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Summary

In the context of time-domain simulation of multiphysical integrated cir-
cuits, one often encounters large systems of coupled differential-algebraic
equations. To keep the simulation times of these systems feasible, a multi-
tude of techniques can be applied exploiting different characteristics of the
underlying systems.

As there are different natural phenomena occurring at once inside these
circuits, one of the exploited characteristics is the difference of time scales for
each of these phenomena. This is done through multirate time integration.
Another way of drastically improving the feasibility of these simulations
is by incorporating model order reduction techniques. These model or-
der reduction techniques aim to reduce the computational complexity of
mathematical models in numerical simulations.

This thesis presents novel work on the combination of both model
order reduction and multirate time-integration into reduced order multirate
schemes. To construct these combined schemes different types of coupling
structure and model order reduction approaches are considered. Further-
more, two different types of approaches for the numerical integration are
applied and tested with numerical experiments.

Two nonlinear model order reduction techniques are discussed, proper
orthogonal decomposition and maximum entropy snapshot sampling. They
are applied both to systems of ordinary differential equations as well as
differential-algebraic equations. For he maximum entropy snapshot sam-
pling a method is presented for the estimation of the reduction parameter.
For the multirate approach both Runge-Kutta as well as backward differ-
entiation formula methods have been considered.

Results have been achieved in the numerical analysis of the reduced order
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multirate schemes and convergence has been proven. These results have
been verified in both academic and industrial experiments. The numerical
method described in this thesis shows clear computational advantages over
regular integration methods.

− v −



Zusammenfassung

Bei der Simulation multiphysikalischer integrierter Schaltungen im Zeitbere-
ich stößt man häufig auf große Systeme gekoppelter differential-algebraischer
Gleichungen. Um die Simulationszeiten dieser Systeme praktikabel zu hal-
ten, kann eine Vielzahl von Techniken angewandt werden, die verschiedene
Eigenschaften der zugrunde liegenden Systeme ausnutzen.

Da in diesen Schaltkreisen verschiedene natürliche Phänomene gle-
ichzeitig auftreten, ist eine der genutzten Eigenschaften die Differenz der
Zeitskalen für jedes dieser Phänomene. Dies geschieht durch eine mehrstu-
fige Zeitintegration. Eine weitere Möglichkeit, die Durchführbarkeit dieser
Simulationen drastisch zu verbessern, ist die Einbeziehung von Techniken
zur Reduzierung der Modellordnung. Diese Techniken zur Reduzierung der
Modellordnung zielen darauf ab, die Rechenkomplexität der mathematis-
chen Modelle in numerischen Simulationen zu verringern.

In dieser Arbeit werden neue Arbeiten zur Kombination von Model-
lordnungsreduktion und Multirate-Zeitintegration in Multirate-Schemata
reduzierter Ordnung vorgestellt. Um diese kombinierten Schemata zu
konstruieren, werden verschiedene Arten von Kopplungsstrukturen und
Ansätze zur Modellordnungsreduktion betrachtet. Darüber hinaus wer-
den zwei verschiedene Arten von Ansätzen für die numerische Integration
angewandt und mit numerischen Experimenten getestet.

Es werden zwei Verfahren zur Reduktion nichtlinearer Modellordnungen
diskutiert, nämlich die orthogonale Zerlegung und das Maximum Entropy
Snapshot Sampling. Sie werden sowohl auf Systeme gewöhnlicher Differen-
tialgleichungen als auch auf differential-algebraische Gleichungen angewandt.
Für das Maximum-Entropie-Snapshot-Sampling wird eine Methode zur
Schätzung der Reduktionsparameter vorgestellt. Für den Multirate-Ansatz
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wurden sowohl Runge-Kutta- als auch Rückwärtsdifferenzierungsformelver-
fahren berücksichtigt.

Es wurden Ergebnisse in der numerischen Analyse der Multirate-Schemata
reduzierter Ordnung erzielt und die Konvergenz wurde nachgewiesen. Diese
Ergebnisse wurden sowohl in akademischen als auch in industriellen Exper-
imenten verifiziert. Die in dieser Arbeit beschriebene numerische Methode
zeigt deutliche rechnerische Vorteile gegenüber regulären Integrationsmeth-
oden.

− vii −



Samenvatting

In de context van tijddomein simulatie van multifysische geïntegreerde cir-
cuits, komt men vaak grote stelsels van gekoppelde differentiaal-algebraïsche
vergelijkingen tegen. Om de simulatietijden van deze systemen haalbaar
te houden, kan een veelvoud aan technieken worden toegepast die gebruik
maken van de verschillende eigenschappen van de onderliggende systemen.

Aangezien er verschillende natuurverschijnselen tegelijk optreden in deze
circuits, is een van de geëxploiteerde kenmerken het verschil in tijdschaal
voor elk van deze verschijnselen. Deze exploitatie vindt plaats door middel
van multirate tijdsintegratie. Een andere manier om de simulatietijd van
deze simulaties drastisch te verbeteren is door gebruik te maken van model
order reduction technieken. Deze model order reduction technieken hebben
als doel de computationele complexiteit van de wiskundige modellen in
numerieke simulaties te verminderen.

Dit proefschrift presenteert nieuw werk betreffende de combinatie van
zowel model order reduction als multirate tijdintegratie in de multiraten-
schema’s met verminderde orde. Om deze gecombineerde schema’s te
construeren worden verschillende soorten koppelstructuren en model or-
der reduction benaderingen overwogen. Verder worden twee verschillende
soorten benaderingen voor de numerieke integratie overwogen en zijn deze
getest met numerieke experimenten.

Twee niet-lineaire model order reduction technieken worden besproken,
namelijk proper orthogonal decomposition en maximum entropy snapshot
sampling. Deze worden zowel toegepast op stelsels van gewone differenti-
aalvergelijkingen als op differentiaal-algebraïsche vergelijkingen. Voor de
maximum entropy snapshot sampling techniek wordt een methode gepre-
senteerd voor de schatting van de reductieparameter. Voor de multirate
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integratie methoden komen zowel Runge-Kutta- als Backward Differential
Formula in aanmerking.

Er zijn resultaten bereikt bij de numerieke analyse van de multiraten-
schema’s met verminderde orde en de convergentie is bewezen. Deze resul-
taten zijn geverifieerd in zowel academische als industriële experimenten.
De in dit proefschrift beschreven numerieke methode vertoont duidelijke
rekenkundige voordelen ten opzichte van reguliere integratiemethoden.

− ix −
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Introduction

Motivation

Nowadays, a world without microchips seems inconceivable. This funda-
mental building block of our electronic devices plays one of the most, if not
the utmost important role in our digital world. From our communication
systems to navigation and even our financial infrastructure, integrated
circuits are ingrained in every aspect of our lives. For the design and man-
ufacturing of these devices, numerical simulation techniques are necessary,
and thus the need for mathematical modelling and simulation arises.

Integrated circuits, or microchips, are made of silicon. Silicon is a
natural semiconductor, which means that under certain conditions, it
conducts electricity; whilst under others, it acts as an insulator. These
different electrical properties of silicon can be achieved by the addition of
impurities, which is done by a process called doping. These characteristics
make it an ideal material for making transistors, which are devices that
can be used to amplify of switch electronic signals or electrical power.

To use silicon, it must be processed. The silicon needs to reach a
level of 99.999% purity, which is done through chemical processes. Heat
is applied to create a purified silicon melt, and then it’s grown into a
mono-crystalline ingot, a salami-shaped bar of silicon. These ingots can be
enormous, with measurements going up to 2 meter in length and weighing
almost 500 kilograms. The ingots are sawed into super-thin wafers, less
than 10 human hairs thick, by a diamond saw. The wafers are then polished
in a number of steps until they’re smooth and their surface has a mirror like
surface. The wafer then undergoes a complex process, so the design of the
microchip can be transferred onto the wafer. This design is transferred using
photolithography, which projects each of the thousands of interconnected



INTRODUCTION

layers onto the wafer. Each one of the layers of the microchip is electrically
connected to the next with billions of transistors, each with an unique
circuit pattern. To make such etchings, a deep ultraviolet light source is
used, hence the name photolithography.

Subsequently, each of the layers of the microchip are etched, polished,
and integrated. The non-silicon elements in these layers, also known as
the dopants, are used to further alter the electrical properties of each layer.
When the silicon is exposed to the proper amounts of other elements, heat
and pressure, it reacts by adjusting its conductivity. This essential step
ensures that the chip works as intended by it’s design and is not in danger
of using too much or too little charge.

Figure 1: The final version of a microchip. The L99ASC03G Multi-
functional System IC is a brushless/sensorless 3-phase motor
pre-driver for automotive applications, developed by STMi-
croelectronics.

The conductive paths between layers are constructed by coating the
whole microchip with metal, for which usually aluminium is used. Then
the photolithographic process is used again to remove all of this coating
but the conductive pathways. In case of larger microchips, this process
may also involve multiple layers of conductors separated by glass.

Each individual node on the microchip is then tested for functionality.
Should one of the nodes malfunction or behave abnormally, then the entire
microchip has to be discarded. But if all parts are validated and function as
expected, it’s checked and marked to moved onto the final step, packaging.
During the packaging the wafers are cut and the wires are attached. To

− 3 −
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protect the microchip from the elements and damage it is further encased.
The final product is the integrated chip that we know and can be found in
all of our electronic devices, see Figure 1.

As this process of developing a microchip is such a complex and time
consuming endeavour, it is most important that the circuits are adequately
designed. Designing integrated circuits has become very complex over
the last decades. The number of transistors, one of the essential building
blocks of both analogue and digital circuits, has grown nearly exponentially
since their inception. However, the size of the microchips remained nearly
constant, or even decreased. Thus each single transistor has to be described
very detailed and take all kinds of environmental effects into account to
be accurately simulated. This desire for accuracy results in very complex
models to describe the behaviour of the natural phenomena occurring inside
the microchip. Now however, due to the ever increasing complexity of the
circuits, we even run into limitations using computer aided design as the
mathematical models become prohibitively large.

In the context of time-domain simulation of multiphysical integrated
circuits, one often encounters large systems of coupled differential-algebraic
equations (DAEs). To keep the simulation times of these systems feasible, a
multitude of techniques can be applied exploiting different characteristics of
the underlying systems. As there are different natural phenomena occurring
at once inside these circuits, one of the exploited characteristics is the
difference of time scales for each of these phenomena. This is done through
multirate (MR) time integration. Another way of drastically improving the
feasibility of these simulations is by incorporating model order reduction
(MOR) techniques. MOR techniques aim to reduce the computational
complexity of mathematical models in numerical simulations.

In this thesis we present novel twofold approach to efficiently simulate
coupled nonlinear DAEs by combining these two techniques. By applying
multirate time integration and partitioning the circuit, large slow subsys-
tems lend themselves for model order reduction. The gained accuracy at
the cost of a slight increase in computational effort provided by multi-
rate integration is kept whilst the computational complexity is reduced
by applying model order reduction. These new reduced order multirate
integration schemes are the central theme of this thesis.

Previous Work

Model order reduction for industrial circuit simulation has been a tried
and tested approach. Most of the model order reduction algorithms apply

− 4 −
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strictly to linear time-invariant systems. The most popular classes of
these type of algorithms are Krylov sub-space methods, [39], [35], [38]
and truncated balanced realisation methods, [25], [49]. These methods
are well understood and have a long standing record of being applied in
industry, [40], [30], [29], [12].

In contrast, in the field of nonlinear model order reduction there are
still many steps to be made. One of the most promising approaches to
nonlinear model order reduction is through the use of the proper orthog-
onal decomposition method, [51], [13], [42], [54], [36]. This method is
a type of reduced basis model order reduction method that constructs
such a basis from a sample of time or frequency-domain snapshots. The
temporal or parametric dependent information that is used for reduced
basis construction is extracted from these snapshots by use of a singular
value decomposition. These snapshots are obtained from a high-fidelity
simulation of the full order problem. Based on predefined cut-off criteria,
left singular vectors are selected to form the reduced basis. Although this
method is widely used for nonlinear model order reduction there are some
remarks to be made.

The singular value decomposition is an inherently linear method and
optimal in the least-squares sense, it might remove high-frequency com-
ponents in its basis construction, whilst these are especially present and
of importance in the context of circuit simulation. To circumvent this, a
discrete reduced basis framework founded on the asymptotic properties of
measure-preserving transformations is used, the maximum entropy snap-
shot sampling method. As first presented by Kasolis in [31], this method
is bases on the so-called Grassberger-Procaccia correlation sum, [24], on
recurrence quantification analysis, and on an estimate of the invariant
Kolmogorov-Sinai entropy, [15], [45]. The reduction is obtained by con-
straining the entropy estimate to be a strictly increasing function on the
time index. By then applying any orthonormalization process the reduced
basis is obtained.

The roots of multirate time-integration techniques can be traced back
to a paper by Rice, [37], where the step-sizes for the integration were
adapted to the level of activity of subsystems. Since then many works
followed, [23], [27], [28], relating to many times of different integration
techniques. This thesis marks the first time that multirate time-integration
techniques have been combined with model order reduction methods to
receive significant reductions in computational time, whilst maintaining ac-
curacy. This thesis specifically combines both Runge-Kutta and Backward

− 5 −
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Differentiation Formula methods, [20], [2], [52], with proper orthogonal
decomposition and maximum entropy snapshot sampling methods. A
compound-first-step multirate approach is used for stability reasons.

Results

The combination of model order reduction techniques and multirate time
integration has been shown to be a very promising approach for the simu-
lation of industrial circuits. The main goals of this research project were
to show both analytically and numerically that these type of schemes were
capable of reducing simulation times, whilst maintaining accuracy. As a
result five papers have been published.

Paper I The first publication titled "A combination of model order
reduction and multirate techniques for coupled dynamical sys-
tems" has been printed in the SCEE proceedings, [47]. The
paper relates to the combination of RK multirate integra-
tion and nonlinear model by proper orthogonal decomposition.
These techniques were applied to a problem with a DAE-ODE
coupled structure. The slow system was the ODE subsystem
and this was to be reduced. The techniques proposed in this
paper were numerically verified.

Paper II This publication titled "Coupling of model order reduction and
multirate techniques for coupled dynamical systems" has been
printed in Applied Mathematics Letters 112, 2021, [4]. In this
paper a numerical analysis is presented regarding the conver-
gence of reduced order multirate schemes applied to DAE-ODE
structured problems. This is further validated by numerical
experiments and the result is that order 1 convergence can be
achieved with a reduced computational effort.

Paper III The third paper titled "Maximum entropy snapshot sampling
for reduced basis modelling" was presented at the IGTE 2020
conference and has been written as in a joint effort with Fotios
Kasolis and Markus Clemens from the Chair of Electromagnetic
Theory at the Bergische Universität Wuppertal, [8]. This
paper has been selected from the conference proceedings to be

− 6 −
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published in The International Journal for Computation and
Mathematics in Electrical and Electronic Engineering. In this
paper the maximum entropy snapshot sampling is applied in
circuit simulation and a novel approach for the estimation of
the reduction parameter is presented.

Paper IV Published in Applied Numerical Mathematics, the paper ti-
tled "Reduced order multirate schemes for coupled differential-
algebraic systems" presents the numerical analysis for conver-
gence of reduced order multirate schemes applied to DAE-DAE
structured problems, [5]. The main result of this paper is the
proven order 1 convergence with a BDF style approach to
integration. Numerically this has been verified by experiments.

Paper V This paper titled "Reduced Order Multirate Schemes in Indus-
trial Circuit Simulation" has been written on invitation for the
Journal of Mathematics in Industry, as an extension of the first
paper for the SCEE proceedings, [7]. This paper illustrates
how to apply the theoretically proven concepts of reduced order
multirate scheme in an industrial circuit simulation setting. A
test case from STMicroelectronics regarding a photo-voltaic
solar panel is studied and positive simulation time reduction
has been achieved. The paper serves as an accumulation of the
previously obtained results.

Besides the published papers multiple deliverables have been written
related to the ROMSOC project. These papers document the open source
benchmark cases and provide the reader with plug-and-play source code to
use reduced order multirate schemes. The main achievement regarding these
documents is the presented academic circuit simulation package presented
in the final deliverable, [6].

Document Outline

This thesis functions as a comprehensive compendium of the aforementioned
publications, as to give a complete overview of the development of reduced
order multirate methods. The document is divided into five distinct chapters
that each cover a facet of the whole mathematical framework.

− 7 −



In Chapter 1 we introduce the mathematical foundations of differential-
algebraic equations. This special type of differential equations needs careful
consideration as they may represent ill-posed problems. The chapter
presents established results that are necessary for the subsequent discussions
in the thesis and to validate the model order reduction and multirate
techniques that we apply to these equations.

Chapter 2 is dedicated to the subject of integrated circuit simulation.
In this chapter the mathematical equations describing the phenomena
occurring inside a microchip are obtained through charge-oriented modified
nodal analysis. Individual types of components are presented and examples
of their model and behaviour are given. Furthermore, a brief description of
the transient analysis, a certain type of circuit analysis, is given.

Chapter 3 gives a background on the model order reduction techniques
applied in the scope of this thesis. Furthermore, the application of the
maximum entropy snapshot sampling method is presented. For this appli-
cation, a novel technique for the estimation of the reduction parameter is
outlined.

Then multirate time-integration is discussed in Chapter 4. After the
definition of regular multirate time-integration, the notion of reduced order
multirate is given. Important convergence results from numerical analysis
on these schemes are presented in this chapter and it functions as the last
theoretical chapter.

In Chapter 5 numerical experiments are performed with the previously
presented techniques for illustrative and explanatory purposes. This chapter
verifies the theoretically claimed results from the previous chapters and
shows the advantages of reduced order multirate integration schemes. Both
academic and industrial test cases are shown.

The final chapter rounds up all the previously presented results and
highlights the main take-aways. It concludes with and outlook on future
perspectives in the fields of multirate and model order reduction and their
combinations.





1
Differential-Algebraic

Equations

Abstract
Differential-algebraic equations arise in the mathematical mod-
elling of a variety of problems such as in multibody and flexible
body mechanics or electrical circuit design. The mathematical
models to describe these type of systems have the property that
they are governed by both differential equations, describing the
dynamics of the underlying system, as well as algebraic equa-
tions, which put constraints on the solutions to the differential
equations. This chapter introduces the basic definitions and
principles of differential-algebraic equations.

Introduction

Before introducing the numerical integration and model order reduction
techniques the foundation of the mathematical framework for differential-
algebraic equations (DAEs) is presented. In this chapter established results
are discussed regarding differential-algebraic equations and their character-
istics. It is essential to consider these special cases of differential equations
as systems of DAEs may represent ill-posed problems. Therefore, more
considerations are required to solve these systems compared to systems of
ordinary differential equations (ODEs).



DIFFERENTIAL-ALGEBRAIC EQUATIONS

1.1 Basic Definitions

Let us start by giving the definition of them most general form of a nonlinear
differential-algebraic equation.

Definition 1.1.1 (Differential-algebraic equation, DAE). A general non-
linear differential-algebraic equation is defined by

F (t, x, ẋ) = 0, (1.1a)

x(t0) = x0. (1.1b)

with F : I ×Rn ×Rn → Rm with n,m ∈ N and I ⊆ R a compact interval.
Provided with initial conditions x(t0) = x0 ∈ Rn it is an initial value
problem.

Definition 1.1.2 (Solution and solvability). Let x be a function defined
by x : I → Rn, where I ⊆ R is a compact interval.

• The function x is a solution of the DAEs (1.1a), if it satisfies (1.1a)
pointwise.

• The function x is a solution of the initial value problem (1.1), if x
is a solution of (1.1a) and in addition satisfies the initial condition
(1.1b).

• If there exists at least one solution to the initial value problem (1.1)
it is called solvable.

The difference between a system of implicit ordinary differential equa-
tions, ODEs, and DAEs is that for ODEs the Jacobian matrix ∂F

∂ẋ is
nonsingular. However, in the scope of integrated circuit simulation this
is generally not the case. If the Jacobian matrix ∂F

∂ẋ is singular, there are
some key aspects to keep in mind such as the choice of consistent initial
conditions x0 and the solvability of the initial value problem, as it consists
of a mix of differential and algebraic equations. Furthermore, the DAEs
arising in integrated circuit simulation are often encountered in the compact
form

q̇(x) + j(x) = 0, (1.2)

with q, j : Rn → Rn or even semi linear implicit form

Eẋ = j(x), (1.3)
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where E ∈ Rn×n and x ∈ Rn.

Due to the singularity of the Jacobian matrix, systems of DAEs are
more difficult to solve. As previously seen, the solution of the initial value
problem has to satisfy a number of algebraic equations in the DAE setting.
These algebraic constraints also apply at the initial time t0. Therefore,
the initial conditions also have to satisfy these constraints. Such initial
conditions are called consistent.

Definition 1.1.3 (Consistent initial conditions). The vector x0 ∈ Rm is
called a consistent initial condition of (1.1), if there exists a solution that
fulfils x(t0) = x0 and must satisfy the algebraic constraints and even the
differentiated hidden constraints of the system.

There are several different special classes of implicit DAEs. It is easy
to recognise these distinct subclasses and they often appear in applications.
These subclasses have a specific structure which makes them relatively
simple, compared to fully implicit DAEs which can be very complex. One
of these subclasses are semi-explicit DAEs.

Definition 1.1.4 (Semi-explicit DAEs). For a pair of vectors x ∈ Rnx and
z ∈ Rnz the semi-explicit DAEs has the form

ẋ = f(t, z, x), (1.4)

0 = g(t, z, x), (1.5)

with f : I × Rnz × Rnx → Rnx , g : I × Rnz × Rnx → Rnz , with nx, nz ∈ N
and I ⊆ R a compact interval.

The definition illustrates that semi-explicit DAEs can be considered
as a system of differential equations that is combined with some algebraic
equations. These algebraic equations, or algebraic constraints, define a
manifold to which the solution is constrained. Therefore, DAEs can be
interpreted as differential equations on manifolds. The good thing about
semi-explicit DAEs is that the variables can be neatly divided into differen-
tial variables and algebraic variables.

From the semi-explicit form it is clear that the initial conditions have to
satisfy the algebraic equations of the DAEs, as not every solution of (1.4)
satisfies (1.5). To obtain these initial conditions a steady state analysis can
be performed by solving

F (0, x0, t0) = 0. (1.6)
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for x0. Note however that in the nonlinear case the Jacobian matrix may
become numerically singular due to vanishing partial derivatives or in the
case of bifurcation. Then such a steady state analysis cannot be performed.
Finding these consistent initial conditions often requires the consideration
of the derivatives of the DAEs. To classify this dependency the highest
order of such a derivative that is necessary is called the differentiation-index.

Definition 1.1.5 (Differentiation-index). The differential index k of a
nonlinear, sufficiently smooth DAEs in general form (1.1), is the smallest k
for which the system:

F (t, x, ẋ) = 0,

d

dt
F (t, x, ẋ) = 0,

...

dk

dtk
F (t, x, ẋ) = 0,

uniquely determines the variable ẋ as a continuous function of x and t.

In general, if the index of a system of DAEs is greater than 1, then
there are additional algebraic constraints which are not explicitly given.
These hidden algebraic constraints can be derived by differentiation and
algebraic transformations of the DAEs. For DAEs with an index equal to
one, the stationary solution is a consistent solution.

It is obvious that a system of ODEs has differentiation-index 0. The
index can be seen as a measure of the degree of singularity in the system. In
general, the higher the index the more complex the problem and the more
difficulties we are likely to encounter in solving the DAEs by a numerical
method, as we shall see. In general, the differentiation-ndex is the most
important and most used definition of the index of a DAEs. Therefore,
through out the rest of the thesis index stands for differentiation-index.

Example 1.1.1. The simplest form of a nonlinear semi-explicit DAE s

ẋ = f(t, z, x),

0 = g(t, z, x),

is guaranteed to be of index-1 by the assumption that the Jacobian

∂g(t, z, x)

∂z
is nonsingular.
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The solution of this semi-explicit nonlinear system lies on the manifold
defined by the algebraic constraints coming from g. Differentiation of this
algebraic equation gives

0 =
∂g(t, z, x)

∂x
ẋ+

∂g(t, z, x)

∂z
ẏ +

∂g(t, z, x)

∂t
.

Now by using that the Jacobian ∂g(t,z,x)
∂z is nonsingular, the system can be

written as a regular ODEs that is solvable for ẋ and ẏ.

1.2 Problems in Implicit Form

Very often, differential-algebraic problems arising in practice are not at
once in the semi-explicit form. A system of DAEs in semi linear implicit
form

Eẏ = j(y), (1.7)

can be transformed into semi-explicit form. By decomposing matrix E into

E = S

(
I 0

0 0

)
T, (1.8)

with S, T invertible matrices and I the identity matrix with dimensions
equal to the rank of E. This decomposition can be achieved by using
Gaussian elimination with total pivoting. Then the variable y can be
transformed into variables x, z by

Ty =

(
x

z

)
. (1.9)

Thus we obtain a semi explicit system where the differential and algebraic
equations are defined by(

f(t, z, x)

g(t, z, x)

)
= S−1j(T−1

(
x

z

)
). (1.10)

Therefore, any results holding for DAEs in semi-explicit form also hold for
the semi linear implicit form. Initial values y0 are consistent if it holds that
j(y0) lies in the range of the matrix E.
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2
Integrated Circuit Simulation

Abstract
Computer-aided design plays an increasingly important role in
the development of integrated circuit. To verify the validity of
the integrated circuited designed with a computer, simulations
have a significant edge over prototyping. Here arises the need for
mathematical models to accurate simulate the natural phenom-
ena occurring inside the microchip. Charge-oriented modified
nodal analysis is used to construct the network equations used
in the simulation of the circuit. The characteristics of different
components and their electrical behaviour are discussed.

In integrated circuit design, there are a significant number of design
possibilities under which the internal components need to be guaranteed
to work. This leads to a whole range of explorations to ensure sound
functionality of the design. These explorations are performed by numerical
simulations of the circuits mathematical model. To this end it is necessary
to correctly describe the phenomena occurring inside a microchip with
mathematical models.

This chapter discusses the mathematical properties of different types of
network devices. We start by elaborating on the chosen network modelling
approach and detail how each components contributes to the system of
equations. The chapter ends with an overview of the different types of
circuit analysis that can be performed for a given integrated circuit.



Modified Nodal Analysis

2.1 Modified Nodal Analysis

In the field of circuit simulation, a network modelling approach is used
to derive mathematical models describing physical electrical circuits that
can be used in computer-aided design. These mathematical models, sets of
so-called network equations, are generated by the combination of network
topology and characteristic equations that describe the physical behaviour of
the network elements. One of these equation generating network approaches
commonly used in industry is the charge-oriented modified nodal analysis
(MNA), see [26], [3]. After a brief description of MNA, this section extends
the standard charge-oriented MNA to include nonlinear components such
as diodes and transistors. As these nonlinear network elements introduce
more complexity into the network equations extra consideration is required.

2.1.1 Charge-Oriented MNA

The charge-oriented MNA describes the time behaviour of the activity of a
circuit in physical quantities such as branch currents I(t) ∈ RnI , branch
voltages U(t) ∈ RnI and node voltages u(t) ∈ Rnu . More physical quantities
like electrical charge q(t) ∈ Rnq and magnetic fluxes φ(t) ∈ Rnφ can be
included in the set of variables, but more on this later. The derivative of a
quantity with respect to time is indicated by a ˙ on top of it.

The electrical circuit is considered to be a collection of interconnected
network elements and nodes. The real physical circuit elements such
as resistors, capacitors and especially semiconductor devices, modelled
by companion models, which idealise their behaviour. This is done by
associating each element with one or more characteristic equations. The
composition of these elements is governed by Kirchhoff’s voltage law (KVL)
and Kirchhoff’s current law (KCL).

Definition 2.1.1. Kirchhoff’s voltage law The directed sum of the poten-
tial differences, voltages, around any closed loop is zero.

n∑
k=1

vk = 0. (2.1)

Where n is the number of voltages in the closed loop. See Figure 2.1 right.

The KVL states that the algebraic sum of voltages along each loop of
the network must be equal to zero at every instant of time. This law is
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Figure 2.1: The current entering any junction is equal to the current
leaving that junction (left). The sum of all the voltages
around a loop is equal to zero (right).

used to define the relationship between branch voltages and node voltages

A> · u(t) = U(t), (2.2)

with an incidence matrix A ∈ {−1, 0, 1}nu×nI that describes the directed
graph that represents the network.

Definition 2.1.2. Kirchhoff’s current law The algebraic sum of currents
in a network of conductors meeting at a point is zero.

n∑
k=1

ik = 0. (2.3)

Where n is the number of branches with currents flowing towards or away
from the node. See Figure 2.1 left.

The KCL states that the algebraic sum of currents traversing each cutset
of the network must be equal to zero at every instant of time. Therefore,
the sum of currents leaving any circuit node is zero

A · I(t) = 0. (2.4)

By applying the KCL to the terminals of an element and integrating over
time, the KCL provides the charge neutrality requirement. This means
that the sum of charges qk over all terminals k of each element must be
constant. Subsequently the constant can be set to zero without loss of
generality.

With the purely topological relations defined, additional equations are
provided by the characteristic equations related to the physical behaviour
of each network element. The formulas used for the basic linear network
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elements shown in Figure 2.2, are given in Table 2.1. Interconnects and
semiconductor devices such as transistors are modelled by multi-terminal
elements, which will be discussed later sections for each relevant type.

R U

I

L U

I

C U

I

U

I

Figure 2.2: The five basic network elements: resistor, inductor, capac-
itor, voltage source and current source.

Element Linear General

Resistor I = 1
R · U I = R(U)

Inductor U = L · İ U = φ̇ with φ = φL(I)

Capacitor I = C · U̇ I = q̇ with q = qc(U)

Sources Independent Controlled

Voltage U = v(t) U = v(Uctrl, Ictrl, t)
Current I = i(t) I = i(Uctrl, Ictrl, t)

Table 2.1: Characteristic equations of the basic network elements.

To set up the MNA network equations, the KCL is applied to each
node, except the node that is considered the ground node. The incidence
matrix is then defined as a collection of incidence matrices related to each
different type of element,

A = {AR, AL, AC , AV , AI},

with AΩ ∈ {0,+1,−1}nu×nΩ , where nΩ is the cardinality the set of each
type of network element. Using these incidence matrices, we can relate
the branch voltages in a loop and the currents accumulating in a node by
applying KCL and KVL to each node, resulting in

AC q̇ +ARR(A>Ru, t) +ALL +AV V +AIi(t) = 0, (2.5a)

φ̇−A>Lu = 0, (2.5b)

v(t)−A>V u = 0, (2.5c)

q − qC(A>Cu) = 0, (2.5d)

φ− φL(L) = 0. (2.5e)
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The unknowns q, φ, u, L and V are the charges, fluxes, node voltages,
inductor currents and voltage source currents, respectively. All these
quantities are time dependent, and are combined into one state vector
x(t) ∈ Rm of unknowns. The dimension of which is given by the cumulative
dimensions of the quantities. The network equations can now be stated in
compact form

q̇(x(t)) + j(x(t)) +Br(t) = 0, (2.6)

where q and j are mappings from Rm to Rm related to the network elements,
while the source term vector r(t) ∈ Rn, n = nV +nI , combines the current-
and voltage-sources. These are mapped to the corresponding nodes and
branches by matrix B ∈ Rm×n.

Under the assumption that the underlying circuit only contains linear
capacitors and inductors, the charge/flux considerations can be simplified.
The network equations can then be written in the following matrix form

Eẋ(t) +Ax(t) + p(x(t)) +Br(t) = 0. (2.7)

with

E =

ACCA>C 0 0

0 L 0

0 0 0

 , A =

ARGA>R AL AV
−A>L 0 0

−A>V 0 0

 , B =

AI 0

0 0

0 InV

 .

Where the term j(x(t)) is split into a linear term Ax(t) and a nonlinear
term p(x(t)). The nonlinear term p(x(t)) is introduced to encapsulate
nonlinear behaviour of semiconductor devices. The matrices G, L and C
are diagonal matrices containing the individual conductances, inductances
and capacitances of the network elements and InV is a nV by nV identity
matrix.

In the case of circuit simulation there is a relation between the topology
of a circuit and the index of the DAEs describing the circuit. To define
this relation let us first introduce the following definitions.

Definition 2.1.3 (Loops and cutsets). Given a circuit let the following
structures be defined:

• A LI-cutset is a cutset consisting of inductors or both inductors and
current sources.

• A CV -loop is a loop consisting of both capacitors and voltage sources.

Now by using these definitions, the following statements can be made
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concerning the differential index of the DAEs describing the circuit that
do or do not contain these special structures.

• If a circuit contains neither CV -loops nor LI-cutsets, then the differ-
ential index of the DAEs describing this circuit is equal to 1.

• If a circuit contains either CV-loops, LI-cutsets or both CV- loops
and LI-cutsets, then the differential index is equal to 2.

An example RLC-circuit consisting solely of resistor, capacitor and
inductor network elements is shown in Figure 2.3. Notice that, as this
circuit does not contain nonlinear elements, it can be described by Equation
(2.7) with the nonlinear term set to p(x(t)) = 0. The network equations
are then given by

0 =



0 0 0 0 0 0

0 C1 −C1 0 0 0

0 −C1 C1 0 0 0

0 0 0 C2 0 0

0 0 0 0 1 0

0 0 0 0 0 0





u̇1

u̇2

u̇3

u̇4

˙IL
˙IV


+



1
R

− 1
R

0 0 0 1

− 1
R

1
R

0 0 0 0

0 0 0 0 1 0

0 0 0 1
R
−1 0

0 0 −1 1 0 0

−1 0 0 0 0 0





u1

u2

u3

u4

IL
IV


,

+



0

0

0

0

0

−V


.

V

R
C

L

C R

u1 u2 u3 u4

Figure 2.3: RLC circuit.

2.1.2 Extension of Basic MNA

Besides the linear network elements seen previously, there is also a need
to model nonlinear network elements. The behaviour of each of these
nonlinear elements is modelled by idealised companion models. For each
of the to be considered nonlinear components, the companion model is
discussed below.
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Figure 2.4: Transient analysis of the RLC circuit for time interval
[0, 40 ms].

Shockley Diode

The characteristic function for diode network elements is modelled by the
Shockley diode equation. This relates the current I of a p-n junction diode
to the voltage drop over the diode VD. This current is given by

I = IS

(
e
VD
nVT − 1

)
, (2.8)

where IS is the saturation current of the diode, which in most cases
has an order of magnitude of 10−12 A. The thermal voltage is given by
VT = kT/q ≈ 26 mV, for normal temperatures, and n is in this case the
diode ideality factor, which is set to 1 for silicon diodes. As Equation (2.8)
has a nonlinear dependency it is added to nonlinear vector term p(x(t)) on
the indices of the connected nodes. A>A>

To illustrate the equations arising from incorporating diodes into the
network elements consider the circuit shown in Figure 2.5. Applying MNA

V

D

C R

u1 u2

Figure 2.5: Nonlinear time dependent circuit with a diode.
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to this circuit results in a state vector x(t) = (u1, u2, IV )>, which is a
combination of the nodal voltages u1 and u2 and the current IV through
the voltage source V . The network equations are then given by

0 =

0 0 0

0 C 0

0 0 0


u̇1

u̇2

˙IV

+

 0 0 1

0 1
R 0

−1 0 0


u1

u2

IV

 ,

+

 IS(e
u1−u2
nVT − 1)

−IS(e
u1−u2
nVT − 1)

0

+

 0

0

−V

 .

Where C = 10−6 F, R = 103 Ω, IS = 10−12 A and under normal tempera-
tures with ideality factor n = 1. For a transient analysis of this circuit, the
system of DAEs is solved on time interval [040 ms] with initial conditions
u(0) = (0, 0, 0)>. The voltage source V supplies is modelled by a pulse
input of v = 5 · sin 40t. This yields the response depicted in Figure 2.6.
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Figure 2.6: Transient analysis of the diode circuit for the time interval
[0, 40 ms].

MOSFET

Another type of transistor is the metal-oxide-semiconductor field-effect
transistor (MOSFET), which is a type of insulated-gate field-effect transistor
(IGFET). Like the BJT transistor, a MOSFET can be either a p-type or an
n-type, see Figure 2.7. The characteristics of the operation of a MOSFET
depend on the voltages at each of the terminals, if the MOSFET is in
enhancement or depletion mode and the type of MOSFET, [43], [9]. In
the following discussion, the MOSFETS are considered to be enhancement-
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G

D

S

G

D

S

Figure 2.7: The n-type and p-type MOSFET symbols respectively,
with the terminals: gate (G), drain (D) and source (S).

mode, n-type MOSFET. Then there are three distinct operational modes,
depending on the terminal voltages.

• Weak-inversion mode - In this mode it holds that VGS < VT , thus
the voltage between G and S is less than a threshold voltage VT .
In a very idealised model, the transistor is turned off and there is
no conduction between D and S, thus ID = 0. However, in the
weak-inversion case, there is a current that is exponentially defined
by the voltage VGS and is approximated by

ID ≈ ID0e
VGS−VT

VT . (2.9)

With ID0 the current at VGS = VT , and the thermal voltage VT =

kT/q defined by the temperature, Boltzmann constant and the specific
resistance.

• Triode mode - When VGS ≥ VT but VDS < VGS − VT then the
MOSFET is in triode mode. The transistor is switched on and
operates like a resistor, which is controlled by the gate voltage. The
current from the drain to the source is then modelled by

ID = 2K

[
(VGS − VT ) ∗ VDS −

V 2
DS

2

]
(1 + λVDS). (2.10)

Here K = µC
2
W
L , where µ is the carrier mobility, C is the capacitance

per unit area of gate and W and L the width and length of the
gate respectively. The parameter λ is the channel-length modulation
parameter. To simplify circuit analysis this can be set to 0, but may
yield unrealistic results.

• Saturation mode - When VGS ≥ VT and VDS ≥ VGS − VT then the
MOSFET is saturated, or in active mode. The switch has been turned
on, and a channel has been created. The current is now only weakly
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dependent upon the drain voltage and is modelled by

ID = K[VGS − VT ]2[1 + λ(VDS − VGS − VT )]. (2.11)

A very common usage of MOSFETs is to invert a signal. To illustrate
the behaviour consider the circuit of which the schematic is given in Figure
2.8, and the correponding network equations in Equation (2.12).

Vin

u1 u2

C

VDD

Figure 2.8: A simple inverter circuit with n-type and p-type MOS-
FETs.

0 =


0 0 0 0 0

0 C 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




u̇1

u̇2

˙uVdd

˙IVin

˙IVdd

+


0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

−1 0 0 0 0

0 0 −1 0 0




u1

u2

uVdd

IVin

IVdd

 ,

+


0

fMOSFET,n(u1, u2, 0)− fMOSFET,p(u1, u2, uVdd
)

fMOSFET,p(u1, u2, uVdd
)

0

0

 ,

+


0

0

0

−Vin

−VDD

 . (2.12)

− 24 −



INTEGRATED CIRCUIT SIMULATION

0 5 10 15 20 25 30 35 40

Time in ms

-6

-4

-2

0

2

4

6

N
o
d
al

 v
o
lt

ag
es

 i
n
 V

 a
n
d
 c

u
rr

en
ts

 i
n
 A

u
1

u
2

u
V

dd

I
V

in

I
V

dd

Figure 2.9: Transient analysis of the inverter circuit for time interval
[0, 40 ms].

Where fMOSFET,{n,p} gives the drain to source current according to the
state of the MOSFET, dependent on the voltages of terminals.

2.2 Transient Analysis

The mathematical model of the electrical circuit derived by the MNA can
be used to analyse the circuit. There are several different types of circuit
analysis each with their own merit and applications. If one is interested in
the behaviour of the full circuit on a time interval [0, T ] one uses the so called
transient analysis. For the transient analysis, the mathematical model of
(2.6) is extended with an initial condition, x(0) = x0, and transformed into
an initial value problem (IVP){

q̇(x(t)) + j(x(t)) +Br(t) = 0,

x(0) = x0.
(2.13)

The initial condition x0 is usually known, or can be obtained by a DC
analysis or integrating the system with very small time steps starting from
x0 = 0. If one increases the voltage supplies to their values for the initial
time one obtains the steady state solution at time t0.

As the underlying mathematical model consists of DAEs this initial
condition is of the utmost importance as DAEs need consistent initial
conditions and not all initial states satisfy this constraint. The solution x(t)
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of this IVP gives the time evolution of each of the states of the dynamical
system as can be seen in the Figures of the previous section. These IVPs
can be solved by applying a variety of Runge Kutta or linear multistep
methods. This thesis focuses solely on the transient analysis of circuits and
their time integration.





3
Model Order Reduction

Abstract
Model order reduction has been a long standing method in
industry for reducing numerical complexity, [1] [41]. However,
most of these techniques only cater to linear time invariant
models, circumventing nonlinear model order reduction. In
this chapter a tried and tested nonlinear model order reduction
technique is described as a frame of reference for a novel ap-
proach. The maximum entropy snapshot sampling method as
developed by Kasolis, [31], is discussed and a novel parameter
estimation approach is presented. The chapter concludes with
a comparison between the two nonlinear model order reduction
methods.

Introduction

In the previous chapter we have seen the automated approach of con-
struction of a mathematical model describing the equations needed for
integrated circuit simulation. As stated this automated approach gives
rise to a sub-optimal numerical model in terms of differential-algebraic
equations, which are inherently more difficult to solve. A key aspect in this
modelling approach is the fact that these models may contain redundant
equations. It is possible to reduce a redundant continuous DAE model
directly by applying techniques such as model order reduction (MOR) and
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multirate integration schemes.
In this chapter we focus on removing redundancy of the continuous

models by applying MOR techniques. Since there are a vast amount of
different approaches to use MOR this chapter covers only a subset of
these techniques. The main scope of this thesis is related to nonlinear
MOR techniques and as such these will be the main topic of this Chapter.
Especially techniques which use reduction by Galerkin projection.

We cover the traditional nonlinear MOR technique, the proper orthogo-
nal decomposition (POD) method, [51], [13], [18], [19], and a novel MOR
technique, the maximum entropy snapshot sampling (MESS) method, [31].
This chapter also introduces a novel method for the estimation of the
reduction parameter ε used in the maximum entropy snapshot sampling
method. Based on the approach presented by Takens in [44], the method
is applied to a circuit test case. The results of this method have been
published in [8].

Besides redundancy reduction our nonlinear MOR approach also incor-
porates hyper-reduction techniques. This is done to even further reduce
the costs of the nonlinear function evaluations that are the computational
bottleneck of nonlinear MOR. The hyper-reduction techniques covered in
this Chapter are the Discrete Empirical Interpolation Method (DEIM),
with and without the a QR extension (Q-DEIM) [18], and gappy Proper
Orthogonal Decomposition, [53], [22], [55]. Both of them are used in the
Galerkin projection MOR settings.

First the POD and MESS methods are defined in a general ODE setting
since they are not suitable for direct application to DAEs. Then, by using
the Gauss-Newton with approximated tensors (GNAT) method a significant
reduction achieved for the more complex DAE setting.

3.1 Reduction by Galerkin Projection

In the scope of integrated circuit simulation, one has to regularly deal with
large-scale ODE systems, they arise for instance in the semidiscretisation
of parameter dependent partial differential equations (PDEs). Consider
the finite difference discretisation of a nonlinear PDE with one spatial
dimension, which is given by the following system of nonlinear ODEs

ẋ(t) = Ax(t) + p(x(t)), (3.1)
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with initial conditions given by x(t0) = x0. The time parameter t ∈ I and
we have that x : I → Rm with x(t) = [x1(t), ..., xm(t)]>, componentwise
nonlinear function p : Rm → Rm. Define p(x(t)) as a general nonlinear
function, i.e. the array function p : Rm → Rm is defined componentwise by

[p(x(t))]i = pi(x(t)). (3.2)

with pi : Rm → R.
The dimension m can become extremely large in the case of finite

difference discretisation and could thus lead to computationally intensive or
even infeasible systems. Therefore, approximate models with a dimension
r, where r � m, are needed to maintain computational efficiency.

To this end projection based MOR techniques are commonly used in
the nonlinear case to generate a reduced order system. The original system
is approximated from a subspace spanned by a reduced basis in that has
the reduced dimension r. A Galerkin projection is used to obtain this
system with a reduced dimension.

Consider a reduced basis Vr ∈ Rm×r which is a matrix with orthonormal
columns. For now the reduced basis is assumed but in the next sections we
elaborate on the construction of such a reduced basis. Replace the state
vector x(t) by a reduced state vector x̃(t) ∈ Rr with x(t) ≈ Vrx̃(t). Then,
by plugging this projection into (3.1), we obtain the reduced system

˙̃x(t) = V >r AVr︸ ︷︷ ︸
Ã

x̃(t) + V >r p(Vrx̃(t)). (3.3)

Where we have that Ã = V >r AVr ∈ Rr×r. Now there are several choices of
the reduced basis and these directly influence the accuracy of the approxi-
mation. First we consider an industry standard, the POD method.

3.1.1 Proper Orthogonal Decomposition

For the POD method it is assumed that for the system which we want to
reduce it holds that the solution space is attracted to a low-dimensional
manifold. Therefore, the POD method uses a set of basis functions obtained
from a singular value decomposition (SVD) of a snapshot matrix. This
snapshot matrix is a discrete sample of trajectories associated with a
specific set of initial conditions and parameters on the time interval. When
a reduced model is constructed based upon a reduced basis obtained from
this sample, it will approximate the solutions of the full order model for a
variety of initial conditions and parameters that are sufficiently close to
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those of the sample. The POD method is optimal in least-squares sense
and thus the space spanned by the POD obtained basis minimises the
approximation error.

Let m and n be positive integers and m � n > 1. We define a
finite sequence {x1, x2, ..., xn} of system states xj ∈ Rm at time instances
tj ∈ R, with j ∈ {1, 2, ..., n}, of a dynamical system which we want to
reduce. Then a POD basis of dimension r is a set of orthonormal vectors
{φ}ri=1 ∈ Rm for whist the linear span optimally approximates the space
X = span(x1, ..., xn). The basis set {φ}ri=1 thus solves the minimisation
problem

min
{φ}ri=1

n∑
j=1

∥∥∥∥∥xj −
r∑
i=1

(x>j φi)φi

∥∥∥∥∥
2

2

, (3.4)

where

φ>i φj = δij =

{
1 if i = j,

0 if i 6= j,
i, j = 1, ..., r. (3.5)

The solution to this minimisation problem is given by the set of left singular
vectors of the snapshot matrix X = [x1, x2, ..., xn] ∈ Rm×n. These vectors
are obtained by performing a SVD on the snapshot matrix X.

X = V ΣW>, (3.6)

where V = [v1, v2, ..., vk] ∈ Rm×k andW = [w1, w2, ..., wk] ∈ Rn×k and Σ =

diag(σ1, σ2, ..., σk) ∈ Rk×k, with k = min(m,n) and σ1 ≥ σ2 ≥ ... ≥ σk are
the singular values. Now the POD basis {v}ri=1 is the optimal solution to
(3.4). The minimum Euclidean error induced by the approximation o the
snapshots using this basis is then given by

n∑
j=1

∥∥∥∥∥xj −
r∑
i=1

(x>j vi)vi

∥∥∥∥∥
2

2

=

k∑
i=r+1

σ2
i . (3.7)

3.1.2 Maximum Entropy Snapshot Sampling

Besides the previously seen POD method for construction a reduced basis
there are plenty of other possible methods to achieve this. One of these
methods is the maximum entropy snapshot sampling method. First in-
troduced by Kasolis and Clemens in [31], which is the key reference for
this section. The MESS method uses a very different approach to achieve
reduced basis construction compared to the traditional POD method.

The POD method uses the SVD which is an established data analysis
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factorisation, however it is also inherently linear and optimal in the least-
squares sense. This makes the SVD especially robust for the analysis
of samples that are obtained from linear problems. As the scope of this
thesis is aimed at nonlinear model order reduction, this poses an inefficiency.
When the SVD is used for the construction of a reduced basis for a nonlinear
problem it removes high-frequency components that are very relevant to
the evolution of the nonlinear dynamical system.

Instead of using the SVD to construct a basis, the MESS method is based
on the asymptotic properties of measure-preserving transformations. A
reduced basis for a nonlinear dynamical system is then obtained by a method
based on a variant of the so-called Grassberger-Prociaccia correlation
sum, on recurrence quantification analysis, and on an estimate of the
invariant Kolmogorov-Sinai entropy. In short, the reduction is achieved
by constraining the entropy estimate to be a strictly increasing function
related to the time index and then applying any orthonormalization process
on the reduced sample of snapshots.

The following considerations are taken from [8], page 1 in combination
with [31]. Let m and n be positive integers such that m� n > 1. Define a
finite sequence

X = (x1, x2, ..., xn), (3.8)

of numerically obtained states xj ∈ Rm at time instances tj ∈ R, with
j ∈ {1, 2, ..., n}, of a dynamical system governed by either ODEs or DAEs.
Provided a probability distribution p of the states of the system, the
second-order Rényi entropy of the sample X is

H(2)
p (X) = − log

n∑
j=1

p(xj)
2 = − logE(p(X)), (3.9)

with E(p(X)) the expected value of the probability distribution p with
respect to p itself. When n is large enough, according to the law of
large numbers, the average of p1, p2, ..., pn almost surely converges to their
expected value,

1

n

n∑
j=1

p(xj)→ E(p(X)) as n→∞, (3.10)

thus each p(xj) can be approximated by the sample’s average sojourn time
or relative frequency of occurrence. To obtain this frequency of occurrence,
consider a norm ‖·‖ on Rm. Then the notion of occurrence can be translated

− 32 −



MODEL ORDER REDUCTION

into a proximity condition. In particular, for each xj ∈ Rm define the open
ball that is centred at xj and whose radius is ε > 0,

Bε(x) = {y ∈ Rm | ‖x− y‖ < ε}, (3.11)

and introduce the characteristic function with values

χi(x) =

{
1, if x ∈ Bε(xi),
0, if x /∈ Bε(xi).

(3.12)

Under the aforementioned considerations, the entropy ofX can be estimated
by

Ĥ(2)
p (X) = − log

(
1

n2

n∑
i=1

n∑
j=1

χi(xj)

)
. (3.13)

Now for the MESS method we want a reduced sequence

Xr = (x̄j1 , x̄j2 , . . . , x̄jr), (3.14)

with r ≤ n, that is sampled from X, by requiring that the entropy of Xr is
a strictly increasing function of the index k ∈ {1, 2, . . . , r}, [32]. To obtain
this reduced sequence, provided that the limit of the evolution of Ĥ(2)

p

exists, for n large enough, and measures the sensitivity of the evolution
of the system itself [14, §6.6], first the notion of the recurrence matrix is
needed. A symmetric matrix Rε ∈ {0, 1}n×n whose entries are obtained by
χi(xi) is commonly referred to as the recurrence matrix associated with
sample X. It is a matrix which indicates whether the pairwise distance
between the columns of X are below a certain threshold ε. Using this
notion the entropy estimation of (3.13) can be rewritten as

ηε(X) = − log

(
1

n2
‖Rε‖2F

)
, (3.15)

with the so-called information potential vε(X) defined as

vε(X) =
1

n2
‖Rε‖2F 6= 0, (3.16)

also know to be the recurrence rate. Here ‖·‖F denotes the Frobenius norm.
These quantities are the key components of the MESS method and can be
defined more clearly related to the snapshot matrix X.

Definition 3.1.1 (ε-Frobenius entropy, ε-Frobenius potential, ε-dynamical
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entropy). Let m and n be positive integers such that m � n > 1, and
given a snapshot matrix X ∈ Rm×n. Let ε > 0 and consider the associated
recurrence matrix Rε ∈ {0, 1}n×n. Then for each index j with j ∈ [1, ..., n]

we have the following definitions.

• The ε-Frobenius entropy ηj of X(:, 1 : j) is given by

ηj = ηε(X(:, 1 : j)) = − log

(
1

j2
‖Rε(1 : j, 1 : j)‖2F

)
(3.17)

• The ε-Frobenius potential vj of X(:, 1 : j) is given by

vj = vε(X(:, 1 : j)) =
1

j2
‖Rε(1 : j, 1 : j)‖2F . (3.18)

• The ε-dynamical entropy hj of X for a given time iteration j is given
by

hj = ηj+1 − ηj = − log

(
vj+1

vj

)
. (3.19)

The quantity hj can be interpreted to be the information that has been
delivered by the iterate xj+1, relative to the information that has been
delivered by each of the previous information deliveries.

For the MESS method the information gain per iteration step hj should
be greater than zero, this means that the ε-Frobenius entropy is a strictly
increasing function dependent on j. Through this monotonicity requirement
we can state that the ε-Frobenius potential is thus a strictly decreasing
function with respect to j. By definition, the ε-Frobenius potential vj are
instanteneus fractions of all pairs of snapshots that are within ε distance.
As every snapshot xj is within its own ball Bε(xj) and at most in every
other ε ball around each snapshot it is clear that

j ≤ ‖Rε(1 : j, 1 : j)‖2F ≤ j
2 ⇐⇒ 1/j ≤ vj ≤ 1. (3.20)

The monotonicity of the ε-Frobenius entropy can be linked to the structure
of the recurrencxe matrix by using Theorem 3.2 from [31]. This theorem
implies that only the snapshots of X whose ε-Frobenius entropy is an
increasing function of the snapshot index need to be sampled to generate
a reduced basis for the range of X. The MESS procedure is outlined in
Algorithm 1. It has been shown [31] that, depending on the recurrence
properties of a system, any such basis guarantees that the Euclidean
reconstruction error of each snapshot is bounded from above by ε, while a
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similar bound holds true for future snapshots, up to a specific time-horizon.

Algorithm 1: Maximum Entropy Snapshot Sampling
input : Snapshot matrix X ∈ Rm×n, tolerance ε.
output :Reduced basis V ∈ Rm×r.

1 Pi,j ← ‖xi − xj‖, ∀i, j ∈ {1, ..., n};
2 P ← P/max(P );
3 R← P < ε;
4 idx← [1, 0, . . . , 0] ∈ {0, 1}1×n;
5 k ← 1;
6 c← 1;
7 for j− = 1, 2, . . . , n− 1 do
8 dj = 2

∑j
k=1R(j + 1, k) + 1;

9 if d− (2k + 1)c < 0 then
10 idxj+1 ← 1;
11 c← (k2c+ d)/((k + 1)2);
12 k ← k + 1;
13 end
14 end
15 [V,−]← qr(X(:, idx);

The Estimation of ε

The open ball parameter ε, which is directly responsible for the degree of
reduction within the MESS framework, can be chosen arbitrarily, much like
the number of selected basis vectors provided by a POD approach. For a
ballpark estimate of this parameter the following optimisation approach is
provided [44]. The following approach and algorithms were first presented
in [5], Section 3.1. The quantity within the logarithm in the entropy
estimate (3.13) is often referred to as the sample’s correlation sum and can
be written as

Cε =
1

n2
‖Rε‖2F, (3.21)

with Rε ∈ {0, 1}n×n being the recurrence matrix and ‖ · ‖2F being the
Frobenius norm. In terms of probability theory, Cε is a cumulative dis-
tribution function of ε, and hence, its derivative dCε/dε is the associated
probability density function of ε. A commonly justified hypothesis is that
the correlation sum scales as εD [46, Chapter 1], with D ≥ 0 being the
so-called correlation dimension of the manifold that is formed in Rm by the
terms of X. Under this power law assumption, the maximum likelihood
estimate [48, Chapter 8] of the correlation dimension is estimated as follows.
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We find a sample {εi}, with εi ∈ [0, 1] for all i ∈ {1, 2, . . . , q}, of a random
variable E that is sampled according to Cε. Then, the probability of finding
a sample in (εi, εi + dεi) in a trial is

q∏
i=1

DεD−1dεi. (3.22)

To calculate the ε value for which this expression is maximized, we take
the logarithm

q · lnD + (D − 1)

q∑
i=1

ln εi, (3.23)

and note that the maximum of this expression is attained when

q

D
+

q∑
i=1

ln εi = 0. (3.24)

This results in the most likely value D∗ = −1/〈lnE〉. The value for ε∗ is
then estimated by choosing the ε from the sample that produces a quotient
that is closest to D∗. Thus ε can be estimated by

ε∗ = argmin(|D∗ − lnCε/ ln ε|). (3.25)

The algorithm to calculate this most likely value for a given snapshot matrix
X is described in Algorithm 2.

Algorithm 2: Epsilon estimation for a given snapshot matrix X
input : Snapshot matrix X ∈ Rm×n.
output :Estimated tolerance value ε∗.

1 Pi,j ← ‖xi − xj‖, ∀i, j ∈ {1, ..., n};
2 P ← P/max(P );
3 {εicdf} ← LinearSpace(0, 1, nε);
4 for i = 1, ..., nε do

5 C(εicdf)←
1
n2
ε

∥∥∥Rεicdf

∥∥∥2

F
, Equation(3.21);

6 end
7 {εi}qi=0 ← RandomFromCDF (q, {εjcdf}, {C(εjcdf)), for j = 1, ..., nε;
8 D∗ ← − 1

〈ln εi〉 ;

9 ε∗ ← εicdf , for which i = argminj(|D∗ − lnC
εjcdf

/ ln εjcdf |);
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3.1.3 POD Compared With MESS

To verify the previously stated claims that the MESS method would perform
better than the POD method a case study is performed. Both the MESS
and POD methods are applied to a diode chain and are benchmarked for
comparison.

As an instance of an integrated circuit, consider the diode chain model
that is depicted in Fig. 5.1 and described by the differential-algebraic
system [50]

Φ1 − Φin(t) = 0,

I(Φi−1,Φi)− I(Φi,Φi+1)− Φi

R
− C dΦi

dt
= 0,

I(Φm−2,Φm−1)− Φm−1

R
− C dΦm−1

dt
= 0,

iE − I(Φ1,Φ2) = 0,

(3.26)

where i ∈ {2, 3, . . . ,m − 2} with integer m > 3, Φi is the voltage at the
i-th node of the circuit and is measured in V, while the time is measured
in ns. The current-voltage diode characteristic function I : R× R→ R is
defined by

I(x, y) = Is

[
eα·(x−y) − 1

]
, (3.27)

where IS = 10−14 A is the saturation current and α is the inverse of
the thermal voltage ΦT = 0.0256 V. Additional model parameters are
mentioned in Fig. 5.1. Further, the excitation voltage is

Φin =


20, if t ≤ 10,

170− 15t, if 10 < t ≤ 11, (in V)

5, if t > 11.

(3.28)

To simulate a transient analysis of the diode chain model depicted
in Fig. 5.1, system (3.26) is integrated numerically. For large m such
simulations become prohibitively expensive in terms of computational time.
Here, to recover computational feasibility, reduced basis model reduction
techniques are exploited.

The MESS method is applied to the nonlinear diode chain model, with
m = 40002. The transient analysis is performed in the interval [0, 70] ns,
using an implicit Euler scheme with time step ∆t = 0.1 ns. Consistent
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Figure 3.1: The diode chain with R = 104 Ω and C = 10−12 F.
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Figure 3.2: The output of the transient analysis for all nodes.

initial conditions are obtained through a direct current simulation using
very small time steps and using a linear increasing input voltage from
Φin = 0 to Φin = 20. The reduced bases are generated from the high-fidelity
matrix X ∈ Rm×n, with n = 701, see Fig 3.2.

To benchmark the presented MESS based reduction, a comparison with
the POD method is made. The number of POD modes is taken to be equal
to the number of MESS-obtained basis vectors. In the Newton iterations,
least squares approximations of the Jacobian matrix are employed.

Here, the estimated ε∗ value is equal to 0.00525. However, in an attempt
to maximally reduce the studied system, ε is manually selected close to a
value that turns out to yield a numerically unstable reduced model. In Fig.
3.3, the case of the MESS reduced system for ε = 0.0325 is depicted. There,
it is shown that the solution to the MESS reduced system converges to the
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Figure 3.3: The difference E(t) = ‖ΦHF−Φ‖/‖ΦHF‖ for the parameter
value ε = 0.0325. The subscript HF stands for “high-
fidelity”.

reference solution. To illustrate that some caution is needed if ε is selected
manually, in Fig. 3.4, a slightly higher ε value is chosen, when the resulting
reduced model becomes unstable. In Table 3.1, the computational times
that are required for generating the bases suggest that the MESS has an
advantage in the offline stage. Further, for large-scale problems, the SVD
becomes infeasible due to memory constraints, whereas this is not the case
for MESS, since it relies on recursive evaluations.

ε = 0.0325 ε = 0.0425

Basis generation m Basis generation m

High-fidelity 40002 40002

POD 1.5400 s 31 1.3397 s 25

MESS 0.1733 s 31 0.1577 s 25

Table 3.1: Timing MESS vs POD (time in seconds).
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Figure 3.4: The difference E(t) = ‖ΦHF−Φ‖/‖ΦHF‖ for the parameter
value ε = 0.0425.

3.2 Hyper-Reduction

There are however complications when the POD is used in conjunction
with a straightforward Galerkin projection, which reduces the effectiveness
of the dimension reduction. This is especially the case when one considers
dynamical systems that have general nonlinearities. Therefore additional
efforts are required for adequate reductions.

Consider for instance the following nonlinear equation

Ñ(x̃) := V >r︸︷︷︸
r×m

p(Vrx̃(t))︸ ︷︷ ︸
m×1

. (3.29)

The computational complexity of the evaluation of Ñ(x̃) depends on the full
order non-reduced dimension m. To evaluate this function 2mr flops are
needed for the matrix-vector multiplications, and further more, it requires
the full evaluation of the nonlinear m dimensional vector function p. Due
to this bottleneck, the complexity for solving the reduced system might be
just as costly as solving the original system. Moreover, the same type of
inefficiency is also present in the numerical computation of the Jacobian
for each Newton iteration of the reduced-order system.

To overcome this computational bottleneck two well-established hyper-
reduction methods are presented. Although they share the same type of
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approximation space, they are distinct in their selection criterion. The
first method that we present is the discrete empirical interpolation method
(DEIM), which is extended to Q-DEIM, which utilises a new selection
operator compared to regular DEIM. This method enforces the reduced
approximation to be interpolated from a specified number of sampling
points of the original nonlinear function which are selected by a greedy
sampling strategy.

The second approach is known as gappy-POD, [53] [22]. Instead of
interpolation it utilises a least-squares approach to determine the reduced
approximation from a number of greedy selected sampling points. However,
this least-squares approach allows for significantly more flexibility in the
selection of these points.

3.2.1 Discrete Empirical Interpolation Method

The DEIM approach approximates a nonlinear function by projection it
onto a subspace which approximates the space generated by the nonlinear
function and is spanned by a basis of dimension g � m. Let f(τ) represent
the previously seen nonlinear function p(Vrx̃(t)), where τ = t. By using a
projection approximation from f(τ) onto a subspace spanned by a basis
{u1, ..., ug} ∈ Rm we have that

f(τ) ≈ Uc(τ), (3.30)

where we have the basis U = [u1, ..., ug] ∈ Rm×g and c(τ) the correspond-
ing coefficient vector. Determining the coefficient vector c(τ) is done by
selecting g distinct rows from the overdetermined system f(τ) = Uc(τ).
This is achieved by creating a selection matrix

S = [eSi , ..., eSg ] ∈ Rm×g, (3.31)

where eSi = [0, ..., 0, 1, 0, ..., 0]> is the Sith column of identity matrix
Im ∈ Rm×m, with i = 1, ..., g. Then if S>U is nonsingular, the coefficient
vector c(τ) can be uniquely determined by solving

S>f(τ) = (S>U)c(τ), (3.32)

and the projection approximation becomes

f(τ) ≈ Uc(τ) = U(S>U)−1S>f(τ). (3.33)
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Evidently both a projection basis U and the interpolation indices
{S1, ...,Sg} are needed for this approximation. The basis can be created
by applying the POD or MESS method on the nonlinear function f , using
nonlinear snapshots obtained from the original fully dimensional system.
For the construction of selection matrix S there is a more effective method
than classical DEIM, namely Q-DEIM, which computes S independent of
a particular orthonormal basis U and enjoys a better upper bound for the
condition number than classical DEIM.

As Q-DEIM outperforms classical DEIM in almost every sense, the
classical DEIM algorithm is omitted in this thesis and only the Q-DEIM
pseudocode according to [21] is presented in Algortihm 3.

Algorithm 3: QDEIM
input : Snapshot matrix X ∈ Rm×n, tolerance ε.
output :Matrix M .

1 [U, S, V ]← SV D(X, ε);
2 [m, r]← size(U);
3 [Q,R, P ]← qr(U, thin), such that UP = QR;
4 S ← P (1 : m);
5 M ← [eye(m); (R(:, 1 : m)\R(:,m+ 1 : n))′] ;
6 Pinverse(P )← 1 : n;
7 M ←M(Pinverse, :);

3.2.2 Gappy Reconstruction

The second hyper-reduction approach is originally known as gappy-POD,
[22,53]. However, as the POD part in the name only refers to the procedure
of the reduced basis construction and not the vector reconstruction, the
POD procedure can be interchanged with the MESS procedure. Like the
gappy POD approach gappy-MESS uses a reduced basis to reconstruct
gappy data. However, unlike the gappy-POD approach the basis used is
now not obtained through POD but by MESS. Gappy-MESS starts by
defining a mask vector n for a solution state u as

nj = 0 if uj is missing,

nj = 1 if uj is known,

where j denotes the j-th element of each vector. The mask vector n is
applied point-wise to a vector by (n, u)j = njuj . This sets all the un-
observed values to 0. Then, the gappy inner product can be defined as
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(x, y)n = ((n, x), (n, y)), which is the inner product of the each vector
masked respectively. The induced norm is then (‖x‖n)2 = (x, x)n. Con-
sidering the reduction basis obtained by MESS Vgap = {vi}ri=1, now we
can construct an intermediate “repaired" full size vector g̃ from a reduced
vector g with only r elements by

g̃ ≈
r∑
i=1

biv
i, (3.34)

where the coefficients bi need to minimise an error E between the original
and repaired vector, which is defined as

E = ‖g − g̃‖2n , (3.35)

using the gappy norm so that only the original existing data elements in g
are compared. This minimisation is done by solving the linear system

Mb = f, (3.36)

where
Mij = (vi, vj)n, and fi = (g, vi)n. (3.37)

From this solution g̃ is constructed. Then the complete vector is recon-
structed by mapping the reduced vectors elements to their original indices
and filling the rest with the reconstructed values.

3.2.3 Hyper-Reduction Comparison

To illustrate the difference between the QDEIM and Gappy reconstruction
approaches a numerical experiment is performed. Analogous to the case
study in Subsection 3.1.3 consider the diode chain model.

Now the reduced system is integrated using backward Euler integration
scheme utilising first the QDEIM hyper-reduction and another time using
the Gappy reconstruction

From Figure 3.5 we see that there is indeed a difference between the two
methods. However, it is also almost negligible as it is a relative difference
of order 10−11. As the gappy-MESS approach has a stability advantage
over the QDEIM hyper-reduction approach, this will be used in subsequent
numerical experiments.

− 43 −



DAE Reduction

Algorithm 4: Gappy reconstruction
input : Snapshot matrix X ∈ Rm×n, tolerance ε.
output :Matrix M .

1 U ←MESS(X, ε);
2 [Q,R, P ]← qr(U, thin), such that UP = QR;
3 S ← P (1 : m);
4 for j = 1, ...,m do
5 if j ∈ S then
6 nmask

j = 1;
7 else
8 nmask

j = 0;
9 end

10 end
11 for i = 1, ...,m do
12 for j = 1, ...,m do
13 Mi,j = (U:,i, U:,j)nmask ;
14 end
15 end

3.3 DAE Reduction

Direct application of a Galerkin projection to reduce DAEs does not work
well in practice, [33], [16]. Applying the Galerkin projection scheme directly
may yield unsolvable reduced order models. The reduced Jacobian Jr may
be singular, though the original Jacobian J is regular. To circumvent this
problem, the Galerkin projection is applied in the numerical scheme, as
opposed to the whole system of equations.

Therefore a simplified Gauß-Newton with approximated tensors (GNAT),
equipped with a function-sampling-hyper-reduction scheme is used, [17], [16].
Firstly, a direct Galerkin projection may yield an unsolvable reduced system
for DAEs. Secondly, the computational effort required to solve this reduced
system and the full system is about the same in the nonlinear cases. This
is due to the fact that the evaluation costs of the reduced system are not
reduced at all because the projection basis will be a dense matrix in general.

3.3.1 Gauß-Newton with Approximated Tensors

Considering a general DAE in the form

φ̇(t, u) + ψ(t, u) = 0, (3.38)
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Figure 3.5: The relative difference between the numerical approxi-
mation using QDEIM hyper-reduction and gappy-MESS
hyper-reduction.

where φ and ψ are functions of time t and some state vector u. In the
discrete case, we assume that the numerical scheme exactly solves the
following nonlinear system for each time step ti,

R(u) = 0, (3.39)

where u ∈ RN , u0 the initial condition and the residual R : RN → RN .
Note that for ease of notation, the relevant time subscripts have been
omitted, as this equation is solved for each individual time step. For the
reduction of the dimension of Equation (3.39), a projection is used to
search the approximated solution in the incremental affine trial subspace
u0 + V ⊂ RN . Thus ũ is given by

ũ = u0 + Vuur, (3.40)

where Vu ∈ RN×nu is the nu-dimensional projection basis for V, and ur
denotes the reduced incremental vector of the state vector. Now deviating
from the direct Galerkin projection process, Equation (3.40) is substituted
into Equation (3.39). This results in an overdetermined system of N
equations and nu unknowns. Because Vu is a matrix with full column rank,
it is possible to solve this system by a minimisation in least-squares sense
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through
minũ∈u0+V ‖R(ũ)‖2 . (3.41)

This nonlinear least-squares problem is solved by the Gauß-Newton method,
leading to the iterative process for k = 1, ...,K, solving

sk = argmina∈Rnu

∥∥∥JkVua+Rk
∥∥∥

2
, (3.42)

and updating the search value wkr with

wk+1
r = wkr + sk, (3.43)

where K is defined through a convergence criterion, initial guess w0
r ,

Rk ≡ R(u0 + Vuw
k
r ) and Jk ≡ ∂R

∂u (u0, Vuu
k
r ). Here Jk is the full order

Jacobian of the residual at each iteration step k. Since the computation
of this Jacobian scales with the original full dimension of Equation (3.39)
this is a computational bottleneck. This bottleneck can be circumvented
by the application of the previously discussed hyper-reduction methods.
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Methods

Abstract
Multirate time integration exploits differences in the charac-
teristic time-scales of the subsystems that comprise the whole
integrated circuit model. When combining model order reduc-
tion techniques with multirate, it is important to consider which
type of coupled subsystems are obtained after partitioning. This
chapter provides a detailed discussion of both DAE-ODE and
DAE-DAE coupled systems and the construction of reduced
order multirate schemes for each case. Lastly, a numerical
analysis is performed resulting in convergence results for the
reduced order multirate schemes.

Introduction

From a mathematical point of view the core of every simulation software
packages used in integrated circuit design is the definition of the numerical
integration of the network equations. As there are a multitude of different
approaches to this problem each choice of integration scheme carries its
own advantages and disadvantages.

Especially in the scope of this thesis the concept of different integration



Index-1 Problems

schemes is something that deserves careful considerations. As reduced
order multirate schemes are the central theme, the numerical mathematics
behind the integration schemes are one of the two key concepts.

In this chapter we start by considering how to numerically solve systems
of DAEs by introducing the concept of singular perturbation problems.
Two numerical integration approaches are then presented. First, the gen-
eral Runge-Kutta method and second a multistep approach by using the
backward differentiation formula approach.

The next sections are dedicated to the application of these integration
techniques in a multirate framework. Different types of coupling are con-
sidered and the mathematical framework is detailed from the ground up.
Furthermore, the specific model order reduction approaches in each scheme
are discussed.

The chapter ends with a numerical analysis related to the convergence
of these newly constructed reduced order multirate schemes and results are
presented. These results were first presented in [4] and [5]. The numerical
verification of these results are discussed in the following chapter.

4.1 Index-1 Problems

To obtain a numerical solution for a semi-explicit DAEs one can consider
the following singular perturbation problem with ε→ 0,

ẋ = f(t, z, x), (4.1a)

εż = g(t, z, x). (4.1b)

where x and z are the vectors of the differential and algebraic variables
respectively. The functions f and g are considered to be sufficiently differ-
entiable vector functions with dimensions according to x and z. By taking
the limit ε→ 0 a semi-explicit system of DAEs is obtained

ẋ = f(t, z, x), (4.2a)

0 = g(t, z, x). (4.2b)
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which we provide with consistent initial conditions y0 and z0. Then under
the index-1 assumption as seen in Example 1.1.1. we have that

∂g

∂z
is nonsingular, (4.3)

in the neighbourhood of the solution of the semi-explicit system of DAEs.
From this assumption the algebraic variable z possesses a locally unique
solution by using the implicit function theorem

z = G(y, u). (4.4)

For a detailed analysis of DAEs and their numerical solutions, the reader
is referred to the textbooks [52] and [34].

4.1.1 Runge Kutta Methods

To solve (4.2) one approach is to apply a numerical method to the singular
perturbation problem and then let ε = 0. In this section this method is
demonstrated by applying a general Runge-Kutta method. Applying this
method to the singular perturbation problem the following equalities are
obtained

Xni = xn + h

s∑
j=1

aijf(Xnj , Znj), (4.5a)

εZni = εzn + h

s∑
j=1

aijg(Xnj , Znj), (4.5b)

xn+1 = xn + h

s∑
i=1

bif(Xni, Zni), (4.5c)

εzn+1 = εzn + h
s∑
i=1

big(Xni, Zni). (4.5d)

Now let matrix A = (aij) be invertible, then by defining ωij as the elements
of A−1 zn+1 can be made independent of ε by using

hg(Xni, Zni) = ε

s∑
j=1

ωij(Znj − zn), (4.6)
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and inserting this into the expression for zn+1. Thus obtaining

Xni = xn + h
s∑
j=1

aijf(Xnj , Znj), (4.7a)

0 = g(Xnj , Znj), (4.7b)

xn+1 = xn + h
s∑
i=1

bif(Xni, Zni), (4.7c)

zn+1 =

(
1−

s∑
i,j=1

biωij

)
zn +

s∑
i,j=1

biωijZnj . (4.7d)

Although the numerical solution obtained by approach of (4.7) will not
lie on the manifold g(x, z) = 0, this can be repaired by replacing

zn+1 =

(
1−

s∑
i,j=1

biωij

)
zn +

s∑
i,j=1

biωijZnj . (4.8)

by the following condition

0 = g(xn+1, zn+1). (4.9)

We especially consider stiffly accurate methods in this thesis, this are
methods for which it holds that

asi = bi for i = 1, ...s. (4.10)

Then it automatically holds that xn+1 = Xns and zn+1 = Zns.

4.1.2 Backward Differentiation Formula

For a multistep method using the Backward Differentiation Formula (BDF)
again we consider a singular perturbation problem, (4.1). This method is
then again applied to a DAE system by using the ε-embedding method.
Consider a semi-explicit system with dynamical variables x and algebraic
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variables z, then the multistep method gives

k∑
i=0

αixn+i = h
k∑
i=0

βif(xn+i, zn+i), (4.11a)

ε
k∑
i=0

αizn+i = h
k∑
i=0

βig(xn+i, zn+i). (4.11b)

(4.11c)

Then by putting ε = 0 we obtain

k∑
i=0

αiyn+i = h

k∑
i=0

βif(xn+i, zn+i), (4.12a)

0 =

k∑
i=0

βig(xn+i, zn+i). (4.12b)

(4.12c)

which enables us to apply this method to a semi-explicit differential algebraic
system. However, we want to be able to solve implicit differential algebraic
systems. Therefore, the multistep system for an implicit system of DAEs,
Mẋ = f(x), is given by

M
k∑
i=0

αixn+i = h
k∑
i=0

βif(xn+i) (4.13)

In general form, applying Equation (4.13) to an implicit nonlinear system
of DAEs at time step tn yields

f(
1

h

k∑
i=0

αi
βi
xn−i, xn, tn) = 0. (4.14)

This gives that the numerical solution of the system is thus reduced to the
solution of the system of nonlinear Equations (4.14). This system is solved
iteratively for xn by applying Newton’s method.
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4.2 Multirate Integration

The name multirate stems from the fact that these methods use multiple
rates in their process of integration. In contrast to classical integration
schemes, which use single rate step sizes. Multirate integration schemes
integrate different parts of the complete system with different step sizes, or
even with different schemes.

When a system has parts that operate on different intrinsic time-scales,
such as heat compared to electricity, multirate integration can be used to
exploit these different characteristics. The faster operating systems need to
be integrated using a refined time-grid, whilst the slow parts do just fine
on a coarser time-grid. Let the coarse time-grid be defined by step sizes
Hn = Tn − Tn−1, and define the refined grid by {tn−1,q, 1 ≤ l ≤ m} with
step sizes hn,l = tn,l − tn,l−1. Here m is the so-called multirate factor and
we have that the following equality holds

Hn =
m∑
l=1

hn−1,l. (4.15)

See Figure 4.1 for a visualisation.

xS S

xF F

Tn−1 Tn

Hn

tn−1,0 tn−1,2 tn−1,1

hn−1,1

tn,0 = tn−1,m

Figure 4.1: Visual depiction of the multirate integration approach.

4.2.1 Partitioning

From the previous section it is evident that the variables needs to be
partitioned into a slow (S) and a fast (F) part, more than two parts is also
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possible but omitted for clarity. Consider the previously defined system

d

dt
q(t, y) + j(t, y) = 0, y(0) = y0. (4.16)

Where we consider y ∈ Rm to be the electrical state vector containing
both the differential and algebraic variables [x, z]>, while the functions
q, j : R× Rm → Rd represent the charges and currents in the circuit. We
have that q and j can be strongly nonlinear with respect to y and q is
generally not invertible.

Let BF ∈ {0, 1}mF×M and BS ∈ {0, 1}mS×M , be selection operators
where mF +mS = M and the following orthogonal properties: BFB

>
F = IF,

BSB
>
S = IS and BFB

>
S = BSB

>
F = 0, where I{F,S} is the identity matrix

with the respective subsystems dimension mF or mS. Then the variables
and functions of each subsystem can be split into parts yF ∈ RmF , yS ∈ RmS .
Then the variables and the functions can be split into the following parts:

y = B>F yF +B>S yS, (4.17a)

q(t, y) = B>F qF(t, BFy,BSy)) + qS(t, BFy,BSy), (4.17b)

j(t, y) = B>F jF(t, BFy,BSy)) + jS(t, BFy,BSy). (4.17c)

Applying this partition to the network equations, Equation (2.6), results
in the following systems

d

dt
(qF(t, BFy,BSy)) + jF(t, BFy,BSy) = 0, yF(0) = yF,0, (4.18a)

d

dt
(qS(t, BFy,BSy)) + jS(t, BFy,BSy), = 0, yS(0) = yS,0. (4.18b)

Note however, that although the integration methods used for the inte-
gration of each sub-circuit can be A-stable, this does not hold automatically
for the multirate variant. This is due to the fact that the results of the
subsystems depend on the interpolated or extrapolated values of the other
subsystems. Therefore, we have that the stability of multirate methods
is heavily dependent on the partitioning and on the coupling between the
subsystems.

4.2.2 Different Multirate Approaches

As stated in the previous sections, multirate time-integration schemes are
characterised by the utilisation of different integration time-steps. The
slowest subsystem is integrated by large macro-steps, with size H, whilst
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the faster subsystem is integrated with smaller micro-steps, with size h.
Although multirate methods are independent of the integration method,
here we use identical methods. Naturally two distinct approaches come to
mind, slowest-first and fastest-first.

• In the slowest-first approach, first the slow subsystem is integrated for
the large macro-step. Subsequently, the faster subsystem is integrated
utilising the smaller micro-steps until the synchronisation point is
reached.

• For fastest-first multirate, first the subsystem with the fastest be-
haviour is integrated. Then the subsystems with decreasingly faster
dynamics are integrated.

Besides these two decoupled approaches where for the interpolated
values needed for the integration of the first system constant interpolation
is used, there are also coupled approaches. Since the systems used in circuit
simulation are often coupled, it makes sense to use a coupled-first multirate
approach, in which the first step is performed for the whole coupled system.

For both the coupled-fastest-first and coupled-slowest first approaches,
the step size H is decided by the stability of the whole system for that
step size. In the slowest-first approach this can be immediately checked in
the first macro-step. However, for the fastest-first approach, first the fast
subsystem would be integrated for m steps. Only after these m steps, the
whole system would be integrated. Should this fail, it would have cost m
more fast steps for the fastest-first approach opposed to the slowest-first
approach.

Coupled-Slowest-First Multirate

The algebraic constraints are partitioned into the fast subsystem. This type
of coupling lets us consider electrical circuits with a differential index up
to 1, coupled with slower ODE systems. The total index-1 system can be
integrated with the stiffly accurate implicit Euler method. To exploit the
assumed different time scales, a multirate integration method is proposed.
This approach is analogous to [28] but with the algebraic constraint in the
fast subsystem.
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Consider the following coupled system

ẋF = fF(xF, zF, xS), xF(0) = xF,0, (4.19a)

ẋS = fS(xF, zF, xS), xS(0) = xS,0, (4.19b)

0 = gF(xF, zF, xS), zF(0) = zF,0. (4.19c)

The integration of the coupled system, Equations (4.26a-4.26c), for one
macro-step tn → tn+1 = tn +H is defined as

xF,n+(l+1)/m = xF,n+l/m + hfF(xF,n+(l+1)/m, zF,n+(l+1)/m, x̄S,n+(l+1)/m),

(4.20a)

xS,n+1 = xS,n +HfS(x̄F,n+1, z̄F,n+1, xS,n+1), (4.20b)

0 = gF(xF,n+(l+1)/m, zF,n+(l+1)/m, x̄S,n+(l+1)/m). (4.20c)

With l = 0, . . . ,m−1 for the micro grid and the coupling variables denoted
by x̄F, z̄F, x̄S. The coupling strategy is chosen to be the coupled-slowest-
first approach as this is shown to have a consistency of order 1 for the
problem posed in [28]. First the whole system is solved for the macro-step.

x∗F,n+1 = xF,n +HfF(x∗F,n+1, z
∗
F,n+1, xS,n+1), (4.21a)

xS,n+1 = xS,n +HfS(x∗F,n+1, z
∗
F,n+1, xS,n+1), (4.21b)

0 = gF(x∗F,n+1, z
∗
F,n+1, xS,n+1). (4.21c)

Where the step size H is chosen according to the slow dynamics. From
this it follows that the fast solutions, x∗F,n+1 and z∗F,n+1, are not accurate
and discarded. Following the micro-step integration the fast solutions are
computed for l = 0, ...,m − 1, using linearly interpolated values for the
slow variables.

4.3 Reduced Order Multirate

In order to create a reduced order multirate scheme, we combine the tech-
niques of all of the previous sections. This section shows the complete
mathematical setup of how to combine model order reduction and multi-
rate for a DAE-ODE coupled system and for DAE-DAE coupled systems
where the latter of the two is the subsystem that is to be reduced. The
considerations in these sections closely follow [4] and [5] were they were
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first published.

4.3.1 DAE-ODE Coupling

The dynamics of an electrical circuit are described by a system of DAEs
or network equations, which are analytically equivalent to a semi-explicit
system of DAEs of the form, see [26],

ẏ = f̃(y, z, t) := f(y, z, u), y(t0) = y0, u(t0) = u0, (4.22a)

0 = g̃(y, z, t) := g(y, z, u), z(t0) = z0, (4.22b)

with functions f̃ : Rn × Rm × I → Rn and g̃ : Rn × Rm × I → Rm for the
differential and algebraic part, respectively. The quantities y : I → Rn and
z : I → Rm denote the differential and algebraic variables defined on the
time-interval [t0, t1], and u couples the network to the PDE model described
below. Furthermore y0, z0 and u0 need to be consistent initial conditions:
for the index-1 system assumed in the following, this reads 0 = g(y0, z0, u0).
Secondly, other phenomena requiring to describe spatial effects can be
included via PDEs, which are denoted in general form, given by u̇ = L(u).

Here L is a differential operator acting on u = u(t, x), which maps t ∈ R+
0

and x ∈ D, where D ⊂ Rd with d ∈ {1, 2, 3} denotes the dimension of the
spatial domain, into Rm. This PDE system is coupled to the system of
DAEs above via boundary conditions, source terms and/or parameters.
After applying a suitable space discretization to the PDE system, an initial
value problem of semi-explicit system of DAEs is obtained:

ẏ = f(y, z, u), y(t0) = y0, (4.23a)

0 = g(y, z, u), z(t0) = z0, (4.23b)

u̇ = h(y, z, u), u(t0) = u0. (4.23c)

Remark. Transient sources have been omitted for notational convenience.

This system is guaranteed to be of index-1 by the assumption that the
Jacobian

∂g(y, z, u)

∂z
is invertible, (4.24)

in a neighbourhood of the solution of the system, Equations (4.23a-4.23c),
see Chapter 1. From this assumption the algebraic variable z can be solved
locally by using the implicit function theorem

z = G(y, u). (4.25)
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Since the coupled system, Equations (4.23a-4.23c), is constructed by the
combination of two different processes it can be assumed that they act
within different time scales. To exploit this characteristic, the total system
is partitioned into fast (xF = y and zF = z) and slow (xS = u) subsystems,

ẋF = fF(xF, zF, xS), xF(0) = xF,0, (4.26a)

ẋS = fS(xF, zF, xS), xS(0) = xS,0, (4.26b)

0 = gF(xF, zF, xS), zF(0) = zF,0, (4.26c)

with fF := f, fS := h and gf := g. The subscripts {F, S} in the differential
variables xF ∈ RnF(nF := n), xS ∈ RnS and algebraic variables zF ∈
RnZ (nZ := m) indicate fast or slow dynamics, for t ∈ [t0, t1] with consistent
initial conditions. The algebraic constraints are assumed to be fast, as
the whole dynamics of the DAE system is fast. This type of coupling lets
us consider electrical circuits with a differential index up to 1, coupled to
slower ODE systems.

Reducing The System

Applying a space discretization to the PDE can result in large nonlinear
ODE systems. To reduce the computational effort needed to solve this
system in each time step MOR techniques are used. Due to the nonlinearity
of the ODE most conventional MOR techniques can be discarded as they
are tailored to linear systems. Hence the chosen method for this system is
a reduction by a Galerkin projection constructed by Proper Orthogonal
Decomposition (POD), [13]. This is then extended by the application of
the Discrete Empirical Interpolation Method (DEIM), [18], exploiting a
QR selection procedure (Q-DEIM), [21]. By using a Galerkin projection
a reduced model is constructed, [21], which guarantees that the reduced
system is again index 1. Let V ∈ RnS×r be a non-square matrix with
independent and orthonormal columns, with nS � r, then Vr denotes an
r-dimensional subspace spanned by these columns. The full state of the
slow subsystem xS is then approximated by xS ≈ V xS,r using the model
reduction basis V . The reduced model in the fast unknowns xF, zF and
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slow unknowns xS,r is then defined by

ẋF = fF(xF, zF, V xS,r), xF(0) = xF,0, (4.27a)

ẋS,r = fS,r(xF, zF, xS,r), xS,r(0) = xS,r,0, (4.27b)

0 = gF(xF, zF, V xS,r), zF(0) = zF,0 (4.27c)

with fS,r(xF, zF, xS,r) = V T fS(xF, zF, V xS,r), where the full state is needed
for the coupling. The reduction basis V is constructed through POD. note
that there is still a problem with the Galerkin projection of the reduced
term, fS,r(xF, zF, xS,r), causing computational inefficiencies. his term has
a computational complexity that depends on the non-reduced full order
size nS. To reduce the computational complexity Q-DEIM is applied, [18].

Consider the nonlinear function fS : T → RnS with T ⊂ RnS , and
matrix U ∈ RnS×m of rank m. Then the DEIM approximation of fS is
defined by [18, Definition 3.1],

f̂S(τ) := U(SU)−1ST fS(xF(τ), zF(τ), xS(τ)), (4.28)

where S is a selection matrix of size nS×m by selecting columns of identity
matrix I of size nS × nS. Then the reduced nonlinear function fS,r is
approximated with the Q-DEIM, we replace fS by fS,r (the coupled terms
xF and zF are dropped here from the notation as these are not reduced)

fS,r(xS,r) ≈ V TU(SU)−1ST fS(V xS,r). (4.29)

Using the interpolation of general nonlinear functions, outlined in [18,
Section 3.5], a general nonlinear function can be represented as[

F (y)
]
i

= Fi(y) = Fi(yji1
, yji2

, . . . , yjini
) = Fi

(
y(ji)

)
, (4.30)

where Fi : Yi → R, Yi ⊂ Rni , with integer vector ji = [ji1, j
i
2, . . . , j

i
ni ]

denoting the indices of the components required to evaluate Fi. The
numerical implementation of this allows to compute Equation (4.29) without
the full evaluation of fS.
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The integration of the coupled system, Equations (4.27a)-(4.27c), for one
macro-step tn → tn+1 = tn +H is defined as

xF,n+(l+1)/m = xF,n+l/m + hfF(xF,n+(l+1)/m, zF,n+(l+1)/m, x̄S,n+(l+1)/m),

(4.31a)

xS,n+1 = xS,n +HfS,r(x̄F,n+1, z̄F,n+1, xS,n+1), (4.31b)

0 = gF(xF,n+(l+1)/m, zF,n+(l+1)/m, x̄S,n+(l+1)/m), (4.31c)

with l = 0, . . . ,m− 1, counting the micro step approximations at the micro
grid, where h = H/m. The coupling variables are denoted by x̄F, z̄F, x̄s.
The coupling strategy is chosen to be the coupled-slowest-first approach as
this is shown to have a consistency of order 1 for the problem posed in [28].
First the whole system is solved for the macro-step.

x∗F,n+1 = xF,n +HfF(x∗F,n+1, z
∗
F,n+1, xS,n+1), (4.32a)

xS,n+1 = xS,n +HfS,r(x
∗
F,n+1, z

∗
F,n+1, xS,n+1), (4.32b)

0 = gF(x∗F,n+1, z
∗
F,n+1, xS,n+1). (4.32c)

The step size H is chosen according to the slow dynamics, whilst the full
system remains solvable. From this it follows that the fast solutions, x∗F,n+1

and z∗F,n+1, are not accurate enough and can be discarded, as they will be
computed in the last micro step. In a second step, the fast solutions are
computed for the micro steps l = 0, . . . ,m− 1, using for the interpolated
values x̄S,n+(l+1)/m linear interpolation based on the available information
xS,n and xS,n+1 in time values for the slow variables.

4.3.2 DAE-DAE Coupling

Consider the following coupled system of two semi explicit system of
DAEs, where the subscripts {F, S} indicate a fast or slow time-scale,
respectively, and independent transient sources have been omitted for
notational convenience:

d

dt
yF = fF(t, yF, zF, yS, zS), yF(t0) = yF0 , (4.33a)

0 = gF(t, yF, zF, yS, zS), zF(t0) = zF0 , (4.33b)
d

dt
yS = fS(t, yF, zF, yS, zS), yS(t0) = yS0 , (4.33c)

0 = gS(t, yF, zF, yS, zS), zS(t0) = zS0 , (4.33d)
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with the functions fA : R×Ra×Rb×Rc×Rd → Ra, with A ∈ {F, S}, where
{a, b, c, d} ∈ N are the respective dimensions, and equivalent definitions for
gA. Consistent initial conditions are assumed, which means that Equations
(4.33b) and (4.33d) are satisfied at initial time t0. The quantities y{F,S} :

I → R{a,b} and z{F,S} : I → R{c,d} denote the differential and algebraic
variables defined on the time interval [t0, t1] = I. Both subsystems and
the joint system are guaranteed to be index-1 by the assumption that the
Jacobians

∂gF

∂zF
,
∂gS

∂zS
and

(
∂gF
∂zF

∂gF
∂zS

∂gS
∂zF

∂gS
∂zS

)
are invertible (4.34)

in the neighbourhood of the solution of the system. From this assumption
the algebraic variables z{F,S} can be solved locally by using the implicit
function theorem

zF = Gt,F(yF, zS , yS), (4.35a)

zS = Gt,S(yF, zF , yS), (4.35b)

where the second z subscript is the opposite of the first z subscript. The
partition of the system into subsystems can originate from different physical
systems, such as temperature diffusion and electric currents. However,
differences in time scale can also be identified by different orders of time
derivatives. Here the partition is considered to be fixed during the time
integration.

Reducing The System

To incorporate the previous two sections into the partitioned system of
DAEs, Equations (4.33a)-(4.33d), we first rewrite Equations (4.33c)-(4.33d)
in a more general DAE form, to have the slow subsystem encapsulated into
one equation.

d

dt
yF = fF(t, yF, zF, uS), yF(t0) = yF0 , (4.36a)

0 = gF(t, yF, zF, uS), zF(t0) = zF0 , (4.36b)
d

dt
φ(uS) = FS(t, yF, zF, uS), uS(t0) = (yS0 , zS0)>, (4.36c)

where FS : R× Ra × Rb × RmS → RmS and uS = (yS, zS)>. Into these
equations we incorporate the back projected reduced state ũSr = u0

S +VuuSr
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d

dt
yFr = fF(t, yFr , zFr , ũSr), (4.37a)

0 = gF(t, yFr , zFr , ũSr), (4.37b)
d

dt
φ(ũSr) = FS(t, yFr , zFr , ũSr). (4.37c)

and then, with the Gappy MESS complexity reduction incorporated we
obtain

d

dt
yFr = fF(t, yFr , zFr , ũSr), (4.38a)

0 = gF(t, yFr , zFr , ũSr), (4.38b)
d

dt
φ(ũSr) = FSr(t, ySr , zFr , ũSr). (4.38c)

Where FSr denotes the function FS solved by the reduced least squares
approach. Note that the subscript r denotes a reduction, and not the
reduction factor.

Reduced Order Multirate

The overall index-1 system, Equations (4.38a)-(4.38c), can be integrated
with the stiffly accurate implicit Euler scheme, which automatically assures
that also for t > 0 the algebraic constraints will remain consistent. To
exploit the assumed different time scales, a multirate integration scheme is
proposed. This approach is analogous to [4], but with a slow subsystem
consisting of DAEs. Here h = H/m and the coupling variables are denoted
by ȳF, z̄F, ¯̃uSr . The coupling strategy is chosen to be the coupled-slowest-
first approach as this is shown to have a consistency of order 1 for the
problem posed in [28]: First the whole system is solved for the macro-step,
tn → tn+1 = tn +H

y∗Fr,n+1 = yFrn +HfF(y∗Fr,n+1, z
∗
Fr,n+1, ũSr,n+1), (4.39a)

0 = gF(y∗Fr,n+1, z
∗
Fr,n+1, ũSr,n+1), (4.39b)

φ(ũSr,n+1) = φ(ũSr,n) +HFSr(y
∗
Fr,n+1, z

∗
Fr,n+1, ũSr,n+1). (4.39c)

The step size H is chosen according to the slow dynamics, whilst the full
system remains solvable. From this it follows that the fast solutions, y∗Fr,n+1

and z∗Fr,n+1, are not accurate enough and can be discarded, as they will be
computed in the last micro step. In a second step, the fast solutions are
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computed for the micro steps l = 0, . . . ,m− 1,

yFr,n+(l+1)/m = yFr,n+l/m

+ hfF(yFr,n+(l+1)/m, zFr,n+(l+1)/m, ¯̃uSr,n+(l+1)/m),

(4.40a)

0 = gF(yFr,n+(l+1)/m, zFr,n+(l+1)/m, ¯̃uSr,n+(l+1)/m),

(4.40b)

φ(ũSr,n+(l+1)/m) = φ(ũSr,n+l/m)

+ hFSr(ȳFr,n+(l+1)/m, z̄Fr,n+(l+1)/m, ũSr,n+(l+1)/m).

(4.40c)

For stability reasons, the interpolated values ¯̃uSr,n+(l+1)/m are obtained
by constant interpolation based on ũSr,n+1, then the coupled-slowest-first
Euler approach is unconditionally A-stable.

4.4 Numerical Analysis

In this section the convergence of the different reduced order multirate
approaches are studied and proofs are given. In the subsequent chapter,
these analytical results are verified using numerical experiments. This
analysis was first presented in [4].

4.4.1 DAE-ODE Coupling

Let y{full,red} : [t0, tend] → Rk denote all the variables of the full system,
Equations (4.26a)–(4.26c), and of the reduced system, Equations (4.27a)–
(4.27c), respectively. Let the exact values be denoted with y(t) for t in the
interval [t0, tn]. Furthermore, let yn denote the numerical approximation
after n macro-steps. Let || · || denote the 2-norm in Euclidean space. To
numerically integrate the reduced order system, Equations (4.27a)-(4.27c),
with a reduced order multirate scheme we are interested in the difference
between the numerical approximation computed by the reduced multirate
scheme and the exact solution of the full order model.∥∥∥yfull(tn+1)− Ṽ yred,n+1

∥∥∥ , (4.41)

− 62 −



NUMERICAL INTEGRATION METHODS

where Ṽ is the orthonormal projection matrix for the full system, defined
as I 0 0

0 V 0

0 0 I

 . (4.42)

Here V is the projection of the slow part, the other quantities are not
reduced. We split the approximation errors into two parts, the reduction
error and the numerical error.∥∥∥yfull(tn+1)− Ṽ yred,n+1

∥∥∥ ≤ ∥∥∥yfull(tn+1)− Ṽ yred(tn+1)
∥∥∥ (4.43a)

+
∥∥∥Ṽ yred(tn+1)− Ṽ yred,n+1

∥∥∥ . (4.43b)

By using [19, Theorem 4.2], we have that∫ tn+1

0

∥∥∥yfull(t)− Ṽ yred(t)
∥∥∥2
dt ≤ C(tn+1)(Ey + EF ), (4.44a)

where C(tn+1) is the magnification factor, and Ey and EF are the 2-norm
errors from approximating the solution yfull(t) with POD and the nonlin-

ear function with Q-DEIM. Now we have that
∥∥∥yfull(t)− Ṽ yred(t)

∥∥∥2
is a

Riemann integrable function and thus it holds that∥∥∥yfull(tn+1)− Ṽ yred(tn+1)
∥∥∥2
≤ C̃(tn+1)(Ey + EF ), (4.45a)

where C̃(tn+1) = 1
tn
C(tn+1). This follows from the upper and lower bound

inequality of Riemann integrals, and therefore we have obtained a bound
for the reduction error. For the bound of the numerical error from Equation
(4.43b) we first observe that obtaining the fast algebraic approximates via
the implicit function theorem and via the implicit Euler method are the
same, as the implicit Euler method is stiffly accurate and thus automatically
consistent. Therefore the numerical approximation error in the algebraic
variable only depends on yF and ySr :

zF,n+ l
m
− zF (tn+ l

m
) = G(yF,n+ l

m
, ySr,n+ l

m
) (4.46a)

−G(yF (tn+ l
m

), ySr(tn+ l
m

)). (4.46b)

Remark. As in the case of classical numerical integration schemes for
index-1 DAE systems, these nonlinear equations are not solved exactly,
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but with high accuracy via Newton’s method. However, this additional
error is much lower than the leading numerical discretization error of the
integration scheme.

This is equal to the case c in, [28, Lemma 2]. Therefore, [28, Theorem
2], can be applied which gives that the numerical error∥∥∥Ṽ yred(tn+1)− Ṽ yred,n+1

∥∥∥ ≈ O(H), (4.47)

where H is the macro step-size of the mrIRK-DAE1 scheme. From this
it follows that the reduced order multirate global approximation error is
given by∥∥∥yfull(tn+1)− Ṽ yred,n+1

∥∥∥ ≈√C̃(tn+1)(Ey + EF ) +O(H). (4.48)

Thus if the reduction error is chosen such that√
C̃(tn+1)(Ey + EF ) = O(H) (4.49)

the method converges with order 1 in H to a solution which is within
O(H) distance of the full solution. This small choice is always possible
as the bound can be made arbitrarily small. One caveat could be that
if the system is unsuitable for reduction, the reduction error will only be
small for a small dimension reduction. Then this will not lead to improved
computational times as the system will not be sufficiently reduced and
the large projections can increase the computational effort. However, our
thermal-electrical benchmark perfectly allows for reduction.

4.4.2 DAE-DAE Coupling

In this section, the local truncation error induced by the reduced order
multirate scheme from one macro-step tn → tn+1 = tn +H is estimated.
This analysis was first presented in [5].

We define the error in each variable class as

‖yF(tn+1)− yFr,n+1‖ , (4.50a)

‖zF(tn+1)− zFr,n+1‖ , (4.50b)

‖uS(tn+1)− ũSr,n+1‖ . (4.50c)

Here ‖·‖ is the 2-norm in Euclidean space. The analytical solutions of a
state variable is notated by with a parenthesised time argument whilst the
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numerical approximation is noted with subscript, e.g. uS(tn) and uS,n. To
analyse the local truncation error, it is split into two parts, the numerical
approximation error and the discrete reduction error.

‖yF(tn+1)− yFr,n+1‖ ≤ ‖yF(tn+1)− yF,n+1‖+ ‖yF,n+1 − yFr,n+1‖ ,
(4.51a)

‖zF(tn+1)− zFr,n+1‖ ≤ ‖zF(tn+1)− zF,n+1‖+ ‖zF,n+1 − zFr,n+1‖ ,
(4.51b)

‖uS(tn+1)− ũSr,n+1‖ ≤ ‖uS(tn+1)− uS,n+1‖+ ‖uS,n+1 − ũSr,n+1‖ .
(4.51c)

The first error term on the right-hand side of the inequality can be identified
to be the error induced by a non-reduced order implicit multirate scheme.
This error EMR is O(H2), following [28, Theorem 2]. The second error on
the right-hand side, the error induced by the GNAT and hyper-reduction
method, can be analysed in the following manner. For the slow subsystem,
we only have to consider the macro-step and thus it holds that

‖uS,n+1 − ũSr,n+1‖ ≤ Emacro (4.52)

where Emacro is the error bound of [17, Proposition 4.1]. This, due to the
fact that the macro-step of the reduced order multirate scheme is an implicit
Euler step using GNAT and hyper-reduction, identical to the prerequisites
of the proposition, using the fact that the algebraic variable values are
directly obtained through the implicit function theorem. The only error
that now needs to be bounded such that the whole reduced order multirate
induced error is bounded, is the micro-step error. For each micro-step,
again using the fact that the algebraic values are solved locally by the
implicit function theorem, we only have to analyse the error in the fast
dynamical variables yF

Rn(yF,n+(l+1)/m) = yF,n+(l+1)/m − yF,n+l/m − hfF(yfull,n+(l+1)/m), (4.53)

and

R̃n(ỹFr,n+(l+1)/m) = yFr,n+(l+1)/m − yFr,n+l/m − hfF(ỹfull,n+(l+1)/m).

(4.54)
Here yfull,n is a shorthand notation for the full state (yF,n, zF,n, uS,n) for f .
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Using ζ : (x)→ x− hfF(x) and the inverse Lipschitz constant

Ln ≡ supx 6=y
‖x− y‖

‖ζ(x)− ζ(y)‖
. (4.55)

we obtain a bound for the local micro-step approximation error∥∥yFr,n+(l+1)/m − ỹFr,n+(l+1)/m

∥∥ ≤ Ln(εNewton+ (4.56a)∥∥∥R̃n(ỹFr,n+(l+1)/m)
∥∥∥+ (4.56b)∥∥yF,n+l/m − ỹFr,n+l/m

∥∥). (4.56c)

This then results in

‖yFr,n+1 − ỹFr,n+1‖ ≤
m−1∑
k=0

ak(εNewton+ (4.57a)∥∥∥R̃k(ỹFr,n+(k+1)/m)
∥∥∥+ (4.57b)∥∥yF,n+k/m − ỹFr,n+k/m)

∥∥), (4.57c)

where a = L ≡ supk∈{0,...,m−1} Lk. For h small enough, it follows that

‖yF,n+1 − yFr,n+1‖ ≤ Emicro. (4.58)

Thus it has been shown that the cumulative micro-step error is bounded as
well. Now we assume that the reduction induced error boundE{macro,micro} �
EMR, which should always be the case as model order reduction should
only be used if the reduced model is able to accurately capture the full
order dynamics. So for a macro-step, the following holds,

‖yF(tn+1)− yFr,n+1‖ ≤ EMR + Emicro ≈ O(H2), (4.59a)

‖zF(tn+1)− zFr,n+1‖ ≤ EMR + Emicro ≈ O(H2), (4.59b)

‖uS(tn+1)− ũSr,n+1‖ ≤ EMR + Emacro ≈ O(H2). (4.59c)

Then, for the error propagation over several macro-steps we obtain by
using [28, Theorem 2] that the global error is O(H).





5
Applications

Abstract
Previous chapters have introduced the novel reduced order
multirate schemes. This chapter is presents several numerical
experiments that verify the theoretical results. Both academic
test cases have been used, especially in early stages, and then an
industrial test-case as provide by STMicroelectronics has been
investigated. Results show the positive impact that the reduced
order multirate schemes have on the computation time.

Besides obtaining only theoretical results, numerical results are just
as important. Due to the large size of the systems that need to be sim-
ulated, theoretical results might not be achievable or feasible in reality.
Therefore, verification of the reduced order multirate method, utilising
the discussed methods, is done through numerical experiments. For the
first two experiments we consider two DAE-DAE type academic circuit
consisting of resistors, capacitors and diodes. Then real world industrial
circuits are considered for both DAE-ODE and DAE-DAE coupling, with
the first experiment originating from [10] and the second experiment as
provided by STMicroelectronics. Although these test examples come from
the industry partner, some simplification assumptions have been made
about the parameters of the underlying network components.
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5.1 Academic Experiments

A transient analysis is performed for an academic test case and the conver-
gence of the error is investigated. Furthermore, computational times are
compared to verify the efficiency of the reduced order multirate scheme.

5.1.1 The Diode Chain Model

Following the results presented in [5], the underlying test case consists of
a large diode chain model, [11], that is very suitable for reduction due to
internal redundancy, coupled to a two dimensional oscillating DAE system.
This second subsystem is dependent on the large diode chain through the
voltage at Φ2.

Φin

Φ1 Φ2

R C

Φ3

R C R C

Φd−2

Figure 5.1: The diode chain

The diode chain model is described by the following differential-algebraic
equations

Φ1 − Φin = 0,

I(Φ1,Φ2)− I(Φ2,Φ3)− C dΦ2

dt
− 1

R
Φ2 = 0,

I(Φi−1,Φi)− I(Φi,Φi+1)− C dΦi

dt
− 1

R
Φi = 0,

I(Φi,Φi+1)− C dΦi+1

dt
− 1

R
Φi+1 = 0,

iE − I(Φ1,Φ2) = 0.

I(x, y) = Is

[
e(x−y)/0.0256 − 1

]
, Φin = 8 sin(7 · 108 · t

2π
).

Where C = 10−11 and R is a coupled resistance term. The saturation
current IS is set to 10−12Ã. Through this term, the variables of the
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slow subsystems depend only weakly on the variables variables of the fast
subsystem, this coupling is given by R = R0 + y1 · 102, where y1 is defined
by a fast oscillating academic DAE system that is dependent on the nodal
voltage Φ2.

0 = CA
dy1

dt
− y2 −

1

R
Φ2

0 = y2 − sin(7 · 108t).

Below, in Figure 5.2 and 5.3, the results of a transient analysis for a
time interval from 0 to 37.5 ns is shown. The diode chain parameters are
R0 = 10000 Ω.

Figure 5.2: The evolution of the slow subsystems from the
transient analysis. From top to bottom we have Φ1, ...,Φm.

For the fast subsystem the resistance is taken to be equal to that of
the diode chains resistors, and the capacitance is set to CA = 10−10. The
dimension parameter of the diode chain is set to d = 1000. The snapshot
matrix is provided by a high accuracy integration of the full system and
snapshots are taken with ∆tHF = 0.0375 ns. By applying the ε estimation
procedure we obtain ε∗ = 0.1928 and this results in the reduced system size
r = 14. The same reduced basis size is used for the gappy reconstruction.
The multirate integration factor m = 20. The initial conditions for the
slow subsystem are 0 for each node, and for the fast subsystem (−1, 0)>.

Regarding the convergence of the ROMR integration scheme, Figure 5.8
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The fast subsystem

Figure 5.3: The evolution of the fast subsystems from the
transient analysis. In blue we have y1 and in red y2.

illustrates the order 1 convergence rate. We see that the ROMR accuracy is
nearly identical to that of the full order solutions. Furthermore, in Figure
5.5 it shows that this accuracy is achieved with a significant reduction
in computational time. The computational effort is almost a order of
magnitude lower for the reduced schemes, while the precision is maintained.
The positive effects of model order reduction, multirate time integration
and the combination of both is evident.

− 71 −



Academic Experiments
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Figure 5.4: The order 1 convergence of the computational
error descending parallel to the black reference conver-
gence.
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Figure 5.5: The effect of the different numerical methods on the com-
putational time and accuracy.
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5.1.2 System of Coupled DAEs

The following experiment was first presented in [7][Section 4.1]. The aca-
demic circuit shown in Figure 5.6 is a combination of a short diode chain
and then a long ladder of diodes and resistors. Similar to a standard diode
chain model [50], this model contains sufficient redundancy to make it
eligible for model order reduction. Furthermore, increasing the resistance
for each Ri with R < Ri < Ri+1 makes that the ladder part of the circuits
behaves on a slower timescale. This makes the circuit excellent for a time
integration with the reduced order multirate approach. The simulation
parameters are given in box below.

V

u1
D1

C R

u2
D2

C R

u3 u4 R1

un+2 Rn−1

un+3 Rn

Figure 5.6: The academic diode chain test model with redundancy.

Starting time t0 0 s
Ending time tN 0.004 s
Number of steps N [100 200 400 800]
Multirate factor m 20
Newton tolerance tol 10−8

Reduced dimension r 2
Hyper-reduction factor g 23
Voltage source V 5 sin(40 · 2πt) V
Resistance R 1000 Ω
Resistance Ri i · 1000 Ω
Capacitance C 10 µF
Diode saturation current IS 10−12 A

Table 5.1: Simulation parameters of the academic model
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Figure 5.7: Convergence of the numerical schemes, where the error
is plotted against the number of macro steps. The MR
error is omitted in the figure as the difference introduced
by the reduction is negligible.
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Figure 5.8: Computational effort of the numerical schemes, where the
error is plotted against the computation time in seconds.
The error is defined as the absolute value between the
computed voltage and reference voltage for the output
node.
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5.2 Industrial Applications

Besides the academic test models, this section presents benchmark cases
from industry. The first benchmark case considers a thermal resistor in a
small circuit. The different inherent time scales are rooted in the distinction
between the electrical part and the thermal part of the full system.

5.2.1 The Thermal-Electric Circuit

Following the experiments as described in [8][Section 3.B]. As the reduced
order multirate case study circuit needs to contain both coupling and
different intrinsic time scales, a thermal-electric test circuit is used [10].
This test circuit originates from Silicon-On-Insulator technology, which
facilitates lower switching capacities by a floating body. The system is
modelled by using a medium-grained approach for uni-dimensional and
lumped elements. This circuit consists of an operational amplifier, two
resistors, a diode, and a capacitor. The thermal resistor R(T ) is modelled
by a structure of length d = 0.03 m which produces and transports heat
along a uni-dimensional wire between the amplifier and the diode, it has a
variable diameter

a(x) = a0/[1 + b(d− x)x], (5.1)

with x ∈ [0, d], while the material parameters are those of a copper wire.
The local resistance

ρ(T ) = r0(1 + α(T − Tmeas) + β(T − Tmeas)
2) (5.2)

exhibits quadratic dependence on the temperature. The local resistance
per unit cross-section is thus expressed in Ωm. Using this expression, the
total resistance of the wire is

R(T ) =

∫ d

0

ρ(ξ, T (t, ξ)

a(ξ)
dξ. (5.3)

The amplifier is modelled as a heat source and the diode has a temperature
dependent characteristic idi(udi, Tdi) curve

idi(udi, Tdi) = ÎS(Tdi)
[
e
udi
vT − 1

]
, (5.4)

ÎS(Tdi) = 10−12

(
Tdi

300K

)3

e
−qEg(300K)

kBTdi
(1− Tdi

300K
)
. (5.5)
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Material Cu (copper)
Specific resistance r0 = 1.7 µΩ ·m
Reference temperature Tmeas = 291 K
Length d = 0.03 m
Cross section a0 = 540 m
Profile b = (2/d)2 m2

1st thermal coefficient α = 1/(273 K)
2nd thermal coefficient β = 1/(273 K)2

Table 5.2: Electrical parameters of one-dimensional resistor

Density dw = 8.98 · 103 kg/m3

Heat conductivity λw = 390 W/(mK)
Specific heat cw = 385 J/(kgK)
Transition coefficient γ = 1.0 W/(m2K
Thermal mass M ′w,i = a(xi)dwcw J/K

Cooling surface S′w,i(x) = 2
√
πa(x)

Table 5.3: Thermal parameters of the one-dimensional resistor

The electric behaviour of the circuit is modelled by modified nodal
analysis based on Kirchhoff’s laws. The thermal model is nonlinear due to
the coupling terms, where the local self-heating term, Pw, introduces the
nonlinear terms. After discretising in space, the following thermal-electric
system is obtained.

Specific resistance q = 1.602 · 10−19 C
Energy gap Eg(300K) = 1.11 V
Boltzmann constant kB = 1.381 · 10−23 J/K
Thermal voltage vT = kB · Tdi/q V
Operational power vop = 15 V
Amplification A = 20000
Load resistance RL = 0.3 kΩ
Capacitance C = 500 nF

Table 5.4: Electrical parameters of the zero-dimensional elements

Electric network

0 = (Av(t)− u3)/R(T ) + idi(u3 − u4, Tdi),

Cu̇4 = idi(u3 − u4, Tdi)− u4/RL,

− 76 −



APPLICATIONS

Coupling interfaces

Pop = |(vop − |v(t)|) · (Av(t)− u3)/R|, Pw = (Av(t)− u3)2/R,

R(T ) =

(
1

2
(ρ(0, T0) +

N−1∑
i=1

ρ(Xi, Ti) +
1

2
ρ(l, TN )

)
· h,

Heat equation

M ′w,ihṪi, = Λ
Ti+1 − 2Ti + Ti−1

h
+ Pw

ρ̃(Xi, Ti)

R
h

− γS′w,ih(Ti − Tenv), (i = 1, ..., N − 1),

(M ′w,0 ·
h

2
+Mop)Ṫ0 = Λ

T1 − T0

h
+ Pw

ρ̃(0, T0)

R

h

2

− γ(S′w,0
h

2
+ Sop) · (T0 − Tenv) + Pop,

(M ′w,N ·
h

2
+Mdi)ṪN = Λ

TN−1 − TN
h

+ Pw
ρ̃(XN , TN )

R

h

2

− γ(S′w,N
h

2
+ Sdi) · (TN − Tenv)

Amplifier cubic
Material Al (aluminium)
Size eop = 0.5 mm
Heat capacity cAl = 449 J/(kgK)

Density dal = 2.7 · 103kg/m3

Cooling surface Sop = 6 · e2
op mm2

Diode cubic
Material Si (silicon)
Size edi = 0.167 mm
Heat capacity cAl = 700 J/(kgK)

Density dsi = 2.33 · 103kg/m3

Cooling surface Sdi = 6 · e2
di mm2

Table 5.5: Extension parameters of the zero-dimensional elements

To illustrate the behaviour of the thermal resister the voltages at nodes
u3 and u4 have been plotted in Figure 5.9. The heat development through
time in the wire is shown in Figure 5.10

The computational cost of coupled network simulations are reduced by
applying the reduced order multirate scheme. Here, multirate integration
and the maximum entropy snapshot sampling method are employed for
solving the equations that govern the thermal-electric circuit that is depicted
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Figure 5.9: Output of the thermal-electric circuit at nodes u3 and u4.

in Fig. 5.11. After partitioning the slow and fast varying time-scales, the
system of Equations (4.27a)–(4.27c) becomes

ẋF = fF(xF, zF, V xS,r), xF(0) = xF,0,

ẋS,r = fS,r(xF, zF, xS,r), xS,r(0) = xS,r,0, (5.6)

0 = gF(xF, zF, V xS,r), zF(0) = zF,0.

Here, xF = u4, zF = u3, and xS,r = V >xS, with xS ∈ Rm being the
discretized temperature in the thermal resistor.

The system of Equations (5.6) is integrated with a reduced order
multirate method, and the parameter ε is computed by (3.25), see Figure
5.13. To verify the performance of the reduced order multirate scheme,
maximum entropy snapshot sampling method and estimated epsilon, a
transient analysis for the output u4 is performed. A reference solution
is obtained with a standard multirate scheme of five fine-grid steps for
a problem with (m,n) = (104, 500). Then, the reduced order multirate
scheme is used, once with the maximum entropy snapshot sampling method
with ε∗ and once with the proper orthogonal decomposition. In Fig. 5.12
the correlation sum is shown, and in Figure 5.13 the accuracy plot for
maximum entropy snapshot sampling with ε∗ = 0.0816 is depicted. The
accuracy result for the proper orthogonal decomposition is indistinguishable
from the one depicted in Fig. 5.13, and hence, it is omitted. The degrees
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Figure 5.10: The heat flow in time through the resistor

v(t)

u1 u2

R(T )

u3 u4

C RL

Figure 5.11: The circuit used for the numerical experiments.

of freedom are reduced from 104 to 13, while the optimal ε∗ is estimated in
2.9 s and the maximum entropy snapshot sampling base is constructed in
0.16 s, in contrast to a total of 6.33 s that is required by the POD.
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Figure 5.12: The cumulative distribution of R and Cε.
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Figure 5.13: The relative difference between standard multirate (MR)
and reduced order multirate (ROMR) with (MESS,
0.0816).
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5.2.2 Solar Panel Simulation

As final industrial application STMicroelectronics has provided a test
case from their development team. These results have been published
in [7][Section 4.2]. The test case concerns a transient analysis of a solar
panel circuit. In this case we consider a silicon photovoltaic cell that is
composed of two layers of semiconducting material, e.g. silicon or gallium
arsenide, with different doping. The process of converting solar radiation
into electricity is based on the photovoltaic effect.

To model the photovoltaic effects taking place in the solar panel, a
mathematical model is used based on the construction of an equivalent
circuit. When the cell is lit, the generated power can be modelled as a
current source. Therefor, an equivalent circuit of the photovoltaic cell is
shown in Figure 5.14.

The full solar panel circuit is a conglomeration of photovoltaic cells,
Figure 5.14, that are linked in series and parallel. This grid of photovoltaic
cells is then connected to a DC-DC buck converter to stabilise the output.
The full schematic of the solar panel circuit is shown in Figure 5.15.

As the voltages and currents generated by the solar panel vary signifi-
cantly slower than the operating voltages in the buck converter there is an
inherent multirate advantage. Due to the replication in the structure of
the solar panel, model order reduction can be used to significantly reduce
the complexity of the panel simulation.

The full test case for the silicon photovoltaic solar panel is run for a
series and parallel grid that is 35 by 35, which makes the full dimensional
system consist of 2422 equations.

The reduction parameter selection procedure provides us with ε = 0.43

which leads to quite a significant reduction. As shown in Table 5.6 the
dimension of the slow subsystem of photovoltaic cells is decreased from
2416 to only 6 equations, and the hyper-reduced dimension of the nonlinear
function is reduced to only 8 equations.

I

R1

D D R2

Figure 5.14: The equivalent circuit of a photovoltaic cell.
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Starting time t0 0 s
Ending time tN 100 ms
Number of steps N [75 150 300 600 1200]
Multirate factor m 20
Newton tolerance tol 10−8

Voltage source V 10 sin(100 · 2πt) V
Resistance R1 3.5 mΩ
Resistance R2 150 Ω
Resistance R3 2 µΩ
Resistance R4 2.4 Ω
Current source I 0.9 A
Diode IS 10−12 A

Original dimension d 2422
Reduced dimension r 6
Hyper-reduction factor g 8

Table 5.6: Simulation parameters of the industrial model

From Figures 5.16 and 5.17, we see that the academically achieved
results are replicated for an industrial test case. Due to the model order
reduction there is a substantial decrease in computation time, with the
reduced order multirate scheme being roughly 6.35 times faster than the
multirate integration scheme, without losing accuracy.
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Figure 5.15: The industrial solar panel test model with redundancy.
Here a 4 by 3 grid of photovoltaic cells are linked to-
gether in series and parallel and connected to a DC/DC
converter.
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Figure 5.16: Convergence of the numerical schemes, where the error
is plotted against the number of macro steps.
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Conclusions and Outlook

In this thesis we have extensively described the development of reduced
order multirate schemes in a industrial circuit simulation setting. We
have shown that the combination of model order reduction techniques and
multirate integration schemes provides possibilities for significant decreases
in computational effort, whilst the accuracy of the schemes is preserved.

The research started out by coupling a system of differential-algebraic
equations to a system of ordinary differential equations derives from a
discretisation of a system of partial differential equations. A significant
reduction in computation time has been achieved by using a combination
of using the Galerkin projection model order reduction with a basis pro-
vided by proper orthogonal decomposition. The nonlinear bottleneck was
circumvented using a QDEIM hyper-reduction.

In a subsequent paper, this approach has been proven to converge by
numerical analysis, given that the some accuracy criteria related to the
model order reduction approximation have been satisfied. However, in an
effort to further generalise the theory of reduced order multirate schemes
now a double differential-algebraic coupled system was considered.

As direct Galerkin projection model order reduction introduced a lot of
complications and instability when applied to differential-algebraic systems
another approach was considered. By using the Gauß-Newton with approx-
imated tensors method it was possible to reduce these differential-algebraic
systems. Furthermore, a novel reduced basis construction method, the
maximum entropy snapshot sampling method, was utilised instead of the
proper orthogonal decomposition approach.

This type of reduced order multirate schemes has also been shown to
converge. This was verified by numerical simulation of academic circuits.
Besides only showing results related to the convergence of reduced simula-
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tion schemes, also a method for selecting the reduction parameter of the
maximum entropy snapshot sampling method has been presented. In joint
work with the chair of electromagnetic theory at the Bergische Universität
Wuppertal an algorithm for obtaining this parameter has been presented.

This first exploratory research project into the combination of reduced
order multirate schemes established a point of reference which future
endeavours can use as a reference. The reduced order multirate schemes
presented in this thesis show a huge potential for application in industrial
circuit simulation. However, there is still a lot to be done. Construction
a software suite capable of handling all different types of coupling can be
quite a challenge. Especially incorporating various different flavours of
model order reduction approaches, hyper-reduction methods and multirate
integration schemes. In contrast, the upside advantages of these schemes
may save a substantial amount of time in the verification process of designing
microchips.
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