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1 Chapter 1

Introduction

Currently, the development of any modern technical device depends strongly on efficient and
reliable simulation tools. Simulation software allows one to change any property of a device
and test the new configuration without manufacturing an expensive prototype. In general, we
can assume that the complexity of a technical device increases the number of physical effects
that have to be considered for the simulation. We illustrate this phenomenon by providing the
following example of an integrated circuit: The smaller the device, the closer the conductor paths
and this causes electromagnetic effects between the conductor paths which have to be considered
beside the currents and voltages. Moreover, the performed energy leads to heating of the complete
device so that thermal effects can no longer be neglected. Voltages and currents, electromagnetic
effects and thermal heating are based on different physical laws which are described by different
types of mathematical equations. For each type of equation, there also exist a class of specialised
algorithms that guarantee an efficient and reliable simulation of the underlying physical effect.
To consider several physical effects in the simulation, the mathematical equations have to be
coupled to each other and the algorithms must be adapted according to the properties of the
resulting, coupled system. In this work, we focus on coupled systems with a particular dynamical
behaviour: Some subsystems provide high dynamic changes while the other ones change much
slower. Algorithms for an efficient and reliable simulation in time domain for this kind of coupled
systems are called multirate time integration schemes.

Multirate methods are characterized by integrating each subsystem with an individual chosen step
size according to its dynamical behaviour. Whereas a classical integration scheme uses one global
step size for all subsystems. Multirate time integration for ordinary differential equations (ODEs)
were introduced in [Ric60]. Since then, many different multirate methods have been proposed in
literature. Distinctive features are the basic integration scheme and the applied coupling approach.
There exist for example multirate linear multistep methods [GW84], multirate Runge-Kutta meth-
ods [KR99, GK01, HS09, GS16], multirate Rosenbrock-Wanner or W-methods [GR93, Bar01,
SHV07] and multirate extrapolation methods [EL97, CS10]. The coupling approach describes
the communication between the subsystems on the different time grids during the simulation
process. Established coupling approaches are Decoupled-Slowest-First [GW84,GR93], Coupled-
Slowest-First [EL97, SHV07, HS09] and Coupled-First-Step [Ric60, KR99, GK01, Bar01, CS10].
This thesis is about the adaption and extension of multirate Runge-Kutta methods regarding the
two following aspects: On the one hand, linear model order reduction for high dimensional sub-
systems and on the other hand, the numerical treatment of algebraic constraints in the subsystems.

The mathematical model of certain physical effects results in a high dimensional system of equa-
tions, for example the semi-discretisation of a partial differential equation (PDE) which describes
thermal or electromagnetic effects. However, in addition the network approach to describe volt-
ages and currents in an integrated electrical circuit usually leads to a large scale system of equa-
tions. The numerical treatment of such high dimensional systems is quite challenging concerning
run time and memory requirements. To achieve a reliable simulation result in finite time, a model
order reduction can be applied to the large scale system to compute a low dimensional replace-
ment system [Ant05]. The dynamical behaviour of the system will not be affected by the model
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2 1 Introduction

order reduction. We consider a coupled system of at least one high dimensional subsystem to
which we apply a model order reduction. We investigate the influence of the model order reduc-
tion of one subsystem on the run time of a multirate method. We propose a strategy to reformulate
the subsystems, such that the computational effort of the multirate time integration of the coupled
system with order reduced subsystem can be decreased significantly.

For the case of a linear, time-invariant system, an error bound for certain model order reduction
techniques is available, that means that the quality of the approximation by the low order replace-
ment system can be measured. In frequency domain, such an error bound is also given for coupled
systems with order reduced subsystems [RS07]. We study the question, how does the model order
reduction affect the approximation properties of the multirate method and derive an error bound
in time domain.

The dynamical behaviour of many technical systems cannot be described only by ordinary dif-
ferential equations since additional algebraic constraints have to be fulfilled. Such systems are
called differential-algebraic equations (DAEs). By a DAE, the dynamical properties of mechan-
ical multibody systems [ESF98] or voltages and currents in an electrical circuit [GF99] can be
described. But also a space discretisation of a Maxwell’s PDE to describe electromagnetic ef-
fects can lead to a DAE in case of non-conductive materials [Sch11]. The numerical treatment of
DAEs is much more challenging than time integration of ODEs. This holds especially for multi-
rate methods, since the algebraic constraints must be fulfilled during the evaluation of the coupling
terms. Multirate methods for DAEs have been introduced in [BGK02]. Moreover, there exist two
extensive works on multirate schemes for DAEs: In [Ver08] multirate schemes for DAEs based on
BDF-methods are presented using a specialized stability analysis, in [Str06] a class of integration
schemes based on the Coupled-First-Step approach is provided. In this thesis, we elaborate an
order 1 multirate Runge-Kutta method for DAEs for all three coupling approaches and an order
2 scheme based on the Coupled-Slowest-First approach. The presented integration schemes are
based on Runge-Kutta methods for ODEs and we can easily adapt this approach to derive further
multirate Runge-Kutta methods for DAEs. The following convergence analysis is carried out in
a straight forward way without using any stability definition. As a final result we see that for the
chosen coupling strategy the maximum convergence order is 2.

Outline of this thesis

Here a brief summary of the chapters contained herein.

Chapter 2 – Preliminaries

We introduce the theory of multirate time integration of ordinary differential equations based
on one-step methods. We start with the definition of a multiscale ODE, which represents the
prototype for all ODEs that can be integrated efficiently by a multirate method. We give a formal
definition of a multirate Runge-Kutta scheme for ODEs and discuss three established coupling
approaches.

Chapter 3 – Multirate Time Integration for Order Reduced Systems

We apply a model order reduction to the slow changing subsystem and integrate the resulting,
coupled system with a multirate method. We sketch the main concepts of model order reduction
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for linear, time-invariant systems. We employ a multirate method to the coupled system with
order reduced, slow subsystem and to the original system and compare the computation time. As
benchmark example we choose an electrical circuit with a temperature dependent resistor. We
show that the computation time can be decreased significantly if the dimension of the coupling
interface is small. It follows the derivation of a combined error bound in time domain, which
estimates the error caused by the model order reduction and by the multirate time integration.
Finally, we present simulation results of a field-circuit coupled system, where the large scale
DAE model of the electrical field is projected on a low order ODE system.

Chapter 4 – Multirate One-Step Methods for Differential-Algebraic Equations

This chapter deals with the derivation and analysis of multirate Runge-Kutta method for DAEs of
index-1. After a short introduction into the theory and numerical treatment of DAEs, we present
a multirate method for DAEs based on the implicit Euler scheme. We consider all three coupling
approaches and show that the integration method has convergence order 1. Numerical tests con-
firm the previous theory by applying the scheme to a modified Prothero-Robinson equation and to
a field-circuit coupled system. We proceed in a similar way to deduce an order 2 multirate method
for DAEs from the LobattoIIIC scheme. At the end of this chapter, we combine the ideas of multi-
rate time integration and dynamic iteration schemes to derive a proposition about the convergence
of general multirate one-step method using the Decoupled-Slowest-First approach.

Chapter 5 – Summary

The thesis closes with Chapter 5. Here, we summarize all previous results regarding the applica-
tion of model order reduction for multirate time integration and the efficient simulation of DAEs
by multirate time integration. Furthemore, we point out the perspectives for future research based
on this thesis.

Related scienti�c works

Several results of this thesis have been already published in [HBG16b] [HBG16a], [HBG+18]
and [HBGS19].





2 Chapter 2

Preliminaries

We start with the introduction of multirate schemes for multiscale ordinary differential equations
based on Runge-Kutta methods. The here considered problem class are multiscale ordinary dif-
ferential equations which are defined in Section 2.1. For an efficient time integration, multirate
methods for multiscale ordinary differential equations are presented in Section 2.2. In this sec-
tion, we focus on multirate methods based on Runge-Kutta schemes and discuss different coupling
strategies. This chapter is mostly based on [GS20].

2.1 Multiscale Ordinary Di�erential Equations

The mathematical model of the dynamical behaviour of a physical, technical or other real world
system, often leads to an initial value problem (IVP) of ordinary differential equations (ODEs)

ẇ(t) = d
dt w(t) = f (t,w(t)), w(t0) = w0 (2.1)

with t ∈ I = [t0, tend], w : I → Rn and f : I ×Rn → Rn sufficiently smooth. The Lipschitz
continuity of f with respect to w for all t ∈ I guarantees the existence of a unique solution of the
initial value problem.

The dynamical behaviour of a complex technical or physical system is often given on different
timescales: Some parts of the system provide high dynamical changes, others are changing much
slower. This particular behaviour is also described by the resulting mathematical model and leads
to

Definition 1 (Multiscale ODE-IVP). An ODE-IVP (2.1) is called multiscale-ODE-IVP, if it can
be written in one of the following forms:

1. Multiscale Split ODE-IVP

ẇ(t) = fF(t,w(t))+ fS(t,w(t)), w(t0) = w0 (2.2)

with t ∈ I = [t0, tend], w : I→ Rn and fF , fS : I×Rn→ Rn sufficiently smooth. The fast
dynamics of w are described by fF , the slow ones by fS.

2. Multiscale Partitioned ODE-IVP(
ẇF(t)
ẇS(t)

)
=

(
fF(t,wF(t),wS(t))
fS(t,wF(t),wS(t))

)
,

(
wF(t0)
wS(t0)

)
=

(
wF0
wS0

)
(2.3)

with t ∈ I = [t0, tend], wF : I→RnF the vector of all fast changing components, wS : I→RnS

the vector of all slow changing components and corresponding, sufficiently smooth right
hand sides fF : I×RnF → RnF , fS : I×RnS → RnS .

5



6 2 Preliminaries

Analogously, we can define multiscale ODE-IVPs with more than two different time scales. For
simplicity of notation, we restrict ourself to the here presented case of one fast changing subsystem
and one slow changing subsystem. Each of the formulations in Definition 1 can be transformed
into the other one:

• Given a partitioned ODE-IVP (2.3), we set

w(t) =
(

wF(t)
wS(t)

)
, ẇ(t) =

(
fF(t,w(t))

0

)
+

(
0

fS(t,w(t))

)
, w(t0) =

(
wF(t0)
wS(t0)

)
(2.4)

to derive a split ODE-IVP.

• Given a split ODE-IVP (2.2), we set

ẇF(t) = fF(t,wF(t)+wS(t)), ẇS(t) = fS(t,wF(t)+wS(t)), w(t) := wF(t)+wS(t) (2.5)

and end up with a partitioned ODE-IVP.

We point out that the reformulation of the initial values is only well defined for the transformation
from the partitioned form to the split form. For the other way round, any choice of wF0 and wS0
with w0 = wF0 +wS0 leads to a proper solution of (2.5).

Since both formulation are equivalent, we only consider partitioned ODE-IVPs (2.3) in this work.
The following assumption is valid for the whole thesis:

Assumption 1. We consider a multiscale partitioned ODE-IVP (2.3). For a fixed positive constant
ε > 0 and any induced matrix norm the following holds∥∥∥∥∂ fS(t,wF ,wS)

∂wF

∥∥∥∥< ε (2.6)

for all t ∈ I.

The assumption formalises that the the slow components wS only depend weakly on the the fast
components wF . From a theoretical point of view on multiscale systems, it is possible to consider
systems with a strong coupling from the slow variables wS to the fast ones wF , i.e. a large value
for ∥∥∥∥∂ fF(t,wF ,wS)

∂wS

∥∥∥∥ .
The multiscale behaviour of such a system is maintained, but it cannot be integrated efficiently
with a multirate time integration scheme due to stability issues. Therefore, we will assume a weak
coupling between both subsystems later in the numerical part of this thesis.

To derive a numerical approximation of the multiscale ODE-IVP (2.3) with high accuracy, a fine
time grid is necessary due to the high dynamical changes of the fast variables wF . The small step
sizes are applied to the complete ODE-IVP. Therefore, numerical integration of any multiscale
ODE-IVP is quite costly, especially for systems with many slow components and only few fast
ones, i.e. nS � nF . To derive a numerical approximation with high accuracy within a short
computation time, multirate time integration methods are widely used.



2.2 Multirate Time Integration Methods 7

2.2 Multirate Time Integration Methods

We recall the multiscale partitioned ODE-IVP (2.3) with nS � nF and write it as two coupled
subsystems

ẇF(t) = fF(t,wF(t),wS(t)), wF(t0) = wF0 (2.7)

ẇS(t) = fS(t,wF(t),wS(t)), wS(t0) = wS0. (2.8)

We refer to (2.7) as fast changing or fast subsystem, and analogously to (2.8) as slow changing
or slow subsystem. The analytical solution of (2.7) at time point tn ∈ I is denoted by wF(tn) and
wS(tn) denotes the analytical solution of (2.8), respectively. A multirate time integration method
computes a numerical approximation of (2.7-2.8) by using different step sizes for the subsystems
according to their dynamical behaviour: The fast changing subsystem is integrated with a small
micro-step size h, the slow changing subsystem is integrated with a larger macro-step size H.
Often, there is a fixed ratio between micro- and macro-step size m = H/h with m ∈ N, called
multirate factor. Figure 2.1 illustrates the integration strategy of a multirate method for one
macro-step tn→ tn +H.

The basic integration scheme for the macro-step and the micro-steps are usually given by one-step
or multistep methods. Multirate methods are discussed for the first time in [Ric60] using Runge-
Kutta methods as basic integration scheme. In [GW84], multirate linear multistep methods are
derived. Multirate methods based on extrapolation schemes are proposed in [EL97,CS10]. Linear
implicit ROW- and W-methods are presented in [GR93, Bar01, BG02, SHV07]. Multirate Runge-
Kutta methods have been derived and investigated in [KR99,Kvæ00,GK01,HS09]. In [GS16] the
theory of multirate Runge-Kutta methods is generalised such that many previous approaches can
be now reduced to a special case of an MGARK-scheme. Furthermore, MGARK-schemes can be
applied to split multiscale ODE-IVPs (2.2), whereas the previous schemes are usually derived for
partitioned multiscale ODE-IVPs.

For all mentioned multirate approaches, the crucial part is the coupling between the subsystems.
That is, how to achieve the values of the fast subsystem during the integration of the slow sub-
system and vice versa. We discuss several coupling approaches in Section 2.2.2, beforehand in
Section 2.2.1, we give a formal defintion of multirate Runge-Kutta methods.

2.2.1 Multirate Runge-Kutta Schemes

To derive a mulitrate method based on a Runge-Kutta scheme, we consider a multiscale parti-
tioned ODE-IVP (2.7-2.8) on the time interval I = [t0, tend]. We split the interval into N macro-
steps of size H

t0 < t0 +H < .. . < t0 +NH = tend (2.9)

and each macro-step is split into m micro-steps of size h

tn < tn +h < .. . < tn +mh = tn +H (2.10)

with tn = t0 + nH for n = 0, . . . ,N − 1. For simplicity of notation, we restrict ourselves to a
constant, global macro-step size H, the theory can be easily adapted to a step size controlled
macro-step size. We assume, that the approximations wFn ≈wF(tn), wSn ≈wS(tn) at tn for a fixed
n = 0, . . . ,N−1 are already computed. For the integration of the slow changing subsystem (2.8),
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wSn wSn+1

wFn
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Fn+ 1
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Fn+ 2

m
· · ·

· · ·

w
Fn+m−1
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wFn+1

t
tn tn +H

tn tn +h tn +2h tn +(m−1)h tn +H· · ·

Figure 2.1: Schematic representation of a multirate time integration with constant micro-step size
h: The slow changing variables wS are integrated with one large macro-step size H, the
fast changing variables wF are integrated with m small micro-steps of size h = H/m.
The numerical approximations are given by wSn ≈ wS(tn), wSn+1 ≈ wS(tn +H) and
possibly less accurate wFn+i/m ≈ wF(tn + ih), i = 1, . . .m, since the multirate scheme
is interpreted as an integration method on the macro-step grid.

we consider an s-stage Runge-Kutta method with coefficient matrix (ai j)
s
i, j=1, stage vector (ci)

s
i=1

and weight vector (b j)
s
j=1. Then, the macro-step tn → tn+1 for the slow changing subsystem

reads

WSi = wSn +H
s

∑
j=1

ai j fS(tn + c jH,W̃F j,WS j), i = 1, . . . , s,

wSn+1 = wSn +H
s

∑
i=1

bi fS(tn + ciH,W̃Fi,WSi)

(2.11)

with stage values WSi≈wS(tn+ciH). The values W̃Fi≈wF(tn+ciH) denote the coupling terms to
the fast changing subsystems, there are several strategies to achieve these values, we will discuss
them in Section 2.2.2. For the integration of the fast changing subsystem (2.8), we consider an
s̃-stage Runge-Kutta method with coefficient matrix (ãi j)

s̃
i, j=1, stage vector (c̃i)

s̃
i=1 and weight

vector (b̃ j)
s̃
j=1. During the macro-step tn → tn+1, m micro-steps of size h are carried out. We

assume that the approximation wFn+(l−1)/m ≈ wF(tn +(l− 1)h) is already computed. Then, the
micro-step tn+(l−1)/m → tn+l/m = tn + lh reads

W l
Fi = wFn+(l−1)/m +h

s̃

∑
j=1

ãi j fF(tn + c̃ jh,W l
F j,W̃

l
S j), i = 1, . . . , s̃,

wFn+l/m = wFn+(l−1)/m +h
s̃

∑
i=1

b̃i fF(tn + c̃ih,W l
Fi,W̃

l
Si)

(2.12)

with stage values W l
Fi ≈ wF(tn +(l−1)h+ c̃ih). The coupling terms to the slow changing subsys-

tem are denoted by W̃ l
Si ≈ wS(tn +(l−1)h+ c̃ih).

The defintion allows to choose different Runge-Kutta methods for the macro-step and the micro-
steps according to the properties of the subsystems (2.7) and (2.8). This multimethod approach
is called mixed-multirate and was firstly derived in [Bar01] for linear implicit ROW-methods. In
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case of a stiff, slow changing subsystem, an implicit Runge-Kutta method has to be used. Whereas
the fast changing subsystem can be integrated by an explicit method by choosing the micro-step
size sufficiently small. Here, one has to consider carefully the structure of the coupling between
the subsystems: The coupled system (2.3) can provide other stiffness properties than the single
subsystems (2.7) and (2.8).

In this work, we use one global Runge-Kutta method for the macro- and the micro-steps. The
Runge-Kutta method is chosen according to the system properties of the coupled ODE-IVP (2.7-
2.8). The stability of the resulting multirate methods also depends on the evaluation of the cou-
pling variables W̃Fi in (2.11) and W̃ l

Si in (2.12) which will be discussed in the following.

2.2.2 Coupling Strategies

Beside the choice of the underlying integration technique, the coupling strategy between the sub-
systems is the distinguishing element between different multirate methods.

In this work, we focus on slowest-first strategies: The integration process starts with the computa-
tion of an approximation of the slow subsystem to obtain an approximation of the slow subsystem
wSn+1 ≈ wS(tn +H), followed by the integration of the fast subsystem in the micro-steps. To
evaluate the coupling term W̃Fi in the macro-step (2.11), there are three established strategies:
Decoupled-Slowest-First, Coupled-Slowest-First and Coupled-First-Step. We introduce the dif-
ferent approaches, give the corresponding literature and compare the computational effort for the
macro-step.

Subsequently, we discuss the evaluation of the coupling terms W̃ l
Si in the micro-steps (2.12).

At the end of this section, we briefly introduce fastest-first strategies and explain the choice of
using only slowest-first strategies in this work.

Decoupled-Slowest-First

The Decoupled-Slowest-First was proposed in [GW84] for multistep methods and in [GR93] for
multirate ROW-methods. In the macro-step (2.11), the coupling variables W̃Fi, i = 1, . . . ,s are
achieved by extrapolating the fast variables wF . For multirate Runge-Kutta methods, one of the
two following extrapolation formulas is usually used:

Constant extrapolation: WFi = wFn, (2.13)

Hermite extrapolation: WFi = wFn + cih fF(tn,wFn,wSn) (2.14)

for i = 1, . . . ,s. The Hermite extrapolation formula corresponds to an integration step with the
explicit Euler method for the fast subsystem (2.7). This often leads to stability issues in the time
integration and makes the usage of constant extrapolation mandatory.

We point out, that the error of both extrapolation methods is of low order. This impacts also
the resulting multirate method and limits its convergence order. To overcome this, a rational
extrapolation method of higher accuracy is given in [GR93]. This method uses the Jacobian of
fF ; either this information is given a-priori or its computation leads to additional effort.

In [Sch20] a promising alternative is presented: A cubic spline is computed, which interpolates
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the approximations of wF on the previous macro-step. This spline is evaluated at tn + ciH to
achieve the coupling term WFi.

Using a implicit Runge-Kutta method, the computational effort of the extrapolation is negligible
compared to the computational effort of solving non-linear systems of equations. In case of a fully
implicit Runge Kutte scheme, the Decoupled-Slowest-First approach leads to a non-linear systems
of dimension s ·nS, which has to be solved in each macro-step. To decrease a the dimension of the
non-linear system, the fully implicit Runge-Kutta method can be replaced by a Singly-Diagonal
Implicit Runge-Kutta (SDIRK) method [HNW08, Ch. II.7]. Here, s systems of linear equations
of dimension nS have to be solved in each macro-step.

Coupled-Slowest-First

For the macro-step in the Coupled-Slowest-First approach, both subsystems are solved simulta-
neously on the macro-step grid:

WSi = wSn +H
s

∑
j=1

ai j fS(tn + c jH,W ∗F j,WS j), i = 1, . . . , s,

W ∗Fi = wFn +H
s

∑
j=1

ai j fF(tn + c jH,W ∗F j,WS j), i = 1, . . . , s,

wSn+1 = wSn +H
s

∑
i=1

bi fS(tn + ciH,W ∗Fi,WSi)

(2.15)

with auxiliary stage values of the fast subsystem W ∗Fi ≈ wF(tn + ciH), i = 1, . . . ,s. Due to the
large macro-step size, these approximations are inaccurate and therefore refused. This idea was
introduced in [SHV07] for ROW-methods and in [HS09] for the θ -method.

The computation of the approximation wSn+1 in (2.15) corresponds to the integration of the cou-
pled ODE-IVP (2.3) with a classical single-rate Runge-Kutta scheme.

For the computation of wSn+1 using the Coupled-Slowest-First approach, a system of non-linear
equation of dimension s · (nF + nS) has to be solved in case of a fully implicit multirate Runge-
Kutta method. Using a multirate method based on an SDIRK-scheme, s non-linear systems of
dimension nF +nS have to be solved in each macro-step.

Coupled-First-Step or Compound-Step-Methods

The Coupled-First-Step approach was introduced in [KR99] for Runge-Kutta schemes and in
[Bar01] for ROW-methods as Compound-Step methods. The idea is, to compute the macro-step
for the slow subsystem and the first micro-step for the fast subsystem simultaneously in one
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compound step

WSi = wSn +H
s

∑
j=1

ai j fS(tn + c jH,W l
F j,WS j), i = 1, . . . , s,

W 1
Fi = wFn +h

s

∑
j=1

ai j fF(tn + c jh,W 1
F j,WS j), i = 1, . . . , s̃,

wSn+1 = wSn +H
s

∑
i=1

bi fS(tn + ciH,W 1
Fi,WSi),

wFn+1/m = wFn +h
s

∑
i=1

bi fF(tn + cih,W 1
Fi,WSi).

with stage values WSi ≈ wS(tn + ciH) and W 1
Fi ≈ wF(tn + cih).

For a fully implicit Runge-Kutta scheme, the Coupled-First-Step approaches leads to a system of
non-linear equations of dimension s · (nF +nS) for the macro-step and the first micro-step. In case
of an SDIRK-method, s non-linear systems of dimension nF +nS have to be solved.

After the macro-step or the compound-step, respectively, the integration process proceeds with
the integration of the fast changing subsystem on the micro-step grid.

Micro-Steps

For the integration of the fast changing subsystem via (2.12) on the micro-step grid (2.10), the
approximations of the slow changing subsystem wSn ≈ wS(tn), wSn+1 ≈ wS(tn+1) are available.
Therefore, the coupling terms W̃ l

Si ≈ wS(tn +(l− 1)h+ c̃ih) in (2.12) are achieved by one of the
following interpolation formulas

Constant interpolation at tn : W̃ l
Si = wSn (2.16)

Constant interpolation at tn+1 : W̃ l
Si = wSn+1 (2.17)

Linear Interpolation : W̃ l
Si = wSn +

(l−1)+ ci

m
(wSn+1−wSn) (2.18)

Hermite Interpolation : W̃ l
Si = wSn +(l−1+ ci) h · fS(wFn,wSn) (2.19)

for i = 1, . . . , s and l = 1, . . . , m. Similarly to the extrapolation methods for the Decoupled-
Slowest-First approach (2.13-2.14), the interpolation formulas (2.16-2.19) are of low accuracy
and limit the convergence order of the resulting multirate method. In this work, we consider
multirate methods of convergence order 1 and 2. We show that for these schemes, the accuracy
of the above interpolation formulas is sufficient. To compute the coupling variables with a higher
accuracy, a dense output formula can be applied [Bar01].

Considering the computational effort, we again neglect the interpolation of the slow changing vari-
ables for the computation of the coupling terms. To achieve an approximation wFn+1 ≈ wF(tn+1),
m non-linear system of equations of dimension nF have to be solved for the Decoupled-Slowest-
First and the Coupled-Slowest-First approach. For the Coupled-First-Step approach, the compu-
tational effort for the remaining micro-steps reduces to m−1 non-linear systems of equations of
dimension nF .
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Fastest-First-Strategies

For the Decoupled-Slowest-First approach, it is also possible to start the multirate scheme with
the integration of the fast subsystem via (2.12) for l = 1, . . . , m. Then, the values of the coupling
terms W̃ l

Si ≈ wS(tn +(l− 1)h+ c̃ih) are achieved by an extrapolation of the slow changing vari-
ables wS. In the macro-step (2.11), the coupling terms W̃Fi ≈ wF(tn + ciH) are computed by an
interpolation of the approximations of the fast subsystem wFn,wFn+1/m, . . . ,wFn+1. This proce-
dure is called Decoupled-Fastest-First approach. We will not follow this approach since it might
lead to a significant increase of computational effort when the multirate scheme is equipped with
a step size control on the macro-step level [GW84]: If the error tolerance of the step size control
is exceeded by the slow variables, also the micro-steps for the integration of the fast subsystem
have to be recomputed based on a smaller macro-step size. Using a Slowest-First approach, the
multirate factor m can be adapted if the error tolerance is exceeded by the fast subsystem without
recomputing the macro-step for the slow variables.

Chapter Summary

This chapter provided the necessary mathematical knowledge on which the work of this thesis is
based on. We introduced multiscale ordinary differential equations and discussed their efficient
time integration with multirate methods. An overview of existing multirate methods in literature
is given. We presented all established coupling approaches and derived in detail multirate Runge-
Kutta methods.

In the next chapter, we will apply a projection based model order reduction to the slow chang-
ing subsystem of a multiscale ODE and investigate the impact on the computation time and the
approximation properties of a multirate time integration method.
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Multirate Time Integration for Order

Reduced Systems

The efficiency of a multirate time integration method compared to a classical single-rate integra-
tion scheme increases if the ratio nF : nS between the number of fast and slow variables decreases.
By using a multirate method, many function evaluations can be saved. In case of a very high di-
mensional slow subsystem, the main computational effort of the multirate time integration is still
the evaluation of the slow changing subsystem. If the ODE-IVP is stiff and an implicit integration
method has to be applied, a non-linear system of equations with many unknowns has to be solved,
which decreases the performance of the integration method significantly. By applying a model
order reduction (MOR) to the slow subsystem, the dimension nS and therefore the number of slow
changing variables can be reduced considerably, but the main properties of the slow subsystem
are maintained [Ant05]. In [Ver08], the potential of multirate time integration and MOR is al-
ready discussed, but both concepts are considered separately. In this work, we are in particular
interested in the interdependence of both concepts.

We start the chapter with a short introduction to linear MOR, to which we restrict ourselves in the
following. Subsequent in Section 3.2, we will adapt the considered multiscale ODE-IVP such that
a MOR can be applied to the slow subsystem and a the computation time of the multirate method
can be decreased significantly. The impact of the MOR to the approximation properties of the
integration method is investigated in Section 3.3. To this end, we derive an error bound in time
domain that estimates the MOR caused error and the integration error of the multirate method.
At the end of this chapter in Section 3.4, we present simulation results for a coupled field-circuit
system where an MOR is applied to the electromagnetic field subsystem and the coupled system
is integrated with an multirate method.

3.1 Model Order Reduction for Linear Time Invariant

Systems

In this section, we present the basic idea of model order reduction (MOR) for high dimensional,
dynamical systems. For further information we refer to [Ant05]. We focus on linear model
order reduction for linear, time-invariant (LTI) systems and explain all theory which is necessary
for the development of multirate time integration schemes with order reduced subsystems. We
introduce projection based model order reduction for LTI-system (Section 3.1.1) and a particular
model order reduction technique, namely balanced truncation (Section 3.1.2). In Section 3.1.3
we discuss briefly the specifics of model order reduction for coupled LTI-systems. Finally in
Section 3.1.4, we repeat important properties of the logarithmic matrix norm.

13
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3.1.1 Projection-Based Model Order Reduction

We start with an introduction to model order reduction for linear, time invariant systems (LTI).
We consider an LTI-system in the following notation

ẇ(t) = Aw(t)+Bu(t), w(t0) = w0 (3.1)

y(t) =Cw(t) (3.2)

with t ∈ I = [t0, tend],a state space variable w : I→Rn, a system matrix A ∈Rn×n, an input matrix
B∈Rn×q, an external input function u : I→Rq, an output matrix C ∈Rp×n and an output function
y : I→ Rp. We assume that the dimension of the system n is very large. Such systems arise for
example from a semi-discretisation of a partial differential equation (PDE). The aim of model
order reduction is to find a reduced order LTI-system

ẇr(t) = Arwr(t)+Bru(t), wr(t0) = wr
0 (3.3)

ỹ(t) =Crwr(t) (3.4)

with w : I → Rr, Ar ∈ Rr×r, Br ∈ Rr×q, Cr ∈ Rp×r, ỹ : I → Rp and a reduced dimension
r� n. The reduced order system is determined such that the input-output behaviour u(t) y(t)
is approximated. This approximation property can be quantified by error in the output variable
‖y(t)− ỹ(t)‖ for t ∈ I. Usually, this error bound is given with respect to the L2-norm. For some
model order reduction techniques, this error can be bounded by a positive, real number ε .

‖y(t)− ỹ(t)‖ ≤ ε. (3.5)

Another reduction aim is the maintenance of certain properties of the original system by the
reduced order system. One important property is the asymptotic behaviour of the state space
variable:

Definition 2 (Asymptotic Stability). An LTI-sytem (3.1-3.2) is called asymptotic stable iff

lim
t→∞

w(t) = 0 ∀w0. (3.6)

or equivalently, if all eigenvalues of A have a negative real part.

To derive a reduced order system (3.3-3.4) the state space variable w(t) is projected on an r-
dimensional vector space. To this end, we consider a change of basis w̌ = Tw with a regular
matrix T ∈ Rn×n. We assume the following partitioning

T =

(
W>

T>1

)
and T−1 = (V, T2) (3.7)

with V,W ∈ Rn×r. The transformed state space vector results in

w̌ =

(
w̃
ŵ

)
for w̃ ∈ Rr and ŵ ∈ Rn−r. The model order reduction is realised by keeping w̃ and truncating ŵ.
The defintion of V,W in (3.7) leads directly to the relationship

W>V= Ir. (3.8)
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Therefore we can deduce that VW> ∈ Rn×n is an oblique projection. We apply the truncated
projection, performed by V and W, to the LTI-system (3.1-3.2) and get

˙̃w(t) =W>AVw̃(t)+W>Bu(t), w̃(t0) =W>w0 (3.9)

ỹ(t) =CVw̃(t) (3.10)

which defines the reduced order LTI-system (3.3-3.4). There are several techniques how the
projection matrices can be determined. A natural and simple approach for systems where the
system matrix A is diagonalisable, one can compute the eigenvalue decomposition of A which
reads

A =VΛV−1

with Λ = diag(λ1, . . . , λn) the matrix of all eigenvalues of A and V the matrix of the correspond-
ing eigenvectors. There are different approaches to sort the eigenvalues and eigenvectors. We
follow the idea of the dominant pole approximation where the eigenvalues are arranged in de-
scending order with respect to their real part ℜ(λ1) > ℜ(λ2) > .. . > ℜ(λn). The reduced order
model is now obtained by keeping the first r eigenvectors of A and truncate the remaining ones.
To this end, we set in (3.7)

T =V−1 =


w1
...
wr

T>1

 , T−1 =V= (v1, . . . ,vr,T2)

and we have V = (v1, . . . ,vr) the first r columns of V and W = (w>1 , . . . ,w
>
r ) the first r rows

of V−1. We point out that this method may fail if Jordan blocks of dimension greater than one
arise in the eigenvalue decomposition of the system matrix A. Additionally, it stands out that the
input and output matrices B and C of the LTI-system are not considered for the computation of
the projection matrices V and W. Usually, that leads to a worse approximation of the input-output
behaviour of the reduced order system. Therefore, we now focus on a model order reduction
technique which can be applied to a larger class of systems and which involves the matrices B
and C. These requirements are fulfilled by balanced truncation model order reduction which is
presented in the following section.

3.1.2 Balanced Truncation Model Order Reduction

The idea of balanced truncation model order reduction is that some states w(t) ∈ Rn of (3.1)
are more important for the input-output behaviour than others. This is realised by keeping these
important states and truncating the less important ones. To identify the relevant states, we consider
the energy at the input and at the output of a certain state w̄. To derive a proper energy measure,
we have to introduce some concepts of system theory. For simplicity of notation, we consider in
this section the time interval I = [0, tend]. We start with a definition for the energy at the input of
the LTI-system.

Definition 3 (Reachability). Let be given the LTI-system (3.1) with w(0) = 0.

1. A state w̌∈Rn is reachable, if there is a t∗ ∈R+ and a piecewise continuous input function
u(t), such that the solution w of (3.1) fulfils w(t∗) = w̌.



16 3 Multirate Time Integration for Order Reduced Systems

2. The Gramian matrix of reachability is defined for t ∈ R+ as

P(t) =
t∫

0

eAτBB>eA>τdτ. (3.11)

3. The LTI-system (3.1) is called fully reachable if there is t∗ > 0 such that P(t∗) is positive
definite.

Now we can estimate the necessary energy of the input to reach a given state w̌ at time t∗ by

t∗∫
0

u(t)>u(t)dt ≥ w̌> (P(t∗))−1 w̌, (3.12)

if P(t∗) is regular. If the LTI-system is fully reachable, P(t∗) is always regular. For the energy at
the output of the LTI-system, we proceed similarly and derive the concept of

Definition 4 (Oberservability). Let be given the LTI-system (3.1-3.2).

1. A state ŵ is unobservable, if for the particular input u≡ 0, the solution w(t) of (3.1) for the
initial value ŵ = w(0) always yields y(t) =Cw(t) = 0, ∀t ≥ 0.

2. The Gramian matrix of observability is defined for t ∈ R+ as

Q(t) =
t∫

0

eA>τC>CeAτdτ. (3.13)

3. The LTI-system (3.1-3.2) is called fully observable if Q(t) is positive definite for all t ≥ 0.

A measure for the energy at the output for the initial value ŵ = w(0) and input u≡ 0 is given by

∞∫
0

y(t)>y(t)dt = ŵ>Qŵ (3.14)

for Q = lim
t→∞

Q(t), the infinite Gramian matrix of observability. Analogously, the infinite Gramian

matrix of reachability is defined as P = lim
t→∞

P(t). The definition of the energy of a certain state ŵ
at the input and the output of the system motivates the following reduction goals:

a) Truncate all states w̌ that are difficult to reach, i.e. states with a small value of

w̌>Pw̌ (for ‖w̌‖= 1).

b) Truncate all states ŵ that are difficult to observe, i.e. states with a small value of

ŵ>Qŵ (for ‖ŵ‖= 1).

For the particular case of a balanced LTI-system, both reduction goals are identical:
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Definition 5 (Balanced System). An LTI-system (3.1-3.2) is called balanced, if the infinite Gramian
matrices are given by

P = Q = diag(σ1, . . . ,σn), with σ1 ≥ . . .≥ σn > 0, (3.15)

with the Hankel singular values of the the LTI-system σ1, . . . ,σn.

For a balanced system, the value
w̄>Pw̄ = w̄>Qw̄ = σi

for w̄ = ei = (0, . . . ,1, . . . ,0)> indicates the importnace of the state w̄.

For a general, asymptotic stable LTI-system with infinite Gramians P, Q, it is possible to apply
a basis change T, such that the transformed system is balanced. The infinite Gramians of the
transformed system P̄, Q̄ are given by

P̄ = TPT>, Q̄ = (T−1)>QT−1.

For balanced truncation model order reduction, these transformation matrices are computed, and
the less important states of the balanced system are truncated. The detailed procedure is given in
the following

Definition 6 (Balanced Truncation). Let be given a fully reachable, fully observable and asymp-
totic stable LTI-system (3.1-3.2) with infinite Gramian matrices P, Q.

• U ∈ Rn×n denotes the Cholesky factor of P, i.e. P =UU>.

• KΛ2K> = U>QU denotes the eigenvalue decomposition with an orthogonal matrix K ∈
Rn×n, Λ = diag(σ1, . . . ,σn) and σ1 ≥ . . .≥ σn > 0.

• T := Λ1/2K>U−1 defines a regular transformation, such that the transformed LTI-system
w̄ = Tw is balanced and we have P̄ = Q̄ = Λ.

Let r ∈ {1, . . . ,n− 1} with σr > σr+1 and Er =
(
Ir, 0>

)>. The balanced truncation projection
matrices are given by

V := T−1Er, W> := E>r T.

The achieved reduced order system is again asymptotic stable, reachable, observable and it is
balanced.

The existence of the Cholesky-decomposition P = UU> follows from the positive definiteness
of the matrix P and therefore from the reachability of the LTI-system. The entries σ1, . . . ,σn are
exactly the Hankel-singular values of Definition 5. LTI-systems, which are not fully reachable
can be projected on their reachable subspace. To this end, the singular value decomposition of P
is computed

P =UP

(
Σ̃P 0
0 0

)
V ∗P

with unitary matrices UP, VP and a matrix Σ̃P = diag(σ̃1, . . . , σ̃s) and s = rk(P). Then, the projec-
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tion onto the reachable subspace is defined by

TR =UPES

with ES = (IS, 0>)>. To the resulting, reachable subsystem the balanced truncation model order
reduction can be applied.

A balanced truncation model order reduction requires the computation of the infinite Gramian ma-
trices of the LTI-system. Usually, these matrices are not known a priori and have to be determined
in advance. The computation of the limits of the matrix integrals in (3.11) and (3.13) is quite
expensive and in most cases not possible. For LTI-systems of moderate dimension a common
way is to solve the following equivalent Lyapunov-equations.

Lemma 2. The infinite Gramian matrices P, Q of an asymptotic stable LTI-systems (3.1-3.2) are
the unique solutions of the Lyapunov-equations

AP+PA>+BB> = 0

A>Q+QA+C>C = 0.

For LTI-systems of high dimensions, alternative approaches to determine P and Q can be found
in literature, for example based on ADI-schemes or Krylov-subspace methods [BS13, Sim16].

For balanced truncation, an a priori error bound is can be stated in terms of the Hankel singular
values:

Theorem 3. Let be given an asymptotic stable, fully observable and fully reachable LTI-sytem
(3.1-3.2). The reduced order model (3.3-3.4) is achieved by balanced truncation (Def. 6). Then,
the error in the output can be bounded by

‖y− ỹ‖L2 ≤ 2
n

∑
i=r+1

σi‖u‖L2 (3.16)

with σi the Hankel singular values of the LTI-system and r the dimension of the reduced order
system.

For the particular choice of C = In in (3.2) and an input of unit energy, i.e. ‖u‖L2 = 1, the
projection error is bounded by

‖w−VW>w‖L2 ≤ 2(σr+1 + . . .+σn). (3.17)

with w the solution of (3.1).

With balanced truncation we introduced a model order reduction method that preserves stability
and provides an a priori error bound. In the next section, we extend the theory of model order
reduction on coupled LTI-systems.
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3.1.3 Model Order Reduction for Coupled LTI-systems

The main goal of the entire chapter is to apply a model order reduction to the slow changing
subsystem of a multiscale ODE-IVP (2.3). The replacement of the slow subsystem by an order
reduced system effects also the fast subsystem and the overall behaviour of the coupled sys-
tem. Therefore, the theory of model order reduction has to be extended to coupled LTI-systems.
In [RS07], the authors present the framework of k coupled LTI-system. To each of them, they
apply a balanced truncation model order reduction and they investigate error bounds and stability
properties for the coupled system. To keep it simple, we adapt the notation and the results to only
two coupled systems and apply a model order reduction to only one of them.

We define the coupled, multiscale LTI-system as

ẇF(t) = AFwF(t)+BFuF(t), (3.18)

yF(t) =CFwF(t) (3.19)

uF(t) = KFFyF(t)+KFSyS(t)+HFu(t), (3.20)

ẇS(t) = ASwS(t)+BSuS(t), (3.21)

yS(t) =CSwS(t), (3.22)

uS(t) = KSFyF(t)+KSSyS(t)+HSu(t), (3.23)

with t ∈ I = [t0, tend], state space variables wi : I→Rni , system matrices Ai ∈Rni×ni , input matrices
Bi ∈ Rni×qi , output matrices Ci ∈ Rpi×ni , output functions yi : I → Rpi , global input matrices
Hi ∈Rqi×q, a global input function u : I→Rq, coupling matrices Ki j ∈Rq j×pi for i, j ∈ {F,S} and
corresponding initial values wF0 = wF(t0), wS0 = wS(t0). We assume that each subsystem itself
is asymptotically stable. To derive a stability condition for the coupled LTI-system we introduce
the transfer functions

GF(s) =CF(sInF −AF)
−1BF (3.24)

GS(s) =CS(sInS −AS)
−1BS (3.25)

for s ∈ C\λ (Ai), i ∈ {F,S} with λ (Ai) the set of all eigenvalues of Ai. The transfer function
describes the input-output behaviour of an LTI-system in frequency domain and is a powerful tool
in the analysis of model order reduction techniques. A norm for the transfer function is given by

‖G‖H∞
= sup

ω∈R
‖G(iω)‖2 (3.26)

with respect to the spectral norm of G(iω) and the imaginary unit i. The asymptotic stability of
the coupled LTI-system is characterised in the following Lemma.

Lemma 4. [RS07, Cor. 2.4] Let be given the coupled LTI-system (3.18-3.23). The coupled
LTI-system is asymptotic stable if the spectral radius ρ(Π)< 1 for

Π = K̃ ·diag(‖GF‖H∞
,‖GS‖H∞

), with K̃ =

(
‖KFF‖2 ‖KFS‖2
‖KSF‖2 ‖KSS‖2

)
. (3.27)

We apply a balanced truncation model order reduction to the slow subsystem (3.21-3.22) such
that the input-output behaviour uS(t) yS(t) is approximated. The output of the order reduced
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subsystem is denoted by ỹ(t). The reduced order subsystem is of dimension r, is again asymptotic
stable and the error bound is given by

‖y− ỹ‖L2 ≤ γ‖uS(t)‖L2

with γ = 2(σr+1 + . . .+σnS) the truncated Hankel singular values of the subsystem. A stability
condition for the coupled system with a reduced order subsystem is provided in the following

Theorem 5. [RS07, Theorem 4.1] We consider the coupled LTI-system (3.18-3.23) with asymp-
totic stable subsystems. A balanced truncation model order reduction is applied to the subsystem
(3.21-3.22) and the error bound is denoted by γ . The coupled LTI-system with order reduced
subsystem is asymptotic stable if

14 · γ · ‖K̃‖2‖X‖2 < 1 (3.28)

with X the solution of the Lyapunov-equation

ΠXΠ
>−X =−I2 (3.29)

and Π, K̃ defined in (3.27).

In [RS07] an error bound in frequency domain for the coupled LTI-system with reduced order
subsystems is provided. We pursue another strategy and derive an error bound in time domain in
Section 3.3.3. For the derivation of this error bound, some matrix theory from linear algebra is
necessary. We provide this theory in the following section.

3.1.4 The Logarithmic Matrix Norm

The logarithmic matrix-norm for A ∈ Rn×n

µx(M) := lim
h→0+

‖I +hA‖x−1
h

(3.30)

is a powerful tool to analyse differential equations [Dah59]. Hereinafter, we will only use the
logarithmic matrix norm for x = 2 and we skip the index in the following. For this particular case,
the logarithmic matrix norm can be expressed by

µ2(A) := λmax

(
A+A>

2

)
(3.31)

with λmax the largest eigenvalue of 1
2(A+A>). The logarithmic matrix norm provides the follow-

ing properties (amongst others):

‖eAt‖2 ≤ eµ(A)t (3.32)

µ(V>AV)≤ µ(A) (3.33)

for t ∈ [t0, tend], any matrix V ∈ Rm×r with V>V= Ir and r < m, [CS12].
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Section Summary

We provided insight into the framework of projection based model order reduction for linear sys-
tems. With balanced truncation we introduced a model order reduction technique which maintains
asymptotic stability of the system and which provides an error bound for the reduced order sys-
tem. We pointed out that for coupled LTI-system additional conditions have to be fulfilled to
guarantee stability also for order reduced subsystems. We will use the logarithmic matrix norm
and its properties to derive a time domain error bound for a coupled system with order reduced
subsystem. Equipped with this knowledge we continue to the heart of this chapter: multirate time
integration with an order reduced, slow subsystem.

3.2 Model Order Reduction for Multiscale Ordinary

Di�erential Equations

In the following, we combine the concepts of model order reduction and multirate time inte-
gration. Starting point is a partitioned multiscale initial value problem of ordinary differential
equations in the form

ẇF(t) = fF(wF ,wS), wF(t0) = wF0 (3.34)

ẇS(t) = fS(wF ,wL), wS(t0) = wS0 (3.35)

providing the typical dynamical behaviour, such that the system can be integrated efficiently with
a multirate time integration method: The components wF(t) ∈RnF are changing much faster than
wS(t) ∈ RnS and for the dimension it holds nF � nS. For simplicity of notation, but without loss
of generality, we assume the coupled system to be autonomous. We assume a fixed and a-priori
known partitioning of the subsystems according to their dynamic behaviour but the theory can be
easily extended to more than two subsystems.

The multirate methods of this section are based on linear implicit one-step schemes which are
briefly discussed in Section 3.2.1. In Section 3.2.2, we adapt the partitioned multiscale ODE
(3.34-3.35) such that a model order reduction can be applied to the slow subsystem. The impor-
tance of a small dimensional coupling variables is stated in Section 3.2.3 followed by numerical
results of a thermal-electric coupled system where the model order reduction is applied to a semi-
discretised heat-equation (Section 3.2.4).

3.2.1 Multirate Linear Implicit Methods

We consider multirate linear implicit integration method with a Coupled-First-Step approach
[BG02]. A simple integration scheme in that class is the multirate implicit Euler scheme [CS10].
The compound step for the linear implicit Euler methodInF −h

∂ fF

∂wF
− h

m
∂ fF

∂wS

−mH
∂ fS

∂wF
InS −H

∂ fS

∂wS

(wFn+1/m−wFn

wSn+1−wSn

)
=

(
h fF(wFn,wSn)

H fL(wFn,wSn))

)
(3.36)
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and for the remaining micro steps holds(
InF −h

∂ fF

∂wF

)
kF,i = h fF(wFn+i/m, w̄S(t0 + ih)), i = 1, . . . ,m−1 (3.37)

with kF,i = wFn+(i+1)/m−wFn+i/m and w̄S the interpolated values of the slow components. This
method can be interpreted as one Newton-iteration of the classic implicit Euler scheme and covers
all properties of multirate linear implicit methods. It can be used to integrate moderately stiff
systems of ODEs. The computational effort of one compound step consists of computing the
(nF +nS)× (nF +nS)-Jacobian matrix of the coupled and solving one linear system of equations
of the same dimension.

3.2.2 Multirate Time Integration for Order Reduced Subsystems

In Section 2.2, we stated that multirate integration schemes exploit the special structure of the
ODE (3.34-3.35) by using inherent time steps for the different subystems. Therefore, the high
dimensional, slow subsystem has to be integrated considerably less often. Nevertheless, it remains
to solve the high dimensional system which causes a large computational effort. This setting
motivates to replace the large, slow subsystem of lower dimension, approximative replacement
system. The idea is to compute this replacement system with a model order reduction as described
in Section 3.1. To apply a linear model order reduction we assume that the slow subsystem (3.35)
is linear-affine or can be linearised without loss of accuracy so that it can be written as

ẇS(t) = ASSwS(t)+(ASF , BS)

(
wF(t)
u(t)

)
with a system matrix ASS ∈ RnS×nS , a coupling matrix ASF ∈ RnS×nF , an input matrix BS ∈ RnS×qS

and an external, time dependent input u : R→RqS . For the output of the slow changing subsystem
yS(t) = CSwS(t) we set CS = InS . We apply a model order reduction to the slow variable wS. To
this end, the subsystem is projected on a low dimensional subspace by biorthogonal projection
matrices V,W ∈ RnS×r with r� nS as described in Section 3.1. In the fast subsystem (3.34) we
replace wS(t) by yS(t) and end up with the reduced order, coupled system

˙̃wF(t) = fF(w̃F ,yS, t), w̃F(t0) = wF0 (3.38)

ẇr
S(t) =W>ASSVwr

S(t)+W>(ASF , BS)

(
w̃F(t)
uS(t)

)
, wr

S(t0) =W>wS0 (3.39)

yS(t) = Vwr
S(t). (3.40)

w̃F is influenced by the model order reduction of the slow subsystem, but not reduced itself. Now,
we apply the multirate linear implicit Euler method (3.36-3.37) to the order reduced, coupled
system (3.38-3.40). For the upper-right off-diagonal block in the coefficient matrix in (3.36) we
have

h
m

∂ fF

∂wr
S
=

h
m

∂ fF

∂yS
V

and it turns out that the coupling interface slow-to-fast is not reduced in this setting. In fact, with
a non-reduced interface we cannot expect large improvements of the computational efficiency
solving the system of linear equations in the compound step (3.36) by using a reduced, slow
subsystem. So we have to find a way to transfer the reduced dimension to the coupling interface
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to gain efficiency in the compound macro-step.

3.2.3 Interface Reduction

This section is based on results published in [HBG16a].

Often the fast components wF do not depend on the detailed information of every single slow
component. So we may replace the coupling interface wS in (3.34) by a low dimensional input
uF = gF(yF ,yS,u, t) with yF ,yS the output of the subsystems and a global input u. The same
procedure is made for the slow part (3.35). Adopting the notation for coupled linear systems from
Section 3.1.3, we get for the full order model

ẇF = fF(wF ,uF , t) ẇS = fS(wS,uS, t) := ASSwS + B̂SuS (3.41)

uF = gF(yF ,yS,u, t) uS = KSF · yF +KSS · yS +H ·u (3.42)

yF = hF(wF , t) yS =CS ·wS (3.43)

with subsystem dependent input uX(t) ∈ RqX , global input u(t) ∈ Rq, output yX ∈ RpX , coupling
matrices KSF ∈ RnS×nF ,KSS ∈ RnS×nS , input matrices B̂ ∈ Rns×qS , H ∈ Rqs×q and output matrix
C ∈ RpS×nS . We assume, that the reformulation of the coupled ODE-IVP (3.34-3.35) does not
change its solution wF(t), wS(t) and we can keep the notation of variables from above.

The coupling functions gF ,hF and matrices KSF ,CS are not given by the system itself. Thus for
the multirate setting they must be defined by the user exploiting some underlying properties, e.g.
physical laws. These modifications in the multirate setting will not change the diagonal blocks in
the compound step coefficient matrix (3.36), but for the off-diagonal blocks the mixed derivatives
change into

∂ fF

∂wS
=

∂ fF

∂uF
· ∂gF

∂wS
=

∂ fF

∂uF
· ∂gF

∂yS
· ∂yS

∂wS
=

∂ fF

∂uF
· ∂gF

∂yS
·CS. (3.44)

∂ fS

∂wF
=

∂ fS

∂uS
· ∂uS

∂wF
=

∂ fS

∂uS
· ∂uS

∂yF
· ∂yF

∂wF
= B̂S ·KSF ·

∂hF

∂wF
. (3.45)

On the right hand sides of (3.44) and (3.45) we find matrix products of the dimensions:

(nF ×qF) · (qF × pS) · (pS×nS) (3.46)

(nS×qS) · (qS× pF) · (pF ×nF). (3.47)

In a multirate context, the dimension nF is supposed to be small. If the interface functions
gF ,hF ,KSF ,CS are chosen such that the dimension of their codomains are small, then only one
large dimension remains, namely the number of the slow components nS. However, we can com-
pute a reduced model of dimension r for the slow part and use matrices B̂r and Cr

S in the mixed
derivatives of (3.44-3.45). Using this framework we expect higher efficiency in a time domain
simulation.

3.2.4 Simulation of an Electric-Thermal Problem with Reduced Interface

To apply the theoretical considerations of the above sections, we use as benchmark example a
modified version of the electric-thermal test circuit of [BGS03]: We deal with an electric circuit
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Table 3.1: Parameters of the electric circuit

decide parameter decide capacity

amplification A = 300 capacity 1 C1 = 1F
load resistance RL = 0.3kΩ capacity 2 C2 = 100µF

pulsed voltage source v(t) =

{
0.5sin(πt/(2.5 ·10−5s)) [mV] if t < 2.5 ·10−5s
0 [V] otherwise

in which the thermal behaviour of a resistor is included. This results in a coupled system of the
network equations and the heat equation. While voltages change very fast, heating or cooling of
devices is a much slower process. Before applying the time integration, a semi-discretisation of
space is performed for the heat equation. High accuracy demands as well as fine structures may
lead to a large scale system. Therefore a model order reduction is applied to the slow, thermal
subsystem. We work out the major ideas of the modelling process, for details see [BGS03].

Circuit Modeling. The electric part is represented by the circuit diagram in Fig. 3.1. The ODE
model reads

C1u̇3 = (u2−u3)/R(T )− idi(u3−u4,Tdi) (3.48)

C2u̇4 = idi(u3−u4,Tdi)−u4/RL (3.49)

with the node voltages u3, u4 and u2 = Av(t), the resistors’s temperature T and the diode’s tem-
perature Tdi. The nodal equations describe a quite stiff system of differential equations. So the
multirate linear implicit Euler-method (3.36-3.37) is not a natural choice. To be able to apply
this method to this circuit equations we use some extreme parameters amongst others for the
capacitances. Table 3.1 shows all relevant parameters.

Between node two and three in the circuit, we consider a copper wire of length l and model it as
a 1-D thermal dependent resistor. Let a(x) = a0 ·1/(1+(2/l)2(l− x)x) denote the cross section
of the wire while x represents the spatial coordinate; so at half of the length of the wire the cross
section is half of the cross section at the ends. So we expect higher temperatures in the middle of
the resistor. We assume a local resistance of the following type:

r(T ) = r0(1+ τ(T −Tmeas)) (3.50)

with thermal coefficient τ and specific resistance r0 at temperature Tmeas. We get the total resis-
tance R(T ) by integrating the local resistance over the length of the wire l with respect to the cross
section

R(T ) =
l∫

0

r(s,T (t,s))
a(s)

ds =
l∫

0

r̃(s,T (t,s))ds. (3.51)

The diode is also temperature dependent and has a strong non-linear behaviour, for the character-
istic curve and more details see [BGS03].

Thermal Modeling and Coupling. The starting point of the thermal model is the 1-D heat
equation for diffusive heat transport, which we use for the copper wire (resistor):

M′W Ṫ =
∂

∂x

(
Λ(x)

∂T
∂x

)
+ sources (3.52)
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Figure 3.1: Circuit diagramm

u2 u3

RL

u4

idi

A R(T )

v(t)

C1 C2
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with thermal mass of the wire M′W and local 1-D conductivity Λ(x) = λ (x) · a(x). The sources
term is comprised of two effects: (a) Local self heating due to the electric current. In fact, the
dissipated power PW = u2

R/R of the resistor results in heating the wire; (b) Cooling to the ambient
temperature Tenv, which is given by Newton’s cooling C = −ζ S′(T −Tenv) with surface S′. For
further details see [BGS03].

To be able to apply the multirate ODE-integration scheme (3.36-3.37), we discretise space in
the parabolic PDE (3.52) by using the method of lines. We equip the wire with an equidistant
grid Ih : Xi = i · k, i = 0, . . . ,N with XN = N · k = l and use a finite volume approach. For that,
we sub-divide the wire in cells of length k in the inner and k/2 at the boundaries. A schematic
representation is given in Fig. 3.2. The heat conduction over one single cell can be simplified
described by: change of is inflow minus outflow. So we get the approximation

M′W,iṪi = Λ
Ti+1−2Ti +Ti−1

k2 +P′W,i−ζ S′W,i(Ti−Tenv) (3.53)

for the inner cells while i denotes the belonging of the variables to the i-th cell, i = 1, . . . ,N−1.
For the boundary cells we have

M′W,0Ṫ0 = Λ(T1−T0)/k+P′W,0−ζ S′W,0(T0−Tenv) (3.54)

M′W,N ṪN = Λ(TN−1−TN)/k+P′W,N−ζ S′W,N(TN−Tenv). (3.55)

The diode is temperature dependent but without own thermal mass. So we just set the temperature
at the end of the copper wire to be the temperature of the diode.

The coupling terms have been given indirectly in the models above:

(i) Circuit to thermal: Joule’s law gives the dissipated power at the resistor. By adding an addi-
tional differential equation to the circuit equations,

ė= ur · ir = (u2−u3)
2/R(T ), (3.56)

the total energy e is computed in each time step for the voltage ur and the current ir at the resistor
R(T ). And PW = e/H∗ gives us the required power for some time step H∗.

(ii) Thermal to circuit: Since the resistance R(T ) depends on the temperature profile T , we need
the temperature distribution in the resistor to compute it, for a given distribution we use equa-
tion (3.51) to compute the total resistance. In addition, the diode’s current depends on the wire
temperature of the last cell.
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We write the electric-thermal coupled system in the compact form

[u̇3, u̇4, ė] = fF([u3,u4,e],T, t) (3.57)

Ṫ = fS([u3,u4,e],T, t). (3.58)

The computational cost of the compound step (3.36) depends on the number of discretisation
points of the spatial variable of the thermal subsystem dim(T ). If a high accuracy is demanded,
this dimension can be large and the computational cost increases. So the question is how the
coupling interface can be modified such that the dimension of the input of the fast part and the
output of the slow part is small.

Reduced Interfaces. The heating of the resistor, caused by the electric current, is computed by
the dissipated power p. The electric subsystem is computing the total dissipated energy e in one
macro step H. The ratio e/H defines the averaged power, which we use for coupling [BGS03].
Hence we add an output function to the active subsystem: hF([u3,u4,e], t) = e/H. To compute
e, we have either to calculate differences of e or we have to assign zero as the initial value for
each macro step. If H is adjusted by a step size control, it has to be handled as an independent
parameter.

For the coupling interface slow to active, one has to consider the thermal dependent, physical
parameters, which are necessary in the circuit model and which can be computed by a linear
model. In our case, these are the total resistance R(T ) and the diode’s temperature Tdi. Additional
input functions for the slow and the active part are not necessary with this choice of coupling
interfaces. As global input variable u we have the source voltage v(t) which is used in the fast,
electric subsystem only. These modifications in the interface of the coupled system (3.57-3.58)
lead to

[u̇3, u̇4, ė] = fF([u3,u4,e],uF , t) Ṫ = ASS ·T +BS ·uS

uF = [R(T ),Tdi,v(t)]T uS = p

p = hF([u3,u4,e], t) = e/H [R(T ),Tdi] =CS ·T.

For this system the off-diagonal blocks of the Jacobian matrix in the compound macro-step (3.36)
become much smaller. Inspecting the dimensions like in (3.46) gives for ∂ fF

∂wS
the matrix sizes

(3×2) · (2×nS) and for ∂ fS
∂wF

the dimension (nS×1) · (1×3). Now, a model order reduction can
decrease the number of thermal variables from nS to a significant smaller number r. No large
dimensional terms occur in this setting so we expect a large gain concerning the computational
effort using compound step multirate methods for this multiphysics application.

For the simulation of the system, we use the mixed multirate compound step method of [Bar01]
which consists of a third order for the compound and a fourth order linear implicit method for
the remaining micro steps. For the model order reduction we chose balanced truncation. We
implemented the system and the integration methods in Matlab 2013a. All relevant simulation
paramaters are listed in Table 3.2 and also the computation time can be seen there. The table
shows the necessity of an interface reduction when combining a multirate scheme with a model
order reduction: Only applying a model order reduction increases the computation time due to
the loss of special matrix structures (sparsity, band structure). Interface reduction and MOR can
decrease the computation time to 25%. Here, we are interested in two physical sizes: One is the
temperature of the diode and the other is the highest temperature in the resistor which is found at
its middle. Figure 3.4 shows the relative error of the multirate solution to the reference solution
of these two physical sizes. Figure 3.3 shows the voltage curve at node three. The error is very
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Figure 3.3: Voltage at Node 3
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Figure 3.4: Relative errors
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Table 3.2: Simulation parameters and computation time for full order model (FOM) and reduced
order model (ROM) for simulation time [0s, .12s]

Model monolithic interface reduced

Parameters H m
FOM ROM FOM ROM

nS = 50 r = 5 nS = 50 r = 5
single-rate 5 ·10−5 1 4.81s 5.65s 2.65s 1.91s
multirate 2.5 ·10−4 5 3.44s 5.00s 1.36s 1.18s

small and we can say that our method decreases the computation time significantly with only a
very small loss of accuracy.

Section Summary

We applied a model order reduction to the slow changing, linear subsystem of a partitioned multi-
scale ODE-IVP and adapted the coupling interface between the subsystem, such that it is of small
dimension. We applied a multirate time integration method to the resulting coupled system and
observed a significant decrease of computational effort. The simulation results showed only a
small loss of accuracy compared to the original, full order model. The investigation of the error
that is caused by the model order reduction and its influence on the multirate time integration will
be the topic of the next section.

3.3 An Error Estimate for the Multirate-MOR θ -Method

We study the impact of a model order reduction provided to one subsystem on the properties of
a (multirate) time integration. To this end, we derive an error bound for a reduced order, coupled
LTI-system in time domain and investigate consistency, stability and convergence of a multirate
scheme applied to an order-reduced system.
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3.3.1 Problem Setting

We consider a partitioned multiscale ODE-IVP (2.3) and assume both subsystems to be linear-
affine. Then, the coupled system reads

ẇF(t) = AFFwF(t)+AFSyS(t)+uF(t), wF(t0) = wF0 (3.59)

ẇS(t) = ASSwS(t)+ASFwF(t)+BSuS(t), wS(t0) = wS0 (3.60)

yS(t) =CSwS(t) (3.61)

with fast changing variables wF(t) ∈ RnF , slow changing variables wS(t) ∈ RnS , system matrices
AFF ∈ RnF×nF , ASS ∈ RnS×nS , coupling matrices AFS ∈ RnF×pS , ASF ∈ RnS×nF , external input
functions uF : [t0, tend]→ RnF , uS : [t0, tend]→ RmS , an input matrix BS ∈ RnS×mS , an output
matrix CS ∈RpS×nS and the output of the slow subsystem yS(t)∈RpS . The coupling slow-to-fast is
realised via an additional output function of the slow subsystem yS(t) and we can interpret the slow
changing subsystem (3.60-3.61) as an LTI-system (3.1-3.2). The dimension of the slow changing
subsystem is assumed to be much larger than the dimension of the fast subsystem nF � nS.

In context of model order reduction, we consider a slow subsystem with only few inputs and
outputs, i.e. mS, pS are small, but with a large number of internal variables nS. This property
is formalised by writing the input and output of the system as a matrix-vector product BSuS and
CSwS, respectively. By contrast, we consider only a small number of internal variables for the fast
subsystem nF . Therefore, the input to the fast subsystem is written with a single input function
uF to keep the notation as simple as possible.

The coupled ODE system (3.59-3.61) can be rewritten in the following compact form(
ẇF(t)
ẇS(t)

)
︸ ︷︷ ︸

=:ẇ(t)

=

(
AFF AFSCS

ASF ASS

)
︸ ︷︷ ︸

=:A

(
wF(t)
wS(t)

)
+

(
uF(t)

BSuS(t)

)
︸ ︷︷ ︸

u(t)

, w0 =

(
wF,0
wS,0

)
. (3.62)

as one initial value problem for w(t) := [w>F (t), w>S (t)]
>. Due to the multirate behaviour of the

system, the coupling between the subsystems (3.59) and (3.60-3.61) is assumed to be weak. In
this chapter, we formalise this property by the following

Assumption 6 (Weak Coupling). For the partitioned ODE system (3.62) we assume that the
following holds

‖AFSCS‖< ε and ‖ASF‖< ε (3.63)

for an induced matrix norm and a fixed, small ε ∈ R+.

Furthermore, we assume that the system (3.62) is stable in sense of system theory:

Assumption 7 (Asymptotic Stability). The system matrix A = (ai j)
n
i, j=1 is strict diagonal domi-

nant and its diagonal entries are all negative:

aii +∑
i 6= j
|ai j|< 0 for i = 1, . . . ,n. (3.64)

We apply a projection based model order reduction as described in Section 3.1.1 to the slow
changing subsystem (3.60-3.61), such that the input-output behaviour [wF(t), uS(t)] yS(t) is
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approximated and the number of internal state space variables dim(wr
S) is small. The projection

matrices are denoted by V, W ∈ RnS×r. The coupled IVP with order reduced, slow subsystem
reads

˙̃wF(t) = AFF w̃F(t)+AFSỹS(t)+uF(t), wF(t0) = wF0 (3.65)

ẇr
S(t) = Ar

SSwr
S(t)+Ar

SF w̃F(t)+Br
SuS(t), wr

S(t0) =W>wS0 (3.66)

ỹS(t) =Cr
Swr

S(t) (3.67)

with wr
S(t) ∈ Rr, Ar

SS = W>ASSV, Ar
SF = W>ASF , Br

S = W>BS and Cr
S = CSV. The variables

w̃F(t) ∈Rn
f and ỹ(t)S ∈RpS are perturbed by the model order reduction but are not reduced them-

selves. To compute the projection matrices, we use balanced truncation model order reduction,
cf. Section 3.1.2. The dimension r of the reduced order, slow subsystem is chosen such that the
stability condition of Theorem 5 is fulfilled for

K̃ =

(
0 ‖AFS‖2

‖ASF‖2 0

)
and the balanced truncation error bound γ , cf. Theorem 3. Analogously to the compact form of
the full order model (3.62) we rewrite the reduced order system (3.65-3.67) to(

˙̃wF(t)
ẇr

S(t)

)
=

(
AFF AFSCr

S
Ar

SF Ar
SS

)(
w̃F(t)
wr

S(t)

)
+

(
uF(t)

Br
SuS(t)

)
, w0 =

(
wF,0

W>wS,0

)
. (3.68)

To this system, we apply a multirate time integration scheme over the time interval [t0, tend] with
constant macro-step size H and fixed multirate factor m ∈ N. The numerical approximation at tn
after n macro-steps is denoted by [w̃>Fn, wr>

Sn ]
> and yr

Sn, respectively.

To derive a combined error bound for multirate time integration of coupled systems with order
reduced, slow subsystems, we start with the definition of the estimated error.

3.3.2 Error De�nition and Splitting

To investigate the impact of a model order reduction of the slow changing subsystem to the prop-
erties of a multirate time integration scheme, we are interested in the difference between the
analytical solution of the full order system w(tn) ∈ Rn and the numerical approximation of the
reduced order system [w̃>Fn, wr>

Sn ] ∈ RnF+r. Using the projection matrix V we can identify the
numerical approximation of the reduced order system in the vector space Rn. Then, the error
reads

E(t) =
(

EF(t)
ES(t)

)
=

(
wF(t)
wS(t)

)
−
(

w̃Fn

Vwr
Sn

)
. (3.69)

In context of model order reduction, the projection matrices V, W are determined in such a way,
that the input-output behaviour is approximated – or equivalently – the error in the output variable
‖yS(t)− ỹS(t)‖ is minimized. For the particular choice of CS = InS in (3.61), the error definition
in (3.69) coincides with the output orientated error definition (3.5).
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For the further investigation of the error (3.69), we split in the following way

E(t) =
(

wF(t)
wS(t)

)
−
(

w̃F(t)
Vwr

S(t)

)
︸ ︷︷ ︸+

(
w̃F(t)
Vwr

S(t)

)
−
(

w̃Fn

Vwr
Sn

)
︸ ︷︷ ︸

= EMOR(t) + EMR(t) (3.70)

with [w̃F(t)>, wr
S(t)

>]> the analytical solution of the reduced order, coupled system (3.65-3.67).
The error EMOR(t) is only caused by the model order reduction, while EMR(t) denotes the error of
the time integration method applied to the reduced order, coupled system.

This splitting allows us to investigate the different errors with different techniques that fit for the
error analysis of an MOR caused error and a time integration caused error, respectively.

According to the definition of EMR, the multirate time integration scheme is only applied to the
reduced order, coupled system (3.65-3.67). Therefore, the parameters of the integration method
– macro-step size H and multirate factor m – are chosen such that the method converges and the
simulation gives reliable results. An estimate for the error EMR(t) can be derived by using the
results of the convergence analysis for multirate one-step methods for ODEs in terms of H, m
and the Lipschitz constants of the reduced order, coupled system. Here, the multirate method is
adapted to the reduced order, coupled system.

For other approaches, it can be interesting to turn around the setting, i.e. the parameters of the
multirate method are adapted to the full order, coupled system and then, the model order reduction
is applied in such a way, that the convergence properties of the integration method do not change.
This problem setting is much more challenging and of less practical importance: If a reduced
order model is already computed, the full order model is usually not integrated in time domain.
For the theoretical point of view, we study this problem setting in Section 3.3.4: For the special
case of a balanced, slow subsystem we can estimate the time integration error of the reduced
order, coupled system in terms of the time integration error of the full order, coupled system using
a perturbation argument of [HS09] for a multirate θ -method.

In Section 3.1.3 we discussed the existing results for error bounds and stability analysis for model
order reduction of coupled systems. All these results have in common that the error is estimated
in frequency domain. Using Parseval’s theorem, e.g. [Gru19], the derived estimates can be trans-
ferred to time domain if L2- and l2-norms are used.

In combination with the time integration error EMR, an estimate for EMOR in frequency domain
will not lead to a satisfying result for E(t). Therefore, we provide an upper bound for the error
EMOR in time domain in the following section.

3.3.3 A Time-Domain Error Bound for EMOR

Now we derive an estimate for the integral of the error EMOR(t) in (3.70). The error estimation
is inspired by the work of Chaturantabut and Sorensen [CS12], who did a similar proof to derive
a state-space error bound for POD-DEIM method. To investigate the error, we decompose it
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according to the subsystems

‖EMOR(t)‖2
2 =

∥∥∥∥(EF,MOR(t)
ES,MOR(t)

)∥∥∥∥2

2
= ‖EF,MOR(t)‖2

2 +‖ES,MOR(t)‖2
2

≤ ‖EF,MOR(t)‖2
2 +‖wS(t)−Vwr

S(t)‖2
2

≤ ‖EF,MOR(t)‖2
2

+‖wS(t)−VW>wS(t)︸ ︷︷ ︸
=:ρ(t)

‖2
2 +‖VW>wS(t)−Vwr

S(t)︸ ︷︷ ︸
=:θ(t)

‖2
2. (3.71)

Due to the coupling of the subsystems EF,MOR(t) and θ(t) depend on each other. Using Theorem
3 the error ρ(t) can be estimated by

tend∫
0

‖ρ(t)‖2
2dt ≤ γ. (3.72)

for a constant γ > 0. This error bound depends on the size of the reduced order, slow subsystem.

The crucial part for an estimation of the combined error EMOR(t) will be the estimation of θ(t).
To this end, we define

θ̂ =W>θ(t) =W>wS(t)−wr
S(t)

due to the bi-orthogonality of the projection matrices V and W (3.8). Applying norms

‖θ(t)‖2 = ‖VW>wS(t)−Vwr
S(t)‖2 ≤ ‖V‖2‖θ̂(t)‖2,

we can estimate θ(t) by θ̂(t). Using the differential equation of wS(t) and wr
S(t), we can derive

for the differential equation for θ̂(t)

d
dt

θ̂(t) =W> (ASSwS(t)+ASFwF(t)+BSuS(t))− (Ar
SSwr

S(t)+Ar
SF w̃F(t)+Br

SuS(t))

=W>ASSwS(t)−W>ASSVwr
S(t)+W>ASF (wF(t)− w̃F(t))

=W>ASSwS(t)−W>ASSVW
>wS(t)+W>ASSVW

>wS(t)−W>ASSVwr
S(t)

+W>ASFEF,MOR(t)

= Ar
SS

(
W>wS(t)−wr

S(t)
)
+W>ASS

(
wS(t)−VW>wS(t)

)
+W>ASFEF,MOR(t)

= Ar
SSθ̂(t)+W>ASSρ(t)+W>ASFEF,MOR(t).

The analytical solution is given by

θ̂(t) =
t∫

0

eAr
SS(t−s)W>ASSρ(s)ds+

t∫
0

eAr
SS(t−s)W>ASFEF,MOR(s)ds, (3.73)

since θ̂(0) =W>wS0−W>wS0 = 0, see (3.68). In the same, way we write EF,MOR(s) as a differ-
ential equation

d
dt

EF,MOR(t) = AFFEF,MOR(t)+AFS (ρ(t)+θ(t)) , EF,MOR(0) = 0 (3.74)
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and compute the analytical solution

EF,MOR(t) =
t∫

0

eAFF (t−s)AFSρ(s)ds

︸ ︷︷ ︸
=:κ̃(t)

+

t∫
0

eAFF (t−s)AFSθ(s)ds

︸ ︷︷ ︸
=:ς̃(t)

.

We define the functions κ(t) :=W>ASF κ̃(t) and ς(t) :=W>ASF ς̃(t). Applying norms to (3.73)
and inserting the latest results we get the following inequality

‖θ̂(t)‖2 ≤ ‖W>ASS‖2

t∫
0

‖eAr
SS(t−s)‖2‖ρ(s)‖2ds

+

t∫
0

‖eAr
SS(t−s)‖2‖κ(s)‖2ds+

t∫
0

‖eAr
SS(t−s)‖2‖ς(s)‖2ds.

(3.75)

Our next step is to estimate the involved terms:

‖κ(t)‖2 ≤ ‖W>ASF‖2‖AFS‖2

t∫
0

‖eAFF (t−s)‖2‖ρ(s)‖2ds.

To the integral, we apply Cauchy-Schwarz inequality and estimate the matrix exponential by the
logarithmic matrix norm (3.32). Theorem 3 and setting µF := µ(AFF) lead to

‖κ(t)‖2 ≤ γ‖W>ASF‖2‖AFS‖2

 t∫
0

(eµF (t−s))2ds

1/2

.

We introduce following short hand notation

qµ(t) =
t∫

0

eµ(t−s)ds =

{
1
µ
(eµt −1) µ 6= 0

t µ = 0
(3.76)

and conclude the estimation of κ(t) with

‖κ(t)‖2 ≤ γ ‖W>ASF‖2‖AFS‖2
(
q2µF (tend)

)1/2︸ ︷︷ ︸
:=ϕ

.

For the second summand in (3.75), we use the latest result and arguments from above to achieve

t∫
0

‖eAr
SS(t−s)‖2‖κ(s)‖2ds≤ γϕ

t∫
0

‖eAr
SS(t−s)‖2ds≤ γϕ

tend∫
0

eµS(tend−s)ds = γϕqµS(tend)

with µS = µ(Ar
SS).

For the first summand in (3.75) we get analogously

‖W>ASS‖2

t∫
0

‖eAr
SS(t−s)‖2‖ρ(s)‖2ds≤ γ‖W>ASS‖2

(
q2µS(t)

)1/2
.
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The function ς(t) can be estimated in terms of θ(t) as follows:

‖ς(t)‖2 = ‖W>ASF‖2‖AFS‖2

t∫
0

‖eAFF (t−s)‖2‖θ(s)‖2ds

≤ ‖W>ASF‖2‖AFS‖2
(
q2µF (tend)

)1/2

 t∫
0

‖θ(s)‖2
2ds

1/2

= ϕ

 t∫
0

‖θ(s)‖2
2ds

1/2

.

With this result, we get for the last summand in (3.75):

t∫
0

‖eAr
SS(t−s)‖2‖ς(s)‖2ds≤ ϕ(q2µS(tend))

1/2

 t∫
0

s∫
0

‖θ(τ)‖2
2dτds

1/2

≤ ϕ(q2µS(tend))
1/2

 t∫
0

t∫
0

‖θ(τ)‖2
2dτds

1/2

≤ ϕ(q2µS(tend))
1/2

t
t∫

0

‖θ(τ)‖2
2dτ

1/2

. (3.77)

Inserting all estimations into (3.75), we find

‖θ(t)‖2 ≤ ‖V‖2‖θ̂(t)‖2 ≤ ‖V‖2

η +ϕ(q2µS(tend))
1/2

t
t∫

0

‖θ(τ)‖2
2dτ

1/2
 (3.78)

with
η := γ‖W>ASS‖2

(
q2µS(t)

)1/2
+ γϕqµS(tend).

Building the square of the previous inequality (3.78) and using that (a+b)2 ≤ 2a2 +2b2, we
obtain

‖θ(t)‖2
2 ≤ 2‖V‖2

2η
2︸ ︷︷ ︸

=:η̂

+2‖V‖2
2ϕ

2q2µS(tend)tend︸ ︷︷ ︸
=:ϕ̂

t∫
0

‖θ(τ)‖2
2dτ = η̂ + ϕ̂

t∫
0

‖θ(τ)‖2
2dτ.

Applying Gronwall’s lemma, we get

‖θ(t)‖2
2 ≤ η̂eϕ̂t . (3.79)

With this result, we can estimate the error in the fast subsystem for EF,MOR, starting with equation
(3.74) as follows:

‖EF,MOR(t)‖2
2 ≤ 2‖AFS‖2

2q2µF (tend)︸ ︷︷ ︸
=:ν

γ +

t∫
0

‖θ(t)‖2
2dt

 . (3.80)
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Using (3.72), (3.79) and (3.80), we can estimate the coupled error EMOR:

tend∫
0

‖EMOR(t)‖2
2dt ≤

tend∫
0

‖EF,MOR(t)‖2
2dt +

tend∫
0

‖ρ(t)‖2
2dt +

tend∫
0

‖θ(t)‖2
2dt

≤ νγtend +νtend

tend∫
0

‖θ(t)‖2
2dt + γ +

tend∫
0

‖θ(t)‖2
2dt

= (1+νtend)

γ +

tend∫
0

‖θ(t)‖2
2dt

 . (3.81)

The integral in (3.81) can be further estimated by (3.79) and we get an estimation that only de-
pends on the norm of of the partitioned matrices, the integration time tend and the size of the
reduced order slow subsystem r. The following proposition summerises the previous results.

Lemma 8. Let be given a linear, partitioned ODE-IVP (3.62) that fulfils the Assumptions 6 and
7 (weak coupling and stability). Furthermore, let be applied a balanced truncation model order
reduction to the slow changing subsystem. Then the coupled system with a reduced order, slow
subsystem (3.68) of dimension r is again stable by choosing r sufficiently large and the error that
is caused by model order reduction can be bounded in time domain by

tend∫
0

‖EMOR(t)‖2
2dt ≤ (1+νtend)

(
γ +

η̂

ϕ̂
(eϕ̂tend−1)

)
.

The constants ν , γ, η̂ , ϕ̂ are explained in the calculation above.

An MOR error bound for an altervative coupling

For systems, where the coupling slow-to-fast is performed via the input uF a similar bound for the
MOR caused error can be derived. Such a coupling can be written as(

ẇF(t)
ẇS(t)

)
=

(
AFF 0
ASF ASS

)(
wF(t)
wS(t)

)
+

(
BF1wS(t)ũF1(t)+uF2(t)

BSuS(t)

)
, w0 =

(
wF0
wS0

)
(3.82)

with ũF1(t) = diag(u(1)F1(t), . . . ,u
nS
F1(t)), scalar input functions u(i)F1 : [0, tend]→R, i = 1, . . . ,nS, an

input-coupling matrix BF1 ∈ RnF ×nS and uF2 : [0, tend]→ RnF . To compute the reduced order,
slow subsystem we set again C = InS and the reduced order, coupled system reads(

˙̃wF(t)
ẇr

S(t)

)
=

(
AFF 0
Ar

SF Ar
SS

)(
w̃F(t)
wr

S(t)

)
+

(
BF1(Vwr

S(t))ũF1(t)+uF2(t)
Br

SuS(t)

)
(3.83)

with the same notation as for (3.68) and initial values wF,0 and W>wS,0. The error which is caused
by the model order reduction error is defined analogously to (3.71)

‖E∗MOR(t)‖2
2 =

∥∥∥∥(E∗F,MOR(t)
E∗S,MOR(t)

)∥∥∥∥2

2
=

∥∥∥∥(wF(t)− w̃F(t)
wS(t)−Vwr

S(t)

)∥∥∥∥2

2
(3.84)

≤
∥∥E∗F,MOR(t)

∥∥2
2 +‖ρ

∗(t)‖2
2 +‖θ ∗(t)‖2

2 . (3.85)



3.3 An Error Estimate for the Multirate-MOR θ -Method 35

Since the definition of the slow changing subsystem in (3.82) is not changed from the original
setting in (3.62), the error terms ρ∗(t) and θ ∗(t) can be estimated analogously to the original
setting. To derive a bound for the error of the fast subsystem, the original prove has to be modified
slightly. We write E∗F,MOR(t) as ODE initial value problem

d
dt

E∗F,MOR(t) = AFFE∗F,MOR(t)+BF1 (ρ
∗(t)+θ

∗(t)) ũF1(t), E∗F,MOR(0) = 0

with the analytical solution

E∗F,MOR(t) =
t∫

0

eAFF (t−s)BF1ρ
∗(s)ũF1(s)ds

︸ ︷︷ ︸
=:κ̃∗(t)

+

t∫
0

eAFF (t−s)BF1θ
∗(s)ũF1(s)ds

︸ ︷︷ ︸
=:ς̃∗(t)

.

We define the functions κ∗(t) := W>ASF κ̃∗(t) and ς∗(t) := W>ASF ς̃∗(t). Analogously to the
derivation of the inequality (3.75) we get

‖θ̂(t)‖2 ≤ ‖W>ASS‖2

t∫
0

‖eAr
SS(t−s)‖2‖ρ∗(s)‖2ds

+

t∫
0

‖eAr
SS(t−s)‖2‖κ∗(s)‖2ds+

t∫
0

‖eAr
SS(t−s)‖2‖ς∗(s)‖2ds.

(3.86)

We will now estimate the involved terms, starting with κ∗(t):

‖κ∗(t)‖2 ≤ ‖W>ASF‖2‖BF1‖2

 t∫
0

(eµF (t−s))2ds

1/2 t∫
0

‖ρ∗(s)‖2
2‖uF1(s)‖2

2ds

1/2

≤ ‖W>ASF‖2‖BF1‖2

 t∫
0

(eµF (t−s))2ds

1/2 t∫
0

‖ρ∗(s)‖2
2( max

τ∈[0,s]
‖uF1(τ)‖2)

2ds

1/2

≤ γ · ‖W>ASF‖2‖BF1‖2 max
τ∈[0,tend]

‖uF1(τ)‖2
(
q2µF (tend)

)1/2

︸ ︷︷ ︸
=:ϕ∗

(3.87)

In a similar way, we derive

‖ς∗(t)‖2 ≤ ϕ
∗

 t∫
0

‖θ ∗(s)‖2
2ds

1/2

.

The remaining proof of the error bound for the coupled system (3.82), is done analogously to the
original proof starting in line (3.77), using the redefined constant ϕ∗.

Corollary 9. Let be given a linear, partitioned ODE-IVP (3.82) that fulfils the Assumptions 6 and
7 (weak coupling and stability). A balanced truncation model order reduction is applied to the
slow changing subsystem. The coupled system with a reduced order, slow subsystem (3.83) of
dimension r is again stable by choosing r sufficiently large and the error that is caused by model
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order reduction can be bounded in time domain by

tend∫
0

‖E∗MOR(t)‖2
2dt ≤ (1+ν

∗tend)

(
γ +

η̂∗

ϕ̂∗
(eϕ̂∗tend−1)

)

with

ν
∗ = 2‖BF1‖2

2q2µF (tend)( max
τ∈[0,tend]

‖uF1(τ))
2

η̂∗ = 2‖V‖2
2γ

2
(
‖W>ASS‖2(q2µS(tend))

1/2 +ϕ
∗qµS(tend)

)2

ϕ̂∗ = 2‖V‖2
2ϕ
∗2q2µS(tend)tend

and ϕ∗ given in (3.87).

After deriving bounds for the MOR caused error an estimate for EMR is provided in the next
section for the particular case of a balanced, slow subsystem.

3.3.4 An Error Recursion for EMR for Balanced Systems

It remains to find an estimation of the multirate time integration error for the reduced order,
coupled system. Usually, the time multirate integration method and its integration parameters H
and m are chosen according to the properties of the reduced order, coupled system. For this setting,
an estimate for EMR can be easily found by using the the results of the convergence analysis for
multirate method of Section 2.2.

Now, we assume to have a stable multirate time integration method for the full order, coupled
system (3.62). We study the question, how the size of the reduced order, slow subsystem r has
to be chosen, such that the multirate time integration is still stable. For the integration scheme,
we choose a multirate θ -method with a Coupled-Slowest-First approach [HS09]. The integration
method for the macro-step tn→ tn+1 = tn +H reads(

w∗F,n+1
wS,n+1

)
=

(
w∗F,n
wS,n

)
+θH

((
AFF AFS

ASF ASS

)(
w∗F,n
wS,n

)
+

(
uF(tn)

BSuS(tn)

))
+(1−θ)H

((
AFF AFS

ASF ASS

)(
w∗F,n+1
wS,n+1

)
+

(
uF(tn+1)

BSuS(tn+1)

)) (3.88)

for a parameter θ ∈ [0,1]. The approximation w∗F,n+1 is inaccurate and therefore refused and only
wS,n+1 is used as proper approximation. For the micro-steps we assume a fixed multirate factor
m = 2 and the integration of the fast subsystem is given by

wF,n+(i+1)/2 = wF,n+i/2 +θ
H
2

(
AFFwF,n+i/2 +AFSw̄S,n+i/2 +uF(tn+i/2)

)
)

+(1−θ)H
2

(
AFFwF,n+(i+1)/2 +AFSw̄S,n+(i+1)/2 +uF(tn+(i+1)/2)

) (3.89)

for i = 0,1, with tn+i/2 = tn + iH
2 and w̄S,n+1/2 the interpolated value of wS at tn+1/2. We consider

the error after n+1 macro-steps

EMR
n+1 = w(tn+1)−wn+1
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for w = [w>F , w>S ]
> between the analytical solution w(tn+1) of (3.62) and the numerical approxi-

mation wn+1 achieved by the multirate θ -method (3.88-3.89). In terms of [HS09], this error can
be expressed by the error at the previous macro-step E∗n , an amplification matrix S and the local
truncation error zn+1

EMR
n+1 = SEMR

n + zn+1. (3.90)

In [HS09] it is shown that the order of zn is 2 for θ = 0.5 and 1 otherwise. We assume that the
multirate θ -method for macro-step size H and multirate factor 2 applied to the full order, coupled
systen (3.62) is stable, i.e.,

‖Sn‖∞ < D ∀ n≥ 0. (3.91)

for a constant D > 0. Now, we show that the stability of the multirate θ -method for the full
order, coupled system (3.62) can be used to derive a stability condition for the multirate θ -method
applied to the reduced order, coupled system (3.68). To this end, we recall a perturbation condition
which is given in [HS09]: Let (3.91) hold for (3.62) and denote

A =

(
AFF AFS

ASF ASS

)
the system matrix of the full order, coupled system. Let Ã be the matrix of a perturbed system such
that ‖A− Ã‖∞ ≤ L for a moderate constant L. Then the amplification matrix S̃ of the perturbed
system can be bounded by

‖(S̃)n‖∞ ≤ DedDtend (3.92)

with a constant d = d(L,D). In our setting, the perturbed matrix Ã is given by the system matrix
of the reduced order, coupled system (3.68), identified in the original vector space

Ã =

(
AFF AFSVW

>

VW>ASF VW>ASSVW
>

)
. (3.93)

For the particular case of a balanced, slow subsystem, we will derive the system matrix Ã and
measure the perturbation L. For a balanced system, the projection matrices for balanced truncation
are given by V = W = (I, 0)>, cf. [Ant05]. Let the system matrices of the slow subsystem in
(3.62) be of the following form

ASS =

(
A11 A12
A21 A22

)
, ASF =

(
B1
B2

)
, AFS = (C1, C2),

where A11, B1 and C1 describe the states of the system that will kept by the model order reduction.
Then the system matrix of the coupled system with reduced order, slow subsystem reads(

AFF C1
B1 A11

)
.

Since the system properties of the reduced system approximate the properties of the original
system the influence of the truncated part on the kept part can be assumed to be small. We
formalise this in the following Assumption.

Assumption 10. We assume that
‖A12‖∞ ≤ ‖A22‖∞ (3.94)

holds.
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The system matrix Ã of the perturbed system is given by

Ã =

(
AFF C1W

>

VB1 VA11W
>

)
=

AFF C1 0
B1 A11 0
0 0 0

 (3.95)

and we find the perturbation

L = ‖A− Ã‖∞ =

∥∥∥∥∥∥
 0 0 C2

0 0 A12
B2 A21 A22

∥∥∥∥∥∥
∞

.

Using Assumptions 6, 7 and 10 yields

‖A− Ã‖∞ ≤ 2ε +3‖A22‖∞ =: ε̃.

The previous results are summarised in the following lemma:

Lemma 11. Let be given system (3.62) which fulfils the Assumptions 6, 7 and 10 and its slow sub-
system is balanced. Let the multirate θ -method be stable and the reduced order, slow subsystem
be achieved by balanced truncation. Then the multirate θ -method is also stable for the coupled
system with reduced order, slow subsystem. The amplification matrix S̃ for the error is bounded
by

‖(S̃)m‖∞ ≤MeD̃Dtend

with D̃ = D̃(D, ε̃).

This results describe the influence of the model order reduction applied to the slow subsystem on
the stability of the coupled system, on the stability of the multirate θ -method and on the split error
in (3.70). For this special case of a balanced, slow subsystem the it can be directly seen that the
dimension of the reduced subsystem r impacts the size of the perturbation L and therefore also
the time integration error EMR.

Considering the estimates for the error that is caused by the model order reduction EMOR and
the time integration error EMR one notices that the estimates ate given in different norms. The
following theorem summarises both error bounds and adapts the norm of both errors.

Proposition 12. Let be given a linear, partitioned ODE system 3.62 on the time interval [0, tend]
that fulfils the Assumptions (3.63), (3.64) and 10. Let the slow subsystem be balanced and let
be applied a balanced truncation model order reduction to the slow subsystem. A multirate θ -
method is used to integrate the partitioned ODE system with macro-steps tend/m and micro-steps
tend/2m. Then the error between the analytical solution of the original, non-reduced system and
the multirate θ -method approximation of the system with a reduced order, slow subsystem reads

tend∫
0

‖E(t)‖2
2dt ≤ (1−νtend)

(
γ +

η̂

ϕ̂

(
eϕ̂tend−1

))
+(nF +nS)D2tend

(
n

∑
i=1

edDti‖zi‖2

)2

with the above notation for ν , γ, η̂ , ϕ̂, d, C and zi, macro-steps ti = i · tend/n.

We have ‖zi‖2 = O(H p+1) with p = 2 in case of θ = 0.5 and p = 1 otherwise.
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The factor (nF +nS) in the second summand is caused by the equivalence between the 2- and the
∞-norm. Although both norms are equivalent the equivalence constant depends on the dimension
of the full order system and is therefore quite large. We point out that the coupled error estimate
is more a theoretical aspect of the analysis than a practical calculation.

Section Summary

We investigated the influence of a model order reduction applied to the slow changing subsystem
of a linear, multiscale partitioned ODE-IVP. We derived an error bound in time domain for the
coupled ODE-IVP with order reduced, slow subsystem. For the multirate θ -method, we provided
a combined error bound that estimates the influence of the model order reductions as well as the
time integration error.

In some applications, the dynamical behaviour of the real-world systems cannot be described by
linear-affine systems. In that case, we refer to the proceeding work of [BCG20]. Here, the authors
consider and investigate model order reduction techniques for non-linear dynamical systems in
combination with multirate time integration.

The following, last section of this chapter leads over to the subsequent Chapter 4 about multirate
time integration for differential-algebraic equation. We present a model order reduction technique
and a multirate time integration method for a field-circuit coupled system, where the mathematical
model of the electromagnetic field leads to a differential-algebraic equation.

3.4 Multirate Time Integration and Model Order Reduction

for a Field-Circuit Coupled System

Results of this section have been published partially in [HBG+18].

Often, the mathematical modelling of a technical or physical system does not lead to a system of
ordinary differential equations. For a space dependent partial differential equation (PDE) a semi-
discretisation of the spatial variable leads back to a systems of ODEs as we saw in Section 3.2.4
using the example of the heat equation. In other cases, additional algebraic constraints arise that
have to be fulfilled by the solution of the differential equation. For the numerical treatment of
such differential-algebraic equations (DAEs) the classical ODE setting has to be modified.

In the following, we consider a field-circuit coupled system where the circuit is assumed to pro-
vide high dynamical changes. Due to the physical properties and sizes the electromagnetic field
is changing much slower. We start with the modelling of electromagnetic field which is described
by a PDE and its semi-discretisation leads to a system of DAEs. The multirate methods presented
in Section 2.2 have to be adapted for coupled systems of DAEs. Multirate methods for DAEs
have been first discussed in [Str06] and [Ver08]. In this chapter, we only present a rough idea
about multirate schemes for linear DAEs and will postpone a detailed and more general analysis
for multirate time integration for DAEs to Chapter 4. Since the resulting slow changing field
system is of large dimension, we apply a model order reduction to the subsystem. We use the
method of [KBS17] that projects the large-scale DAEs to a small dimensional system of ODEs.
Simulation results for the non-reduced coupled system of DAEs and the reduced order system of
ODE are given at the end of this section.
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Mathematical Modelling

Our multi-physics benchmark system consists of an electric circuit and the electromagnetic field
of a single-phase 2D-transformer with an iron core and two coils. Figure 3.5 shows a circuit
diagram of the coupled system, where the electromagnetic effects are represented by the lumped
devices of a transformer in the box.

The mathematical models of the electric circuit and the electromagnetic field of the transformer
are coupled by the source coupling approach [BBGS13]. That is, add an additional controlled
current source to the circuit subsystem which is realised by the output of the field subsystem
iM(t). And we add an additional voltage source to the transformer’s subsystem which is given by
the solution of the circuit subsystem u1(t). The procedure is illustrated in Figure 3.6. We start
with the modelling of the single subsystems.

Circuit Modelling. The circuit of our benchmark system given in Figure 3.6 is described by one
ODE for the node potential u1

C d
dt u1(t) = G(u1(t)−Uin(t))− iM(t) (3.96)

with capacitance C = 1nF, conductance G= 10−3S, the input voltage Uin(t)= 45.5·103 sin(900πt)+
103 sin(45000πt) and the (later specified) coupling term iM(t). The here used variable G refers to
the physical quantity of conductance and is independent of the notation of the transfer function
in (3.24). The presented multirate method can also be applied to more general electrical circuits
which are usually described by a system of DAEs [GF99].

Field Modelling. For the electromagnetic field subsystem, we consider a magneto-quasistatic
(MQS) problem which is described by Maxwell’s equation in the magnetic vector potential for-
mulation

σ
∂ Â
∂ t

+∇×
(
ν∇× Â

)
= J in Ω× (0, tend)

with boundary conditions Â×n0 = 0 on ∂Ω× (0, tend)

and initial conditions Â = Â0 in Ω.

(3.97)

Ω = ΩC ∪ΩN is a bounded two-dimensional domain composed of a conducting ΩC and non-
conducting subdomain ΩN . Â is the magnetic vector potential, ν = ν(Â) is the magnetic reluctivity
with νC = 14872Am/(Vs) = 14872m/H on ΩC and νN = 1Am/(Vs) = 1m/H on ΩN . σ = 5 ·
105Ω−1m−1 is the electric conductivity which vanishes on ΩN . n0 is the outer unit normal vector
to the boundary ∂Ω of Ω. J denotes the current density applied by external sources. Taking
J = χiM with a divergence-free winding function χ and iM the vector of lumped currents through
the transformer, then the coupling term to the circuit subsystem can be written as∫

Ω

χ
> ∂

∂ t Âdξ +RiM = u1, (3.98)

where R is the resistance matrix and u1 describes the applied voltage by the circuit to the trans-
former. Applying the finite element discretisation method to (3.97) and (3.98) and reordering
unknown variables accordingly to the conducting and non-conducting subdomains, we can obtain
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a linear system of DAEs

M d
dt

[
a
iM

]
= F

[
a
iM

]
+Bu, yS = iM = C

[
a
iM

]
(3.99)

with a singular mass matrix M, a semi-discretised vector of magnetic potentials a, an input u1
which is the voltage at the primary coil and the output yS = iM the current through the primary
coil. For this particular example, we have C = B> = [0, . . . , 0, 1]. The FEM discretisation is
done by the free available software FEniCS1 for the dimension nS = 7823.

Model Order Reduction for Magneto-Quasistatic Equation

We briefly discuss model order reduction of the MQS equations (3.99), for more details, we refer
to [KBS17].

The properties of the involved system matrices guarantee that the DAE system (3.99) can be
transformed into a system of ODEs

MẇS = F̄wS +Bu1, yS = iM =−B>M−1F̄wS (3.100)

with nonsingular, symmetric, positive definite matrices M and −F̄ and a corresponding vector of
unknowns wS = wS(t). This transformation is possible since the magnetic reluctivity ν is assumed
to be constant on ΩC and the DAE system (3.99) is of index 1 [KBS17]. A detailed definition of
the index of a DAE is given in Section 4.1.1. Note that system (3.100) has the same input u1 and
the same output iM as the DAE system (3.99) meaning that the input-output relation of (3.99) is
preserved in (3.100).

System (3.100) is asymptotically stable and passive [KBS17]. For model order reduction of
(3.100), we use a balanced truncation approach as described in Section 3.1.2 based on the reacha-
bility Gramian P which is defined as a unique symmetric and positive semidefinite solution to the
generalized Lyapunov equation

F̄PM+MPF̄ =−BB>. (3.101)

Due to the symmetry conditions, the observability Gramian Q satisfies MQM= F̄PF̄ . Let P= SS>

Figure 3.5: Circuit diagram of the coupled systems with lumped elements for the electromagnetic
effects (box).

Uin

G

C

u1

1http://fenicsproject.org
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be a Cholesky factorization of P. We compute the eigenvalue decomposition

−S>F̄S = [U1, U0 ]diag(Λ1, Λ0) [U1, U0 ]
> ,

where Λ1 and Λ0 are diagonal matrices and Λ1 contains all kept Hankel singular values and Λ0 all
truncated ones. Now, we can determine the reduced-order model by projection

Mrẇr
S = F̄rwr

S +Bru, ỹS =Crwr
S, (3.102)

where Mr = W>MV, F̄r = W>F̄V, Br = W>B and Cr = −B>M−1F̄V with the projection mat-
rices V= SU1Λ

−1/2
1 and W=−M−1F̄V. One can show that the reduced matrices Mr and−F̄r are

symmetric, positive definite and Cr = Br> guarantees that system (3.102) is passive. Moreover,
we have the L2-norm error bound for the output

‖yS− ỹS‖2 ≤ 2trace(Λ0)‖u‖2.

For solving the generalized Lyapunov equation (3.101), we can use the low-rank alternating di-
rection implicit method or (rational) Krylov subspace method [BS13, Sim16]. In both methods,
we need to solve linear systems of the form (τM+ F̄)v = b for a vector v with possibly dense M
and F̄ . Both, M and F̄ provide a block structure which can be exploited for the construction of
the linear system of equations. Doing so, a connection to the full order matrices M and F of the
DAE system (3.99) can be derived and an equivalent system of linear equations (τM+F)v̂ = b̂
with the sparse matrices M and F can be constructed.

The order reduced, coupled system (3.96 & 3.102) yields a system of ODEs and can be simulated
in time domain efficiently with a multirate time integration method as presented in Section 2.2.

For the non-reduced, coupled system (3.96 & 3.99), we end up with a linear DAE system and
multirate methods have to be derived for this class of problems. For linear DAEs of index-1, time
integration methods for linear-implicit ODEs can be applied. In the following section, we will
deduce a multirate method for linear DAEs from the LobattoIIIC scheme.

Figure 3.6: Source coupling approach: Circuit diagram of the subsystem with additional current
source iM in the circuit subsystem and an additional voltage source u1 in the field
subsystem.
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Multirate Time Integration for Linear ODE/DAE-Systems

We consider the non-reduced, coupled ODE/DAE-system (3.96 & 3.99), set x = [a>, i>M]> and
get the coupled DAE initial value problem(

C 0
0 M

)
︸ ︷︷ ︸

=:M̌

(
u̇1
ẋ

)
=

(
G −B>
B F

)
︸ ︷︷ ︸

=:A

(
u1
x

)
︸ ︷︷ ︸
=:x̌

−
(

G
0

)
︸ ︷︷ ︸
=:B̌

Uin(t), x(t0) = x0, u1(t0) = u10 (3.103)

with a singular mass-matrix diag M̌. The field subsystem (3.99) and the coupled DAE system
(3.103) are of index-1 [KBS17, HBG+18]. Such DAE-systems can be integrated with an implicit
Runge-Kutta method [BCP95]. To derive a multirate Runge-Kutta method for linear DAEs of
index-1, we use the LobattoIIIC scheme, its Butcher tableau is given by

0 1
2 −1

2
1 1

2
1
2

1
2

1
2

.

For the multirate scheme, we use the Coupled-Slowest-First approach: We integrate the coupled
DAE system (3.103) on the macro-step grid and consider the time step tn→ tn +H. To compute
the increments k1, k2, the linear DAE system (3.103) leads to the following linear system of
equations (

M̌− H
2 A H

2 A
−H

2 A M̌− H
2 A

)(
k1
k2

)
=

(
Ax̌n− B̌Uin(tn)

Ax̌n− B̌Uin(tn +H)

)
Then, the approximation at tn +H is given by

x̌n+1 =

(
ũ1n+1
xn+1

)
=

(
u1n

xn

)
+ H

2 (k1 + k2) .

Since k1 and k2 are derived by solving a linear system of eqautions, only linear effects of the
approximation properties of the LobattoIIIC scheme are illustrated in the following.

The macro-step size H is chosen according to the properties of the slow changing, field subsystem.
Therefore, the approximation xn+1 is accepted, the approximation of the circuit subsystem ẽn+1 is
not sufficiently accurate and therefore refused.

To achieve an appropriate approximation for u1n+1, m integration steps of micro-step size h are
carried out. For the micro-step (tn + lh)→ (tn +(l + 1)h) with l = 0, . . . ,m− 1, the increments
kF

1,l, kF
2,l are given by the following system of linear equations(

C− h
2 G h

2 G
−h

2 G C− h
2 G

)(
kF

1,l
kF

2,l

)
=

(
Gu1n+lh−B>x̄n+lh−Uin(tn + lh)

Gu1n+lh−B>x̄n+(l+1)h−Uin(tn +(l +1)h)

)
.

with interpolated values x̄n+lh at tn + lh. We get the intermediate approximations by

u1n+(l+1)h = u1n+lh +
h
2

(
kF

1,l + kF
2,l
)
.

The derived multirate time integration scheme for linear DAEs can be also applied to implicit
ODE-systems like the reduced order, coupled system (3.96 & 3.102). The simulation results for
both coupled system are summarised in the following section.



44 3 Multirate Time Integration for Order Reduced Systems

0 2 4 6

·10−3

−4

−2

0

2

4

·104

Time [sec]

V
o
lt
ag

e
[V

]

(a) Node Potential of e1

0 2 4 6

·10−3

0

0.5

1

1.5

2
·10−4

Time [sec]

C
u
rr
en
t
[A

]

(b) Current through the Primary Coil

Figure 3.7: Numerical solution of the subsystems.

Simulation Results

We integrate the coupled DAE system by the multirate LobattoIIIC scheme over the time interval
[0s, 0.0055s]. Since we are interested in the influence of the multirate approach, we consider a
reference solution that is computed by the single-rate LobattoIIIC method with constant global
step size using 2500 time steps. We also integrated the coupled system with constant global step
size using the double amount of time steps. The maximum relative 2-norm error in the outputs of
the subsystems between both solutions was 3.9 ·10−3. We accepted the 2500 time step solution as
reference solution with a moderate accuracy. The simulation was run on a Intel Core2 Duo P7450
with 2.13GHz with 4GB RAM. For the coupled full-order, coupled DAE system the computation
time was 728.2s. Figure 3.7 shows the outputs of the two subsystems: (a) the node potentials u1,
which belongs to the fast changing subsystem (basically we see the superposition of the sinusoidal
oscillations) and (b) the current through the primary coil of the transformer, which belongs to the
slow subsystem.

To investigate the influence of the multirate approach on the full order DAE system, the time
interval is discretised into 250 macro-step and each macro-step is refined into 10 micro-steps.
250 macro-steps are sufficient to integrate the slow changing, field subsystem and 2500 micro-
steps are needed for the fast changing, circuit subsystem to reach an adequate approximation.
Here, the computation ended after 77.4s. We computed the error between the single-rate and the
multirate approximation separately for both subsystems. For the fast changing subsystem, the
error is computed by the absolute value of the difference between the node potential of the single-
rate solution and the node potential achieved by the multirate approximation at each micro-step.
In Section 4.3 we show, that the approximation of the fast, differential variable on the micro-step
grid is as accurate as the approximation of the slow subsystem on the macro-step. Therefore,
we investigate the error of the fast subsystem on the micro-step grid. For the slow changing
subsystem, we computed the absolute value of the difference in the output of the subsystem iM on
the macro-step grid. Figure 3.8 illustrates these errors. In the fast changing subsystem the error
increases during one macro-step since there is an additional error that is caused by interpolating
the values of the slow changing subsystem. At the macro-steps the subsystems are integrated
together, so that the error at these time points is usually smaller. In the slow subsystem, every
second approximation gives better results while the intermediate approximation is worse. Until
now, this phenomena is not yet understood completely. Since the size of the error is in total
small, the improvement in computation time motivates and justifies the usage of multirate time
integration schemes for these DAEs.
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Figure 3.8: Absolute errors in the subsystems between the single-rate reference approximation of
the full-order DAE-system and the multirate approximation of the full order DAE-
system.

The slow changing, field subsystem is reduced to dimension dim(wr
S) = 4. The reduced-order,

coupled system of ODEs is integrated by the same multirate method with the same integration
parameters as for the full-order system of DAEs. The simulation needed 0.20s to compute. Fig-
ure 3.9 shows the absolute error between the single-rate reference approximation of the full-order
DAE system and the multirate approximation of the coupled system of ODEs with order reduced,
slow subsystem. The error for both subsystems here is very small and only slightly larger than
with full-order, slow subsystem.

Finally, we integrated the coupled system with the reduced order, slow subsystem (3.102) without
multirating, so we used the same integration parameters as for the DAE single-rate solution. Fig-
ure 3.10 shows the error for both subsystem which is in both cases quite small. The computation
time was 0.13s, so it was a bit faster than with multirating. This phenomenon can be explained
by the ratio between the number of fast and slow changing variables. In our case, the full-order
system has a ratio of 1 : 7821, while for the reduced-order system, it is 1 : 4.

This ratio is an indicator for the gain of efficiency between the single-rate and multirate approx-
imation. If there is a large number of slow changing variables compared to a small number of
fast changing variables, a multirate time integration scheme saves many function evaluation of
the large dimensional slow subsystem. However, the implementation of a multirate scheme is
more complex than for a classical singlerate scheme. So if the dimension of the slow changing
subsystem is only a little bit larger than the dimension of the fast changing subsystem, a multirate
scheme can be even less efficient than the corresponding single-rate scheme.

Chapter Summary

We applied a projection based, model order reduction to the slow changing subsystem of a multi-
scale partitioned ODE-IVP and integrated the resulting coupled system with a multirate method.
The model order reduction leads to a much smaller set of slow changing variables. By introduc-
ing the interface reduction approach, we showed that beside the MOR for the slow subsystem,
the choice of a small dimensional coupling interface between the subsystem is necessary to gain
efficiency during the multirate time integration. Simulation results of a thermal-electric coupled
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Figure 3.9: Absolute errors in the subsystem between the single-rate reference approximation of
the full-order DAE-system and the multirate approximation of the reduced order ODE-
system.
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Figure 3.10: Absolute errors in the subsystems between the single-rate reference approximation
of the full-order DAE-system and the single-rate approximation of the reduced order
ODE-system.

system confirmed the better performance after applying the MOR to the slow, thermal subsystem
and the interface reduction to coupling variables. To investigate the influence of an order reduced,
slow subsystem on the propertied of the multirate time integration method, we derived an error
bound in time domain which estimates both, the MOR caused error and the integration error of the
multirate method. At the end of the chapter, we considered a field-circuit coupled system, applied
an MOR to the electromagnetic field system and integrated the coupled system with a multirate
method. The field subsystem is described by a system of DAEs. A particular MOR technique
projects the full order system of DAEs on a reduced order system of ODEs. For both, the system
of DAEs and the system of ODEs we derived a multirate method for an efficient time integra-
tion. Since DAEs arise in many applications, we will study multirate time integration methods for
DAE-IVPs more detailed in the following chapter.



4 Chapter 4

Multirate One-Step Methods for

Di�erential-Algebraic Equations

In Section 3.4, we saw that it is not possible to describe the dynamical behaviour of various
technical or physical systems with ordinary differential equations (ODEs), since additional alge-
braic constraints arise during the mathematical modelling. Beside the semi-discretised magneto-
quasistatic equation of Section 3.4, which describes the electro-magnetic field of a transformer, a
differential-algebraic equation (DAE) results for example from a modified nodal analysis to simu-
late currents and voltages in an electrical circuit [GF99]. The mathematical model of a mechanical
multibody-system also leads to system of DAEs [ESF98]. The analytical and numerical treatment
of DAEs is much more challenging compared to ODEs [BCP95, HW02, KM06]. For an efficient
time integration of coupled systems of DAEs with different dynamical behaviour, we derive and
analyse multirate Runge-Kutta schemes for DAEs in this chapter. Multirate methods for DAEs
have been introduced in [BGK02] for an efficient simulation of electrical circuits. In [Str06],
mixed-multirate Runge-Kutta schemes were presented and corresponding order conditions de-
rived. Multirate multistep methods are presented and analysed in [Ver08] using a particular sta-
bility definition.

To derive a multirate integration scheme for coupled DAEs, we adapt a classical, single-rate
Runge-Kutta method which can be used for time integration of DAEs. This method is equipped
with different, inherent time steps according to the dynamical properties of the subsystems. The
coupling between the subsystems is realised by one of the coupling strategies of Section 2.2.2.
Then, we investigate the approximation properties (consistency, convergence) of the resulting
multirate Runge-Kutta method for DAEs. The chapter is organised as follows:

In Section 4.1, we start with a formal definition of a DAE and explain the index of DAEs, one of
the most important concepts in the theory of DAEs. For the time integration of DAEs, we derive
implicit Runge-Kutta methods. In the following sections, we extend these methods to multirate
Runge-Kutta methods for semi-explicit DAEs and show convergence order 1 for a method based
on the implicit Euler-scheme (Section 4.2) and convergence order 2 for a LobattoIIIC-based mul-
tirate method (Section 4.3). At the end of the chapter in Section 4.4, we derive a convergence
theorem for multirate one-step methods for DAEs using the Decoupled-Slowest-First approach.
This theorem links the theories of multirate time integration and dynamic iteration schemes.

4.1 An Introduction to Di�erential-Algebraic Equations

To derive multirate methods for DAEs, we start with the necessary theory of DAEs and their nu-
merical treatment. In Section 4.1.1, we give the definition and several formulations for DAEs and
all necessary assumptions. Subsequently, we introduce the index of a DAE, which is one of the
most important concepts in the theory of DAEs and describes – roughly speaking – the differ-
ences in the analytical and numerical treatment between the considered DAE and an ODE. For

47
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the time integration of semi-explicit DAEs of index-1, we derive implicit Runge-Kutta methods
in Section 4.1.2. These methods will be extended to multirate Runge-Kutta methods for DAEs
later in this chapter.

4.1.1 Di�erential-Algebraic Equations � De�nition and Index Concept

There exist different formulations of differential-algebraic equations. We start with the most
general approach and give the following

Definition 7 (Differential-Algebraic Equation (DAE)). An equation on a time interval I = [t0, tend]
between a function x : I→ Rn, t 7→ x(t) and its derivative ẋ(t) = d

dt x(t) that is described by the
root of a function

F(t,x(t), ẋ(t)) = 0, t ∈ I (4.1)

is called differential-algebraic equation (DAE), if F : I×Rn×Rn→Rn is continuously differen-
tiable with respect to ẋ and the rank of the Jacobian is constant with

rank
(

∂F
∂ ẋ

(t,x, ẋ)
)
< n.

Usually, the DAE is specified with initial conditions x(t0) = x0. In the following, we refer to a
DAE (4.1) with initial conditions as DAE Initial Value Problem DAE-IVP.

A linear DAE is defined as
M(t)ẋ(t)−A(t)x(t)− f (t) = 0 (4.2)

for continous M,A : I → Rn×n and f : I → Rn if det(M) = 0 holds. In the case of constant
coefficients, i.e. M(t) = M, A(t) = A for all t ∈ I, we end up with a DAE of the form of (3.103),
which describes the the field-circuit coupled system of Section 3.4.

An important classification for DAEs is the so-called index of a DAE. In [Meh15] it is described as
a ’measure of difficulty in the analytical or numerical treatment of the DAE’. In the last decades,
different index-concepts have been proposed in Literature. In this work, we solely refer to the
differentiation or differential index [CG95].

Definition 8 (Differentiation Index). Let F in (4.1) be sufficiently smooth with respect to t. We
consider the system of derivatives

0 = F(t,x(t), ẋ(t))

0 = d
dt F(t,x(t), ẋ(t))

...

0 = di

dt i F(t,x(t), ẋ(t))

(4.3)

for a given integer i ∈ N. If i is the smallest number, such that a system of ODEs

ẋ = ϕ(t,x(t))

can be derived from (4.3) only by algebraic transformations, then i is called the differentiation
index of the DAE (4.1).
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A compact overview of other established index concepts is given in [Meh15]. For linear DAEs
with constant coefficients, a widely used index concept is the Kronecker- or Niloptency-index,
[HW02, Ch.VII.1, Th.1.1.]. For nonlinear DAEs, other relevant index concepts are the Perturba-
tion-index [HW02, Ch.VII.1, Def.1.3.], the Tractability-index [GM86,Mär02] and the Strangeness-
index [KM06]. All concepts have in common, that the index of a DAE is always a natural number
starting at 0 or 1. The higher the index, the more challenging is the numerical and analytical
treatment of the DAE.

In many applications, a DAE model provides additional properties or structure that can be ex-
ploited to facilitate the analytical or numerical treatment. In the following, we focus on semi-
explicit DAEs.

Definition 9 (Semi-Explicit DAE). A differential-algebraic equation of the form

ẇ(t) = f (w(t),z(t)) (4.4)

0 = g(w(t),z(t)) (4.5)

with t ∈ I = [t0, tend], differential variables w : I → Rnw and algebraic variables z : I → Rnz is
called semi-explicit.

Here, the DAE consists of two coupled subsystems: One subsystem of the differential equations
(4.4) and one subsystem of the algebraic constraints (4.5). Initial values for a semi-explicit DAE
w(t0) = w0, z(t0) = z0 have to be consistent, i.e. they have to fulfill the algebraic constraints. For
a semi-explicit DAE of index-1, this reads

0 = g(w0,z0).

The index-1 condition for semi-explicit DAEs can be expressed by the properties of the algebraic
constraints.

Lemma 13. Let be given a semi-explicit DAE (4.4-4.5) and g is differentiable with respect to w
and z. If

det
(

∂g
∂ z

)
6= 0 (4.6)

holds in a neighbourhood of the exact solution, then the DAE is of index-1.

Proof. Differentiating g with respect to t gives

0 = d
dt g(w(t),z(t)) = ∂g

∂w f (w(t),z(t))+ ∂g
∂ z ż.

Solving for ż and the proof is complete.

For the computation of a numerical approximation of a semi-explicit DAE, the existence of a
uniqe solution is mandatory.

Lemma 14. Let be given an index-1 semi-explicit DAE (4.4-4.5) on I = [t0, tend] with consistent
initial values w0, z0. If g is differentiable w.r.t. w and z, and f , ∂g

∂w ,
∂g
∂ z are Lipschitz continuous on

Rnw×Rnz for all t ∈ I, then the DAE-IVP has a unique solution.
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Proof. The index-1 condition (4.6) guarantees the regularity of the Jacobian matrix ∂g
∂ z . From

the Lipschitz continuity of the partial derivatives, we deduce the boundedness of
∥∥∥∥( ∂g

∂ z

)−1
∥∥∥∥.

According to the implicit function theorem, (4.5) defines a continuous differentiable function

G : Uε(w(t))→ Rnz , z(t) = G(w(t)) for t ∈ I (4.7)

with Uε(w(t)) ⊂ Rnw a neighbourhood of the analytical solution w(t). So, the DAE (4.4-4.5) is
equivalent to a system of ODEs

ẇ(t) = ϕ(w(t)) := f (w(t),G(w(t)) (4.8)

and Lipschitz continuity of f leads to the existence of a unique solution.

After deriving the assumption for the existence of a unique solution of a semi-explicit DAE-IVP
of index-1, we continue with computation of a numerical approximation. To this end, we deduce
Runge-Kutta methods for DAEs.

4.1.2 One-Step Methods for semi-explicit DAEs of index-1

We study a semi-explicit DAE (4.4-4.5) on the time interval I = [t0, tend] with consistent intial
values w(t0) = w0, z(t0) = z0. The DAE-IVP is of index-1 (4.6) and has a unique solution on I,
c.f. Lemma 14. In this section, we briefly sketch the derivation of Runge-Kutta methods for semi-
explicit DAE-IVPs of index-1, so that we can extend the multirate-methods of Section 2.2.1 to
DAEs. More information about time integration of DAEs can be found in [HW02,BCP95,KM06].

We derive Runge-Kutta methods for the semi-explicit DAE-IVP (4.4-4.5) by the so-called direct
approach or ε-embedding. To this end, we consider the corresponding singular perturbed system
of ODEs

ẇε = f (wε ,zε)

ε żε = g(wε ,zε)

with ε > 0 and initial values wε
0 = w0, zε

0 = z0. The analytical solution is denoted by wε(t),zε(t).
We apply an implicit s-stage Runge-Kutta method with regular coefficient matrix A = (ai j)

s
i, j=1,

stage vector (ci)
s
i=1 and weight vector (b j)

s
j=1. The transition ε → 0 will lead to a Runge-method

for the semi-explicit DAE.

The time step tn→ tn+1 = tn +h for the singular perturbed ODE-IVP reads

wε
n+1 = wε

n +h
s

∑
j=1

b j f (W ε
n j,Z

ε
n j) (4.9)

zε
n+1 = zε

n +h
s

∑
j=1

b j
1
ε

g(W ε
n j,Z

ε
n j) (4.10)

with approximations wε
n ≈ wε(tn),wε

n+1 ≈ wε(tn+1), analogously for zε . The intermediate stage
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values W ε
ni ≈ wε(tn + cih), Zε

ni ≈ zε(tn + cih) are given by

W ε
ni−wε

n

h
=

s

∑
j=1

ai j f (W ε
n j,Z

ε
n j),

Zε
ni− zε

n

h
=

s

∑
j=1

ai j
1
ε

g(W ε
n j,Z

ε
n j)

for i = 1, . . . ,s. Multiplying the second equation with A−1 = (αki)
s
k,i=1 leads to

s

∑
i=1

αki
Zε

ni− zε
n

h
=

1
ε

g(W ε
nk,Z

ε
nk) (4.11)

⇔ ε

s

∑
i=1

αki
Zε

ni− zε
n

h
= g(W ε

nk,Z
ε
nk) = 0 for ε → 0 (4.12)

for k = 1, . . . ,s. We insert (4.11) into (4.10) and derive

Definition 10 (Runge-Kutta Methods for Semi-Explicit DAEs of Index-1). Let be given an im-
plicit s-stage Runge-Kutta method with parameters A, b, c and regular coefficient matrix A−1 =
(αki)

s
k,i=1. This method is applied to the semi-explicit DAE (4.4-4.5) on [t0, tend] with consistent

initial values w0,z0, fulfilling the index-1 condition (4.6) and the assumptions of Lemma 14. Then,
the approximations wn+1,zn+1 at tn+1 = tn +h are given by

Wni = wn +h
s

∑
j=1

ai j f (Wn j,Zn j), i = 1, . . . ,s (4.13)

0 = g(Wni,Zni), i = 1, . . . ,s (4.14)

wn+1 = wn +h
s

∑
j=1

b j f (Wn j,Zn j) (4.15)

zn+1 =

(
1−

s

∑
j=1

s

∑
i=1

b jα ji

)
zn +

s

∑
j=1

s

∑
i=1

b jα jiZni (4.16)

with intermediate stage values Wni ≈ w(tn + cih), Zni ≈ z(tn + cih).

We point out, that generally the algebraic constraints at tn+1 are not fulfilled, i.e. g(wn+1,zn+1) 6=
0. To overcome with, one can replace (4.16) by the condition g(wn+1,zn+1) = 0 or by using a

Definition 11 (Stiffly Accurate Runge-Kutta Method). An implicit, s-stage Runge-Kutta method
with parameters A, b, c is called stiffly accurate if

as j = b j, (4.17)

hold for j = 1, . . . ,s

As direct consequence, the approximations computed by a stiffly accurate, s-stage Runge-Kutta
method, are given by

wn+1 =Wns and zn+1 = Zns.

Then, due to (4.14), the algebraic constraint at tn+1 is always fulfilled.

An important property of stiffly accurate Runge-Kutta methods is shown in [DHZ87,GM86]: The
order of accuracy in the ODE-case is preserved also for the application to semi-explicit DAEs of
index-1 (for w as well as for z).



52 4 Multirate One-Step Methods for Differential-Algebraic Equations

We see, that stiffly accurate Runge-Kutta methods fit well for time integration of semi-explicit
DAE-IVPs of index-1. The implicit Euler method is a simple example for a stiffly accurate Runge-
Kutta scheme. The next chapter derives and investigates a multirate scheme for semi-explicit
DAEs of index-1 based on the implicit Euler method.

4.2 The Multirate Implicit Euler Method for Semi-Explicit

DAEs of Index-1

To derive a multirate Runge-Kutta method for DAEs, we generalize the concept of multiscale
ODE-IVPs and consider a coupled system of DAEs with different dynamical behaviour (Sec-
tion 4.2.1). Based on the implicit Euler method, we derive in Section 4.2.2 a multirate integration
method for semi-explicit DAEs of index-1 and three different coupling approaches. We prove
analytically, that the resulting scheme is consistent and convergent of order 1 (Sections 4.2.3 and
4.2.4). Numerical Simulations in Section 4.2.5 confirm the theoretical results.

This section is an extension of the results of [HBGS19].

4.2.1 Multiscale Di�erential-Algebraic Equations

Similarly to a multiscale partitioned ODE-IVP (2.3), we study two coupled DAEs in semi-explicit
form

ẇF = fF(wF ,zF ,wS,zS) (4.18)

0 = gF(wF ,zF ,wS,zS) (4.19)

ẇS = fS(wF ,zF ,wS,zS) (4.20)

0 = gS(wF ,zF ,wS,zS) (4.21)

with xv : [t0, tend]→ Rnx
v while x ∈ {w,z}, v ∈ {F,S} and t0 < tend ∈ R. The system provides the

particular multirate behaviour: wF ,zF are changing much faster than the slow components wS,zS.
A set of consistent initial values wF(t0) = wF0, zF(t0) = zF0, wS(t0) = wS0, zS(t0) = zS0 is given,
such that

gF(wF0,zF0,wS0,zS0) = 0 and gS(wF0,zF0,wS0,zS0) = 0.

The right-hand sides of the system fF , gF , fS, gS are assumed to be sufficiently smooth and that
each subsystem itself has differential index-1

det
(

∂gF

∂ zF

)
6= 0 and det

(
∂gS

∂ zS

)
6= 0 ∀(wF ,zF ,wS,zS) ∈ Uε(wF(t),zF(t),wS(t),zS(t))

(4.22)

while Uε(wF(t),zF(t),wS(t),zS(t)) denotes an open environment around the analytical solution
of the coupled DAE-system (4.18-4.21). In the first inequality wS(t),zS(t) are seen as time-
dependent input-functions to the fast subsystem and vice versa in the second inequality wF(t),zF(t)
are input-functions to the slow subsystem. Moreover, we claim the coupled DAE-system to be of
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index-1

det
(

∂g
∂ z

)
6= 0 ∀(wF ,zF ,wS,zS) ∈ Uε(wF(t),zF(t),wS(t),zS(t)) (4.23)

with

z =
(

zF

zS

)
and g(wF ,zF ,wS,zS) =

(
gF(wF ,zF ,wS,zS)
gS(wF ,zF ,wS,zS)

)
.

The index-1 condition allows us to apply the implicit function theorem to solve the algebraic
constraints (locally) for the algebraic variables

zS = GS(wF ,wF) and zF = GF(wF ,wS) (4.24)

for (wF ,zF ,wS,zS)∈Uε(wF(t),zF(t),wS(t),zS(t)) and implicit functions Gv : Uε(wF(t),wS(t))→
Rnz

v , v ∈ F,S. These properties allows us to integrate the system (4.18-4.21) with an implicit and
stiffly-accurate Runge-Kutta method as described in Section 4.1.2. We continue with the deriva-
tion of an efficient multirate time integration method for coupled DAEs.

4.2.2 The mrIRK-1 Scheme for Semi-Explicit DAEs of Index-1

We consider the coupled DAE-system (4.18-4.21). We assume index-1 for the subsystems and the
coupled system, respectively (4.22, 4.23). According to the results of Section 4.1.2 the coupled
system and the subsystems can be integrated with a stiffly-accurate, implicit Runge-Kutta method.
To exploit the particular dynamical behaviour of the DAE-system (4.18-4.21), we extend a mul-
tirate Runge-Kutta method for ODE-IVPs of Section 2.2.1 to the coupled system of semi-explicit
DAEs of index-1. To this end, we consider the implicit Euler method with Butcher-tableau

1 1
1

which has a regular coefficient matrix a11 = 1 and is stiffly-accurate a11 = b1. Therefore, it can
be used for time integration of semi-explicit DAEs of index-1. The slow subsystem (4.20-4.21) is
integrated with a large macro-step size H, the fast subsystem (4.18-4.19) with a smaller micro-step
size h = H/m for a fixed multirate factor m ∈ N.

The macro-step tn→ tn+1 = tn +H for the computation of the slow variables and the compound
step in case of the Coupled-First-Step approach, repectively, reads

w∗Fn+k/m = wFn +h · k · fF(w∗Fn+k/m,z
∗
Fn+k/m,wSn+1,zSn+1) (4.25)

0 = k ·gF(w∗Fn+k/m,z
∗
Fn+k/m,wSn+1,zSn+1) (4.26)

wSn+1 = wSn +H · fS(w∗Fn+k/m,z
∗
Fn+k/m,wSn+1,zSn+1) (4.27)

0 = gS(w∗Fn+k/m,z
∗
Fn+k/m,wSn+1,zSn+1) (4.28)

with coupling variables w∗Fn+k/m,z
∗
Fn+k/m and k ∈ {0,1,m}. k defines the coupling strategy ac-

cording to Section 2.2.2:

k = 0 Decoupled-Slowest-First: For the computation of wSn+1,zSn+1 the values of the fast sub-
system are achieved by constant extrapolation, i.e. w∗Fn+1 = wFn, z∗Fn+1 = zFn.
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k = 1 Coupled-First-Step: The first micro-step of the fast subsystem is computed coupled to-
gether with the macro-step of the slow subsystem, i.e. w∗Fn+k/m = wFn+1/m, z∗Fn+k/m =
zFn+1/m.

k = m Coupled-Slowest-First: The fast and the slow subsystems are solved on the macro-step
level coupled together, the approximations w∗Fn+1,z

∗
Fn+1 are incaccurate and therefore re-

fused.

We point out that for k = 0 the equations (4.25-4.26) become trivial and are not considered for the
computation of wSn+1 and zSn+1.

For the integration of the fast subsystem (4.18-4.19) the macro-step is split into micro-steps of
size h = H/m. One micro-step tn+l/m→ tn+(l+1)/m = tn+l/m +h is given by

wFn+(l+1)/m = wFn+l/m +h · fF(wFn+(l+1)/m,zFn+(l+1)/m, w̄Sn+(l+1/m), z̄Sn+(l+1)/m) (4.29)

0 = gF(wFn+(l+1)/m,zFn+(l+1)/m, w̄Sn+(l+1/m), z̄Sn+(l+1)/m). (4.30)

We have l = 0, . . . ,m− 1 for k ∈ {0,m} and l = 1, . . . ,m− 1 for k = 1. The values of the slow
subsystem w̄Sn+(l+1)/m ≈ wS(tn+(l+1)/m) and z̄Sn+(l+1)/m ≈ zS(tn+(l+1)/m) are achieved by linear
interpolation, see equations (2.18)). For a system of DAEs, a Hermite-Interpolation (2.19) is not
feasible due to the lack of the time-derivative of the algebraic variable zS.

Another approach for z̄Sn+(l+1)/m is the implicit definition via the non-linear equation

wFn+(l+1)/m = wFn+l/m +h · fF(wFn+(l+1)/m,zFn+(l+1)/m, w̄Sn+(l+1/m), z̄Sn+(l+1)/m)

0 = gF(wFn+(l+1)/m,zFn+(l+1)/m, w̄Sn+(l+1/m), z̄Sn+(l+1)/m)

0 = gS(wFn+(l+1)/m,zFn+(l+1)/m, w̄Sn+(l+1/m), z̄Sn+(l+1)/m).

(4.31)

It is obvious that the computational effort increases by adding nz
S equations to the nonlinear sys-

tem. Nevertheless, for a small number nz
S this formulation avoids the interpolation of algebraic

variables which probably leads to a drift-off effect during the the integration of the fast subsystem.
We show that both realisations of the algebraic-to-fast coupling lead to the same consistency order
of the integration method.

From now on, we refer to the resulting multirate integration method (4.25-4.28) and (4.29-4.30)
or (4.31) as mrIRK1-DAE scheme: multirate Implicit Runge-Kutta method of order 1 for semi-
explicit DAEs of index-1.

4.2.3 Consistency Analysis for mrIRK1-DAE

We estimate the error that is made during one macro-step tn → tn+1 = tn + H caused by the
mrIRK1-DAE method (based on m micro-steps; i.e., H = m · h). We discuss the three intro-
duced coupling strategies. Before deriving an expression for the error for all coupling approaches
we introduce the notation and list up all assumptions.

Let x : [t0, tend]→ Rk denote some set of variables of the above DAE-system (4.18-4.21) and
let exact initial values x(tn) be given for the macro-step [tn, tn+1]. At the end of the macro-step
(t = tn+1), we have a numerical approximation xn+1 of an analytic solution x(tn+1) and the error
notation:

∆xn+1 := xn+1− x(tn+1). (4.32)
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Hence, we assume at t = tn: (for any vector norm || · ||)

‖∆wFn‖= ‖∆zFn‖= ‖∆wSn‖= ‖∆zSn‖= 0. (4.33)

For simplicity of notation, we introduce the following sloppy short-hand on the nth macro-step:

‖x(t)‖∞ := max
τ∈[tn,tn+1]

‖x(τ)‖.

The following assumption is valid for the whole subsection.

Assumption 15. For some ε > 0 and the analytic solution (wF(.),wS(.),zS(.)) of the DAE (4.18-
4.21), we define the neighbourhood at time τ

E (τ) := {(wF ,zF ,wS,zS) ∈ Rnw
F+nz

F+nw
S +nz

S
∣∣

‖wF −wF(τ)‖,‖zF − zF(τ)‖,‖wS−wS(τ)‖,‖zS− zS(τ)‖ ≤ ε}

and assume the following:

(i) The right-hand sides of DAE-system (4.18-4.21) fF , gF , fS, gS are sufficiently smooth
and all first partial derivatives are (locally) uniformly bounded and the same holds for the
second derivatives w.r.t. t. The Lipschitz constant of fF with respect to wS reads

L fF
wS

:= max
τ∈[tn,tn+1],E (τ)

∥∥∥∥∂ fF

∂wS
(wF ,zF ,wS,zS)

∥∥∥∥ , (4.34)

and L fF
wF ,L

fF
zF ,L

fF
zS ,L

fS
wF ,L

fS
zF ,L

fS
wS ,L

fS
zS are defined analogously.

(ii) For the DAE-system (4.18-4.21), the implicit functions GF and GS (4.24) shall exist and be
unique on [tn, tn+1]. GF and GS shall be sufficiently smooth and the partial derivatives shall
be uniformly bounded. The corresponding Lipschitz constant reads:

LGF
wS

:= max
τ∈[tn,tn+1],E (τ)

∥∥∥∥∂GF

∂wS
(wF ,wS)

∥∥∥∥ (4.35)

and LGF
wF

,LGS
wF
,LGS

wS
analogously.

Preparing the accuracy analysis of the mrIRK-1 scheme for DAEs, we state and proof the follow-
ing formulation of the mean value theorem:

Lemma 16. Let be given a function

F : Rn1×Rn2×Rn3×Rn4 → Rn5

which is differentiable with respect to all input arguments and its Lipschitz constants are given by
L1,L2,L3,L4. For x1, x̃1 ∈ Rn1 , x2, x̃2 ∈ Rn2 , x3, x̃3 ∈ Rn3 , x4, x̃4 ∈ Rn4 we can estimate

‖F(x1,x2,x3,x4)−F(x̃1, x̃2, x̃3, x̃4)‖
≤ L1‖x1− x̃1‖+L2‖x2− x̃2‖+L3‖x3− x̃3‖+L4‖x4− x̃4‖. (4.36)
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Proof. By the mean value theorem, we can write

F(x1,x2,x3,x4)−F(x̃1, x̃2, x̃3, x̃4) =

1∫
0

∂F
∂x1

(Θ(σ))dσ(x1− x̃1)+

1∫
0

∂F
∂x2

(Θ(σ))dσ(x2− x̃2)

+

1∫
0

∂F
∂x3

(Θ(σ))dσ(x3− x̃3)+

1∫
0

∂F
∂x4

(Θ(σ))dσ(x4− x̃4) (4.37)

with evalutation at

Θ(σ) :=


x̃1 +σ(x1− x̃1)
x̃2 +σ(x2− x̃2)
x̃3 +σ(x3− x̃3)
x̃4 +σ(x4− x̃4)

 .

We take norms on both sides of (4.37) and set

Li := max
Uε

∥∥∥∥∂F
∂xi

(x̄1, x̄2, x̄3, x̄4)

∥∥∥∥ , i = 1, . . . ,4

while the maximum is taken with respect to

Uε = {‖x1− x̄1‖,‖x2− x̄2‖,‖x3− x̄3‖,‖x4− x̄4‖ ≤ ε}

and we end up with the statement of the Lemma.

The statement of this Lemma will be used in several proofs of the consistency analysis of the
mrIRK1-DAE scheme.

Except for the first step in the Coupled-First-Step strategy, the computation of the fast components
is the same. Thus, we start the error estimation for the fast subsystem.

Accuracy of the Fast Components

For k ∈ {0,m} the estimation of the errors of the fast subsystems coincides. For k = 1 the analysis
of the error is done in a similar way but based on a different expression for the first micro-step.
All three coupling strategies lead to the same order of consistency and therefore we do not present
the details for k = 1.

The following Lemma provides an estimate for the error of the fast subsystem in one macro-step
[tn, tn+1].

Lemma 17. Let be given an index-1 DAE-IVP on [tn, tn+1] (4.18-4.21), which fulfils Ass. 15.
Let the approximation wFn+1, zFn+1, wSn+1, zSn+1 be computed by the mrIRK1-DAE scheme
(4.25-4.28) and (4.29-4.30) with macro-step size H and micro-step size h = H/m (m ∈ N). If the
micro-step size is restricted to

0 < 1−h(L fF
wF

+L fF
zF

LGF
wF

)< 1, (4.38)
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then the error in the fast subsystem after one macro-step tn→ tn +H can be bounded by

‖∆wFn+1‖ ≤ D1 ·
{H2

2
max

τ∈[tn,tn+1]
‖ẅF(τ)‖+h

m

∑
l=1

(
(L fF

wS
+L fF

zF
LGF

wS
)‖∆w̄Sn+l/m‖+L fF

zS
‖∆z̄Sn+l/m‖

)}
with a constant D1 ≥

(
1−h(L fF

wF +L fF
zF LGF

wF
)
)−m

> 0 and the coupling errors ∆w̄Sn+l/m, ∆z̄Sn+l/m.

Proof. We start with an estimation of ∆zFn+(l+1)/m in one micro-step tn+l/m→ tn+(l+1)/m:

‖∆zFn+(l+1)/m‖= ‖GF(wFn+(l+1)/m, w̄Sn+(l+1)/m)−GF(wF(tn+(l+1)/m),wS(tn+(l+1)/m))‖
≤ LGF

wF
‖∆wFn+(l+1)/m‖+LGF

wS
‖∆w̄Sn+(l+1)/m‖ (4.39)

For the fast changing, differential variable we have

∆wFn+(l+1)/m = wFn+l/m−wF(tn+l/m)︸ ︷︷ ︸
=∆wFn+l/m

+
(
−wF(tn+(l+1)/m)+wF(tn+l/m)

)
+h fF(wF(tn+(l+1)/m),zF(tn+(l+1)/m),wS(tn+(l+1)/m),zS(tn+(l+1)/m))

+h fF(wFn+(l+1)/m,zFn+(l+1)/m, w̄Sn+(l+1)/m, z̄Sn+(l+1)/m)

−h fF(wF(tn+(l+1)/m),zF(tn+(l+1)/m),wS(tn+(l+1)/m),zS(tn+(l+1)/m)).

The local truncation error of the single-rate implicit Euler method is defined as

δn+l/m = wF(tn+l/m)+h fF(wF(tn+(l+1)/m),zF(tn+(l+1)/m),wS(tn+(l+1)/m),zS(tn+(l+1)/m))

−wF(tn+(l+1)/m)

and can be estimated by

‖δn+l/m‖ ≤
h2

2
max

τ∈[tn+l/m,tn+(l+1)/m]
‖ẅF(τ)‖.

Applying Lemma 16, we get

‖∆wFn+(l+1)/m‖ ≤ ‖∆wFn+l/m‖+ h2

2 ‖ẅF(t)‖∞ +h
(

L fF
wF
‖∆wFn+(l+1)/m‖+L fF

zF
‖∆zFn+(l+1)/m‖

+L fF
wS
‖∆w̄Sn+(l+1)/m‖+L fF

zS
‖∆z̄Sn+(l+1)/m‖

)
.

For ‖∆zFn+(l+1)/m‖ we insert the result of (4.39). Summing all micro-steps (l = 0,1, . . . ,m− 1),
using exact IVs at t = tn (4.33), we arrive at the statement of the lemma.

It remains to estimate ∆w̄Sn+l/m, ∆z̄Sn+l/m for all l = 0,1, . . . ,m−1. The following lemma gives a
corresponding bound:

Lemma 18. Under the same settings and assumptions as in Lemma 17, the coupling errors can
be bounded by

a) ‖∆w̄Sn+l/m‖ ≤ 1
2 lh2(m− l)‖ẅS(τ)‖+ l

m‖∆wSn+1‖ for some τ∈ [tn, tn+1],
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b) ‖∆z̄Sn+l/m‖ ≤ 1
2 lh2(m− l)‖z̈S(τ)‖+ l

m‖∆zSn+1‖ for some τ∈ [tn, tn+1]
if z̄Sn+l/m is achieved by linear interpolation (2.18),

c) ‖∆z̄Sn+l/m‖ ≤ LGS
wF
‖∆wFn+l/m‖+LGS

wS
‖∆w̄Sn+l/m‖

if the formulation based on the algebraic constraint (4.31) is used.

Proof. a) It holds:

∆w̄Sn+l/m = wS(tn+l/m)−
(m−l

m wSn +
l
m wSn+1

)
= wS(tn+l/m)−

(m−l
m wSn +

l
m wS(tn+1)

)
− l

m ∆wSn+1.

Then, an error estimation for linear interpolation yields a).

b) Analogous to a).

c) We have

‖∆z̄Sn+l/m‖= ‖GS(wFn+l/m, w̄Sn+l/m)−GS(wF(tn+l/m),wS(tn+l/m))‖.

Lemma 16 yields the statement.

To estimate ∆wFn+1 in terms of ∆wSn+1 and ∆zSn+1, we combine the previous lemmas and have
as direct consequence:

Proposition 19. Under the same settings and assumptions as in Lemma 17, the error ∆wFn+1 can
be bounded (using linear interpolation for w̄S):

i) for z̄S obtained by linear interpolation (2.18)

‖∆wFn+1‖ ≤ D1 ·
[

H2

2m‖ẅF(t)‖∞ + H+h
2 (L fF

wS
+L fF

zF
LGF

wS
)
(

H2+Hh
6 ‖ẅS(τ)‖∞ +‖∆wSn+1‖

)
+ H+h

2 L fF
zS

(
H2+Hh

6 ‖z̈S(t)‖∞ +‖∆zSn+1‖
)]

;

ii) for z̄S computed by the non-linear equation (4.31) and h restricted to

0 < 1−h(L fF
wF

+L fF
zF

LGF
wF

+L fF
zS

LGS
wF
)< 1, (4.40)

then we have the bound

‖∆wFn+1‖ ≤ D2 ·
[

H2

2m‖ẅF(t)‖∞

+ H+h
2 (L fF

wS +L fF
zF LGF

wS
+L fF

zS LGS
wS
)
(

H2

6 ‖ẅS(t)‖∞ +‖∆wSn+1‖
)]

with constant D2 ≥
(

1−h(L fF
wF +L fF

zF LGF
wF

+L fF
zS LGS

wF
)
)−m

> 0.

Next, we provide estimations for ‖∆wSn+1‖ and ‖∆zSn+1‖ for all coupling approaches.
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Accuracy of the Slow Components

The derivation of an error bound for the slow components is done in two steps: we start with an
estimation for the algebraic variables, then the slow differential variables are estimated.

Lemma 20. Let be given an index-1 coupled DAE-IVP (4.18-4.21) fulfilling Ass. 15. Let the
approximation wSn+1, zSn+1 be computed by the mrIRK1-DAE scheme (4.25-4.28) with macro-
step size H. Let the coupling terms be denoted by w∗Fn+k/m,z

∗
Fn+k/m. Then the error in zS can be

bounded by

‖∆zSn+1‖ ≤ m−k
m HLGS

wF
max

τ∈[tn+k/m,tn+1]
‖ẇF(τ)‖+LGS

wF
‖∆w∗Fn+k/m‖+LGS

wS
‖∆wSn+1‖ (4.41)

with τ ∈ [tn, tn +H] and Lipschitz constants LGF ,LGS .

Proof. Solving the algebraic constraint (4.24), we can write for the local error

∆zSn+1 = GS
(
w∗Fn+k/m,wSn+1

)
−GS

(
wF(tn+1),wS(tn+1)

)
.

Applying Lemma 16, we obtain

‖∆zSn+1‖ ≤ LGS
wF
‖w∗Fn+k/m−wF(tn+1)‖+LGS

wS
‖∆wSn+1‖

≤ LGS
wF
‖wF(tn+k/m)−wF(tn+1)‖+LGS

wF
‖∆w∗Fn+k/m‖+LGS

wS
‖∆wSn+1‖

The mean value theorem completes the proof.

The estimation for the error in wS differs between the coupled approaches k ∈ {1,m} and the
Decoupled-Slowest-First approach k = 0. First, we derive an upper bound for the latter one.

Proposition 21. We consider the Decoupled-Slowest-First approach. Under the same settings
and assumptions as in Lemma 20 (for k = 0) and a restricted macro-step size H, such that

0 < 1−H(L fS
wS
+L fS

zS
LGS

wS
)< 1 (4.42)

holds, the error in wS is bounded by

‖∆wSn+1‖ ≤
H2

1−H(L fS
wS +L fS

zS LGS
wS )

((
L fS

wS
+L fS

zS
LGS

wS

)
‖ẇS(τ)‖∞ + 1

2‖ẅS(τ)‖∞

)
. (4.43)

Then, the Decoupled-Slowest-First mrIRK-1 applied to the DAE-IVP (4.18-(4.21)) is of consis-
tency order 1 in the differential variables wF and wS. The error in the algebraic variables zF , zS

is in O(H).

Proof. By Taylor expansion of wS(tn+1) with expansion point tn, we obtain

∆wSn+1 = wSn +H · fS(wFn,zFn,wSn+1,zSn+1)−
(

wS(tn)+H · ẇS(tn)+ H2

2 ẅS(τ)
)

= H · ( fS (wFn,zFn,wSn+1,zSn+1)− fS (wF(tn),zF(tn),wS(tn),zS(tn)))− H2

2 ẅS(τ)
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for some τ ∈ [tn, tn +H]. Applying Lemma 16 and the mean value theorem, we get

‖∆wSn+1‖ ≤ H
(
L fS

wS
‖wSn+1−wSn‖+L fS

zS
‖zSn+1− zSn‖

)
+ H2

2 ‖ẅS(τ)‖∞

≤ H
(
L fS

wS
‖∆wSn+1‖+H ·L fS

wS
‖ẇS(τ)‖∞ +L fS

zS
‖GS(wFn,wSn+1)−GS(wFn,wSn)‖

)
+ H2

2 ‖ẅS(τ)‖∞

Using again Lemma 16 and the proof is complete.

Next, it is to investigate the accuracy of the slow, differential variables wS for k ∈ {1,m}. Here,
the approximation wSn+1 is computed together with the coupling variable w∗Fn+l/m and therefore
also the errors ∆wSn+1, ∆w∗Fn+l/m depend on each other. The next lemma gives estimates for both.

Lemma 22. We consider the Coupled-First-Step and the Coupled-Slowest-First approacht, i.e.
k ∈ {1,m}. Under the same settings and assumptions as in Lemma 20, the error in the differential
variables for the Macro-Step (k = m) and the Compound-Step (k = 1) can be bounded as follows:

M(H k
m ,H)

(‖∆w∗Fn+k/m‖
‖∆wSn+1‖

)
≤
(

RF

RS

)
, (4.44)

with

M(H1,H2) :=

(
1−H1(L

fF
wF +L fF

zF LGF
wF

+L fF
zS LGS

wF
) −H1(L

fF
wS +L fF

zF LGF
wS

+L fF
zS LGS

wS
)

−H2(L
fS
wF +L fS

zF LGF
wF

+L fS
zS LGS

wF
) 1−H2(L

fS
wS +L fS

zF LGF
wS

+L fS
zS LGS

wS
)

)
RF = H2

(
k(m−k)

m2

(
L fF

wS
+L fF

zF
LGF

wS
+L fF

zS
LGS

wS

)
‖ẇS‖∞ + 2k(m−k)

m L fF
zS

LGS
wF
‖ẇF‖∞ + k2

m2 ‖ẅF‖∞

)
RS = H2

(
k(m−k)

m2

(
L fS

wF
+L fS

zF
LGF

wF
+L fS

zS
LGS

wF

)
‖ẇF‖∞ + 2k(m−k)

m L fS
zF

LGF
wS
‖ẇS‖∞ + 1

2‖ẅS‖∞

)
The inequality in (4.44) has to be understood componentwise.

Proof. For ∆wSn+1, we add ±
[
wS(tn)−H fS

(
wF(tn+1),zF(tn+1),wS(tn+1),zS(tn+1)

)]
. By Lemma

16, we deduce

‖∆wSn+1‖ ≤
∥∥∥∫ H

0 τẅ(tn + τ)dτ

∥∥∥+H
[
L fS

wF
‖w∗Fn+k/m−wF(tn+1)‖+L fS

zF
‖z∗Fn+k/m− zF(tn+1)‖

+L fS
wS
‖∆wSn+1‖+L fS

zS
‖∆zSn+1‖

]
≤ H2

2 ‖ẅS‖∞ +H
[
L fS

wF
‖∆w∗Fn+k/m‖+L fS

zF
‖∆z∗Fn+k/m‖+L fS

wS
‖∆wSn+1‖+L fS

zS
‖∆zSn+1‖

]
+ m−k

m H2[L fS
wF
‖ẇF‖∞ +L fS

zF
‖żF‖∞

]
.

The estimation for ‖∆zSn+1‖ is given in Lemma 20. żF can be solved according to (4.24). For
∆z∗Fn+k/m we apply Lemma 16 and the mean value theorem and get

‖∆z∗Fn+k/m‖ ≤ LGF
wF
‖∆w∗Fn+k/m‖+LGF

wS
‖∆wSn+1‖+H m−k

m LGF
wS
‖ẇS‖∞. (4.45)

Analogously, one can deduce the estimate for ∆w∗Fn+1. Combining all estimations, we arrive at
the statement of the Lemma.

To solve the estimate (4.44) for the error in the differential variables, we need that M(H1,H2)
is an M-matrix in R2x2. In fact, for H1,H2 > 0 small enough, the diagonal entries are positive
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(off-diagonals are always negative). Thus, we have

Proposition 23. Let the same settings and assumptions apply as in Lemma 22. And the step-size
H and the multirate factor m be restricted such that the M-Matrix conditions for M(H k

m ,H) are
fulfilled [Ple77]:

H(L fS
wS
+L fS

zF
LGF

wS
+L fS

zS
LGS

wS
)< 1 and H k

m(L
fF
wF

+L fF
zF

LGF
wF

+L fF
zS

LGS
wF
)< 1

and det
(
M(H k

m ,H)
)
> 0 .

(4.46)

Then, the Coupled-First-Step (k = 1) and the Coupled-Slowest-First (k =m) mrIRK1-DAE scheme
applied to the DAE-IVP (4.18-4.21) is of consistency order 1 in the differential variables wF , wS

and also for the algebraic variables zF , zS for k = m. For k = 1, the error in the algebraic
variables zF , zS is in O(H).

Summary

We conclude for Section 4.2.2:

Theorem 24. For all versions of the mrIRK1-DAE method applied to the DAE-IVP (4.18-4.21)
the differential variables (wF , wS) have consistency order 1. The algebraic variables (zF , zS)
reach order 1 only in the Coupled-Slowest-First approach. For the other coupling approaches,
‖∆zS‖, ‖∆zF‖ are always in O(H). Under the additional assumption

∂

∂wF
GS(wF ,wS) = 0 and

∂

∂wS
GF(wF ,wS) = 0 (4.47)

for t ∈ [t0, tend] we have order 1 also in the algebraic variable (zF , zS) in all coupling approaches.

In other words, the conditions (4.47) say, that the coupling of the subsystem is realised by the
differential variables only.

Proof. It only remains to show order 1 in zS and zF for Decoupled-Slowest-First and Coupled-
First-Step: Since (4.47), we have LGF

wS
= LGS

wF
= 0 in (4.41) and (4.45) and we end up with

‖∆zS‖= O(‖∆wS‖) and ‖∆zF‖= O(‖∆wF‖).

Remark: The slow changing variables (wS, zS) of a multirate DAE-IVP depends only weakly on
wF , therefore

∥∥∥ ∂

∂wF
G(wF ,wS)

∥∥∥ is small and can be neglected in most cases.

Lemma 18 and Proposition 19 showed, that the linear interpolation of wS and zS during the com-
putation of the micro-steps does not lead to a higher order of accuracy of the multirate integration
method: By a similar calculation one can show that a constant extrapolation of wS and zS during
the computation of the micro-steps, the order of accuracy on the macro-step grid is not reduced.
Nevertheless, the computational effort of the linear interpolation is comparable to constant ex-
trapolation and leads to a higher accuracy on the micro-step grid.
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Next, it is shown that the reduced consistency order in the algebraic variable does not influence
the convergence of the scheme.

4.2.4 Convergence of mrIRK1-DAE

Now, we investigate the error propagation over several macro-steps. For the index-1 DAE-
IVP (4.18-4.21), (wFn,zFn,wSn,zSn) denotes the mrIRK1-DAE approximation at tn after n macro-
steps. For any components x = x(t) of the unknowns, the global error reads

E(x, tn) := xn− x(tn).

We show that E(wF , tn), E(zF , tn), E(wS, tn), E(zS, tn) are in O(H). To this end, we recall the
following theorem from [DHZ87]:

given a semi-explicit DAE-IVP of index-1 (4.18-4.21), we apply a general one-step method

wk+1 = wk + ĥ ·Φ(wk,zk, ĥ),

zk+1 = Ψ(wk,zk, ĥ)

with w> = (w>F ,w
>
S ) and z> = (z>F ,z

>
S ), a constant step size ĥ, a differential update function Φ and

an algebraic update function Ψ. We remark that Φ and Ψ are only formally explicit. If the method
has consistency order p for the differential variables w, as well as p−1 for algebraic variables z
and if the algebraic update function satisfies the following perturbation condition∥∥∥∥∂Ψ(w,z,0)

∂ z

∥∥∥∥≤ α < 1 (4.48)

in a neighbourhood of the solution, then the one-step method has convergence order p. For p = 1
this statement holds for the mrIRK1-DAE method:

Theorem 25. We apply the mrIRK1-DAE method to the index-1 DAE-IVP (4.18-4.21) fulfilling
Ass. 15. We may choose any coupling variant: Coupled-Slowest-First, Decoupled-Slowest-First,
Coupled-First-Step. H and m are chosen such that the corresponding step size restrictions (4.38),
(4.40), (4.42), (4.46) are fulfilled. Then we get for the global error

E(wF , tn) = O(H), E(zF , tn) = O(H), E(wS, tn) = O(H), E(zS, tn) = O(H).

Proof. We check the assumptions of the theorem from [DHZ87] (mentioned above):

One-Step Method. All discussed formulations of the mrIRK1-DAE scheme define the approxi-
mations wFn+1,zFn+1,wSn+1,zSn+1 at tn+1 after one macro step as functions of the approximations
wFn,zFn,wSn,zSn at tn.

Consistency. Theorem 24 showed that we have consistency order 1 for the differential variables
and at least order O(H) for the algebraic variables (for any variant).
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Perturbation Condition (4.48). For the slow changing, algebraic variable, we have

zSn+1 = GS(w∗Fn+k/m,wSn+1)

= GS
(
wFn +H k

m fF(w∗Fn+k/m,z
∗
Fn+k/m,wSn+1,zSn+1),

wSn +H fS(w∗Fn+k/m,z
∗
Fn+k/m,wSn+1,zSn+1)

)
with k ∈ {0,1,m}. Let ΨS denote the update function for the slow, algebraic variable, then we
have

∂ΨS

∂ zFn
= H

k
m

∂GS

∂wF

∂ fF

∂ zFn
+H

∂GS

∂wS

∂ fS

∂ zFn

We point out, that the partial derivates are computed with respect to the algebraic variable of the
previous time step zn, therefore the expression above becomes zero for k ∈ {1,m}. For k = 0 the
remaining term reads

∂ΨS

∂ zFn
= H

∂GS

∂wS

∂ fS

∂ zFn

which vanishes for the evaluation at H = 0. Analogously we can derive ∂ΨS
∂ zSn

= 0. For the fast
algebraic variable we have

zFn+1 = GF
(
wFn +h

m

∑
l=1

fF(wFn+l/m,zFn+l/m, w̄Sn+l/m, z̄Sn+l/m),

wSn +H fS(w∗Fn+k/m,z
∗
Fn+k/m,wSn+1,zSn+1)

)
and the equality ∂ΨF

∂ zFn
= 0 is derived analogously to the slow changing, algebraic variable. The

coupling terms w̄Sn+l/m, z̄Sn+l/m are achieved by linear interpolation and we have

∂ΨF

∂ zSn
=

H
m

∂GS

∂wF

∂ fF

∂ zSn

(
m−1

m
+

m−1
m

+ · · ·+ 1
m

)
.

Evaluation at H = 0 and the proof is complete.

The following numerical simulations confirm this analytical result.

4.2.5 Numerical Results

For the numerical verification, we consider two DAE-systems.

Extended Prothero-Robinson Equation

An extended Prothero-Robinson test equation for semi-explicit DAEs [BBS14] reads in our set-
tings as follows (

ẇ
0

)
=

(
A−BF B
C−DF D

)(
w
z

)
+

(
−Aη(t)−Bζ (t)+ η̇(t)
−Cη(t)−Dζ (t)

)
(4.49)
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Figure 4.1: Solution of DAE-IVP
(4.49).
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Figure 4.2: Coupled-First-Step:
‖E(x, tend)‖ in O(H)

with w(t) = (wS(t),wF(t))> ∈ R2 and z(t) = (zS(t),zF(t))> ∈ R2 and given functions η and ζ .
For the simulation we choose the following data:

A =

(
4 2
2 5

)
, B =

(
2 0
0 2

)
, C =

(
1 0
0 1

)
, D =

(
2 0
1 2

)
, F =

(
1 0
0 1

)
,

η(t) = (sin(2π106t), 2cos(2π107t))>, ζ (t) = (2cos(t), 7t)>.
(4.50)

Since D is regular (4.49) is of index-1 and consistent initial values are given by

(wS(0),wF(0),zS1(0),zS2(0))> = (0,2,2,2)>. (4.51)

Notice that the solution of (4.49) is

w(t) = η(t), z(t) = Fη(t)+ζ (t).

The different dynamical behaviour of the components is illustrated in Fig. 4.1.

We apply the mrIRK1-DAE method to the DAE (4.49) on [t0, tend] = [0, 10−6s] using all three
coupling approaches. We use different macro-step sizes H = 2−i · 10−8 for i = 0,2,4,6,8 and
fixed multirate factor m = 10. We investigate the global error at tend.

For all coupling approaches, all components of the DAE system show convergence order 1. Rep-
resentative for all combinations of coupling approaches and components, we show the combined
error ‖E(x, tend)‖ for x = (wS,wF ,zS,zF)

> for the Coupled-First-Step approach in Fig. 4.2. The
Figure illustrates the convergence order of 1 for the coupled DAE-system.

A complete overview of the convergence behaviour of all components using all three coupling
approaches is given in the Part A of the Appendix.
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Figure 4.3: Convergence order for the Coupled-Slowest-First approach for the field-circuit cou-
pled system

Field-Circuit Coupled System

We consider the field-circuit coupled system of Section 3.4, the circuit diagram is given in Figure
3.5. We recall the system equations

Cė(t) = G(u1(t)−Uin(t))−Bx(t) (4.52)

Mẋ(t) = Fx(t)+Bu1(t), (4.53)

the fast-changing, ODE-subsystem (4.52) describes the node potential u1, the slow-changing,
DAE-subsystem (4.53) describes the electric field of a 2D-transformer with state space vector x.
The consistency and convergence analysis for the mrIRK1-DAE scheme in section 4.2.2 can be
easily adapted to linear DAEs with constant coefficients like (4.52-4.53).

We integrate system (4.52-4.53) over [0s, 0.0022s] with the mrIRK1-DAE method using the
Coupled-Slowest-First approach with different macro-step sizes
H ∈ {0.0003, 0.0006, 0.0011, 0.0022, 0.0044} and multirate factor m = 10. The reference so-
lution is obtained by a single-rate implicit Euler method with constant step-size Ĥ = 5.5 ·10−7.

Figure 4.3 shows the global error of the subsystems at tend = 0.0022s separately. The range of the
solution of the fast subsystem u1(t) is between ±4.7 ·104V , therefore we show in figure 4.3a the
relative error. The simulation shows a slightly better behaviour than order 1. The error of the slow
subsystem is also of order 1 which is illustrated in figure 4.3b.

Section Summary

We extended the multirate implicit Euler method to semi-explicit DAEs of index-1. We used three
different strategies to realise the coupling between the slow and the fast subsystems. We provided
assumptions on the macro-step size and the micro-step size that a consistency order 1 can be
proven for all three coupling strategies and respective differential variables. For semi-explicit
DAEs, the usage of the Coupled-Slowest-First approach seems favourable, since it is the only
coupling strategy, where also for the algebraic variables consistency order 1 is derived. Anyway,
all discussed multirate implicit Euler method have convergence order 1 for semi-explicit DAEs
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of index-1 if the macro-step size is constant. Finally, numerical results for all coupling strategies
confirm the theoretical investigations.

After deriving the mrIRK1-DAE method, we will generalize the approach to deduce an mrIRK2-
DAE method based on the LobattoIIIC method using the the Coupled-Slowest-First approach.

4.3 A Second Order Multirate Runge-Kutta Method for

DAEs

In Section 3.4, we briefly discussed a multirate time integration method for linear implicit DAEs of
index-1 based on the LobattoIIIC scheme using the Coupled-Slowest-First approach. The method
worked well for the field-circuit coupled problem and we observed a relevant gain of efficiency
compared to the classical single-rate LobattoIIIC method. Nevertheless, a detailed consistency
and convergence analysis is still missing and will be made up in the following: After adapting the
multirate LobattoIIIC method for semi-explicit DAEs of index-1 (Section 4.3.1) we deduce the
order of consistency 2 of the integration scheme (Section 4.3.2). Analogue to Section 4.2.4 the
Convergence of the second order multirate scheme is proven (Section 4.3.3). The convergence
order is illustrated by a numerical example at the end in the Section 4.3.4

The problem setting is the same as for the mrIRK1-DAE scheme in Section 4.2.1. We consider
the partitioned DAE-IVP (4.18-4.21) with consistent initial values at t0. For the entire section we
assume that the coupled DAE-IVP fulfils the index-1 condition for the coupled system (4.23) and
for both subsystems (4.22). Therefore, we can write the algebraic variable as a function of the
differential ones in a neighbourhood of the analytical solution (4.24).

In Section 3.4 we applied the multirate LobattoIIIC-method to a linear implicit DAE with constant
coefficients of index-1. Using techniques from linear algebra such a DAE can be transformed to
semi-explicit form [BCP95].

4.3.1 The mrIRK2-DAE Scheme based on LobattoIIIC

For the index-1 DAE-IVP (4.18-4.21) we define a multirate time integration method based on the
LobattoIIIC integration scheme. In Section 4.2.3 we showed, that only the Coupled-Slowest-First
approach preserves the order of consistency for the algebraic variables. Therefore, we focus on
this coupling approach in the following.

We recall the Butcher-Tableau of the LobattoIIIC method

0 1
2 −1

2
1 1

2
1
2

1
2

1
2

.

Its coefficient matrix is regular and the method is stiffly accurate a2,i = bi, i = 1,2. Hence, it can
be used for time integration of semi-explicit DAEs of index-1.
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The macro-step tn→ tn+1 = tn +H for the coupled DAE-IVP (4.18-4.21) reads

W ∗F1 = wFn +
H
2 ( fF(W ∗F1,Z

∗
F1,WS1,ZS1)− fF(W ∗F2,Z

∗
F2,WS2,ZS2))

0 = gF(W ∗F1,Z
∗
F1,WS1,ZS1)

W ∗S1 = wSn +
H
2 ( fS(W ∗F1,Z

∗
F1,WS1,ZS1)− fS(W ∗F2,Z

∗
F2,WS2,ZS2))

0 = gS(W ∗F1,Z
∗
F1,WS1,ZS1)

W ∗F2 = wFn +
H
2 ( fF(W ∗F1,Z

∗
F1,WS1,ZS1)+ fF(W ∗F2,Z

∗
F2,WS2,ZS2))

0 = gF(W ∗F2,Z
∗
F2,WS2,ZS2)

W ∗S2 = wSn +
H
2 ( fS(W ∗F1,Z

∗
F1,WS1,ZS1)+ fS(W ∗F2,Z

∗
F2,WS2,ZS2))

0 = gS(W ∗F2,Z
∗
F2,WS2,ZS2)

(4.54)

with stage values WS1 ≈ wS(tn), WS2 ≈ wS(tn+1), W ∗F1,Z
∗
F1,ZS1,W ∗F2,Z

∗
F2,ZS2 are defined analo-

gously. W ∗F1,Z
∗
F1,W

∗
F2,Z

∗
F2 denote the coupling terms and are later refused. The approximation at

tn+1 of the slow subsystem (4.20-4.21) is given by

wSn+1 =WS2, zSn+1 = ZS2. (4.55)

To achieve an accurate approximation for the fast subsystemm (4.18-4.19), m micro-steps of step
size h = H/m are carried out. One micro-step tn +(l−1)h→ tn + lh reads

W l
F1 = wFn+(l−1)/m + h

2

(
fF(W l

F1,Z
l
F1,W̄

l
S1, Z̄

l
S1)− fF(W l

F2,Z
l
F2,W̄

l
S2, Z̄

l
S2)
)

0 = gF(W l
F1,Z

l
F1,W̄

l
S1, Z̄

l
S1)

W l
F2 = wFn+(l−1)/m + h

2

(
fF(W l

F1,Z
l
F1,W̄

l
S1, Z̄

l
S1)+ fF(W l

F2,Z
l
F2,W̄

l
S2, Z̄

l
S2)
)

0 = gF(W l
F2,Z

l
F2,W̄

l
S2, Z̄

l
S2)

(4.56)

with stage values W l
F1 ≈ wF(tn +(l− 1)h), W l

F2 ≈ wF(tn + lh) and Zl
F1, Zl

F2 analogously. The
coupling terms W̄S, Z̄S are linearly interpolated values of wSn,wSn+1 and zSn,zSn+1, respectively.
The approximation of the fast subsystem at tn + lh is given by

wFn+l/m =W l
F2, zFn+l/m = Zl

F2. (4.57)

For the multirate time integration method that is defined by (4.54-4.55) and (4.56-4.57) for l =
1, . . . ,m we introduce the abbreviation mrIRK2-DAE (multirate Runge-Kutta method of order 2
for DAEs).

We expect an order of consistency of 2 for the mrIRK2-DAE scheme since it is based on a second
order singlerate Runge-Kutta method. A detailed proof for the order of consistency is provided in
the following chapter.

4.3.2 Consistency Analysis for mrIRK2-DAE

In this section we derive the order of consistency of the mrIRK2-DAE method. To this end, we
estimate the error that is made during one macro-step tn→ tn+1 = tn +H using exact values at tn.
The local discretisation error on the macro-step level is denoted by

∆xn+1 := xn+1− x(tn+1) (4.58)
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for x any variable of the DAE-IVP (4.18-4.21) with the analytical solution x(tn+1) and the numer-
ical approximation xn+1 at tn+1 computed by the mrIRK2-DAE method. For the values at tn we
assume

‖∆wFn‖= ‖∆zFn‖= ‖∆wSn‖= ‖∆zSn‖= 0. (4.59)

The derivation of the order of consistency of the mrIRK2-DAE scheme is done in the proof of the
following

Proposition 26. Let be given an index-1 DAE-IVP (4.18-4.21) fullfilling Assumption 15. Let the
approximations wFn+1,zFn+1,wSn+1,zSn+1 be computed by the mrIRK2-DAE scheme (4.54-4.55)
and (4.56-4.57) for l = 1, . . . ,m. The macro-step size H and micro-step size h = H/m for a fixed
m ∈ N are restricted to

H(L f
w +L f

z LG
w)< 1 and h(L fF

wF
+L fF

zF
LGF

wF
)< 1. (4.60)

with the L f
w,L

f
z ,LG

w the Lipschitz constants of the non-partitioned DAE-system. Then, we have

‖∆wFn+1‖= O(H3), ‖∆zFn+1‖= O(H2), ‖∆wSn+1‖= O(H3), ‖∆zSn+1‖= O(H3)

and the order of consistency of the mrIRK2-DAE scheme is 2.

For the classical, single-rate LobattoIIIC-scheme applied to semi-explicit DAEs of index-1, the
local truncation error of the algebraic variable is in O(H3). For the multirate case, the less accurate
fast changing, algebraic variables is caused by the linear interpolation of the coupling variable as
we will see in the following

Proof. According to the order of the integration scheme, we start with the
Accuracy analysis of the slow components:
The mrIRK2-DAE scheme is based on the Coupled-Slowest-First approach. In the macro-step,
the coupled DAE-system is integrated with one global stepsize H. For the accuracy analysis in
the macro-step we re-order the DAE-system (4.18-4.21) according to differential and algebraic
variables

ẇF = f̃F(wF ,wS,zF ,zS)

ẇS = f̃S(wF ,wS,zF ,zS)

0 = g̃F(wF ,wS,zF ,zS)

0 = g̃S(wF ,wS,zF ,zS).

We set w = (w>F ,w
>
S )
> and z = (z>F ,z

>
S )
> and the above DAE-system can be written in the follow-

ing, compact form

ẇ = f (w,z), 0 = g(w,z). (4.61)

Then, the macro-step (4.54-4.55) reads

W1 = wn +
H
2 ( f (W1,Z1)− f (W2,Z2))

0 = g(W1,Z1)

W2 = wn +
H
2 ( f (W1,Z1)+ f (W2,Z2))

0 = g(W2,Z2)
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wn+1 =W2 zn+1 = Z2 (4.62)

with the stage value approximations W1,Z1 at tn and W2,Z2 at tn+1.

To proof the accuracy of the slow components wS,zS, it is sufficient to show that ‖∆wn+1‖ is in
O(H3) and ‖∆zn+1‖ is in O(H2). Since the LobattoIIIC scheme is stiffly accurate, we actually
have ‖∆zn+1‖ = O(H3). For the error in the algebraic variable, we apply the index-1 condition
for the coupled system (4.23), the implicit function theorem and Lemma 16 and get

∆zn+1 = zn+1− z(tn+1) = G(wn+1)−G(w(tn+1))

‖∆zn+1‖= LG
w‖∆wn+1‖. (4.63)

To derive an estimation for the differential variable w, we investigate the stage value errors. As-
suming exact values at tn, i.e. wn = w(tn), zn = z(tn), we have

W1−w(tn) = wn +
H
2 ( f (W1,Z1)− f (W2,Z2))−w(tn)

= H
2

(
f (W1,Z1)− f (W2,Z2)

)
− H

2

(
f (w(tn),z(tn))− f (w(tn+1),z(tn+1))

)
+ H

2

(
f (w(tn),z(tn))− f (w(tn+1),z(tn+1))

)
For the second line we use a Taylor-series approximation and derive

H
2

(
f (w(tn),z(tn))− f (w(tn+1),z(tn+1))

)
= H

2

(
w′(tn)−w′(tn+1))

)
= O(H2).

To the first line, we apply Lemma 16 and get

‖W1−w(tn)‖= H
2

((
L f

w +L f
z LG

w
)
‖W1−w(tn)‖+

(
L f

w +L f
z LG

w
)
‖W2−w(tn+1)‖

)
+O(H2).

The stage value error at tn+1 is estimated in a similar way

W2−w(tn+1) = wn +
H
2 ( f (W1,Z1)+ f (W2,Z2))−w(tn+1)

= H
2

(
f (W1,Z1)+ f (W2,Z2)

)
− H

2

(
f (w(tn),z(tn))+ f (w(tn+1),z(tn+1))

)
+wn−w(tn+1)+

H
2

(
f (w(tn),z(tn))+ f (w(tn+1),z(tn+1))

)
In the second line, we use Taylor expansion for w(tn+1) and f (w(tn+1),z(tn+1)) and get

w(tn)−w(tn+1)+
H
2

(
f (w(tn),z(tn))+ f (w(tn+1),z(tn+1))

)
=−Hẇ(tn)− H2

2 ẅ(tn)+O(H3)+ H
2

(
2ẇ(tn)+Hẅ(tn)+O(H2)

)
= O(H3)

To the first line, we apply Lemma 16 an get the following estimation for the stage value error at
tn+1

‖W2−w(tn+1)‖= H
2

((
L f

w +L f
z LG

w
)
‖W1−w(tn)‖+

(
L f

w +L f
z LG

w
)
‖W2−w(tn+1)‖

)
+O(H3).

Combining both results, we end up with the following matrix inequality1− H
2

(
L f

w +L f
z LG

w

)
−H

2

(
L f

w +L f
z LG

w

)
−H

2

(
L f

w +L f
z LG

w

)
1− H

2

(
L f

w +L f
z LG

w

)( ‖W1−w(tn)‖
‖W2−w(tn+1)‖

)
≤
(

O(H2)
O(H3)

)
(4.64)
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while the inequality has to be understood component wise. If the macro-step size is restricted to

H
(
L f

w +L f
z LG

w
)
< 1

then the coefficient matrix in (4.64) is an M-matrix and in particular it is regular and its inverse
is positive [Ple77]. We point out that (4.62) implies W2−w(tn+1) = ∆wn+1. For simplicity of
notation we set C1 := L f

w +L f
z LG

w and get

‖∆wn+1‖ ≤
1

1−HC1

(
H
2 C1O(H2)+(1− H

2 C1)O(H3)
)
= O(H3). (4.65)

Note that the macro-step in the Decoupled-Slowest-First approach coincides with the classi-
cal, single-rate LobattoIIIC integration method. LobattoIIIC fulfils the simplifying conditions
B(2),C(1),D(1). Applied to ODEs, LobattoIIIC has order of consistency 2 [But64]. For semi-
explicit DAEs of index-1, LobattoIIIC preserves its order of consistency also for the algebraic
variables since it is stiffly accurate and zn+1 does not depend on Z1, cf. (4.63) or [BCP95].

Accuracy of the Fast Components:
We consider one micro-step tn + (l− 1)h→ tn + lh as described in (4.56-4.57). We introduce
the short-hand notation tn+(l−1)/m = tn +(l− 1)h and tn+l/m = tn + lh. For the error in the fast
changing, algebraic variable we have

∆zFn+l/m = Zl
F2− zF(tn+l/m) = GF(W l

F2,W̄
l
S2)−G(wF(tn+l/m),wS(tn+l/m)).

Lemma 16 and Lemma 18 give

‖∆zFn+l/m‖ ≤ LGF
wF
‖W l

F2−wF(tn+l/m)‖+Cl
w‖∆wSn+1‖+O(H2)

for a constant Cl
w > 0.

For the error in the fast changing, differential subsystem ∆wFn+l/m, we consider the stage value
errors W l

F1−wF(tn+(l−1)/m) and W l
F2−wF(tn+l/m) and proceed as for the macro-step. We derive

the following estimates

‖W l
F1−wF(tn+(l−1)/m)‖ ≤ ‖∆wFn+(l−1)/m‖+ h

2

{
(L fF

wF
+L fF

zF
LGF

wF
)‖W l

F1−wF(tn+(l−1)/m)‖
+(L fF

wF
+L fF

zF
LGF

wF
)‖W l

F2−wF(tn+l/m)‖
+Cl

w‖∆wSn+1‖+Cl
z‖∆zSn+1‖+O(H2)

}
+O(h2)

‖W l
F2−wF(tn+l/m)‖ ≤ ‖∆wFn+(l−1)/m‖+ h

2

{
(L fF

wF
+L fF

zF
LGF

wF
)‖W l

F1−wF(tn+(l−1)/m)‖
+(L fF

wF
+L fF

zF
LGF

wF
)‖W l

F2−wF(tn+l/m)‖
+Cl

w‖∆wSn+1‖+Cl
z‖∆zSn+1‖+O(H2)

}
+O(h3)

for a constant Cl
z > 0. For ∆wSn+1, ∆wSn+1 we insert the results of the analysis of the macro-step

(4.63, 4.65). We set C2 := L fF
wF +L fF

zF LGF
wF

and get the following (component wise) matrix inequality(
1− h

2C2 −h
2C2

−h
2C2 1− h

2C2

)(
‖W l

F1−w f (tn+(l−1)/m)‖
‖W l

F2−w f (tn+l/m)‖

)
≤
(‖∆wFn+(l−1)/m‖+O(H2)

‖∆wFn+(l−1)/m‖+O(H3)

)
. (4.66)

Note that the fixed multirate factor m implies O(hn) = O(Hn) for n ∈ {2,3}. The M-Matrix
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condition for coefficient matrix in (4.66) leads to the restriction for the micro-step size

h(L fF
wF

+L fF
zF

LGF
wF

)< 1

that guarantees existence and positivity of the inverse of the coefficient matrix and we end up with

‖∆wFn+l/m‖ ≤
1

1−hC2

(
‖∆wFn+(l−1)/m‖+O(H3)

)
. (4.67)

Summing up over l = 1, . . . ,m and using exact values at tn (4.59) complete the proof.

After proving the order of consistency of the mrIRK2-DAE scheme, it is now to show its conver-
gence.

4.3.3 Convergence of mrIRK2-DAE

After proving consistency of the mrIRK2-DAE scheme, it is now to show that the scheme is
converging for a fixed macro-step size H. We proceed as for the mrIRK1-DAE scheme in Section
4.3.3: For any variable x of the DAE-IVP (4.18-4.21), let

E(x, tn) = xn− x(tn)

denote the global error between the numerical approximation xn at time tn computed by the
mrIRK2-DAE scheme and the analytical solution x(tn). We show, that the update function for
the algebraic variables of the mrIRK2-DAE scheme fulfils the conditions of the convergence the-
orem in [DHZ87]. The following Proposition works out the details.

Proposition 27. We consider the index-1 DAE-IVP (4.18-4.21) fulfilling Assumption 15. We apply
the mrIRK2-DAE method (4.54-4.55) and (4.56-4.57). The macro-step size H and the multirate
facor m are chosen according to the step size restrictions (4.60) such that the method is consistent
of order 2. Then the mrIRK2-DAE method converges and we get for the global error

E(wF , tn) = O(H2), E(zF , tn) = O(H2), E(wS, tn) = O(H2), E(zS, tn) = O(H2).

Proof. Analogously to the proof of Theorem 25, the assumptions of the Theorem in [DHZ87]
have to be checked:

One-Step Method. As for the mrIRK1-DAE scheme, the mrIRK2-DAE scheme computes the ap-
proximations wFn+1,zFn+1,wSn+1,zSn+1 at tn+1 as functions of the approximations wFn,zFn,wSn,zSn

at tn.

Consistency. Proposition 26 guarantees order of consistency 2 for wF ,wS,zS and 1 for zF if the
step sizes are chosen according to (4.60).

Perturbation Condition (4.48). The Perturbation condition holds for all stiffly-accurate, k-stage
Runge-Kutta methods with coefficient matrix A, stage-vector c and weight vector b if the Coupled-
Slowest-First-Approach is applied:
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The approximation of the slow algebraic variable zS at tn +H is given by

zSn+1 = GS(w∗Fn+1,wSn+1)

= GS

(
wFn +H

k

∑
i=1

bi fF(W ∗Fi,Z
∗
Fi,WSi,ZSi), wSn +H

k

∑
i=1

bi fS(W ∗Fi,Z
∗
Fi,WSi,ZSi)

)
For the fast algebraic variables we have

zFn+1 = GF(wFn+1,wSn+1)

= GF

(
wFn +

H
m

k

∑
i=1

bi

m

∑
l=1

fF(W l
Fi,Z

l
Fi,W̄

l
Si, Z̄

l
Si),wSn +H

k

∑
i=1

bi fS(W ∗Fi,Z
∗
Fi,WSi,ZSi)

)
Next, we compute

∂ΨS

∂ zn
, and

∂ΨF

∂ zn

with ΨS the update function of the slow algebraic variables, ΨF the update function of the fast
algebraic variables and zn = (z>Fn,z

>
Sn)
>. Evaluating both expressions for H = 0, we finally get

∂ΨS

∂ zn

∣∣∣∣
H=0

= 0, and
∂ΨF

∂ zn

∣∣∣∣
H=0

= 0

and the proof of Theorem 25 is complete.

After the analytical proof the convergence of the mrIRK2-DAE scheme, the following section
provides a numerical example that illustrates the results from above.

4.3.4 Numerical Results

We apply the mrIRK2-DAE scheme to the extended Prothero-Robinson equation (4.49) with pa-
rameters (4.50) and initial values (4.51). We integrate the DAE-IVP over the time interval [t0, tend]
with macro-step size 2−i ·10−8, i = 0,1, . . . ,6 and fixed multirate factor m = 10. Figure 4.4 shows
the absolute value of the global error at tend with regard to the macro-step size for each component.
We observe order 2 convergence for all variables.

Section Summary

We established the mrIRK2-DAE scheme: a multirate time integration method for semi-explicit
DAEs of index-1 based on the LobattoIIIC-scheme. The coupling between the subsystems of
different dynamics was realised by the Coupled-Slowest-First approach for the macro-step and
linear interpolation for the micro-steps. We showed consistency and convergence of the mrIRK2-
scheme and derived the order of convergence 2. A numerical simulation confirmed the previous
theoretical results. We saw, that a multirate scheme for semi-explicit DAEs of index-1 with this
particular coupling strategy has at most convergence order 2 due to the linear interpolation of the
slow changing variables.
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Figure 4.4: Order of convergence for the mrIRK2-DAE scheme (m = 10): a)-d) order 2.

4.4 Decoupled Multirate One-Step Methods � A Link to

Dynamic Iteration

In the previous chapters we investigated multirate methods for semi-explicit DAEs of index-1 that
were based on a particular Runge-Kutta method (implicit Euler and LobattoIIIC). Consistency
and convergence have been proven for both integration methods. In the following we provide
a convergence theorem for the class of all Decoupled-Slowest-First multirate one-step methods
where the basic integration scheme is of order p and the error of the inter- and extrapolated
values is at least of order p− 1. To this end, we interpret the multirate time integration method
as a dynamic iteration scheme. We define the splitting functions for the multirate method and
derive assumptions to the underlying DAE-system such that convergence of the method can be
guaranteed.

We briefly discuss the basic concept of dynamic iteration and introduce the necessary notation.

We consider the coupled DAE-IVP (4.18-4.21) in the compact formulation of (4.61) and compute
an approximation on the interval [t0, tend] using the dynamic iteration scheme. Using this scheme,
continuous approximations can be achieved. Therefore, an approximation on the interval (ti, ti+1]
of an analytical solution x(t) is denoted by the waveform x̃|(ti,ti+1](t).
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Before the dynamic iteration scheme starts, the time interval [t0, tend] is split into N time windows
[tn, tn+1] for n ∈ {0, . . . ,N−1} with

t0 < t1 < .. . < tN−1 < tN = tend.

The dynamic iteration scheme computes the approximations by an iterative process on each time
window. We assume that the approximation on the time window [tn−1, tn] is available. The initial-
isation of the iterative process is done by an extrapolation of the data of the previous time window
to the current time window (

w̃0|(tn,tn+1]

z̃0|(tn,tn+1]

)
= Φ̌

(
w̃k|(tn−1,tn](tn)
z̃k|(tn−1,tn](tn)

)
. (4.68)

with w̃|(tn,tn+1], w̃|(tn,tn+1] the waveform of the approximation of the differential and algebraic sub-
system, respectively. The extrapolation is realised by the operator Φ̌ and we assume that k itera-
tions have been carried out on the time window [tn−1, tn].

The dynamic iteration scheme is represented by the iteration operator

Ψ̌ :
(

w̃k−1|(tn,tn+1]

z̃k−1|(tn,tn+1]

)
→
(

w̃k|(tn,tn+1]

z̃k|(tn,tn+1]

)
. (4.69)

If the scheme is converging, (4.69) is performed until a given accuracy is reached. For coupled
systems of ODEs, a dynamic iteration scheme is always convergent [Bur95]. For coupled systems
of DAEs, additional assumptions to the DAE system and the iteration scheme have to be fulfilled
to guarantee convergence of the scheme [AG01].

The properties of a specific dynamic iteration scheme are defined by its splitting functions F̌ and
Ǧ. The splitting functions describes the dependencies between the subsystems and the iteration
steps. The general splitting functions for the subsystems of the DAE-IVP (4.18-4.21) in the
compact formulation (4.61) read [Bar04]:

˙̃wi = F̌i

(
w̃|k(tn,tn+1]

, w̃|k−1
(tn,tn+1]

, z̃|k(tn,tn+1]
, z̃|k−1

(tn,tn+1]

)
(4.70)

0 = Ǧi

(
w̃|k(tn,tn+1]

, w̃|k−1
(tn,tn+1]

, z̃|k(tn,tn+1]
, z̃|k−1

(tn,tn+1]

)
(4.71)

for i ∈ {F,S}. The initial values are given by w̃k
n(tn) = w̃0

n(tn) and z̃k
n(tn) = z̃0

n(tn) for all k. Setting
F̌ := (F̌>F , F̌>S )> and Ǧ := (Ǧ>F , Ǧ>S )

> we derive the splitting functions for the coupled DAE-IVP
(4.18-4.21). The splitting functions have to fulfil the compatibility conditions [AG01]

F̌(w,w,z,z) = f (w,z) and Ǧ(w,w,z,z) = g(w,z) (4.72)

with w,z the analytical solutions of (4.18-4.21) in the compact formulation of (4.61) and f ,g given
in (4.61).

A multirate time integration method that is based on a one-step method can be interpreted as a
dynamic iteration scheme: The time windows correspond to the macro-steps and on each time
window one iteration is carried out (k = 1). This interpretation enables us to derive analytical
results for multirate one-step methods in a general formulation. The following Theorem pro-
vides a convergence proof for Decoupled-Slowest-First multirate one-step methods based on the
contractivity condition in [AG01].
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Theorem 28. We consider the coupled DAE-IVP (4.18-4.21) with fulfilling Assumption 15 and the
index-1 condition for the subsystems (4.22) and the coupled system (4.23). We apply a multirate
one-step method using the Decoupled-Slowest-First approach and integrate the DAE-IVP over
the time interval [t0, tend]. If

(i) the basic integration scheme for the each subsystem is of order p in the single-rate case,

(ii) the error of the extrapolated and interpolated coupling terms is at least of order p−1,

(iii) the algebraic variables are always consistently computed,

(iv) the following conditions are fulfilled

α1 :=
LgS

zF

LgS
zS

<
1
L

and α2 :=
LgF

zS

LgF
zF

< 1 (4.73)

with L the Lipschitz-constant of the extrapolation operator Φ̌ (4.68),

then the time integration is stable and the multirate method has still order p.

Proof. We follow the proof of Theorem 2.2 in [AG01] in the more general problem setting of
[BBGS13]. We interpret the multirate one-step method as a dynamic iteration scheme with one
iteration k = 1.

The proof is organised as follows: In a) we define the splitting function of the multirate method
and introduce the necessary notation. In part b) we show that the integration method is stable if a
contractivity condition is fulfilled. In c) we deduce the inequalities in (4.73) from the contractivity
condition in b) if the global error of the integration method is uniformly bounded. The proof of
boundedness of the global error in d) concludes the argumentation.

a) The splitting function for a multirate one-step method with Decoupled-Slowest-First cou-
pling approach applied to the DAE-IVP (4.18-4.21) reads

ẇk =

(
ẇk

F
ẇk

S

)
= F̌(wk

F ,w
k
S,w

k−1
F ,zk

F ,z
k
S,z

k−1
F ) =

(
F̌F(wk

F ,w
k
S,z

k
F ,z

k
S)

F̌S(wk
S,w

k−1
F ,zk

S,z
k−1
F )

)
0 = Ǧ(wk

F ,w
k
S,w

k−1
F ,zk

F ,z
k
S,z

k−1
F ) =

(
ǦF(wk

F ,w
k
S,z

k
F ,z

k
S)

ǦS(wk
S,w

k−1
F ,zk

S,z
k−1
F )

). (4.74)

We consider the time window [tn, tn+1] with H = tn− tn−1 and introduce the short-hand
notation

wn = w|(tn,tn+1], zn = z|(tn,tn+1].

for the waveform of the analytical solution of (4.18-4.21) in the compact formulation of
(4.61). The waveform of the numerical approximation is denoted by (w̃k

n, z̃
k
n) with iteration

index k.

The Decoupled-Slowest-First multirate method extrapolates the values of the fast subsystem
to compute an approximation of the slow subsystem. Therefore, the splitting function for
the slow subsystem F̌S, ǦS depend on old iterates of the fast subsystem wk−1

F ,zk−1
F . We
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define the global error(
εwn

εzn

)
:=
(

w̃−w
z̃− z

)∣∣∣∣
(tn,tn+1]

= (Ψ̌◦ Φ̌)

(
w̃1

n−1(tn)
z̃1

n−1(tn)

)
− Ψ̌

(
wn

zn

)
with the extrapolation operator Φ̌, see (4.68) and the iteration operator of the multirate
scheme Ψ̌ as described in (4.69). The considered multirate time methods are one-step
integration schemes. Therefore, only the values at tn can be used for the extrapolation of
the variables on the time window [tn, tn+1]. We point out that the analytical solution (wn,zn)
is a fix point of the mapping Ψ̌n. We assume, that the error is bounded by a constant β > 0

‖εwm‖+‖εzm‖ ≤ β (4.75)

for all 0 ≤ m ≤ n with tn ≤ tend. All error estimates in this proof are given in the L∞-norm
with respect to the considered time window:

‖ε‖ := ‖ε‖∞ = inf
{

D≥ 0 : ‖ε(x)‖ ≤ D ∀ x ∈ [tn, tn+1]
}
.

b) For a detailed analysis of the global error, we split εn into(
εwn

εzn

)
= (Ψ̌◦ Φ̌)

(
w̃1

n−1(tn)
z̃1

n−1(tn)

)
− (Ψ̌◦ Φ̌)

(
w(tn)
z(tn)

)
︸ ︷︷ ︸

=:En

+(Ψ̌◦ Φ̌)

(
w(tn)
z(tn)

)
− Ψ̌

(
wn

zn

)
︸ ︷︷ ︸

=:∆n

with En = (E>wn,E
>
zn)
> the error propagation from the previous time window and ∆n =

(∆>wn,∆
>
zn) the error of the current time window. For error estimates for En and ∆n, we

follow the lines of the proof of Theorem 2.2 in [AG01] for the case of k = 1.

• For En, we apply Lemma 3.2 in [AG01] and get the error recursion(
‖Ewn‖
‖Ezn‖

)
≤
(

1+D∗1H D∗1H
D∗1 α∗n

)
·
(
‖Ewn−1‖
‖Ezn−1‖

)
, (4.76)

with a constant D∗1 > 0 and

α
∗
n = L

(
α̂ +

4DH
α̂

2D +
√

H

)

for D > 0 and L the Lipschitz constant of the extrapolation operator Φ̌. The parameter
α̂ is given by

α̂ = α +O(1)
(∥∥Φ̌

(
w̃1

n−1(tn)
)
−wn

∥∥+∥∥Φ̌
(
z̃1

n−1(tn)
)
− zn

∥∥
+
∥∥Φ̌(w(tn))−wn

∥∥+∥∥Φ̌(z(tn))− zn
∥∥) (4.77)

with

α =

∥∥∥∥∥
(

∂ Ǧ
∂ zk

)−1
∂ Ǧ

∂ zk−1

∥∥∥∥∥ (4.78)

cf. [BBGS13].
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• To derive an estimate for the local error ∆n, we introduce the extrapolation error δ̌n =
‖δ̌wn‖+‖δ̌zn‖ and we have

δ̌n = O(H p).

Once again, we apply Lemma 3.2 in [AG01] and estimate

‖∆wn‖+H‖∆zn‖ ≤ D∗2Hδ̌n (4.79)

with a constant D∗2 that is independent of H and ‖∆wn‖= O(H p+1), ‖∆zn‖= O(H p)
by assumption.

• Combining the results of (4.76) and (4.79) gives(
‖εwn‖
‖εzn‖

)
≤
(

1+D∗1H D∗1H
D∗1 α∗

)
·
(
‖Ewn−1‖
‖Ezn−1‖

)
+

(
D∗2Hδ̌n

D∗2δ̌n

)
(4.80)

for all time windows [tn, tn+1] and n ≥ 0 with tn ≤ tend. We set α∗ = maxm≤n α∗m and
εw,−1 = εz,−1 := 0. For α∗ < 1, the error recursion (4.80) is stable [DHZ87] and we
have

‖εwn‖+‖εzn‖ ≤ D∗ max
0≤m<n

δ̌n (4.81)

with a constant D∗> 0, which does not depend on H and n. This proves the stability of
the multirate time integration method if the contractivity condition is fulfilled. Then,
the order of the integration scheme is given by the applied extrapolation method.

c) We show that the contractivity condition α∗ < 1 can be guaranteed if (4.73) holds. For α∗

we have

α
∗ ≥ α

∗
n = L

(
α̂ +

4DH
α̂

2D +
√

H

)
= L

(
α̂ +O(

√
H)
)

(4.82)

with α̂ defined in (4.77). We estimate the right-hand side of (4.77): For the first summand,
we derive ∥∥Φ̌n (w(tn))−wn

∥∥+∥∥Φ̌n (z(tn))− zn
∥∥= δ̌n = O(H p).

Using assumption (4.75), we get for for the second summand∥∥Φ̌n
(
w̃1

n−1(tn)
)
−wn

∥∥+∥∥Φ̌n
(
z̃1

n−1(tn)
)
− zn

∥∥
=
∥∥Φ̌n

(
w̃1

n−1(tn)
)
− Φ̌n (wn−1(tn))+ Φ̌n (wn−1(tn))−wn

∥∥
+
∥∥Φ̌n

(
z̃1

n−1(tn)
)
− Φ̌n (zn−1(tn))+ Φ̌n (zn−1(tn))− zn

∥∥
≤
∥∥Φ̌n

(
w̃1

n−1(tn)
)
− Φ̌n (wn−1(tn))

∥∥+∥∥Φ̌n (wn−1(tn))−wn
∥∥

+
∥∥Φ̌n

(
z̃1

n−1(tn)
)
− Φ̌n (zn−1(tn))

∥∥+∥∥Φ̌n (zn−1(tn))− zn
∥∥

≤ L
∥∥w̃1

n−1(tn)−wn−1(tn)
∥∥+O(H p)

+L
∥∥z̃1

n−1(tn)− zn−1(tn)
∥∥+O(H p)

≤ L(‖εwn−1‖+‖εzn−1‖)+O(H p)

= O(β )+O(H p).

Adding both estimations, we end up with

α̂ = α +O(β )+O(H p)
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and α̂ < 1 can always be guaranteed by choosing β and H sufficiently small. For the
splitting functions (4.74), we compute α according to (4.78)

∂ Ǧ
∂ zk =

(
∂gS
∂ zS

0
∂gF
∂ zS

∂gF
∂ zF

)
,

∂ Ǧ
∂ zk−1 =

(
0 ∂gS

∂ zF

0 0

)
,

with (4.77) and (4.82) we derive the contractivity condition

α =

∥∥∥∥∥
(

∂ Ǧ
∂ zk

)−1
∂ Ǧ

∂ zk−1

∥∥∥∥∥=
∥∥∥∥∥∥∥
0

(
∂gS
∂ zS

)−1
∂gS
∂ zF

0
(

∂gF
∂ zF

)−1
∂gF
∂ zS

(
∂gS
∂ zS

)−1
∂gS
∂ zF


∥∥∥∥∥∥∥<

1
L
.

This condition is fulfilled, if∥∥∥∥( ∂gS
∂ zS

)−1
∂gS
∂ zF

∥∥∥∥< 1
L and

∥∥∥∥( ∂gF
∂ zF

)−1
∂gF
∂ zS

(
∂gS
∂ zS

)−1
∂gS
∂ zF

∥∥∥∥< 1
L

holds [BG20]. Using the notation of (4.73), we get

α1 <
1
L and α1α2 <

1
L

and end up with an equivalent formulation of the contractivity condition (4.73).

d) It remains to show that the assumption (4.75) holds if H is chosen sufficiently small. The
boundedness of ‖εwm‖+ ‖εzm‖ is a direct consequence of (4.81) and δ̌n = O(H p). We
sketch an induction over all time windows m with 0≤ m≤ n and tn ≤ tend.

• For m = 0 the statement is obviously correct since the initial values are chosen con-
sistently.

• If the statement is correct for m = n−1 and δ̌n > δ̌p for all p < n we set H∗ < H such
that ‖ε∗n‖ ≤ β while ε∗n denotes the global error between the analytical solution and a
numerical approximation computed with step size H∗. This can always be done since
δ̌n = O(H p).

In Section 4.2.3 and 4.2.4 we showed consistency and convergence for the mrIRK1-DAE scheme
using the Decoupled-Slowest-First approach. Here, consistency and convergence could be guar-
anteed by choosing a sufficiently small macro-step size H and an inherent multirate factor m. The
assumptions of (4.73) in Theorem 28 are even stricter and convergence can only be guaranteed
for a class of DAE-IVPs that fulfil these assumptions. A closer look at the contractivity condition
(4.73) leads to the necessity of a weak coupling between the algebraic subsystems. A DAE-IVP
that suits well for multirate time integration usually fulfils such a weakly coupled structure, at
least for the fast-to-slow coupling (2.6).

If the contractivity condition (4.73) is violated, but we have α < 1 in (4.78), it is possible to
overcome this problem and guarantee a stable time integration by carrying out more iterations
k > 1 on each time-step. The resulting time integration scheme is not a multirate one-step method
in the classical sense but this strategy leads to larger class of iterative multirate methods.

In Section 4.2, we did a detailed convergence analysis of the mrIRK1-DAE scheme using the
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Decoupled-Slowest-First approach without using the techniques and results of dynamic iteration
methods. The results of the convergence analysis of the current section are more general and can
be applied to any multirate one-step method using the Decoupled-Slowest-First approach. How-
ever, the more general approach leads to assumptions that have to be fulfilled by the considered
DAE-system, i.e. if the DAE-system violates the contractivity condition (4.73), the theorem can-
not guarantee the convergence of the integration scheme. In Section 4.2 we showed, the we can
guarantee the convergence of the mrIRK1-scheme by adapting the integration parameters H and
m, even if the Lipschitz constants of the considered DAE-system are large.

Chapter Summary

To derive a multirate one-step method for semi-explicit DAEs of index-1, we started with clas-
sical single-rate Runge-Kutta schemea which are implicit and stiffly-accurate: the implicit Euler
method and the LobattoIIIC scheme. Both methods have been extended to a multirate integra-
tion scheme using different step sizes according to the dynamical behaviour of the subsystems of
the coupled system of DAEs. For the multirate implicit Euler method, we implemented all three
established coupling approaches: Decoupled-Slowest-First, Coupled-Slowest-First and Coupled-
First-Step. We showed, that the Coupled-Slowest-First approach leads to a higher order of consis-
tency compared to the other approaches. Therefore, we used only this approach for the multirate
LobattoIIIC method. We showed analytically and numerically convergence order 1 for the mul-
tirate implicit Euler method and order 2 for the multirate LobattoIIIC scheme. The convergence
can be guaranteed by adapting the macro- and the micro-step size according to the properties
of the considered DAE-IVP. The main result of this section can be summarised as follows: The
convergence order of the underlying single-rate scheme can be maintained for the derived mul-
tirate method, if the coupling variables are evaluated with a sufficient accuracy. Due to a linear
interpolation during the integration of the fast changing subsystem, the convergence order of the
resulting multirate scheme is bounded by 2. To derive a multirate method of higher order in a
similar war, a more accurate strategy to evaluate the coupling variables has to be developed.

Finally, we linked the theories of multirate time integration and dynamic iteration. By interpret-
ing a multirate method as a dynamic iteration scheme, we derived a convergence theorem for a
general multirate one-step method using the Decoupled-Slowest-First approach. However, the
convergence of the multirate integration scheme depends in this case on the properties of the
considered DAE-IVP.
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Summary

Multirate methods for an efficient time integration of multiscale differential equations have been
discussed in research and software development for several decades. In this thesis, we discussed
multirate methods for two special types of multiscale differential equations:

The first part of the thesis dealt with multirate methods for multiscale ordinary differential equa-
tions (ODEs) with a high dimensional, linear-affine slow subsystem. Applying a model order
reduction (MOR) to the slow changing subsystem, it is projected onto a low dimensional replace-
ment system. Using a multirate method for time integration, the number of function evaluations
of the slow subsystem decreases significantly, the MOR leads to a smaller dimension of the slow
subsystem and we expect an additional gain of efficiency. This leads to the first important result
of this thesis:
1. We showed that the MOR of the slow subsystem only results in a shorter computation time
if the coupling interface of the fast subsystem to the slow subsystem is of small dimension. Es-
pecially for implicit integration methods, a high dimensional coupling interface leads to high
dimensional Jacobian-matrices and the computation time of the multirate method does not de-
crease as expected. Since the fast subsystem does not depend on the detailed information of every
single slow component, a low dimensional coupling interface can be defined for many multiscale
problems. This can be done for example by exploiting the underlying physical properties of the
coupled system. Our simulation results showed, that a MOR of the slow subsystem and a small
dimensional coupling interface decrease the computation time of the applied multirate integration
scheme significantly.
2. Beside the gain of efficiency by the MOR, we investigated the approximation properties of
the coupled multiscale ODE with an order reduced, slow subsystem. For a coupled, linear-affine
multiscale ODE, we derived a combined error bound in time domain, which estimates the MOR
caused error and the integration error of the multirate method. Both errors can be estimated sep-
arately. The MOR caused error describes an error in the mathematical modelling of the system,
so a multirate time integration only makes sense, if the MOR-caused error is sufficiently small.
Then, the parameters of the multirate method are chosen according to the properties of the coupled
multiscale ODE with order reduced, slow subsystem to derive efficiently a reliable approximation
of the dynamical behaviour of the coupled multiscale ODE.

References to current work and outlook:
In this work, we consider multiscale ODEs with a linear-affine slow subsystem. In many applica-
tions, we can assume that a linearisation can be applied to the slow subsystem if non-linearities
occur. If this is not the case or a linearisation leads to large errors, methods of non-linear MOR
have to be applied to project the slow subsystem onto a low dimensional replacement system.
An error bound for the widely used non-linear MOR technique proper orthogonal decomposition
(POD) is given in [CS12]. For the particular case of coupled electrical circuits, there are results
for non-linear MOR of coupled systems [SS13]. The combination of multirate time integration
and MOR for non-linear systems is investigated in [BCG20]. For the derivation of the combined
error bound in the linear setting, we used a close relation between balanced truncation MOR and
POD applied to linear systems. This close relation can be a starting point for further investigations
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to extend the results of the thesis to non-linear systems and non-linear MOR.

In the second part of this thesis, we investigated multirate methods for systems of differential-
algebraic equations (DAEs) with different dynamical behaviour. Here, additional algebraic con-
straints have to be fulfilled in each integration step. Usually, this is realized by applying implicit
time integration methods at least for the algebraic subsystems. We derived two multirate methods
for semi-explicit DAEs of index-1 from implicit and stiffly accurate Runge-Kutta schemes. We
showed consistency and convergence for both multirate methods and proved convergence order 1
and 2, respectively. In the same way, other multirate integration methods for semi-explicit DAEs
of index-1 based on implicit and stiffly accurate Runge-Kutta schemes can be derived.
The analysis of the derived multirate DAE-integration schemes yields two major results:
1. For the Coupled-Slowest-First approach, the computation during the macro-step is performed
on a uniform time grid. This leads to higher accuracy of the resulting multirate DAE-integration
scheme compared to the other coupling approaches.
2. During the computation of the micro-steps, the values of the coupling-variables are achieved
by linear interpolation. Hereby, the convergence order of the resulting multirate DAE-integration
scheme is bounded by 2.
Numerical Simulations confirmed the derived convergence orders.
The interpretation of a Decoupled-Slowest-First multirate one-step method as a dynamic iteration
scheme opens up new perspectives in the analysis of multirate time integration schemes. In this
thesis, we stated and proved a convergence theorem for a general multirate one-step method using
the Decoupled-Slowest-First approach. Here, the convergence of the multirate method depends
on the properties of the considered system of DAEs, but the theorem is valid for all multirate
one-step methods using the Decoupled-Slowest-First approach.

References to current work and outlook:
The usage of linear interpolation to evaluate the coupling variables during the computation of
the micro-steps turned out to be the bottleneck in the derivation of highly accurate multirate time
integration methods for DAEs. For differential variables, interpolation formulas of higher order
can be used [Sch20]. To interpolate the algebraic variables with higher accuracy, a numerical
differentiation is necessary which leads to an additional computational effort and additional er-
ror terms. What remains is to develop an efficient, robust and reliable strategy to evaluate the
algebraic coupling variables to derive multirate methods with a high convergence order.

The interpretation of multirate one-step methods as dynamic iteration schemes has already been
advanced and first results have been published [BG20]. For further coupling strategies, the split-
ting functions have been formulated and the corresponding convergence theorems were derived.
This approach enables to analyse existing multirate methods from a new point of view and to
develop new ideas to improve the approximation properties of multirate methods.

Outlook � Model Order Reduction and Multirate Time Integration for DAEs

In this thesis, we applied an MOR to the slow changing subsystem of a multiscale ODE and
we derived multirate time integration methods for DAEs. For future research, it is now quite
natural to consider a coupled system of DAEs with a high dimensional slow subsystem, apply an
MOR to the slow changing, DAE subsystem, integrate the coupled system with reduced order,
slow subsystem and investigate computation time and approximation properties of the multirate
method. In many technical applications, the mathematical model leads to a multiscale system of
coupled DAEs with high dimensional, slow subsystem, e.g. highly integrated electrical circuits or
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the field-circuit coupled system of Section 3.4. There exist MOR techniques for particular DAEs
which usually exploit the special structure given by the underlying physics, e.g. [SS17] for circuit
equations or [KBS17] for magneto-quasistatic Maxwell’s equation. Applying an existing MOR
technique to the slow changing DAE subsystem, a future field of research is the investigation of
the impact of the MOR to the computation time and the approximation properties of a multirate
integration schemes for DAEs.





A Appendix A

Convergence Plots of the

mrIRK1-DAE scheme

In the following, the results of the numerical simulation for the mrIRK1-DAE scheme are given,
c.f. Section 4.2.5. We show the convergence properties for each component of the DAE sys-
tem (4.49) for all three coupling approaches: Decoupled-Slowest-First in Section A.1, Coupled-
Slowest-First in Section A.2 and Coupled-First-Step in A.3.

A.1 Decoupled-Slowest-First
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Figure A.1: Order of convergence of the mrIRK1-DAE scheme for the Decoupled-Slowest-First
approach (m=10): a)-d) order 1.
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A.2 Coupled-Slowest-First
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Figure A.2: Order of convergence of the mrIRK1-DAE scheme for the Coupled-Slowest-First ap-
proach (m=10): a)-d) order 1.
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A.3 Coupled-First-Step
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Figure A.3: Order of convergence of the mrIRK1-DAE scheme for the Coupled-First-Step ap-
proach (m=10): a)-d) order 1.
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