targeted the goal of establishing
how these methods use the information contained in the radar features. The first
section introduces the task of pedestrian recognition with automotive radar sensors.
Section 4.2 describes the role played by the algorithm during the investigation and
provides an overview of the models used in this work. Section 4.3 reports details
about the experimental setup, such as dataset, network configurations and the pro-
cedure used to conduct the experiments. Finally, the results of the investigation are
provided, complemented with observations and comments.

The following own contributions are provided in this chapter:

� Establishment of Doppler as the most relevant radar feature for the classifica-
tion of pedestrians.

� Assessment of the usage of the radar features in various point-based methods.

� Assessment of the ability of PointNet++ to approximate the GT pedestrian
Doppler distribution.

� Assessment of the role played in PointNet++ by the Doppler feature and the
spatial coordinates.
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The results discussed in this chapter were previously published in [121].

4.1 Radar-based Pedestrian Detection

A key factor towards the acceptance of autonomous driving vehicles relies in their
effectiveness [70]. Among the various tasks that such an advanced system has to
execute, a crucial one consists in the collection of knowledge about the surrounding
environment. Indeed, it is of paramount importance to have information about
the road boundaries as well as the objects present in the scene. A special class of
objects in an autonomous driving scenario is VRUs. Members of this class share
the characteristic of being particularly endangered by potential malfunctioning of
the system. Therefore, the ability to detect and locate the presence of these objects
is critical for ensuring safe operation. Examples of VRU instances are pedestrians,
cyclists, and motor-cyclists. Note how they also share the characteristic of being
small compared to other objects in the scene – e.g. vehicles. Since smaller sizes
often result in fewer measurements, regardless of the sensing technology, this aspect
further complicates the detection task.

A commonly adopted sensor in the automotive industry is radar. In the last
decades, it has been progressively more involved, enabling cutting-edge applications
like guard-rail detection [22] and ACC [17]. Yet, the recognition of VRUs with
radar remains an open challenge. Among various objects, the task of pedestrian
detection has particularly captured the interest of the research community. Several
researchers have approached the problem by examining the radar measurements
produced by pedestrian instances [24, 31]. Others have used these observations to
build a pedestrian recognition system [32, 77].

Ritter and Rohling [24] noted that, compared to other objects, pedestrians have
a heterogeneous reflective surface. They proposed to distinguish two parts with
different properties. The HAT (head, arm, trunk) area reflects the radar signal with
high-amplitude and low variance in Doppler. The lokomotor (legs) section, instead,
results in signal with lower energy and wide Doppler spectrum – due to smaller
dimensions and a relative velocity component. In addition, the authors compared
the radar signals generated by both pedestrian and vehicle objects moving in the
radial direction of the sensor. From this experiment, they found out that pedestrians
produce a broader Doppler spectrum. Consequently, they proposed to use the radar
spectral signature to characterize a pedestrian.

Bartsch et al. addressed the binary classification task between pedestrians and
static objects [31]. They developed a very simple recognition algorithm to allow
backtracking of the errors from the output to the raw data. The resulting algo-
rithm is based on observations. Beyond the properties found in [24], they noted
that pedestrians are characterized by smaller sizes than most static objects – e.g.
parked cars. Therefore, they grouped together the sensor data belonging to the
same physical object and extracted 5 hand-crafted feature to represent the cluster.
Two of them based on the shape/size of the cluster; the other three based on the
Doppler spectrum. Since they found out that the radar intensity of signals reflected
by pedestrians is highly fluctuative, they decided not to use this feature. The clas-
sification algorithm works by setting membership functions. The extracted features
are matched with them and the scores are summed up to produce the final clas-
sification output. The experiments suggested that the ego-velocity compensation
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plays a major role for distinguishing pedestrians from static objects. Furthermore,
it turned out that the Doppler spectrum contains the most relevant information for
the recognition of pedestrians. Yet, due to its simplicity, the algorithm could not
detect pedestrians with low Doppler values.

Heuel and Rohling targeted the task of distinguishing pedestrians from vehicles
[32]. Similarly to [31], they noted that it is possible to use size and velocity to
characterize objects from the two classes. In particular, they observed that pedes-
trians have large Doppler profiles – due to the micro Doppler components produced
by the various moving parts – combined with narrow range profiles – small sizes.
Contrarily, vehicles show small Doppler variance – the body moves as a whole –
together with large range profiles. In addition, they observed that vehicles produce
reflections with higher RCS values than pedestrians – due to the metallic reflective
surface. Therefore, the authors developed a classification system that exploits these
class-related properties. Specifically, they first grouped together points belonging
to the same physical instance. Then, they extracted eight hand-crafted features to
represent the cluster: four Doppler-related, three range-related and the RCS. Fi-
nally, they fed the cluster signatures to an SVM model [15] to predict a class for
the group of points. The system resulted effective for differentiating pedestrians
from longitudinal moving vehicles. However, it often classified laterally moving ve-
hicles as pedestrians. For this reason, the authors leveraged the Doppler measured
for the same object to estimate longitudinal (radial) and lateral (tangential) veloc-
ity components. They extracted three new features and retrained the SVM model.
They proved that the system benefits from the new information introduced, showing
improved classification performance and lower confusion rates.

Prophet et al. proposed a system for the detection of pedestrians [77]. The
authors used DBSCAN [16] to cluster together points of the same object. Then,
they extracted cluster-related signatures, extending the feature-set proposed in [32].
Finally, they used a classification model to estimate the output class. Several differ-
ent algorithms were evaluated, including decision tree [6], SVM, K-nearest-neighbors
(KNN) [4] and NN. All the classifiers proved to be effective in the detection of pedes-
trian clusters, thus suggesting that the proposed feature-set discriminates pedestri-
ans from other objects. Furthermore, the authors showed that, though pedestrians
share similar statistics with other VRU objects, it is possible to differentiate between
them. Indeed, cyclists have higher reflected power, due to the metallic structure of
the bicycle. Contrarily, dogs exhibit lower reflected power, higher range profiles and
different velocity signatures – due to the four moving legs.

The recognition of DL as a tool for solving highly-complicated tasks has produced
a progressive adoption of this technology in the automotive industry [117, 95]. It
advanced the state-of-the-art of vehicle perception systems, enabling the effective
recognition of VRUs [98]. Researchers have proved the ability of DL to process radar
data. For instance, Wöhler et al. showed that an LSTM network can distinguish
pedestrian points from other object classes like bike and vehicle [67]. However, as
discussed in section 2.3.2, the introduction of point-wise methods [65, 64, 74] – a new
class of NNs – has enabled efficient processing of point clouds. By generalizing these
approaches to radar data, it has been possible to achieve state-of-the-art performance
[93, 81]. For instance, the authors in [81] proved that PointNet++ [64] can effectively
detect pedestrians from raw radar point clouds. However, though these architectures
significantly outperform classical radar processing techniques, they provide poor
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interpretability. This property, characteristic of NN algorithms, makes it difficult to
determine a causality between input and output.

4.2 Radar Features in Point-wise Techniques

Previous works use simple, human-interpretable solutions to study the ability of
detecting objects from radar data. In this way, it is possible to easily trace pre-
diction errors back into the input domain and, consequently, infer the role played
by every input feature. However, despite this strategy can be used to understand
which feature contains the most critical information, it does not allow one to fully
determine the real correlation between input features and target task. Indeed, every
algorithm has its own set of rules, defining a unique usage of the input features. For
instance, consider a model which uses only the single-point radar features to detect
pedestrians in an urban environment. Based on this algorithm, the spatial position
of the points is irrelevant for the task at hand – as pedestrians are not confined in a
specific spatial location. However, pedestrians are usually located near static objects
like parked cars or buildings. Therefore, by using human-interpretable solutions, it
is possible to back-trace only errors related to the human-interpretation of the task.

It is believed that, in order to perform a comprehensive analysis, it is paramount
to involve the best algorithm for the given task. Herein, it is reported an investiga-
tion about the usage of radar features for the task of pedestrian detection with point
clouds. Point-wise processing approaches represent the current state-of-the-art in
this field. They perform the pedestrian detection task by addressing a semantic seg-
mentation problem. Hence, they localize a pedestrian in the scene by predicting the
proper class for its radar reflections. However, pedestrians are severely underrepre-
sented in radar point clouds. Indeed, compared to other instances, such as vehicles,
they provide a lower amount of point-measurements and miss a strong radar signa-
ture. In this work, instead of focusing on the question ”How is it possible to detect
pedestrians in radar point clouds?”, the following questions are asked:

� Why point-wise techniques are surprisingly good at pedestrian detection?

� How do they use radar features?

� Which are the most relevant features for this algorithm?

� How do other techniques use the radar features?

Since PointNet++ [64] represents the best point-wise processing architecture
tested on radar point clouds, it has been selected as benchmark. In order to gather
more insights about the usage of radar features in this framework, two supple-
mentary point-wise processing networks have been implemented: PointNet [65] and
Shared FC. They perform only part of the processing operations of PointNet++,
thus enabling one to attribute a particular usage of the features to a specific module
of the framework. Finally, a random forest (RF) model is evaluated, to obtain a
comparison with a solution not based on NN technology. In this way, it is possible
to assess eventual usages of the radar features specific of NNs. The next sections
contain a detailed descriptions of the selected models.
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4.2.1 PointNet++

It represents the state-of-the-art architecture for consuming raw point clouds, ex-
tending the CNN concept of locally-shared, hierarchical processing to point-wise
techniques. The resulting framework adopts an encoder-decoder structure. The en-
coder section builds a sparser point cloud to hold the information extracted from
local patches of the input. It uses set-abstraction (SA) layers as building-blocks to
perform three operations: sampling, grouping and feature extraction. Figure 2.10
shows a graphical example of the processes in the SA layer. The sampling pro-
cess selects a subset of the input points – using the farthest point sampling (FPS)
algorithm. The grouping process collects neighborhood patches around every sam-
pled point, clustering together points from the input point cloud. The Euclidean
distance is used to define the neighborhood area. Finally, the feature extraction pro-
cess leverages the information held by points in the patches to compute signatures
describing the local regions. PointNet is adopted to perform this operation and the
global signature is used as local descriptor. The decoder section of the architecture,
instead, propagates the local information held by the sparser point cloud into the
original point locations. It adopts feature-propagation (FP) layers to accomplish
this operation. They perform an inverse-distance weighted interpolation to spread
the information of the sparser point cloud into the point locations of the denser point
cloud. Then, they leverage the interpolated features as well as the local signature ex-
tracted for the same point in the encoder section to compute new point-descriptors.
Skip-connections are used to couple every FP layer with the corresponding SA layer.
Finally, the point-signatures produced by the last decoder layer are processed with
a shared FC classification network to obtain a class score for every point – as in
eq. (3.15). An exhaustive description of the PointNet++ framework, including for-
mal derivation, is provided in section 3.2.2 – eqs. (3.2)–(3.6). Further details about
PointNet, instead, are reported in section 4.2.2.

4.2.2 PointNet

It is the predecessor of PointNet++. Among point-wise processing techniques, it
represents a milestone, as it is the first network purposefully designed to consume
raw point clouds. Figure 2.9 illustrates the processing scheme of PointNet. It relies
on two main components: shared FC-layers and max-pooling. The former perform
an order invariant processing by using the same kernel of weights to extract features
for all the points. Formally, given a point cloud X with points xi ∈ Rm – where
m is the number of features – a single shared FC-layer computes, for every point, a
new signature

xis = fs(x
i;Ws, bs) = ReLU

(
Ws

Txi + bs
)
, (4.1)

where Ws and bs are trainable parameters – weight and bias, respectively – and
ReLU is used as activation function – i.e. ReLU(x) = max(x, 0). Note how this
operation shares the same parameter-set across all the points. By stacking several
shared FC-layers on top of each other, it is possible to achieve a deep processing
and produce a point cloud XFC with enriched point-related feature-descriptors. The
max-pooling operator, instead, extracts a global signature, containing information
about the whole point cloud. It is applied on the latent point cloud produced by
the shared FC-layers. Formally, given XFC with n points and m′ features and the
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associated matrix XFC ∈ Rm′×n – whose columns contains the point-features –, it
computes the global descriptor xg ∈ Rm′ as

xg = MaxPool(XFC) =




maxi {xi1 ∀ i ∈ [1. . n]}
...

maxi {xim′ ∀ i ∈ [1. . n]}


 (4.2)

where xij is the j-th feature of the i-th point in XFC – i.e. the value contained in
the i-th column and j-th row of XFC . Therefore, for each feature, this operation
collects the value from every point and retains only the contribution of the point
with the maximum value. The global signature can be used as it is to perform
classification tasks, where the target is to predict a single class for the whole point
cloud – e.g. scene recognition. When used for semantic segmentation tasks, instead,
PointNet broadcasts the global signature to every input point. Consequently, for
each point, it provides as output a signature xiP tN ∈ R2m′ , such that

xiP tN =
[
xiFC

T
,xg

T
]T ∀ xiFC ∈ XFC , (4.3)

containing a set of point-specific features – xiFC – and a set of features shared
across all points – xg –, holding context information. This signatures can then
be processed with a shared FC classification network to compute the output class
scores, as shown in eq. (3.15). Furthermore, note that the original implementation
of PointNet in [65] includes the usage of a spatial transformer network to achieve
invariance w.r.t different perspectives – by rotation and translation of the input.
However, in autonomous vehicle applications, the point cloud is always centered
around the ego-vehicle. Therefore, this operation is skipped in the network proposed
for the experiments. Finally, note how PointNet differs from PointNet++ in that
it enriches the point-signatures with global rather than local context information.
Consequently, it allows one to collect insights about the ability of extracting global
and local information from the radar features.

4.2.3 Shared FC

It consists in the PointNet architecture, without the max-pooling operation. This
network processes the input point cloud by using only a collection of shared FC-
layers. Formally, for every input point xi ∈ X , it produces a point-signature

xisFC = fs3

(
fs2

(
fs1
(
xi;Ws1 , bs1

)
;Ws2 , bs2

)
;Ws3 , bs3

)
, (4.4)

by iteratively applying eq. (4.1). Although eq. (4.4) uses exactly three FC layers –
i.e. fs1 , fs2 and fs3 –, the network is not limited to this configuration. Note how the
signature computed for every point is independent from other points present in the
cloud. Consequently, the network relies on the radar point-measurements to infer
the single-point class, without exploiting any context information. Furthermore,
note how the kernel-weights are shared across all points, as they are independent
from the point-index i. Finally, in order to perform the semantic segmentation task,
the point-signatures xisFC are processed with a shared FC classification network,
as shown in eq. (3.15). Though Shared FC consists in a very simple point-wise
processing technique, it allows one to gather insights about the importance of the
global descriptor in PointNet for specific usages of the radar features.
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4.2.4 Random Forest

It is another supervised ML method [20]. However, differently than the previous
approaches, it does not have any trainable weights, but relies on an advanced thresh-
olding scheme. RFs are a family of ensemble-based learning algorithms that leverage
a collections of decision tree models [6, 8] to perform the task. By averaging the pre-
dictions of multiple deep decision trees, indeed, RFs make the method more robust
to noise in the train-set.

Decision trees use a labeled dataset to learn how to separate samples from dif-
ferent classes based on the input features. They owe their name to the processing
diagram used to formulate their predictions, resembling a family tree. Herein, only
non-categorical classification trees1 are considered, as categorical and regression trees
are out-of-the-scope of this work. The building blocks of decision trees are nodes,
branches and leaves. Nodes select a feature from the input and compare its value
with a learned threshold. They perform a binary classification task, steering the in-
put into one of their output branches. Branches, in turn, have the task of connecting
two nodes at different layers, providing the lower-layer node output as input to the
node in the next layer. Finally, leaves are special nodes with no output branches.
They are associated with a given outcome and determine the model output predic-
tion. In a classification tree, every leaf is associated with a class prediction.

Decision trees work in a top-down fashion. At inference time, the input is fed
to the first layer, containing a single node. It is then passed to a node in the next
layer until it reaches a leaf node. Figure 4.1 contains as example of decision tree
diagram with 4 layers and 8 leaves. During the training procedure, the model sets
its parameters, such as tree-structure and nodes configuration. It starts with the
first node. Given as input the train-set X with samples xi ∈ Rm and associated
labels yi ∈ [1. . d], it produces two output sub-sets X 0

j = {(xi, yi) ∈ X | xij < γj}
and X 1

j = X \X0, where xij is the j-th feature of the i-th sample xi, γj the node

1Where the input features have numerical values instead of categories and the output is a
classification task.

a
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YN YN YN
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Figure 4.1: Example of decision tree diagram for a binary classification task. Black
boxes denote computational nodes, while gray boxes show leave nodes. xi refers
to the i-th feature of x, while γi represents the corresponding threshold. Since the
same input feature can be used by different nodes, a super-script index is used to
identify the threshold for a specific node.
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threshold and · \ · the set-difference operator. The learning task consists in finding
the input feature which produces the the best split. A metric function quantifies
the goodness of the split, computed as

Ij(X ) =
|X 0

j |
|X | · I(X 0

j ) +
|X 1

j |
|X | · I(X 1

j ) , (4.5)

where I(·) is the set-based metric and | · | the set-size operator – returning the
amount of samples in the set. A common selection for I(·) is the Gini index, defined
as

I(A) = 1−
d∑

k=1

p2k , (4.6)

where A is a generic set, d the total number of output classes and pk ∈ [0, 1] the

fraction of element in A labeled as class k, i.e. pk = |Ak|
|A| , where Ak = {(xi, yi) ∈

A | yi = k} is the set of samples with label k. Note that the Gini index achieves its
minimum (at 0) when the set has only elements from a single class – i.e. a pure set.
Therefore, the first node is set to use the j∗-th feature of the input such that

j∗ = arg minj∈[1..m]Ij(X ) , (4.7)

with Ij(X ) defined as in eq. (4.5). Similarly, it is possible to define the node thresh-
old, γj, as the value which produces the best score for the j-th feature. However,
technically, the algorithm first learns the threshold that produces the best score for
every feature as

γ∗j = arg minγj∈RIj(X ) ∀ j ∈ [1. .m] , (4.8)

and then the most discriminative feature is identified by means of eq. (4.7). At this
point, the learning process moves to the second layer. It has two nodes which repeat
the procedure described for the first node, but using as input X 0

j∗ and X 1
j∗ , respec-

tively. For instance, X 0
j∗ is split into X 00

j and X 01
j and the best node configuration

is set. The learning process continues to build new layers until certain convergence-
conditions are matched. Common conditions are maximum number of layers (a.k.a.
model depth), minimum amount of leaf-samples or minimum Gini index in the leaf
nodes2. In this way, it is possible to limit the overfitting problem, as otherwise the
algorithm would keep splitting the data until every leaf has a pure set.

Random forest (RF) uses an ensemble of decision trees to perform its predictions.
In particular, it stores several trained models and query all of them with the input
to infer the class predictions. The final output will be selected as the class with the
majority of votes – i.e. the one which is predicted most times by single decision
trees. During the training stage, RF uses a family of techniques called bootstrapping
aggregation. Specifically, given the train-set X , composed of inputs and labels,
it samples B random sets Xb ⊆ X , with b = [1. . B]. The sets Xb are sampled
with replacement3 and generally have the same size of the original train-set – i.e.
|Xb| = |X |. Then, every set is used to train a different decision tree model. Note
that this operation cannot be avoided, as tree-models trained on the same dataset
exhibit very similar (or identical) configurations, thus producing highly-correlated

2Note that a different set-based metric function might require to set the maximum value per
leaf node as condition, instead of the minimum.

3Every sample can be present multiple times in the same set.
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outputs. By using different train-sets, bootstrap aggregation techniques force each
decision tree to learn a different node-configuration, hence reducing the inter-tree
correlation. Another popular technique used to encourage diversity in the forest
is feature bootstrapping. It is applied during the training process and consists in
selecting, for each node of each decision tree, a random subset of the input features
for performing the data-split. In this way, it is possible to limit the impact of the
strongest feature. Indeed, every tree will always use the most dominant feature
to perform the data-split at the first node. By randomly concealing part of the
input features, trees are forced to find out new strategies for classifying the input,
thus strengthening the model’s generalization ability. As a consequence, RF greatly
improves the performance of a single decision tree model, reducing the variance in
exchange for slightly higher bias and lower model interpretability.

4.3 Experimental Setup

This section describes the setup used during the investigation. Radar point clouds
are used as input for all the tested models. In order to evaluate how the different
techniques use the radar features for detecting pedestrians, it is addressed a semantic
segmentation task similar to the one in section 3.3. Therefore, the models are trained
to classify each point according to one of three classes: moving vehicle, moving
pedestrian or background. However, besides the overall comparison proposed in
table 4.1, only results on the pedestrian class are analyzed. Performance is measured
in terms of F1 score, computed as described in eq. (3.16).

4.3.1 Dataset

The dataset described in section 3.3.1 is used during the proposed investigation.
However, it has been extended with new data, recorded in highway scenes. The
sensor-configuration adopted by the vehicles that collected the new data is un-
changed and illustrated in fig. 3.6. Although pedestrians rarely occur in highway
scenes, it is important that the algorithms can detect their absence, as it will im-
pact the precision rate and, consequently, the F1 score. In total, the new dataset
counts more than 44 million points, labeled according to the classes of the task.
Every point is determined by its XY Cartesian coordinates, plus measured Doppler
velocity and RCS value. Therefore, the input point cloud is provided with 4 radar
features. The Doppler value associated to the points is already compensated by the
ego-velocity to obtain absolute radial velocity measurements – following the insights
collected from table 3.5. Consequently, throughout this chapter, the terms Doppler
and ego-compensated Doppler are used indistinctly to refer to the latter quantity –
unless otherwise specified. The dataset is split into train and test set, similarly to
how is reported in table 3.1.

4.3.2 Experiment Procedure

The ability of NNs to use the input information in a nested, non-linear fashion,
enables them to solve a various range of very complicated tasks. At the same time,
however, this processing operations hinder the interpretation and explanation of the
system. Indeed, since it does not exist a straightforward relation between input
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and output, it is not possible to determine a priori how the input features would
affect the algorithm. Therefore, to collect insights about the usage of the input
features, it has been decided to design a simple experiment, exploiting the cause-
effect paradigm. In particular, it is proposed to study the behavior of the model
(effect) when queried with an input whose features have been altered (cause).

The experiment devised operates exclusively at the evaluation stage and requires
already trained models. Unless otherwise specified, the original, unperturbed train-
set is used to train all models. During the evaluation process, the original test-set is
tampered and the models performance on this new set are measured. By comparing
the results of the same model on the original and perturbed set, it is possible to
gather insights about the effects produced by the specific modification. Since the
goal of the experiment is to examine the usage of the radar features, it has been
decided to alter them one-by-one, applying an additive white Gaussian noise. In this
way, indeed, it is possible to corrupt the information provided by a specific feature,
observe how the model performance is affected and, consequently, infer the role it
plays in each model. Formally, given the original test-set Xtest, it has been computed
the altered set

∼
Xtest
j by perturbing the j-th feature of the points. Therefore, for a

generic point cloud X from the test-set with points xi ∈ Rm, the corresponding
altered point cloud

∼Xj is obtained as

∼Xj =
{
∼
xi | ∼xik = xik + νi if k = j else

∼
xik = xik ∀ xi ∈ X

}
, (4.9)

where
∼
xi is the i-th point of the altered point cloud

∼Xj ,
∼
xik and xik the k-th feature

of
∼
xi and xi, respectively – k ∈ [1. .m] –, and νi the additive noise, sampled from

a normal distribution, i.e. νi ∼ N (0, σ). Note that the noise factor is sampled for
every point in the point cloud – as indicated by the superscript i – and, therefore,
it is not shared among them. Furthermore, note how only the selected feature j is
perturbed, while the other remains unchanged. In this way, it is possible to generate
m different altered sets, selecting the input features one-by-one. The dataset used
for the experiments has m = 4. However, since there are no reason for the models
to be affected differently when only the x or y spatial location is perturbed4, it has
been decided to treat the XY Cartesian coordinates as a single feature and alter
them together. Consequently, when the XY features are perturbed, the noise term
is sampled from a bi-variate white Gaussian distribution, i.e.

νi ∼ N
(
02,

σ√
2
I2

)
, (4.10)

where 02 ∈ R2 is the vector whose elements are all zeros and I2 ∈ R2×2 the identity
matrix with ones on the diagonal and zeros elsewhere. Note that the noise factor for
each of the XY feature is sampled independently from the other – null correlation
coefficient. Moreover, note how the standard deviation in each direction is scaled
down by

√
2, to maintain the noise magnitude consistent with the sets where the

other features are altered.
During experimentation, eq. (4.9) has been used to compute the point clouds for

three different altered sets:
∼
Xtest
RCS,

∼
Xtest
D and

∼
Xtest
XY , perturbing RCS, Doppler and XY ,

4Note that they are de-coupled from range and azimuth measurements of the radar sensors, as
they are referred to the ego-vehicle coordinate system.
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respectively5. In order to collect more insights about the usage of each feature, the
same experiment is repeated several times, extracting the three altered test-sets with
different magnitudes of the white Gaussian noise – i.e. changing the value of σ > 0.
Furthermore, to limit the randomness introduced by the artificial perturbation, it
has been decided to compute the altered-test sets with the same configurations 10
times. The models are evaluated with every set and their average results used to
generate plots. Note that the altered-sets contain radar reflections that no longer
adhere to the intrinsic properties of the sensor. Therefore, they cannot be used
to train the models but only to study their reaction to a disruption of the input
information. Another compelling argument consists in the fact that the models can
be confused by test-data that do not respect the nature of those in the train-set.
However, the numerical results produced on the altered-sets are not used to infer
the models performance on specific sensor-settings, but rather to gather relevant
patterns that allow the study of the models behavior.

4.3.3 Network Configurations

This section reports the configurations of the tested models. The settings described
in section 3.3.2, designed to enrich the input point cloud and limit the class imbalance
of the problem, are adopted in this work. PointNet++ receives as input a point
cloud whose locations are defined by the XY Cartesian coordinates and the ego-
compensated Doppler – used as z-coordinate. The measured RCS value is used
as point feature. The other methods do not require a distinction between point
coordinates and features. Concerning the NN-based models, they all share the same
FC classification network, composed of two layers of 64 and 32 channels, interleaved
by dropout with rate 0.5. The output layer adopts the configuration described in
section 3.3.2. Since RF produces class predictions as output, it does not require any
classification network nor output layer.

PointNet++ It has been decided to use a PointNet++ architecture with two
encoder-decoder layers. The first SA layer takes a point cloud of 1200 points and
embeds local context information into 500 point-locations. FPS is used at the sam-
pling stage, while the grouping process creates three clusters, collecting points 1, 1.5
and 2 meters around the representative one. PointNet is used to extract descriptors
of 32, 32 and 64 channels, respectively, out of each local neighborhood, thus pro-
ducing a 128-channels signature for every representative point. The second SA layer
further encodes the features extracted by the first layer, resulting in a point cloud
of 150 points. Neighborhood areas of 4, 6 and 8 meters are used, producing descrip-
tors of 64, 64 and 128 each. Therefore, the output of the encoder section is a point
cloud with 256-channels signatures. The two FP layers, propagate the extracted
information into the corresponding input point locations, using shared-FC networks
of 128 and 64 channels, respectively. The FC classification network computes the
final semantic segmentation scores.

PointNet PointNet is implemented using 5 shared FC layers. Each of them takes
as input the output of the previous layer. They are designed to extract 32, 64, 128,

5For completeness, note that the notation in eq. (4.9) has to be adapted to the multivariate

noise factor when used to describe
∼XXY .
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256 and 256 features, respectively. The point-signatures produced by the last layer
are then processed with max-pooling to produce a 256-channels global descriptor.
Therefore, to each point is assigned a signature of 512 features which is fed to the
classification network that computes the output class scores.

Shared FC This network has been implemented to gather insights about the im-
pact of the global signature of PointNet on the pedestrian detection task. Therefore,
it reuses the same configuration of PointNet. However, the 256-channels signatures
produced by the shared-FC network is processed with an additional layer instead of
max-pooling. Shared FC produces as output point clouds with 128 features. Finally,
the FC classification network computes the segmentation scores for each point.

Random Forest The RF model used in this work uses 100 decision trees. Due to
the dataset size, it is not possible to load all the samples in memory simultaneously.
Therefore, both train-set and trees are split in 4 partitions. Bootstrapping aggre-
gation with B = 25 is then used to train the decision tree models in each partition.
Feature bootstrapping is also used, with sub-sampling factor

√
m. The Gini index in

eq. (4.6) is used as set-based metric function. Two convergence criteria are set. The
model depth is constrained to a maximum amount of 25 layers. At the same time,
the leaf nodes are forced to have a minimum amount of 10000 samples to avoid over-
fitting to peculiar samples. Finally, class weights are used to deal with the dataset
imbalance problem. They are employed to provide more emphasis to a given class
during the set-based metric computation. It has been decided to set the weights to
1.4, 0.95 and 0.2 for the pedestrian, vehicle and other class, respectively. In practice,
they are normalized and used to multiply the term p2k of the corresponding class in
eq. (4.6).

4.4 Results

Before investigating how the models use the radar features, it is worth analyzing their
performance on the proposed semantic segmentation task. Table 4.1 summarizes
the results of the tested models collected on the original test-set Xtest. Notably,
PointNet++ achieves superior performance, considerably outperforming the other
tested models on both classes. However, this does not come as a surprise, since this
architecture represents the current state-of-the-art for semantic segmentation of raw
radar point clouds. Focusing on the other models, it is interesting to note how RF
is able to perform better than Shared FC. Bear in mind that, though these two
models perform completely different processing operations, both process each input
point independently from each other – i.e. they do not use any context-related
information source. Therefore, the results in table 4.1 suggest that, under this
configuration, an advanced thresholding of the radar features is more effective than
learning to abstract them into new point-signatures. By comparing the performance
of Shared FC and PointNet, it is possible to collect important insights about the role
played by the context information in the detection task. Note how the introduction
of the max-pooling operation produces a drastic boost in performance, improving
the results on both classes by circa 9%. This proves that the global descriptor
contains extremely relevant information, crucial for the correct estimation of the
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Table 4.1: Summary of the models evaluated on the original test-set. F1 scores on
the positive classes are reported in percentages.

Method Vehicle Pedestrian FLOPS

PointNet++ 76.82% 59.44% 953.3 M
PointNet 70.02% 40.61% 366.9 M
Shared FC 61.00% 31.62% 347.1 M
Random Forest 65.04% 32.45% —

semantic segmentation class of the points. The last column reports details about the
computational complexity of the models. Note how PointNet++ represents the most
computational-expensive solution, using nearly 2.7× more FLOPS than PointNet.
Shared FC, instead, is the cheapest solution, though it shows an amount of FLOPS
fairly comparable with PointNet. Finally, note that the different capacity of the
models does not represent an issue, as this chapter is focused on the ability of the
models to use the features, rather than their detection capabilities. The remainder
of this section studies only the performance of the models on the pedestrian class,
as it is in the scope of this survey.

4.4.1 Feature Perturbation

This section contains the results of the experiment proposed in section 4.3.2. There-
fore, the models are evaluated on the altered sets

∼
Xtest
RCS,

∼
Xtest
D and

∼
Xtest
XY . The results

achieved are used to create the plots in figs. 4.2 and 4.3, reporting the F1 scores on
the pedestrian class versus various configurations of the noise magnitude σ2. The
altered sets that sample from a noise distribution with σ = 0 coincide exactly with
the original, unperturbed test-set Xtest. Note how none of the models exhibits a
performance improvement when evaluated on the altered-sets, regardless of the per-
turbed feature. This is an expected behavior, since the noise destroys information
potentially relevant for the execution of the task. Otherwise, it would have sug-
gested that the feature is confusing the algorithm. In this case, however, the models
would have learned not to use the specific feature, as they all learn their task from
data. Finally, it has been decided to separate the results in two plots, because the
RCS feature required further experimentation to fully assess its usage by the tested
models.

Figure 4.2 provides interesting insights about the usage of both XY and Doppler
feature in the tested models. The most evident result concerns the usage of the
Doppler feature. Note, indeed, how all the models are significantly affected by a
perturbation of this feature, resulting in F1 scores below 15% on the noisiest test-set
configuration – i.e. σ = 1. This proves the enormous importance of the Doppler fea-
ture for the task. Yet, this is not surprising. Indeed, Doppler contains information
about the dynamic properties of an object, therefore, the models strongly rely on this
feature to distinguish moving pedestrians from static and/or fast-moving objects.
Focusing on the single model results, it is possible to notice how, as the noise mag-
nitude increases, PointNet tends to achieve similar performance to Shared FC: the
blue and gray solid curves get really close when the noise magnitude σ2 = 0.3. Since
the only difference between the two networks consists in the max-pooling operation,
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Figure 4.2: Models performance on Doppler (solid) and XY (dotted) altered test-set
with different noise magnitudes. Every color represents a different model. Doppler
results in the most important feature while PointNet++ is the only model using
XY information. Best viewed in colors.

this behavior suggests that a perturbation of the Doppler feature limits drastically
the effects of the global descriptor. Consequently, it is possible to deduce that Point-
Net extracts in the global signatures dynamic information about the current scene
– such as the average velocity of the object – that enables the network to identify
the conditions when pedestrians are more likely to be encountered. For instance, an
highway scene, containing several fast moving vehicles, reduces the pedestrian oc-
currence probability; contrarily, an urban domain will result in numerous stationary
reflections, thus defining an environment more prone to contain pedestrians. An-
other interesting observation can be obtained by comparing the behavior of Shared
FC and RF. Note, indeed, how the former results more robust to a Doppler pertur-
bation: the gray solid line starts below the green one (σ = 0), but they intercept
around σ2 = 0.1 and achieve the highest difference at σ2 = 0.3. This hints that
Shared FC relies less on Doppler than RF and exploits more the other radar fea-
tures to detect pedestrians. Yet, both of them achieve similar performance – circa
9% F1 score – when the noise magnitude keeps increasing and further corrupts the
velocity information.

Completely different insights can be collected by analyzing the results produced
on the test-sets with perturbed XY coordinates. Indeed, the models manifest pro-
foundly diverse usages of this feature. As shown in fig. 4.2, only the dotted curve
from PointNet++ results in a performance drop – up to 23% in the noisiest config-
uration –, while all the other models exhibit flat lines, with performance variations
within 1%. This is a very interesting finding, since it suggests that PointNet++ is
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the only model, among the tested ones, that makes significant usage of the point
coordinates to predict the pedestrian class. This effect is attributed to the extremely
different processing scheme adopted by the models. Note, indeed, how PointNet++
is the only architecture which extracts local context information, using the relative
distance between points to collect shape-related attributes and/or capture the in-
teraction with nearby objects. All the other models process the points as a list,
using the coordinates as auxiliary features, as if the points in the input were inde-
pendent from each other. Nevertheless, note how the performance drop produced
in PointNet++ by a perturbation of the XY coordinates is not comparable with
the one produced by the Doppler feature: the network can still achieve an F1 score
higher than 35% on the noisiest configuration, against circa 13% when Doppler is
altered.

Figure 4.3 reports the performance achieved by the models when tested with the
∼
Xtest
RCS altered set. When the RCS feature is perturbed with the same noise configu-

ration used in fig. 4.2, the models result unaffected. Indeed, they produce flat lines,
similarly to the ones produced on the XY altered-sets. In this case, however, even
the performance of PointNet++ results uninfluenced. For this reason, it has been
decided to conduct a further experiment to assess the usage of the RCS radar feature
by the models. In particular, the models are evaluated on a new altered test-set,
where the RCS information has been completely destroyed. Formally, this is tanta-
mount to sample the noise factor from a normal distribution with infinite magnitude
– i.e. σ → ∞. Therefore, the models scores are annotated to the extreme right of

Figure 4.3: Models performance on RCS altered test-set with different noise mag-
nitudes. Cross markers report the models performance while completely destroying
the information. Best viewed in colors.
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Table 4.2: F1 score performance of the models trained with and without the RCS
feature. RCS is useful for the semantic segmentation task.

Configuration PointNet++ PointNet Shared FC Rand. Forest

with RCS 59.44% 40.61% 31.62% 32.45%
without RCS 57.99% 40.45% 30.04% 31.52%

the plot (cross markers), connecting with dashed lines the results obtained with the
last finite noise magnitude configuration. From an implementation point-of-view, it
has been decided to force the RCS value of all the points to a constant value of 0 – to
ensure numerical stability. Note how, when this noise configuration is adopted, all
models exhibit a noticeable drop in performance. This suggests that, though RCS
is not the most important feature, it contains relevant information for the detection
of pedestrians. Remarkably, PointNet shows the highest degradation, decreasing its
F1 score by circa 7%, even more than PointNet++. This hints that this architecture
relies on RCS more than the other models to detect pedestrians. Furthermore, note
how RF results in the lowest performance drop, showing a variation of less than 2%
– i.e. almost half as much as the degradation produced in Shared FC. Therefore, it is
possible to conclude that NN-based solutions can leverage all the input information,
learning also from a less informative feature like RCS. Finally, it has been decided
to perform a last experiment, in order to find out whether the models might benefit
from not using the RCS feature at all. Indeed, since fig. 4.3 proved that it does
not contain prominent information for the detection task, its inclusion in the input
point-signature might force the models to use this information, thus generating con-
fusion in the decision-process. During this experiment, the RCS feature has been
removed from the whole dataset – both train and test sets. Then, all four models
have been trained from scratch and evaluated, using the new dataset. Table 4.2
reports the performance of the models when trained and tested on the dataset with
and without the RCS feature. Note how all models achieve better results on the
dataset that includes the RCS feature, thus proving that it does not generate con-
fusion but rather support the solution of the semantic segmentation task. Indeed,
this feature is proportional to the visibility of the object from a radar perspective –
combining its distance to the sensor with the active reflective surface. Therefore, the
models can leverage this information to improve the effectiveness of the detection
process. In particular, NN-based models can use this feature to adjust the filtering
operations based on the object visibility.

4.4.2 Doppler Analysis

The results in section 4.4.1 prove that Doppler contains the most prominent in-
formation for the detection of pedestrian reflections. The very poor performance
produced when perturbing this feature, indeed, suggests that the models use it as
a prediction-enabler: i.e. if a point shows a particular Doppler configuration, then
the other features are used to determine whether it is a pedestrian point; otherwise
the point obtains a different class prediction. In this section, it is provided a deeper
investigation on the Doppler feature, reporting the results of additional experiments
that unveil further details about its usage.
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A particularly interesting experiment consists in the analysis of the Doppler
values that enable the models to predict the pedestrian class. This can be achieved
by extracting statistics from specific sets of points. Herein, it has been decided to
compare the Doppler distributions of points predicted as pedestrian by the different
tested models. To compute this statistic, first, it is extracted, for each model, the set
containing only points of the test-set which result in pedestrian predictions. Then,
the Doppler values of the points are used to create a probability distribution. In
particular, the Doppler support has been divided into non-overlapping intervals and
the amount of point-occurrences in each interval is annotated. Finally, the interval-
counts are normalized by the total amount of points in the set to obtain probability
scores. The models used in this experiment are the same shown in table 4.1, hence
trained on the original, unaltered train-set. Note, moreover, that the points are
collected from the original test-set, without any perturbation of the radar features.

Figure 4.4 contains the results of the experiment. It plots the Doppler distribu-
tion of different models, obtained by interpolating the probability scores at adjacent
intervals. In addition, the Doppler distribution of GT pedestrian points is reported
to provide a reference (dotted line). The same procedure is used to generate this
curve, but the statistics are computed on a set containing all the points which are
labeled as pedestrian. Note that, since the Doppler support is divided in intervals
of 0.2 m/s, the score at a generic point x refers to the percentage of pedestrian pre-
dictions with Doppler values in the interval [x− 0.1, x+ 0.1) m/s. For instance, the
value of the blue curve at 0.2 m/s indicates that nearly 5% of the points predicted
as pedestrian by PointNet have Doppler values in the interval [0.1, 0.3) m/s.

By analyzing the plot, it is possible to gather many interesting insights. Bear
in mind that the pedestrian class refers to moving instances which have an absolute
velocity higher than 0.5 m/s. Since it is not physically possible for pedestrians to

Figure 4.4: Doppler distributions of pedestrian predictions. Different colors repre-
sent different models. The dotted black curve refers to the Doppler distribution of
GT pedestrian points. Best viewed in color.
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achieve high speed values – compared to other objects such as vehicles –, they often
assume low velocity values (hardly ever beyond 3 m/s). Therefore, it is natural
to expect the GT pedestrian Doppler distribution to be the sum of two Gaussian
distributions, centered around ±davg, i.e.

pdf(D) = N (−davg, σd) +N (davg, σd) , (4.11)

where pdf(·) stands for probability density function, D is the Doppler random vari-
able. davg > 0 and σd > 0 are, respectively, the average absolute velocity of pedestri-
ans and the corresponding standard deviation, computed as in eq. (4.12), where N
is the total number of points in the set and Di the Doppler value of the i-th point,

davg =
1

N

N∑

i=0

|Di| , (4.12a)

σd =

√√√√ 1

N

N∑

i=0

(|Di| − davg)2 . (4.12b)

This assumption is partially confirmed by the dotted line in fig. 4.4. Note, indeed, the
presence of two side-lobes, resembling two Gaussian distributions centered around
circa −0.8 and 1.2 m/s, respectively. However, only a limited amount of pedestrian
points have a Doppler configuration sampled from these two distributions. Indeed,
it is possible to notice the presence of an unexpected third Gaussian component,
centered around 0.1 m/s, with a smaller standard deviation than the other two
distributions. Remarkably, this component accounts for the majority of the points,
as P (D ∈ [−0.2, 0.4]) – the probability of a pedestrian point to have a Doppler value
in the interval [−0.2, 0.4] m/s –, computed as in eq. (4.13), is nearly 45%,

P (D ∈ [a, b]) =

∫ b

a

pdf(D) dD . (4.13)

This effect is attributed to two aspects: the nature of the radar velocity measurement
and the behavior of pedestrian instances in the scene. Bear in mind, indeed, that
Doppler provides a measure of the relative radial velocity of the object. Although it
is possible to compensate the sensor-velocity to achieve an absolute measurement,
the tangential velocity component of every point remains unknown6. Consequently,
pedestrians that move tangentially w.r.t. the sensor produce reflections with null
Doppler. Yet, since they have a non-null absolute velocity, they will be labeled
as moving, thus explaining the presence of samples around the stationary Doppler.
Furthermore, note that pedestrians are specific objects that can be found perform-
ing a finite set of actions: they are often either sitting/standing-still, crossing the
street or walking along the curbstone. Instances which perform the first action are
labeled as stationary objects. The other two actions generate positive point-labels.
However, they rarely result in pedestrians moving away/toward the sensor. Contrar-
ily, they often move in directions with a strong component in the tangential plane,
thus producing a significant divergence between the Doppler measured velocity and
the real absolute velocity of the object. Figure 4.5 contains examples of common

6It is possible to recover the tangential velocity of an object by leveraging the radial measure-
ments of multiple points. However, this approach requires the point-to-object association to be
known a priori.
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actions taken by pedestrians, highlighting the radial and tangential velocity compo-
nents. Consider, without loss of generality, that the ego-vehicle is standing in the
scene, so that the measured Doppler coincides with its ego-compensated version.
Figures 4.5A and 4.5B show a pedestrian crossing the street. Note how, when the
pedestrian is leaving the curbstone to approach the crosswalk (fig. 4.5A), the abso-
lute velocity (green arrow) is split in almost equal radial (cyan arrow) and tangential
(red arrow) components w.r.t. the front-right sensor (green triangle). Consequently,
a pedestrian moving at a velocity of 0.5 m/s would produce a Doppler measurement
of circa 0.25 m/s. However, as it moves towards the middle of the street, its radial

(A) Approaching the crosswalk. (B) Crossing the street.

(C) Walking along the curbstone. (D) Walking towards the ego-vehicle.

Figure 4.5: Possible actions of moving pedestrians. The sensors are identified with
triangle markers, oriented according to the mounting setting. The green arrows
show the absolute velocity of the pedestrian. Red and cyan arrows represent, re-
spectively, the tangential and radial components of the absolute velocity. Radar
Doppler measures the length of the cyan arrow. Best viewed in colors.
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component will decrease7. Notice, indeed, how much the size of the cyan arrow has
shrunk in fig. 4.5B, while the tangential component has grown to become almost as
big as the green arrow. In this configuration, the Doppler value is critically different
from the real absolute velocity. Similar consideration can be repeated for pedestri-
ans walking along the curbstone. Note, indeed, that curbstones often run either in
the lateral direction (y-axis) in the front or rear of the vehicle or in the longitudinal
direction (x-axis) on the sides of the vehicle. In the former case, the velocity vectors
assume configurations similar to the ones in figs. 4.5A and 4.5B. The latter scenario,
instead, is depicted in fig. 4.5C. Note that, when the pedestrian is on the side of the
ego-vehicle, both right-facing (purple triangle) and rear-right (cyan triangle) sensors
measure very low Doppler values. In particular, the right-facing sensor has the radial
axis exactly perpendicular to the moving direction. Therefore, the absolute velocity
lies entirely in the tangential plane and the sensor will read a null Doppler value.
Similar observations can be repeated for the rear-right sensor. Indeed, though it
is not completely orthogonal to the moving direction, it will still measure a very
small radial velocity, as proved by the small size of the cyan arrow. Note that, when
the pedestrian is not at the side of the vehicle, it assumes similar configurations to
fig. 4.5A. Finally, as a comparison, fig. 4.5D shows the configuration produced by
a pedestrian walking towards the ego-vehicle. Notice how the Doppler value of the
right-facing sensor measures exactly the absolute object velocity, while the rear-right
sensor provides an accurate estimate. However, this scenario rarely happens and,
frequently, the measured Doppler value is consistently different from the absolute
object velocity, as proved by the high-amount of pedestrian samples with values
close to the stationary Doppler.

The fact that the GT pedestrian Doppler distribution diverges from eq. (4.11)
provides significant information about the perception of pedestrians in the Doppler
domain. By analyzing the curves generated from the model prediction-sets in fig. 4.4,
it is possible to gather further insights about the usage of this feature. Note how the
Doppler distributions produced by all the models present the two Gaussian compo-
nents derived in eq. (4.11). This suggests that the models are prone to predict the
pedestrian class when the reflections exhibit a low Doppler value – around ±1 m/s.
However, it is surprising to note how PointNet++ is the only technique which pro-
duces a distribution similar to the GT one. Indeed, it presents a main Gaussian
component centered around 0.1 m/s, describing a big portion of its predictions –
P (D ∈ [−0.2, 0.4]) = 34% circa. This proves that PointNet++ performs a more
complex usage of the radar features, extracting the properties that describe the
pedestrian class. Among the other models, PointNet attempts to perform pedes-
trian predictions for points with Doppler values close to 0 m/s. However, only
less than 12% of predictions have Doppler values in the interval [−0.2, 0.4], while
P (D ∈ [−1.8,−0.4]) and P (D ∈ [0.6, 2.0]) are both above 40%. Finally, the remain-
ing models just limit themselves to predict the pedestrian class if the points have a
small, non-null Doppler value, showing P (D ∈ [−1.8,−0.4] ∪ [0.6, 2.0]) > 90%.

Figure 4.6 reports the results of the same experiment, repeated on the false-
negative sets. Therefore, the colored lines show the Doppler distribution of pedes-
trian points which are missed by the models. The GT Doppler distribution curve is
computed exactly as in fig. 4.4. It has been decided to normalize the interval-counts
by the total amount of GT pedestrian points rather than the size of the correspond-

7Assuming that it maintains a constant velocity.
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ing set. Consequently, the curves are not real probability distributions, as the area
under them is not 100% – i.e. P (D ∈ [−∞,+∞]) 6= 1. Note, however, how this
does not affect the shape of the curves: they are just scaled down to fit under the
dotted curve. The proposed plot enables one to collect interesting insights. Note,
indeed, how the area under a colored curve accounts for the percentage of missed
pedestrian points. Instead, the area between the colored and dotted curve consists
in the percentage of detected samples – i.e. the recall score. Figure 4.6 confirms
that PointNet++ performs a different processing compared with the other mod-
els. Notice, indeed, how it is possible to distinguish only the orange curve in the
interval [−0.2, 0.4]. The other curves are superimposed with each other and the
dotted line. This suggests that these models miss almost all the pedestrian points
with Doppler values in this interval. Therefore, the points which are predicted as
pedestrian by PointNet in this interval – 12% of the whole set – are nearly all false
positives. Regarding PointNet++, it is possible to note how, despite it predicts the
pedestrian class for points with Doppler in [−0.2, 0.4], it misses several of them.
Numerically, they account for nearly 25% of the total GT pedestrian points and
circa 58% of points in the specific interval. Yet, PointNet++ is able to detect the
remaining 42% circa of points, compared to less than 5% in the other models. Fur-
thermore, note how PointNet++ shows superior performance also in the interval
[−1.8,−0.4] ∪ [0.6, 2.0]. Indeed, here, the orange curve is always found below the
other curves, thus producing a higher recall score. Numerically, it misses only 8%
circa of total pedestrian points against more than 12% in the other models, which
account, respectively, for nearly 16% and 25% of the GT pedestrian points in this
interval.

Figure 4.6: Doppler distributions of missed pedestrian points. Different colors
represent different models. The dotted black curve refers to the Doppler distribution
of GT pedestrian points. Best viewed in color.
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Random vs Shift Noise In order to gather further insights about the usage of
Doppler, it has been decided to conduct an additional experiment. Specifically, it is
studied how the models are affected when this feature is perturbed with a different
noise factor. The experimental procedure described in section 4.3.2 is adopted.
Therefore, the models are evaluated on altered versions of the test-set, where a single
feature is perturbed with additive white Gaussian noise. Equation (4.9) describes
the perturbation process: given a point cloud X from the original test-set, the
corresponding perturbed point cloud

∼Xj is obtained by adding to the j-th feature a
noise term sampled from a normal distribution. Note that every point experiences a
(potentially) different noise term. For this reason, this noise configuration is referred
to as random noise. In this section, it has been decided to modify the perturbation
process: a single noise term is sampled and used to alter the j-th feature of all the
points in the same point cloud, i.e.

∼Xj =
{
∼
xi | ∼xik = xik + ν if k = j else

∼
xik = xik ∀ xi ∈ X

}
. (4.14)

Note that, compared to eq. (4.9), ν has no longer the superscript i, thus remain-
ing constant across points of the same point cloud. This results in a shift of the
Doppler values which is equal for all the points. Therefore, this noise configuration
is referred to as shift noise. Note, however, how the noise term is not shared across
different point clouds, which are shifted by (potentially) different factors. The noise
distribution remains unchanged, i.e. ν ∼ N (0, σ). Finally, note how the shift noise
is less powerful than the random noise – given equal magnitude – as it does not
corrupt the relative local velocity information.

Figure 4.7A contains a comparison on the models performance under both ran-
dom and shift noise perturbation of the Doppler feature. Note how the solid lines
are the very same curves plotted in fig. 4.2. It is worth noting how PointNet++
exhibits once more a different behavior than the other models. Indeed, it results less
affected by the shift noise than the random one: when its magnitude is below 0.3,
it experience almost no performance drop (< 2%). This is attributed to the differ-
ent processing performed by this architecture, which uses relative point coordinates
to extract local information. Since the shift noise does not affect the difference in
Doppler between points of the same point cloud, it does not corrupt the information
leveraged by the network, which is able to maintain its performance – bear in mind
that Doppler has been used as z-spatial coordinate. Interestingly, however, when the
noise magnitude increases, the performance of the network experience a noticeable
degradation. This effect is attributed to the huge importance of the Doppler feature
for the detection task. Indeed, as the noise magnitude increases, so does the shift
experienced by the point-feature values. This, in turn, increases the probability of
producing Doppler configuration which are unnatural for pedestrians, thus prevent-
ing the network to predict the correct class – fig. 4.4 shows that PointNet++ is less
prone to classify as pedestrian points with Doppler values above 3 m/s. Yet, notice
how the performance drop produced by the shift noise is significantly lower than
its random version: the two configurations result in a difference of nearly 35% in
terms of F1 score. Concerning the other models, it is possible to note how the shift
noise produces results that are very similar to its random version. This behavior,
however, cannot be fully appreciated from the plot in fig. 4.7A, therefore, it has been
decided to produce a bar-chart, reporting the difference between the performance
produced by shift and random noise. In this way, it is possible to analyze even
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(A) Absolute performance. PointNet++ shows reduced sensitivity to Doppler shifts.

(B) Difference in performance between random and shift noise.

Figure 4.7: Models performance vs noise magnitude under random (solid) and shift
(dotted) noise applied to the Doppler feature. Best viewed in colors.
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very small variations in performance. Figure 4.7B contains the bar-chart. Note how
both Shared FC and RF exhibit similar negligible differences: considering all the
noise configurations, the performance achieved on the two noise factors never differ
more than 0.2%. PointNet results slightly more robust to the shift noise than the
random one, showing differences up to 2%. This effect is attributed to the usage
of the global signature. Note, indeed, how the shift noise has the same effect of a
poor estimation of the ego-velocity – a systematic error would result in a Doppler
shift. As the global signature captures information of the whole scene, it can be
used by the network to resolve the erroneous Doppler measurement and still predict
the correct class.

4.4.3 Focus on PointNet++

The results of the experiments in sections 4.4.1 and 4.4.2 prove that PointNet++
uses the radar features differently than the other tested models. For this reason,
it has been decided to perform a deeper analysis, focused on this architecture. In
more details, it has been proposed an investigation on the class-confusion produced
by perturbations of the radar features. The random noise factor, as described in
section 4.3.2, is used. Moreover, since perturbations of the RCS feature have minor
effects on the performance, only Doppler and XY are considered. Therefore, the
same experiment which led to the results of fig. 4.2 is repeated. However, instead of
collecting the F1 scores, for each point in the test-sets, both GT class and network
prediction are annotated and used to build the column-charts in fig. 4.8.

Figure 4.8A shows how the network classifies all GT pedestrian points in the test-
set, thus providing a measure of the recall score. As the noise magnitude increases,
it is possible to recognize two effects: when the Doppler is perturbed, more pedes-
trians are misclassified as moving vehicles (orange segment) than background/other
(blue segment); contrarily, when the spatial XY coordinates are altered, it is the
background/other class which dominates the erroneous prediction-set. The former
effect is attributed to the fact that, when perturbing the Doppler feature, it is more
likely to produce a high value (proper of moving vehicles) than a value close to 0
(characteristic of stationary objects, accounted for in the background/other class).
Consider, for instance, a pedestrian point with measured Doppler value of 1.5 m/s.
By sampling the noise term from a normal distribution with σ = 1, there is a 30%
probability that the Doppler value will be increased by at least 0.5 m/s. Contrarily,
there is only 8% probability that the noise would not alter the Doppler value – con-
sidering the interval [−0.1, 0.1] m/s – and circa 5% probability to produce a value
close to 0 – i.e. noise term in [−1.7, 1.3] m/s. The effect produced by a perturbation
of the XY coordinates, instead, can be attributed to missing context information.
Indeed, although the Doppler feature has the right configuration, the surrounding
point-geometry is altered, thus preventing the network from predicting the pedes-
trian class. Yet, since the characteristic Doppler of pedestrians is often low – more
than 95% of points are in the interval [−2, 2.2] m/s –, the network does not find
the conditions for predicting the moving vehicle class and, therefore, decides for the
background/other class. Finally, an interesting result can be observed by comparing
the heights of the gray segments produced by the altered test-sets. Note, indeed,
how perturbations of the XY coordinates always generate lower recall scores than
Doppler – with noise magnitude σ = 1, it is circa 43% against nearly 49% from
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(A) 100% accounts for all GT pedestrian points. The height of each bar segment reports
the percentage of GT pedestrian points classified as the proper class. The height of the
gray segment represents the network recall score.

(B) 100% accounts for all pedestrian point-predictions. The height of each bar segment
shows the percentage of pedestrian predicted points from the proper GT class. The height
of the gray segment reports the network precision score. The secondary axis (right-hand
side) plots the total number of points predicted as pedestrian on the Doppler (solid) and
XY (dashed) altered test-sets.

Figure 4.8: Column-chart showing the distribution of pedestrian predictions or GT
points across different classes vs different noise magnitudes. Column-segments of
different colors represent different classes. Best viewed in color.
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Doppler. This suggests that the network relies more on XY than Doppler for the
detection of pedestrians, thus contradicting the observations made so far. However,
it must be noted that it is possible to achieve 100% recall by simply predicting al-
ways the same class, regardless of the input features. Therefore, in order to produce
correct observations, it is paramount to analyze the corresponding precision scores
– which, for instance, will be 0% for the previous model example with 100% recall.

Figure 4.8B provides a measure of the network precision, as it reports the GT
class distribution of pedestrian predicted points. Note how a perturbation of the
Doppler feature significantly affects the amount of correctly predicted pedestrian
points: when the noise magnitude σ is 1, the network achieves a precision of nearly
6%, against almost 30% on the XY altered-set. Therefore, it is possible to conclude
that theXY coordinates are important to achieve high recall values – i.e. to correctly
classify pedestrian points –, while Doppler is fundamental to limit the amount of
pedestrian predictions from other classes. This is additionally supported by the
results plotted on the secondary axis of fig. 4.8B, showing the total amount of
points predicted as pedestrian. Indeed, it is possible to note how a perturbation
of the Doppler feature (solid line) critically increases this number – up to 3× the
amount of predictions on the original test-set when σ = 1 –, thus strongly affecting
the precision score. Conversely, the XY altered sets (dashed line) produce a slight
reduction in the number of points predicted as pedestrian. Finally, it is worth noting
how, in both XY and Doppler altered sets, it is the background/other class that
represents the main source of error. This can be attributed to different reasons.
In the Doppler altered sets, the main cause is the augmentation of the velocity
feature of points which have similar spatial context configuration of pedestrians.
For instance, consider objects like poles, bushes or trees, which are associated with
the background/other class. They produce ego-compensated Doppler values close to
0 m/s, but share the common spatial properties of pedestrians – i.e. they are found
near other static objects like parked cars or buildings. Consequently, by tampering
the Doppler value of their radar reflections, it is possible to generate the conditions
for predicting the pedestrian class. This does not hold true for moving vehicles.
Indeed, since they have well-defined Doppler signatures, the noise perturbation has
little effect – its magnitude is small compared to the feature value. In addition, they
rarely share the spatial configuration of pedestrians. Similar considerations can be
repeated on the XY altered sets. However, the effects produced are limited, because
it is much more rare to find points that have the proper Doppler signature but miss
the spatial context configuration. Moreover, compared with Doppler, it is less likely
that the XY noise would create the proper context configuration, as more points
must assume specific spatial positions. Therefore, the drop in precision achieved by
an XY perturbation is mostly attributed to correct pedestrian predictions no longer
produced. Indeed, as shown in the secondary axis, when σ = 1, the network total
predictions number goes from circa 394K (on the original test-set) to 300K. This
accounts for a loss of nearly 24% of pedestrian predicted points, which are almost
all from the GT pedestrian class (102K). Consequently, it is possible to conclude
that PointNet++ reacts to a Doppler perturbation by predicting points from other
classes as pedestrians. On the other hand, a perturbation of the XY coordinates
forces the network to misclassify GT pedestrian points. Yet, the overall performance
drop produced by a perturbation of the Doppler feature results more severe, thus
establishing its role as most informative feature.
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Chapter 5

An Advanced Point-based

Architecture for Detecting

Objects in Radar Point Clouds

The previous chapters of this document prove the ability of point-wise processing
techniques to extract practical information from radar point clouds through the
semantic segmentation task. However, in order to enable safety functions and driver
assistance systems, it is important to obtain a reliable and more accurate perception
of the surrounding environment. Despite semantic segmentation outputs provide
useful insights about the distribution of the objects, they do not fully characterize
the scene. Indeed, it is crucial to gather details about the object boundaries and
determine their appearance and space occupation, as this allows the prediction of
future behaviors, thus triggering appropriate actions.

This chapter is dedicated to the ultimate perception task – i.e. object detection.
The first section briefly introduces the various environment perception tasks enabled
by radar point clouds. The second section presents the proposed multi-class object
detection system, providing details about the solutions designed to optimize the
prior art. Section 5.3 describes the setup used to perform the experiments. Finally,
section 5.4 reports the results collected, proving the effectiveness of the proposed
solutions.

The following own contributions are made:

� Development of a novel point-wise processing architecture for the object de-
tection task.

� Design of a center-proposal task, generalizing to radar point clouds the image-
based anchor-localization task in [101].

� Design of a regression-aided framework for point-wise processing techniques.

� Development of a method for the reduction of box-predictions per object.

� Adaptation of the spherical regression task in [96] for box-orientation estima-
tion.

� Design of a dynamic weighting factor to optimize learning of the box-orientations.
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� Development of a low-cost Intersection-over-Union (IoU) score approximation,
useful to generate labels for box-confidence estimation.

� Evaluation of the proposed system in real-world scene with multiple targets of
various classes.

� Evaluation of the usage of multiple radar frames to improve the performance
in the object detection task.

The method described in this chapter obtained a patent in [107].

5.1 Environment Perception through Radar Point

Clouds

Radar point clouds provide useful information about the environment around the
sensor. Every point represents an object observation, capturing relevant properties
of the target. Therefore, by leveraging this data, it is to possible achieve a sense of
awareness about the surrounding space. As shown in fig. 5.1, there are various ways
of representing this knowledge. One of them uses the semantic segmentation task,
providing details about the objects distribution in the scene. It consists in the classi-
fication of all the input points according to a given set of object classes. Figure 5.1A
displays an example of environment perception through semantic segmentation. No-
tice how the green labeled points indicate the presence of an instance of the vehicle
class in a specific region of the space. It is very straightforward to address the se-
mantic segmentation task on point clouds. For this reason, it is the most common
and widespread perception representation on such data-format. Section 2.3.2 con-
tains an overview of the most successful DL approaches for semantic segmentation of
radar point clouds. Although this task allows the localization of objects, however, it
fails to provide exhaustive information about them. For instance, it does not enable
distinction between different physical instances. This setback can be circumvented

(A) Semantic Segmentation. (B) Instance Segmentation. (C) Object Detection.

Figure 5.1: Examples of various type of environment perception tasks. Points rep-
resent radar observations while gray boxes identify GT objects in the scene. The
point color shows the semantic segmentation output class: background (black), ve-
hicle (green) and pedestrian (red). Colored dashed contours identify regions which
contain points from the same physical instance. Colored dashed boxes refer to pre-
dicted box-object proposals. Best viewed in color.
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by assuming that every point represents a different object. However, despite this
assumption might hold true for objects which are represented by few points, it dra-
matically fails on objects which are associated with multiple-points. Consider, for
instance, the pedestrian at the bottom-right corner in fig. 5.1A. Since it generates a
single radar-reflection, it is possible to detect the presence of a pedestrian instance
by correctly classifying the single-point. However, the same cannot be repeated for
the vehicle at the bottom of the scene. Indeed, it generates several point-detections,
therefore, the number of physical instances it is not straightforwardly determined.

Nevertheless, the perception information provided by the semantic segmentation
output can be leveraged to execute more advanced processes. One example is rep-
resented by the instance segmentation task. It extends the semantic segmentation
output by associating every point with a single physical object, as shown in fig. 5.1B.
The simplest procedure for performing this task uses two-steps: first every point is
associated with a class, then, a clustering algorithm groups together data-points
which belong to the same instance. Note how, through the semantic segmentation
output, it is possible to filter the data in the point clouds, extracting only those
points which are related to objects of a given class, thus facilitating the grouping
process. Concerning radar point clouds, Schumann et al. [114] recently proved the
ability of point-wise processing approaches to perform the instance segmentation
task. The authors developed a two-stage model that consumes raw radar point
clouds and produces instance proposals. The first stage uses a modified version of
PointNet++ [64] to generate the semantic segmentation scores. Furthermore, an
additional output head leverages the classification features to produce direction pre-
dictions: for every point, it estimates the vector which would move the point from
its spatial location to the center of the object it belongs to. The outputs of the
first stage are then propagated to the instance segmentation module. This latter
shifts the input points by the predicted direction vectors so that points which belong
to the same instance lie closer together. Then, it uses the semantic segmentation
scores to distinguish points from different classes and produce instance proposals.
The neighboring points are collected and two proposals are merged if they have a
non-empty intersection. Finally, the instance proposals are processed with a Point-
Net [65] network that provides a single class score for all points belonging to the
same instance.

Despite the instance segmentation task allows recognition of different physical
objects, it does not fully characterize them. For instance, it does not provide shape
information, thus limiting the object perception to its point-observations. A more
advanced task is object detection/recognition. It consist in the joint estimation of lo-
cation and appearance of the physical instance in the scene through box-predictions.
An example is shown in fig. 5.1C, where the colored boxes display the object de-
tection output. Note how this perception task enables full representation of the
physical objects in the environment, providing details about its location, shape and
orientation. In the DL community, object detection is a very widespread task, espe-
cially on very dense data provided by camera or lidar sensors [80, 79, 101, 123, 104].
However, it is not easily addressed on radar point clouds, due to the low density of
the data. Recently, Danzer et al. [92] proposed a single-class solution for amodal
BB estimation on radar data. Inspired by the work of Qi et al. [79], they developed
a three-stage network that consumes raw point clouds to predict oriented-boxes for
cars. The first stage is a patch proposal module. It extracts a subset of the points
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in the input and deliver them to the next stage. The authors used every point in
the input as patch-center and defined the patch as the local point cloud in a window
of given length and width. The second stage has the task of detecting whether the
patches contain a vehicle. Therefore, it receives as input all the points in a single
patch and produce a classification score, by means of a PointNet [65] architecture.
Furthermore, the patches which are classified as vehicle are semantically segmented,
leveraging the point-related signatures as well as the global descriptor computed in
the classification stage. The points which are segmented as vehicle are extracted
from the patch and delivered to the last stage, where the amodal BB estimation
takes place. Here, the first operation consists in a resampling of the patch center,
which is set as the centroid defined by the vehicle points. Then, a transformer
PointNet is used to perform a rough estimate of the object center, shifting once
more the patch center. Finally, a box regression PoinNet is used to predict the box
parameters – i.e. length, width, orientation and center. It adopts a classification-
regression framework: several pre-defined templates – with different size/orientation
configurations – are classified; then, residuals are regressed to adjust the final pre-
diction. This work proved the ability of point-wise processing methods to estimate
object-boxes for vehicle instances using radar point clouds.

5.2 Multi-Class Object Detection Architecture

Point-wise approaches represent an effective tool for processing radar point clouds.
Several researchers have adopted this technology to perform semantic segmentation
tasks [81, 93, 118]. However, in order to assess the full potential of point-wise
methods, it is paramount to compare them with grid-based techniques. Since the
semantic segmentation task produces an output which is strictly bound to the input
representation, it does not enable such analysis. Indeed, it is difficult to perform
a fair comparison between a segmented grid and a segmented point cloud, as the
evaluation procedure will always result biased. Other researchers have proved the
ability of point-wise processing methods to execute more advanced tasks like instance
segmentation [114] and object detection [92]. This latter, in particular, provides
an output which is dissociated from the input representation, thus enabling the
comparison with other families of techniques. Recently, Dreher et al. [109] used the
object detection task to analyze the performance produced by a point-wise [92] and
a grid-based [80] method on radar point clouds. The authors showed that the former
solution processes this data-format more efficiently than the latter and attributed
this effect to the point-to-grid transformation – resulting in many empty cells which
amplify the overfitting effect.

Despite the model developed in [92] achieved better performance than grid-based
solutions, it still has few shortcomings. The main drawback can be found in the first
two stages, which perform an unnecessarily redundant processing. Indeed, the patch
proposal module uses all the points in the input as patch centers. Therefore, given
a point cloud X with N points, it produces N patches. Then, every patch is fed
to the next stage, where it is computed a patch-classification score – based on the
points in the patch – as well as semantic segmentation scores – i.e. a score for every
point. However, some patches contain very similar neighborhood configurations,
thus forcing the network to repeat the same processing. Consider, for instance, two
points that lie very close to each other. These points will generate two different
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patches, sharing most of the neighboring points. Therefore, it is very likely that
both patches will result in the same classification output. Yet, they will be pro-
cessed separately by the network. Now, assume that both patches are classified
as containing an object. In this case, they will be propagated to the next module
which computes the semantic segmentation scores. Consequently, the points shared
by both patches will be classified twice, most likely with the same label – since they
have very similar neighborhood configurations. Note how this effect becomes more
severe when multiple points share similar spatial locations – as it happens, e.g. for
moving vehicles, which generate a dozen of point-reflections. Furthermore, note that
every patch which is positively classified leads to an object-box proposal. In this
way, assuming that the network predicts the correct class for each patch, every point
reflected by an object results in a BB estimation. Though prediction of multiple
boxes for the same instance is not a critical problem – they can be filtered by a
non-maxima suppression (NMS) algorithm –, this implementation results in a very
large number of boxes per object. In addition, the estimated boxes are not provided
with a confidence value, thus hardening the filtering process. This also affects the
precision of the model, as patches mistakenly classified as vehicle cannot be filtered
out by subsequent stages. Finally, though the authors of [92] provided a mechanism
for the recognition of objects from different classes, it has not been evaluated, thus
leaving a question mark on the ability of the model to detect multiple object classes.
Similar considerations can be repeated for the size estimation output, as the dataset
used to evaluate the method contained only objects of similar sizes – and only a
single object per patch.

It is believed that the shortcomings of the model proposed in [92] can be solved
by designing a more efficient network architecture. For instance, it is possible to
reduce the amount of redundant processing by semantically segment the whole input
point cloud. In this way, it is possible to use the center-point score to classify the
patch and the neighbor-points score as semantic segmentation output. For this rea-
son, it has been decided to develop an advanced point-wise processing architecture
for multi-class object detection in radar point clouds. The proposed model adopts
a two-stage scheme. The first stage uses the pre-processing module developed in
[108] and a PointNet++ [64] architecture to semantically segment the input point
cloud. In addition, similarly to [114], it regresses direction (or offset) vectors to
move the points closer to the object center. The second stage leverages the out-
put of the first stage to define center proposals. It uses a PointNet++ SA layer,
tampering the sampling process with the semantic segmentation signal. Finally, the
box parameters are estimated by instantiating an anchor-free regression-aided task.
Figure 5.2 contains the overview of the model, while the next sections provide a
detailed description of its parts.

InputInput 1st stage
Center Proposal

Offset

2nd stage BB parameters

Figure 5.2: Overview of the proposed architecture.
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5.2.1 First Stage

Figure 5.3 contains the processing scheme adopted in the first stage of the proposed
architecture. It receives as input a radar point cloud in its raw form – i.e. X =
{xi ∈ Rd}, where d is the number of radar features and xi the i-th point, i ∈ [1. . N ]
and N = |X | the total number of points. This is fed to the pre-processing module
developed in [108] which enriches the point-signatures by encoding the information
contained in the radar features. It consists in a small shared FC-network and returns
as output all the input points, with a deeper feature-set – i.e. Xp = {xip ∈ Rfp},
where fp > d is an arbitrary number of features. At this point, the latent point
cloud is processed with PointNet++ [64] to capture local structural information.
The output of this module consists in a point cloud XPtn, whose points xiP tn ∈ Rf

maintain the same spatial location of the input ones. However, the feature-descriptor
associated with every point encodes the radar properties of the target occupying a
specific region as well as relative local context information.

This knowledge is leveraged in the output layer to determine the distribution
of the object-of-interest in the scene. In particular, it is addressed a semantic seg-
mentation task, where every point is associated with a class-label. However, the
classic conception of the task is altered so that the score associated to every point
consists in the probability of the point to be the center of a physical object. In
this way, it is possible to exploit the semantic segmentation formulation to pro-
duce center proposals. Indeed, points which are classified as background can be
discarded, while those associated with a specific class can be used to estimate a BB
proposal. In order to teach to the network the center proposal task, every point
is labeled as the corresponding object class if it lies in the vicinity of the object
center. Therefore, similarly to [101], the area inside the GT boxes is divided into
center-region and transition-region, as shown in fig. 5.4A. Points which lie in the
center-region are associated with a positive GT class, while those which are located
in the transition-region are labeled as background. However, to avoid confusion
during training, points in the transition-region are masked out, so that if one of
them is predicted as center-proposal the network in not punished. Points outside
the transition-region are marked as background. The parameters αl and αw control

Input Pre-processing 
module PointNet++

Center 
Proposal

Offset

1st stage

Figure 5.3: First stage of the proposed architecture. The pre-processing module
computes deep point-descriptors abstracting the radar features. PointNet++ is
used to encode information of local spatial proximity between points. For every
point, it is computed a center-proposal score and an offset vector.

92



- Asssume all semseg correctly (so 
all survive masking)

- Assume only green survive 
sampling FPS

(A) Center proposal GT.

- Asssume all semseg correctly (so 
all survive masking)

- Assume only green survive 
sampling FPS

(B) Offset GT.

Figure 5.4: GT for learning the outputs of the first stage. The gray rectangles
represent GT boxes and the red stars show the object centers. The green and
orange colored areas define, respectively, center- and transition-region. Green points
are labeled as object centers, while orange points are masked out. Black points are
assigned to the background class. The gray color marks generic points. Green arrows
show the GT offset associated with each point. Best viewed in color.

the size of the two regions. Note how, when αl = αw = 0, the center proposal task
coincides exactly with the original semantic segmentation task. Furthermore, note
how the center proposal task does not require perfect detection scores: it is more
important to achieve a high recall than precision. Indeed, since only points labeled
as positive would result in BB predictions, if an object has no center proposal, it will
not be detected. Contrarily, if a background point is mistakenly proposed as object
center, the next stage of the network has the ability to filter it out. Nevertheless, it
is fundamental that the network achieves at least a reasonable precision score. Focal
loss [110], defined in eq. (3.17), is used to learn this task, in order to deal with the
large class imbalance between candidate center proposals and background points.

Besides detecting potential center-proposals, the first stage of the proposed archi-
tecture has the ability to refine the object-center estimates. Indeed, it computes an
additional output – offset – to predict, for every point, the vector which would shift
it from the location where it has been measured to the center of the corresponding
object, similarly to [114]. Figure 5.4B contains an example, illustrating the GT used
to train this output head. Notice how every arrow originates in a point location and
ends at the object center. Background points, which are not associated with any
object, receive a null GT vector but are masked out during training. In practice,
the network regresses the spatial components of the vector – e.g. in the 2D space,
it would estimate the magnitude of the shift along x and y axes. To reduce the
complexity of the regression task, it has been decided to design a regression-aided
scheme: for the x-component of the vector, the network is forced to output a scalar

value, x̃off , in the range [−1, 1]; then, the final estimate,
∧

offx, is computed as

∧
offx = s · x̃off , (5.1)

where s > 0 is a scalar parameter. The same mechanism is repeated on the other
vector components, using different, independent network prediction values. Note
how, given a value of s large enough, eq. (5.1) does not limit the output represen-
tation. Yet, it reduces the search-space of the solution in the range [−s, s], thus
facilitating the estimation task. Furthermore, it enables control over the magnitude
of the network output. Note, indeed, that the predicted offset vectors are used to
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move the points towards the object center. However, the points generally reside
within the object boxes, therefore, it is not necessary to have a broad range of pos-
sible solutions. Finally, as a side effect, by using the regression-aided formulation,
it is also possible to avoid center-proposals to be moved towards different physical
instances. The smooth L1 (or Huber) regression loss [40, 3] is used as objective
function to learn the task. It is defined as

LδH (err) =

{
1
2
e2rr, if |err| ≤ δH ,

δH(|err| − 1
2
δH), otherwise .

, (5.2)

where δH is a custom parameter – a.k.a. Huber delta – and err the error signal. For
the offset regression task, the error signal is set to the difference between prediction

and GT of every vector component, separately – i.e. exrr =
∧

offx−off gtx , where
∧

offx
is the x-component of the offset vector prediction and off gtx the corresponding GT.

5.2.2 Second Stage

The second stage of the proposed architecture receives as input the very same input
point cloud. However, it leverages the output of the first stage to filter out back-
ground points and estimate the final object BBs. Figure 5.5 contains the processing
scheme adopted at this stage. The first operation consists in shifting the input point
locations by the estimated offset vectors. The resulting shifted input, Xsh, main-
tains all the input points, but moves their locations such that points belonging to
objects of interest lie closer to the center of the associated box. This point cloud is
fed to a SA layer to filter out the center proposals from the first stage and produce
a list of object proposals. Three main operations are performed here: sampling,
grouping and feature extraction (with PointNet). In order to generate object pro-
posals, however, the sampling process has been tampered. In particular, the center
proposal output from the first stage is used as hard-attention signal to select regions
of the scene where it is likely to find objects. This is accomplished by means of a
masking operation: for each point xish ∈ Xsh, the associated center-proposal score
xicp is compared with a threshold γcp to decide whether to maintain or discard it.
Formally, this process produces a point cloud Scp ⊂ Xsh such that

Scp = {xish ∈ Xsh | xicp > γcp} . (5.3)

Note how, under the assumption that the first stage of the network learns to perform
the center proposal task perfectly, Scp does not contain any background point.
However, it still provides a large number of center proposals per object. Therefore,
it has been decided to perform a downsampling operation. Since the center point-
proposals lie close to the box-centers – they are sampled from the shifted input –,
it is possible to use the FPS algorithm. Indeed, in this configuration, the distance
between points from different physical instances will be higher than the distance
between points of the same instance. Consequently, the FPS algorithm will select
at least one point per instance – provided that the required number of points to
sample is high enough –, producing an object proposal list Xobj ⊂ Scp. This can
be straightforwardly observed under the assumption of ideal offset predictions –
where all center proposal points exhibit a shift that moves them exactly to the
respective box-centers. In this case, indeed, FPS will sample all box-centers and,
then, duplicate some of them until the required number of samples is achieved.
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Figure 5.6 shows an example of the effect of the network operations described
so far. Figure 5.6A contains a generic input point cloud X with the associated GT
object boxes – see caption for color coding. Figure 5.6B displays the same point
cloud, where the points are shifted by the offset predictions – i.e. the shifted input
Xsh. Note how, compared to fig. 5.6A, the yellow points lie closer to the center of the
respective object box, while the locations of the gray points are nearly unchanged.
Figure 5.6C shows the effect of the masking operation, producing the point cloud

Before shift

Same as before but as pdf image

(A) Input – X .

Fig. 4. Left: 
Shifted Input. 
Yellow points 
are classified as 
center 
proposal. BBox
labels are also 
shown. 

Same as before but as pdf image

(B) Shifted input – Xsh.

Fig. 4. Right: 
Shifted Input 
after masking. 
Yellow points 
are classified as 
center 
proposal. BBox
labels are also 
shown. 

(C) Masked shifted input – Scp.

Fig. 4. shifted 
masked 
sampled points

(D) Object proposals – Xobj .

Figure 5.6: Visual example of the network operations of the second stage. Points are
colored according to the center proposal output of the first stage. Yellow represents
vehicle-center, while gray points are classified as background. Boxes correspond to
GT objects in the scene. The green color marks moving vehicles, orange for slowly
moving vehicles and pedestrian boxes are denoted in red. Best viewed in color.
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Scp. Note how only the yellow points survive this process. Finally, fig. 5.6D displays
the object proposal points in Xobj which are generated using the FPS algorithm.
Note how the point cloud results significantly downsampled, reducing the number of
box-predictions per instance from few dozens to a handful. Furthermore, note how
the processes described remain effective even under not perfect or ideal predictions
of the first stage. Indeed, in fig. 5.6, some points outside the boxes are predicted as
centers and they are not shifted exactly to the center of the object. Yet, the second
stage proposed herein can discard the background points and down-select the center
proposals to generate few object proposals per instance.

The sampling process in the SA layer selects the points which will result in box
predictions. Therefore, it is necessary to compute feature-descriptors which contain
relevant information for the BB estimation task. This is accomplished by means of
the (unaltered) grouping and feature extraction processes of the standard SA layer
implementation. In particular, the grouping process collects points in the vicinity
of the object proposal ones, while PointNet is used as feature extractor to compute
high-dimensional signatures. Note that the shifted input Xsh is used at the group-
ing stage, therefore, background points are included in the local neighborhoods. In
this way, it is possible to encode context information in the feature descriptors. For
instance, if a vehicle is passing by a parked car, it is possible to exploit the radar
properties of local neighboring points to extract information about the space occu-
pied by the moving object. Moreover, note that the signatures computed at this
level are associated with object proposals. Therefore, instead of providing informa-
tion about an abstract location of the space, they can be considered as containing a
description of the object properties. Consequently, it is possible to leverage them to
address the box estimation task. The proposed architecture is designed to regress
the parameters of oriented BBs, by means of an anchor-free regression-aided formu-
lation. The configuration of the four output heads – for location, size, orientation
and confidence – are described in details in the next sections. Finally, in order to
detect objects from different classes, the second stage of the architecture is repeated
for every output class. In this way, it is possible to fine-tune the network parameters
to best accommodate the characteristics of objects from a specific class.

Residual offset The location of the object proposal points are defined by both
center proposal output and offset regression. However, the first stage is not perfect
and can produce erroneous predictions. For this reason, it has been decided to equip
the second stage with a residual offset regression head. Similarly to the offset head in
the first stage, it has the task of predicting the vectors which shift the points towards
the center of the associated object box. In this way, the network have the ability to
fine tune the BB final location estimation, correcting eventual errors from the first
stage. Figure 5.7 contains an example that clarifies the definition of residual offset.
Figure 5.7A shows a GT object box and the associated radar reflections. Consider,
now, that all points are classified as center proposals and that only the green points
are selected by the FPS algorithm. In order to produce an accurate box-prediction,
they must be moved to the center of the box (red star), as shown by the green arrow
in fig. 5.7B. However, offset predictions from the first stage might not be perfectly
accurate and contain residual errors. Figure 5.7C illustrates an example, where
the red arrows account for the offset predictions and the blue crosses determine
the point-locations after the shift has taken place. By means of the residual offset
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- Asssume all semseg correctly (so 
all survive masking)

- Assume only green survive 
sampling FPS

(A) Center-proposal.

- Asssume all semseg correctly (so 
all survive masking)

- Assume only green survive 
sampling FPS

(B) GT offset.

- Asssume all semseg correctly (so 
all survive masking)

- Assume only green survive 
sampling FPS

(C) Predicted.

- Asssume all semseg correctly (so 
all survive masking)

- Assume only green survive 
sampling FPS

(D) Residual.

Figure 5.7: Example of residual offset. The gray rectangle represents a GT BB and
the red star its center. The points are center proposals. The green points are the
ones which survive the FPS selection. Green arrows show the GT offset vectors
while red arrows display an example of not accurate offset predictions. Blue crosses
determine the location of the green points after being shifted. Cyan arrows show
residual offset vectors. Best viewed in color.

output, it is possible for the network to adjust the box-location estimate, as shown
by the cyan arrows in fig. 5.7D. This output head is configured similarly to the offset
prediction head in the first stage. Therefore, the network is forced to output scores
in the range [−1, 1], and, then, eq. (5.1) is used to constrain the final predictions
in the range [−s, s]. The scalar parameter s used for the residual offset predictions
is set to half the value used in the first offset regression head. In this way, the
network is forced to learn smaller variations. To train the network, the very same
loss configuration of the offset regression task is used, using the smooth L1 objective
function [40, 3] in eq. (5.2) and the estimate-GT difference as error signal. The
final estimate of the BB locations are defined by the input point locations, the offset
predictions of the first stage and the residual offset estimates, i.e.

∧
lociobj = locj +

∧
off j +

∧
resi , (5.4)

where
∧
lociobj is the final location estimate for the i-th object in Xobj ,

∧
resi the

associated residual offset prediction, locj the location of the j-th input points xj ∈
X which contributes to the i object prediction1 and

∧
off j the associated offset

vector estimate from the first stage.

BB Dimensions The object detection task differs from other formulations as it
provides an estimate of the objects’ appearance. This is achieved by predicting
the shape of the box enclosing a physical instance, i.e. width, length and height.
A common way of approaching this task consists in the usage of anchor/template
shapes, so that the network can address a classification task to select the configu-
ration which best fits the GT box-shape. However, this formulation needs a large
number of templates to predict boxes of various shapes and sizes. Moreover, it re-
quires an additional regression task to refine the final estimate and produce more
accurate predictions. In order to avoid limitations of the output representation, it
has been decided to address an anchor-free regression-aided problem, similarly to

1Bear in mind that Xobj ⊂ Xsh, as both masking and FPS operations reduce the number of
points. Therefore the index of the point contributing to the i-th object prediction is not necessarily
the same.
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the offset regression task. Therefore, for instance, the BB width dimension estimate
is computed as

∧
w = s · ew̃ , (5.5)

where s > 0 is a scalar parameter and w̃ the network output, constrained in the
interval [−1, 1]. In a similar way, it is possible to obtain the predictions for the
other shape parameters. Note that eq. (5.5) differs from eq. (5.1) as the scalar does
not directly multiply the network output, but rather its exponential value. That
is because negative solutions are not of interest. Furthermore, note how the same
output interval can be achieved with eq. (5.1), by limiting the network to generate
output values in the interval [0, 1]. However, it has been preferred to use eq. (5.5),
as it enables a larger range of outcomes than eq. (5.1), given the same scalar value
s. For instance, by setting s = 6, it is possible to produce estimates in the interval
[2.2, 16.3] m circa, which would cover most solutions for, e.g. regressing the length
of vehicle objects – considering also long vehicles like buses. In addition, the usage
of the exponential function constrains the back-prorogation gradient, thus leading
to stabler training and convergence, as shown in [96]. During training, this task is
learned by means of the smooth L1 objective function [40, 3] in eq. (5.2). However,
the error signal is calculated using a variant of the bounded IoU loss in [85], i.e.

ewrr = 1−min
( ∧
w

wgt
,
wgt
∧
w

)
, (5.6)

where
∧
w and wgt are, respectively, the predicted and GT width values.

BB Yaw In birds-eye view representations, the estimation of box-dimensions does
not suffice to fully characterize the appearance of objects in the scene. For this pur-
pose, it is of paramount importance to obtain information about the orientation of
the objects. However, the regression of angular quantities is a task which is very
difficult to model, due to the periodicity of the target around π/2π. To circumvent
this obstacle, the proposed architecture adopts the spherical regression implemen-
tation provided in [96]. Liao et al. found out that a generic angular regression task
consists in the estimation of a unit vector in the n-dimensional sphere. Therefore,
it can be split in the regression of the associated n components. However, since
the resulting vector lives on the surface of the n-sphere, the components are not
mutually independent, but are bound by an L2-norm constraint, i.e.

n∑

k

x2k = 1 , (5.7)

where xk is the k-th component of the vector. As an example, consider the task
of regressing an angle φ in the 2D-sphere – i.e. a circle. It can be performed by
estimating two components, x1 = cos(φ) and x2 = sin(φ) such that

x21 + x22 = cos2(φ) + sin2(φ) = 1 . (5.8)

Consequently, inspired by the softmax activation function – commonly adopted in
multi-class classification tasks –, they devised the spherical exponential function: an
activation function which produces L2-normalized output scores. Formally, given
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the unbounded multi-variate network output vector x̃, with scalar elements x̃j ∈
[−∞,∞], it is defined as

xk = Sexp(x̃k, x̃) =
ex̃k√∑
j(e

x̃j)2
, (5.9)

where xk represents the L2-normalized estimate of the k-th vector component. Note
that eq. (5.9) cannot produce estimates with negative sign, thus enabling only pre-
dictions in the positive section of the sphere. In the 2D-circle, it can generate angle

estimates,
∧
φ, which results in both cos(

∧
φ) ≥ 0 and sin(

∧
φ) ≥ 0, i.e.

∧
φ ∈ [0, π

2
]. There-

fore, the authors proposed to finalize the angle regression task by adding n binary
classification problems. In this way, it is possible to assign a sign – plus or minus –
to each of the n-components and enable predictions of angles in the whole sphere.

The task solved by the proposed architecture does not require estimation of pitch
and roll – i.e. rotation in the XZ or Y Z plane – as, in automotive applications, it
is very rare to encounter objects with significantly diverse orientations along these
planes. However, it is crucial to regress the box-orientation in the XY plane –
i.e. yaw –, as it describes how the objects occupy the space. Therefore, it has
been decided to limit the BB orientation estimation to solutions in the 2D-circle.
Furthermore, since the estimated yaw is used only to rotate the box predictions, it
is possible to reduce the search space to the semi-circle, specifically in the interval
[−π

2
, π
2
], as the same rotation can be obtained by adding/subtracting multiples of π.

Consequently, the yaw regression head is configured to produce three outputs: the
two components of the angle (i.e. cosine and sine) in absolute value and a single
binary classification problem. Note, indeed, that it is sufficient to predict the sign
of sin(φ), as cos(φ) ≥ 0 ∀ φ ∈ [−π

2
, π
2
]. Formally, the network uses the spherical

exponential function in eq. (5.9) to convert unbounded predictions x̃θ and ỹθ into
L2-normalized component estimates, i.e.

∧
cosθ = Sexp

(
x̃θ, [x̃θ, ỹθ]

T
)

=
ex̃θ

A
and

∧
sinθ = Sexp

(
ỹθ, [x̃θ, ỹθ]

T
)

=
eỹθ

A
, (5.10)

where A =
√
e2x̃θ + e2ỹθ is the L2-normalization factor. For the classification output,

instead, the network produces a score
∧
θcls ∈ [0, 1] by means of the sigmoid activation

function. Then, the final BB yaw estimate is computed as

∧
θ = sign

(
2 ·

∧
θcls − 1

)
· arctan

( ∧
sinθ
∧
cosθ

)
. (5.11)

Figure 5.8A contains a visual example showing the operations that lead to yaw
regression. Note how the cosine estimate

∧
cosθ always coincides with the cosine of

the estimated angle cos(
∧
θ) (blue vector). Instead, the sine prediction

∧
sinθ (green

vector) requires the classification output (green area) to fully determine the sine of

the estimated angle sin(
∧
θ) (red arrow).

During training, the regression task is learned by means of the smooth L1 objec-
tive function [40, 3] in eq. (5.2). The mean squared error (MSE) between prediction
and absolute GT value is used as error signal, i.e.

eθrr =
1

2

( ∧
cosθ − |cos(θgt)|

)2
+
( ∧
sinθ − |sin(θgt)|

)2
, (5.12)
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(A) Visual example of the yaw-regression
network operations.
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(B) Values produced by the dynamic weight
function in eq. (5.13).

Figure 5.8: Yaw-regression head. The gray box represents an object and the red star
its center. The orange vector shows the yaw-orientation of the box. Blue and green
arrows display the network predictions. The green area represents the classification
output which permits the estimation of the red arrow. Best viewed in color.

where θgt ∈ (−π
2
, π
2
] is the GT yaw angular value. Note how, eq. (5.12) forces the re-

gressed values to approximate the absolute value of cosine and sine of the angle. The
classification task, instead, adopts the cross-entropy objective function [2], which is
defined in eq. (3.17), by setting αt = 1 and γ = 0. Additionally, it has been observed
that the effect of an erroneous classification output on the final estimate varies based
on the angle value. Indeed, for angles close to the classification boundaries – i.e.
−π

2
, 0 and π

2
– it has a lower impact than for those in the core section of the clas-

sification region – i.e close to −π
4

or π
4
. To visualize this, assume, for instance, a

correct regression output: for an angle θgt = 5◦, a wrong classification output would

produce a prediction
∧
θ = −5◦ which results in an error of 10◦; contrarily, for an

angle θgt = π
4

= 45◦, an erroneous classification output would generate an estimate
∧
θ = −45◦ which is 90◦ away from the correct value. For this reason, it has been
designed a dynamic weighting factor

wθcls = 2 ·
[
1−max

(
sin2(θgt), cos2(θgt)

)]
, (5.13)

that scales down the classification output when close to the decision boundaries.
Note how, the proposed weight finds its minima of 0 in θgt = m · π

2
and its maxima of

1 when θgt = (2m+1) · π
4

– where m ∈ Z, the integer set. Figure 5.8B contains a plot
showing the value of the weight from eq. (5.13) in the interval [−π

2
, π
2
]. Consequently,

the BB yaw regression head is trained with a cumulative loss calculated as

Lθ = LδH (eθrr) + wθcls · CE(
∧
θcls, θ

gt
cls) (5.14)

where CE(·, ·) represents the cross-entropy loss function [2] and θgtcls the GT class
associated with the angle θgt – i.e.

θgtcls =

{
1, if θgt ∈ (0, π

2
],

0, otherwise .
. (5.15)
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In this way, the network will not be penalized for wrong prediction in proximity of
the decision boundaries and can focus on regressing the correct sine/cosine values.

BB Confidence The object proposal list is severely dependent on the outputs of
the first stage. In particular, it is the center proposal signal that defines the points
which are candidates to become objects. However, since the center proposal output
is not perfect, it might mistakenly propose, as center candidates, points assigned to
the background class – i.e. not belonging to any object class. In addition, though
the second stage has the ability to sub-select the center proposals, it still results
in multiple box-predictions per object, as shown in fig. 5.6D. These aspects have
led to the decision to equip the network with a BB confidence output, providing
a score which describes how confident the network is about the correctness of each
box-prediction. In this way, it is possible to divide the burden of detecting the object-
locations between first and second stage. Indeed, the confidence output enables the
network to discard wrong object proposals, thus filtering eventual errors from the
center proposals output. Moreover, it provides critical information for sorting out
multiple box-predictions for the same object, particularly useful in post-processing
algorithms such as non-maxima suppression (NMS).

From an implementation perspective, the BB confidence head requires, for each
box-proposal, the prediction of a scalar value in the interval [0, 1]. In order to teach
the network to generate box-confidence outputs, it is necessary to define both the
problem and the associated GT labels. In this work, it has been decided to address
a binary classification task and use the Intersection-over-Union (IoU) score between
GT and estimated BBs to determine the class-label. In particular, for each box-
prediction, it is computed the IoU score with every object present in the scene.
Then, if the maximum score results higher than a given threshold γ+conf ∈ [0, 1],
the prediction is associated with a positive label; otherwise, it is assigned to the
negative class. As a result, the network is trained to predict high confidence-scores
for boxes with large IoU. Additionally, to avoid confusing the network, it has been
decided to mask out boxes whose IoU score lies in the interval [γ−conf , γ

+
conf ], where

γ−conf is a suitable threshold such that 0 ≤ γ−conf ≤ γ+conf . In this way, the network
is not penalized for erroneously predicting an high-confidence score for such box-
predictions. Finally, note how, despite the BB confidence head is trained using the
classification formulation, its output is not thresholded to produce a class estimation.
Instead, the score is adopted as confidence value. The focal loss function [110]
defined in eq. (3.17) is used to learn this task.

The last remark concerns the computation of the IoU score. Indeed, though this
task is easily executed when the boxes are aligned along the same axis, it is not
trivial in the case of rotated boxes. Additionally, note that, since the parameters of
the predicted boxes are not known a priori, the IoU has to be computed live during
training, thus preventing the usage of advanced time-consuming methods. For this
reason, it has been developed a low-cost empirical solution that approximates the
IoU of unaligned BBs. It consists in a three-steps process. First, the intersection area
of aligned BBs, INTalign, is computed. The boxes are built using GT and estimated
location and size parameters. However, both boxes are aligned along the angular
direction specified by the GT yaw parameter. Figure 5.9A shows a visual example
for the computation of the aligned intersection area. Note how the red box (aligned
predicted-box) maintains both position and size of the green box (estimated) but is
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(A) Illustration about the computation of
the aligned intersection area.
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(B) Comparison between exact IoU and
approximation proposed in eq. (5.17).

Figure 5.9: Computation of the approximated IoU. The gray and green boxes repre-
sent, respectively, the GT and estimated BBs. Arrows display the orientation of the
boxes. The red box shows the estimated BB after alignment with the GT yaw. The
yellow area represent INTalign. The solid and dashed lines in the plot show, respec-
tively, the approximated and exact IoU score. Every line corresponds to a different
configuration. Size estimation is considered exact – i.e. both GT and estimated box
are 4.5m long and 2m wide. The position of the predicted box is changed by the
values reported in legend – e.g. xy = (1, 0) indicates that the predicted box has a
1m estimation error along the x-axis. Best viewed in color.

aligned with the gray box (GT). The second step consists in the computation of a
scaling factor wIoU that down-weights INTalign based on the correctness of the yaw
prediction. Formally, it is calculated as the squared cosine value of the error angle,
scaled to fit in the range [0.5, 1], i.e.

wIoU = 0.5 + 0.5 · cos2(
∧
θ − θgt) . (5.16)

Finally, the approximated IoU value is obtained, dividing the approximated inter-
section area by the union area – computed as the sum of the two box-areas minus
the approximated intersection – i.e.

IoUapprox(
∧
box, boxgt) =

INTalign · wIoU

area(
∧
box) + area(boxgt)− INTalign · wIoU

, (5.17)

where
∧
box and boxgt contains, respectively, the estimated and GT box parameters

– i.e. location, size and yaw – and area(·) computes the area of a box by multiplying
its dimensions. Figure 5.9B provides a comparison between the proposed IoU score
approximation and an exact version – from the package shapely [23]. The IoU

score is plotted against different values of the yaw error
∧
θ − θgt. Different colors

show various configurations of the position of the predicted box w.r.t the GT one.
Note how, when the estimated BB location is correct or has an offset along the x-axis
(long dimension), the proposed approximation resembles the exact IoU score (green,
yellow and gray lines). The red curves show the scores produced by a prediction
with center located at the boundary of the GT BB, along the y-axis – i.e. the small
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dimension. Note how, in this configuration, the approximated and exact IoU diverge:
the solid line decays while the dashed line remains almost constant. However, this
effect is not critical. Indeed, the exact IoU maintains its score value because an
increase in the yaw-error pushes the front (or back) part of the predicted box to get
inside the GT one. This observation is supported by the blue dashed line. Here,

when the two boxes are aligned – i.e.
∧
θ− θgt = 0 –, they do not overlap. Yet, as the

estimated yaw becomes less correct, the exact IoU increases, achieving a maximum

when the two boxes are perpendicular – i.e.
∧
θ − θgt = π

2
. As a result, it is possible

to conclude that, compared to the exact IoU, the proposed approximation gives
more importance to the correctness of the estimated parameters. Since eq. (5.17) is
used to generate GT labels for the confidence output head, this is an appreciated
effect. Indeed, it will tend to label with the positive class, predictions which provide
accurate estimates of the box-parameters. Finally, note that the proposed IoU
approximation is better-suited for live computation, as it runs in less than 6.5µs,
while the exact IoU computation requires circa 200µs.

5.3 Experimental Setup

This section provides details about the settings adopted during the experimental
procedure. The proposed network architecture is challenged with the recognition of
objects belonging to two classes: moving vehicle and moving pedestrian. In particu-
lar, the 2D object detection task is addressed. Therefore, the network estimates the
XY box-location, length, width and yaw. It has been decided to use precision, recall
and F1 score, defined in eq. (3.16), to evaluate the object detection performance.
When possible, precision-recall (PR) curves are reported, in order to obtain results
which are invariant from confidence threshold values. The ability of the network to
estimate the BB parameters – i.e. location, size and orientation – is analyzed using
IoU scores. The exact computation provided by the shapely package [23] is used.
In addition, the accuracy of the network to estimate the orientation of the objects

is evaluated, using the root mean squared error (RMSE) between predictions
∧
θ and

the corresponding GT values θgt – i.e.

RMSE(
∧
θ) =

√
E
[(∧
θ − θgt

)2]
, (5.18)

where E[·] represents the expectation operator. Since RMSE gives more emphasis
to large errors, it is preferred to the mean average error (MAE), computed as

MAE(
∧
θ) = E

[
|
∧
θ − θgt|

]
. (5.19)

Note, indeed, how a yaw estimation off by few degrees still provides a box-orientation
which is similar to the GT one. On the other hand, a large yaw error significantly
affects the perception of the object, especially when the length-width ratio is large.
Consequently, small yaw errors have a minor impact and, therefore, can be more
tolerated than large ones, which are particularly undesired.

5.3.1 Dataset

The dataset used to evaluate the proposed architecture is the same used in chap-
ter 4. A full description is provided in sections 3.3.1 and 4.3.1. The input data
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are radar point clouds, where each point is identified by 4 features: i.e. the XY
spatial coordinates, ego-compensated Doppler and RCS. However, differently than
section 4.3.1, every point is not associated with an object class. Indeed, the GT
labels consist in a collection of boxes with related parameters. In particular, every
frame is associated with a list of box-parameters, representing the objects present in
the scene at the time of recording. Table 5.1 reports statistics about the GT objects
in the dataset – both train and test-set. Note that it contains nearly 700K instances
from the vehicle class (for an average of 10 per frame) and more than 200K from
the pedestrian class (an average of 3 per frame). However, only less than 150K in-
stances per class are moving. Heavy urban environments are covered by the dataset:
there are scenes with almost 80 pedestrians in a single frame or nearly 25 moving
vehicles. Other statistics reported in table 5.1 concern the size of the GT objects
present in the dataset – i.e. length and width. Note how the vehicle class is not
limited to conventional vehicles, but extends to large vehicles like buses or trucks –

Table 5.1: Statistics of box-labels from vehicle and pedestrian objects in the dataset
(train and test set). The count columns report the total amount of instances in the
dataset as well as the average and maximum per-frame count. The length and width
columns, instead, contain information about the object sizes (in meters). Statistics
of both moving and stationary objects (All) as well as only moving objects (Mov.)
are reported.

Count [/] Length [m] Width [m]

Class Total Avg Max Avg Max Min Avg Max Min

Vehicle
All 699.4K 10 52 4.55 16.42 1.78 1.93 3.28 1.21
Mov. 147.6K 2 23 5.13 16.42 1.78 2.06 3.21 1.21

Pedestr.
All 215.8K 3 78 0.65 1.84 0.37 0.65 1.62 0.33
Mov. 147.7K 2 45 0.68 1.84 0.37 0.66 1.62 0.33
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Figure 5.10: Distribution of the size of BB from different classes. The blue lines
refer to the width parameter, while the red lines report statistics about the length.
Best viewed in color.
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as shown by the large maximum length value. More details about the dimensions of
boxes from different classes are provided in fig. 5.10. It reports the distributions of
length and width for objects of different classes. Note that vehicle instances show
diverse distributions than pedestrians, due to the variety of objects encompassed by
the vehicle class. Indeed, as shown in fig. 5.10A, the former result in Poisson-like
distributions, with most of the values concentrated around common vehicles config-
urations – i.e. length in [3.5, 5.3] m and width in [1.6, 2.3] m. The latter, instead,
present Gaussian distributions, with mean located in 0.7m and standard deviation
of 0.17m and 0.13m, respectively, for length and width, as reported in fig. 5.10B.

5.3.2 Data-Association and Post-processing

The output of the proposed architecture consists of a list of objects with associated
box-parameters. However, as it usually happens in object detection tasks, the out-
put is not directly matched with GT labels – contrarily to, e.g. classification and
semantic segmentation tasks. For this reason, in order to evaluate the performance
of the model, it is necessary to pair predicted boxes with GT objects. This process is
generally called data-association and represents the solution of an assignment prob-
lem. Although there exist various advanced algorithms for this task – e.g. Hungarian
algorithm [1] –, in this work, it has been decided to implement a simpler method2.
In particular, it has been adopted an overlap-based method, where each GT object
is associated with the box-prediction which shows the highest overlap. Consider, for
a given frame, a set of M GT boxes and K predicted boxes. The data-association
process creates a matrix C ∈ RM×K whose rows contain the overlap scores between
a single GT box and all K predicted boxes. Therefore, the element of the i-th row
and j-th column of C – i.e. cij – holds the overlap between the i-th GT object box,

boxigt, and the j-th estimated box,
∧

boxj , computed as

cij = max
(
overlap

(
boxigt,

∧
boxj

)
, overlap

( ∧
boxj , boxigt

))
, (5.20)

where

overlap
(
box1, box2

)
=
ãrea

(
box1 ∩ box2

)

ãrea
(
box1

) , (5.21)

with ãrea(·) the function which returns the area inside the input polygon. Note
how, since the function in eq. (5.21) is sensitive to the position of the arguments,
the maximum operator in eq. (5.20) ensures that, in case multiple box-predictions
for the same instance are present, the smallest box with the highest overlap will be
selected. At this point, the data-association process analyzes, sequentially, the rows
of C to match GT and prediction BBs. In particular, starting from the first row, it
selects the estimated box which results in the highest overlap with the row-related

GT box. Formally, given the i-th row, it performs the matching
(
boxigt,

∧
boxj

∗
)

,

with
j∗ = arg max

j
Ci = arg max

j
{cij ∀ j ∈ [1. . K]} (5.22)

2Bear in mind that, compared with a standard assignment problem – e.g. job-worker association,
where any job can be assigned to any worker –, here, each box-prediction either represents a GT
object or none, i.e. it cannot be used to represent multiple real instances. The critical case –
occurring when a box-prediction overlaps with two GT objects which are very close to each other
– is too rare to justify the adoption of more advanced techniques.

106



where Ci is the vector containing the K elements in the i-th row of C. However,
before completing the matching, the score cij∗ is compared with a threshold γda.
Then, if cij∗ ≥ γda, the matching is executed and both the i-th row and the j∗-th
column of C are zeroed – to avoid associating predicted boxes with multiple labels
and vice versa. Otherwise, the matching is discarded and the process is repeated for
the next row. Once all rows are analyzed, the data-association process checks if there
are boxes not matched and associates them with the background class. Therefore,
free GT boxes are considered missed detections (or false negatives), thus affecting
the recall score. Unmatched predicted boxes, instead, are accounted for as wrong
detections (false positives) and harm the precision of the network. In the proposed
evaluation, for the vehicle class it has been set γda = 0.1. However, for pedestrian
instances, it has been decided to set γda = 10−5, to allow matching of boxes that
barely touch each other. Note how, since objects of this class have relatively small
dimensions, this operation does not result in large position errors.

The data-association procedure described so far is not well-suited for methods
that produce multiple box-proposals per object-instance. Indeed, among the several
box-predictions, only one will be matched with the GT object. All the others would
be considered false positives, thus significantly harming the precision score. For
this reason, it has been decided to adopt an NMS algorithm to filter out multiple
predictions for the same object. It operates by selecting the boxes with the highest
confidence values which have a small overlap with each other. In particular, it
first sorts the object-predictions list based on the confidence value predicted by the
network. Boxes with confidence values below a given threshold, γconfNMS, are discarded.
Then, the first box in the input predictions-list – i.e. the most confident prediction
– is selected and added to the output filtered-list. Subsequently, eq. (5.20) is used to
compute the overlap between the next element in the input list and all the elements
in the output list. If the maximum overlap does not exceed the value of a given
threshold, γovlNMS, the element is added to the output list; otherwise it is discarded,
since the algorithm considers it as describing an instance already present in the
output list. This process is repeated for all the elements of the sorted input list, to
decide whether to maintain or reject the object-proposal. Consequently, the output
list will contain boxes which overlap with each other by less than γovlNMS. In this
work, it has been decided to set γconfNMS = 0.3 and γovlNMS = 0.1 for object-predictions
of both classes. Finally, note that the NMS algorithm described so far is used as a
post processing step and it is out of the scope of this report.

5.3.3 Settings

This section provides details about the network configurations. The data-settings
described in section 3.3.2 are adopted. Therefore, the network receives as input a raw
point cloud containing 1200 radar reflections collected across a window of 200 ms
– i.e. 4 frames. The point locations are defined by the XY spatial coordinates.
Furthermore, the ego-compensated Doppler value is used as z-coordinate. The RCS
measurement is used as point-feature.

The network architecture is split into two stages. The first stage uses a pre-
processing module with three shared FC layers of size 8, 16 and 32 channels, respec-
tively. PointNet++ is designed with two encoder-decoder layers. The first SA layer
samples 500 representative points using the FPS method. Then, it collects neighbor
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points in three areas, i.e. 1, 1.5 and 2 meters. Finally, PointNet is used as feature
extractor to produce signatures of 32, 32 and 64 channels, respectively. The second
SA layer receives as input the latent point cloud of 500 points with 3 + 128 features.
It samples 150 representative points, groups neighborhoods areas of 4, 6 and 8 me-
ters and produces point-descriptors of 64, 64 and 128 channels, respectively. The
decoder section uses FP layers to obtain signatures for the original point locations.
The first one uses shared FC layers of size 128 channels, the second produces signa-
tures of 64 features. Since this section of the architecture generates two outputs –
i.e. center proposal and offset – it is equipped with two FC classification networks.
Both of them use two layers of size 64 and 32 channels, respectively, interleaved
by dropout with rate 0.5. A single shared FC unit is used to produce a score out
of each point-descriptor. The sigmoid activation function is then used to compute
the probability of each point being a center of an object from a specific class. A
similar processing takes place at the offset regression head. However, the hyperbolic
tangent activation function is adopted to constrain the network output in the range
[−1, 1]. Moreover, it has been decided to produce an offset regression output per
class. Therefore, different configurations of the scalar parameter s in eq. (5.1) are
used. Specifically, for vehicles it is set s = 10m, while for pedestrians s = 2m. Note
how this setting helps the network to focus on the predictions of small offsets for
center proposals of pedestrian instances. The center proposal head is trained using
focal loss with α = 0.85 for vehicles and α = 0.9 for pedestrians, while γ = 2 for
both. Due to the sparsity of the radar data, it has been decided to consider as
center-region the whole GT BB area and move the transition-region, depicted in
fig. 5.4A, outside the box – i.e. αl < 0, αw < 0. In this way, the network will not be
penalized for selecting as center-proposal points nearby the object boundaries. This
is particularly effective for fast moving objects which generate tails of reflections,
when measurements from multiple frames are fused together. Consequently, for ve-
hicles, it has been set αl = αw = −1m. Instead, for pedestrians, it has been decided
to extend the center-region to cover the area of 0.3m around the objects. Then, the
transition-region with parameters αl = αw = −1m is considered. This operation is
crucial, as it allows the detection of instances which have no reflection in the BB –
bear in mind that pedestrians have limited box-sizes, therefore, a measurement error
can easily move the reflections outside the box. In order to learn the offset regres-
sion task, it is used the smooth L1 loss with δH = 0.2 for vehicles and δH = 0.1 for
pedestrians. The common parts of the first stage – i.e. pre-processing module and
PointNet++ – are trained using both objective functions, while the classification
networks and output layers are trained using the respective losses.

The second stage leverages the outputs of the first stage to produce BB predic-
tions. Every class has its own second stage network and uses the center proposal out-
put and the corresponding offset. The vehicle network uses eq. (5.3) with threshold
γcp = 0.5 to select the center proposals. Half the number of input points is allowed to
survive the masking operation. If more are provided, the ones with highest score are
selected; otherwise the first point is repeated to fill the list. The FPS algorithm is set
to select 40 points from the masked center proposal list. Therefore, a maximum of
40 moving vehicle objects can be predicted by the network. Two neighborhood areas
– 1 and 2 meters – are used to group nearby points and compute descriptors of 128
channels each. Therefore, the tampered SA layer produces an object list of 40 points
with 256-features signatures. This signal is used to estimate the BB parameters. In
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particular, as specified in section 5.2.2, the network is equipped with four output
heads. Every head presents its own FC classification network, using two layers of 128
and 32 channels and dropout with rate 0.5. The residual offset head produces two
scalar per point, using the hyperbolic tangent activation function and the parameter
s = 5m. The smooth L1 loss is used to train this task, with δH = 0.1. The dimen-
sions head estimates length and width of the objects. Therefore, for each point, it
produces two scalar values in [−1, 1] using the hyperbolic tangent activation func-
tion. Then, it sets the scalar parameter s in eq. (5.5) to 2.5m for width estimation
and 6m for length estimation. This represents the best compromise to cover most
of the cases provided in the dataset. Note, indeed, how the predicted width value
∧
w ∈ [0.92, 6.8] m and the length prediction

∧
l ∈ [2.2, 16.3] m. This task is trained

with the smooth L1 objective function with δH = 0.5 for the length parameter and
δH = 0.3 for width. The BB orientation head produces three scalar outputs per
point. The regression outputs use the spherical exponential function in eq. (5.10),
while the binary classification score is processed with the sigmoid activation. They
are trained using the smooth L1 loss, with δH = 0.3, and the cross-entropy loss
with dynamic weight defined in eq. (5.13). Finally, the confidence head uses the
sigmoid activation function and it is trained with focal loss. The parameter α is
set to 0.65, following an empirical investigation, while γ = 2. The label generation
process uses eq. (5.17) to compute the IoU score and threshold values γ−conf = 0.2

and γ+conf = 0.35.

The second stage used to estimate pedestrian BBs adopts a similar configuration
to the vehicle network. However, due to the different nature of the objects, it is
possible to simplify the task. Unless otherwise specified, the same settings used
for the vehicle network are adopted. The number of points allowed to survive the
masking operation has been limited to a quarter of the total amount of input points.
This is because, though there might be a large number of pedestrian instances in
a single frame, each object produces only few radar reflections. The number of
object proposal points to sample with FPS has been increased to 50 to cover very
dense scenes present in the dataset. Finally, the small sizes of such instances have
led to a reduction of the neighborhood search areas to 0.5 and 1 meter. The BB
parameter regression task is facilitated by reducing the number of output heads.
Indeed, since pedestrian objects often result in squared boxes of small sizes, the
estimation of the box-orientation is not critical. For this reason, it has been decided
to utilize cylinders to represent pedestrians, instead of boxes. Consequently, it is
possible to discard the yaw regression head – as cylinders do not have orientation
in the circular plane. Additionally, it has been observed that pedestrians share
common size configurations. Indeed, as shown in fig. 5.10B, both width and length
of the instances present in the dataset are Gaussian-distributed with small standard
deviations. Therefore, it has been decided to use fixed size values and discard the
dimension regression head. Specifically, the diameter of the cylinder has been set
to the mean value of the Gaussian distributions in fig. 5.10B – i.e. 0.7m. A crucial
task for the detection of pedestrian objects is the position estimation. Therefore,
the network maintains the residual offset regression, setting the scalar s = 1m.
The smooth L1 loss is used during training, with δH = 0.1. Finally, a confidence
prediction is generated. However, since both size and orientation of the box are not
regressed, it has been decided to use a simpler distance-based metric to generate
the GT labels. In particular, the euclidean distance between the center of the
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estimated object and all the GT objects is computed. Then, if the smallest distance
is lower than a threshold (γ+conf ) the positive class is assigned to the box-prediction;
otherwise, it is labeled as negative sample. A transition region is also designed,
masking out objects whose distance is in the interval [γ+conf , γ

−
conf ]. It has been set

γ+conf = 2m and γ−conf = 3m. Focal loss is used to train this task, with α = 0.8. Each
second stage network is trained using the loss from the corresponding output head.
In particular, the common section – i.e. the tampered SA – is trained from all the
output heads, while the classification networks are trained with the corresponding
objective function. Finally, note that, since the two second stage networks are
lightweight and independent from each other, their impact on the inference time is
limited, thus enabling the addition of supplementary classes.

The training procedure is split in two steps. Unless otherwise specified the
learning rate is set to 0.001 and the batch size to 8. In the first step, the first
stage is trained. In particular, first the center proposal head is trained for 8 epochs.
Then, the offset regression heads are trained for 6 epochs. Finally, the network is
fine tuned using both objectives for 15 epochs and a lower learning rate – i.e. 0.0002.
The second training step freezes the first stage of the architecture – i.e. does not
allow its parameters to be changed. Then, it trains the network using the objective
of each output head, sequentially, for 5 epochs. When the BB dimensions and yaw
heads are trained for the vehicle network, the pedestrian network does not train.
Finally, the second stages are fine tuned for 15 epochs, with learning rate 0.0002,
using all the objective functions.

The architecture configuration described so far is referred to as 4frames. In
addition, the proposed architecture is evaluated by using the point clouds generated
in a single radar frame – i.e. 50 ms window. In this way, it is possible to investigate
how the input density affects the ability of the proposed solution to perform the
object detection task. This configuration is referred to as 1frame. The architecture
uses the same settings of the 4frame counterpart. However, few modifications are
adopted to address the lower input density. In particular, in the first stage, the
number of representative points in the PointNet++ SA layers is reduced to 200 and
100. Moreover, the focal loss parameter α for the vehicle center proposal task is set
to 0.8. Finally, the focal loss parameter α for the confidence estimation of pedestrian
boxes is set to 0.9.

5.3.4 Benchmark

In order to fully assess the effectiveness of novel solutions, it is best practice to com-
pare them with a benchmark. In the radar literature, there is only one method that
produces box-proposals by consuming raw point clouds [92]. The model has only
been tested on a single class and the effect of the addition of multiple object-classes
have not been investigated. Therefore, it has been decided to use the implementation
proposed in the original paper, addressing only the moving vehicle detection task.
The width and depth of the network has been reduced to enable fair comparison
with the proposed architecture. The model proposed in [92] consists of three stages.
The patch proposal stage operates by cropping out a local point cloud around each
input point. A square area of 10m × 10m is used. The second stage receives local
patches sequentially and exploits PointNet to produce classification scores. It uses
two shared FC layers of size 64 and 64 channels to compute point-related signatures.
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Then, three additional shared FC layers of size 64, 128 and 256 channels compute
the point-descriptors which are max-pooled to obtain the global signature. This lat-
ter is processed with a FC classification network to generate, for each patch, a class
score. It is implemented as two FC layers of size 128 and 64 channels, followed by the
output layer - a single FC unit. The sigmoid activation function is used and the task
trained with focal loss – α = 0.6. The patches classified as vehicle are semantically
segmented. This is accomplished by concatenating the patch global signature to
each 64-features point-signatures. The 256+64 point descriptors are processed with
an FC classification network to produce the semantic segmentation scores. It uses
three shared FC layers of size 128, 128 and 64 channels and an output single shared
FC unit. The sigmoid activation function limits the output scores in [0, 1]. Focal loss
with α = 0.85 is used to learn this task. The third stage of the model receives only
the points that are segmented as vehicle and set the patch center as the centroid
defined by these points. Then, the points are queried to a transformer PointNet
that predicts the new center of the patch by means of an offset estimation. It uses
three shared FC layers of size 64, 64 and 128 channels to generate point-descriptors
which undergo a max-pooling operation to obtain a global patch signature. A sub-
sequent FC classification network, with two FC layers of size 128 and 64 channels
and two single FC unit, generates the offset predictions. The network predictions
are used as final estimate without use of any activation function. Finally, a PointNet
architecture uses shared FC layers of size 64, 64, 128 and 256 channels to compute
point-signatures. Then, they are max-pooled to obtain a global patch signature
which is processed with an FC classification network. In particular, it uses three
FC layers of size 256, 128 and 64 channels to produce patch descriptors. Note that
each patch results in an object prediction. Therefore, the features are used to pro-
duce box-parameters. A template-based formulation is adopted, using 16 templates,
combining four length values – 2, 4, 6 and 8 meters – one width value – 2.5 meters
– and four yaw values – −3π

8
, −π

8
, π

8
and 3π

8
. Consequently the network outputs 16

classification scores and the associated residual estimates. All the regression tasks
are learned by means of the smooth L1 loss, while the classification task adopts the
cross-entropy objective function. The corner loss proposed in [79] is used to jointly
optimize all the box-parameters, as suggested in the original paper. The first stage
of the model does not require training. The second stage is trained in three steps:
first the classification network for 8 epochs, then the semantic segmentation network
for 6 epochs and, finally, both are fine tuned for 15 epochs. The same schedule used
for the second stage of the proposed architecture is adopted to train the third stage:
i.e. 5 epochs for each head and 15 epochs of fine tuning. The model proposed in
[92] is referred to as prior art. In order to provide a comparison with the proposed
architecture, it is evaluated in both 4frames and 1frame configurations. Finally, it
has been decided not to use any grid-based approaches as benchmark, as Dreher et
al. [109] proved that point-wise techniques are more effective on raw point clouds.

5.4 Results

This section contains the results produced by the tested methods on the object
detection task. Unless otherwise specified, all the results reported are collected
using the object-box proposals after NMS.

Table 5.2 contains a comparison between the performance of the proposed archi-
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Table 5.2: Comparison between proposed approach and prior art on the moving
vehicle detection task. In brackets are reported the statistics of the first stage
network (first and second stage for the prior art).

Moving Vehicle [%]

Method Config. Prec. Recall F1 Params FLOPS

Prior Art
1frame 42.57 52.75 47.12 354.2K (159.8K) 2.21G (1.62G)
4frames 49.02 74.25 59.05 354.2K (159.8K) 8.85G (6.46G)

Proposed
1frame 89.06 58.06 70.29 466.9K (205.3K) 0.65G (0.56G)
4frames 86.85 70.26 77.68 466.9K (205.3K) 1.20G (1.03G)

tecture and the prior art [92]. Due to missing confidence information in the prior
art model, it has not been possible to use PR curves in the analysis. Therefore,
a single operating-point is selected on the PR curves of the proposed architecture
and numerically compared with the prior art. In particular, the scores produced
by box-predictions with confidence values above 0.5 are used. Moreover, only the
results on the moving vehicle class are reported, as it represents the only class of
objects detected by the prior art. An investigation about the performance on the
pedestrian class is provided in section 5.4.2. Note how, the proposed architecture
results in superior performance than the prior art. Under the same configuration,
the proposed solution shows an improvement of at least 18% in F1 score. In par-
ticular, in the 1frame setting, the proposed architecture proves to be significantly
more effective than the prior art. Indeed, the F1 score achieves a boost of 23%
and both precision and recall scores result improved. The 4frames configuration
also shows a neat performance improvement in the proposed architecture. However,
here, the prior art achieves a competitive recall score, outperforming the proposed
architecture. This effect is attributed to the redundant processing performed by
the prior art, described in section 5.2. Indeed, it processes local patches centered
around every input point, thus considering them as both center and object propos-
als. Although this mechanism enables the detection of more objects in the scene,
however, it presents some drawbacks. One can be straightforwardly observed in the
last two columns of table 5.2, reporting details about the computational complexity
of the tested models. Note how, despite the prior art implementation has nearly
25% less parameters than the proposed architecture, it performs considerably more
operations. Indeed, the 1frame configuration requires 3.4× the number of FLOPS of
the proposed solution, while the 4frames configuration nearly 7.4×. Another severe
shortcoming can be observed in the poor precision scores produced by the prior art
models. Note, indeed, how the proposed architecture is at least 38% more precise.
This is due to the large number of box-predictions generated, which, while favoring
the object-recall, harms the model precision. This effect, however, can be attributed
to two other reasons. Indeed, since the prior art does not output confidence scores,
it does not have the ability to filter the box-proposals. Furthermore, the model has
been designed to detect objects in specific conditions: it assumes a single instance
to be present in each patch. Indeed, the semantic segmentation output is used to
move the patch center closer to the true object center – by setting it as the centroid
defined by the points classified as vehicle. However, this operation fails when two
or more instances are present in the same patch, producing a patch-center which
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lies in-between the objects. Finally, note how, in both methods, the 4frames input
configuration leads to better performance than the 1frame counterpart. It produces
improvements of at least 7% in terms of F1 score, with a significant impact on the
recall score. This is attributed to the richer information contained in the 4frames
input, providing better description of the objects and the relative local context.

5.4.1 Box-Regression

The results in table 5.2 provides information about the ability of the tested models
to detect objects. However, they do not include details about the fidelity of the box-
predictions. In order to obtain an accurate perception of the scene, it is paramount
that the box-proposals closely approximate the shape and appearance of the GT
objects. By means of the IoU score, it is possible to analyze the accuracy of the box-
predictions. This metric takes into account all the box-parameters – i.e. location,
size and orientation –, as large scores can be obtained only when the two boxes
under comparison share similar parameter-configurations. Figure 5.11 plots the
average IoU score collected on various configurations of the confidence threshold.
The scores are obtained by averaging the IoU generated by correct box-predictions
across the whole test-set. The exact implementation is used to compute the IoU.
In addition, by reporting the score produced on different confidence thresholds, it
is possible to observe how various precision/recall operating-points affect the box-
accuracy. As expected, the prior art shows flat lines, due to missing confidence
information. The left-most section of the plot shows the configurations with high
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Figure 5.11: Average IoU score of proposed solution and prior art on different values
of confidence threshold. Different network configurations are shown with different
colors. Best viewed in color.
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recall – the lower the threshold, the lesser boxes rejected, the higher the probability
to detect all objects. Since the object proposals after NMS have been used to
collect the results, the lowest threshold value is γconfNMS – i.e. 0.3. Note how, here, the
proposed architecture shows IoU scores of nearly 0.8 in both 1frame and 4frames
settings. This means that the box-predictions have, in average, an intersection area
with the corresponding GT which amounts for 80% circa of the total area. The prior
art, instead, shows poorer scores, producing an average IoU of almost 0.73 in the
4frames setting and only 0.64 when using a single radar frame. This suggests that
the proposed regression-aided formulation generates more accurate box-parameters
than the template-based one. Note that, when the threshold assumes a value of 0.5
– i.e. the one used in table 5.2 –, similar considerations can be repeated, as the
lines of the proposed architecture are almost flat until this value. Other interesting
insights can be collected by analyzing the behavior of the curves produced by the
proposed architecture. Indeed, it is possible to note that, as the threshold increases,
the IoU score grows. In particular, the right-most configurations, which result in the
highest precision values, show scores very close to 1 – 0.94 in 4frames setting and 0.98
in 1frame. Therefore, in this configuration, the network predicts boxes which are
very accurate, almost exactly overlapping with the real object-boxes. This proves
that the confidence values produced by the network are meaningful, discriminating
accurate boxes from poor estimates. Consequently, it validates the proposed solution
for the definition of confidence GT labels. Finally, it is worth noting how, in the
1frame setting, the proposed architecture achieves lower confidence values than in
the 4frames setting. Indeed, the red line ends at the threshold value of 0.82 while the
blue one at 0.92 – because the respective configuration does not predict boxes with
higher confidence values. This can be attributed to the poorer information contained
in a single-frame radar point cloud, preventing the network from producing high-
confident box-predictions.

Another aspect of the networks worth analyzing is the yaw regression head.
Despite it is taken into consideration in the IoU computation, it is interesting to in-
vestigate how accurately the different methods perform this task. Figure 5.12 plots
the yaw RMSE collected on various values of the confidence threshold. Similarly to
fig. 5.11, all the correct box-predictions in the test-set are used. However, eq. (5.18)
is used to compute the scores. As explained in section 5.3, it has been preferred
to use the RMSE measure over MSE because large orientation errors have a sig-
nificantly higher impact on the final object appearance than small ones. Note how
the proposed architecture results in lower error scores than the prior art. At high
recall values – i.e. lower threshold –, the proposed architecture produces RMSE
scores close to 15◦ in both 1frame and 4frames settings, while the prior art shows
RMSE scores around 20◦. This proves that the proposed spherical-based implemen-
tation – with dynamic weighting – generates more accurate yaw-estimates than the
template-based regression. Furthermore, it is interesting to note how the error score
produced by the proposed architecture decreases when the threshold increases – i.e.
higher precision. This effect confirms the observations drawn from fig. 5.11 about
the network confidence output. In addition, it suggests that, in order to generate
high confidence predictions, it is not enough to have accurate location and size pre-
dictions, but the network also requires a precise yaw estimate. Finally, note how the
most confident boxes estimated by the proposed architecture present very accurate
yaw predictions, achieving an RMSE score lower than 5◦.
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Figure 5.12: Yaw RMSE of proposed solution and prior art on different values
of confidence threshold. Different network configurations are shown with different
colors. Best viewed in color.

5.4.2 Multi-Class Task

The results reported so far have proved that the proposed architecture optimizes
the prior art. Indeed, it shows superior detection performance while using less
computational complexity. In addition, it outperforms the method in [92] in the box-
regression task, showing higher IoU scores and lower yaw RMSE. In this section,
the results of the proposed architecture on the multi-class problem are reported.
Figure 5.13 contains the PR curves produced on both moving vehicle and pedestrian
classes. As reference, the performance of the prior art models on moving vehicles
are reported – cross and diamond markers. It is possible to note how the results
produced by the network on the vehicle class are significantly better than on the
pedestrian class. This is attributed to the smaller sizes of pedestrian objects, forcing
them to result underrepresented in the input. Bear in mind, indeed, that the network
uses radar point-reflections as input. Therefore, if an object is not represented
by any point, there is no data to enable its predictions. Similar considerations
can be repeated for instances described by a single point. Though, technically, it
would be possible to detect these objects, the task of inferring the box-parameters
is complicated by the limited information present in the input. These observations
are supported by the different performance produced in the 4frames and 1frame
settings. As concluded from table 5.2, the network achieves superior performance
in the 4frames setting. However, it is possible to note how the pedestrian class
exhibits a huge performance improvement, resulting in almost 3× the recall score of
the 1frame setting – while it increases by only 12% circa for vehicles. This suggests
that it is possible to detect more pedestrians by providing stability to the object-
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Figure 5.13: PR curves produced by the proposed archicture. Different configu-
rations are reported in different colors. The solid lines show the performance on
moving vehicles, while the dashed lines refer to the pedestrian class. The perfor-
mance of the prior art models on moving vehicles are reported for reference – cross
and diamond markers. Best viewed in color.

representation in the input. Indeed, the 4frames inputs contain point-reflections
measured in the current frame plus the last 3 frames. Consequently, a pedestrian
instance which does not provide any measurement in the current frame, is still
represented by data from previous frames. Therefore, this setting ensures more
input-points per object, thus providing the network with the information necessary
for their detection.

Another interesting study consists in measuring, similarly to section 5.4.1, how
accurately the network can estimate the box-parameters in a multi-class problem.
Since, for pedestrian objects, the network does not regress the orientation, it has
been decided to skip the yaw-error analysis – results on the vehicle class are re-
ported in fig. 5.12. Figure 5.14 plots the average IoU scores collected on different
configurations of the confidence threshold. Bear in mind that pedestrian-boxes are
predicted with fixed size, therefore, the object location represents the only param-
eter evaluated. Note how, despite the network achieves worse detection scores on
pedestrian objects, it shows competitive performance in terms of box-accuracy. In-
deed, at high recall configurations, the box-predictions result in circa 0.7 average
IoU in both 4frames and 1frame settings. This proves the ability of the network to
correctly estimate the location of pedestrians in the scene. Note how, once more,
the small dimensions of pedestrians strongly affect this metric, as even small loca-
tion errors produce large drops in IoU. By analyzing the behavior of the curves, it is
possible to obtain similar observations than in fig. 5.11. Indeed, for both classes, the
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Figure 5.14: Average IoU score of the proposed architecture on different values
of confidence threshold. Different network configurations are shown with different
colors. The solid lines show the score on moving vehicles, while the dashed lines
refer to the pedestrian class. Best viewed in color.

IoU score produced by the network predictions grows together with the confidence
threshold. Note, in more details, how pedestrian box-predictions achieve scores as
high as 0.95, in the 4frames setting, and 0.82, in the 1frame setting. This suggests
that the distance-based process, designed for definition of pedestrian GT confidence
labels, is effective and provides the network with meaningful data for learning this
task. Furthermore, it is worth noting the different range of confidence values gen-
erated by the network. Similarly to vehicle objects, pedestrians result in higher
confidence values on the 4frames setting. However, though the highest score in this
setting is comparable with the one for the vehicle class – i.e. 0.9 versus 0.92 –, it
is decisively low in 1frame setting, as the network does not produce any box with
confidence higher than 0.72. This is attributed to the poorer information-content
provided by the input, thus supporting the considerations obtained from fig. 5.13.
Indeed, the network cannot produce high-confident predictions because it does not
have enough data to accurately infer the presence of pedestrian instances. Finally,
fig. 5.14 confirms the obstacles faced by the network when detecting pedestrians in
radar point clouds from a single frame. Yet, it proves that the network operates
well in 4frames setting, matching reasonable detection scores with a good estimation
accuracy.
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5.4.3 Visual Results

Visual analyses represent an important tool for assessing the correctness of the net-
work operations. In this section, visualizations of the proposed architecture outputs
are provided. It has been decided to adopt the model trained in the 4frames setting,
as it showed the best performance.

Figure 5.15 contains visual examples about the offset and residual offset predic-
tions of the network in different scenarios. Though the objects used in this analysis
have various GT yaw configurations, they have been rotated and aligned with the
x-axis (vertical) for visualization purposes. Figure 5.15A shows a common example,
where the object has a moderate velocity and the offset predictions from the first
stage have small errors. Note how the offset vectors (cyan arrows) already concen-
trate the center proposal points (yellow) close to the center of the object. Then, the
residual offset vectors (red arrows) further improve the object box-center proposal
by fine-tuning the location estimate. Note how the final object-centers (blue points)
result very close to each other. In fig. 5.15B is depicted an example where the offset
predictions produce large errors. Note how, after being shifted by the offset vectors,
the center proposals are still distributed along the long box-dimension. Indeed, the
offset predictions correctly estimate the shift in the horizontal axis, but have some
residual error in the vertical axis. In this case, the residual offset vectors adjust the
final prediction, mostly compensating the error along the vertical axis – the main
component of most of the red arrows lies along this axis. Figure 5.15C shows an
example of fast moving vehicles. Since reflections from previous frames are aggre-
gated in the same input, some of the points produced by the object are found in the
rear of the box – it is not possible to compensate for its movement as its velocity is
unknown. Note how the network classifies these points as center-proposal, though
they are associated with the background class. This is because such points have the
radar properties specific of moving vehicles. However, these proposed centers are far
away from the true center of the object and, without any offset regression, they will
produce BBs with very poor IoU scores – even assuming perfect size and orientation
estimations. Note how the offset vectors move the points inside the object box, but
the residual offset vectors are necessary to bring all the points together and close to
the object center. Furthermore, note how the decision to mask points in the vicinity
of the GT boxes helps the network not to get confused in such circumstances – it
is not penalized for predicting these points as center-proposal. Another interesting
scenario is proposed in fig. 5.15D. It shows how the network operates on slow-moving
vehicles – i.e. whose velocity is in the interval [1, 2.5] m/s. Bear in mind that, in
order to avoid confusing the network, these instances are masked out during training
– as described in section 3.3.1. Yet, the network can produce center-proposals for
these objects. Similarly to fig. 5.15A, the residual offset vectors refine the object
box-centers, correcting residual errors of the offset vectors. In addition, fig. 5.15D
also shows how not all the center-proposal points result in an object box: indeed,
only 3 blue points (and 3 red arrows) are present out of the dozens selected points.
Finally, it is worth noting how, in all the examples of fig. 5.15, points not classified as
vehicle center-proposal (gray), experience offset vectors with directions significantly
different than center point-proposals. This suggests that the offset head learns to
distinguish between object and background points, pushing these latter away from
the object-center.

Figure 5.16 contains an example of box-predictions generated by the proposed ar-
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To include in thesis

(A) Small errors.

To include in thesis

(B) Large errors.

To include in thesis

(C) Fast-moving.

To include in thesis

(D) Slow-moving.

Figure 5.15: Visual examples showing the location estimation task performed by the
proposed architecture. Cyan arrows represent offset vectors predicted by the first
stage. Red arrows show the residual offset vectors estimated by the second stage.
Yellow points are center proposals, while gray points are classified as background.
The blue color marks the center of object-predictions. Boxes represent GT vehicles:
moving (green) and slow-moving (orange). Best viewed in color.
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chitecture. In order to gather more insights, for the same scene, the box-predictions
before and after application of the NMS algorithm described in section 5.3.2 are
reported. To improve visual perception, the estimated boxes are extended along the
z-dimension – using a fixed height parameter of 2m – and aligned with the road
plane – i.e. null elevation. Note how the urban scene depicted in fig. 5.16 is quite
miscellaneous. Indeed, it contains moving and stationary vehicles of various sizes,
pedestrians, trees and buildings. Figure 5.16A shows the raw network predictions.
Here, only boxes with confidence above 0.3 – i.e. the value of γconfNMS – are displayed,
as boxes with confidence below this value will be discarded by the NMS algorithm.
Note how the network can recognize most of the objects of interest. Indeed, the
vehicles in the incoming lane are detected as well as the pedestrian and some of
the vehicles in front of the ego-car. Note that the cluster of vehicles in front are
standing behind of a red traffic light. Since the network is trained to detect only
moving vehicles, they are not false negatives – i.e. erroneously missed objects. Nev-
ertheless, it is interesting to note how some of these vehicle-objects do not provide
any radar-reflection – e.g. the left-most instance at the top of the scene. Therefore,
the network would not have any data to support its detection. Figure 5.16B reports
the same network predictions filtered out by the NMS algorithm. Note how the
scene results much more clean and accurate, as multiple predictions for the same
physical instance are reduced to a single one. It is interesting to note how the large
vehicle at the bottom of the scene obtains a box-prediction which is larger than the
other common-sized vehicles. Though among the box-predictions there are smaller
boxes, the network gives a larger confidence score to the large box. This proves that
the network does not overfit to the most-represented dimensions but regresses the
proper object-size. Furthermore, note how the network is able to detect vehicles
oriented in various direction and does not overfit to the most represented angles –
i.e. in the interval [−5◦, 5◦]. Finally, it is worth noting how, despite detecting the
pedestrian in the scene, the network produces a false positive in its vicinity. Note
also how the NMS algorithm cannot filter out this box. Yet, false positives like this
one, which occur for a single frame, can be easily filtered out by means of a tracking
algorithm. Additional visualizations of the network predictions in different scenarios
are provided in appendix A.4.
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(A) Network box-predictions before NMS.

(B) Network box-predictions after NMS.

Figure 5.16: Visual example of the box-predictions produced by the proposed ar-
chitecture. The same scene is proposed before and after NMS. Green boxes show
moving vehicle predictions, while red cylinders represent pedestrians. GT boxes are
reported in gray to avoid visual confusion. Gray points show the input point cloud
fed to the network. Left. Front/rear camera view. Right. 3D visualization. Best
viewed in color.

121



122



Chapter 6

A Novel Statistical Detector to

Defend against Weaknesses of

Deep Learning

The previous chapters prove that DL represents a useful tool for effective processing
of radar data. However, in order to enable adoption of such technology in safety-
critical applications, like autonomous vehicles, their risks and limitations must be
established and tackled.

In this chapter, a specific weakness of DL is addressed: adversarial examples,
i.e. maliciously manipulated inputs created to force the system to a customized
output. After a brief introduction on the attack modalities of such techniques,
a novel solution developed for defending against this weakness is presented and
validated. As adversarial examples are a well-established threat in the computer
vision domain, camera data are used to perform the experiments. Yet, in order to
assess the impact of the proposed solutions in autonomous vehicle applications, a
traffic-sign classification task is used in the evaluation procedure.

This chapter contains the following own contributions:

� Development of an innovative, cost-effective, attack-agnostic and robust ad-
versarial detector using statistical information to identify malicious samples.

� Assessment of various properties of the detector, such as compatibility with
other defensive solutions, usage of distortions and performance under various
attack settings.

� Introduction of a new, effective similarity metric for the detection task, ex-
ploiting the orthogonality between malicious and legitimate samples.

� Development of a brand new distortion, exposing adversarial examples to de-
tection.

� Introduction of solutions improving the state-of-the-art, such as usage of a
signature extraction process and first-order statistics as class representative
vectors.

The method presented in this chapter obtained a patent in [91]. Both, method
and results were previously published in [106].
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6.1 Adversarial Examples

Recent studies have shown that it is possible to force DL methods to produce a cus-
tom outcome by imperceptibly altering the input [41, 37, 44, 59]. These perturbed
inputs, a.k.a. adversarial examples, severely undermine the stability of systems
based on DL solutions. For instance, consider an autonomous vehicle that relies on
DL to detect and recognize traffic signs. By tampering the sign, an attacker might
force the system to misclassify a 30 km/h speed limit sign as a 130 km/h, thus
causing the vehicle to take potentially dangerous actions.

Adversarial examples are inputs specifically altered to fool a DL model, while
appearing authentic to humans. Generally, they are built by adding to the input a
noise signal, a.k.a. adversarial perturbation, that results from an optimization
process. Figure 6.1 shows an instance of adversarial example. Both, legitimate
and perturbed images contain a penguin. However, despite correctly recognizing
the legitimate image (leftmost), the DL model is misled by the malicious sample
(rightmost) into a wrong prediction.

Formally, given a legitimate input sample x, it is possible to generate an adver-
sarial example x′ as

x′ = x+ η , (6.1)

where η represents the adversarial perturbation. This latter is computed as a solu-
tion of the constrained optimization problem in eq. (6.2), where f(·) represents the
function approximated by the target model and ‖·‖ the norm operator

η∗ = arg min
η
‖x′ − x‖ (6.2a)

s.t. f(x) 6= f(x′) (6.2b)

x′ ∈ [0, 1]N . (6.2c)

Equation (6.2a) defines the optimization problem, whose objective function consists
in the magnitude of η. Minimizing this quantity is tantamount to pushing x′ to
be as similar as possible to the legitimate sample x. However, the optimization
problem in eq. (6.2a) finds a trivial solution in the null perturbation – yielding the
lowest objective score of 0. By addressing the constraint in eq. (6.2b), it is possible
to avoid the trivial solution, forcing a perturbation that changes the original output

Penguin [69.7%] Monkey [98.3%]

Legitimate Example Adversarial ExampleAdversarial Perturbation

Figure 6.1: Instance of an adversarial example. The legitimate image is correctly
classified as penguin. By altering it with an adversarial perturbation, the system
is misled to predict the monkey class with high confidence. Yet, both images look
natural and identical to a human. Best viewed in color.
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of the system. Finally, the constraint in eq. (6.2c), a.k.a. box-constraint, limits
the search only among valid inputs.

Besides representing a potential threat, adversarial examples unveil unknown
characteristics of NNs and their intrinsic operations. Indeed, finding out that it
is possible to produce profound variations with slight input alterations, exposes
properties of such technology that were concealed before. Therefore, fueled by the
opportunity to advance knowledge, scientist have started to develop novel attack and
defense strategies. The next sections serve as a background overview, describing the
most relevant state-of-the-art in this area.

6.1.1 Attack Methods

Adversarial attacks can be split into two main categories, based on the attack-
settings adopted. White-box attacks assume full access to the target model. The
attacker can query the victim with custom inputs and leverage the back-propagation
signal used during training. However, it cannot alter the target network. On the
other hand, in black-box scenarios, the attacker does not have any access to the
model: it has only knowledge about the task the victim is deployed for. Generally,
black-box attacks rely on the transferability property of adversarial inputs, accord-
ing to which, a maliciously-modified sample can be effective against various models,
beyond the victim one. Therefore, a common strategy consists in training a sub-
stitute model – on the same task solved by the targeted model – and then attack
it assuming white-box settings. Evidently, such attacks usually result less effective
than white-box ones.

Another factor that strongly characterizes adversarial examples is the process
used to generate them. Indeed, since they are the outcome of an optimization prob-
lem, it is possible to instantiate various attack procedures with different properties.

The Fast Gradient Sign Method (FGSM) is a simple yet effective single-step
attack [41]. It generates malicious samples by altering the input features in the
direction of the gradient of the loss function w.r.t. the input. Formally, given the
input-label pair x-l and the corresponding loss produced by the network L(x, l), the
FGSM attack computes the adversarial perturbation as

η = ε · sign(∇xL(x, l)) , (6.3)

where ε > 0 controls the magnitude of the perturbation. FGSM is a very fast and
cheap method that enables the generation of malicious samples in real-time. On the
other hand, since every feature is altered by the same magnitude, it produces bold
perturbations, sometimes even visible to human eyes. Nevertheless, the ability of
such a greedy technique to undermine the stability of NNs represents a major finding,
capturing the interest of the research community. Indeed, although FGSM is one
of the first adversarial attack ever developed, it has inspired several researchers,
leading to various attack derivations [59, 52, 84, 71, 60].

Other researchers focused on the generation of malicious samples with the small-
est adversarial perturbation. Moosavi-Dezfooli et al. [50] proposed to approach
the problem from a geometrical perspective. They noticed that a NN performs its
task by separating the input domain into decision regions – e.g. for a classification
task, each region is associated to a class. Therefore, it is possible to generate an
adversarial example by moving the original input into a different decision region. As
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a result, the authors devised DeepFool (DF), an iterative algorithm that generates
adversarial examples with the smallest perturbation possible. For this purpose, DF
first linearizes the boundaries between decision regions as hyper-planes. Then, at
each iteration, it computes the perturbation that moves the current input towards
the closest hyper-plane. Since the process stops when the perturbed input achieves
misclassification, its outcome consists in an adversarial example which lives just
beyond the closest decision boundary. DF produces perturbations that are rarely
detectable by humans. However, this attack does not provide full-control over its
effectiveness: occasionally, it produces adversarial examples that are on the decision
boundary edge, thus resulting in ambiguous predictions. Despite being an iterative
procedure, it is very computationally efficient, as it takes only few steps to converge1.

Carlini and Wagner (C&W) [54] is a technique devised to give the attacker full
control over the adversarial generation process. The authors analyzed the optimiza-
tion problem in eq. (6.2) from a mathematical point-of-view. They noticed that the
constraint in eq. (6.2b) is highly non-linear. Therefore, they substituted it with a
cost function g(·) such that g(x′) ≤ 0 if and only if the malicious input is misclas-
sified. In addition, the authors devised a reparametrization trick to approach the
box-constraint in eq. (6.2c). Specifically, they defined the adversarial perturbation
η as in eq. (6.4) and optimized over the latent variable v, thus ensuring the validity
of the solution

η = x′ − x =
1

2
(tanh(v) + 1)− x . (6.4)

The optimization problem used to generate C&W adversarial examples is shown in
eq. (6.5)

v∗ = arg min
v
‖x′ − x‖+ c · g(x′) , (6.5)

where x′ is obtained from eq. (6.4) and c > 0 is a constant. Notice how the parameter
c and the function g(·) enable the attacker to tune the optimization process. C&W
represents the state-of-the-art attack technique and it has been a benchmark for the
development of new defensive and attack methods [86, 63, 55, 90].

6.1.2 Defense Strategies

Defensive techniques against adversarial examples include all those methods that
aim at reducing the success-rate of adversarial attacks. They can be categorized into
two main families: proactive and reactive [102]. Proactive methods tamper the
design or training phase to build robustness into the defended network. On the other
hand, reactive methods aim at defending the victim model by detecting malicious
samples or reconstructing the original, legitimate input. They are generally deployed
after the network has been trained.

Goodfellow et al. [41] assumed that, given the chance, NNs can learn to recognize
adversarial perturbation patterns. Therefore, the authors proposed to tamper the
training procedure by including manipulated inputs. In particular, at every train-
ing step, they extended the mini-batch with malicious samples obtained from the
legitimate counterpart. In this way, it is possible to store in the network knowledge
about adversarial patterns, thus increasing its robustness. Adversarial training has

1NNs produce non-linear decision boundaries that are approximated by linear hyper-planes.
The iterations are needed only to ensure crossing over the true non-linear decision boundary.
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proven to be an effective solution, considerably decreasing the success-rate of state-
of-the-art attack methods. However, as it requires live-computation of adversarial
perturbations, it cannot use lengthy, iterative attack methods. Furthermore, it is
not attack-agnostic: it is not effective against techniques that produces adversarial
perturbations with different patterns than the ones used during training. Finally,
adversarial training has shown an interesting side-effect: it increases the model gen-
eralization to legitimate data, thus improving its performance [41, 43]. The authors
of [41] attributed this effect to the strong similarity between adversarial sampling
and hard example mining. Indeed, adversarial examples can be considered as noisy
inputs that resist classification. Since the network is trained with noisy, hard-to-
classify inputs, it learns better representations of the ground truth.

Other researchers realized that a valid defensive strategy consists in detecting
malicious samples. Grosse et al. [58] suggested a variant of adversarial training.
They created a manipulated version of the legitimate dataset and trained a binary
classifier to predict the nature of the input (legitimate or malicious). In this way, it is
possible to perform a screening of the inputs and avoid to use unwanted outputs pro-
duced by adversarial examples. Unfortunately, despite proving very efficient against
black-box attacks, this method is easily by-passed in white-box attack-settings [53].
In another work, Xu et al. [86] noticed that adversarial attacks exploit the high
dimensionality of the input space to find unnatural representations around the le-
gitimate sample. Therefore, they proposed to lower the attacker opportunities by
limiting the degree-of-freedom of the input domain. Indeed, the authors observed
that, when distorted with simple computer-vision methods – such as spatial smooth-
ing or color bit-depth reduction –, adversarial examples are rarely effective2. On the
other hand, NNs are known to be very robust to such distortions. As a result, they
designed Feature Squeezing (FS), a reactive defensive strategy using distortions to
detect malicious samples. Every time the victim network receives a new input, FS
applies a distortion and feeds both original and distorted samples to the network.
Then, it compares the two outputs by computing the L1 distance. In case the input
has been manipulated to fool the network, the distance between the two outputs
will be consistent3. Therefore, by thresholding this score, it is possible to determine
whether the input is legitimate or malicious. FS has proven effective against both
black- and white-box attack-settings. Moreover, it is an attack-agnostic technique
and does not impose any limitation during the design/training phase. However, it
results in higher computational demands, as it requires to query the victim model
multiple times.

Another defense possibility consists in cleaning up the adversarial perturbation to
reconstruct the legitimate input. Liao et al. [75] developed High-level representation
Guided Denoiser (HGD), a NN module trained to purify the input of any malicious
pattern. HGD works as a pre-processing module: it receives the input and produces
as output the sample to be fed to the network. It is trained to minimize the input
representation at the high-level hidden-layer of the victim network. The authors
proved that HGD performs very well against various attack methods and can be
successfully transferred to other architectures. Moreover, they showed that this
module works in two steps: it removes part of the adversarial perturbation and then
applies a pattern that facilitates the classification task. Unfortunately, it is exposed

2They live in a very narrow space around the legitimate input.
3Assuming that the attack is not robust against the distortion.
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to white-box attacks, as it forms, together with the defended network, a new system
vulnerable to most attack methods. Finally, it requires adversarial inputs during
training, therefore, it is not attack-agnostic.

6.2 A Statistical Scheme to Detect Adversarial

Examples

Adversarial detectors represent the most practical solution among the various defen-
sive approaches described in section 6.1.2. These methods defend the victim network
by identifying whether an input is manipulated or not. In this way, it is possible to
discard the network output forced by a malicious sample and void its effects.

Adversarial detectors are usually distinct modules, detached from the victim
network. This enables the system to operate in different modalities, without affecting
the defended model. For instance, it is possible to activate the detector only when
certain conditions applies. Moreover, since they are independent from the victim
network, they do not impose any design nor training constraints. Finally, adversarial
detectors are generally attack-agnostic and can be easily deployed along with other
defensive strategy, thus combining the advantages of several techniques.

The system developed herein shares the theory from [86] that adversarial ex-
amples live in a narrow region around the natural input. One can think of them
as outliers: singular data-points that produce abnormal outputs compared to their
close neighbors. Statistics provide the means to distinguish between natural and
ambiguous data-points. Indeed, by exploring the vicinity of an input, it is possible
to build up a signature that characterizes it. One way to explore the input domain
consists in using greedy computer-vision distortions. For instance, blurring an input
image allows one to move the input in an adjacent region of the space while main-
taining its original content. As an additional side effect, these distortions squeeze out
the input domain, thus drastically reducing the regions where adversarial examples
proliferate.

In the next sections, it is presented a novel solution for defending against adver-
sarial examples: a statistical adversarial detector that leverages dataset statistics
and input-level distortions to build an efficient detection scheme [106]. In the rest of
the chapter, the term perturbed input is used to refer to an adversarially perturbed
input, while distorted input refers to the input after application of a distortion.
Moreover, it is used the term original to refer to the input before the application of
the distortion, regardless from its nature – i.e. legitimate or malicious.

6.2.1 Detection Concept

Similarly to [86], the proposed detector exploits computer-vision distortions to detect
adversarial examples. It has been observed that, usually, legitimate and manipu-
lated samples exhibit different statistics when distorted. Consider, without loss of
generality, a natural sample x1 and a manipulated sample x′2 = x2 +η2 that, when

fed to the classification network with equivalent function f(·) M
= f(·;θ), they result

in the same output class prediction, namely

c1 = f(x1) = f(x′2) 6= f(x2) = c2 . (6.6)
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It has been noticed that, given a suitable distortion ψ : [0, 1]N → [0, 1]N , eq. (6.7)
holds true: i.e. the adversarial sample is no longer effective, while the legitimate
sample is still correctly classified

c1 = f(ψ(x1)) = f(x1) , (6.7a)

c2 = f(ψ(x′2)) 6= f(x′2) . (6.7b)

Therefore, it is possible to detect adversarial examples by simply monitoring the
model prediction on the original and distorted replica of the input4. Indeed, by
combining eqs. (6.6) and (6.7), it is possible to write

f(ψ(x1))− f(x1) 6= f(ψ(x′2))− f(x′2) , (6.8a)

0 6= c2 − c1 . (6.8b)

However, eq. (6.7b) does not always hold true and using only the criteria in
eq. (6.8) for detection would be really inefficient. In the proposed method, it has been
decided to leverage this property in a different way: the network’s prediction vectors
are compared to each other, instead of the final class predictions. Formally, given the
classification network f(·) of a d-classes task, it is called prediction vector f−1(x) ∈
[0, 1]d the network layer that contains, in each entry, the probability associated with
every one of the d classes. It is related to the output class prediction as

f(x) = arg max
i
f−1(x) with i ∈ [1. . d] . (6.9)

Since the distortion generally changes the class prediction of a malicious sample, it is
safe to assume that it generates diverging prediction vectors – the highest entry will
be at a different position. On the other hand, legitimate samples will maintain the
same class prediction, i.e. the position of the highest value will remain unchanged.
Consequently, by using eq. (6.9), it is possible to rewrite eq. (6.7) as

f−1(ψ(x1)) ≈ f−1(x1) , (6.10a)

f−1(ψ(x′2)) 6≈ f−1(x
′
2) , (6.10b)

where the similar sign substitutes the equal sign to cope with vector-valued quanti-
ties5. Therefore, there exists a similarity function S(·, ·) : [0, 1]s × [0, 1]s → R such
that

S
(
f−1(ψ(x1)), f−1(x1)

)
> S

(
f−1(ψ(x′2)), f−1(x

′
2)
)
, (6.11)

where s accounts for the dimension of the arguments – in eq. (6.11) s = d. In-
deed, provided that S(·, ·) returns a score proportional to the similarity between
two vectors, legitimate samples result in high scores, while manipulated ones pro-
duce poor similarity rates. Hence, it is possible to use a threshold to distinguish
between legitimate and malicious samples. Equation (6.12) contains the detection
criteria resulting from eq. (6.11), where x is a generic input, α a suitable threshold,
H0 the hypothesis of legitimate sample and H1 the hypothesis of malicious sample

S
(
f−1(ψ(x)), f−1(x)

) H0

≷
H1

α . (6.12)

4For proper selection of the distortion. More details about distortions in section 6.2.4.
5Here, two vectors are considered similar when they have similar element-wise values.
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Equation (6.12) suggests to detect adversarial examples by comparing the prediction
vectors of original and distorted version of the input. Compared with eq. (6.8), it
proposes a more robust detection criteria, as it remains sensible to smaller variations
which would not result in a different class prediction.

Despite eq. (6.12) provides an effective detection criteria, it still has some draw-
backs. It has been noticed that, since eq. (6.12) has been derived from considerations
on the class predictions, it holds particularly true for high-confidence adversarial ex-
amples. These samples produce a well-defined prediction vector f−1(x′), with a spike
at the location of the predicted class and all the other entries close to 0. When dis-
torted, as a result of a variation of the class prediction, they change the position of
the highest entry in f−1(ψ(x′)), which leads to poor similarity scores. Conversely,
low-confidence malicious samples produce a lower peak in f−1(x′). After being dis-
torted, they would still result in a different class prediction, but the element-wise
difference will be lower. Because of this, they generate higher similarity scores than
high-confidence samples, thus increasing the risk of evading detection.

For this reason, the proposed detector substitutes the prediction vectors on the
original samples – i.e. f−1(x1) and f−1(x′2) – with class-representative vectors. In
particular, it has been decided to use per-class first-order statistics collected on the
training set. Indeed, assuming that the network can correctly classify most of the
samples in the training set, the class-representative vectors would have the highest
value at the corresponding class position. Therefore, since the legitimate sample
x of class i produces a prediction vector with the same distribution of the other
samples from Xi – i.e. the set containing all the training sample of class i – it is
possible to write

Ex∈Xi [f−1(x)] ≈ f−1(x) , (6.13)

where E[·] represents the expectation operation. Since eqs. (6.7) and (6.10) hold true,
f−1(ψ(x1)) maintains a strong similarity with the corresponding class-representative
vector, while f−1(ψ(x′2)) results in a poor similarity score. Consequently, it is pos-
sible to substitute eq. (6.13) into eq. (6.11) and write

S
(
f−1(ψ(x1)),Ex∈Xk [f−1(x)]

)
> S

(
f−1(ψ(x′2)),Ex∈Xj [f−1(x)]

)
, (6.14)

where k and j represent the class prediction of the original, non-distorted samples
– i.e. k = f(x1) and j = f(x′2) – and Xk and Xj the sets containing all the legit-
imate training examples from class k and j, respectively. Equation (6.14) suggests
the detection criteria in eq. (6.15), which proposes to detect adversarial examples
by comparing the prediction vector on the distorted input replica with the class-
representative vector

S
(
f−1(ψ(x)),Ex∈Xi [f−1(x)]

) H0

≷
H1

α . (6.15)

Note how the class prediction of the original, non-distorted version of the input
selects the proper class-representative vector to use – i.e. i = f(x). This detection
criteria results more stable than the one in eq. (6.12), as the representative vec-
tors do not change across different samples of the same class. Moreover, since the
representative vectors encompass more samples, they contain cross-class similarity
patterns – e.g. natural dogs have 10% resemblance with cats. As a result, in order to
evade detection, manipulated samples not only have to change the predicted class,
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but must also conserve the similarity with other classes. Finally, by not using the
prediction vector on the current sample, it is possible to avoid eventual undesired
behavior produced by a malicious input during computation of the similarity score.

At this point, it has been noted that eq. (6.15) proposes to compare two differ-
ent quantities: the prediction vector on the distorted sample f−1(ψ(x1)) with the
prediction vector first-order statistic, but computed on the original, non-distorted
samples, i.e. E[f−1(x)]. However, although this represents an effective solution, it
is not the most efficient one. By exploiting the property in eq. (6.13), it is possible
to apply the expectation operation to both sides of eq. (6.10a) to get

Ex∈Xi
[
f−1(ψ(x))

]
≈ Ex∈Xi [f−1(x)] . (6.16)

Since the set Xi contains only legitimate samples from the training set, eqs. (6.7a)
and (6.10a) hold true, so both sides of eq. (6.16) have a similar distribution – i.e.
the highest entry is at the same location. Therefore, eq. (6.14) can be rewritten as

S
(
f−1(ψ(x1)),Ex∈Xk

[
f−1(ψ(x))

])
> S

(
f−1(ψ(x′2)),Ex∈Xj

[
f−1(ψ(x))

])
, (6.17)

where the class-representative vector is changed to contain the first-order statistic
of the distorted input replica. Equation (6.17) suggests the detection criteria in
eq. (6.18), which proposes to detect adversarial examples by checking whether the
distorted input replica produces a prediction vector with the same distribution of
the distorted legitimate samples of the original class prediction

S
(
f−1(ψ(x)),Ex∈Xi

[
f−1(ψ(x))

]) H0

≷
H1

α . (6.18)

Note how this criteria reduces the risk of misclassification for legitimate samples,
as the representative vector embeds information about how the specific distortion
affects other samples of the same class. Yet, manipulated samples are still detected,
as they do not show the same properties of natural samples after being distorted.
Finally, note that the class predicted for the original sample is still used to select
the proper class-representative vector.

Equation (6.18) provides the means to build a robust adversarial detector. How-
ever, it does not specify how to use multiple distortions to increase its effectiveness.
The most straightforward solution consists in collecting the similarity scores pro-
duced by every distortions and retain only the minimum score. In this way, it is
possible to detect an adversarial sample if at least one distortion is effective – i.e.
results in eq. (6.10) true. On the other hand, this solution increases the amount
of false positives – legitimate input classified as malicious –, as the score produced
by the most aggressive distortion will be selected. To overcome this limitation, a
combination technique has been designed to create a signature for the input, en-
coding the effects of all the distortions. In particular, given the set of distortions
Ψ = {ψj : j ∈ [1. .m]}, where m is the total number of distortions, a function
g(·; f−1,Ψ) : [0, 1]N → [0, 1]m·d is defined such that it concatenates the prediction
vectors from all the distorted replica of the input, i.e.

g
(
x; f−1,Ψ

)
= concat

(
{f−1(ψj(x)) ∀ j ∈ [1. .m]}

)
. (6.19)

Equation (6.19) produces a signature that does not alter the content of the prediction
vector f−1(·), thus maintaining all the properties exploited so far. Consequently, it
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is possible to rewrite eqs. (6.11)–(6.18) using the mappings in eq. (6.20), where
I = {Ij : j ∈ [1. .m]} is the set containing the identity functions that returns as
output the input unmodified, i.e. x = Ij(x)

f−1(ψ(x)) 7→ g
(
x; f−1,Ψ

)
, (6.20a)

f−1(x) 7→ g
(
x; f−1, I

)
. (6.20b)

In particular, it is possible to rewrite eq. (6.17) as

S
(
γ(x1),Ex∈Xk

[
γ(x)

])
> S

(
γ(x′2),Ex∈Xj

[
γ(x)

])
, (6.21)

where γ(x)
M
= g

(
x; f−1,Ψ

)
for brevity. Finally, eq. (6.21) suggests the detection

criteria in eq. (6.22), which proposes to detect adversarial examples by comparing
the signature extracted for the current sample with per-class representative signature
vector

S
(
γ(x),Ex∈Xi

[
γ(x)

]) H0

≷
H1

α . (6.22)

Note how this criteria maintains the properties of the one suggested in eq. (6.18),
but benefits from the usage of multiple distortions. Consequently, it results in a
more robust detector, as malicious samples need to resist multiple distortions to
avoid detection.

6.2.2 Class Representative Vectors

The system proposed herein exploits class representative vectors to detect adversar-
ial examples. In order to produce these vectors, an offline operation is necessary.
In particular, the legitimate samples used to train the model are processed to ex-
tract the signature according to eq. (6.19). Then, samples belonging to the same
ground-truth class are grouped together and their signature averaged to compute
the first-order statistic. Equation (6.23) contains the formula to produce the repre-

sentative vectors µ, where γ(·) M
= g
(
·; f−1,Ψ

)
is the signature function in eq. (6.19)

and |·| the set-size operator returning the number of samples in a set

µj =
1

|Xj|
∑

x∈Xj
γ(x) ∀ j ∈ [1. . d] . (6.23)

As shown in section 6.4.5, class representative vectors increase the stability of
the detection process. Moreover, since they are computed offline, they do not affect
the inference timing performance, as they are stored in memory, ready to be used.
Additionally, the procedure in eq. (6.23) does not require any adversarial examples,
thus retaining the attack-agnostic property of the proposed system unaffected.

6.2.3 Similarity Score Function

Equation (6.22) proposes to perform the detection task by comparing the input sig-
nature with the corresponding class-representative vector. This requires the com-
putation of a detection score, encoding differences and similarities between the two
vectors. Although every similarity metric is eligible to fulfill this task, however,
accurate selection of this function is a key aspect to achieve superior performance.
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The literature suggests to compute the detection score by means of the L1–
distance [86]. This metric captures the discrepancy between two vectors by calcu-
lating the sum of the element-wise differences. Formally, given two vector-valued
variables a and b, the L1–distance score is defined as

L1(a, b) = ‖a− b‖1 =
∑

i

|ai − bi| , (6.24)

where ‖·‖1 is the L1–norm and |·| the absolute value operation. Note that this
metric does not compute the similarity but the distance between vectors. Never-
theless, it can be used to produce the detection score, as eqs. (6.12), (6.15), (6.18)
and (6.22) continue to hold true for S(·, ·) = −L1(·, ·). The L1–distance score re-
sults particularly effective when comparing two well-shaped prediction vectors with
high confidence for the predicted class. However, they do not efficiently tackle poor
confident prediction vectors, especially when affected by cross-class confusion. Fi-
nally, a main drawback of this metric consists in the effect produced by entries with
low values in both vectors: they need to be exactly the same, otherwise they will
still provide a contribution, increasing the detection score. Despite this limitation
has minor impact on small classification tasks (small d), it is very critical for high
dimensional prediction vectors, where many low entries are present – e.g. German
Traffic Sign Recognition Benchmark (GTSRB) classification task with 43 exclusive
output classes.

By analyzing the characteristics of the vectors in eq. (6.22), it has been noted an
interesting property: adversarial examples tend to generate signatures orthogonal to
the corresponding class-representative vector. At the same time, legitimate samples
result in signatures that are aligned with their class-representative vector. This
effect is illustrated in fig. 6.2. Consider, without loss of generality, to use a single
distortion during the detection process. In this case, a legitimate input produces a
signature with the highest feature at the true class position. Since the selected class-
representative vector contains statistics of prediction vectors generated by samples
of the same class, they share the highest entry location. Therefore, the two vectors
result aligned. An example is provided in fig. 6.2A, where the legitimate 30 km/h
speed-limit sign is correctly classified as class 1. Since the representative vector
is built-up using training images containing the same traffic sign, it still produces
the highest entry for class 1. Contrarily, a malicious sample yields a signature that
has its highest entry at a different location than the original input’s class prediction.
Since this latter is used to select the class-representative vector, the two vectors have
the highest entry at different locations. Moreover, bearing in mind that prediction
vectors sum-up to 1, the remaining entries of the two vectors contain values close to
0, hence they are orthogonal to each other. Figure 6.2B contains an example. The
malicious 30 km/h speed-limit sign sample generates an adversarial class prediction
in class 3. Since the distortion changes the network prediction, its signature contains
the highest value for class 1. Yet, it is compared with the representative vector of
class 3, which has the highest score at class 3. Therefore, the two vectors align along
different axis and, as a consequence, they are perpendicular to each other. Finally,
note how the signature function in eq. (6.19) does not change the position of the
highest entry but just appends another prediction vector with similar characteristics.
As this operation does not affect the orthogonality property, this derivation can be
generalized to configurations using multiple distortions.
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(A) Legitimate samples alignment.
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(B) Adversarial examples orthogonality.

Figure 6.2: Orthogonality property of eq. (6.22). Legitimate samples produce sig-
natures aligned with their class-representative vector. Adversarial examples result
in signatures perpendicular to the class-representative vector selected. Best viewed
in color.

To exploit the orthogonality property, it is important to adopt a similarity metric
that takes into account the relative geometrical position of the two vectors. For this
purpose, it has been decided to use the normalized projection score, a.k.a. cosine
similarity score. This metric function performs a dot-product between the two
vectors and normalizes the result so that it is in the interval [0, 1]. Equation (6.25)
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contains the formal definition, where a and b are column vectors and ‖·‖2 is the
L2–norm

proj(a, b) =
aTb

‖a‖2 · ‖b‖2
=

∑
i ai · bi√∑

i a
2
i ·
√∑

i b
2
i

. (6.25)

Technically, the dot-product projects the vector a onto b, providing a summary
about the common components of the two vectors. A different interpretation con-
sists in considering the score as the cosine of the angle between the two vectors.
For this reason, the normalized projection score encodes the orthogonality property
straightforwardly. In addition, it solves the shortcoming of the L1–distance score
with low-value entries. Indeed, it multiplies together – rather than subtracting –
values close 0, thus drastically limiting their contribution to the final score.

Equation (6.26) contains the detection score computed by the proposed detector,
where a and b are replaced with γ(x) and µj , i.e., respectively, the input signature
and the representative vector of class j = f(x) – the class prediction on the original
input x

s(x) = proj(γ(x),µj) =
γ(x)Tµj

‖γ(x)‖2 · ‖µj‖2
. (6.26)

As a consequence, legitimate samples, producing signatures that align with the cor-
responding class-representative vector, result in high detection scores. Conversely,
the closer to 0 the score is, the more likely it is that the input is malicious. This is
illustrated in fig. 6.3. It contains the histogram of detection scores generated using
eq. (6.26) on the GTSRB test-set [29]. Adversarial examples – generated using the
C&W method – result in poor scores, with more than 60% of them showing a score
close to 0. At the same time, more than 80% of legitimate samples exhibit a score
close to 1, thus proving the validity of the proposed detection framework.
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Figure 6.3: Histogram of detection scores extracted using eq. (6.26) for legitimate
(black) and adversarial (hatched fill) samples. Inputs are sampled from the GTSRB
test-set and perturbed using the C&W method. A single distortion is used (median
smoothing).
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6.2.4 Distortions

The formal derivation proposed in section 6.2.1 assumes the effectiveness of the
distortions involved in the detection process. In order to be effective, a distortion
must respect the properties in eq. (6.7), i.e. it must be such that:

� distorted legitimate samples are still correctly classified.

� distorted adversarial examples are no longer malicious, resulting in the correct
class prediction.

Note that, to avoid trivial solutions, it is important that the distortion exhibits
both properties. As an example, consider the identity function that outputs its
input unmodified. Although this distortion complies with the first property, it has
no effects on adversarial examples, thus resulting in missed detections.

Unfortunately, however, it is difficult to find distortions which possess the proper-
ties in eq. (6.7). Nonetheless, since the proposed detector utilizes prediction vectors
to detect adversarial examples, it is possible to relax these properties. Indeed, it
requires that eq. (6.10) holds true, therefore, the distortion must be such that:

� distorted legitimate samples produce prediction vectors similar to their original
(non-distorted) version

� distorted adversarial examples produce a prediction vector considerably dif-
ferent than the original sample

Note how the new properties are less strict. Indeed, the first condition requires that
the distortion has minimal effects on the outcome produced by legitimate samples.
Meanwhile, the second property demands that the distortion substantially changes
the prediction vector produced by adversarial examples. Since it is not expected to
recover the original class prediction, the introduction of high element-wise difference
would suffice to enable detection of malicious samples.

The new properties broaden the set of distortions well-suited for the detection
task. Good candidates are distortions that NNs are robust to. At the same time,
however, it is important that they attack the adversarial perturbation pattern. The
remainder of this section describes the distortions used in the proposed approach:
i.e. spatial smoothing, reduction of bit-depth resolution and gray-scaling. Figure 6.4
shows their effect on a legitimate example from the GTSRB dataset.
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(B) Spatial smoothing.
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(D) Gray-scaling.

Figure 6.4: Visual effects of the distortions on a legitimate sample of the GTSRB
dataset. Best viewed in color.
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Spatial Smoothing A well-known characteristic of NNs is their robustness to
greedy computer vision distortions. Therefore, spatial smoothing represents the most
simple candidate for the proposed detection framework. This distortion, also known
as image blurring or low-pass filtering, is widely used to reduce the noise present in an
input image. Since the adversarial perturbation can be considered as a special noise
added to the input, it results particularly effective for attacking malicious patterns.
Spatial smoothing operates by setting the value of every pixel according to statistics
collected over the neighboring pixels. In this way, it is possible to achieve a low-pass
filtering effect, smoothing out high-frequency components present in the adversarial
perturbation in the form of abrupt changes across neighboring pixel values.

There exist several methods to achieve the smoothing effect. The most sim-
ple implementation consists in setting the pixel intensity to the mean value of the
nearby pixels. Gaussian smoothing performs the same operation by weighting the
neighboring pixels with a 2D Gaussian filter. Median smoothing collects the pixels
in a given window and set the intensity of the center pixel to the median ranking
value. Although every technique has its own advantages and disadvantages, median
smoothing proved to be the most effective against adversarial examples [86]. This
particular distortion is well-suited for removing local outlier pixel values while re-
taining important details like edges and corners. Figure 6.4B shows the effect of
median smoothing on a legitimate sample from the GTSRB dataset. The proposed
detection framework uses median smoothing with square window of size 2 pixels.

Reduction of Bit-Depth Resolution NNs assume their inputs to be contin-
uous. However, real-world systems have memory constraints that force the use of
discretized data. For instance, images are represented as arrays of pixels with as-
sociated (discrete) intensity values. Common configurations are 8-bit (gray-scale)
and 24-bit (color, 8-bit per channel) intensity resolution. Therefore, every pixel of
a gray-scale image hold a discrete value in the integer interval [0. . 255], encoding
a specific shade of gray – ranging from black (0) to white (255 = 28 − 1). Simi-
larly, color images encoded using the RGB-format, use 3 color channels (red, green
and blue) of 8-bit each. Studies have shown that, from a visual perspective, small
variations of the pixels intensity do not affect the input content, thus suggesting
that the bit-depth resolutions used are unnecessary large [86]. Indeed, although
high color-resolutions provide more natural visualizations, they are not crucial to
make sense of images – e.g. to recognize objects of interest. Therefore, it is possible
to reduce the bit-depth resolution without significantly hurting the performance of
NNs. At the same time, by limiting the input resolution, it is possible to reduce the
adversarial opportunity, thus disrupting eventual malicious patterns.

Following the suggestions in [86], it has been implemented the distortion as in
eq. (6.27), where x ∈ [0, 1]N is the input with original bit-resolution normalized to
the interval [0, 1], b the output bit-depth resolution and int(·) the integer-rounding
operation

x̃b =
int(x · (2b − 1))

2b − 1
. (6.27)

As a result, the distorted input x̃b is re-quantized, reducing the information capacity
to b bits. In the proposed detection framework b is set to 4 for every color-channel.
Figure 6.4C shows an example of legitimate input from the GTSRB dataset with
bit-depth resolution reduced from 8 to 4 bit per channel.
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Gray-scaling Humans do not need colors to recognize objects of interest. Indeed,
a gray-scale version of a colored image still retains prominent patterns like texture,
corners and edges. Gray-scale images are the result of a combination of the color
channels. Over the years, several different methods have been developed to perform
this operation [25]. The most simple solution consists in reducing the three RGB
color channels by averaging out the corresponding pixel intensity values. More ad-
vanced techniques perform a weighted combination with special weighting factors in
order to maintain the most salient information for a given task. They are designed
to focus on specific characteristics of the gray-scale image such as perception to
human eye or optimization for digital visualization. As an example, ITU-R Rec-
ommendation BT. 709 [47] defines a standard for gray-scale image visualization on
high-definition television. This standards accentuates the contribution of the green
channel as humans are more sensible to this color spectrum.

Similarly to a reduction of the bit-depth resolution, by gray-scaling an image it
is possible to limit the adversarial opportunity while maintaining the input content.
Therefore, the proposed framework adopts the color-to-gray-scale distortion using
the implementation in eq. (6.28), where kr, kg and kb are constants and R, G and
B are the red, green and blue color channels, respectively

x̃ = krR+ kgG+ kbB . (6.28)

Note how, despite eq. (6.28) also performs a reduction of the bit-depth resolution,
it differs from eq. (6.27), as it combines the color channels rather than re-quantize
them. It has been decided to follow the recommendations in [47], setting kr = 0.2125,
kg = 0.7154 and kb = 0.0721. In addition, the gray-scaled image is replicated along
the three color channels to retain the input dimensionality and, consequently, the
information flow within the NN. Figure 6.4D shows the effect of this distortion on
a legitimate sample of the GTSRB dataset.

6.2.5 Detection Framework

Figure 6.5 contains the detection framework proposed herein, implementing the
criteria derived in eq. (6.22). When the defended network receives an input, a
set of distortions are applied to generate the distorted replicas. At this stage, the
system has to generate the input signature. Therefore, it queries the model with the
distorted replicas, collects the prediction vectors and combines them using eq. (6.19).
At the same time, the original version of the input is fed to the model to obtain the
class prediction. This is used to select the class representative vector which will be
compared with the current input signature. The normalized projection score is used
to compute the detection score. Finally, the score is thresholded to infer the input’s
nature and decide whether to discard or maintain the predicted class.

6.3 Experimental Setup

This section describes the setup used to conduct the experiments. Throughout the
examination, the guidelines for a correct and robust evaluation provided in [90] are
rigorously followed.

The detection results are reported in terms of area under the curve (AUC) in or-
der to be independent from the threshold level. In particular, for each experiment,
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Figure 6.5: Scheme of the proposed detection framework. The input is distorted
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class-representative vector. The normalized projection metric computes the detec-
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the attack-set – containing only successful malicious samples – is paired with an
equal number of correctly predicted samples from the legitimate test-set. Then, the
Receiver Operating Curve (ROC), plotting true positive rate – adversarial examples
successfully detected – versus false positive rate – legitimate samples wrongly clas-
sified as malicious –, are extracted to collect the AUC scores. Due to the limited
amount of samples, for black-box experiments the AUC scores would be an inac-
curate metric, therefore, detection rates are used. They report the percentage of
successful malicious samples predicted at a given threshold value. The classification
performance of the models is measured in terms of accuracy.

Unless otherwise stated, every detector is tested in a two-distortions configura-
tion, using the distortions found in literature – i.e. median smoothing and reduction
of the bit-depth resolution. Section 6.4.3 reports the results collected using different
distortion-configurations, validating the gray-scale distortion proposed herein. The
next sections describe the datasets and attack-methods used, as well as the method
from literature adopted as benchmark and the victim classification models.

6.3.1 Datasets

The main application of the method proposed herein consists in effectively defending
an autonomous vehicle from adversarial attacks. However, it is important to evaluate
it on a more broad and general task to fully assess its performance. Therefore,
two diverse datasets are used to validate the proposed solution: GTSRB [29] and
CIFAR10 [26].

GTSRB Traffic sign recognition is a fundamental task for autonomous vehicles.
However, traffic signs are exposed to adversarial perturbations which might deceive
the classification system [83, 69]. It is, therefore, crucial to have in place solu-
tions that can defend against eventual attacks. To evaluate the performance of the
proposed adversarial detector on such tasks, the German Traffic Sign Recognition
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Benchmark (GTSRB) dataset is used. It features more than 60k traffic sign images
under various conditions. Every image contains a single traffic-sign and is labeled
according to one of 43 classes – such as stop, 30 km/h speed-limit, no entry, etc.
Therefore, it enables one to address a multi-class classification problem. The dataset
is split into training and test set, consisting of 40k and 13k samples, respectively.
The samples are represented using the RGB format. Since the inputs have varying
sizes, every image is resized to 46× 46 pixels before feeding it to the model.

CIFAR10 ML researchers rely on publicly available datasets to develop and eval-
uate algorithms. Due to the low-resolution of its samples – enabling fast experimen-
tation –, CIFAR10 has been used as benchmark for many ML solutions. It consists
in a collection of images featuring ordinary objects such as cars, birds, dogs, etc.
Every image contains a single object from 10 different classes. The dataset is divided
into a training split of 50k samples and a test split of 10k samples. The images are
encoded using the RGB-format and have a fixed size of 32× 32 pixels.

6.3.2 Adversarial Attacks

The selection of the attack techniques represents a crucial phase for the correct eval-
uation of any defensive strategy. Adversarial attacks have different characteristics,
therefore, it is important to use diverse methods to thoroughly assess the perfor-
mance of the system. For instance, a defense solution can prove effective against
aggressive attacks but vulnerable and powerless to finely perturbed inputs. For
these reasons, it has been decided to validate the proposed detection framework us-
ing three attacks: C&W, DF and FGSM. Figure 6.6 showcases a legitimate sample
form the GTSRB dataset perturbed with every attack-method.

C&W Carlini and Wagner (C&W) represents the state-of-the-art among adver-
sarial attacks and it is used as benchmark to assess the performance of new defensive
solutions. The malicious perturbations produced by this method are very fine and
results invisible to humans. In addition, C&W provides the attacker with full control
over the generation process. During experimentation, it has been used the untar-
geted L2–norm attack, which uses eq. (6.5) with the L2–norm and function g(·)
defined as in eq. (6.29), where f−1(x′)i is the i-th entry of the prediction vector and
j = f(x) – i.e. the class predicted for the clean version of the input

g(x′) = max(f−1(x
′)j −max({f−1(x′)i : i 6= j}),−κ) . (6.29)
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(B) C&W.
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(D) FGSM.

Figure 6.6: A GTSRB sample attacked with the methods used for evaluation. Best
viewed in color.
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Note how the function in eq. (6.29) finds its minimum in −κ when there is at least a
class with prediction scores higher – by a margin of κ – than the original predicted
class. Therefore, the parameter κ allows tuning of the attack outcome, as higher
values produce more confident predictions. Different configurations of the C&W
attack are adopted, using different values of κ. The value used for this parameter is
reported with a number beside C&W – e.g. C&W5 has κ = 0.5. No number stands
for κ = 0. Figure 6.6B contains a GTSRB sample attacked with the C&W method.

DF DeepFool (DF) is a very powerful attack method. It generates adversarial
examples with the smallest perturbation possible. It has been decided to use this
attack because of its ability to produce very fine malicious samples, altering the
original input imperceptibly. The parameters are set as suggested in the original
paper [50]. As DF does not allow for customization, a single configuration of this
attack is used. Figure 6.6C shows a GTSRB sample perturbed using the DF method.

FGSM The Fast Gradient Sign Method (FGSM) is a fast and greedy attack tech-
nique. It generates malicious samples often visible to humans, because of a very
aggressive perturbation pattern. Yet, it features different characteristics than the
previous methods, thus providing a good testing ground for defensive strategies.
The attack has been implemented as indicated in eq. (6.3), setting the step size pa-
rameter ε to 0.01 and 0.04 – FGSM1 and FGSM4, respectively. Figure 6.6D displays
the effect of the FGSM attack on a GTSRB sample.

To obtain a comprehensive measure of the proposed detector performance, all the
adversarial attacks are deployed in both white- and black-box settings. In white-
box scenario, it is assumed that the attacker has access to the classification model,
but not to the defensive technique. Instead, to get black-box malicious samples,
it is attacked a substitute model trained on the same task. Then, the resulting
adversarial examples are used to attack the original classifier. Table 6.1 reports the
performance of victim and substitute models on all the attack-sets.

6.3.3 Prior Art Benchmark

Comparison with other prior art methods is critical to assess the full potential of the
proposed defensive strategy. However, it is important to use methods that perform
the same task with similar resources, in order to enable fair comparisons. For this
reason, it has been decided to use Feature Squeezing (FS) [86] in the evaluation
process, as it represents the closest solution to the proposed approach. Indeed, they
both are low-cost, attack-agnostic adversarial detectors that are well-suited to be
deployed along with other defensive solutions – such as adversarial training [41].
Technically, FS adopts a structure similar to the proposed detection framework.
It uses distortions to attack the adversarial pattern and compares the prediction
vectors of the distorted replicas with the prediction vector of the original sample,
as in eq. (6.12). Differently than the proposed approach, it uses the L1–distance
to compute the detection score. Finally, it does not have a signature extraction
function: it fuses the effects of multiple distortions by using the maximum operator
– thus selecting the most destructive distortion. The interested reader is referred to
section 6.1.2 or the original paper for further details.
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6.3.4 Classification Models

In this section are described the victim models defended by the proposed detector.
The model deployed for the GTSRB classification task is a CNN. It has two

convolutional layers with kernel size 3 × 3, stride 2 and 8, 16 output channels,
respectively. Rectified Linear Unit (ReLU) is used as activation function. Finally,
a dropout layer with rate 0.5 is applied to the output feature-map and an FC-layer
is used to regress the (43) class scores with the softmax activation function. The
model used to craft the black-box adversarial examples has the same structure, but
with an additional convolution layer – 3× 3 kernel, stride 1 and 32 channels.

Concerning CIFAR10, it has been decided to use a less accurate classifier than
the state-of-the-art. In this way, it is possible to evaluate the proposed model under
different conditions. Indeed, the more uncertain the victim is, the less accurate its
statistics are, thus potentially affecting the detector operations. It has been decided
to use a CNN model, with three 3× 3 convolutional layers: the first with 8 channels
and stride 1, the remaining two with stride 2 and 32, 64 channels, respectively. ReLU
is used as activation function. A dropout layer followed by an FC-layer conclude
the model, which provides as output 10 units holding the class scores – through the
softmax function. The black-box version of the model exhibits the same structure,
with the addition of a convolution layer with stride 1 and 128 channels.

All models are trained using the cross-entropy loss function with learning rate
of 0.001, iterating over the dataset until convergence. Table 6.1 reports the perfor-
mance of victim and substitute models on the legitimate test-set.

6.4 Results

Table 6.1 reports the performance of the victim classifiers on both GTSRB and
CIFAR10. The top section contains the results against the white-box attack-sets.
Note how the networks performance are heavily affected by the adversarial attacks.
A very accurate network trained on the GTSRB dataset, achieves only 4% circa of
accuracy when queried with the C&W or DF test-set. It means that most of the
samples are able to deceive the network into predicting a wrong class. The FGSM
attack is also able to reduce the model accuracy, but its effectiveness is decisively
lower. On the other hand, FGSM produces highly confident predictions, as stated
by the large average prediction confidence values. This is due to the fact that FGSM
is a very aggressive attack: it does not always succeed, but when it does it produces
high confidence scores. Another observation that can be collected from table 6.1
concerns the parameter κ of the C&W attack. Indeed, the table results confirm
that this parameter enables tuning of the attack uncertainty, as the higher it is, the
higher is the average prediction confidence value.

Similar considerations can be repeated for the CIFAR10 model. However, here
the FGSM attacks result more effective, producing the lowest accuracy score. This
effect attributed to two reasons: the lower model accuracy and the lower input res-
olution. Indeed, less accurate models are more easily fooled, due to the blurrier
decision boundaries. Moreover, as the input resolution becomes smaller, FGSM
approaches to the other more advanced methods that exploit the high input dimen-
sionality to find ”fooling” regions6.

6On a single pixel input, FGSM is equivalent to a DF attack, up to a scaling factor.
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Table 6.1: Performance of the tested classifiers against every test-set (legitimate and
adversarial) with no defense deployed. Accuracy and average prediction confidence
are reported in percentage. Top: White-box results. Bottom: Black-box results.

Legitimate White-box

Metrics Samples C&W C&W5 C&W9 DF FGSM1 FGSM4

C
IF

A
R

10 Accuracy (victim) 76.83 13.32 13.21 13.21 13.97 21.08 12.66

Avg. Prediction
84.14 44.86 55.79 63.88 44.58 74.83 78.87Confidence (victim)

G
T

S
R

B Accuracy (victim) 92.88 3.66 3.66 3.64 3.52 42.19 20.58

Avg. Prediction
96.88 51.55 63.17 71.41 48.45 83.90 91.58Confidence (victim)

Legitimate Black-box

Metrics Samples C&W DF FGSM4

C
IF

A
R

10

Accuracy (victim) 76.83 75.68 75.63 38.50

Avg. Prediction
84.14 59.30 59.31 65.39Confidence (victim)

Accuracy (substitute) 79.11 11.80 12.84 11.89

G
T

S
R

B

Accuracy (victim) 92.88 92.71 92.66 78.97

Avg. Prediction
96.88 63.58 63.35 66.95Confidence (victim)

Accuracy (substitute) 96.72 1.72 2.03 20.47

The bottom part of the table reports the results on the black-box attack-sets.
Note how the attacks are very effective against the substitute model. However, only
FGSM shows good transferability properties – reducing its accuracy – whilst C&W
and DF fail to generalize to the victim model – producing less than 2% accuracy
drop. Yet, although C&W and DF cannot deceive the model into a wrong classifi-
cation output, they are not completely ineffective. Indeed, they considerably reduce
the average prediction confidence, thus resulting in very uncertain predictions.

6.4.1 White-box Results

Figure 6.7 contains a comparison between the proposed detector and FS in terms
of ROC curves. The white-box C&W attack-set on the CIFAR10 dataset is used
to collect the results. The plot shows that the proposed method considerably out-
performs FS, generating a ROC curve that passes closer to the top-left corner. In
addition, the figure reveals that the proposed detector possesses better convergence
properties than FS, as shown in the top-right section of the plot, highlighting a flat
behavior of the curve. This means that it is possible to achieve 100% detection
rate, while producing a lower amount of false positives. Finally, the AUC score in
the legend numerically quantifies the superiority of the proposed approach on this
specific configuration, outperforming FS by more than 15%.
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Figure 6.7: ROC curves of the proposed detector (blue) and FS (orange) against
the C&W attack on the CIFAR10 test-set. Both the detectors use median filtering
and reduction of the bit-depth as distortions. Best viewed in color.

Table 6.2 reports the AUC scores generated on all the white-box attack-sets by
the two methods. It supports the conclusion drawn from fig. 6.7, confirming the
superior performance of the proposed solution in detecting the advanced attacks.
Note, indeed, how the AUC score for the C&W and DF attack-sets are always
above 95%. Another interesting observation can be made from the results collected
on the different datasets. Though the proposed detector performance are almost
unchanged, FS experiences a significant drop when defending the CIFAR10 classifier.
This indicates that FS is severely affected by the model accuracy: it can successfully
detect high-confidence adversarial examples but struggles to cope with uncertain
ones. On the other hand, the proposed detector proves to be reasonably robust
to the model accuracy, hence resulting well-suited to defend a broader variety of
classifiers. A similar pattern can be found in the performance of the two methods
against the different C&W attack-configurations. Indeed, notice how FS improves its
performance as the value of the parameter κ increases, while the proposed detector
remains almost unaffected by it. Bearing in mind that the higher κ is, the higher is
the malicious samples confidence – as shown in table 6.1 –, this effect supports the
previous considerations. In addition, it suggests that the proposed solution is more
effective than FS to defend against various configurations of the C&W attack.

Finally, it is worth commenting the performance on the FGSM attack-sets. Ta-
ble 6.2 shows that FS is more effective against such greedy techniques than the
proposed method. This can be partially attributed to the higher prediction con-
fidence generated by FGSM adversarial samples. Moreover, it is surprising how
the FGSM4 attack-set generates the worst detection performance in both meth-
ods. This is due to the high aggressiveness of the attack-technique, which often
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Table 6.2: AUC scores of FS and the proposed detector against the various attack-
sets (%).

Method C&W C&W5 C&W9 DF FGSM1 FGSM4
C

IF
A

R
10 FS 82.34 86.62 89.45 82.21 88.89 74.90

Proposed 96.58 95.57 95.31 97.00 84.17 67.52

G
T

S
R

B FS 96.55 97.76 98.39 96.16 93.74 73.60

Proposed 99.77 99.69 99.61 99.62 92.54 74.08

produces perturbations visible to human eyes and, thus, robust to the distortions
adopted. Nevertheless, it is possible to improve the detection performance on the
FGSM attack-sets by combining other complementary defensive solutions, as shown
in section 6.4.2.

6.4.2 Compatibility with other Defensive Solutions

Section 6.4.1 proved the ability of the proposed solution to detect malicious samples
generated by advanced techniques such as C&W and DF. It also turned out that
it suffers when attacked with more aggressive methods – like FGSM –, which are
sometimes able to evade detection. However, there exists a large number of defensive
solutions that can successfully handle such adversarial attacks. This section shows
how it is possible to leverage the compatibility property of the proposed method to
solve this shortcoming and improve its robustness.

The proposed method possesses the property of being an adversarial detector
that does not alter the classifier inference procedure. As such, it can be considered
an external module that performs a task detached to that victim’s one. This char-
acteristic enables the proposed detector to be deployed with other complementary
defensive strategies, operating on different weaknesses of adversarial examples. An
example can be found in the HGD denoiser developed in [75]. It can be employed
to clean the input sample of the malicious perturbation. Yet, the denoiser-classifier
system can be interpreted as the new victim model and the proposed adversarial
detector can be deployed to defend it. In this way, if the malicious input evades
the denoiser, this can still be recognized by the external detector. Therefore, it is
possible to achieve a defensive strategy that combines the qualities of two different
techniques, thus enhancing both effectiveness and robustness.

In this section, it has been decided to experiment with the adversarial training
defensive method [41]. It defends the victim model by including adversarial examples
during the training process. In this way, the victim can store knowledge about them
and, consequently, be less exposed to adversarial perturbation patterns. Further
details are provided in section 6.1.2 or the original paper [41].

Since the detector proved strong against both C&W and DF, it has been decided
to use adversarial training to improve the detection performance on the FGSM
attack. Therefore, once trained the classifier until convergence, it has been fine-tuned
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for few epochs using the adversarial training procedure. Specifically, the mini-batch
of legitimate samples used during training has been extended with the same amount
of malicious samples. These samples are generated by attacking legitimate inputs
with the FGSM4 method. Note that the malicious perturbation is crafted using the
current network configuration as target model. The fine-tuning process has been set
to last 20% of the initial training procedure. Finally, to comply with the white-box
requirements, every adversarial attack-set has been re-computed on the finalized
version of the victim network – i.e. after adversarial training.

Table 6.3 shows the effect of adversarial training on the victim models. It can be
noted that this defensive solution has the same effect on both tasks (CIFAR10 and
GTSRB). As expected, adversarial training has the strongest impact on the FGSM
attack-sets, significantly reducing their success-rate. This suggests that it succeeds
at teaching the network the perturbation pattern of the FGSM method. With this
knowledge, the network can smooth out the input domain around the legitimate
samples – in the direction of the FGSM perturbation – and limit its exposure to
adversarial examples. Interestingly, adversarial training also reduces the fooling-
rates of C&W and DF, though the effects are marginal. This supports the previous
consideration: C&W or DF perturbations that resemble FGSM ones have a reduced
effect on the network. Finally, it is worth noting that the performance of the classifier
on the legitimate test-set is slightly harmed by adversarial training. However, this
effect can be prevented by carefully fine-tuning the adversarial training process.

Table 6.4 reports the results of both FS and the proposed detector deployed
together with adversarial training. As reference, it also contains the results – from
table 6.2 – of the two methods without adversarial training the victim network. It
is interesting to notice the different behavior of the two methods. Indeed, FS pro-
duces almost always poorer detection performance when defending the adversarially
trained network. Contrarily, the proposed solution benefits from the cooperation
with adversarial training, often improving its detection capabilities. This effects can
be attributed to two reasons. On one hand, it has to be considered that adversarial
training diminishes the effectiveness of the attacks. This results not only in a lower
number of samples fooling the network, but also in lower prediction confidence val-
ues. Since section 6.4.1 proved that FS is sensitive to this setting, it explains the
poor compatibility property of FS. On the other hand, by using the first-order statis-

Table 6.3: Performance of the victim models with and without adversarial training
in terms of accuracy (%).

Advers. Legitim.
Training Samples C&W DF FGSM1 FGSM4

C
IF

A
R

10 without 76.83 13.32 13.97 21.08 12.66

with 73.58 14.18 14.29 46.65 28.16

G
T

S
R

B without 92.88 3.66 3.52 42.19 20.58

with 91.95 4.31 4.22 73.49 31.80
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Table 6.4: AUC scores of the proposed detector and FS with and without adversarial
training (%).

Advers.

Method Training C&W DF FGSM1 FGSM4
C

IF
A

R
10

FS
without 82.34 82.21 88.89 74.90

with 81.40 80.73 79.81 72.50

Proposed
without 96.58 97.00 84.17 67.52

with 96.65 96.73 86.48 78.41

G
T

S
R

B FS
without 96.55 96.16 93.74 73.60

with 88.39 88.61 92.20 89.45

Proposed
without 99.77 99.62 92.54 74.08

with 93.26 93.26 95.77 92.81

tic as class representative vector, the proposed method incorporates knowledge of
the victim into the detection process. This enables it to encode information about
the decision region instantiated by the network and leverage the effects produced
by adversarial training. In this way, the proposed method takes advantage from the
cooperation, improving the detection performance.

Another intriguing result can be found in the performance of the proposed solu-
tion against the FGSM attack-sets. Note how adversarial training, despite reducing
the effectiveness of the FGSM attacks, also improves the detection performance. In
this way, the proposed method is able to fill the gaps with FS, performing better or
on-par with it. Finally, it is worth noting the slight performance degradation against
both C&W and DF attack-sets. Following the consideration in section 6.4.1, it is
possible to attribute this effect to the drop in accuracy of the adversarially trained
networks. Yet, the proposed method still outperforms FS, achieving better detection
scores.

6.4.3 Distortions Configuration

The detectors tested so far always used two distortions. However, they are not
limited to this configuration. In this section, various distortion-configurations are
tested to assess their impact on the performance and study the ability of the methods
to combine them. Moreover, a brand new distortion is introduced and tested, i.e.
gray-scaling – described in section 6.2.4.

Table 6.5 contains the results of this experiment. The defended classification net-
work is shared across different configurations. However, the distortions used by the
detectors to identify malicious samples are changed. In particular, median, bit-depth
and gray-scale refer to single-distortion configurations using, respectively, median
smoothing, reduction of bit-depth resolution and gray-scaling. These configurations
do not require any technique for merging the contribution of different distortions
– such as the signature extraction function in eq. (6.19). Indeed, they provide de-
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tails about the effectiveness of each single distortion against different adversarial
examples and/or different detection frameworks. The 2-distortions configuration
uses median smoothing and reduction of bit-depth resolution, i.e. the same con-
figuration used in the experiment of section 6.4.1. The 3-distortions configuration,
instead, adopts all three different distortions.

The results in table 6.5 suggest the same insights collected from table 6.2: the
proposed detector outperforms FS on the more advanced attacks, while they com-
pete with each other on the FGSM attack-set. Moreover, it is possible to note how
FS struggles to efficiently combine multiple distortions. Indeed, it always achieves its
best performance when using a single distortion configuration, with the 3-distortions
configuration being almost always the worst. This indicates that using the most de-
structive distortion is not an efficient combination technique. Instead, the proposed
method seems to benefit from the usage of several distortions. Indeed, besides pro-
ducing competitive results with single distortion settings, it often achieves its best
performance leveraging the effects of all three distortions. This implies that the
combination technique adopted by the proposed method – i.e. eq. (6.19) – has
the ability to generate strong, meaningful signatures, retaining the most relevant
information for the detection of adversarial examples.

Focusing on the single-distortion configurations, it is possible to note how the
effectiveness of each distortion varies across different datasets and/or attack tech-
niques. In particular, median smoothing performs better on the GTSRB dataset,
while bit-depth reduction is more effective on CIFAR10. The FGSM attack is more
sensitive to the median smoothing distortion in both tasks, while resulting quite
robust against reduction of the bit-depth resolution. The proposed gray-scaling dis-

Table 6.5: AUC scores of FS and the proposed detector for different choices of the
distortions (%). The configuration with two distortions uses median smoothing and
reduction of bit-depth resolution.

C&W DF FGSM4

Distortions FS Prop. FS Prop. FS Prop.

C
IF

A
R

10

Median 80.69 93.68 80.73 93.72 76.15 69.01

Bit-depth 87.96 94.41 86.84 94.71 52.64 56.83

Gray-scale 75.16 88.85 74.62 88.32 65.09 65.76

2–Distortions 82.34 96.58 82.21 97.00 74.90 67.52

3–Distortions 75.63 96.79 75.37 97.08 73.88 72.50

G
T

S
R

B

Median 97.86 99.51 97.63 99.46 74.95 75.63

Bit-depth 97.00 99.05 96.19 97.36 61.75 66.95

Gray-scale 91.35 96.98 90.84 96.60 77.19 73.84

2–Distortions 96.55 99.77 96.16 99.62 73.60 74.08

3–Distortions 89.98 99.81 89.31 99.72 76.08 73.67
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tortion shows good performance, surprisingly achieving the best results when used
in the FS framework to detect FGSM samples on the GTSRB dataset. This proves
that it represents a valid alternative, especially when used in multiple-distortions
configurations. Finally, note how the proposed detector continues to outperform FS,
even in single-distortion configurations. This suggests that it uses a more efficient
detection scheme, regardless of the combination technique.

6.4.4 Black-box Results

The previous sections proved the superior performance of the proposed detector
under white-box attack-settings. However, in order to achieve an exhaustive eval-
uation, it is important to include black-box experiments. Black-box attacks have
peculiar characteristics, differentiating them from the white-box counterparts. For
instance, they do not possess a strong relationship with the victim, as they are
computed using substitute networks, hence using signals that differ from the vic-
tim’s gradient. This characteristic might potentially impact the proposed detection
framework, as it has a more intimate relationship with the victim model than FS.

Bearing in mind that only a limited amount of black-box malicious samples
are successful – see table 6.1 –, it has been decided to use a different performance
metric. In particular, AUC scores have been substituted with detection rates. As
this metric requires a threshold value, similarly to [86], it has been decided to use
the threshold value which rejects only 5% of the CIFAR10 legitimate samples (10%
on the GTSRB dataset). The detection rates collected during the experiment are
reported in table 6.6. Note how the proposed method results more robust and
effective than FS to detect black-box adversarial examples. This is attributed to the
usage of the first-order statistic as class representative vectors, providing a stable
signature, regardless of the effectiveness of the attack. Finally, it is worth noting
that, in this configuration, the proposed detector is also able to outperform FS on
the FGSM attack.

6.4.5 Ablation Studies

The results proposed so far proved that the adversarial detector developed herein
represents a valid technique for defending against adversarial examples, showing
state-of-the-art detection capabilities. However, the role played by the solutions

Table 6.6: Detection rates of FS and the proposed detector in black-box settings
(%).

Method Threshold Legitim. C&W DF FGSM4

C
IF

A
R

10 FS 1.2119 95.42 7.68 7.58 25.83

Proposed 0.6894 94.59 22.82 23.06 31.27

G
T

S
R

B FS 0.4097 90.13 69.27 70.15 68.51

Proposed 0.9739 89.59 78.28 77.59 72.95
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proposed in section 6.2 is yet to be assessed. This section provides an investigation
on the effects of every one of the proposed solutions.

Figure 6.8 contains the ROC curves collected using the white-box C&W attack-
set on the CIFAR10 dataset. The orange curve reports the performance of the
prior art, Feature Squeezing (FS) [86]. It adopts the detection criteria derived in
eq. (6.12), using the minimum operator to combine the effect of multiple distortions,
i.e.

min
j

(
S
(
f−1(ψj(x)), f−1(x)

)) H0

≷
H1

α . (6.30)

The negative L1–distance score metric in eq. (6.24) is used as similarity metric. To
assess the benefits introduced by the normalized projection score metric in eq. (6.26),
the same detection criteria in eq. (6.30) is evaluated, but using the normalized pro-
jection score as similarity metric (blue curve). It is possible to note the improvement
introduced by the new metric, increasing the AUC score by more than 3 percentage
points. The green curve has been generated to assess the benefits of the first order
statistic as class representative vector. It is produced using the detection criteria in
eq. (6.18), with the minimum operator as distortions combination technique, i.e.

min
j

(
S
(
f−1(ψj(x)),Ex∈Xi

[
f−1(ψj(x))

])) H0

≷
H1

α . (6.31)
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Figure 6.8: ROC curves showing the effects of the proposed solutions against the
C&W attack on the CIFAR10 dataset. The orange curve is produced by FS –
eq. (6.30) – and the gray one by the proposed detector (using all the solutions) –
eq. (6.22). The blue curve shows the effects of the proposed normalized projection
score metric in eq. (6.26). The green curve is produced using the detection criteria
in eq. (6.31) and shows the improvement due to the first-order statistics as class
representative vectors. Median filtering and reduction of the bit-depth resolution
are used as distortions. Best viewed in color.
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The normalized projection score is still used as similarity metric. Note the big im-
provement introduced by this solution, increasing the AUC score by nearly 10%. In
addition, it is interesting to notice that this solution is responsible for the better
convergence property discussed in section 6.4.1. This suggests that the usage of
first-order statistics as class representative vectors brings stability to the detection
framework, allowing it to achieve 100% detection rates with much lower false detec-
tion rates than the previous two configurations. Finally, the gray curve reports the
performance of the detector using all the proposed solutions. It adopts the detec-
tion criteria in eq. (6.22) with the normalized projection score as similarity metric.
It differs from eq. (6.31) as it uses the signature extraction process in eq. (6.19) –
concatenation operation – to combine the effect of multiple distortions. Note how,
by incorporating the combination technique into the score computation, it is possi-
ble to enhance even more the detection performance, increasing the AUC score by
almost 2%. Ultimately, the proposed solutions address a more effective detection
framework, achieving an improvement of nearly 15% over the prior art – i.e FS.
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Chapter 7

Conclusions

This document proves the effectiveness of DL techniques to process radar data for
solving various environment perception problems. Chapter 3 proposes innovative
solutions that enable both, effective and efficient processing of radar data. It has
been shown that it is possible to improve the performance of point-wise process-
ing techniques by encoding radar-related information into high-dimensional point-
descriptors. The proposed pre-processing module proved to be effective in extracting
the radar-object-perception in various point-wise architectures. In addition, it has
been shown that, in order to achieve an efficient processing, it is crucial to respect
the intrinsic nature of radar. The usage of MS instead of FPS and the adoption of
a non-hierarchical architecture proved to optimize the usage of spatial context in-
formation, taking into account the low-density of the data. By combining together
all the proposed solutions, it has been designed RadarPCNN, a novel point-wise
processing architecture for semantic segmentation of radar point clouds. It has been
proved that this network can achieve state-of-the-art performance, using less capac-
ity than previous DL approaches. Results of ablation studies have been reported,
highlighting specific characteristics of RadarPCNN. In particular, it has been shown
that SA layers do not require an ideal grouping process, as they can filter the content
of local neighborhoods. Additionally, it has been proved that, in order to achieve
superior performance, it is critical to ego-compensate the Doppler feature. It has
also been shown that the model benefits from its usage as spatial coordinate. Fi-
nally, following a visual investigation on the predictions of RadarPCNN, it has been
shown that the network confuses bushes for pedestrians. Yet, it has been proved
that this effect is not due to the algorithm, but rather to their strong similarity
from the radar perspective. In future, it would be interesting to evaluate the ability
of the proposed pre-processing module to generalize to other point-wise processing
architectures. Another interesting experiment consists in the comparison with grid-
based approaches. Finally, since it has been found out that most of the network
errors are present just for few frames, it would be possible to improve the network
performance by including temporal information in the processing scheme.

Chapter 4 provides a survey on the ability of point-wise processing techniques to
detect pedestrians. In particular, it has been proposed to study how these models
use the radar features. The PointNet++ [64] and PointNet [65] architectures are
analyzed. Shared FC and RF [20], instead, are used as benchmark. The experi-
ments have proved that PointNet++ performs a different, more complex processing
of the radar feature. It has been shown that Doppler represents the most informative
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feature for the task of pedestrian detection. However, PointNet++ also leverages
the local spatial structure to infer the output class. Although the RCS feature has
proved to contain little information for the task at hand, NN-based techniques have
demonstrated their ability to learn to include it in the decision process, extracting
insightful point-properties. By analyzing the Doppler domain, it has been shown
that GT pedestrians are characterized by both low and null Doppler values. Yet,
PointNet++ is the only architecture that produce a Doppler distribution of pedes-
trian predictions that approximate the GT one. By succeeding in the detection of
points with Doppler values close to 0, indeed, it demonstrated its ability to use all
the radar features, while the other models depended almost uniquely on the ve-
locity information. Finally, it has been shown how a perturbation of Doppler and
XY -coordinates affect PointNet++ differently: it has been proved that the former
impacts the precision score, while the latter influences the recall rate. A promising
future work direction consists in the inclusion of other families of techniques in the
survey. For instance, it would be fascinating to study how grid-based approaches use
the radar features, compared to point-wise processing methods. Another interesting
experiment consists in performing a deeper investigation on the prediction errors of
PointNet++, especially for points with Doppler values close to 0, to provide further
insights about the properties of missed detections.

Chapter 5 introduces a system that uses raw radar point clouds to perform
the ultimate perception task: object detection. The proposed architecture has been
designed to optimize the processing executed by the prior art model [92]. The results
proved that it performs a more effective processing than the prior art, achieving
better detection performance. Moreover, it resulted in less FLOPS, while using
more parameters, thus proving the efficiency of the proposed solutions. By analyzing
the box-regression performance, it turned out that the proposed method produces
more accurate box-predictions. Indeed, the proposed regression-aided formulation
results more effective than the template-based one adopted in the prior art. In
addition, the spherical regression task, addressed for the orientation estimation,
increased the accuracy of the angle predictions. Finally, the proposed architecture
has been evaluated on a multi-class task, proving its ability to detect small objects
like pedestrians. Despite the proposed system has outperformed the prior art, it is
still possible to improve its performance by pursuing several work directions. One
of them follows the observations gathered during the visual analysis in section 5.4.3.
Indeed, since the proposed architecture uses point-data, it struggles to detect objects
that are scarcely represented – providing none or few reflections. Consequently, it
is possible to considerably improve the detection performance by producing point
clouds that better represent the scenes. This can be achieved, e.g. by leveraging
low-level radar data. Other promising directions entail an upgrade of the proposed
architecture. For instance, the inclusion of an RNN module would provide the
network with the means for leveraging temporal information, thus producing more
consistent and confident predictions. Finally, both, detection performance and box-
accuracy can be improved by advanced post-processing steps. Indeed, it is possible
to perform a better filtering of the boxes by developing an enhanced NMS procedure
and/or using a tracking algorithm. For this latter, the network could be equipped
with a further output head that regresses the velocity of the objects, thus providing
additional information for the tracking task.

Although ML/DL has proved to represent a valid solution for performing envi-
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ronment perception tasks, it has some limitations. Chapter 6 introduces a system
that helps defeating a specific weakness of ML techniques: adversarial examples.
The proposed adversarial detector proved to be a low-cost, robust tool for detecting
malicious samples. The system showed impressive detection capabilities, outper-
forming the state-of-the-art technique. It proved its ability to detect adversarial
samples in different tasks/attack-settings. In particular, it showed its ability to
identify samples computed with the most advanced attack-procedures. Though it
proved slightly less robust against more aggressive attacks, it has been demonstrated
that it is possible to annihilate them by combining multiple defensive strategies. In
this context, it showed its remarkable compatibility with other defensive solutions,
enhancing its detection performance. Moreover, it proved its ability to proficiently
fuse the effects of multiple distortions as well as detect samples in black-box attack-
settings. Ultimately, it was shown that all the solutions introduced in the design of
the detector play a central role, bringing improvements to the overall system. The
work presented in chapter 6 opens various research directions. Indeed, it would be
interesting to perform a deeper investigation into the compatibility property of the
proposed detector, experimenting with other defensive strategies. Another intrigu-
ing experiment would consist in studying the robustness of the classifier-detector
system when attacked in white-box settings (giving the attacker access to the de-
fense). Indeed, Sharma et al. proved that an adversarial detector can be bypassed
in this settings [82]. However, other solutions can be put in place to avoid this effect,
such as the introduction of randomness in the system. An example would be, for
every input query, to select the distortions to use in the detection framework from
a pool at random. Finally, it would be also interesting to investigate the usage of
data-driven distortions, even though they might result more exposed to an attack
due to the back-propagation process.
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Appendix A

A.1 Point-Sampling with MS and FPS

This section contains support results for the comparison between MS and FPS sam-
pling strategy in section 6.4.5. Radar reflections are represented with points, colored
based on their RCS value. Red stars show the sampling algorithm output. Objects
present in the scene are signaled by black boxes. Best viewed in color.
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Figure A.1: Both methods sample most of the objects of interest. Yet, MS provides
a better description of the space, while FPS results more uniform.
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Figure A.2: MS produces a very clean scene with the sampled points, while FPS
provides a corrupted representation. Moreover, MS respects the scene, sampling
points for all vehicles. FPS misses some of them. Pedestrians are not all sampled
due to the sparse sampling strategy – another layer of the network focuses on such
smaller objects.

A.2 Visual Examples of RadarPCNN Predictions

This section contains visualizations about the predictions of RadarPCNN. It sup-
ports the discussion in section 3.4.3. The 3D visualization as well as the corre-
sponding camera-view are displayed. Both show the input radar point cloud and
the ground-truth BBs, colored based on the network predictions. In particular,
yellow accounts for moving vehicles and red for moving pedestrians. Orange BBs
denote slow-moving vehicles, whose speed belong to the interval [1, 2.5] m/s. Gray
BBs shows stationary vehicles – speed lower than 1 m/s – while purple BBs denote
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stationary pedestrians. Gray points represent predictions of the negative class. The
z-coordinate of the points has been zeroed and aligned with the road for visualization
clarity. Best viewed in color.

Figure A.3: Incoming moving vehicle correctly detected by the network. Points from
all the other parked vehicles are classified as the negative class. The pedestrian on
the rear does not have any associated reflection. Since it is occluded by a parked
car, the sensor could not see this instance. Top-left: front camera. Bottom-left: rear
camera. Right: 3D view.

Figure A.4: The scene contains only static objects and the network can correctly
predict the negative class for every point. Top-left: front camera. Bottom-left: rear
camera. Right: 3D view.
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Figure A.5: A complex scene containing both moving and stationary vehicles at a
big cross-road. The network can correctly recognize as static the cars in front of the
traffic light (on the left). Both large and small moving instances are classified as
moving vehicles. The different altitude levels generate visual-errors in the camera
views. Top-left: left facing camera. Bottom-left: front camera. Right: 3D view.

Figure A.6: A pedestrian in front of the ego-vehicle, near parked cars, correctly
detected by the network. The rest of the scene is classified as static. Top-left: front
camera. Bottom-left: rear camera. Right: 3D view.
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A.3 RadarPCNN Predictions: Bushes as Pedes-

trians

This section contains visualizations about the predictions of RadarPCNN, where
bushes are erroneously classified as pedestrians. It supports the analysis in sec-
tion 3.4.3. The figures adopt the visualization-format described in appendix A.2.

Figure A.7: Bushes from a hedge near the pedestrian are erroneously classified.
They share the spatial properties of the nearby pedestrian: both instances are found
next to stationary objects. Top-left: left facing camera. Bottom-left: front camera.

Figure A.8: Bushes on the left and right of the ego-vehicle are mistakenly predicted
as pedestrians. Top-left: left facing camera. Bottom-left: right facing camera.
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A.4 Visual Examples of Object Box-Predictions

This section contains visualizations about box-predictions of the architecture pro-
posed in chapter 5. Green boxes represent moving vehicle predictions while red
cylinders are pedestrians. Gray boxes show GT objects while gray points show
the input radar point cloud. The boxes are extended along the z-axis, using a fixed
height of 2m, and aligned with the road plane. Predictions for the same scene before
and after NMS are reported. Best viewed in color.

(A) Network box-predictions before NMS.

(B) Network box-predictions after NMS.

Figure A.9: Downtown dense scene. The only moving vehicle is detected. Though
there are some false positives, most of the pedestrians are detected. The other
vehicles in the scene are stationary parked cars. Top-left: front camera. Bottom-
left: left-facing camera. Right: 3D view.
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(A) Network box-predictions before NMS.

(B) Network box-predictions after NMS.

Figure A.10: Downtown scene. Two moving vehicles are correctly recognized. The
third moving vehicle in the rear is not detected because it provides a single radar
reflection. The pedestrians along the curbstone on the right are detected, but the
one in the rear has a location error of few meters. The group of pedestrians in
the rear are also correctly recognized, although they are quite far away. The three
vehicles on the right represent stationary cars parked in a private area. Top-left:
front camera. Bottom-left: rear camera. Right: 3D view.
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(A) Network box-predictions before NMS.

(B) Network box-predictions after NMS.

Figure A.11: Urban scene. Moving vehicles and the pedestrian in front are correctly
recognized. The two vehicles on the top of the scene are not detected because they
have none or few radar reflections. Predictions with correct orientation have higher
confidence. The vehicles on the left are standing behind a red traffic light. Top-left:
front camera. Bottom-left: rear camera. Right: 3D view.
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(A) Network box-predictions before NMS.

(B) Network box-predictions after NMS.

Figure A.12: The pedestrian on the rear-right size and the moving vehicles in the
ego-car lane are detected. The vehicles on the left are standing behind a red traffic
light. The pedestrian on the rear-left side is missed. The pedestrians on the front-
left side cannot be detected because they have no reflections. The network can
detect objects very far away, such as the vehicle at the top of the scene. Top-left:
front camera. Bottom-left: rear camera. Right: 3D view.
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(A) Network box-predictions before NMS.

(B) Network box-predictions after NMS.

Figure A.13: Highway scene. Vehicles in the ego-car roadway are recognized. Ve-
hicles in the incoming roadway are not detected because they do not provide any
radar reflections. The network can predict boxes for objects far away. Though mul-
tiple boxes are estimated for the vehicles in the rear, the most accurate ones obtain
larger confidence values. Top-left: front camera. Bottom-left: rear camera. Right:
3D view.
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