
Multilevel Algorithms in Lattice
QCD for Exascale Machines

Dissertation

Bergische Universität Wuppertal
Fakultät für Mathematik und Naturwissenschaften

eingereicht von
Gustavo Alonso Raḿırez Hidalgo, M. Sc.

zur Erlangung des Grades eines Doktors der Naturwissenschaften

Wuppertal, den 14. July, 2022

Acknowledgments

This PhD would not have been successfully completed without the contribution,
in different ways, of many people.

I would like to thank first Fabio Schifano, Lele Tripiccione, Dina Alexandrou
and Andreas Frommer, my (co-)supervisors. To Lele, who always had a great
disposition whenever we had a question of any kind, and who is unfortunately
not with us anymore, and to Fabio, for stepping in afterwards. To Dina, for her
continuous help througout the PhD, and her advice, in particular physics-wise;
thank you also for playing such a great role in making STIMULATE possible.
And to Andreas, for welcoming me to his group, for creating such a nice working
environment in it, for great advice throughout the different research projects, and
for always being in good spirits, be it during coffee breaks or our (interesting
and engaging) meetings. I’m also grateful to many of my colleagues, for many
interesting conversations, nice coffee breaks, (recently) fun bouldering sessions,
and the ocassional technical/conceptual help; in particular, thanks to Matthias
Rottmann and Artur Strebel who were of great help especially at the beginning of
my PhD, and furthermore to Daniela Ebeling, cuya labor administrativa ha sido
invaluable en nuestro grupo y durante mis primeros meses en Wuppertal, y quien
a través de su amistad me ha hecho sentir a gusto en el grupo desde el inicio,
sabiendo que siempre que voy a su oficina hay tiempo para una conversación
interesante, unas risas y un buen té. I would also like to thank many close
friends: for providing good advice, great conversations, and a nice and relaxing
time overall; this has been fundamental in distracting me from the (sometimes)
absorbing life that a PhD can represent.

And last but not least, I would like to thank my closest family. A papi y mami:
todav́ıa no entiendo cómo lograron salir adelante ante semejantes adversidades,
pero sin ese esfuerzo y el ejemplo de trabajo duro, nada de esto hubiera sido
posible. Gracias, también, por enseñarme a pensar antes de actuar, aśı como
apreciar la no-obviedad de las cosas. To my siblings, Arleth, Maricela, Kike
and Fabricio: for teaching me so many lessons, sometimes without you even
realizing. And of course, to Fleur: thank you for motivating me to be more
careful, less cranky, more active, and just happier. The chances for us to meet

I

Acknowledgments

were astronomically small, if we think about it, yet here we are. Can’t wait to
experience what’s coming!

———

I thank the CLS and ETMC collaborations for providing me with configurations
for the numerical tests, and in particular to Jacob Finkenrath for personally pro-
viding the twisted mass configurations and for multiple interesting conversations
on various topics related to my research.

II

Foreword

The work presented in this thesis is in parts based on the following publications:

• Andreas Frommer, Mostafa Nasr Khalil, and Gustavo Ramirez-Hidalgo. A
multilevel approach to variance reduction in the stochastic estimation of the
trace of a matrix. arXiv preprint arXiv:2108.11281, 2021. Accepted in the
SIAM Journal on Scientific Computing

• Jesus Espinoza-Valverde, Andreas Frommer, Gustavo Ramirez-Hidalgo, and
Matthias Rottmann. Coarsest-level improvements in multigrid for lattice
QCD on large-scale computers. arXiv preprint arXiv:2205.09104, 2022

This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No. 765048.

All numerical results shown in this thesis were computed at the Jülich Super-
computing Centre (JSC) using the supercomputer JUWELS, and in two of the
machines in our group: aicomp03 and aicomp04.

V

Contents

Acknowledgments I

Foreword V

Contents VII

1 Introduction 1

2 Quantum chromodynamics on the lattice 5

2.1 The standard model and quantum chromodynamics 6

2.2 Path integral and hybrid Monte Carlo 8

2.3 Lattice discretizations in quantum chromodynamics 10

2.4 Disconnected diagrams . 19

2.5 Other theories: the Schwinger model 21

3 Domain decomposition aggregation-based αdaptive algebraic multi-
grid method 23

3.1 Numerical linear algebra fundamentals 23

3.1.1 Eigenvalues, singular values and conditioning 24

3.1.2 Iterative methods for sparse linear systems of equations . . 27

VII

CONTENTS

3.2 Multigrid methods . 35

3.2.1 Motivation . 36

3.2.2 Two levels and multilevel multigrid 39

3.3 Algebraic multigrid . 40

3.3.1 Algebraic multigrid in lattice QCD 42

3.3.2 Aggregation-based prolongation and restriction 44

3.3.3 Petrov-Galerkin approach 46

3.3.4 Domain decomposition aggregation-based αdaptive algebraic
multigrid method . 48

3.3.5 DD-αAMG for twisted mass fermions 52

4 Coarsest level improvements 55

4.1 Krylov based improvements . 56

4.2 Numerical tests: Krylov based . 67

4.2.1 The clover-improved Wilson operator 68

4.2.2 The twisted mass operator 73

4.3 LU based improvements . 76

4.3.1 Direct solves via MUMPS 77

4.4 Numerical tests: LU based . 78

4.5 Outlook on coarsets-level computations 80

5 Hybrid GPU/CPU DD-αAMG 83

5.1 SAP in DD-αAMG . 84

5.2 Schwarz Alternating Procedure on GPUs 85

5.2.1 Domain Decomposition: GPUs vs CPUs 85

5.2.2 SAP in DD-αAMG on GPUs: implementation details . . . 88

5.3 Numerical tests . 92

5.3.1 SAP on GPUs . 92

5.3.2 Hybrid GPU+CPU DD-αAMG solver 94

5.4 Outlook on GPU implementations 97

VIII

CONTENTS

6 Multigrid Multilevel Monte Carlo 99

6.1 Stochastic trace estimation and multilevel Monte Carlo 101

6.1.1 Multilevel Monte-Carlo . 101

6.1.2 Stochastic estimation of the trace of a matrix 103

6.1.3 Multilevel Monte-Carlo for the trace of the inverse 106

6.2 Numerical tests . 112

6.2.1 Schwinger model . 113

6.2.2 LQCD I: clover-improved Wilson-Dirac operator 117

6.2.3 LQCD II: twisted mass operator 118

6.3 Outlook on multigrid multilevel Monte Carlo 120

List of Figures 123

List of Tables 126

List of Algorithms & Scripts 128

Bibliography 129

IX

Chapter 1
Introduction

Quantum Chromodynamics (QCD) [3, 4] is the theory describing the interaction
of quarks and gluons (among themselves and among each other). As confinement
does not allow isolated quarks in nature, analytic calculations in QCD, when seen
the need to be matched with experiments, consist of the description of hadrons
(i.e. objects somehow composed of quarks, and allowed to be in isolation due to
no confinement restrictions). Analytic calculations in physics oftentimes rely on
perturbative expansions of the theory under study. Such mathematical tools are
not applicable when studying QCD in some particular energetic regimes. In such
cases, alternative methods have to be employed, one of them being the use of
numerical and computational methods.

Lattice QCD is the discretization of the continuous QCD theory on a four dimen-
sional lattice, with the use of Wick rotations enabling the possibility of simulating
the theory on a discretized Euclidean space-time [5]. Many challenges emerge,
from the point of view of applied mathematics and high performance computing,
when simulating QCD on the lattice, and it is one of the world’s most demanding
computational problems [6, 7]. The success of lattice QCD outweighs, by far, its
difficulty, leveraging results in very good agreement with experiments, see e.g. [8].

As described in chapter 2, simulating the theory on the lattice implies the frequent
solution of linear systems of equations. When trying to match the discretized
QCD theory with the one in the continuum, the parameters of the theory on the
lattice (e.g. quark masses and lattice volume) change, and these changes imply
more ill-conditioned linear systems to be solved, which in the physics community
is termed as “critical slowing down”. Not only do the systems become more ill-
conditioned, but also the associated matrices of coefficients increase in size. These
two issues force an appropriate mixture of methods coming from numerical linear
algebra and high performance computing.

1

1 Introduction

To cope with those highly ill-conditioned and large systems of equations, the
lattice QCD community has traditionally used methods like odd-even precondi-
tioning [9, 10], deflation [11] or domain decomposition [12, 13], and although they
all bring improvements over traditional Krylov methods, they still suffer from
critical slowing down. Multigrid methods represent an attractive alternative for
the solves in lattice QCD, due to their potential (e.g., for elliptic PDEs) of conver-
gence independently of the conditioning of the linear system. Due to the random
nature of the matrices appearing in lattice QCD simulations, the use of geometric
multigrid methods (i.e. methods based on the underlying PDE only) was elusive
for many years [14–17].

Multigrid (or multigrid-related) methods are currently being used in the lattice
QCD community [11, 18–20], with multiple libraries implementing them [21–23].
The new developments and implementations that we explore in this thesis re-
volve around the DD-αAMG method, currently available for the clover-improved
Wilson [24–26] and twisted mass [27–29] lattice discretizations.

When extremely large and ill-conditioned linear systems are being solved via
multigrid methods, the scalability of the implementation is typically compro-
mised as we move to a large number of compute nodes. When using (scalable)
domain decomposition smoothers, as in DD-αAMG, this poor scalability is then
caused by the (typically) bad scaling properties of the coarsest level in the multi-
grid hierarchy. Our first contribution here is on diminishing these scalability
issues in DD-αAMG. We do this by integrating recycling methods [30] with a
polynomial preconditioner [31–33]; we find that this combination has a great
algorithmic performance for the problems at hand. Furthermore, we exploit lo-
cality by including a block-diagonal preconditioner as well, based on the idea of
block Jacobi [34]. Finally, we explore communication hiding via pipelining [35].
All these methods, when combined, leverage a complex and powerful coarsest-
level solver, which in the case of Wilson fermions gives us remarkable algorith-
mic and computational gains. When applied to twisted mass fermions, these
Krylov-based methods (plus the block-diagonal preconditioner) allow us to get
rid of an “artificially”-introduced coarsest-level parameter. We further broaden
the algorithmic possibilities at the last level in DD-αAMG, by using an LU-based
approximate solver as a preconditioner to restarted GMRES. Those approximate
direct solves, done via the MUMPS library [36, 37], allow us to, in the twisted
mass case, not only get rid of the same “artificial” parameter at the coarsest level,
but they also give us improved algorithmic and computational performances, on
a single node, with respect to all the other methods explored here.

Our second contribution deals with GPU programming. We extend the DD-
αAMG library to become a hybrid GPU+CPU solver, by porting some parts
of the code via CUDA C [38]. In doing so, we realize the importance of hav-
ing a smoother based on domain decomposition, and furthermore we explore the

2

computational behaviour of the smoother when having different sizes for the do-
main decomposition blocks. We conclude that smaller blocks are better in terms
of computational performance. We also notice the importance of using (more)
aggressive coarsening in the multigrid hierarchy, when running with our hybrid
solver. The resulting implementation currently performs with an execution time
similar to the old CPU version, but with the great advantage that further GPU
improvements at the finest level can render a hybrid solver largely outperforming
the CPU version.

Our third and last contribution is on the development and testing of a new method
for the computation of traces of functions of matrices, tr(f(A)). This new method
is based on multilevel Monte Carlo [39], in combination with a multigrid hierarchy.
Although completely general in terms of the function f and the matrix A, the
method is tested here on the inverse1 (i.e. f(A) = A−1), for three matrices:
Schwinger, Wilson and twisted mass. We show that the method works in all
three cases, with both algorithmic and computational gains in all, with remarkable
results in Schwinger, and very good and promising results for Wilson and twisted
mass. These results open new paths of research, where our multigrid multilevel
Monte Carlo method can be used in combination with other methods such as
deflation [40] and hierarchical probing [41].

The results on multilevel Monte Carlo applied to the Schwinger model, and pre-
sented in chapter 6 of this thesis, have been published in [1]. The results on
Krylov-based coarsest-level improvements in chapter 4 are part of one of our
papers currently under preparation. The LU-based and the application of ag-
glomeration, both part of chapter 4, will be part of a paper soon to be prepared,
within the context of Henning Leemhuis’ PhD research. The code for the hy-
brid GPU+CPU solver discused in chapter 5 is already available here, and after
porting the whole finest level to CUDA C we will prepare a paper to publish the
corresponding results. Finally, the multilevel Monte Carlo results on its applica-
tion to lattice QCD (i.e. for both Wilson and twisted mass fermions), in chapter
6, will be part of a paper soon to be prepared, and within the context of Jose
Jiménez’s PhD research.

The remaining of this thesis is structured as follows: we give a brief overview of
lattice QCD, in chapter 2, with emphasis on the most important concepts in terms
of where the computation of linear systems of equations and tr(f(A)) appear. We
then go and describe the whole DD-αAMG method in chapter 3, skipping some
very specific and technical details along the way. In chapter 4, we describe the
algorithmic nature of the new coarsest-level solver in DD-αAMG, both in the
Krylov- and LU-based cases, with extensive numerical tests for both. Our new
hybrid GPU+CPU DD-αAMG solver is presented in chapter 5, where we discuss

1We focus on the inverse here, due to its importance in lattice QCD.

3

https://github.com/Gustavroot/DDalphaAMG

1 Introduction

technical details of its implementation, and extensive numerical tests showing the
good performance and further potential of the solver. Finally, chapter 6 introduces
our new method for the computation of tr(f(A)) based on multilevel Monte Carlo,
with its application to Schwinger, Wilson and twisted mass matrices.

4

Chapter 2
Quantum chromodynamics on the lattice

Oftentimes, there is a deep link between new algorithmic developments in applied
mathematics, and the conceptual grounds of the physical systems they lay on.
Understanding this connection is usually of utmost importance, for gaining a
better intuition not only of the restrictions imposed on the algorithms, but also
of the expected behaviour from them. This is particularly important in lattice
quantum chromodynamics. Having a clear view of those conceptual grounds is
useful, also, for a full understanding of the motivation behind the implementations
and new developments. In this chapter we set up and define all the physics
background behind the methods discussed in subsequent chapters.

We start this chapter by stating how quantum chromodynamics, the theory de-
scribing the strong force, fits in the standard model of theoretical physics. We
then briefly describe, in sect. 2.2, the role that path integrals play when describ-
ing quantum chromodynamics on a lattice and we shortly outline the stochastic
method employed to simulate lattice quantum chromodynamics i.e. hybrid Monte
Carlo. The two lattice discretizations of relevance in this thesis, Wilson and
twisted mass, are presented and briefly discussed in sect. 2.3. Finally, we shortly
introduce two topics which will be of importance when we turn to the discussion
of traces of functions of matrices in chapt. 6: disconnected diagrams (sect. 2.4)
and the Schwinger model (sect. 2.5).

Sect. 2.1 is largely based on [42], sects. 2.2 and 2.4 on [43, 44], sect. 2.3 on [28, 45],
and sect. 2.5 on [46].

5

2 Quantum chromodynamics on the lattice

2.1 The standard model and quantum
chromodynamics

Three out of the four fundamental forces, electromagnetism, weak interation and
the strong force, are currently described in a single theory known as the Standard
Model of Particle Physics [42]. Via mostly group theory and quantum field the-
ory, the standard model describes how different combinations of particles interact
and behave under those interactions. To this end, after decades of theoretical de-
velopments and experimental advances and with the help of particle accelerators,
a small set of particles is currently considered as “fundamental”, and we present
those particles, their charges and masses in a tabulated manner in tab. 2.1.

Generation Leptons Quarks

Particle Q mass/GeV Particle Q mass/GeV

First electron (e−) -1 0.0005 down (d) -1/3 0.003
neutrino (νe) 0 < 10−9 up (u) +1/3 0.005

Second muon (µ−) -1 0.106 strage (s) -1/3 0.1
neutrino (νµ) 0 < 10−9 charm (c) +2/3 1.3

Third tau (τ−) -1 1.78 bottom (b) -1/3 4.5
neutrino (ντ) 0 < 10−9 top (t) +2/3 174

Table 2.1: The twelve fundamental fermions divided into quarks and leptons,
with their corresponding charge and mass. Table taken from [42].

But, not all fermions “feel” the three forces described by the standard model.
To understand this better, we can look at the table in fig. 2.2: the quarks, for
example, are the only fermions who feel the strong force.

strong electromagnetic weak

Quarks down,up d,u s,c b,t ✓ ✓ ✓
Leptons charged e− µ− τ− ✓ ✓

neutrinos νe νµ ντ ✓

Table 2.2: The forces experienced by different fundamental fermions. Table taken
from [42].

In its current form, the standard model describes the electromagnetic and weak
forces in a single combined model known as electroweak theory. This allows
understanding the electromagnetic and weak forces as a single force, which can be
broken under certain conditions to split into the two separate constituent forces.
On the other hand, the strong force, although not being currently understood as
a single force in combination with the electroweak one, is part of the standard

6

2.1 The standard model and quantum chromodynamics

model and as such shares many properties with electromagnetism and the weak
force.

The common tools that describe these three forces are symmetries and quantum
field theory: the theories that describe each of the forces are all quantum field
theories, each of them with a different group associated to it. The electroweak
force is described by the local SU(2)×U(1) group, which undergoes spontaneous
symmetry breaking to give masses to certain particles in the standard model [47].
The strong force is described by the local SU(3) group, there is no breaking in this
case and the resulting theory is known as Quantum Chromodynamics (QCD).

With the number of generators of the group associated to each force, a corre-
sponding number of exchange bosons (also known as gauge bosons) come into
play for each of those forces [48]. For example, the group U(1) which describes
electromagnetism has a single degree of freedom, hence there is only a single ex-
change boson for that force i.e. the photon. The table in fig. 2.3 lists the gauge
bosons corresponding to each of the four forces in nature, some of their properties,
and an approximate value of the strength of the interaction in each of the forces.

Force Strength Boson Spin Mass/GeV

Strong 1 Gluon g 1 0
Electromagnetism 10−3 Photon γ 1 0

Weak 10−8 W boson W± 1 80.4
Z boson Z 1 91.2

Gravity 10−37 Graviton? G 2 0

Table 2.3: Exchange bosons for the four forces in nature. The relative strengths
are approximate indicative values for two fundamental particles at a distance of
1 fm = 10−15 m (roughly the radius of a proton). Table taken from [42].

Usually, in physics, Taylor series (or other asymptotic expansions) can be used to
e.g. simplify certain analytic calculations, that are otherwise very difficult to solve
or simply not solvable at all. This is the case in the standard model, where series
expansions are used throughout the whole theory. There are some situations,
or more specifically some energetic regimes, in which series expansions are not
useful in the standard model, for example when studying QCD in some low-
energy interactions. An alternative to those tools is to keep the model as a whole,
no analytic approximations, and treat it via computational methods.

The history of QCD combines a plethora of different areas involving physics and
mathematics: representations in group theory, statistical mechanics, renormal-
ization of non-Abelian group theories, experimental scattering, and many others,
all of them converging in experimental settings taking place in the single largest
and most complex machine built in human history: the Large Hadron Collider at

7

2 Quantum chromodynamics on the lattice

Conseil Européen pour la Recherche Nucléaire (CERN). We skip here a historical
overview of QCD2 and rather state some properties of QCD from a theoretical
point of view. A full understanding of QCD implies a good understanding of
at least modern quantum mechanics [50, 51], special relativity [52] and quantum
field theory [53, 54]. We describe QCD here from an applied mathematics point
of view, where we state the necessary concepts in order to describe how QCD can
be simulated on computers.

2.2 Path integral and hybrid Monte Carlo

Statistical mechanics, which studies macroscopic phenomena in nature solely from
the application of statistical methods and probability theory to large assemblies
of microscopic objects [55], repeatedly makes use of probability distribution func-
tions (p.d.f.s) and averages and variances in order to study and characterize a
physical system. This is mainly done via the partition function which is, in prob-
ability terms, the normalization factor of the p.d.f. describing that system. The
partition function is not the way to understand the full dynamics of the system,
but rather it gives access to macroscopic features of it known as observables.

The concept of partition function permeates many areas of study in physics. In
particular, it is fundamentally important in quantum mechanics and furthermore
in quantum field theory, where it is realized as a path integral [56, 57]. The
path integral in quantum field theory, just as in statistical mechanics, allows for
the extraction of observables without having to work out many very small and
complicated technical mathematical details of the theory.

We skip here all the mathematical and conceptual developments necessary to
understand how the path integral emerges in QCD, and we simply present it as
a tool that is necessary to obtain observables in the theory. Furthermore, as
was mentioned before, for some energetic regimes QCD has to be simulated on
computers in order to access values for those observables. Therefore, we restrict
ourselves here to the path integral for QCD on the lattice.

Euclidean correlators, which are very important quantities in lattice QCD used
e.g. in the extraction of masses of bound states (for example, the proton mass),
can be expressed by means of path integrals in the following way [43]:

⟨O2(t)O1(0)⟩ =
1

Z

∫
D[ψ, ψ̄]D[U]e−SF [ψ,ψ̄,U]−SG[U]O2[ψ, ψ̄, U]O1[ψ, ψ̄, U] (2.1)

2Which can be found for example in [49].

8

2.2 Path integral and hybrid Monte Carlo

where the partition function is given by

Z =
1

Z

∫
D[ψ, ψ̄]D[U]e−SF [ψ,ψ̄,U]−SG[U]. (2.2)

In eqs. 2.1 and 2.2, ψ embodies the fermionic information3, and U is an indirect
representation of the gauge bosons i.e. gluons, and the latter are known as gauge
links. The gluonic action SG[U] contains information relevant to fully understand
the dynamics of the interaction of gluons with each other. The fermionic action
SF [ψ, ψ̄, U], on the other hand, gives access to the dynamics of the interaction of
fermions via (and with) gluons.

On the lattice, the measures in eqs. 2.1 and 2.2 are products of measures of all
quark field components and products of measures of all gauge link variables:

D[ψ, ψ̄] =
∏
n∈Λ

∏
f,α,c

dψ(f)(n)α,cdψ̄
(f)(n)α,c, D[U] =

∏
n∈Λ

4∏
µ=1

dUµ(n). (2.3)

The gauge link Uµ(n) in eq. 2.3 is an object connecting the lattice site n to the
lattice site n+ µ̂.

As can be seen from the measures in eq. 2.3, the integration in eq. 2.1 consists
of a very-high-dimensional integral, an integration for each ψ(f)(n)α,c, ψ̄

(f)(n)α,c
and Uµ(n), where n runs over all the sites in the lattice. Using a deterministic
integration method such as e.g. Simpson’s rule [58] to compute eq. 2.1 is not a good
option as the error usually grows nestedly with the dimensionality of the integral.
Monte Carlo methods, in particular Markov Chain Monte Carlo (MCMC), are a
much better alternative to solve such high-dimensional integrals.

The MCMC method of choice in current lattice QCD computations is hybrid
Monte Carlo (HMC) [59]. This method is also known as Hamiltonian Monte
Carlo. This algorithm takes, in the particular case of lattice QCD, the total
action S = SF + SG and defines it as proportional to a classical Hamiltonian. In
order to fully describe the dynamics of a classical system characterized by that
Hamiltonian and to use Hamiltonian mechanics [60], artificial auxiliary momenta
Pµ(n) are introduced as conjugate (in the Hamiltonian-mechanics sense) to the
gauge links Uµ(n)

4. HMC generates a set of configurations using Markov chains

3The fields ψ, following Fermi statistics and the Pauli exclusion principle, are Grassmannian
fields. The study of Grassmannian variables is beyond the scope of this thesis (see for
example [53]).

4Another step is necessary at this point: the introduction of pseudofermions. This allows us
to move from a Grassmannian integral, which is not a good representation for numerical
simulations, to integrals of complex-valued functions. As understanding HMC deeply is not
necessary to follow the rest of this thesis, the use of pseudofermions is beyond the scope of
this thesis and can be studied further e.g. in [43].

9

2 Quantum chromodynamics on the lattice

where each configuration is an “evolution” (in the Molecular Dynamics (MD)
sense) of the previous one. We give an outline of the fundamental ideas of the
HMC algorithm next [61–63]:

1. Choose an initial configuration U0 and set i = 1.

2. Generate random momentum fields P conjugate to Ui−1.

3. Evolve the configuration Ui−1 via MD to obtain a new candidate U ′.

4. Accept Ui = U ′ with some probability Pacc, otherwise set Ui = Ui−1, i← i+1
and go to step 2.

5. If Ui is thermalized, save it.

6. Go to step 2 until enough configurations are generated.

For the initial configuration, two common approaches are a cold start where all
gauge links are set to the identity, or a hot start, where all gauge links are random
elements of the SU(3) group. In step 4 the acceptance rate Pacc of the new con-
figuration is determined using the Metropolis-Hastings algorithm [64, 65], which
allows us to sample from the p.d.f. e−SF−SG after thermalization. The term ther-
malized in step 5 can be interpreted as a converged configuration i.e. given enough
steps of the HMC algorithm, the configuration space reaches an equilibrium state
in which the distribution of the gauge links follows the prescribed equilibrium dis-
tribution, such that new physical configurations can be generated by going back
to step 2 and repeat the procedure. Thermalization is important to ensure that
physically more likely configurations are also more likely to be produced by the
HMC algorithm.

2.3 Lattice discretizations in quantum
chromodynamics

A first step into computing the integral in eq. 2.1 is to choose an appropriate
numerical integration scheme, for which the lattice QCD community has chosen
HMC. A second step consists of fully describing the lattice on which the computa-
tions will take place and writing a discretized form of the total action S = SF+SG
on it.

In simulating QCD on the lattice via HMC, an important step that emerges is
the need to solve a partial differential equation (PDE) on the lattice. This PDE
corresponds to the Dirac equation [53, 66] for fermionic fields interacting via (and
with) the gluonic fields. In the continuum, the operator D characterizing this
PDE, also known as the covariant derivative of the theory, can be written as

10

2.3 Lattice discretizations in quantum chromodynamics

D =
3∑

µ=0

γµ ⊗ (∂µ + Aµ) (2.4)

where ∂µ = ∂/∂xµ and Aµ(x) is the field describing the gauge bosons (at the
spacetime point x). The anti-Hermitian traceless matrices Aµ(x) are elements of
su(3), the Lie algebra spanning SU(3). The Dirac matrices i.e. γµ ∈ C4×4 are
Hermitian and unitary matrices which generate the Clifford algebra C0,4(R) [67].

Definition 2.1.
A set of Hermitian, unitary matrices {γµ ∈ C4×4 : µ = 0, 1, 2, 3} is called a set of
generators of the Clifford algebra C0,4(R), iff

γµγν + γνγµ =

{
2 · I4, µ = ν

1, µ ̸= ν
µ, ν = 0, 1, 2, 3. (2.5)

The matrices γµ are called γ-matrices or Dirac matrices.

Before writing an explicit discretization of the operator in eq. 2.4, let us give a
more formal statement on the properties of the gluonic fields in the continuum.

Definition 2.2.
Let C := {1, 2, 3} be the set of color indices, S := {0, 1, 2, 3} the spin indices and

ψ : R4 → C12 ∼= CC×S

x ↦→ (ψ10(x), ψ20(x), ψ30(x), ψ11(x), ..., ψ33(x))
T

a differentiable function. Then ψ defines a quark field or matter field. Let
M = {ψ : ψ matter field}. The twelve component vector ψ(x) is called spinor.
Furthermore, for µ = 0, 1, 2, 3

Aµ : R4 → su(3)

x ↦→ Aµ(x)

the set {Aµ : µ = 0, 1, 2, 3} defines a gauge field, i.e., a gluonic counterpart of a
quark field.

The multiplication of a γ-matrix with ψ is defined by (γµψ)(x) := (γµ ⊗ I3)ψ(x),
with I3 the identity in color space. In case operations act unambiguously on the
color but differently on the spin degrees of freedom we use the notation ψσ to

11

2 Quantum chromodynamics on the lattice

denote those components of the quark field belonging to the fixed spin index σ.
For a given point x, ψσ(x) is thus represented by a three component column vector
ψσ(x) = (ψ1σ(x), ψ2σ(x), ψ3σ(x))

T . The value of the gauge field Aµ at point x acts
non-trivially on the color and trivially on the spin degrees of freedom in the sense
that (Aµψ)(x) := (I4 ⊗ Aµ(x))ψ(x).

This allows us to define the effect of the covariant derivative in eq. 2.4 on matter
fields in the following way.

Definition 2.3.
LetM be the space of matter fields. The continuum Dirac operator is the map

D :M→M

defined by

D =
3∑

µ=0

γµ ⊗ (∂µ + Aµ)

where ∂µ = ∂/∂xµ denotes the partial derivative in direction µ. Evaluating Dψ
at x ∈ R4, we have

(Dψ)(x) =
3∑

µ=0

γµ((∂µ + Aµ)ψ)(x). (2.6)

The need for the gamma matrices in the covariant derivative come from imposing
that the dynamics of the physical system is invariant under transformations by
the Lorentz group i.e. under special relativity’s boosts and rotations [53]. The
fields Aµ represent the gauge bosons of QCD i.e. the gluons, which appear after
enforcing invariance of the equations of motion of the system under local SU(3)
transformations.

Having defined the Dirac operator in the continuum D and its effect on matter
fields ψ, the last step before discretizing the Dirac operator on the lattice is to
define the lattice itself.

Definition 2.4.
Consider a four-dimensional torus T . Then, a lattice L with lattice spacing a is
a subset of T such that for any x, y ∈ L there exists p ∈ Z4 fulfilling

y = x+ a · p, i.e., yµ = xµ + a · pµ for µ = 0, 1, 2, 3

12

2.3 Lattice discretizations in quantum chromodynamics

For shift operations on the lattice, let µ̂ ∈ R4 denote shift vectors defined by

µ̂ν =

{
a, µ = ν

0, else
µ, ν = 0, 1, 2, 3

The full discretization of the Dirac equation, i.e. of the PDE associated to the
operator in eq. 2.6, follows a clear path at this point:

1. Discretize ψ(x) and Aµ(x) on the lattice5.

2. Choose a discretization scheme for the differential part in eq. 2.6.

For the ψ field, it is sufficient to be defined at each lattice point only, as follows

ψ : L → C12

x ↦→ ψ(x)

As in continuum QCD, the spinor ψ(x) again has color and spin indices ψcσ, c ∈ C
and σ ∈ S (see def. 2.2).

We have stated before that we are skipping here many specific details of continuum
QCD, this in favour of more technical details of QCD on the lattice from an applied
mathematics point of view. One such detail is that the continuum fields Aµ(x),
associated to the gauge bosons, connect infinitesimally close spacetime points [53].
Those infinitesimally close points in spacetime become two points on the lattice
next to each other. The discretization of continuum Aµ(x) onto the lattice is done
via the introduction of Uµ(x) fields.

Definition 2.5.
Given a gauge field Aµ, the corresponding discretized gauge field Uµ at point x is
defined by the path ordered integral along the link (x, x+ µ̂)

Uµ(x) := e−
∫ x+µ̂
x Aµ(s)ds ≈ e−aAµ(x+

1
2
µ̂)

The discretized gauge field U = {Uµ(x) : x ∈ L, µ = 0, 1, 2, 3} is called (gauge)
configuration.

5In lattice QCD calculations, the initial point is always a discrete gauge configuration U
(introduced in def. 2.5) and the translation from Aµ to Uµ is more of a theoretical interest
and never performed in practice.

13

2 Quantum chromodynamics on the lattice

These gauge configurations are precisely the same ones introduced in eqs. 2.1
and 2.2, where we mentioned that gauge links are an indirect representation of
the gauge bosons on the lattice. It is clear at this point why we refer to them as
gauge links.

Since Uµ(x) connects x with x+ µ̂, we regard Uµ(x) as being associated with the
link between those two points. The link going in the opposite direction i.e. from
x+ µ̂ to x, is given by Uµ(x)

−1. The matrices Uµ(x) satisfy

Uµ(x) ∈ SU(3), in particular Uµ(x)
−1 = Uµ(x)

H

Fig. 2.1 illustrates the naming conventions for the representation of gauge links
on the lattice.

Figure 2.1: Our convention for gauge links on the lattice. Image taken from [45].
A more common convention is the one where the gauge links go in the opposite
direcion [43].

There are multiple approaches to discretizing the continuum Dirac operator, re-
sulting in different discretized operators D e.g. Wilson, Twisted Mass, Staggered,
and others [5, 43, 68, 69]. We focus here on the two which are of interest to our
computational implementations and tests: Wilson and Twisted Mass.

14

2.3 Lattice discretizations in quantum chromodynamics

Wilson

We continue now by discretizing the differential part in the covariant derivative
via centralized finite differences.

Definition 2.6.
Let Aµ be a gauge field and Uµ the corresponding gauge configuration. Defining
forward covariant finite differences6

(∆µψσ)(x) :=
Uµ(x)ψσ(x+ µ̂)− ψσ(x)

a
=
a→0

(∂µ + Aµ)ψσ(x)

and backward covariant finite differences7

(∆µψσ)(x) :=
ψσ(x)− UH

µ (x− µ̂)ψσ(x− µ̂)
a

the centralized covariant finite difference discretization of the Dirac operator D is
given by

DN :=
3∑

µ=0

γµ ⊗ (∆µ +∆µ)/2. (2.7)

This is called the naive discretization of the Dirac operator. The naive discretiza-
tion generates unphysical eigenvectors, a standard phenomenon when discretiz-
ing first order derivatives using central finite differences [70], also known as the
“species doubling effect” [71, 72] or “red-black instability”. The eigenspace for
each eigenvalue of DN has dimension 16, but only a one-dimensional subspace
corresponds to an eigenfunction of the continuum operator. In order to avoid the
doubling problem, Wilson introduced the stabilization term a∆µ∆µ, a centralized
second order covariant finite difference.

Definition 2.7.
Given a gauge configuration U on a lattice L with nL sites, lattice spacing a and
mass parameter m0, the Wilson discretization of the Dirac operator (also known
as Wilson-Dirac operator) is defined by

6The use of upper and lower indices as in e.g. ∆µ or ∆µ is not meant to be as in General
Relativity where they refer to either covariant or contravariant spaces. The notation is not
only avoided here, but it would be useless anyways as we are dealing with a Euclidean space
when studying computations on the lattice.

7Here we use µ as sub and superscript, to denote backward and forward covariant finite dif-

ferences, respectively, instead of for example
←−
∆ and

−→
∆.

15

2 Quantum chromodynamics on the lattice

DW :=
m0

a
I12nL +

1

2

3∑
µ=0

(γµ ⊗ (∆µ +∆µ)− aI4 ⊗∆µ∆
µ) (2.8)

where the mass parameter m0 sets the quark mass8.

The anti-commutation relations of the γ-matrices (see def. 2.1) imply a non-trivial
symmetry of DW .

Lemma 2.8.
Defining γ5 := γ0γ1γ2γ3 and with Γ5 := InL ⊗ γ5 ⊗ I3, with sizes 12×12 and
12nL×12nL, respectively, the Wilson-Dirac operator DW is Γ5-symmetric i.e.

(Γ5DW)H = Γ5DW . (2.9)

Proof. A proof of this lemma can be found in e.g. [45]. It relies on the fact that
γ5γµ = −γµγ5 for µ = 0, 1, 2, 3. DW itself is not Hermitian.

To reduce the order of the discretization error as a funtion of the lattice spacing
a, the Sheikholeslami-Wohlert or clover term [74], depending on a parameter csw,
is added to the Wilson-Dirac operator.

Definition 2.9.
Given a configuration of gauge links {Uµ(x)}, the plaquette Qµ,ν

x at lattice point
x is defined as

Qµ,ν
x := Uν(x)Uµ(x+ ν̂)UH

ν (x+ µ̂)UH
µ (x)

Furthermore, defining

Qµν(x) := Qµ,ν
x +Qµ,−ν

x +Q−µ,νx Q−µ,−νx

the clover term C is defined as

C(x) :=
csw
32

3∑
µ,ν=0

(γµγν)⊗ (Qµν(x)−Qνµ(x)) (2.10)

with csw ∈ R. For an arbitrary quark field ψ and a lattice site x, the clover
improved Wilson-Dirac operator D is defined as

8For further details on the specific relation between quark masses and the mass parameter m0

see [73].

16

2.3 Lattice discretizations in quantum chromodynamics

Dψ(x) := DWψ(x)− C(x)ψ(x). (2.11)

The clover term is diagonal on the lattice L, which is computationally appeal-
ing. It removes O(a)-discretization effects from the covariant finite difference
discretization of the continuum Dirac operator. Different lattice QCD simula-
tions require an appropriate tunning of csw [74]. The resulting discretized Dirac
Dirac operator D has then local discretization errors of order O(a2). On the other
hand, in practice, m0 is negative and for physically relevant mass parameters, the
spectrum of D is contained in the right half plane (see fig. 2.2). Both operators,
D and Dw, have some interesting and useful spectral properties, stated in lemma
2.10.

Figure 2.2: Left panel : spectrum of a 44 Wilson-Dirac operator with m0 = 0 and
csw = 0. Right panel : spectrum of a 44 clover improved Wilson-Dirac operator
with m0 = 0 and csw = 1. Image taken from [45].

Lemma 2.10.(a) The clover improved Wilson-Dirac operator D is Γ5-symmetric
i.e.

(Γ5D)H = (Γ5D). (2.12)

(b) Every right eigenvector ψλ to an eigenvalue λ of D corresponds to a left
eigenvector

ψ̄λ̄ = Γ5ψλ

to the eigenvalue λ̄ of D and vice versa. In particular, the spectrum of D is
symmetric with respect to the real axis.

(c) The spectrum of DW is symmetric with respect to the vertical line Re(z) =
4+m0

a
i.e.

17

2 Quantum chromodynamics on the lattice

λ ∈ spec(DW) ⇒ 2
m0 + 4

a
− λ ∈ spec(DW).

Proof. A proof of this lemma can be found in e.g. [45].

Depending on the choice for the specific representation of the γ-matrices we will
get slightly different expressions for the Dirac operator on the lattice. Despite
these differences, the physical results will ultimately be the same for all those
different representations. We use, througout this thesis, representations of the
γ-matrices such that

γ5 = γ0γ1γ2γ3 =

⎛⎜⎜⎝
1

1
−1

−1

⎞⎟⎟⎠

Twisted mass

The continuum QCD action (see eqs. 2.1 and 2.2) is invariant under chiral sym-
metry [42, 53] in the massless case. This means that, by applying these chiral
transformations, the form of the action in the continuum changes but its actual
value does not, implying that the underlying physics will remain the same. Hav-
ing a different form of the action leads to a different form for the PDE to be solved
when applying HMC to simulate the theory. This means a different expression
for the Dirac operator in the continuum.

Following this procedure of: chiral symmetry transformation → new continuum
Dirac operator → discretize on the lattice, one can end up with a new lattice
discretization [68, 75, 76]

DTM(µ) = D + iµΓ5 (2.13)

where D is as defined in eq. 2.11 and a new parameter µ ∈ R has been introduced,
known as the twisted mass parameter. This is the clover improved Wilson-Dirac
twisted mass discretization, we refer to it simply as the twisted mass discretization
and to the operator in eq. 2.13 as the twisted mass operator.

The twisted mass operator in eq. 2.13 presents two very interesting properties.
The first of them is very advantageous algorithmically, the second one not so
much (more on the twisted mass operator in sect. 4.2.2):

18

2.4 Disconnected diagrams

1. The parameter µ “shields” the spectrum away from 0 in the sense that
the smallest singular value of DTM is

√
λ2sm + µ2 with λsm the smallest

eigenvalue in absolute value of the symmetrized clover-improved Wilson
Dirac operator Q = Γ5D.

2. There is some flexibility in choosing the value of µ when simulating QCD
with the twisted mass discretization. A particular choice of this parameter
is µ = mq, where mq is the quark mass, and this choice is called maximal
twist. At maximal twist, the region of eigenvalues of DH

TMDTM just above
µ2 becomes very dense, which represents a challenge for many algorithms
used in solving the linear systems of equations, in particular when using
Krylov-subspace-based methods.

2.4 Disconnected diagrams

When simulating QCD on the lattice, the extraction of some physical properties
of a particular system can be done via, for example, eq. 2.1. The operators O1 and
O2 are chosen such that they possess the same quantum numbers as the system
under study. For details on how to choose appropriate forms for those operators,
see e.g. [43].

A general local meson9 interpolator has the form

OM(n) = ψ̄(f1)(n)Γψ(f2)(n) (2.14)

where Γ is a monomial of γ-matrices, n ∈ L and fi refers to a particular quark
flavour (there are six quark flavours, as was shown in fig. 2.2). When f1 = f2,
a condition known as degenerate flavours, combinations of the interpolator in
eq. 2.14 are built to obtain the desired flavour symmetries. Fig. 2.4 lists the ma-
trices Γ for the most commonly used interpolators together with the corresponding
quantum numbers.

An example of an interpolator in the degenerate case (f1 = f2) is OS = (ūΓu +
d̄Γd)/

√
2 10. After some technical steps, which again fall outside of the scope of

this thesis, the fermionic part (i.e. the fermionic integration) in eq. 2.1 can be
written as (∗ denotes complex conjugation)

9A composite subatomic particle with two or more quarks is known as hadron. Those with
two quarks are called mesons and those with three quarks are baryons [42].

10The fermionic fields u and d correspond to the two lightest quarks i.e. up and down (see the
table in fig. 2.2). The factor of 1/

√
2 is known as a Clebsch–Gordan coefficient. How to use

those coefficients, the use of isospin in the construction of composite subatomic particles and
the construction of interpolators such as OS are all beyond the scope of this presentation
(see [42] for more on all of these topics).

19

2 Quantum chromodynamics on the lattice

Table 2.4: Quantum numbers of the most commonly used meson interpolators.
Table taken from [43].

⟨OS(n)O
∗
S(m)⟩F = −1

2
tr[ΓD−1u (n|m)ΓD−1u (m|n)]

+
1

2
tr[ΓD−1u (n|n)]tr[ΓD−1u (m|m)]

+
1

2
tr[ΓD−1u (n|n)]tr[ΓD−1d (m|m)] + u↔ d.

(2.15)

The first term in the right hand side in eq. 2.15 can be associated to fermionic
lines propagating first from n to m and then from m back to n, in a connected
way, as can be seen in the left-side panel in fig. 2.3. The traces in the other
terms in that equation e.g. tr[ΓD−1u (n|n)], on the other hand, are associated to
disconnected terms i.e. loops of fermionic lines that go from a point n in spacetime
back to the same point n in a single continuous manner (see the right pannel in
fig. 2.15).

Figure 2.3: Left panel : connected pieces of a meson correlator. Rigt panel :
disconnected pieces of a meson correlator. Image taken from [43].

The traces appearing in eq. 2.15 are often computed via stochastic methods.
Numerically, the disconnected contributions need much more computational effort
and higher statistics than the connected parts, and many studies avoid considering
those mesons or drop the disconnected pieces.

The computation of correlators of the form presented in eq. 2.15, therefore, leads

20

2.5 Other theories: the Schwinger model

to a new type of quantity vastly studied in applied mathematics: the trace of
the function of a matrix A i.e. tr(f(A)). In the particular case of lattice QCD,
the function of interest is f(A) = ΓA−1, with A being replaced by the Dirac
matrix. See [44], in particular chapter 3 therein, for a thorough description on
how disconnected diagrams are related to tr(ΓD−1) and the importance of Monte
Carlo methods in their computation.

2.5 Other theories: the Schwinger model

In our road towards the development of a new method for computing tr(f(A)) in
general and the application of it to the particular case of the Dirac matrix in lat-
tice QCD, we have used another model which shares some properties with QCD,
namely the Schwinger model: this is a description of Quantum Electrodynamics
(QED) in (1+1)-dimensional i.e. two spacetime dimensions [77, 78]. In the devel-
opment of algorithms for lattice QCD, the operators arising in lattice QED are
oftentimes used as a first test-bed, because of the similar spectral behavior and
symmetries.

The Dirac operator of lattice QED acts on a 2-dimensional Euclidean space with
2 spin components11, with the generators of the Clifford algebra now given by the
Pauli-matrices

γ1 = σ1 =

(
1

1

)
and γ2 = σ2 =

(
i

−i

)
(2.16)

The gauge field Aµ of continuum QED in the Schwinger formulation is given as a
continuous real-valued function, with the gauge configurations U ∈ U(1) on the
lattice a subset of the complex numbers with modulus one.

Just as in def. 2.7, stabilization of the naive discretization of lattice QED is
necessary in order to suppress the doubling problem.

Definition 2.11.
Given a gauge configuration Uµ(x) on a lattice L with nL sites, lattice spacing a
and mass parameter m0, the Wilson-Schwinger operator SW is defined by

SW :=
m0

a
I2nL +

1

2

1∑
µ=0

(σµ ⊗ (∆µ +∆µ)− aI2 ⊗∆µ∆
µ) (2.17)

where the mass parameter m0 sets the fermion mass.

11Two spin components and no color unlike in QCD, implies that the Dirac operator of lattice
QED has 2 degrees of freedom per lattice site (in turn, the lattice QCD Dirac operator has
12).

21

2 Quantum chromodynamics on the lattice

The analogous to the lattice QCD matrix γ5 is σ3 = iσ1σ2 in lattice QED. Fur-
thermore, the analogous to Γ5 is

Σ3 = σ3 ⊗ InL . (2.18)

Similarly to lattice QCD, the Wilson-Schwinger operator SW is Σ3-symmetric i.e.

(Σ3SW)H = Σ3SW . (2.19)

Some properties of the lattice QCD Dirac operator are shared by the Schwinger
operator SW , as stated next.

Lemma 2.12.
The eigenvalues λ of SW are either real or appear in complex conjugate pairs.

Proof. The proof of this lemma follows from the proof of the second point in
lemma 2.10.

Lemma 2.13.
For any right eigenvector v with eigenvalue λ, i.e., fulfilling SWv = λv, the vector
Σ3v is the left eigenvector to the eigenvalue λ̄ satisfying

(Σ3v)
HSW = λ̄(Σ3v)

H

Proof. The proof of this lemma follows from the proof of the second point in
lemma 2.10.

22

Chapter 3
Domain decomposition aggregation-based
αdaptive algebraic multigrid method

The Domain Decomposition aggregation-based αdaptive algebraic multigrid meth-
od (DD-αAMG) is a solver for linear systems of equations arising in simulations
of lattice QCD involving Wilson or twisted mass fermions. In this chapter, we
introduce all the conceptual background necessary for a full understanding of this
method. All the methods implemented in later chapters are done so in the context
of DD-αAMG.

Sect. 3.1 contains mostly some of the basic tools from numerical linear algebra
necessary for understanding DD-αAMG. Sect. 3.2 gives a general introduction to
multigrid, from a rather conceptual point of view. We then present, in sect. 3.3,
how algebraic multigrid solvers are realized, focusing on the particular problem
of lattice QCD, with sect. 3.3.4 outlining how the ingredients described in 3.3.1,
3.3.2 and 3.3.3 are combined to give rise to DD-αAMG. Finally, sect. 3.3.5 briefly
deals with an extension of DD-αAMG from Wilson to twisted mass fermions.

The contents of this chapter are largely based on [34, 45, 79–81].

3.1 Numerical linear algebra fundamentals

Before introducing multigrid methods, in particular algebraic multigrid (AMG),
it is useful to introduce first some basics of numerical linear algebra (NLA). All
of the concepts presented in this section can be found in e.g. ref.s [34, 79, 82].

23

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

3.1.1 Eigenvalues, singular values and conditioning

Certain types of matrices are important in general for the understanding of numer-
ical linear algebra, but in particular for the development of appropriate algorithms
to solve certain types of problems (such as solving and/or eigensolving).

Definition 3.1.
We call a matrix A ∈ Cn×n

• symmetric, if A = AT ,

• Hermitian, if A = AH ,

• unitary, if AHA = I,

• normal, if AHA = AAH ,

• a projection, if A2 = A,

• sparse, if the number of non-zero (nnz) entries per row is significantly
smaller than n and independent of n.

Remark 3.2.

1. We can also define non-square semi-unitary matrices: A ∈ Cn×m with n ≥
m is semi-unitary, if every column vector ai has unit length and ⟨ai, aj⟩ = 0
holds for all i ̸= j.

2. If A is a projection then (I − A) also defines a projection, as
(I − A)2 = I − 2A+ A2 = I − 2A+ A = I − A.

As in many other areas of physics and mathematics, projectors and unitary ma-
trices permeate the whole NLA to aid in solving problems by transforming them
from their original form into a simpler or easier one, without being too invasive
on the underlying properties of the problem itself.

Later in this thesis, in particular when we discuss deflation in Krylov methods via
e.g. GCRO-DR and spectral mappings by means of a polynomial preconditioner,
having concepts such as eigenvalue decomposition and singular value decomposi-
tion are of upmost importance. We procede then by introducing concepts related
to eigenvalues and eigenvectors.

Definition 3.3.
Given a square matrix A ∈ Cn×n we call λ ∈ C an eigenvalue of A if and only if
there exists a nonzero vector x ∈ Cn such that

Ax = λx. (3.1)

Additional characteristics and terms related to eigenvalues:

24

3.1 Numerical linear algebra fundamentals

• x is called an eigenvector (belonging to λ).

• A pair (λ, x) of eigenvalue λ and its eigenvector x is called an eigenpair.

• The set of all eigenvalues of A is called spectrum of A and is denoted by
spec(A).

• The spectral radius of A is defined as ρ(A) ··= max
λ∈Λ(A)

(|λ|).

• Eigenvalues λi are the roots of the characteristic polynomial of A, i.e.,
pA(λ) ··= det(A− λI) = 0.

• The multiplicity mi of an eigenvalue in pA(λ) is called algebraic multiplicity
of λ.

• The geometric multiplicity of λi is denoted by gi and is the dimension of
the eigenspace of λi, i.e. the nullspace of A− λiI

Definition 3.4.
A square matrix A ∈ Cn×n is called diagonalizable if and only if gi = mi for all
λi ∈ Λ. We define in this case the eigenvalue decomposition

A = XDX−1,

where each column xi of X contains an eigenvector of A belonging to the eigen-
value Di,i = λi of the diagonal matrix D.

More general (and sometimes more important) than the eigenvalue decomposition
is the concept of singular value decomposition.

Definition 3.5.
Given a matrix A ∈ Cm×n we can define the singular value decomposition (SVD)
as the matrix decomposition

A = UΣV H ,

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices and Σ ∈ Cm×n is a diagonal
matrix with non-negative entries σi,i. We call the column vectors ui and vi left
and right singular vectors (of σi,i), respectively, and σi,i the singular values.

The SVD introduced in def. 3.5 exists for any matrix A ∈ Cn×m, and it is unique
up to complex scalar factors of absolute value 1 (a proof of this can be found in
e.g. [79, 83]).

As stated in chapter 2, a very frequent operation in lattice QCD simulations is
the solution of a linear system of equations. The matrices involved in those solves

25

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

(in the lattice QCD context) are large, sparse and the systems hard to solve12.
Those properties imply that the solution of linear systems of equations usually
represent most of the overall execution time in simulations.

Conditioning is a notion that allows us to quantify how “difficult” it is to solve
a system of equations, from the properties of its associated matrix of coefficients.
Different simulations in lattice QCD will lead to changing Dirac matrices, which
in turn will lead to changing conditioning. The conditioning of the Dirac matrix
can be drastically different from one simulation to another, depending on the
parameters of the simulation (mass, lattice spacing, etc.).

More specifically, and in general, conditioning describes how the output y of a
function f is affected by perturbations in the input x, and it is independent of the
algorithm which might implement this function on a computer, i.e. conditioning is
a property of the problem itself. Inaccuracies in numerical solutions of problems
on computers come from two sources: one of them is conditioning of the problem,
and the other one is stability13 of the algorithm used to solve the problem.

We interpret a problem as well-conditioned if small changes in the input only
cause small changes in the output, and vice versa we interpret a problem as ill-
conditioned if small changes in the input lead to big changes in the output.

Definition 3.6.
Let f : X → Y be a problem and let x ∈ X. Let δx be some (infinitesimal)
perturbation of x and δf ··= f(x + δx)− f(x). We define the absolute condition
number κ̂ = κ̂(x) of f at x as

κ̂ = lim
δ→0

sup
∥δx∥≤δ

∥δf∥
∥δx∥

. (3.2)

The relative condition number κ = κ(x) is defined as

κ = sup
δx

(
∥δf∥
∥f(x)∥

/
∥δx∥
∥x∥

)
. (3.3)

If f is differentiable, then

κ̂ = ∥J(x)∥ and κ =
∥J(x)∥

∥f(x)∥/∥x∥
, (3.4)

where J(x) is the Jacobian of f at x.

12A metric on how hard it is to solve a linear system of equations will be introduced soon,
namely conditioning.

13Stability comes from the discretization of the continuous problem on the computer. We will
not further discuss stability here. For more on stability, see e.g. [79].

26

3.1 Numerical linear algebra fundamentals

Well-conditioned problems have a small condition number, whereas ill-conditioned
problems have a large one.

The main interest in this thesis is on functions that map an input vector b to an
output vector x such that x = A−1b is the solution of a linear system of equations.
For this specific mapping, it is known that the condition number can be bounded
as κ ≤ ∥A∥ · ∥A−1∥ [79]). It is common practice to talk about the condition
number of the matrix A and define it as κ(A) := ∥A∥ · ∥A−1∥. When the norm
is chosen to be the Euclidean 2-norm, then ∥A∥2 = σ1, i.e. the largest singular
value and ∥A−1∥2 = 1

σn
, i.e. the reciprocal of the smallest singular value. Then

κ(A) =
σ1
σn
. (3.5)

Being σ1 the largest singular value and σn the smallest one, the quotient of both
resulting in κ(A) gives an indirect measure of the extent of the region in the real
axis that we need to have access to in order to solve the problem, and it indicates
as well the closeness of that region to the origin of the axis. When continuous
problems are solved on the computer, finite precision is necessary, which can be
implemented on computers via e.g. the IEEE-754 standard [84]. Precisions in
IEEE-754 being non-uniform throughout the real axis, the condition number is
telling us how, in solving a problem, we might jump between regions with different
separations of a number to its neighbor point on the discretized axis, which might
in turn lead to catastrophic rounding errors.

3.1.2 Iterative methods for sparse linear systems of equations

For large and sparse matrices, such as those appearing in lattice QCD simula-
tions, we cannot invert A directly i.e. we cannot compute the full form of A−1,
due to both storage and computation time restrictions14. Therefore, in finding
approximations to x for Ax = b we need to make use of iterative methods.

For large sparse matrices, iterative solvers have been developed whose computa-
tional costs are typically dominated by matrix-vector products, which have com-
putational complexity of O(n). These methods have the additional advantage
that the matrix does not need to be stored in memory, but rather only requires a
routine for the action Ax of the matrix A on a vector x. Also, iterative methods
can be terminated early to give an approximate solution, whereas direct methods
typically only yield a feasible solution at the last step of the algorithm.

14To compute the full A−1, direct methods have to be employed [85]. Direct methods have
the obvious drawbacks of taking up huge amounts of memory and having computational
complexities of O(n2) or worse.

27

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

At the k-th step in an iterative method, with a corresponding approximate so-
lution x(k), the residual can be computed to indirectly access the error of the
approximation x(k) with respect to the exact solution x.

Definition 3.7.
Defining the residual r(k) ··= b − Ax(k) and the error e(k) ··= x − x(k) for a given
x(k) ∈ Cn, we formulate the residual equation:

Ae(k) = r(k). (3.6)

The problem of finding the error e(k) in eq. 3.6 is clearly equivalent to the problem
of finding x in Ax = b, since x = x(k) + e(k). Since the error will typically not
be available, the quality of an approximation x(k) can only be measured via the
residual r(k). Looking at eq. 3.6, we see that ∥e(k)∥ ≤ ∥A−1∥ · ∥r(k)∥. This shows
that if ∥A−1∥ is large, the error can still be large, despite the residual being small.
Many iterative methods follow the idea of updating the iteration vector x(k) in
every step starting from an initial vector x(0) by approximating the error via

x(k+1) ··= x(k) + ẽ(k). (3.7)

where ẽ(k) is an approximation of e(k) in eq. 3.6.

The following three sections present first two classes of iterative methods (re-
laxation schemes in sect. 3.1.2.1 and Krylov subspace methods in sect. 3.1.2.2),
followed by the important concept of preconditioning (sect. 3.1.2.3). These are all
very relevant and necessary in solving ill-conditioned systems of equations with
large and sparse matrices.

3.1.2.1 Relaxation schemes

Starting with an initial approximation x(0), relaxation methods modify the com-
ponents of the approximation, one or a few at a time and in a certain order, until
convergence is reached. Each of these modifications, called relaxation steps, is
aimed at annihilating one or a few components of the residual vector.

A typical way of obtaining different relaxation methods is via e.g. a splitting [34].

Definition 3.8.
Let A, M and N be three given matrices satisfying A = M − N . The pair of
matrices M,N is a splitting of A, if M is nonsingular.

28

3.1 Numerical linear algebra fundamentals

By using the previous splitting on the system of equations Ax = b, we can write
x = M−1Nx +M−1b. The latter relation can be then taken to the relaxation
method, via the splitting, like this

x(k+1) =M−1Nx(k) +M−1b. (3.8)

Different forms for the splitting M,N lead to different relaxation methods. One
example is M := D and N := L+U , which corresponds to the diagonal of A and
the off-diagonal part of A, respectively. This first example gives us the Jacobi
method. A second example of a possible splitting is M := D − L and N := U ,
building up with this the Gauss-Seidel method. Considerations on the convergence
of Jacobi and Gauss-Seidel can be found, again, in e.g. [34]. Gauss-Seidel typically
converges faster than Jacobi (for regular splittings, but not necessarily always),
but in turn Jacobi is highly parallelizable and Gauss-Seidel scales badly in a
parallel setting.

Coloring comes to the rescue, enabling Gauss-Seidel to be able to perform well
in a parallel setting. If the problem matrix A comes from e.g. a 2-dimensional
rectangular equispaced lattice, and furthermore the matrix is such that the inter-
action is only between each site and its four nearest neighbors, then we can color
the lattice in a red-black manner. With this we can decouple neighboring lattice
sites and render Gauss-Seidel parallelizable. This is the red-black Gauss-Seidel
method.

Opting for algorithms that operate on single-elements of a matrix is a waste
of resources from the point of view of modern computer hardware. Thanks to
features such as paging, cache and others [86], algorithms based on blocks can be
used instead: for a matrix A, we can group sets of variables into block variables.
By defining a block decomposition of A and compatible block vectors x and b:

A =

⎡⎢⎢⎢⎣
A1,1 A1,2 · · · A1,p

A2,1 A2,2 · · · A2,p
...

...
. . .

...
Ap,1 Ap,2 · · · Ap,p

⎤⎥⎥⎥⎦ , x =

⎡⎢⎢⎢⎣
x1
x2
...
xp

⎤⎥⎥⎥⎦ , b =
⎡⎢⎢⎢⎣
b1
b2
...
bp

⎤⎥⎥⎥⎦ (3.9)

where Ai,j ∈ Cℓi×ℓj , xi ∈ Cℓi and bi ∈ Cℓi with
∑p

i=1 ℓi = n, we can formulate
block variants of Jacobi and Gauss-Seidel. In implementations of these algorithms,
we can then make use of BLAS3 [87] fundamental operations to improve the
performance from a computational point of view.

Defining the matrix Ii ∈ Cn×ℓi with the identity on the i-th block row and zero
everywhere else as the canonical injection from the i-th block column A·,i into A
and ITi as the trivial injection from the i-th block row Ai,· into A, respectively,

29

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

we obtain the block inverse A−1i,i ··= (ITi AIi)
−1. Then we can apply the same

block-analog splittings to Jacobi and Gauss-Seidel, where D, L and U are block
diagonal, lower block triangular and upper block triangular matrices, respectively.
These block Jacobi and Gauss-Seidel methods are also termed the additive and
multiplicative Schwarz Alternating Procedure (SAP) [88, 89], which is a domain
decomposition method for discretized partial differential equations. SAP is a
crucial building block for the two-level method that we introduce in sect. 3.3.1,
so we give a description for these methods in alg. 3.1 and alg. 3.2.

Algorithm 3.1: Additive SAP (block Jacobi)

input: Matrix A with blocks Ai,j, right hand side b, initial guess x(0)

output: Solution x
for k = 0, 1, 2, . . .1

r(k) ← b− Ax(k)2

foreach diagonal block Ai,i do3

x(k) ← x(k) + IiA
−1
i,i I

T
i r

(k)
4

x(k+1) ← x(k)5

Algorithm 3.2: Multiplicative SAP (block Gauss-Seidel)

input: Matrix A with blocks Ai,j, right hand side b, initial guess x(0)

output: Solution x
for k = 0, 1, 2, . . .1

foreach diagonal block Ai, do2

r(k) ← b− Ax(k)3

x(k) ← x(k) + IiA
−1
i,i I

T
i r

(k)
4

x(k+1) ← x(k)5

From alg. 3.2 it is apparent that multiplicative SAP has to be performed sequen-
tially, which is not the case for additive SAP (alg. 3.1). This makes additive SAP
a natural choice in a parallel computing environment. However, coloring comes
to the rescue again: we can decouple the sequential block solves of multiplicative
SAP by using an appropriate coloring scheme leading to e.g. red-black SAP [24],
which will be the method of choice for the multigrid method in sect. 3.3.1.

The segmentation in blocks via submatrices of A as in eq. 3.9 has a direct cor-
respondence in terms of a domain decomposition of the underlying lattice. We
now state these corresponding lattice blocks in a precise manner for the lattice of
interest to us here.

Definition 3.9.

30

3.1 Numerical linear algebra fundamentals

Asumme that {T 0
1 , ..., T 0

ℓ0
} is a partitioning of {1, ..., Nt} into ℓ0 blocks of consec-

utive time points,

T 0
j = {tj−1 + 1, ..., tj}, j = 1, ..., ℓ0, 0 = t0 < t1 < ... < tℓ0 = Nt

and similarly for the spatial dimensions with partitionings {T µ1 , ..., T
µ
ℓµ
}, µ =

1, 2, 3.

A block decomposition of L is a partitioning of L into ℓ = ℓ0ℓ1ℓ2ℓ3 lattice blocks
Li, where each lattice block is of the form

Li = T 0
j0(i)
× T 1

j1(i)
× T 2

j2(i)
× T 3

j3(i)

Accordingly we define a block decomposition of all 12nL variables in V = L×C×S
into ℓ blocks Vi by grouping all spin and color components corresponding to the
lattice block Li, i.e.,

Vi = Li × C × S

Another block decomposition {L′i : i = 1, ..., t′} is called refinement of {Li : i =
1, ..., t} if for each L′i there exists a Lj such that

L′i ⊆ Lj

3.1.2.2 Krylov subspace methods

Let us start off by defining a Krylov subspace.

Definition 3.10.
Let A ∈ Cn×n and r ∈ Cn. Then the m-th Krylov subspace is defined as

Km(A, r) ··= span{r, Ar,A2r, . . . , Am−1r}.

If unambiguous we use the shorthand Km.

Krylov subspace methods [34] only require matrix-vector multiplications and have
modest storage requirements and are thus favorable in cases when what is available
is a function receiving as input a vector x and returning as output the application
of a matrix A on that vector i.e. Ax.

There are many Krylov-based methods. We focus for now on the generalized
minimal residual method (GMRES). GMRES is an iterative method aimed at
solving large non-symmetric linear systems of equations represented as Ax = b

31

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

with some nonsingular matrix A ∈ Cn×n and x, b ∈ Cn. It is a Krylov subspace
method i.e. it searches for an approximate solution x ∈ x(0) + Km(A, r(0)) with
x(0) and r(0) being, correspondingly, the initial guess and the initial residual [90].
Another interesting way to reformulate this statement is that the approximate
solution can be written as a polynomial expression:

x = x(0) + ϕ(A)r(0), (3.10)

where ϕ(α) is a polynomial of degree at most k − 1 in α. The main feature that
characterizes GMRES and distinguishes it from other algorithms such as the Full
Orthogonalization Method (FOM) [91] is that it draws the approximate solution
x from x(0) + Kk(A, r(0)) by minimizing the 2-norm of the residual. Taking this
into account, it is then possible to rephrase GMRES as a polynomial optimization
method. Denoting Pk as the set of all polynomials of degree k:

min
x∈x(0)+Kk(A,r(0))

∥b− Ax∥2 = min
ϕ∈Pk−1

∥b− A(x(0) + ϕ(A)r(0))∥2

= min
ϕ∈Pk−1

∥(I − A · ϕ(A))r(0)∥2

= min
π∈Pk,π(0)=1

∥π(A)r(0)∥2.

(3.11)

where the polynomial π, usually called GMRES polynomial, is defined as π(α) =
1− αϕ(α) and it is such that it minimizes the residual 2-norm of π(A)r(0) within
the polynomial space Pk [83]. The internal working of GMRES go briefly as
follows: first an orthonormal basis for Kk(A, r(0)) is constructed by means of the
Arnoldi process [92]:

Algorithm 3.3: Arnoldi process
Data: v1, such that ∥v1∥2 = 1
Result: Set of vectors Vk, and Hessenberg matrix H̄k.
r(0) = b− Ax(0)1

β = ∥r(0)∥22

v1 = r(0)/β3

for j = 1, . . . , k4

for i = 1, . . . , j5

hi,j = (Avj, vi)6

wj = wj − hi,jvi7

hj+1,j = ∥wj∥28

If hj+1,j = 0 then STOP9

vj+1 = wj/hj+1,j10

32

3.1 Numerical linear algebra fundamentals

which results in the set of orthonormal vectors Vk = [v1, v2, · · · , vk] i.e. Vk ∈
Cn×k is orthonormal. The orthogonalization generates scalars hij ∈ C which
when arranged as a Hessenberg matrix Hk = (hij) ∈ Ck×k satisfy the following
recurrent relation

AVk = Vk+1H̄k, (3.12)

where H̄k corresponds to Hk with an extra row (0 0 · · · hk+1,k) at the bottom.
The next step consists of writing the approximate solution in terms of Vk:

x = x(0) + Vky,

where y is a k-vector resulting from the minimization of the function J(y) defined
as

J(y) = ∥βe1 − H̄ky∥2,

with e1 an m-vector of the form e1 = (1 0 0 · · · 0)H and β the norm of r(0) [34].

A major drawback of GMRES is that because it is based on the Arnoldi process,
the computational work and memory required increase with each iteration (i.e.
they grow, respectively, as O(n · k2) and O(nk) at the k-th iteration). There-
fore, for very large systems, accessing a satisfactory number of iterations with
GMRES may quickly become prohibitive. To circumvent this difficulty, restarted
GMRES (also denoted GMRES(m)) was proposed in [90]. This approach con-
sists of restarting the orthonormal base Vk for the Krylov subspace every time it
reaches a maximum number m of vectors, where m is small compared to n and is
chosen in such a way that memory and computational costs become manageable
[93]. The idea is that each new cycle uses as the initial guess the approximate
solution obtained on the previous restart (the first cycle starts with the origi-
nal proposal x(0)). This means that the residuals from consecutive cycles will
be related through r(c) = πc(A)r

(c−1), where r(c) and r(c−1) are, respectively, the
residuals of the cycles c and c− 1, and πc is the c-clycle GMRES polynomial. In
terms of r(0), r(c) can be expressed as r(c) = Πc(A)r

(0), where Πc(A) = πc · · · π1,
a polynomial of degree c ·m. From here it can be seen that the Krylov subspace
corresponding to the (c+ 1)-st cycle is

Km(A,Πc(A)r
(0)) = span{Πc(A)r

(0), AΠc(A)r
(0), . . . , Am−1Πc(A)r

(0)}, (3.13)

and the approximate solution that is drawn from it has the form:

x = x(0) + ϕc+1(A)Πc(A)r
(0). (3.14)

33

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

The convenience of restarted GMRES comes with a subtle cost: the robustness of
the method gets compromised in the sense that there is no preserved orthogonality
between the subspaces constructed in consecutive cycles. This comes with the
negative side effect that restarted GMRES generally converges more slowly than
GMRES and in fact, may even stagnate [94]. In such scenarios preconditioning
might become useful or even necessary.

3.1.2.3 Preconditioning

As described earlier, the convergence of iterative methods oftentimes depends
on the condition number κ(A) of the system matrix A. In the particular case
of GMRES, the distribution of eigenvalues is also of importance for convergence
(among other factors e.g. contidioning of the matrix of eigenvectors κ(X) in the
decomposition A = XΛX−1, provided such a decomposition exists [34]). More
specifically, if some subsets of eigenvalues are clustered too close to each other,
the GMRES polynomial might have a hard time interpolating over them. Fur-
thermore, unpredictable and even paradoxical behavior can be seen when using
restarted GMRES [95].

The idea of preconditioning is to reduce the condition number by transforming
the problem to an equivalent one with a smaller condition number and possibly
a more scattered spectrum. In general we are interested in a matrix M which is
in some way close to A−1, such that

1 = κ(I) ≈ κ(MA)≪ κ(A).

We define left preconditioning via

Ax = b⇔MAx =Mb,

and right preconditioning via

Ax = b⇔ AMy = b,

where x =My. As a consequence, in preconditioned methods every matrix vector
multiplication also requires the application of the preconditioner. Thus from a
practical point of view the application of M needs to be significantly cheaper
compared to the solution of linear systems with A, since they are applied in every
iteration, but should still be “close enough” to A−1 to have a notable impact on
the condition number.

34

3.2 Multigrid methods

When a non-stationary15 preconditioner is to be employed in conjunction with
GMRES, the relation in eq. 3.12 does not hold in general anymore, and switching
to a flexible method such as FGMRES is necessary. The FGMRES algorithm is
presented in alg. 3.4 [34].

Algorithm 3.4: Flexible GMRES (FGMRES)

Data: Initial guess x(0).
Result: Sets of vectors Zm and Vm+1, and Hessenberg matrix H̄m.
r(0) = b− Ax(0)1

β = ∥r(0)∥22

v1 = r(0)/β3

for j = 1, · · · ,m4

zj =M−1
j vj5

w = Azj6

for i = 1, · · · , j7

hi,j = (w, vi)8

w = w − hi,jvi9

hj+1,j = ∥w∥210

vj+1 = w/hj+1,j11

Define : Zm := [z1, ..., zm]12

Define : H̄m := {hi,j}1≤i≤j+1;1≤j≤m13

ym = argminy∥βe1 − H̄my∥214

xm = x(0) + Zmy15

If satisfied, stop. Else, set x(0) ← xm and GOTO 1.16

In the case of FGMRES, the relation in eq. 3.12 takes the following form:

AZk = Vk+1H̄k, (3.15)

which still allows us to minimize the norm of the residual (see line 14 in alg. 3.4)
in a cheap fashion. An obvious drawback of FGMRES versus plain GMRES is
that not only the Vm+1 vectors need to be saved but also the Zm vectors.

3.2 Multigrid methods

The iterative methods introduced in sect. 3.1.2 i.e. relaxation and Krylov-based
solvers, all suffer from a common complication: the larger the condition number

15See e.g. [34] for the difference between stationary and non-stationary methods. Stationary
methods come from splittings as defined in def. 3.8. Jacobi and Gauss-Seidel classify as
stationary, whereas GMRES is considered a non-stationary method.

35

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

κ(A) of the matrix of coefficients A of the system of equations, the larger is
typically the iteration count for the solver to reach a certain relative tolerance. A
solver is said to suffer from critical slowing down if, as κ(A) grows, that iteration
count increases as well16, with the variation of the iteration count as a function of
κ(A) depending on the solver of choice. In many scientific computing applications,
the larger A the larger κ(A), which increases the difficulty of the problem two-
fold: the larger the matrix the more computationally expensive the matrix-vector
multiplications with it will be. Furthermore, the larger κ(A) is, the more iterations
it takes to solve the linear system of equations with those methods from sect. 3.1.2.
If A grows in size, it is of course necessary to invest more computational work to
apply that matrix on a vector, this is unavoidable. The question then is: can we
have a solver for which, if κ(A) increases, its iteration count does not? Here is
where multigrid methods become remarkably useful.

Extensive presentations of multigrid methods can be found in e.g. [97, 98]. Our
presentation here is, in turn, rather brief, and it follows mostly [80].

3.2.1 Motivation

Before tackling complicated systems such as the Schwinger matrix in lattice QED
and the Dirac matrix in lattice QCD, let us first introduce a simpler model in
order to be able to motivate multigrid in a simpler manner.

The Poisson equation ∇2ϕ = f is commonly found in many different areas of
physics. For example, in electrostatics [99] it is used to describe the scalar po-
tential created by a distribution of charge over space and in Newtonian gravity
[100], the gravitational potential can be computed from a matter source. When
discretized on a lattice, the Poisson equation serves as a good setting in which to
test different algorithms and their implementations.

Let us consider a two-dimensional setting:

− ∂2u

∂x2
− ∂2u

∂y2
= f(x, y), 0 < x < 1, 0 < y < 1 (3.16)

with u = 0 on the boundary of the unit square. After applying second-order finite
differences, we end up with a system of equations Ax = b with17

16Critical slowing down can also appear e.g. in the context of Markov Chain Monte Carlo,
where it is seen as problematic in the sense of a rise in the autocorrelation time [96].

17See e.g. [80] for a description on how this discretization is done. The motivation described in
this section was partially based on that same reference.

36

3.2 Multigrid methods

A =

⎛⎜⎜⎜⎜⎝
B −I
−I B −I
. . .

. . −I
−I B

⎞⎟⎟⎟⎟⎠ (3.17)

where

B =

⎛⎜⎜⎜⎜⎝
4 −1
−1 4 −1

. . .
−1 4 −1

−1 4

⎞⎟⎟⎟⎟⎠ (3.18)

Due to the discretization scheme chosen, each variable is coupled to nearest neigh-
bors only. We call this the Laplace 2D problem.

Let us choose one of the solvers from sect. 3.1.2 and represent the application of
ν iterations of it by M (ν), i.e. M (ν) approximates A−1. Starting from an initial
guess x(0), the initial residual is r(0) = b−Ax(0). Then, the residual equation (see
eq. 3.6) which takes the form of Ae = r can be roughly solved by applying M (ν)

which results in an approximant of the form

x ≈ x(0) +M (ν)r(0). (3.19)

We can re-arrange eq. 3.19 in the following way

x ≈ x(0) +M (ν)r(0) = x(0) +M (ν)(b− Ax(0)) =M (ν)b+ (I −M (ν)A)x(0). (3.20)

If, after a certain number of iterations ν the operator M (ν) is equal to A−1 up
to some accuracy, then the system of equations has been solved. The term in
parenthesis in the far-right of eq. 3.20 is termed the error propagator of the solver
used

Es := (I −M (ν)A). (3.21)

The error propagator gives us an indication of the quality of a solver in terms of
number of iterations to solution, and its analysis with regard to the spectrum of A
is of upmost importance in the development of fastly convergent algorithms. If we
write successive iterations ofM (ν) as x(k+1) =Mb+Esx

(k) (withM corresponding
to M (ν) with ν = 1), and if the method is convergent to the actual solution, after
many iterations we will get x = Mb + Esx, and by combining both relations we

37

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

can write e(k+1) = Ese
(k) with the error e(k) = x − x(k). The error propagator,

then, gives us a quantification on the reduction of the error.

An interesting observation can be made at this point: let us choose for x(0) a
random initial guess. With this initial guess, and for the actual solution x, the
error e(0) = x−x(0) can be written in terms of a spectral decomposition (provided
this decomposition exists, which is the case in the Laplace 2D example that we
are discussing here).

e(0) =
N∑
i=1

civi (3.22)

where vi are the eigenvectors of A and ci are just coefficients of the decomposition.
The eigenvectors vi to associated large eigenvalues λi in eq. 3.22 are also known as
high frequency modes and the ones corresponding to small eigenvalues are known
as low frequency modes. Therefore, we can re-write eq. 3.22 as

e(0) = e
(0)
low + e

(0)
high. (3.23)

We can at this point run a few iterations of the methods introduced in sect. 3.1.2,
in particular relaxation schemes, and come to some important realizations in terms
of the components of the error that are tackled better by them. Let us choose,
in particular, the Gauss-Seidel method, which can be applied to the Laplace 2D
problem described before, results of which are displayed in fig. 3.1.

Figure 3.1: Error e(k) of the Gauss-Seidel method when applied to the Laplace
2D problem with random initial guess x(0) and k = 1 iterations for the left plot
and k = 20 iterations for the right plot.

As can be seen from fig. 3.1, it is visually clear that high-frequency components of
the error have been removed, i.e. parts of the error that oscillate rapidly have been
reduced. This is typical of relaxation methods: a few iterations of them lead to
a quick removal of high-frequency components of the error. But, numerical tests

38

3.2 Multigrid methods

indicate that after a few iterations the reduction of the error starts to stagnate
and more iterations of the solver lead to almost no reduction in the error. In
terms of eq. 3.23, these methods are good are removing ehigh but quite bad when
it comes to dealing with elow. Basically the same observations can be concluded
when using a Krylov-based method e.g. GMRES instead of Gauss-Seidel as we did
before. These methods are then good smoothers i.e. they are good at smoothing
the error by quickly reducing ehigh with just a few iterations.

Although they are good at smoothing the error quickly, they continue to be bad
solvers due to their limited action on elow. We would like, though, to keep using
those first few iterations of those methods which are good at smoothing, and
complement them with something that deals with elow efficiently. Here is where
having more than one grid becomes beneficial [80].

3.2.2 Two levels and multilevel multigrid

The error in fig. 3.1 has been smoothed down. At that point, we can create a
coarser lattice i.e. one with a larger lattice spacing and thus with less grid points
and represent the whole system there, which implies representing the error in the
right plot in fig. 3.1 on that coarser lattice as well. This takes us to a two-grid
correction scheme [80] (the quantities with a bar, e.g. x̄, correspond to variables
on the coarse grid):

1. Apply ν1 iterations of the smoother (e.g. Gauss-Seidel, Jacobi, GMRES) on
Ax = b at the fine grid, with initial guess x(0), obtaining with this a first
approximant x(a).

2. Compute the residual, still at the fine grid: r(a) = b− Ax(a).

3. Transport this residual to the coarse grid: r(a) → r̄(a).

4. Solve Āē = r̄(a) at the coarse grid, to obtain ē(a).

5. Transport the error back to the fine grid: ē(a) → e(a).

6. Perform a correction step at the fine grid: x(b) = x(a) + e(a).

7. Apply ν2 iterations of the smoother on Ax = b at the fine grid, with initial
guess x(b), obtaining with this a new approximant x(c).

Points 1 and 7 in the two-grid scheme above remove ehigh, while points 2 to 6 are
meant to efficiently deal with elow. Clearly, to have a good reduction of elow the
operators for transporting from the fine to the coarse grid and viceversa need to
be carefully chosen, as well as the construction of Ā.

39

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

Let us be a bit more precise now and make the following associations: the operator
in charge of transporting from the fine to the coarse grid is named the restrictor
R, the one transporting from the coarse to the fine grid is the prolongator (or
interpolator) P , and for the construction of the coarse-grid matrix Ā we use here
the Petrov-Galerkin approach

Ā = RAP. (3.24)

Following the points above from the two-grid scheme and a re-arrangement sim-
ilar to the one in eq. 3.20 we can write the error propagator for the coarse-grid
correction as follows

Ec := I − PĀ−1RA. (3.25)

Although the error in fig. 3.1 looks “smooth” in the fine grid employed, it will
become more oscillatory when transported to the coarse grid i.e. some portions of
elow in the finer grid will be seen as high-frequency components from the point of
view of the coarser one i.e. elow → ēhigh+ēlow. This clearly opens up the possibility
of a multigrid hierarchy with more than two levels, where ēhigh can be treated
via a smoother at the coarse grid, and then a new third level has to be created
to correct for that part of the error not efficiently removed by a few iterations
of the smoother i.e. ēlow. Illustration and a precise description of schemes with
more than two levels are held until later sections and discusssed in the context of
algebraic multigrid.

The success of the coarse-grid correction at every level depends then on an ap-
propriate choice for both P and R. Very efficient operators P and R have been
succesfully constructed in many applications appearing in scientific computing
[101–103], such that the smoother and the coarse-grid correction complement
each other very well to the point that critical slowing down does not seem to
affect the solver. We will describe one such construction in upcoming sections in
the context of lattice QCD.

3.3 Algebraic multigrid

As described in sect. 3.2.2, an appropriate construction of P and R, in order to
efficiently deal with elow, is of upmost importance in multigrid methods to have
an algorithm as independent of κ(A) as possible. An obvious way to construct
P is the one illustrated in fig. 3.2, corresponding to a linear interpolation from
the coarse to the fine grid when dealing with a one-dimensional lattice. This is
clearly a geometric multigrid approach i.e. it is solely based on the geometry of the

40

3.3 Algebraic multigrid

lattice, regardless of the entries of the matrix A of the linear system of equations.
Evidently, other choices for P are possible when using geometric multigrid, e.g.
constant, cubic, etc.

Figure 3.2: Linear interpolation of a vector on the coarse grid to the fine grid in
a one-dimensional lattice. Image taken from [80].

In matrices arising from the discretization of PDEs with smooth coefficients, the
lowest modes of A can be closely connected to geometric considerations i.e. to the
associated lattice. The lowest modes, as we have suggested before, are important
in multigrid to properly deal with elow i.e. it is important that the fine-grid matrix
A and the coarse-grid matrix Ac are similar to each other in the sense of their
lowest modes. This all indicates that, in a geometric multigrid construction we
can build P from geometric considerations and have the reductions of elow that
we want.

When A contains random entries, the associations from geometry to low modes is
generally not possible, and the construction of P is then based on the information
of A itself rather than on the geometry of the underlying lattice. This leads to
general and powerful methods anyway, as not all matrices are generated from the
discretization of a partial differential equation on a grid. A multigrid construction
where P is constructed based on properties of A itself regardless of the lattice is
known as algebraic multigrid, which we describe now in the context of lattice
QCD.

All the developments discussed in the next three chapters revolve around the
multigrid method DD-αAMG (Domain decomposition aggregation-based αdaptive
algebraic multigrid method [24, 45]), which can be considered as both a code pack-
age and a conceptual framework for solving linear systems of equations involving
the Dirac matrix.

41

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

The sects. 3.3.1, 3.3.2 and 3.3.3 establish, in increasing level of complexity, the
main ingredients of DD-αAMG, and we introduce there some formal statements
as well as some more heuristic motivations on the inner workings of this multigrid
method. Building on this, sect. 3.3.4 presents DD-αAMG in a more compact way,
and introduces the important cycling strategy known as K-cycles.

In chap. 6 we will use the DD-αAMG method to construct our own algebraic
multigrid solver in the context of lattice QED i.e. an AMG solver built for the
Schwinger operator described in sect. 2.5.

3.3.1 Algebraic multigrid in lattice QCD

As described in chapter 2, the Dirac matrix appearing in lattice QCD simulations
is a function of the gauge links (which are an indirect representation, on the
lattice, of the gauge bosons from QCD in the continuum). The evaluation of the
path integral, as also described in that chapter, is performed via a Monte Carlo
procedure, which leads to the gauge links being random, rendering with this the
Dirac operator D to be a matrix with random entries. This randomness suggests
already that algebraic rather than geometric multigrid is the method of choice to
solve the linear equations appearing in lattice QCD.

As presented in chapter 2, there are different approaches to discretizing the Dirac
operator. These different approaches lead to various lattice discretizations and
therefore to different forms of the operator D e.g. Wilson, Twisted Mass, Stag-
gered, and others [5, 43, 68, 69]. In lattice QCD, adaptive (algebraic) multigrid
methods have been established as the most efficient methods for solving linear
systems involving the Wilson Dirac operator [18, 24, 104–106], and they have also
found their way into other lattice QCD discretizations (e.g. twisted mass [27],
staggered [19] and Domain-Wall [20] fermions). They demonstrate significant
speedups compared to conventional Krylov subspace methods, achieving orders
of magnitude faster convergence and insensitivity to conditioning.

Let us adapt now our notation in order to fit better the one typically used in
lattice QCD discussions of linear solvers (see e.g. [45]).

Definition 3.11.
Let the linear system of equations Dψ = η, n = 12nL and nc < n be given. Assum-
ing we have full rank linear restriction and prolongation/ interpolation operators

R : Cn → Cnc ,

P : Cnc → Cn

42

3.3 Algebraic multigrid

we define a Petrov-Galerkin projection of D, i.e., the coarse grid operator

Dc := RDP, (3.26)

and the corresponding coarse grid correction

ψ ← ψ + PD−1c Rr

with r = η −Dψ.

The relations in def. 3.11 are, of course, in agreement with our previous introduc-
tion of a two-grid scheme, see eqs. 3.24 and 3.25. The coarse grid correction for
a current iterate ψ restricts the current residual r via R to the subspace, where
we solve

Dcec = Rr (3.27)

and transporting the coarse error ec via P back to the original space as a correction
for ψ. In eq. 3.20, one step of coarse grid correction can be summarized as

ψ ← (I − PD−1c RD)ψ + PD−1c Rη (3.28)

with the associated coarse grid error propagation operator (see eqs. 3.21 and
3.25) being

E = I − PD−1c RD (3.29)

The operator in eq. 3.29 is a projector. The goal is for this projector to easily
remove low modes, with the high modes being treated by the smoother. We define
now the subspaces relevant to the construction of a good coarse grid correction
in eq. 3.29.

Definition 3.12.
Let us define the near kernel as the space spanned by the right eigenvectors be-
longing to small (in modulus) eigenvalues of D. By near right kernel we mean

43

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

the same as near kernel, and we define near left kernel as the subspace spanned
by small left eigenvectors.

As discussed in [24], by choosing range(P) to approximately contain the near
right kernel and range(R) the near left kernel, we have then a good complement
between the two-grid correction in eq. 3.28 and the smoother. A rather geometric
interpretation of the effect of E on different components of the error, and how
this can impose conditions on P and R, can be found in chapter 5 of [80].

We state now a two-level multigrid method, with the same structure as in sect. 3.2.2
but with the newly introduced notation of this section. Based on numerical ex-
periments [45], a good choice for the smoother is multiplicative SAP (see alg. 3.2)

with red-black block coloring. We use hereM
(ν)
SAP to represent this SAP smoother,

and in particular this two-grid scheme uses ν steps of post-smoothing only.

Algorithm 3.5: Two-level V-cycle with post-smoothing
input: ψ, η, ν
output: ψ
r ← η −Dψ1

ψ ← ψ + PD−1c Rr2

r ← η −Dψ3

ψ ← ψ +M
(ν)
SAP r4

Alg. 3.5 can be recursively extended to a true multigrid method by recursively
calling it every time the coarse-grid solve needs to be performed. As discussed
in sect. 3.2.2, going from fine to coarse grid is motivated by the decomposition
elow → ēhigh+ ēlow, which is at the basis of this recursion. In LQCD, the multigrid
hierarchy consists of two or three levels, rendering the coarsest level still quite large
and difficult to solve in some cases. A more thorough discussion of these aspects
and the need for a good coarsest-level solver are presented in chapter 4.

3.3.2 Aggregation-based prolongation and restriction

An important point concluded in sect. 3.3.1 motivates the construction of R in
terms of P , namely, that range(R) needs to be spanned by the near left kernel ofD
in order to have a good complement between smoother and coarse grid correction.
Furthermore, the construction of P itself is motivated by the phenomenon of local
coherence.

Local coherence comes from the observation in [11] that eigenvectors belonging to
small eigenvalues of D tend to (approximately) coincide on a large number of lat-
tice blocks Li (see def. 3.9). More specifically, local coherence means that we can

44

3.3 Algebraic multigrid

approximately represent many eigenvectors belonging to small eigenvalues from
just a few by decomposing them into the parts belonging to each of the lattice
blocks18. Local coherence is the conceptual base for aggregation-based interpola-
tion as constructed in [107, 108] for general cases. It is of upmost importance in
lattice QCD computations [18, 104, 105]. The idea of taking a few eigenvectors
and being able to generate many small eigenvectors from them resonates with
the properties of P discussed before. Hence, we state it again: range(P) should
approximately contain the near kernel of D due to elow ∈ range(P). We know
then that, provided that local coherence holds, we can then compute a small set
of small eigenvectors and then apply the decomposition as suggested by local co-
herence such that we obtain as many vectors as necessary in order to construct
P . Of course, it is better to have a sparse form for P , as done in the following
construction.

Definition 3.13.
An aggregation {A1, ...,As} is a partitioning of the set V = L × C × S of all
variables (see def. 3.9). It is termed a lattice-block-based aggregation if each Ai
is of the form

Ai := Lj(i) ×Wi

where Lj are the lattice blocks of a block decomposition of the lattice L and Wi ⊆
C × S.

The key difference between the decomposition based on lattice blocks as intro-
duced in def. 3.9 and the one from def. 3.13 is that an aggregate does not have to
contain all spin and color variables, which implies that a lattice block Li can be
associated with more than one aggregate.

By combining the notion of local coherence with this newly introduced concept
of aggregates, we can specify the construction of the interpolation operator as
follows:

Definition 3.14.
Consider a set {v1, . . . , vN} ⊆ Cn of so-called test vectors representing the near
kernel and a set of aggregates {A1, . . . ,As}. The interpolation operator P is then
defined by decomposing the test vectors over the aggregates as in fig. 3.3.

Formally, each aggregate Ai induces N variables (i−1)N+1, ..., iN on the coarse
system, and we define

Pe(i−1)N+j := IAi
IHAi

vj, for i = 1, . . . , s, j = 1, . . . , N (3.30)

18See [11] for a full qualitative analysis of this phenomenon.

45

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

Figure 3.3: Construction of P from the decomposition, based on local coherence,
of a few vectors from the near kernel of the Dirac operator. Image taken from
[45].

where IHAi
represents the trivial restriction operator for the aggregate Ai, i.e.,

IAi
IHAi

vj leaves the components of vj from Ai unchanged while zeroing all others.

To avoid stability issues, after constructing P as in def. 3.14 the columns of P
are then orthonormalized locally19. This construction of a sparse interpolation
operator is such that each aggregate can be associated to a single site on the coarse
lattice, and the sparsity and nearest-neighbor structure of Dc = RDP resembles
the one of the Dirac operator at the fine grid.

In a two-level hierarchy, the degrees of freedom per lattice site at the finest level is
12, due to a direct discretization of continuum QCD on the lattice. The number
of degrees of freedom per lattice site at the coarse grid will depend on the choice
for the aggregates, e.g. if we choose the aggregates such that each lattice block is
associated to one aggregate only, then N is the number of degrees of freedom per
lattice site in the coarse lattice.

3.3.3 Petrov-Galerkin approach

We describe now a more precise construction of R as well as a more precise defini-
tion of the aggregates to be considered from here onwards. In sect. 3.3.2, we have
concluded that range(R) needs to be spanned by the smallest left eigenvectors of
D. This, in combination with the relation between right and left eigenvectors of
D (see lemma 2.10), leads to the natural choice

R = (Γ5P)
H . (3.31)

19For more details on this orthonormalization procedure and more details on the efficient ap-
plication of P on vectors, see [45].

46

3.3 Algebraic multigrid

However, as pointed out in [104], it seems desirable to have R = PH by taking
the special spin-structure of the Dirac operator into account when defining the
aggregates.

Definition 3.15.
The aggregation {Ai : i = 1, ..., s} is termed Γ5-compatible if any given aggregate
Ai is composed exclusively of fine variables with spin 0 and 1 or of fine variables
with spin 2 and 3.

From def. 3.14 and assuming we choose to have a Γ5-compatible aggregation, we
can show that

Γ5P = PΓc5.

where Γc5 acts as the identity on aggregates with spins 0 or 1, and as negative
identity for aggregates with spins 2 or 3.

The following lemma is the last pillar in deciding the kind of aggregates to be
used, as well as the relation between R and P .

Lemma 3.16.
Let the aggregation be Γ5-compatible and P a corresponding aggregation-based
prolongation (see def. 3.14) and R = (Γ5P)

H . Consider the two coarse grid
operators

DPG
c = RDP and Dc = PHDP

Then

(i) Dc = Γc5D
PG
c .

(ii) I − PD−1c PHD = I − P (DPG
c)−1RD.

(iii) DPG
c is Hermitian, Dc is Γc5-symmetric.

(iv) For the field of values F(D) := {ψHDψ : ψHψ = 1}, we have F(Dc) ⊆
F(D).

Proof. A proof of this lemma can be found in e.g. [45].

Therefore, choosing Dc over D
PG
c seems to be a “better” choice in the sense that

it gives us coarser representations of the Dirac operator that are closer in their
properties to the finest-level one, rendering a cleaner recursive construction of the

47

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

multigrid hierarchy, and with some extra advantages that have been found from
numerical experiments20.

Now that we have completely specified the details on the construction of P and
how R relates to P , as well as the construction of the coarse matrix Dc, the last
missing piece is a more detailed specification on how the aggregates are realized
(this is, of course, Γ5-compatible).

Definition 3.17.
Let {Lj : j = 1, ..., nLc} be a block decomposition of the lattice L. Then the
standard aggregation {Aj,τ : j = 1, ..., nLc , τ = 0, 1} with respect to this block
decomposition is given by

Aj,0 := Lj × {0, 1} × C and Aj,0 := Lj × {2, 3} × C

The standard aggregates induce a coarse lattice Lc with nLc sites where each
coarse lattice site corresponds to one lattice block Lj and holds 2N variables with
N the number of test vectors. Hence, the overall system size of the coarse system
is nc = 2NnLc . With standard aggregation, Dc = PHDP is such that the coarse
lattice points can be arranged as a 4D periodic lattice and the system represents
a nearest neighbor coupling on the torus.

3.3.4 Domain decomposition aggregation-based αdaptive
algebraic multigrid method

With all the ingredients covered in sects. 3.3.1, 3.3.2 and 3.3.3, we can go ahead
now and describe the DD-αAMG method. The description here will be at a rather
superficial level i.e. we will state the algorithms involved in the method and omit
further deeper conceptual considerations as well as comparisons against other
implementations of algebraic multigrid available in the lattice QCD community.
For more on all of these aspects, see [45]. A crucial missing piece from previous
sections is how the test vectors are constructed, which is mentioned in sect. 3.3.4.3.

3.3.4.1 Two-levels DD-αAMG

For the two-level scheme of DD-αAMG,M
(ν)
SAP is taken as the smoother, which as

mentioned in sect. 3.3.1 consists of a red-black multiplicative SAP (see alg. 3.2).
The coarse system Dc is obtained as Dc = PHDP , see lemma 3.16. From defs.

20For a complete discussion of this choice, see e.g. [45].

48

3.3 Algebraic multigrid

3.14 and 3.17, P is an aggregation-based interpolation operator, i.e. the aggregates
are from a Γ5-compatible standard aggregation..

When using two levels, in DD-αAMG the smoother and the coarse grid correction
are combined into a standard V-cycle21 with no pre- and ν steps of post-smoothing
so that the iteration matrix of one V-cycle is given by [45]

C(ν) =M
(ν)
SAP + PD−1c PH −M (ν)

SAPDPD
−1
c PH . (3.32)

Instead of using this V-cycle as a stand-alone solver, DD-αAMG uses this two-
level method as a right preconditioner of flexible GMRES22 [34], with the precon-
ditioner matrix given by C(ν) in eq. 3.32

3.3.4.2 Multilevel DD-αAMG

The multilevel approach of DD-αAMG, based on the two-level one from sect. 3.3.4.1,
combines again the red-black multiplicative SAP smoother and the interpolation
operator based on the standard aggregation (see, again, def. 3.17). The opera-

tions M
(ν)
SAP and P are taken to be of the same type on all levels in the multigrid

hierarchy. We define now, in more precise terms, this multigrid hierarchy.

Definition 3.18.
Let L be the number of levels employed and denote D1 := D. Furthermore, let nℓ,
ℓ = 1, ..., L be the dimension of the underlying vector space on each level ℓ. Just
as in def. 3.11 we define interpolation operators

Pℓ : Cnℓ+1 → Cnℓ , ℓ = 1, ..., L− 1

which transfer information from level ℓ + 1 to ℓ. Accordingly, the operators PH
ℓ

transfer information from level ℓ to ℓ + 1. Using these operators we recursively
define coarse-level operators

Dℓ : Cnℓ → Cnℓ , Dℓ = PH
ℓ−1Dℓ−1Pℓ−1

for ℓ = 2, ..., L. The complementary smoothers on each level are denoted by

Mℓ, ℓ = 1, ..., L− 1

Having all these ingredients, we call

21See [80] for a description of the different cycling strategies.
22A flexible method is necessary due to the coarse grid being solved via GMRES to very low

relative tolerance, which renders the two-level method non-stationary..

49

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

{(Pℓ, Dℓ+1,Mℓ) : ℓ = 1, ..., L− 1}

a multigrid hierarchy.

When more than two levels are under use, we can choose among several different
cycling strategies. Different cycling strategies can be found in e.g. [34, 45], and
the one under common use in DD-αAMG is known as the K-cycle, as suggested
in [109]. A K-cycle optimally recombines several coarse-level solves, again in a
recursive manner. More precisely, on every level an approximate solution of the
coarse-level system is obtained by a few iterations of a flexible Krylov subspace
method (in the case of DD-αAMG this is flexible GMRES), preconditioned by the
K-cycle from level ℓ+1 to L. A fundamental difference from the original approach
in [109] is that DD-αAMG uses a stopping criterion based on the reduction of the
residual rather than a fixed number of iterations.

The K-cycle used in DD-αAMG is stated in alg. 3.6.

Algorithm 3.6: K-cycle
input: ℓ, ηℓ
output: ψℓ
if ℓ = L then1

ψℓ ← D−1ℓ ηℓ2

else3

ψℓ = 0 for i = 1 to µ4

ψℓ ← ψℓ +Mℓ(ηℓ −Dℓψℓ)5

ηℓ+1 ← PH(ηℓ −Dℓψℓ)6

ψℓ+1 ← FGMRES(Dℓ+1, ηℓ+1) with preconditioner = K-cycle7

ψℓ ← ψℓ + Pℓψℓ+18

for i = 1 to ν9

ψℓ ← ψℓ +Mℓ(ηℓ −Dℓψℓ)10

3.3.4.3 Adaptive setup phase in multilevel DD-αAMG

We have now provided, in the previous sections of this chapter, not only a rel-
atively detailed discussion on all of the necessary elements composing the DD-
αAMG method, but also the specific algorithmic arrangements in the method
itself. We have not explained, though, how we obtain the test vectors, which
should approximate low eigenmodes and are used in the construction of P and R.
This is the task of the setup procedure that we explain now. The setup described
in this section corresponds to the one currently implemented in DD-αAMG. This

50

3.3 Algebraic multigrid

is an adaptive procedure (in some ways, based on [108, 110]; see [45] for these
associations, where the connection between adaptivity and bootstrap AMG as
introduced in [108] is discussed in the context of DD-αAMG), where the method
is used to aproximate the near kernel with updates on the multigrid solver itself
as the test vectors improve. Alg. 3.7 contains an algorithmic description of this
setup phase.

Algorithm 3.7: Bootstrap AMG setup
input: smoothing method M , number of iterative phases k
output: Intergrid operators P = RH and coarse grid operator Dc

// Initial phase
Define set of random test vectors W = [w1, . . . , wntv]1

for j = 1, . . . , ntv2

wj ←Mwj3

construct P and Dc from W4

perform initial phase for Dc5

// Iterative phase
for i = 0, . . . , k6

for j = 0, . . . , ntv7

wj ← AMG(wj)8

update P and Dc9

perform iterative phase for Dc10

The larger the value of k at a certain level ℓ in alg. 3.7, the better the test vectors
at ℓ approximate low modes of Dℓ. This improves the quality of the solver at level
ℓ, in the sense of the coarse grid correction at ℓ being a better complement to the
smoother at that same level, which implies in turn a reduction in the iteration
count in the outermost FGMRES at that same level. Based on this and the fact
that the setup phase is in general quite expensive, the number of setup iterations
k to be chosen at different levels in the setup phase depends also on whether we
want to solve for a single right hand side or many. So, when we need to solve for
many right hand sides, more time can be spent on the setup phase to improve
the quality of the solver, but when only one right hand side is provided then the
setup phase time needs to be minimized in combination with the solve time.

We close this whole description of DD-αAMG by displaying its effectiveness over
conventional Krylov subspace methods. Fig. 3.4 shows a comparison of two, three
and four levels DD-αAMG versus a very optimized implementation of BiCGStab.
The left plot shows the time for a single solve of a linear system with the Dirac
operator, which is dependent on a mass shift m0 ∈ R. This shift is an indicator
for the ill-conditioning of the system i.e. the smaller m0 the more ill-conditioned
the matrix. The multigrid method outperforms the Krylov subspace method by

51

3 Domain decomposition aggregation-based αdaptive algebraic multigrid
method

more than two orders of magnitude for physically relevant mass shifts. We also see
that depending on the conditioning, it is (sometimes) beneficial to use additional
multigrid levels. The right plot shows the same situation, but includes the time
spent for the multigrid setup phase. Due to the bootstrap approach for the setup,
the overall cost of the multigrid method is dominated by the setup cost, but is
still clearly favorable over BiCGStab by one order of magnitude.

102

103

104

−0.01−0.03−0.05mudmcrit

mdmu

ti
m
e
to

so
lu
ti
on

(i
n
se
co
n
d
s)

m0

mp oe BiCGStab
2-level DD-αAMG
3-level DD-αAMG
4-level DD-αAMG

102

103

104

−0.01−0.03−0.05mudmcrit

mdmu

ti
m
e
to

so
lu
ti
on

+
se
tu
p
ti
m
e
(i
n
se
co
n
d
s)

m0

mp oe BiCGStab
2-level DD-αAMG
3-level DD-αAMG
4-level DD-αAMG

Figure 3.4: Comparing computational cost for solving linear systems with a con-
figuration from a BMW collaboration configuration23 using DD-αAMG and a
Krylov subspace method. The left plot reports on timings for the solve only,
whereas the right plot includes the multigrid setup time. Both plots were gen-
erated on the JUROPA high performance computer from the Jülich Supercom-
puting Centre.

Some more specific details such as odd-even preconditioning, mixed precision and
the solver employed in the blocks solves in the smoother, are introduced later in
this thesis when needed.

3.3.5 DD-αAMG for twisted mass fermions

The DD-αAMG library for clover-improved Wilson-Dirac fermions has been ex-
tended to deal with the clover-improved Wilson-Dirac twisted mass operator [28]
(see eq. 2.13). The conceptual construction of the method in the twisted mass case
is the same as the one outlined in sects. 3.3.4.1 and 3.3.4.2. A critical difference
with respect to the Wilson case is the construction of the coarse-grid operator.

In the same way as explained before, the relation between the prolongator and
the restrictor is R = PH . This leads to a coarsening of the operator in eq. 2.13
of the form
23Lattice of size 644, m0 = −0.0529 – see [81] for more details on the configuration employed

in this numerical experiment.

52

3.3 Algebraic multigrid

DTM,c = R(D + iµΓ5)P = PHDP + iµPHΓ5P

Now, since the coarsening is done via Γ5-compatible aggregates (see the standard
aggregation described in def. 3.17), the prolongator satisfies Γ5P = PΓ5,c, and
then

DTM,c = PHDP + iµΓ5,c. (3.33)

The coarse-grid operator shares some properties with the fine-grid one, in par-
ticular the high density of eigenvalues (in absolute value) around the minimum
for the DH

TM,cDTM,c operator. This is challenging for iterative solvers such as
Krylov-subspace-based methods. As described in [28], the operator in eq. 3.33 is
generalized in the sense that µ is allowed to vary, denoted as

DTM,c = PHDP + iδµΓ5,c, δ ≥ 1 (3.34)

which allows one to artificially decrease the condition number by increasing δ.
As numerical experiments show, this does not substantially increase the iteration
count of the outermost FGMRES but largely decreases the iteration count in the
coarsest-level GMRES. Although, from the same numerical experiments it is seen
that, as δ increases, the density of eigenvalues (in absolute value) of DH

TM,cDTM,c

around the smallest ones increases even further. This makes it harder for GMRES
to construct an appropriate polynomial to approximate the inverse of DTM,c.

53

Chapter 4
Coarsest level improvements

In adaptive algebraic multigrid implementations for lattice QCD, L = 2 or L = 3
levels are typically used [22, 111] and the coarsest level is usually solved via a
Krylov-subspace-based method, e.g. GMRES, possibly enhanced with a simple
preconditioner and explicit deflation. In a parallel environment, the coarsest level
solves suffer from an unfavorable ratio of communication vs. computation: a
processor will have relatively few components to update, but a matrix vector
multiplication will require a relatively high amount of data to be communicated
between neighboring processors. Even more importantly, the communication cost
for global reductions (mainly arising in the form of dot products) becomes quite
large in comparison to computation [45]. As a result, coarsest level solves usually
dominate the cost and can reach up to ∼ 95% of the overall compute time in
some cases. Hence, improving scalability of the coarsest-level solver is mandatory
to improve the scalability of the whole multigrid solver.

In sect. 4.1, we consider a combination of three major techniques to improve the
coarsest level solves:

1. Reducing the number of iterations by preconditioning with operators which
do not require global communication.

2. Reducing the number of iterations by approximate deflation using Krylov
recycling techniques.

3. Hiding global communication by rearranging computations.

As it will turn out, these techniques can yield a solver much less sensitive to con-
ditioning when approaching mcrit (see sect. 4.2.1.3) and improve scalability (see
sect. 4.2.1.4). Furthermore, in the particular case of the twisted mass discretiza-
tion, they prove to be useful in eliminating the artificially introduced parameter
at the coarsest level (see eq. 3.34).

55

4 Coarsest level improvements

The three methods mentioned above are somehow related to Krylov subspace
methods. Due to the large density of eigenvalues around the smallest ones in the
case of the twisted mass discretization, see sect. 3.3.5, solving becomes difficult
for Krylov based methods particularly at the coarsest level. We propose using a
different approach in sect. 4.3, based on an incomplete LU factorization.

Sects. 4.2 and 4.4 present results from Krylov- and LU-based methods, respec-
tively. Sects. 4.1 and 4.2 are largely based on [2]24. The techniques used in
sect. 4.3 come from collaborative work with Henning Leemhuis, which resulted in
his M.Sc. thesis [112], hence sects. 4.3 and 4.4 are partially based on that thesis.

4.1 Krylov based improvements

This chapter deals exclusively with improvements of the coarsest level solves in
adaptive algebraic multigrid methods. On the coarsest level, if we order odd
lattice sites before even lattice sites, the matrix DL (i.e. the matrix at level ℓ = L,
see def. 3.18) has the structure

DL =

(
Dee Deo

Doe Doo

)
. (4.1)

Herein, Doe and Deo represent the coupling with the nearest neighbors on the
lattice. For the standard Wilson discretization, the diagonal matrices Dee and
Doo are just multiples of the identity. When we include the clover term, Dee

and Doo describe a self-coupling between the variables at each lattice point, i.e.
they are block diagonal with the size of each block equal to ntv, the number of
variables per grid points25. If we take the spin-preserving approach, see def. 3.17,
the self-coupling is between variables of the same spin only, i.e. we actually have
two diagonal blocks, each again with size ntv which now is half the number of
variables per lattice site.

In order to solve coarsest level systems

DLψ = η ⇐⇒
(
Doo Doe

Deo Dee

)(
ψo
ψe

)
=

(
ηo
ηe

)
,

the standard approach is to solve the odd-even reduced system

(Dee −DeoD
−1
oo Doe)ψe = ηe −DeoD

−1
oo ηo

24A paper on our work to improve the coarsest-level of DD-αAMG via Krylov-based methods
will soon be uploaded to arXiv.

25At the end of sect. 3.3.3 we labeled this quantity as N , being this the number of test vectors
used in connecting level L− 1 to L.

56

4.1 Krylov based improvements

for ψe with a Krylov subspace method like GMRES, possibly enhanced with a
deflation procedure, and then retrieve ψo = D−1oo (ηo −Doeψe) [45].

For future reference we denote

Dc = Dee −DeoD
−1
oo Doe (4.2)

the odd-even reduced matrix of the system at the coarsest level. For each lattice
site, it describes a coupling with the variables from the 48 even lattices at distance
2. This is why Dc is not formed explicitly – a matrix-vector multiplication with
Dc is rather done by using the factored form (4.2), where each multiplication with
Deo and Doe involves the 8 nearest neighbor sites only. Since Doo and Dee are
diagonal across the the lattice sites, multiplying with them does not involve other
lattice sites, and the explicit computation of their inverse boils down to compute
inverses of the local, small ntv × ntv diagonal blocks they are made up from.

The GMRES, introduced in sect. 3.1.2.2, is the best possible method to solve

Dcx = b,

The GMRES method relies on the Arnoldi process. The Arnoldi process intro-
duced in alg. 3.3 relies on modified Gram Schmidt [34]. We presented now in alg.
4.1 based on classical Gram Schmidt

Algorithm 4.1: Arnoldi process
Data: (residual) vector r0, matrix A, dimension k
Result: orthonormal matrix Vk = [v1| · · · |vk] ∈ Cn×k, and Hessenberg

matrix H̄k = (hij ∈ C(k+1)×k.
β = ∥r0∥2;1

v1 = r0/β;2

for j = 1, . . . , k3

for i = 1, . . . , j4

hi,j = (Avj, vi);5

wj = Avj −
∑j

i=1 hi,jvi;6

hj+1,j = ∥wj∥2;7

if hj+1,j = 0 then8

STOP9

vj+1 = wj/hj+1,j;10

Lines 4-6 in the Arnoldi process orthogonalize Avj against v1, . . . , vj. This is
done with the classical Gram-Schmidt procedure. It is known that the following
mathematically equivalent modified Gram-Schmidt procedure (as used in alg. 3.3)

57

4 Coarsest level improvements

which uses the partially orthogonalized vector wj for the computation of the hi,j
is numerically more stable.

for j = 1, . . . , k1

wj = Avj;2

for i = 1, . . . , j3

hi,j = (wj, vi); wj = wj − hi,jvi;4

When using classical Gram-Schmidt as in alg. 4.1 on a parallel computer, the
computation of the k inner products can be fused into one single global reduction
operation. This represents a substantial saving when the computational work
load per process is small, as it is typically the case when solving systems with
the coarsest grid marix Dc. Stability is a minor concern, since very inaccurate
solves on the coarsest level typically are sufficient, reducing the initial residual
by just one order of magnitude. However, the number of iterations required
is nonetheless high (some hundreds or even thousands). This makes GMRES
increasingly inefficient, since the orthogonalizations in the Arnoldi process require
k vector-vector operations in step k, eventually becoming far more costly than the
matrix-vector multiplication. This is why, usually, GMRES must be restarted, as
explained in sect. 3.1.2.2.

In the context of restarted GMRES, preconditioning becomes useful (see sect. 3.1.2.3),
and in this chapter we use it to improve scalability by trading global reductions
against increased local computations. In sect. 4.1.0.1 we describe how we use a
left block diagonal preconditioner to accomplish this, and then in sect. 4.1.0.2 we
use a right preconditioner.

Furthermore, we explore the interplay of those preconditioners with a defla-
tion+recycling method, specifically GCRO-DR [30], in sect. 4.1.0.3. Both precon-
ditioners allow for a reduction of the iteration count in coarsest-level solves with
the immediate advantage of having less dot products at that level but at the ex-
pense of an increase in local work (i.e. matrix-vector multiplications), particularly
for the polynomial preconditioner. Moreover, preconditioning tends to cluster the
spectrum of the preconditioned matrix such that the number of small eigenmodes
becomes small. It is particularly in such situations that deflation achieved using
GCRO-DR can yield substantial accelerations of convergence, since the deflation
will damp the influence of these small eigenmodes. A minor computational draw-
back of using deflation+recycling is that recycling vectors have to be constructed,
which requires additional work, and they are then deflated via projection in each
Arnoldi iteration. But those deflations can be merged with the Arnoldi dot prod-
ucts when using classical Gram Schmidt. This increases the risk of instability,
but, as explained before, the coarsest level can be solved with low accuracy.

58

4.1 Krylov based improvements

Finally, in sect. 4.1.0.4 we integrate pipelining with the algorithms obtained so far
as a means to hide global communications and thus further improve scalability of
the coarsest level solves.

4.1.0.1 Block diagonal preconditioner

Left preconditioning uses a non-singular matrixB to transform the original system
Dcx = b into

B−1Dcx = B−1b. (4.3)

GMRES is now applied to this system. This means that in each iteration we now
have a multiplication with B−1Dc, which is done as two consecutive matrix-vector
multiplications. This is why multiplication with B−1 should be easy and cheap in
computational cost. We took B to be an approximate block Jacobi preconditioner.
More precisely B is the bock diagonal of Dee, where each ntv×ntv diagonal block
Bi corresponds to all variables associated with lattice site i. We compute B−1i
once for each i, and then perform the matrix vector products with B−1i as direct
vector products. This is computationally more efficient than computing an LU -
factorization of Bi and then perform two triangular solves each time we need to
multily with B−1i . Note that all multiplications with B−1i can be done in parallel
and they do not require any communication if we — as we always do — keep all
variables for a given lattice site on one processor.

The diagonal blocks of Dee are not identical to those of Dc, and one might expect
to obtain a more efficient preconditioner when using those of Dc. Computing the
part of DeoD

−1
oo Doe contributing to each diagonal block of Dc can, in principle,

be done in parallel, but it requires inversions of Doo and communication with
neighboring processes due to the couplings present in Deo and Doe. Limited
numerical experiments suggest that the additional benefit of incorporating this
part into the block diagonal preconditioner is moderate, so that we used the
more simple-to-compute preconditioner which works exclusively with the block
diagonal of Dee. Further numerical experiments (see sect. 4.2) indicate that this
block preconditioner gives a reduction by a factor of roughly 1.5 in the iteration
count in some cases, with very little extra computational effort. It has no effect
if there is no clover term, since then the diagonal blocks are all multiples of the
identity.

59

4 Coarsest level improvements

4.1.0.2 Polynomial preconditioner

Right polynomial preconditioning for the system Dcx = b amounts to fixing a
polynomial q such that q(Dc) is an approximation to D−1c and then solving

Dcq(Dc)y = b

for y using GMRES, transforming back after convergence via the back transfor-
mation xk = q(Dc)yk. This implies that we have

xk ∈ x0 +Kk(Dcq(Dc), r0),

and xk is such that the residual rk = b − Dcxk is minimized over the space
x0 +Kk(Dcq(Dc), r0). If q has degree µ− 1, we invest kµ matrix-vector multipli-
cations to build the orthonormal basis of Kk(Dcq(Dc), r0), a space of dimension
k, in the Arnoldi process. With the same effort in matrix-vector multiplications,
we can as well build the kµ-dimensional subspace Kµk(Dc, r0) which contains
Kk(Dcq(Dc), r0). This shows that for the same amount of matrix-vector multi-
plications, the residual of the k-th GMRES iterate of the polynomially precon-
ditioned system can never be smaller than that of the µk-th iterate of standard
GMRES. In other words, polynomial preconditioning reduces the iteration count
while possibly increasing the total number of matrix-vector products. Polyno-
mial preconditioning can nevertheless be attractive for two reasons: The first is
that the above trade-off can be reversed in the presence of restarts. Standard
GMRES is slowed down due to restarts; so if the polynomial preconditioner is
good enough to allow to perform preconditioned GMRES without restarts, we
might end up with less matrix-vector multiplications. The second is that costs
other than the matrix-vector products may become dominant. At iteration k, k
inner products and k vector updates are performed in the Arnoldi process. In a
parallel computing framework, these inner products, which require global com-
munication, may become dominant for already quite small values of k, while very
often matrix-vector products exhibit better potential for parallelization and dis-
play much more promising scalability profiles compared to inner products. This
even holds if we use the less stable standard Gram-Schmidt orthogonalization
within Arnoldi which allows to fuse all k inner products into one global reduction
operation as explained after alg. 4.1.

We give an indicative example: assume that q has degree 3 and that we need
100 iterations with polynomially preconditioned GMRES. This amounts to 400
matrix-vector multiplications and 100 global reduction operations (for fused inner
products). Assume further that with standard GMRES we need 200 iterations,
i.e. 200 matrix vector multiplications and 200 global reductions. So the additional
matrix-vector multiplications in polynomial preconditioning are more than com-

60

4.1 Krylov based improvements

pensated for by savings in global reductions as soon as those take more time than
two matrix-vector multiplications. Furthermore, the polynomially preconditioned
method also saves on the vector operations related to the orthogonalization.

Several types of polynomial preconditioners have been suggested in the literature,
based on Neumann series, Chebyshev polynomials or least squares polynomials
[113], e.g. These approaches typically rely on detailed a priori information on the
spectrum of the matrix and its boundaries. Recently, [31, 32], based on an idea
from [33], showed that polynomial preconditioning with a polynomial obtained
from a preliminary GMRES iteration can yield tremendous gains in efficiency
when computing eigenpairs. We will use their way of adaptively constructing the
polynomial for the preconditioner as we explain now.

In standard GMRES, an iterate xµ ∈ x0 + Kµ(Dc, r0) can be expressed as x0 +
qµ−1(Dc)r0 with qµ−1 a polynomial of degree µ − 1, and thus rµ = b − Dcxµ =
(I−Dcqµ−1(Dc))r0 =: pµ(Dc)r0. Since rµ is made as small as possible in GMRES,
we can consider the polynomial qµ−1 to yield a good approximation qµ−1(Dc) to
D−1c . Strictly speaking, this interpretation only holds as far as the action on the
vector r0 is concerned, but we might expect this to hold for the action on just
any vector if r0 is not too special like a vector with random components, e.g.

As is explained in [32, 114], the polynomial qµ−1 can be constructed from the
harmonic Ritz values of Dc with respect to the Krylov subspaceKk(Dc, r0). These
are the eigenvalues θi of the matrix

(Hµ + h2µ+1,µfe
T
µ), (4.4)

with Hµ and hµ+1,µ from the Arnoldi process, alg. 4.1, and f = H−Hµ eµ [115].
The polynomial pµ(t) = 1− tqµ−1(t) with rµ = pµ(Dc)r0 is then given as

pµ(t) =

µ∏
i=1

(
1− t

θi

)
, (4.5)

and since qµ−1 interpolates the values 1
θi

at the nodes θi, eq. 4.5 gives, after
some algebraic manipulation, a representation for qµ−1 similar to the Newton
interpolation polynomial formula as

qµ−1(t) =

µ∑
i=1

1

θi

i−1∏
j=1

(
1− t

θj

)
. (4.6)

Here, by convention, the empty product is 1.

With this representation we can compute qk−1(Dc)v using µ − 1 matrix-vector
products by summing over accumulations of multiplications with I − 1

θj
Dc.

61

4 Coarsest level improvements

Leja ordering

The representation in eq. 4.6 depends on the numbering which we choose for the
harmonic Ritz values θi while, of course, mathematically qµ is independent of
the ordering. In numerical computation, however, the ordering matters due to
different sensitivities to round-off errors. If Dc is not very well conditioned, the
range of 1/θi may cover several orders of magnitudes so that it is important not
to have all the big or all the small values appear in succession [33]. An ordering
choice that works well for a wide variety of cases is the Leja ordering [116]. An
algorithm to Leja order harmonic Ritz values is given as alg. 4.2.

Algorithm 4.2: Leja ordering of harmonic Ritz values
Data: Set K = {θk}µk=1 of harmonic Ritz values.
Result: Set {θLk }

µ
k=1 Leja ordered harmonic Ritz values.

Choose θL0 ∈ K such that |θL0 | = max{|θ| : θ ∈ K}1

for k = 2, · · · , µ2

Remove θLk−1 from K3

Determine θLk ∈ K, such that;4

k−1∏
j=1

|θLk − θLj | = max
θ∈K

k−1∏
j=1

|θ − θLj |. (4.7)

Alg. 4.3 summarizes the process of computing and applying the preconditioning
polynomial q of degree µ− 1.

Algorithm 4.3: Polynomialy-Preconditioned GMRES(m)

Construct the decomposition DcVµ = Vµ+1H̄µ by running µ steps of the1

Arnoldi process using a random initial vector v0;
Compute the harmonic Ritz values θk of Dc as the eigenvalues of2

Hµ + h2µ+1,µfe
T
µ ;

Leja order the obtained harmonic Ritz values θk;3

Run GMRES(m) using the right preconditioner4

q(Dc) =
∑µ

i=1
1
θi

(
I − 1

θ1
Dc

)
· · ·
(
I − 1

θi−1
Dc

)
.

For the new implementations in DD-αAMG involved in this work we merge the
block diagonal (left) preconditioner with polynomial preconditioning. This means

62

4.1 Krylov based improvements

that the preconditioning polynomial q is constructed using B−1Dc rather than Dc

so that the overall preconditioned system takes the form (see also eq. 4.3)

(B−1Dc)q(B
−1Dc)y = B−1b,

x = q(B−1Dc)y.
(4.8)

4.1.0.3 Deflation with GCRO-DR

A typical algebraic multigrid solve will take 10-30 iterations. Depending on the
cycling strategy (see sect. 3.3), each iteration will require one or more approximate
solves on the coarsest level. In DD-αAMG as in other multigrid methods for
lattice QCD, the cycling strategy is to use K-cycles [109]. This means that with
just three levels we will have in the order of ten coarsest level solves per iteration,
and this number increases as the number of levels increases. Even when using the
preconditioning techniques presented so far, it usually happens that we need to
perform several cycles of restarted GMRES to achieve the (relatively low) target
accuracy required for these solves.

This is why acceleration through deflation appears as an attractive approach in
our situation. The idea is to use information gathered in one cycle of restarted
GMRES to obtain increasingly better approximations of small eigenmodes of Dc

and to use those to augment the Krylov subspace for the next cycle. Then even
better approximations are computed and used in the follwoing cycle or for the
next system solve, etc. Effectively, this means that small eigenmodes are (approx-
imately) deflated from the residuals, thus resulting in substantial acceleration of
convergence.

Many deflation and augmentation techniques have been developed in the last 20
years [117, 118], and some of them have already been used in lattice QCD, typi-
cally eigCG [119] in the Hermitian case and GMRES-DR [120] for non-Hermitian
problems. For Hermitian matrices, eigCG mimics the approximation of eigenpairs
as done in Lanczos-based eigensolvers with a restart on the eigensolving part of
the algorithm but in principle no restarts of CG itself. GMRES-DR, on the other
hand, is used for non-Hermitian problems and, similarly to eigCG, it deflates ap-
proximations of low modes. When a sequence of linear systems is to be solved,
eigCG can be employed in the Hermitian case but GMRES-DR in principle is
not applicable in that case. Here, we propose to use GCRO-DR, the generalized
conjugate residual method with inner orthogonalization and deflated restarts of
[30].

GCRO-DR combines elements of GMRES-DR [120] and GCRO [121]: it takes
deflation from GMRES-DR, and the inner/outer scheme with a minimization over
arbitrary spaces from GCRO. It is particularly well suited to our situation where

63

4 Coarsest level improvements

we not only have to perform restarts but also repeatedly solve linear systems with
the same matrix and different right hand sides.

A high level description of one cycle of GCRO-DR with a subspace dimension of
m is as follows26:

1. Extract k < m approximations to small eigenmodes of Dc from the current
cycle.

2. Determine a basis u1,uk for the space spanned by these approximate
eigenmodes, gathered as columns of Uk = [u1| · · · |uk] such that Ck = DcUk
has orthonormal columns c1, . . . , ck.

3. With the current residual, perform m−k steps of the Arnoldi process where
you not only orthogonalize against the newly computed Arnoldi vectors, but
also against c1, . . . , ck. This yields the relation (by imposing Ck = DcUk as
well)

Dc[Uk Vm−k] = [Ck Vm−k+1]Gm (4.9)

where

Gm =

[
Ik Bk

0 H̄m−k

]
with Bk = CH

k DcVm−k (4.10)

4. Obtain the new iterate by requiring the norm of its residual to be minimal
over the space spanned by the columns of Uk and Vm−k. This amounts to
solving a least squares problem with Gm ∈ C(m+1)×m.

The very first cycle of GCRO-DR, where we do not yet have approximate eigen-
modes available, is just a standard GMRES cycle of length m. In all subsequent
cycles, including those for solving systems with further right hand sides, the first
step above typically computes the small eigenmodes as the small harmonic Ritz
vectors of the matrix Gm of the previous cycle. We have the option to stop
updating the small approximate eigenmodes once they are sufficiently accurate.

A source of extra work in GCRO-DR compared to GMRES is the construction
of the recycling vectors in U and C from the harmonic Ritz vectors. By the
imposition of Ck = DcUk and via a QR decomposition of a very small matrix
(which is done redundantly in each process without the need for communications),
Ck can be efficiently updated from Uk, so this extra work is relatively small. If the
matrix changes from one linear system to the next, the application DcUk is needed
which implies more extra work, but this is not the case in our solves. Another
source of extra work is the deflation of Ck in each Arnoldi iteration, which is again

26For the complete step-by-step GCRO-DR algorithm, see the appendix in [30].

64

4.1 Krylov based improvements

relatively cheap as the dot products due to those deflations can be merged with
the already existing dot products from Arnoldi into a single global reduction.

4.1.0.4 Communication hiding: pipelining

An additional way to reduce communication time in the coarsest-level solves,
complementary to what we have discussed so far, is communication hiding, i.e. by
overlapping global communication phases with local computations. In this direc-
tion, [35] introduces a pipelined version of the GMRES algorithm which loosens
the data dependency between the application of the matrix vector products and
the dot products within the Arnoldi process. This is achieved by lagging the gen-
eration of the data obtained from the computation of the matrix-vector products
from its actual use in the classical Gram-Schmidt process, so that the proposal
vector that gets orthogonalized in a given iteration is precomputed one or more
iterations in the past. The number of “lagging” iterations is called the latency of
the pipelining.

The method (with latency 1) requires the introduction of an extra set of vectors
vai , devised to store the matrix-vector products which are computed in advance.
These “precomputed vectors” are related to the orthonormal vectors vi from the
Arnoldi process as va0 = v0 and vaj = (A − σjI)vj for j ≥ 1. Here, σj ∈ C
can be chosen arbitrarily, and judicious choices contribute to maintain numerical
stability. In our particular implementations we have chosen the σj coefficients
to be zero since stability never was problematic due to the low relative tolerance
required for the coarsest-level solves.

While this approach allows to hide global communications in Gram-Schmidt or-
thogonalizations behind local vector update operations, it does not so for the
global communication required when normalizing the thus orthogonalized vector
wj to obtain the final orthonormal vector vj+1.

In order to address this concern, it was observed in [35] that this communication
can be avoided if instead we compute ∥Avj∥22 and then use

h2j+1,j = ∥wj∥22 = ∥Avj∥22 −
j∑
i=1

|hij|2. (4.11)

The computation of ∥Avj∥22 can now be done within the same global reduction
communication used for the inner products yielding the coefficients hi,j in the
classical Gram-Schmidt orthogonalization.

It should be mentioned that a possible complication of this approach is that, due
to numerical loss of orthogonality, we might get that ∥Avj∥22 −

∑j
i=1 |hi,j|2 is not

65

4 Coarsest level improvements

positive, which results in a breakdown. Even when there is no such breakdown, the
above re-arrangement of terms tends to make the method less stable numerically.

Algorithm 4.4: Latency 1 pipelined preconditioned GMRES

v0 ← r0/∥r0∥21

va0 ← DcMv0, where M is the polynomial preconditioner qµ−1(B
−1Dc) (see2

sect. 4.1.0.2), with B−1 the block diagonal preconditioner from sect. 4.1.0.1
for i = 1, . . . ,m3

wi−1 ← DcMvai−14

for j = 0, . . . , i− 15

hj,i−1 ← (vj, v
a
i−1)6

t← ∥vai−1∥22 −
∑i−1

k=0 h
2
k,i−17

if t < 0 then breakdown8

hi,i−1 ←
√
t9

vi ←
(
vai−1 −

∑i−1
k=0 vkhk,i−1

)
/hi,i−110

vai ←
(
wi−1 −

∑i−1
k=0 v

a
khk,i−1

)
/hi,i−111

y ← argmin
Hm+1,my − ∥r0∥2e0


2

12

x← x0 +MVmy13

Alg. 4.4 summarizes the method. Mathematically, it is equivalent to standard
GMRES. As compared to the latter, pipelined GMRES requires more memory to
store the extra set of vectors vai , and it requires more local computation in the form
of additional AXPY operations. The advantage is that the global communications
required to obtain the hj,i−1 coefficients in the outer loop i and ∥vai−1∥2 can be
performed in parallel to the matrix-vector multiplication needed to compute wi−1.

In order to extend the presented approach to GCRO-DR, which includes recycling
and deflation, a new set of pre-computed vectors has to be introduced, specially
aimed to store the matrix-vector plus preconditioner application on the recycling
vectors. In alg. 4.5 we represent them by vcj . Fortunately, these vectors need to be
re-computed only when Uk (and by association Ck) changes, which we typically
do only for the first few linear systems in the sequence Dcxi = bi.

The whole coarsest-level solver

We have combined the block diagonal preconditioning with D−1ee , adaptive polyno-
mial preconditioning, deflation and recycling via GCRO-DR, and pipelining into
a single implementation for coarsest-level solves within DD-αAMG. The code was
implemented in a modularized way such that the user can enable any combination

66

4.2 Numerical tests: Krylov based

Algorithm 4.5: Latency 1 pipelined preconditioned GCRO-DR

r = r0 − CkCH
k r01

v0 ← r/∥r∥2

for j = 0, · · · , k do : vcj = DcMcj end, where M is the polynomial3

preconditioner qµ−1(B
−1Dc) (see sect. 4.1.0.2), with B−1 the block

diagonal preconditioner from sect. 4.1.0.1
va0 ← DcMv04

for i = 0, · · · ,m5

wi−1 ← DcMvai−16

for j = 0, · · · , k do : bj,i−1 = (cj, v
a
i−1) end7

for j = 0, · · · , i− 1 do : hj,i−1 = (vj, v
a
i−1) end8

t← ∥vai−1∥22 −
∑i−1

k=0 h
2
k,i−1 −

∑i−1
k=0 b

2
k,i−19

if t < 0 then Breakdown10

hi,i−1 ←
√
t11

vi ←
(
vai−1 −

∑i−1
k=0 vkhk,i−1 −

∑i−1
k=0 ckbk,i−1

)
/hi,i−112

vai ←
(
wi−1 −

∑i−1
k=0 v

a
khk,i−1 −

∑i−1
k=0 v

c
kbk,i−1

)
/hi,i−113

y ← argmin
Gm+1,my − ∥r∥2ek+1

, with r = r0 − CkCH
k r014

x← x0 + Ẑy, with Ẑ = [U MVm−k]15

of these four methods already during the compilation of the program. The imple-
mentation is ready to use and available at this GitHub repository. At runtime,
the execution of the polynomial preconditioner and GCRO-DR is dynamic in the
following sense: if the user enables the polynomial preconditioner at compile time
with a degree of e.g. d = 10, but the number of iterations at the coarsest level
is quite low e.g. 5, then we do not force the construction of the polynomial and
the polynomial preconditioner is kept off. The block diagonal preconditioner and
pipelining were not implemented like this, and if enabled at compile time they
are always used during execution.

4.2 Numerical tests: Krylov based

All (Krylov-based) computations were performed on the JUWELS supercomputer
from the Jülich Supercomputing Centre. In most of our tests on JUWELS, one
process per node and 48 OpenMP threads27 per process were used in the JUWELS

27The number of threads per MPI process can be varied in some cases and for example a value
of 20 might be better in certain situations where the number of nodes is extremely large and
the work per thread is very small such that the thread barriers start becoming significant.
We take this into consideration in sect. 4.2.1.2.

67

https://github.com/JesusEV/DDalphaAMG_ci

4 Coarsest level improvements

cluster module. In Section 4.2.1 we present results for the clover-improved Wilson
discretization using configuration D450r010n1 from the D450 ensemble of the CLS
collaboration28 [122]. Section 4.2.2 deals with twisted mass fermions where we use
configuration conf.1000 of the cB211.072.64 ensemble of the Extended Twisted
Mass Collaboration29 [123]. In both cases the lattice is of size 128× 643.

4.2.1 The clover-improved Wilson operator

With the inclusion of new algorithms at the coarsest level, new parameters for
these algorithms need to be tuned, which we do in sect. 4.2.1.1. Once this is
done, we test how the whole solver is affected by the numerical conditioning of
the discretized operator by varying the mass parameter. Moreover, we perform
some scaling tests of the whole solver.

The block diagonal preconditioner of sect. 4.1.0.1 is always used in all experiments
here. It comes at very little extra computational cost, but can give a reduction of
up to about 1.5 in the iteration count at the coarsest level, as can be seen from
tab. 4.1. Furthermore, numerical tests in MATLAB indicate that there is not
much difference in the reduction in the iteration count due to the use of the BDP
when using the block diagonal of Dc instead of Dee, hence we continue using Dee

here.

m0 without BDP with BDP

-0.3515 21 15
-0.35371847789 35 26

-0.354 40 28
-0.3545 52 37

Table 4.1: Effect of the block diagonal preconditioner (BDP) on coarsest-level
solves in DD-αAMG, where we have the BDP as the only preconditioner of
GMRES. The second and third columns are average number of iterations at the
coarsest level in the solve phase. We have used configuration D450r010n1 here
with different values of m0.

4.2.1.1 Tuning parameters

The set of default parameters in our solves can be found in tab. 4.2 (see [25, 45]
for more on these parameters).

28Provided to us by Tomasz Korzec and Francesco Knechtli, both part of the physics department
at Bergische Universität Wuppertal.

29Provided to us by Jacob Finkenrath, who is part of CaSToRC at the Cyprus Institute.

68

4.2 Numerical tests: Krylov based

ℓ = 1 restart length of FGMRES 10
relative residual tolerance 10−9

number of test vectors 24
size of lattice-blocks for aggregates 44

pre-smoothing steps 0
post-smoothing steps 3

Minimal Residual iterations 4
boostrap setup iterations 4

ℓ = 2 restart length of FGMRES 5
maximal restarts of FGMRES 2
relative residual tolerance 10−1

number of test vectors 32
size of lattice-blocks for aggregates 24

pre-smoothing steps 0
post-smoothing steps 2

Minimal Residual iterations 4
boostrap setup iterations 3

ℓ = 3 restart length of GMRES 60
maximal restarts of FGMRES 20
relative residual tolerance 10−1

Table 4.2: Base parameters in our DD-αAMG solves.

In addition to this set of parameters, there are two more that need to be tuned in
order to minimize the total execution time of the solves. These parameters are:

• k: number of recycling vectors i.e. dimension of the recycling subspace in
GCRO-DR.

• d: degree of the polynomial employed as polynomial preconditioner.

• u: the number of times we update the recycling subspace information rep-
resented by U and C. After u updates, we continue to use the last U and
C in all further restarts and all further solves with new right hand sides.

The performance dependence on u shows initial gains for smaller values of u with
only marginal progress for already only moderately large values. This is why we
fixed u = 10 in all our experiments.

With a 128 × 643 lattice and with u = 10 fixed, fig. 4.1 displays the execution
time for the solve phase in DD-αAMG for a cartesian product of (k, d) pairs. The
choice k = 0, d = 0 (left upper) corresponds to no polynomial perconditioing and
no deflation. We see that the choice d = 4, k = 25 gives more than a factor of 18
improvement over this case, and that choices for k, d in the neighborhood of this
optimal pair affect the execution time only marginally. As a rule, smaller values of

69

4 Coarsest level improvements

Figure 4.1: Tuning of the parameters k and d . The color of each square in
the heatmap from the left represents the total execution time of the whole DD-
αAMG solver, while the right corresponds to the time spent at the coarsest level.
The configuration was for a lattice of size 128×643; we used 32 nodes with 48
OpenMP threads, each. All these computations were done for m0 = −0.355937
(i.e. the most ill-conditioned case in fig. 4.2). The darkest boxes in the heatmap
on the left all represent times larger than 200 seconds for d = 0 and around
92 seconds for (k, d) = (0, 4). The numbers in the boxes on the right indicate
the average number of iterations at the coarsest level during the whole multigrid
solve.

k should be preferred as a low value of k reduces the risk of inducing instabilities
(due to having deflation and Arnoldi dot products merged, see sect. 4.1.0.3). From
fig. 4.1 we see that d = 4 and d = 8 are equally good in the particular tests that
we have run.

4.2.1.2 Pipelining

Nproc Nthr with pipel. without pipel.

128 20 5.02 4.56
256 20 3.18 2.98
512 10 2.7 2.6
1024 10 2.18 2.0

Table 4.3: Effect of pipelining on the whole DD-αAMG solver. We have used
configuration D450r010n1 here with m0 = −0.355937.

Table 4.3 gives a comparison of the total execution time for one DD-αAMG-

70

4.2 Numerical tests: Krylov based

solve without and with pipelining in the preconditioned GCRO-DR solves on the
coarsest level. As we see, pipelining always increases the execution time by up to
10%, even for larger number of processors.

Nproc Nthr pipel. mvm mvm-w. glob-reds

256 20 OFF 0.638 0.127 0.235
512 10 OFF 0.687 0.210 0.259
1024 10 OFF 0.606 0.144 0.33
256 20 ON 0.964 0.331 0.0558
512 10 ON 0.901 0.294 0.0614
1024 10 ON 1.050 0.468 0.0896

Table 4.4: Execution times for parts of the coarse grid solves with and without
pipelining. Times in last three columns are in seconds.

To understand this behavior better, we timed the relevant parts of the compu-
tation and communication on the coarsest level for our MPI implementation on
JUWELS. The results are reported in Table 4.4. Here, for different numbers
Nproc of processors and Nth of threads, we report three different timings: mvm
refers to the time spent in one matrix-vector multiplication (arithmetic plus com-
munications), mvm-w is the time processors spent in an MPI-wait for the com-
munication related to the matrix-vector multiplication to be completed. Note
that DD-αAMG uses a technique from [124] that aims to overlap computation
and communication as much as possible for the nearest neighbor communication
arising in the matrix-vector multiplication. Finally, glob-reds reports the time
processors wait for the global reductions to be completed. We see that these wait
times are indeed almost entirely suppressed in the pipelined version. However,
we also see that we do not succeed to hide the communication for the global re-
ductions behind the matrix-vector multiplication, since the time of the latter is
increased when pipelining is turned on. We conclude that on JUWELS and with
the MPI implementation in use, the communication for global reductions and for
the matrix-vector multiplication compete for the same network resources, thus
counteracting the intended hiding of communication. We anticipate that pipelin-
ing will pay off in situations where the matrix-vector multiplications present in
the polynomial preconditioner can be done in a non-synchronized manner, so that
the mvm-wait times are almost reduced to zero. We hypothesize that this can be
achieved in a manner similar to what is called communication avoiding GMRES
[125], whereby one exchanges vector components which belong to lattice sites up
to a distance k in one go and then can evaluate polynomials up to degree k in
A without any further communication. Implementing this approach is a major
endeavor, though, and out of scope for this thesis.

71

4 Coarsest level improvements

m0 old new

−0.355770 19 19
−0.355815 23 19
−0.355850 26 20
−0.355895 29 20
−0.355937 30 20

Table 4.5: Number of iterations of the outermost FGMRES in DD-αAMG as m0

moves down to more ill-conditioned cases.

4.2.1.3 Shifting m0

With the number of processes fixed at 128, we now shift the mass parameter
m0 to see how much the new coarse grid solver improves upon the old when
conditioning of the Wilson-Dirac matrix changes. Results are given in fig. 4.2.
Pipelining is turned off for these tests and we put k = 25, d = 4 throughout.
Our experiments show that the improvements due to the new coarse grid solver
are close to marginal for the better conditioned matrices, but that they become
very substantial in the most ill-conditioned cases. Actually, the times for the new
solver are almost constant over the whole range for m0, whereas the times for the
old one increase drastically for the most ill-conditioned systems. The left dotted
vertical line, located very close to -0.356, represents the location of mcrit i.e. the
value of m0 for which the Dirac operator becomes singular.

Old
New

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

20

40

60

80

100

m0
−0,356 −0,355 −0,354 −0,353 −0,352 −0,351

Old
New

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

20

40

60

80

100

m0
−0,3562 −0,356 −0,3558 −0,3556

Figure 4.2: Total execution time of the solve phase in DD-αAMG as the system
becomes more ill-conditioned (i.e. as m0 becomes more negative). The vertical
dashed line closest to -0.354 represents the value with which the Markov chain
was generated and the vertical dashed line closest to -0.356 represents mcrit.
The right plot zooms into the region where the old version of the solver does not
perform well.

72

4.2 Numerical tests: Krylov based

In Table 4.5 we summarily report an interesting observation regarding the setup
of DD-αAMG. According to the bootstrap principle, the setup performs iterations
in which the multigrid hierarchy is improved from one step to the next. In ill-
conditioned situations, the solver on the coarsest level might stop at the prescribed
maximum of possible iterations rather than because it has achieved the required
accuracy. This affects the quality of the resulting final operator hierarchy. The
table shows that for a given comparable effort for the setup, the one that uses the
improved coarse grid solvers obtains a better overall method, since the coarsest
systems are solved more accurately.

4.2.1.4 Strong scaling

Figure 4.3 reports a strong scaling test for both the old and the new coarse grid
solves within DD-αAMG. We see that the new version improves scalability quite
substantially, due to the better scalability of the coarse grid solve. This is to be
attributed to the fact that the new coarse grid solver reduces the fraction of work
spent in inner products and thus global reductions which start to dominate for
large numbers of processors. Still, we do not see perfect scaling, one reason being
that after some point the wait times occurring in the matrix-vector multiplications
become perceptible.

We have mentioned before the need to tune the number of OpenMP threads when
going to a very large number of processes. Indeed, as the work per OpenMP
thread becomes quite small, then thread barriers start becoming problematic
from a computational performance point of view. The results presented in fig. 4.3
already include this tuning: for 32 and 64 process we used 48 OpenMP threads
per process, for 128 and 256 we switched to 20 threads, and finally for 512 and
1024 we rather used 10 threads. Pipelining has been kept off for these scaling
tests.

We ran another strong scaling test with m0 = −0.35371847789 i.e. the value
of the mass parameter originally used for the generation of the ensemble. The
results of this are shown in fig. 4.4. The coarsest-level improvements did not bring
visible gains to the whole solver execution time, which is due to having a quite
well-conditioned coarsest level. We also note that the new and old versions of the
solver match in this case and for any other relatively well-conditioned value m0,
which gives consistency to the new implementation with respect to the old one.

4.2.2 The twisted mass operator

We now turn to the twisted mass discretization, eq. 2.13, where the parameter
µ “shields” the spectrum away from 0 in the sense that the smallest singular

73

4 Coarsest level improvements

Old
New

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

1

10

100

1000

number	of	processes
100 1000

Figure 4.3: Strong scaling tests on Wilson fermions for the new coarsest-level
additions. The solves were applied over a 128×643 lattice. Old means the previ-
ous version of DD-αAMG without the coarsest-level improvements introduced in
this chapter, and the vertical axis represents the whole solve time. The dashed
lines indicate how both cases would behave in case of perfect scaling. All these
computations were done for m0 = −0.355937 (i.e. the most ill-conditioned case
in fig. 4.2).

value of DTM is
√
λ2sm + µ2 with λsm the smallest eigenvalue in absolute value of

the symmetrized clover-improved Wilson Dirac operator D. This is, in general,
algorithmically advantageous, but eigenvalues now have the tendency to cluster
around the smallest ones [68].

There is an extension of DD-αAMG that operates on twisted mass fermions [28].
In that version, the twisted mass parameter µ remains, in principle, propagated
without changes from one level to the next. On the coarsest level, the clustering
phenomenon of small eigenvalues is particulalry pronounced, resulting in large
iteration numbers of the solver at the coarsest level. A way to alleviate this is
to use, instead of µ, a multiple µc = δ · µ with a factor δ > 1.0 on the coarsest
level. As was shown in [27], this can decrease the required number of iterations
substantially.

We used configuration conf.1000 of the cB211.072.64 ensemble of the Extended
Twisted Mass Collaboration [123]. The lattice size is 128× 643 and µ = 0.00072.
Different values of µc lead to a different spectrum at the coarsest level, and there-
fore for each different value of µc a new tuning of the new coarsest-level parameters
u, k and d has to be performed. We tuned parameters in a similar way as we de-
scribed before for Wilson fermions. For δ = 8.0, δ = 16.0 and δ = 20.0, u = 5

74

4.2 Numerical tests: Krylov based

Old
New

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

1

10

number	of	processes
100 1000

Figure 4.4: Strong scaling tests on Wilson fermions for the new coarsest-level
additions. The solves were applied over a 128×643 lattice. Old means the previ-
ous version of DD-αAMG without the coarsest-level improvements discussed in
this chapter, and the vertical axis represents the whole solve time. The dashed
lines indicate how both cases would behave in case of perfect scaling. All these
computations were done for m0 = −0.35371847789.

was found to be sufficient, with k = 35 and d = 2 being optimal values. Also,
we have used, in the twisted mass case in this section, the same DD-αAMG base
parameters used in the Wilson case (see tab. 4.2).

We ran strong scaling tests30 with the three different values of µc stated above.
The results are shown in fig. 4.5. The left plot, which is for µ = 8.0, shows
the impact of the coarsest-level improvements on the overall performance of the
solver. For example, the execution time for the coarsest level and for the whole
solve are reduced by a factor of around 3 and 2, respectively, when using 512
nodes. Moreover, the scalability of the whole solver improves, as the coarsest
level time now represents a smaller portion of the whole solver time, and the
coarsest level itself scales better in part due to the polynomial preconditioner.

In the right plot of fig. 5.5 we compare the scaling of the whole solver for different
values of µc. For the old coarsest-level solver, the larger µc, the better the scaling
of the whole solver, which agrees with the findings in [27, 28]. This is because
we need less iterations for one coarsest level solve when µc is increased, while at
the same time the total number of iterations for the whole multigrid method is
only marginally affected by the size of µc. With the new improvements, gains are

30We varied the number of OpenMP threads with the number of processes in the same way
(and with the same values) as in the Wilson case.

75

4 Coarsest level improvements

(a)

total	(old)
total	(new)
coarsest(old)
coarsest	(new)

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

10

2

5

20

number	of	processes
10050 200 500

(b)

mu=20.0	(old)
mu=20.0	(new)
mu=16.0	(old)
mu=16.0	(new)
mu=8.0	(old)
mu=8.0	(new)

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

10

20

number	of	processes
10050 200 500

Figure 4.5: Strong scaling tests on twisted mass fermions for the new coarsest-
level additions. Left : µc = 8.0, comparing the previous version of DD-αAMG
(old) with the one including coarsest-level improvements (new), and total rep-
resenting the whole solve time. Right : strong scaling plus running over different
values of µc, with only total (and not coarsest) times plotted.

in the order of 10%-40%, and they are more pronounced for larger numbers of
processors and for smaller values of µc. With the improvements the dependence
on µc is reversed: We need less time when µc becomes smaller. We explain this
by an increase in the density of small modes of the coarsest-level operator, which
renders GCRO-DR less effective, as it would require large values of d to resolve
the many low modes of the operator.

This leads to the idea of exploring the coarsest-level improvements for even smaller
values of µc. We did so for δ = 1. In this case, the optimal values for the improved
coarsest level solver were u = 5, d = 10 and k = 80. The improvements over the
old coarsest level solver, which is plain restarted GMRES with a restart length
of 100, are tremendous: The old solver needs on the order of 100,000 iterations
to reduce the norm of the residual by a factor of 10−1, while including the new
features brings this number down to the order of 100. However, when we compare
the fully improved coarsest level with δ = 1 to plain restarted GMRES with
δ = 8, we perform only slightly better in the sense of overall execution time.
Although δ = 1 is not the typical value to use in conjunction with plain restarted
GMRES, we have accomplished bringing δ back down to 1.0, removing thereafter
this artificially introduced parameter. Furthermore, we have gained up to a factor
of 2 in speedup by increasing δ and keeping our coarsest-level improvements on.

4.3 LU based improvements

The relatively low success of our improvements presented in sects. 4.1 and 4.2
(based on Krylov subspace methods) in dealing with the very hard coarsest-level

76

4.3 LU based improvements

solves in the twisted mass discretization31, has motivated us to use an alterna-
tive coarsest-level solver rather based on direct methods via the MUltifrontal
Massively Parallel direct Solver (MUMPS32) package, which we discuss in the
subsequent section.

This section is motivated by [126] and largely based on the master thesis project
of Henning Leemhuis33.

4.3.1 Direct solves via MUMPS

MUMPS [36, 37] is a package for solving sparse linear systems via approximate
direct solves based on Gaussian elimination. It can deal in particular with non-
symmetric complex matrices in single precision, which matches our systems at
the coarsest level of our multigrid hierarchy. Just as in Gaussian elimination, the
approximate inverse is pre-computed once in a setup phase, and then applied as
a matrix-vector multiplication every time a coarsest-level solve is needed. More
specifically, MUMPS does this via three steps:

• Analysis : this consists first of a preprocessing step which takes care of
improving the quality of the linear system (through e.g. pre-defining an
initial pivoting), and second the creation of an assembly tree which defines
dependencies between the unknowns of the linear system and finds dense
subproblems. In the former step, the sparsity pattern of the matrix of
the system of equations (in our case Dc

34) is used to find the best pivots
to maintain sparsity of the factors L and U , and in the latter step data
structure for the factorize and solve phases are created.

• Factorization: after the assembly tree is built and the pivot and data struc-
tures created in the analysis phase, the actual numerical factorization is
computed in this phase.

• Solve: forward elimination and backward substitution are used to approxi-
mate the solution.

MUMPS allows for a hybrid MPI+OpenMP execution, which is in accordance
with the parallel programming model of DD-αAMG. This will be useful in future
numerical tests which fall beyond the reach of this thesis.

A clear disadvantage of direct methods such as Gaussian elimination is that there
is no mechanism for tuning e.g. the relative residual tolerance in our solves, which

31We have been able to bring the µc factor down to 1.0 but at no further gain in performance.
32http://MUMPS-solver.org/
33Who is now a new member of our group as a PhD researcher.
34We will use Dc from hereon to refer to the matrix to be factorized by MUMPS.

77

http://MUMPS-solver.org/

4 Coarsest level improvements

might allow us to save unnecessary extra computational work. MUMPS offers
such a mechanism, via a block low-rank (BLR) approximation. When using the
BLR method, MUMPS partitions the matrix Dc in p × p blocks and maps it to
an approximation D̃c:

D̃c =

⎛⎜⎜⎜⎜⎝
D̃c,1,1 D̃c,1,2 . . . D̃c,1,p

D̃c,2,1
. . .

...
...

D̃c,p,1 . . . D̃c,p,p

⎞⎟⎟⎟⎟⎠ (4.12)

A low-rank approximation can be applied to each off-diagonal block in the form
D̃c,i,j = Xi,jY

H
i,j , with this compression such that ∥D̃c − Dc∥ < ϵ in some norm,

and the value of ϵ allows us to approximately tune the desired tolerance in our
solves with Dc.

Since the matrix D̃c consists of several local independent compression steps, the
results of a matrix multiplication D̃c can deviate from the result of Dcx by more
than ϵ. Any global relative residual norm ∥Dcx−D̃cx∥2/∥Dcx∥2 can still be larger
than ϵ.

4.4 Numerical tests: LU based

As introduced in sect. 4.1, the coarsest level in DD-αAMG comes with an odd-even
factorization. As implemented in DD-αAMG, all matrix-vector multiplications
are highly optimized and the application of any matrix is encoded in a function
that receives a vector and returns the result of the matrix multiplication, but
the matrix itself is never stored explicitly. In order to use MUMPS, we need
to store the coarsest-level matrix Dc in an explicit sparse format e.g. CRS to
provide MUMPS with the actual matrix. To do this, we first turned off odd-even
preconditioning at the coarsest level and then stored Dc by means of three arrays
(rows, columns, values) representing the matrix in sparse format. This array is
accepted by MUMPS.

We ran our MUMPS comparison tests35 on a single node Intel(R) Xeon(R) Plat-
inum 8180 CPU @ 2.50GHz with 56 cores and 1.5 TB or RAM. We ran with 32
processes and 1 OpenMP thread per process. We tested again with the 128× 643

twisted mass matrix from sect. 4.2.2. We found that the optimal number of levels
when using restarted GMRES as the coarsest-level solver is three, while when

35These tests were performed in collaborative work with Henning Leemhuis as part of his master
thesis project.

78

4.4 Numerical tests: LU based

using MUMPS it is better to use four36. Tab. 4.6 lists the parameters used when
solving at the coarsest level with MUMPS i.e. with four levels, with the unlisted
ones having the same value as in tab. 4.2. When using three levels (i.e. plain
restarted GMRES), the DD-αAMG parameters are almost the same as in tab. 4.2,
except for the ones listed in tab. 4.6 for ℓ = 1 and ℓ = 2.

ℓ = 1 relative residual tolerance 10−10

boostrap setup iterations 5
post-smoothing steps 3

ℓ = 2 boostrap setup iterations 4
ℓ = 3 restart length of FGMRES 5

maximal restarts of FGMRES 2
relative residual tolerance 10−1

number of test vectors 32
size of lattice-blocks for aggregates 24

pre-smoothing steps 0
post-smoothing steps 3

Minimal Residual iterations 4
boostrap setup iterations 4

ℓ = 4 restart length of GMRES 60
maximal restarts of FGMRES 20
relative residual tolerance 10−1

Table 4.6: Base parameters in our DD-αAMG solves, with MUMPS.

The results of these tests are displayed in tab. 4.7, where the times are all in sec-
onds. The second column corresponds to plain restarted GMRES as the coarsest-
level solver, while in the third column we have used MUMPS as a preconditioner
to GMRES. The time tℓ is to be interpreted as the time seen from level ℓ, e.g.
t3 is the time spent at level three only, t2 the time spend in the combination of
levels two and three, and so on. The times when using MUMPS are an upper
bound in the sense that odd-even preconditioning has been turned off entirely37

when using MUMPS i.e. it is not even used in the blocks solves in SAP, which if
enabled would give us even lower execution times in column three.

36The main reasons to prefer having four levels over three (i.e. 164 versus 84 coarsest-level
lattices) when using MUMPS are, first, a substantial reduction in the volume of data com-
municated among processes when performing the approximate direct solves, and second a
large reduction in arithmetic work done in the factorisation phase of MUMPS.

37We have done so for simplicity, i.e. some extra coding is required to have odd-even precondi-
tioning in SAP but not at the coarsest level. This will be of course enabled in a later version
of our code.

79

4 Coarsest level improvements

tℓ Without MUMPS With MUMPS
(δ = 8.0) (δ = 1.0)

t0 2012.8 1347.9
t1 1515.7 920.3
t2 1236.5 450.0
t3 - 176.1

Table 4.7: Execution times for the comparison of MUMPS versus no MUMPS in
coarsest-level solves in a twisted mass gauge configuration with a lattice size of
128× 643. The times are in seconds.

Numerically, we see the iteration count of GMRES at the coarsest level going
from ∼ 400 without MUMPS to 1 when using MUMPS. Also, due to the small
coarsest lattice when using MUMPS, the setup times for MUMPS to analyze and
factorize the matrix Dc are relatively small, leading to a reduction in the setup
phase of DD-αAMG time from 11401.2 to 7243.6 seconds.

Coarsest-level solves via MUMPS are certainly promising on a single node, as
we have seen above, and they seem to be the way to go when dealing with the
twisted mass discretization. This motivates us to further explore this approach
in the future.

4.5 Outlook on coarsets-level computations

There are further improvements to be done for both approaches presented in this
chapter, i.e. Krylov and LU based. They are all fundamentally important in the
context of large-scale computing, and particularly relevant as current supercom-
puters dive more into the exascale. We briefly discuss these now.

Krylov based

An important outcome of the discussion in sect. 4.2.1.2 is the need of a communication-
avoiding scheme in our coarsest-level implementations: as we increase the number
of nodes in our executions, nearest-neighbor communications become a two-fold
problem, first in the sense of its lack of scalability, and second as they interfere
with the global communications trying to be hidden by pipelining. We will imple-
ment a communication-avoiding method, which we expect to have a nice interplay
with both pipelining and the polynomial preconditioner.

A less pressing (but still relevant) improvement consists of evaluating, implement-
ing and testing the extraction of the actual block-diagonal of Dc, to be used in

80

4.5 Outlook on coarsets-level computations

the block diagonal preconditioner (see sect. 4.1.0.1) instead of Dee. Our MAT-
LAB tests, on relatively small lattices, indicate so far that there is no significant
algorithmic gain when using Dc instead of Dee. We would like to further test this
on more realistic lattices.

LU based

From sect. 4.4, see in particular tab. 4.7 in there, MUMPS seems to be a better
way of solving the coarsest-level for twisted-mass fermions, compared to Krylov-
based methods. However, our tests in sect. 4.4 are on a single node, and the
BLR approximate direct solver of MUMPS scales quite badly38 as we increase the
number of compute nodes. Although our Krylov-based methods suffer also as we
increase the number of nodes, the effect is more dramatic in the MUMPS solver
that we have used here.

The concept of agglomeration can be introduced in multigrid methods39, to im-
prove the scalability of the overall solver. The core idea behind agglomeration is
quite simple: run coarser levels on less nodes than finer ones. In particular, one
can choose to apply agglomeration at the coarsest-level only. In the particular
case of using MUMPS at the coarsest-level in DD-αAMG, agglomeration might
allow us to scale well up to a large number of nodes, without the different stages
of MUMPS having to necessarily scale well.

Furthermore, we will apply agglomeration in combination with our Krylov-based
methods as well, in particular for twisted-mass solves, which might bring an
additional performance in that case.

Our upcoming work involving agglomeration and MUMPS in DD-αAMG will
continue to be in collaboration with Henning Leemhuis, as one of the topics in
his PhD research.

All the DD-αAMG improvements, associated to the twisted mass discretization,
will be directly useful in hybrid Monte Carlo computations performed by the
Extended Twisted Mass Collaboration. As for the improvements related to the
clover-improved Wilson operator, we plan to run a comparison of the current
state of the solver in OpenQCD, against our latest DD-αAMG, in lattice QCD
computations via distillation, this in the context of the PhD work of Juan Urrea
(under the supervision of Prof. Dr. Francesco Knechtli at Bergische Universität
Wuppertal).

38Neither its factorisation phase nor its solve phase scale well.
39See [126] for a discussion on agglomeration and examples of its use.

81

Chapter 5
Hybrid GPU/CPU DD-αAMG

With the currently fast and ongoing evolution of Graphic Processing Units (GPUs)
and High Performance Computing hardware in general, computational science ap-
plications are seeing much faster and energy-efficient implementations for some
of its most demanding large-scale computations. Such applications go from Ma-
chine Learning [127] to collisions in molecular dynamics [128], and lattice QCD is
also one of them. One of the main efforts in using heterogeneous computing for
lattice QCD computations is the QUDA library40 [129], through which one can
perform calculations in lattice QCD on GPUs via NVIDIA’s CUDA platform.
The smoother in the multigrid solver within the QUDA library can be chosen
from multiple options, the best one for scalability being either an additive or
multiplicative SAP, where the SAP domain-decomposition blocks are of the size
of the local lattice i.e. the lattice size per MPI process. In sect. 5.3.1 we show
how having the SAP domain decomposition match the process decomposition is
not the best option for efficiency.

Furthermore, the multigrid solver in the QUDA library offloads operations at all
levels of the multigrid hierarchy to be computed on GPUs. The efficiency problems
at the coarsest level described in chapter 4 can be particularly apparent when
using GPUs, in two ways. First, as finest-level operations are computed faster on
GPUs, the coarsest level is more exposed. Second, if all levels are computed on
GPUs, then scalability issues are coming not only from large communication times
on coarser levels, but also due to the very little data being used for computations
on them41. Our contribution in this chapter consists of a hybrid solver where

40See https://github.com/lattice/quda
41The less the number of lattice sites involved in GPU computations, the sooner scalability

issues will appear – this happens faster on GPUs than on CPUs due to the lack of a cache
memory hierarchy like the one present on CPUs.

83

5 Hybrid GPU/CPU DD-αAMG

some finest-level operations of DD-αAMG are done on GPUs and coarser levels
run on CPUs.

The remainder of this chapter is organized as follows. A short reminder on the
role that smoothers play in DD-αAMG is given in sect. 5.1. Some details re-
garding offloading smoothers to GPUs are presented in sect. 5.2. Then, results
of numerical tests on the finest-level smoother alone and the GPU-boosted DD-
αAMG solver as a whole are shown in sect. 5.3, where we talk about aggressive
coarsening as a way to use GPU resources better and to improve the scalabil-
ity of hybrid GPU+CPU solvers in lattice QCD. All of the implementations for
this chapter were done within the DD-αAMG library for clover-improved Wilson
fermions [45].

The nature of this chapter is different compared to previous ones. Here the main
focus is on implementation aspects at a low level e.g. cache efficiency on GPUs
and CPUs, GPU hardware, etc., although we still rely on the conceptual grounds
of AMG introduced in chapter 3.

5.1 SAP in DD-αAMG

Let us now briefly recall the general algorithmic structure of DD-αAMG, with
special emphasis on the smoother at the finest level.

One iteration of the K-cycle employed by DD-αAMG (see sect. 3.3.4.2) has the
structure given in fig. 5.1, where R and P stand for restriction and prolongation
steps, the blocks labeled with A correspond to Arnoldi operations not detailed
further in the figure, the S blocks are the smoother and the lowest-level black
boxes are the coarsest-level solves.

Figure 5.1: One step of DD-αAMG’s 3-level multigrid (MG).

The smoother (sect. 3.3.4.2) is red-black block Gauss-Seidel i.e. multiplicative
SAP, which on CPUs uses caches in an advantageous manner, matching perfectly
the hybrid distributed+shared programming model (e.g. MPI+OpenMP) used
by DD-αAMG and scales very well with the number of processors on large-scale
machines.

84

5.2 Schwarz Alternating Procedure on GPUs

The lowest-level black boxes in fig. 5.1 are performed via GMRES in the origi-
nal version of DD-αAMG, and can be boosted via the algorithmic combinations
described in chapter 4.

5.2 Schwarz Alternating Procedure on GPUs

5.2.1 Domain Decomposition: GPUs vs CPUs

The SAP algorithm used in DD-αAMG behaves differently, from an efficiency
point of view, if it is implemented either on CPUs or GPUs (although, its algo-
rithmic properties remain the same). Furthermore, the blocks in SAP are arranged
in a red-black fashion (see sect. 4.1) and the solves with the Schur complement
are performed by a few steps of the minimal residual (MR) algorithm [34], which
is mathematically equivalent to GMRES(1) i.e., restarted GMRES with a cycle
length of 1. MR allows us to perform solves with non-symmetric block-matrices
with minimum memory requirements [34].

5.2.1.1 CPUs

When plain (non-blocked) Gauss-Seidel with coloring is used, one of the main
problems with implementing it “naively” (i.e. no domain-decomposition) is that
it does not make good use of cache. This is one of the main motivations behind
preferring SAP over for example plain Gauss-Seidel when we are trying to develop
highly performing scientific codes [130]. Another motivation for preferring SAP
is of course the expected faster convergence due to more frequent local updates
[131].

Let us illustrate this cache-friendliness with some numbers42. If our block-lattice
has dimensions 44 then a single vector living in that lattice has a size of 12×44 =
3072 = 24 KB (in single precision). Due to symmetries and sparsity, the data for
the corresponding block-matrix does not have a size of 3072×3072 = 9437184 =
72 MB, but rather 9×42×44 = 756 KB. MR, as implemented in DD-αAMG,
reads/writes roughly 10 vectors and the block-matrix during its execution, which
amounts to a total memory of 10·(24 KB) + (756 KB) = 996 KB. The machine
where we perform our numerical experiments has an L2 cache of size 1024K, which
is enough to contain all the data associated with a whole single block solve.

We present how SAP is realized in a bit more detail in alg. 5.1: launch asyn-
chronous communications (line 2), then perform all the computations related to

42All of these numbers are associated to the finest-level, where the matrix is D, as defined in
eq. 2.11.

85

5 Hybrid GPU/CPU DD-αAMG

the blocks of color c = 0 (i.e. the first color, let us call this red) not involved in
the communications launched in line 2, and then in the second iteration of the
for loop in c compute with the black blocks also not involved in communications.
These initial computations correspond to lines 7 and 9. Then, after waiting for the
communications to finish in line 10, all those blocks that have not been updated
yet are processed in the second for loop in c.

Algorithm 5.1: SAP on CPUs
Data: Block (array of domain-decomposition blocks), s (SAP iterations),

nb (number of domain-decomposition blocks)
for k = 1, . . . , s1

for c = 0, 12

StartGhostExchanges()3

for i = 1, . . . , nb4

if Block[i].color==c & Block[i].no comm then5

// some boundary-related operations on a single block6

BoundaryOpsCPU(Block[i])7

// minimal residual on a single block8

MR(Block[i])9

for c = 0, 110

WaitGhostExchanges()11

for i = 1, . . . , nb12

if Block[i].color==c & Block[i].comm then13

// some boundary-related operations on a single block14

BoundaryOpsCPU(Block[i])15

// minimal residual on a single block16

MR(Block[i])17

// some final operations18

FinalOps()19

What is important at this point is to notice that MR in alg. 5.1 is executed
on a single block every time it is called, and that the execution of each block is
completely independent of that of all the other blocks of the same color. This is an
interesting fact if we think about shared memory, because it implies that we can
use different OpenMP threads to process for example all the blocks of a certain
color not involved in communications (this is the way it is actually implemented
in DD-αAMG). An ideal scenario would be if we could process e.g. all of those
blocks of a certain color not involved in communications at the same time, which
is unfortunately not possible on CPUs, but it becomes a good feature when we
turn to use GPUs. On CPUs we could try to get close to this approach (of

86

5.2 Schwarz Alternating Procedure on GPUs

“fusing” blocks) as much as possible by using vectorization, but still the inherent
serial nature of CPUs makes it impossible.

But although we have to go block-by-block on our per-thread computations in
SAP, the fact that we use blocks small enough to fit in L2 or L3 cache makes the
CPU implementations in DD-αAMG highly well-performing.

5.2.1.2 GPUs

In its CPU implementation, DD-αAMG makes use of MPI and OpenMP for
distributed and shared memory manipulations. At the “lowest” level i.e. for the
execution of the fundamental operations (+,−,∗,/) it uses SIMD [132] through
SSE for vectorization43.

When we switch to use GPUs, we keep using MPI for distributed memory but we
use SIMT (Single Instruction Multiple Threads [38]) for the fundamental opera-
tions.

To get the most performance out of our GPU computations, we have to launch
as many tasks as possible in a single CUDA kernel. By doing this, while some
groups of threads are retrieving memory from device RAM, other threads are
computing their tasks. In this way, reading from device RAM can be hidden
behind computations quite well by massively launching tasks concurrently.

Alg. 5.2 shows the approach that we follow when offloading parts of SAP to GPUs
within DD-αAMG.

Using GPUs for HPC applications has pros and cons. In particular, in the context
of SAP, one disadvantage is that cache-friendliness as we had it for CPUs is gone.
To see this, let us go back to the numbers given in Sect. 5.2.1.1: a single lattice
block requires 324 KB. In some of our numerical experiments, we have used
Quadro P6000 GPUs44, which have 3 MB of L2 cache and although this is enough
to store all the data associated with a single lattice block, we do not compute
one such block at a time, but rather a group of them concurrently as can be seen
from alg. 5.2.

For example, if we have a local lattice (i.e. per GPU) of dimensions 164 then, with
blocks of dimension 44 we get 256 such blocks. This implies that at some point
in SAP we will have to launch over 64 lattice blocks concurrently45, for a total

43The use of vectorization is optional i.e. it can be disabled, and its use is of course dependent
on whether the compiler and the hardware allow it.

44See https://www.techpowerup.com/gpu-specs/quadro-p6000.c2865.
45The list BlocksList, in alg. 5.2, is filled-up four times: two colors and with/without com-

munications. In this 164 local lattice that we are describing here, two of those lists will have
over 64 blocks, and the other two therefore less than 64.

87

https://www.techpowerup.com/gpu-specs/quadro-p6000.c2865

5 Hybrid GPU/CPU DD-αAMG

Algorithm 5.2: SAP on GPUs
Data: Block (array of domain-decomposition blocks), s (SAP iterations),

nb (number of domain-decomposition blocks)
for k = 1, . . . , s1

StartGhostExchanges()2

for c = 0, 13

BlocksList = []4

for i = 1, . . . , nb5

if Block[i].color==c & Block[i].no comm then6

BlocksList.append(Block[i])7

// some boundary-related operations on a set of blocks8

BoundaryOpsCPU(BlocksList)9

// minimal residual on a set of blocks10

MR(BlocksList)11

WaitGhostExchanges()12

for c = 0, 113

BlocksList = []14

for i = 1, . . . , nb15

if Block[i].color==c & Block[i].comm then16

BlocksList.append(Block[i])17

// some boundary-related operations on a set of blocks18

BoundaryOpsCPU(BlocksList)19

// minimal residual on a set of blocks20

MR(BlocksList)21

// some final operations22

FinalOps()23

memory larger than 64×(996 KB) = 62.25 MB. In conclusion, doing things the
CPU-way (alg. 5.1) is no longer a possibility if we want our code to run efficiently
on GPUs.

5.2.2 SAP in DD-αAMG on GPUs: implementation details

5.2.2.1 Switching for loops: blocks fusing

The use of GPUs presents, in our case, an important trade-off. We loose cache
friendliness, but we can take advantage of a related SAP feature: the independence
of domain-decomposition blocks. This enables the launch of all of the concurrent

88

5.2 Schwarz Alternating Procedure on GPUs

domain-decomposition block computations at the same time on GPUs. This
independence was of course present as well in alg. 5.1, but on GPUs we have the
possibility to actually launch all of those blocks at the same time.

Both the main advantage and the main downside from using GPUs with respect
to CPUs come from within the call to MR in alg. 5.2:

• Downside: we have to perform all the operations within MR sequentially
i.e. we take a set of domain-decomposition blocks and run the first oper-
ation wihtin MR, then for the same blocks the next operation and so on.
Although we had the same sequential nature on CPUs, cache friendliness
then made things fast, because after the few first statements within MR all
of the block’s information was already loaded to cache, and therefore the op-
erations became very fast. However, on GPUs we have to reload everything
to cache every time we call a new statement within MR.

• Advantage: the obvious advantage is that we get the chance to run each
statement within MR for all of the domain-decomposition blocks in parallel,
which gives us very large tasks to run on GPUs and therefore we can get
highly performing executions.

A final downside of using GPUs with respect to CPUs is, again, related to cache
friendliness: when we compute MR we have an extra sequential layer, which is
related to the physical dimension of our problem and appears due to coupling
terms . These terms are those in eq. 2.7 appart from the identity. In other words,
some of the statements within MR consist of eight operations that have to be run
one after the other (4×2 due to physical spatial dimension and possible directions
+ and −). A first problem with having so many sequential calls on GPUs (even
with each call being a large task) is that this demands a great deal of hardware
synchronization which decreases concurrency, and a second problem is that when
we launch many GPU tasks we start accumulating overhead due to setup times.

Even with all the issues that appear when switching to GPUs, the fact that we
can launch very large tasks corresponding to many domain-decomposition blocks
at the same time, and without large dot products, outweighs the problems just
described, and we get significant speedups in our computations (see sect. 5.3).

5.2.2.2 CUDA threads, Domain-Decomposition blocks and memory
re-arrangements

Before going into the results of our numerical experiments, we will first describe in
this section the mapping that we employed to assign work to our CUDA threads
and GPU cores, and how these map to our data and operations within SAP.

89

5 Hybrid GPU/CPU DD-αAMG

Mapping CUDA threads to a set of domain-decomposition blocks

When writing the actual implementation of the CUDA kernels that are in charge
of GPU computations when we offload parts from the CPUs into the GPUs, there
are multiple decisions to make in terms of hardware, concurrency and memory
mappings. In fig. 5.2 we show the hardware mapping of our choosing, which
allowed us to avoid frequent on-the-fly memory re-arrangements due to having
frequent switchings from CPU to GPU and viceversa.

Figure 5.2: Illustration of how we mapped the domain-decomposition blocks to be
computed to the CUDA threads used for such computations. Note that M ≥ N
i.e. {Bi} is a subset of {DDi}. The illustration here is for the case when our
domain-decomposition block size is 44 and the CUDA block size is 96 with 6
CUDA threads per lattice site.

With the hardware mapping illustrated in fig. 5.2, we kept our previous CPU
memory layouts almost intact, except for the memory re-arrangements associated
to fusing sites for hopping terms discussed soon.

In fig. 5.2, the set of domain-decomposition blocks {DDi} consists of all the blocks
in our system of equations. However, the set {Bi} is that of the blocks to be com-
puted in a particular situation (e.g. those of red color involved in communications;
see alg. 5.2). The mapping in fig. 5.2 is quite particular and interesting for mul-
tiple reasons. If we choose to use a single CUDA thread per lattice site, there is
not much room for decisions to be made, but if we want to use more than one
CUDA thread per lattice site then we have to be careful with our mapping. For
example, if we want to use two CUDA threads per lattice site and due to having
a physical GPU hardware warp being of size 32, then we can allocate 16 lattice

90

5.2 Schwarz Alternating Procedure on GPUs

sites per warp. The issue with having two CUDA threads per lattice site is that it
requires quite a lot of GPU hardware resources per CUDA thread (and the same
applies when using a single CUDA thread per lattice site, even worse).

If we want to use six threads per lattice site, the mapping becomes tricky: due
to the size of a warp, we have to associate 96 CUDA threads to 16 lattice sites.
Although this cuts our warps in a sort of “fractional” manner, the amount of
resources per CUDA thread is much less and we increase concurrency greatly
which allows the GPU to hide device RAM accesses much better.

In our implementations we have enabled the option to chose between 2 and 6
CUDA threads per lattice site, and correspondingly CUDA block sizes that are
multiples of 32 and 96, respectively.

Memory re-arrangements and fusing sites for hopping terms

The coupling terms discussed in sect. 5.2.2.1 are problematic not only due to their
sequential nature but also because of their crossed memory accesses. We illustrate
these terms (in a reduced space of 2D) in fig. 5.3 for a 24 domain-decomposition
block.

Figure 5.3: Four hopping terms in 2D.

Suppose we have a matrix application that acts following the stages and arrows as
indicated in fig. 5.3, e.g. in stage #2 the lattice site labeled as 3 will depend on the
current value of the lattice site labeled as 4. Furthermore, there is a sub-matrix
D3←4 that will give us the rule on how to update site 3 from 4.

91

5 Hybrid GPU/CPU DD-αAMG

When we run over all of the stages and operations in fig. 5.3 it will be inevitable to
do crossed memory accesses of the information corresponding to the lattice sites,
no matter how we store them in memory. But we can save a significant amount
of execution time due to crossed memory accesses of the matrix elements Di←j;
the way to do this is by storing a submatrix associated to stage #1, another one
associated to stage #2, and so on. This is precisely what we have done in our
GPU computations i.e. we have fused all of the necessary lattice sites for each of
the eight possible directions.

To summarize, the crossed memory accesses of the vectors (i.e. the lattice sites)
are unavoidable, but we have avoided crossed accesses of the matrix elements.
Even better, due to the hardware mapping depicted in fig. 5.2 our matrix memory
accesses are almost all done in half-warps which is an optimal reading from device
RAM, and due to having domain-decomposition blocks the crossed readings of
lattice sites do not address locations which are too far in device RAM.

Further memory optimizations

Besides global memory (i.e. device RAM) we have also used shared and constant

memories in the following way:

• shared: when performing matrix-vector multiplications e.g. within MR, we
used shared memory to collaboratively (i.e. as done by a group of CUDA
threads) load the local matrix into shared memory. For some of those
matrix-vector operations, we need buffers. We used shared memory as well
to store such buffers to improve locality (e.g. when we have crossed accesses
as in hopping terms).

• constant: the only way in which we have used this memory so far is to
store the data associated to the γ-matrices (i.e. the matrices coming from
the Clifford algebra, see def. 2.1).

5.3 Numerical tests

5.3.1 SAP on GPUs

For the numerical tests of SAP on the finest level, to be reported in this section,
we use configurations for which we do not specify where they come from nor detail
their parameters. Those details are not relevant due to the purely implementa-
tional nature of this sub-section. For the tests in sect. 5.3.2, which consist of calls
to the whole multigrid solver, we provide specific details for the matrices involved.

92

5.3 Numerical tests

We ran our first numerical experiments with 324 and 484 local lattices (i.e. lattice
size per GPU) with two processes and one GPU per MPI process, and the results
are shown in tab. 5.1. We have focused here on times for SAP at the finest level
only, which is the part of the code that we have enabled to use GPUs on.

L4 Speedup Comp Speedup Tot
324 33.54 22.11
484 41.71 26.18

Table 5.1: Two types of speedup for the smoother on GPUs, one taking into
account only computations and the second one (last column) including times for
transferring data from the CPU to the GPU and viceversa. The first column
indicates the size of the local lattice. NVIDIA Quadro P6000 GPUs were used.

The second column in tab. 5.1 gives us the speedups that we obtain if we compare
the whole SAP on CPUs versus the compute part of SAP on GPUs. This is not
a realistic speedup due to the current state of our code: in our current imple-
mentation, every time we call SAP on GPUs we have to send data to the GPUs,
compute, and then retrieve data back to the CPUs46. Therefore, a more realistic
speedup in our case is the one displayed in the third column of tab. 5.1, in which
case we also take into account the data transfers CPU-to-GPU and viceversa.

It is important to note that speedups of ∼30 are to be expected, as we are com-
paring against CPU code that has been optimized for cache friendliness and with
vectorization enabled. More specifically: if we compare only one iteration of MR
as called in alg. 5.1 versus the same MR in alg. 5.2, on CPUs and GPUs, then we
will see a huge speedup due to GPU usage, of e.g. roughly 80 or even 100. But this
speedup decreases as soon as we perform multiple MR iterations. This is, again,
because when computing on CPUs after only one iteration of MR everything we
need has been loaded to cache e.g. L3, but in the case of GPUs we have to reload
data every time we call a statement in MR.

Varying the SAP block size

For a 64×323 lattice, we have run our GPU implementation of SAP with different
sizes of the SAP blocks, and the results have been tabulated in tab. 5.2. As
we can see, smaller SAP blocks lead to better performance. Conversely, we can

46Once we have more portions of our code ported to GPUs e.g. the whole finest level, then we
won’t have to take into account these data transfers.

93

5 Hybrid GPU/CPU DD-αAMG

conclude that taking each domain decomposition block to be of the size of the
local volume, i.e. 324, will not be the best performing choice.

SAP block Time per SAP call
(seconds)

44 0.1444
84 0.1562
164 0.2316

Table 5.2: Time per SAP call versus domain decomposition block size, on a lattice
of size 64×323 with two processes and one GPU per MPI process. NVIDIA
Quadro P6000 were used.

5.3.2 Hybrid GPU+CPU DD-αAMG solver

We have fully ported the SAP smoother in DD-αAMG from C to CUDA C.
Hence, the current state of our solver47 is hybrid: the smoother runs fully on
MPI+CUDA and the remaining parts of the solver on MPI+OpenMP+SSE.

In fig. 5.4, two aggregation schemes are shown for DD-αAMG solves with a lat-
tice of size 128×643 and three levels. The left-column scheme in that figure
corresponds to a coarsening as usually employed in DD-αAMG. This traditional
coarsening performs well when running on CPUs, and from chapter 4 we know
its scalability is relatively poor when the number of nodes is relatively large and
the coarsest level represents a quite large portion of the execution time48. Using
our GPU-boosted smoother in such an aggregation scheme does not provide sub-
stantial gains, as the smoother does not represent much of the overall solve time;
this is an observation that we will support with results from computational tests
in this section. Furthermore, porting the whole solver to run on GPUs is also not
a good idea, as the second and third levels will scale particularly bad on GPUs.

A better way to make good use of our smoother running on GPUs is to opt
for a more aggressive coarsening, as displayed in the right column of fig. 5.4. By
switching to this alternative aggregation scheme we redirect most of the execution
time to the smoother at the finest level, with the crucial advantage that the total
time spent at coarser levels is (even after turning GPU usage on) a relatively
small percentage of the whole solve time.

47Which we have made available on GitHub: https://github.com/Gustavroot/DDalphaAMG
48This can be alleviated in many cases via our coarsest-level improvements from chapter 4.

94

https://github.com/Gustavroot/DDalphaAMG

5.3 Numerical tests

Figure 5.4: Left : CPU coarsening. Right : GPU coarsening.

We ran numerical experiments using both coarsening schemes presented in fig. 5.4,
with the left one running fully on CPUs and the right one in a hybrid GPU+CPU
manner. We have used the same clover-improved Wilson-Dirac configuration as
in chapter 4. The DD-αAMG parameters are almost the same as in tab. 4.6,
except for aggressive coarsening. In this latter case the parameters changed are
as depicted on the right in fig. 5.4. The results are presented in fig. 5.5. We
have performed tests with up to 256 GPUs. Both the CPU and hybrid solvers
run with the coarsest-level improvements from chapter 4 already included49. The
runs were performed on the booster module of the JUWELS supercomputer from
the Jülich Supercomputing Centre50.

Although the old (CPU) and new (GPU) results from fig. 5.5 are almost equivalent
from the point of view of overall execution time, they are quite different when
we take a closer look at the execution time spent on the individual components
that make up the multigrid hierarchy. We do so in tab. 5.3, where GPU1 means
running our hybrid solver with the coarsening on the right in fig. 5.4 (i.e. aggressive
coarsening), and for GPU2 we have run the hybrid solver with the non-aggressive
coarsening (see left in fig. 5.4). It is clear from this table that GPU1 is a much
better alternative than GPU2, as we want to minimize the coarse-grid time due
to its bad scalability and due to better possible performance improvements of the
finest level via GPUs.

From the timings presented in tab. 5.3 it is clear that further improving the

49Although the impact of those coarsest-level improvements is not big here, as we are using the
same mass parameter as in fig. 4.4

50Runs in the booster module have been done via the project cecy00 with title Transverse
momentum dependent soft function in lattice QCD.

95

5 Hybrid GPU/CPU DD-αAMG

GPU	(whole)
CPU	(whole)
CPU	(coarse)
GPU	(coarse)

ex
ec

ut
io

n	
tim

e	
(s

ec
on

ds
)

1

10

number	of	processes
10050 200

Figure 5.5: Strong scaling for m0 = −0.35371847789 of the old version of DD-
αAMG (before the GPU improvements) and the new (running on GPUs) version.
The solid lines represent total execution time of a whole solve, and the dashed
lines the time spent on coarser levels. The dotted line exemplifies how perfect
scaling would look like in the hybrid solver. For CPU executions, 1 MPI process
corresponds to 1 node, and for GPU executions we associate 4 MPI processes to
each node with 1 GPU per MPI process.

CPU GPU1 GPU2
total solve time 6.14 7.73 7.7414
fine grid time 3.91 (64%) 6.7 (87%) 3.5367 (45.7%)

coarse grid time 2.23 (36%) 1.03 (13%) 4.2047 (54.3%)
smoother at ℓ = 1 2.85 1.98 0.934
P and R at ℓ = 1 0.62 2.89 1.59

Table 5.3: More detailed timings of some multigrid components in DD-αAMG,
corresponding to the run with 64 processes from fig. 5.5. Times here are in
seconds. Coarse grid time represents in this case the total time spent at ℓ = 2
and ℓ = 3 combined. The columns labeled as CPU and GPU1 correspond to the
data displayed in fig. 5.5.

hybrid GPU+CPU implementation seems to be very promising. In particular,
improvements via which we can possibly enhance the GPU version, are:

• Port the whole finest level, and not only the smoother at that level. The
finest level is very rich in floating point operations, and communications are
nicely hidden behind those. By merging the smoother at the finest level
with all the other operations there, we can avoid frequent and large data

96

5.4 Outlook on GPU implementations

transfers from CPU to GPU and viceversa.

• Explore the use of lower precisions for the smoother at ℓ = 1. Currently,
our smoother runs in single precision, which we can further lower to half
and with this take advantage of the good performance that GPUs offer at
that precision.

• By using Tensor Cores51 at different precisions throughout our implementa-
tions we can further improve the performance of the smoother at the finest
level.

A clear suggestion from tab. 5.3 is that we keep coarser levels (i.e. ℓ > 1) on CPUs,
and only port the finest level from C to CUDA C, provided we do aggressive
coarsening. Furthermore, another very interesting and useful consequence of the
use of aggressive coarsening here is that the time spent on interpolation and
restriction at ℓ = 1 represents a large portion of the total execution time, which
will be very beneficial for performance gains when we port the whole level ℓ = 1
to be computed on GPUs.

GPU implementations tend to scale relatively poorly when the number of GPUs
is increased too much. We expect this to happen also in our hybrid GPU+CPU
code at some point. With this in mind, fig. 5.5 seems to suggest that a good
strategy to optimize the use of computational resources might be to stay at 64
GPUs or less (for the lattice configuration under use here) and improve the finest
level as much as possible via the advantages that GPUs provide.

5.4 Outlook on GPU implementations

From sect. 5.3.2 we can conclude that our approach of aggressive coarsening plus
offloading the finest level onto GPUs, shows promise; most of the execution time
is now being spent at the finest level. Furthermore, the total time spent at coarser
levels in the case illustrated in tab. 5.3 is now around 1 second, which is a very
low price to pay for such a large (128× 643 in this case) lattice.

Based on the results of this chapter, we will then continue this work in the follow-
ing directions, which we list in ascending order of priority, to improve our hybrid
solver:

1. Usage of Tensor Cores.

2. Multiple precisions: we will employ different precisions on different parts of
the finest level, e.g. the smoother in half precision.

51https://www.nvidia.com/en-us/data-center/tensor-cores/

97

https://www.nvidia.com/en-us/data-center/tensor-cores/

5 Hybrid GPU/CPU DD-αAMG

3. Block solver: extension of our solver to act on multiple right hand sides “at
once”. The development of this will be within the context of the PhD work
of Liam Burke (under supervision of Prof. Dr. Kirk M. Soodhalter at Trinity
College Dublin), and the resulting code will then be used in lattice QCD
computations via distillation, this in the context of the PhD work of Juan
Urrea (under the supervision of Prof. Dr. Francesco Knechtli at Bergische
Universität Wuppertal).

4. Coarsest level: when the coarsest level starts becoming representative again,
the improvements from chapter 4, and furthermore the future work de-
scribed in sect. 4.5, will be of immediate use here.

In developing the points above, we hew to the following constraints in our upcom-
ing GPU developments for the hybrid DD-αAMG: stay at a relatively low number
of nodes, e.g. 32 or 64; keep coarser levels (i.e. ℓ > 1) running on CPUs; instead
of attempting to have good strong scaling, try to reduce the execution time at
the finest level as much as possible, via an offloading of finest-level operations
onto GPUs. We will additionally perform numerical experiments to compare our
solver with other alternatives out there, e.g. QUDA.

98

Chapter 6
Multigrid Multilevel Monte Carlo

In this chapter we develop and test a new method for the computation of the trace
of a matrix function f(A). Sects. 6.1 and 6.2.1 are largely based on our paper on
multilevel Monte-Carlo for trace computations [1]. The application of our method
to the Wilson operator, presented in sect. 6.2.2, comes from collaborative work
with Jose Jiménez, which resulted in his M.Sc. thesis [133], hence that section
here is partially based on his thesis.

As mentioned in sect. 2.4, the computation of disconnected diagrams in lattice
QCD requires the extraction of the trace of f(A) = ΓA−1. We consider here first
the situation where one is interested in the trace tr(f(A)) of a matrix function
f(A), in general. Here, f(A) ∈ Cn×n is the matrix obtained from A ∈ Cn×n

and the function f : z ∈ D ⊆ C → f(z) ∈ C is the usual operator in the
theoretic sense; see [134], e.g. Our focus is on the inverse A−1, i.e. f(z) = z−1.
Computing the trace is an important task arising in many applications. The trace
of the inverse is required, for example, in the study of fractals [135], in generalized
cross-validation and its applications [136, 137]. In network analysis, the Estrada
index—a total centrality measure for networks—is defined as the trace of the
exponential of the adjacency matrix A of a graph [138, 139] and an analogous
measure is given by the trace of the resolvent (ρI − A)−1 [140, Section 8.1]. For
Hermitian positive definite matrices A, one can compute the log-determinant
log(det(A)) as the trace of the logarithm of A. The log-determinant is needed in
machine learning and related fields [141, 142]. Further applications are discussed
in [143–145]. The particular application that we tackle in this chapter is the one
described in sect. 2.4 i.e. the trace of the inverse of the discretized Dirac operator
[146]. As simulation methods get more and more precise, these contributions
become increasingly important.

It is usually unfeasible to compute the diagonal entries f(A)ii directly as e
H
i f(A)ei,

99

6 Multigrid Multilevel Monte Carlo

ei the ith canonical unit vector, and then obtain the trace by summation. For
example, for the inverse this would mean that we have to solve n linear systems,
which is prohibitive for large values of n.

One large class of methods which aims at circumventing this cost barrier are
deterministic approximation techniques. Probing methods, for example, approx-
imate

tr(f(A)) ≈
N∑
i=1

wHi f(A)wi, (6.1)

where the vectors wi are carefully chosen sums of canonical unit vectors and
N is not too large. Various approaches have been suggested and explored in
order to keep N small while at the same time achieving good accuracy in (6.1).
This includes approaches based on graph colorings; see [147–149] e.g., and the
hierarchical probing techniques from [41, 150]. In order for probing with such
vectors to yield good results, the matrix f(A) should expose a decay of the moduli
of its entries when we move away from the diagonal, since the sizes of the entries
farther away from the diagonal determine the accuracy of the approximation.
Recent theoretical results in this direction were given in [151]. Lanczos techniques
represent another deterministic approximation approach and are investigated in
[152–154], e.g. Without giving details let us just mention that in order to improve
their accuracy, deterministic approximation techniques can be combined with the
stochastic techniques presented in the sequel; see [145], e.g.

In this chapter, we deal with the other big class of methods which aim at break-
ing the cost barrier using stochastic estimation. In general, they work for any
matrix and, at least in principle, do not require a decay away from the diagonal.
Our goal was to develop a multilevel Monte-Carlo method to estimate tr(f(A))
stochastically, which we have accomplished. Our approach can be regarded as
a variance reduction technique applied to the classical stochastic “Hutchinson”
estimator [155]

tr(f(A)) ≈ 1

N

N∑
n=1

(x(n))Hf(A)x(n), (6.2)

where the components of the random vectors x(n) obey an appropriate probabil-
ity distribution. The variance of the estimator in eq. 6.2 decreases only like 1

N
,

which makes the method too costly when higher precisions are to be achieved.
The multilevel approach presented here aims at curing this by working with rep-
resentations of A at different levels. On the higher numbered levels, evaluating
f(A) becomes increasingly cheap, while on the lower levels, which are more costly
to evaluate, the variance is small. Our focus here is on the trace of the matrix
inverse, where we can evaluate A−1x using a fast solver. We just note that for a
general matrix function f(A), stochastic trace estimation techniques can be com-
bined with the Lanczos process to approximately evaluate the quadratic forms

100

6.1 Stochastic trace estimation and multilevel Monte Carlo

xHf(A)x; see, e.g. [153, 154].

This chapter is organized as follows: in sect. 6.1.1 we recall the general framework
of multilevel Monte-Carlo estimators. In sect. 6.1.2 we then discuss Hutchinson’s
method for stochastically estimating the trace before turning to our new multi-
level approach in sect. 6.1.3. This section also contains a comparison to known
approaches based on deflation as a motivation of why the new multilevel method
should provide additional efficiency. Several numerical results are presented in
sects. 6.2.1, 6.2.2 and 6.2.3, for the Schwinger, Wilson and twisted mass opera-
tors, respectively.

6.1 Stochastic trace estimation and multilevel
Monte Carlo

We establish the full theoretical foundation to develop a multigrid multilevel
Monte Carlo method, including stochastic estimation via Huthinson’s method
and the multilevel Monte Carlo method, ultimately combining the two of them
by assuming the existence of a multigrid hierarchy for the given problem matrix.

6.1.1 Multilevel Monte-Carlo

We discuss the basics of the multilevel Monte-Carlo approach as a variance reduc-
tion technique. We place ourselves in a general setting, thereby closely following
[39].

Assume that we are given a probability space (Ω,F ,P) with sample space Ω,
sigma-algebra F ⊆ Ω and probability measure P : F → [0, 1]. For a given
random variable f : Ω → C , the standard Monte-Carlo approach estimates its
expected value E[f] as the arithmetic mean

E[f] ≈ 1

M

M∑
m=1

f(ω(m)), (6.3)

where the ω(m) are independent events coming from (Ω,F ,P). The variance of
this estimator is 1

M
V[f], so the root mean square deviation has order O(M−1/2).

This indicates that the number M of events has to increase quadratically with
the accuracy required which is why, typically, higher accuracies require very high
computational effort in this type of Monte-Carlo estimation.

101

6 Multigrid Multilevel Monte Carlo

The idea of multilevel Monte-Carlo is to split the random variable f as a sum

f =
L∑
ℓ=1

gℓ, (6.4)

where the random variables gℓ : Ω→ C are regarded as contributions “at level ℓ”
to f . This gives

E[f] =
L∑
ℓ=1

E[gℓ],

and an unbiased estimator for E[f] is obtained as

E[f] ≈
L∑
ℓ=1

1

Mℓ

Mℓ∑
m=1

gℓ(ω
(m,ℓ)),

where the ω(m,ℓ) denote the independent events on each level. The variance of
this estimator is

L∑
ℓ=1

1

Mℓ

V[gℓ].

The idea is that we are able to find a multilevel decomposition of the form in eq. 6.4
in which the cost Cℓ to evaluate gℓ is low when the variance Vℓ := V[gℓ] is high
and vice versa. As is explained in [39], the solution to the minimization problem
which minimizes the total cost subject to achieving a given target variance ϵ2

minimize
L∑
l=1

MℓCℓ s.t.
L∑
ℓ=1

1

Mℓ

Vℓ = ϵ2

givesMℓ = µ
√
Vℓ/Cℓ. Here, the Lagrangian multiplier µ satisfies µ = ϵ−2

L∑
ℓ=1

√
Vℓ/Cℓ,

and the corresponding minimal total cost is

C = ϵ−2

(
L∑
ℓ=1

√
VℓCℓ

)2

.

The typical situation is that the contributions gℓ on level ℓ are given as differences
fℓ − fℓ+1 of approximations fℓ to f on the various levels, i.e. we have

f =
L−1∑
ℓ=1

(fℓ − fℓ+1)  
=gℓ

+ fL
=gL

with f1 = f. (6.5)

102

6.1 Stochastic trace estimation and multilevel Monte Carlo

If we assume that the cost Ĉℓ to evaluate fℓ decreases rapidly with the level ℓ,
the cost Cℓ for evaluating the differences gℓ = fℓ − fℓ+1 is well approximated by
Ĉℓ. The ratio of the total cost encountered when reducing the variance to a given
value between multilevel Monte-Carlo (with optimal choice of Nℓ) and standard
Monte-Carlo, see eq. 6.3, is then approximately given by(

L∑
ℓ=1

√
VℓĈℓ

)2 / (
V[f]Ĉ1

)
.

This is the basic quantitative relation indicating how the costs Ĉℓ to evaluate the
fℓ and the variances Vℓ of the differences fℓ − fℓ+1 have to relate in order for the
multilevel approach to be more efficient than standard Monte-Carlo estimation of
f .

If the computations are being performed on a single compute node, then com-
munications will (most likely) not play a big role in the overall execution time.
Thus, the computational effort (i.e. execution time) can be modeled well by e.g.
the number of nonzero elements in the matrices involved in the calculations. This
is for example the case for the Schwinger matrix that we consider in sect. 6.2.1.
In the main case under study here, i.e. matrices coming from lattice QCD dis-
cretizations, the situation is more difficult than this: as discussed in chapter 4,
global reductions and nearest-neighbor communications induce a non-linear be-
haviour in terms of execution time as we increase the number of nodes, which
is manifested more strongly for coarser levels. This renders the straighforward
connection between execution time and arithmetic work made above not realis-
tic. Furthermore, the assumption made on the rapid decrease in the cost at a
certain level ℓ as we move down in the multigrid hierarchy is also invalid. The
alternative is thus, when running on large-scale machines52, to optimize the total
computational effort in terms of the execution time at the various levels, rather
than modeling via the arithmetic work (we have used the latter in the Schwinger
case).

6.1.2 Stochastic estimation of the trace of a matrix

We now assume that we are given, in an indirect manner, a matrix A = (aij) ∈
Cn×n for which we want to compute the trace

tr(A) =
n∑
i=1

aii.

52Although our numerical tests in sects. 6.2.2 and 6.2.3 are on a single node, more realistic
scenarios will later involve many nodes.

103

6 Multigrid Multilevel Monte Carlo

Our basic assumption is that the entries aii of A are neither available directly nor
obtainable at decent computational cost. This is typically the case when A arises
as a function of a large (and sparse) matrix, the most common case being the
matrix inverse.

In a seminal paper [155], Hutchinson suggested to use a stochastic estimator to
approximate tr(A). The following theorem summarizes his result together with
the generalizations on the admissible probability spaces; see [156, 157], e.g.

Theorem 6.1.
Let P : Ω→ [0, 1] be a probability measure on a sample space Ω and assume that
the components xi of the vector x ∈ Cn are random variables depending on ω ∈ Ω
satisfying

E[xi] = 0 and E[xixj] = δij (where δij is the Kronecker delta). (6.6)

Then

E[xHAx] = tr(A) and V[xHAx] =
n∑

i,j,k,p=1

i ̸=j,k ̸=p

aijakpE[xixjxkxp].

In particular, if the probability space is such that each component xi is independent
from xj for i ̸= j, then

V[xHAx] =
n∑
i,j

i ̸=j

aijaij +
n∑
i,j

i ̸=j

aijajiE[x2i]E[x2j].

Proof. The proof is simple, but we repeat it here because the literature often
treats only the real and not the general complex case. We have

E[xHAx] =
n∑
i=1

aiiE(xixi) +
n∑

i,j=1,i ̸=j

aijE(xixj) = tr(A),

where the last inequality follows from eq. 6.6. Similarly

V[xHAx] = E
[
(xHAx− tr(A))(xHAx− tr(A))

]
= E

[(n∑
i,j=1

i ̸=j

xiaijxj
)(n∑

k,p=1

k ̸=p

xkakpxp
)]

= E
[n∑

i,j,k,p=1

i ̸=j,k ̸=p

aijakpxixjxkxp
]
=

n∑
i,j,k,p=1

i ̸=j,k ̸=p

aijakpE[xixjxkxp]. (6.7)

104

6.1 Stochastic trace estimation and multilevel Monte Carlo

Since the components xi are assumed to be independent, we have E[xixjxkxp] = 0
except when i = j, k = p (which does not occur in eq. 6.7) or i = k, j = p or
i = p, j = k. This gives

n∑
i,j,k,p=1

i ̸=j,k ̸=p

aijakpE[xixjxkxp] =
n∑
i,j

i ̸=j

aijaijE[xixjxixj] +
n∑
i,j

i ̸=j

aijajiE[xixjxjxi],

and in the first sum E[xixjxixi] = E[xixi]E[xjxj] = 1 by assumption, whereas in
the second sum we have E[xixjxjxi] = E[x2i]E[x2j].

Note that as a definition for the variance of a complex random variable y we used
E[(y − E(y)(y−E[y]] rather than E[(y−E[y])2] to keep it real and non-negative.

Standard choices for the probability spaces are to take x with identically and
independently distributed (i.i.d.) components as

xi ∈ {−1, 1} with equal probability 1
2
, (6.8)

xi ∈ {−1, 1,−i, i} with equal probability 1
4
, (6.9)

xi = exp(iθ) with θ uniformly distributed in [0, 2π], (6.10)

xi is N(0, 1) normally distributed. (6.11)

Corollary 6.2.
If the components xi are i.i.d. with the distribution in eq. 6.8 or eq. 6.11, then

V[xHAx] =
1

2
∥offdiag(A+ AT)∥2F ,

where ∥ · ∥F denotes the Frobenius norm and offdiag the offdiagonal part of a
matrix. If the components are i.i.d. with the distribution in eq. 6.9 or 6.10, then

V[xHAx] = ∥offdiag(A)∥2F .

Proof. For the distributions in eqs. 6.8 and 6.11, the components xi have only
real values and E[x2i] = 1. Therefore

n∑
i,j

i ̸=j

aijaij +
n∑
i,j

i ̸=j

aijajiE[x2i]E[x2j] =
n∑
i,j

i ̸=j

aijaij +
n∑
i,j

i ̸=j

aijaji

=
1

2

n∑
i,j

i ̸=j

(aij + aji)(aij + aji)

=
1

2
∥offdiag(A+ AT)∥2F .

105

6 Multigrid Multilevel Monte Carlo

For the distributions in eqs. 6.9 and 6.10 we have E[x2i] = 0, and thus

n∑
i,j

i ̸=j

aijaij +
n∑
i,j

i ̸=j

aijajiE[x2i]E[x2j] =
n∑
i,j

i ̸=j

aijaij = ∥offdiag(A)∥2F .

In a practical situation where we approximate tr(A) by averaging over N samples
we can compute the sample root mean square deviation along with the averages
and rely on the law of large numbers to assess the probability that the computed
mean lies within the σ, 2σ or 3σ interval. Several results on Hutchinson’s method
have been formulated which go beyond this asymptotic aspects by giving tail
or concentration bounds; see [158–160], e.g. For the sake of illustration we here
report a summary of these results as given in [143]. In our numerical examples, we
will simply work with the sample root mean square deviation to assess accuracy.

Theorem 6.3.
Let the distribution for the i.i.d. components of the random vectors x(m) be sub-
Gaussian, and let ϵ, δ ∈ (0, 1). Then for M = O(log(1/δ)/ϵ2) we have that the
probability for ⏐⏐⏐⏐⏐ 1M

M∑
m=1

(x(m))HAx(m) − tr(A)

⏐⏐⏐⏐⏐ ≤ ϵ∥A∥F (6.12)

is ≥ 1− δ.

Note that if A is symmetric positive semidefinite with λi denoting its (non-
negative) eigenvalues, then

∥A∥F =

(
n∑
i=1

λ2i

)1/2

≤
n∑
i=1

λi = tr(A),

implying that eq. 6.12 yields a (probabilistic) relative error bound for the trace.
Also note that the real distributions in eqs. 6.8 and 6.11 are sub-Gaussian [143].

6.1.3 Multilevel Monte-Carlo for the trace of the inverse

We now turn to the situation where we want to estimate tr(A−1) for a large
and sparse matrix A. Direct application of theor. 6.1 shows that an unbiased
estimator for tr(A−1) is given by

1

M

M∑
m=1

x(m)HA−1x(m) ≈ tr(A−1), (6.13)

106

6.1 Stochastic trace estimation and multilevel Monte Carlo

where the vectors x(m) are independent random variables satisfying eq. 6.6, and
that its variance is

1

M
∥offdiag(A−1 + A−T)∥2F or

1

M
∥offdiag(A−1)∥2F ,

depending on whether the components of x(m) satisfy eqs. 6.8, 6.11 or eqs. 6.9,
6.10, respectively.

Each time we add a sample m to eq. 6.13 we have to solve a linear system with
matrix A and right hand side x(m), and the cost for solving these linear systems
determines the cost for each stochastic estimate. For a large class of matrices,
multigrid methods represent particularly efficient linear solvers. We assume that
this is the case for our matrix A and now describe how to derive a multilevel
Monte-Carlo method for the approximation of tr(A−1) which uses the multigrid
hierarchy not only for the linear solver, but also to obtain a good representation
as in eq. 6.5 required for a multilevel Monte-Carlo approach.

6.1.3.1 Derivation of a multilevel Monte-Carlo method

Multigrid methods rely on the interplay between a smoothing iteration and a
coarse grid correction which are applied alternatingly. In the geometric inter-
pretation, where we view components of vectors as representing a continuous
function on a discrete grid, the smoother has the property that it makes the error
of the current iterate smooth, i.e. varying slowly from one grid point to the next.
Such error can be represented accurately by a coarser grid, and the coarse grid
correction solves for this coarse error on the coarse grid using a coarse grid rep-
resentation of the matrix. The solution is then interpolated back to the original
“fine” grid and applied as a correction to the iterate. The principle can be ap-
plied recursively using a sequence of coarser grids with corresponding operators,
the solves on the coarsest grid being obtained by direct factorization.

To obtain a multilevel Monte-Carlo decomposition we discard the smoother and
only consider the coarse grid operators and the intergrid transfer operators. The
coarse grid operators

Aℓ ∈ Cnℓ×nℓ , ℓ = 1, . . . , L,

the prolongation and restriction operators

Pℓ ∈ Cnℓ×nℓ+1 , Rℓ ∈ Cnℓ+1×nℓ , ℓ = 1, . . . , L− 1,

and the coarse system matrices

Aℓ+1 = RℓAℓPℓ, ℓ = 1, . . . , L− 1,

107

6 Multigrid Multilevel Monte Carlo

have all been introduced, in general, in chapter 3.

Using the accumulated prolongation and restriction operators

P̂ℓ = P1 · · ·Pℓ−1 ∈ Cn×nℓ , R̂ℓ = Rℓ−1 · · ·R1 ∈ Cnℓ×n, ℓ = 1, . . . , L,

where we put R̂1 = P̂1 = I ∈ Cn×n by convention, we regard P̂ℓA
−1
ℓ R̂ℓ as the

approximation to A−1 at level ℓ. We thus obtain a multilevel decomposition for
the trace as

tr(A−1) =
L−1∑
ℓ=1

tr
(
P̂ℓA

−1
ℓ R̂ℓ − P̂ℓ+1A

−1
ℓ+1R̂ℓ+1

)
+ tr(P̂LA

−1
L R̂L). (6.14)

This gives

tr(A−1) =
L−1∑
ℓ=1

E
[
(xℓ)H

(
P̂ℓA

−1
ℓ R̂ℓ − P̂ℓ+1A

−1
ℓ+1R̂ℓ+1

)
xℓ
]
+ E

[
(xL)HP̂LA

−1
L R̂Lx

L
]
,

with the components of xℓ ∈ Cn being i.i.d. stochastic variables satisfying eq. 6.6.
The unbiased multilevel Monte-Carlo estimator is then

tr(A−1) ≈
L−1∑
ℓ=1

1

Mℓ

Mℓ∑
m=1

(
(x(m,ℓ))HP̂ℓA

−1
ℓ R̂ℓx

(m,ℓ) − (x(m,ℓ))HP̂ℓ+1A
−1
ℓ+1R̂ℓ+1x

(m,ℓ)
)

+
1

ML

ML∑
i=1

(x(m,L))HP̂LA
−1
L R̂Lx

(m,L),

where the vectors x(m,ℓ) ∈ Cn are stochastically independent samples of the ran-
dom variable x ∈ Cn satisfying eq. 6.6.

The following remarks collect some important observations about this stochastic
estimator.

Remark 6.4.
Computationally, the estimator requires to solve systems of the form Aℓy

(m,ℓ) = z
with z = R̂ℓx

(m,ℓ). Since the matrices Aℓ arise from the multigrid hierarchy,
we directly have a multigrid method available for these systems by restricting the
method for A to the levels ℓ, . . . , L.

Remark 6.5.
Since for any two matrices B = (bij) ∈ Cn×m and C = (ckl) ∈ Cm×n, the trace of
their product does not depend on the order,

tr(BC) =
n∑
i=1

m∑
j=1

bijcji =
m∑
j=1

n∑
i=1

cjibij = tr(CB), (6.15)

108

6.1 Stochastic trace estimation and multilevel Monte Carlo

we have
tr(P̂LA

−1
L R̂L) = tr(A−1L P̂LR̂L).

So, instead of estimating the contribution tr(P̂LA
−1
L R̂L) in eq. 6.14 stochastically,

we can also compute it directly by inverting the matrix AL ∈ CnL×nL and com-
puting the product A−1L R̂LP̂L. Note that R̂L and P̂L are usually sparse with a

maximum of d, say, non-zero entries per row. The arithmetic work for A−1L R̂LP̂L
is thus of order O(dn2

L) for the product R̂LP̂L plus O(n3
L) for the inversion of AL

and the product A−1L (R̂LP̂L). Since the variance of xHP̂LA
−1
L R̂Lx is presumably

large, this direct computation can be much more efficient than a stochastic esti-
mation, even when we aim at only quite low precision in the stochastic estimate.

The direct inversions suggested in remark 6.4 are of important use when the
coarsest-level is small enough and communications over many nodes is not an
issue. This is the case for the numerical experiments with the Schwinger model
in sect. 6.2.1, where we run on a single node and the coarsest-level is indeed small
enough. This is not the case, though, for the tests presented in sects. 6.2.2 and
6.2.3 in the context of lattice QCD, where although we run on a single node, the
coarsest-level matrices are too large to invert directly.

Remark 6.6.
There are situations where R̂ℓP̂ℓ = I ∈ Cnℓ×nℓ, for example in aggregation based
multigrid methods, where the columns of Pℓ are orthonormal and Rℓ = PH

ℓ , see
[108, 161]. Then

tr(P̂ℓA
−1
ℓ R̂ℓ) = tr(A−1ℓ R̂ℓP̂ℓ) = tr(A−1ℓ),

and

tr(P̂ℓ+1A
−1
ℓ+1R̂ℓ+1) = tr(P̂ℓPℓA

−1
ℓ+1RℓR̂ℓ) = tr(PℓA

−1
ℓ+1RℓR̂ℓP̂ℓ) = tr(PℓA

−1
ℓ+1Rℓ).

This means that instead of the multilevel decomposition in eq. 6.14 we can use

tr(A) =
L−1∑
ℓ=1

tr
(
A−1ℓ − PℓA

−1
ℓ+1Rℓ

)
+ tr(A−1L),

in which the stochastic estimation on level ℓ now involves random vectors from
Cnℓ instead of Cn.

6.1.3.2 Discussion of the multilevel Monte-Carlo method

A profound analysis of the proposed multilevel Monte-Carlo method must take
the approximation properties of the representation of the matrix at the various

109

6 Multigrid Multilevel Monte Carlo

levels into account. This is highly problem dependent, and although we know
the properties of the specific problems at hand (i.e. Schwinger and lattice QCD),
formulating such an analysis for the multilevel Monte-Carlo method introduced
here, applied to these particular problems, remains a difficult task. So, here we
only provide a discussion of heuristics on why the proposed approach has the
potential to yield efficient multilevel Monte-Carlo schemes.

To simplify the discussion to follow, let us assume that the variance of the estima-
tor at level ℓ is given by the square of the Frobenius norm of the off-diagonal part.
This is the case, for example, if the components are i.i.d. with the distribution in
eq. 6.9 or 6.10; see coroll. 6.2. This Frobenius norm can be related to the singular
values of A. Recall that the singular value decomposition of a non-singular matrix
A is

A = UΣV H with U,Σ, V ∈ Cn×n, UHU = V HV = I, (6.16)

U = [u1| · · · |un], V = [v1| . . . |vn],
Σ = diag(σ1, . . . , σn), 0 < σ1 ≤ · · · ≤ σn,

with left singular vectors ui, right singular vectors vi and positive singular values
σi which we ordered by increasing value for convenience here. In the following we
base all our discussion on singular values and vectors. It is therefore worthwhile
to mention that in the case of a Hermitian matrix A this discussion simplifies in
the sense that then the singular values are the moduli of the eigenvalues, and left
and right singular vectors are identical and coincide with the eigenvectors.

If A ∈ Cn×n has singular values σi, i = 1, . . . , n, then

∥offdiag(A)∥2F =
n∑
i=1

σ2
i −

n∑
i=1

|aii|2, (6.17)

since ∥A∥2F =
∑n

i=1 σ
2
i ; see, e.g. [83]. For the trace of the inverse A−1 we thus

have

∥offdiag(A−1)∥2F =
n∑
i=1

σ−2i −
n∑
i=1

|(A−1)ii|2. (6.18)

since the reciprocals of the singular values of A, are the singular values of A−1.
Therefore, in a simplified manner—disregarding the second term in eq. 6.18—we
hypothesize that the small singular values of A are those who contribute most
to the variance for the Hutchinson estimator, see eq. 6.13, for tr(A−1). In high
performance computing practice, deflation has thus become a common tool, see
[40, 148, 162, 163], e.g., to reduce the variance: One precomputes the k, say,
smallest singular values σ1, . . . , σk of A in the singular value decomposition, see
eq. 6.16, together with their left singular vectors u1, . . . , uk. With the orthogonal

110

6.1 Stochastic trace estimation and multilevel Monte Carlo

projector
Π = UkU

H
k , where Uk = [u1| · · · |uk], (6.19)

we now have A−1 = A−1(I − Π) + A−1Π with

A−1(I − Π) =
n∑

i=k+1

viσ
−1
i uHi , A−1Π =

k∑
i=1

A−1uiu
H
i . (6.20)

This shows that in A−1(I − Π) we have deflated the small singular values of
A, so that we can expect a reduction of the variance when estimating the trace
of this part stochastically. The trace of the second part is equal to the sum∑k

i=1 u
H
i A
−1ui (see eq. 6.15), and A−1ui = σ−1i vi. So the second part can be

computed directly from the singular triplets computed for the deflation. If A is
Hermitian, the deflation approach simplifies and amounts to precomputing the k
smallest eigenpairs. We refer to the results in [40] for a more in-depth analysis
and discussion about the heuristics just presented.

The deflation approach is still quite costly, since one has to precompute the sin-
gular values and vectors, and if the size of the matrix increases it is likely that we
have to increase k to maintain the same reduction in the variance. Approximate
deflation has thus been put forward as an alternative [164, 165], where one can
use larger values for k while at the same time allowing that the contribution of
the small singular values to the variance is eliminated only approximately. One
then replaces Π by a more general projector of the form

Π = Ûk(V̂
H
k AÛk)

−1V̂ H
k A, Ûk, V̂k ∈ Cn×k

where now Ûk and V̂k can be regarded as containing approximate left and right
singular vectors, respectively, as their columns. Actually, it is sufficient that their
range is spanned by such approximations to left and right singular vectors, since
the construction of Π is invariant under transformations Û → ÛBU , V̂ → V̂ BV

with non-singular matrices BU , BV ∈ Ck×k. In the decomposition A−1 = A−1(I−
Π) + A−1Π we now have, again using eq. 6.15,

tr(A−1(I − Π)) = tr(A−1)− tr(Ûk(V̂
H
k AÛk)

−1V̂ H
k),

tr(A−1Π) = tr(Ûk(V̂
H
k AÛk)

−1V̂ H
k).

If k is relatively small, the second trace can be computed directly as in the exact
deflation approach. If we take larger values for k, we can estimate it stochastically.
The inexact deflation approach then becomes a two-level Monte-Carlo method.

If we look at our multilevel Monte-Carlo decomposition in eq. 6.4 with just two
levels, then it differs from inexact deflation in that the value for k is now very large,
namely the grid size at level 2 which usually is O(n). The matrix Ûk spanning

111

6 Multigrid Multilevel Monte Carlo

the approximate singular vectors is replaced by the prolongation operator P1,
and V̂ H

k corresponds to the restriction operator R1. The multigrid construction
principle should ensure that the range of P1 contains good approximations to
O(n) left singular vectors belonging to small singular values, and similarly for
RH

1 with respect to right singular vectors. This is why the variance reduction
can be expected to be efficient. We thus have a large value of k—proportional
to n—which targets at a high reduction of the variance of the first term. The
second term involves the second level matrix representation, which is still of large
size, and its trace estimator will, in addition, still have large variance. This is
the reason why we extend the approach to involve many levels, ideally until a
level L where we can compute the trace directly, so that we do not suffer from
a potentially high variance of a stochastic estimator. In the numerical results
to be reported in sect. 6.2, the variance is exposed via the number of stochastic
estimates required to obtain a given target accuracy. In all examples, the number
of stochastic estimates is small on the finer levels and increases substantially on
the coarser levels. So the numerical examples experimentally confirm the above
theoretical motivation.

To conclude this discussion, we note that several other techniques for variance
reduction have been suggested which can also be regarded as two-level Monte-
Carlo techniques. For example, [166, 167] take a decomposition A−1−p(A)+p(A)
with an appropriately chosen polynomial p(A) and then estimates tr(A−1−p(A))
stochastically. The “truncated solver” method of [168] follows a related idea by
subtracting an approximation to the inverse. A similar decomposition with p
being a truncated Chebyshev series approximation was considered in [144, 169,
170], for example, in which case tr(A−1 − p(A)) is actually neglected. The work
then resides in the stochastic estimation of tr(p(A)), thus avoiding to solve linear
systems.

Finally, we refer to [143] for a recent further variance reduction technique for
Hutchinson’s method, enhancing it by using vectors of the form A−1v with random
vectors v.

6.2 Numerical tests

In this section, we perform numerical experiments to test the performance of the
method introduced in sect. 6.1.3. We first test the method on the Schwinger oper-
ator in sect. 6.2.1, and then we proceed to further test it with two different lattice
QCD discretizations in sects. 6.2.2 and 6.2.3. The numerical tests in sect. 6.2.1
are the same ones described in ref. [1], and the ones in sect. 6.2.2 the same as in
ref. [133].

112

6.2 Numerical tests

The function for which we compute the trace is tr(f(A)) = A−1 for all the three
matrices used in this section.

6.2.1 Schwinger model

In the Schwinger case, the improvements of the multilevel approach compared to
“plain” Hutchinson (eq. 6.13) are tremendous and typically reach two orders of
magnitude or more. This is why we compare against deflated Hutchinson, where
we deflate the ndefl smallest eigenpairs of the matrix A. With U ∈ Cn×ndefl holding
the respective eigenvectors in its columns, we use the projector Π = I − UUH

as in eq. 6.19, resulting in the decomposition eq. 6.20. Therein we estimate
tr(A−1(I − Π)) with the Hutchinson estimator whereas tr(A−1Π) =

∑ndefl

i=1 λ
−1
i is

obtained directly from the deflated eigenpairs. We always performed a rough scan
to determine a number ndefl of deflated eigenpairs which is close to time-optimal.
The deflated Hutchinson approach usually gains at least one order of magnitude
in time and arithmetic cost over plain Hutchinson.

All our Schwinger computations were done on a single thread of an Intel Xeon
Processor E5-2699 v4, with a Python implementation. We aimed in this case at
a relative accuracy of ϵ = 10−3. This is done as follows: We first perform five
stochastic estimates, take their mean and subtract their sample root mean square
deviation, giving the value τ . In the deflated Hutchinson method we now perform
stochastic estimates with sampling vectors x(n) as long as their sample root mean
square deviation√ 1

M

M∑
m=1

((x(m))HA−1x(m) − t̄M)
2
, where t̄M =

1

M

M∑
n=1

(x(m))HA−1x(m)

exceeds ϵτ . For the multilevel Monte-Carlo method we have to prescribe a value
for the sample root mean square deviations ρℓ for the stochastic estimation of
each of the traces

tr
(
P̂ℓA

−1
ℓ R̂ℓ − P̂ℓ+1A

−1
ℓ+1R̂ℓ+1

)
, ℓ = 1, . . . , L− 1, (6.21)

from eq. 6.14, while we always compute the last term tr(P̂LA
−1
L R̂L) in eq. 6.14

non-stochastically as tr(A−1L R̂LP̂L), inverting AL explicitly. The requirement is
to have

L−1∑
ℓ=1

ρ2ℓ = (ϵτ)2,

so the obvious approach is to put ρℓ = ϵτ/
√
L− 1 for all ℓ. It might be advan-

tageous, though, to allow for a larger value of ρℓ on those level differences where

113

6 Multigrid Multilevel Monte Carlo

the cost is high, and we do so in this section for the Schwinger model. To prevent
a possible unlucky severe under-estimation of the exact mean square deviation
by the sample mean square deviation, we always perform at least five stochastic
estimates for each ℓ in eq. 6.21.

For each stochastic estimate for eq. 6.21 we have to solve linear systems with
the matrices Aℓ and Aℓ+1. This is done using a multigrid method based on the
same prolongations Pℓ, restrictions Rℓ and coarse grid operators Aℓ that we use to
obtain our multilevel decomposition in eq. 6.14. However, when multigrid is used
as a solver, we use the full hierarchy going down to coarse grids of very small sizes,
whereas in the multilevel decomposition (eq. 6.14) used in multilevel Monte-Carlo
we might stop at an earlier level; we do not do this in our computations, though,
because the number of levels is relatively small in our examples.

For the Schwinger case in this section, we report mainly two quantities. The first
is the number of stochastic estimates that are performed at each level difference
in eq. 6.21 for multilevel Monte-Carlo together with the number of stochastic es-
timates in deflated Hutchinson (which always requires linear solves at the finest
level). These numbers may be interpreted as illustrating how multilevel Monte-
Carlo moves the higher variances to the coarser level differences. As a second
quantity, we report the approximate arithmetic cost for both methods, deflated
Hutchinson and multilevel Monte-Carlo, which we obtain using the following cost
model53 for the computation of a quantity54 xHPℓA

−1
ℓ Rℓx: We only consider the

matrix-vector products occurring in this computation. These arise through mul-
tiplications with Pℓ and Rℓ and through the matrix-vector multiplications that we
perform in the multigrid solver that we use to compute A−1ℓ y. For every matrix-
vector product of the generic form Bx we assume a cost of nnz(B), the number
of nonzeros in B. In this manner, one unit in the cost model roughly corresponds
to a multiplication plus an addition. This applies to the computation of residu-
als, of prolongations and restrictions and the coarsest grid solve in the multigrid
solver as well as to the “global” restrictions and prolongations R̂ℓ, P̂ℓ used in each
stochastic estimate in multilevel Monte-Carlo. For the latter method, we also
count the cost for the direct computation of the trace at the coarsest level, which
involves the inversion of the coarsest grid matrix and additional matrix-matrix
products. This cost model thus only neglects vector-vector and scalar operations
and is thus considered sufficiently accurate for our purposes.

53This cost model applies here for the Schwinger case only. For this particular problem, we
have used V-cycles in its corresponding multigrid solver, instead of the K-cycles currently
under use in DD-αAMG. We do not have such a cost model for the solves in DD-αAMG,
which involves a relatively complicated formulation due to the combination of K-cycles and
communications when we go to a large number of nodes.

54For both problems here, Schwinger and lattice QCD, we used a standard aggregation (see
def. 3.17), which thanks to remark 6.6 allows us to avoid accumulated interpolation and
restriction operators P̂ℓ and R̂ℓ and use Pℓ and Rℓ instead.

114

6.2 Numerical tests

We used a Schwinger matrix arising from a thermalized configuration within a
Markov process. This guarantees that the random gauge links obey a Boltzmann
distribution with a given temperature parameter. The matrix belongs to anN×N
lattice with N = 128, and is thus of size 2N2×2N2 = 32, 768× 32, 768.

The multigrid hierarchy for the Schwinger matrix was obtained through the ag-
gregation based approach described in chapter 3: at each level, the operator
represents a periodic nearest neighbor coupling an a 2-dimensional lattice of de-
creasing size. At each lattice site we have several, d say, degrees of freedom
(dofs), i.e. variables belonging to a lattice site are vectors of length d. When
going from one level to the next, we subdivide the lattice into small sublattices—
the aggregates. Each aggregate becomes a single lattice site on the next level.
The corresponding restriction operator is obtained by computing (quite inexact)
approximations to the d smallest eigenvectors, the components of which are as-
sembled over the aggregates and orthogonalized. This gives restriction operators
which are orthonormal, and since we take the prolongations to be their adjoints,
we are in the simplified situation of remark 6.6 for estimating the traces of the
differences in multilevel Monte-Carlo.

The Schwinger matrix is not Hermitian, and from lemma 2.12 its eigenvalues come
in complex conjugate pairs. This spin symmetry can be preserved on the coarser
levels if one doubles the dofs, as was explained in chapter 3 (see in particular def.
3.17 in there).

We built a multigrid hierarchy with four levels. For the aggregates, at all levels we
always aggregated 4× 4 sublattices into one lattice site on the next level, and we
started with 2 dofs for the second level and 4 for all remaining levels. Those dofs
are then doubled because we implemented the spin structure preserving approach.
Tab. 6.1 summarizes the most important information on the multigrid hierarchy.
It also shows the five different (negative) values for the mass m that we used in
our experiments. These values are physically meaningful, and for all of them the
spectrum of SN is contained in the right half plane. As m becomes smaller, SN

becomes more ill-conditioned, so the cost for each stochastic estimate increases.
When solving linear systems at the various levels, we used one V-cycle of multigrid
with two steps of Gauss-Seidel pre- and post-smoothing as a preconditioner for
flexible GMRES [34]. Our implementation was done in Python55, and the relative
tolerance for the solves at each level was set to 10−7.

Fig. 6.1 shows our results. We tuned the required sample root mean square
deviation ρℓ at each level due to the observation that this time the sample root
mean square deviation is comparably small on the last level difference. The values
we chose, independently of the mass parameterm, are ρ1 =

√
0.4ϵτ , ρ2 =

√
0.55ϵτ

and ρ3 =
√
0.05ϵτ for all masses.

55The code can be found in the GitHub repository https://github.com/Gustavroot/MLMCTraceComputer

115

6 Multigrid Multilevel Monte Carlo

Schwinger model

N ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 L

128 nℓ 2 · 1282 4 · 322 8 · 82 8 · 22 4
nnz(SNℓ) 2.94e5 1.64e5 2.46e4 1024

m −0.1320 −0.1325 −0.1329 −0.1332 −0.1333
ndefl 384 384 512 512 512

Table 6.1: Parameters and quantities for the numerical experiments with the
Schwinger operator.

-0
.1

333

-0
.1

332

-0
.1

329

-0
.1

325

-0
.1

32

m

0

2000

4000

6000

8000

10000

12000

14000

#
 e

s
ti
m

a
te

s

Schwinger, eps = 0.001

l = 1

l = 2

l = 3

defl. Hutchinson

-0.1333-0.1332 -0.1329 -0.1325 -0.132

m

0

0.5

1

1.5

2

2.5

3

3.5

c
o

s
t

10
11 Schwinger, eps = 0.001

multilevel MC

defl. Hutch w/o eigen comp.

Figure 6.1: Multilevel Monte-Carlo and deflated Hutchinson for the Schwinger
matrix: no of stochastic estimates on each level difference eq. 6.21 and total cost
for different masses m.

We compared against deflated Hutchinson with a time-optimal number of de-
flated eigenpairs, and we did not count the cost for the eigenpair computation.
The figure shows that multilevel Monte-Carlo becomes increasingly efficient over
deflated Hutchinson as the masses become smaller, ending up in a one order of
magnitude improvement in cost for the smallest. Interestingly, we also see that
the number of stochastic estimates to be performed on each level in multilevel
Monte-Carlo depends on the masses only very mildly, whereas the number of
stochastic estimates increase rapidly in deflated Hutchinson.

Further optimizations may be achieved by skipping some of the levels56. While
all levels are generally needed in the multigrid solver, we could, for example,
skip every other level in the multilevel Monte-Carlo decomposition eq. 6.14. First
experiments in this Schwinger setting and with ϵ = 10−3 show that this can indeed
pay off: The second level matrix A2 in the Schwinger example is such that the
work for solving a system with A2 is comparable to that for solving a system
with A1. So, if we skip level 2 or levels 2 and 3 together, although we need more
stochastic estimates than what we need when we use all levels, we have less overall

56This idea of skipping levels was suggested by an anonymous referee of our paper [1].

116

6.2 Numerical tests

work. This work is comparable in both cases and about 40% less than the total
work when using all levels.

6.2.2 LQCD I: clover-improved Wilson-Dirac operator

We turn now from the relatively simple Schwinger model to lattice QCD, and
test our multilevel Monte-Carlo method for computing the trace of the inverse of
the 4D Dirac operator, in the particular case of the clover-improved Wilson-Dirac
discretization57.

We have performed the same numerical tests as in the Schwinger case, now with
a lattice QCD gauge configuration for a lattice of size58 64× 323. We used three
multigrid levels with aggregation blocks of size 44 from the finest level to the first
coarse one, and of size 24 from the first coarse level to the coarsest. Furthermore,
for our multilevel Monte-Carlo trace computation we tuned the stopping criteria
for the sample root mean square deviations to be ρ1 =

√
0.95ϵτ and ρ2 =

√
0.04ϵτ

for the first two difference levels. Unlike in the Schwinger case, we compute
the trace at the coarsest level stochastically rather than directly, and we tuned
ρ3 =

√
0.01ϵτ for that level. The trace at the coarsest level is computed via

(non-deflated) Hutchinson, and unlike in our Schwinger numerical experiments,
we compare the overall multilevel Monte-Carlo against non-deflated Hutchinson.
We set ϵ = 10−4, and τ is obtained again by averaging over five estimates.

To implement both our multilevel Monte Carlo and the Hutchinson method, we
used DD-αAMG whenever solving a linear system was needed at different levels
in the multilevel hierarchy. Our code can be found at this GitHub repository,
and all of our multilevel Monte Carlo computations for the Wilson operator were
done on 32 processes and 1 OpenMP thread of a single Intel(R) Xeon(R) CPU
E5-2699 v4 @ 2.20GHz node. As in the Schwinger case, we have shifted the
value of the mass parameter m0 to values more negative than the one originally
employed in the construction of the corresponding Markov chain, to reach more
ill-conditioned situations. Due to this shift to harder matrices, we have seen
the need to enable our coarsest-level improvements from chapter 4 and we found
that, without enabling them, the execution times were prohibitively large when
going to our smallest values of m0 and we would not have been able to perform
our multilevel Monte Carlo tests in a reasonable amount of time. Some of the
parameters in the multigrid hierarchy in DD-αAMG change with respect to the
default values (see tab. 4.2) when we want to have a good multigrid hierarchy

57This comes from collaborative work with Jose Jiménez and my involvement in the supervision
of his master thesis project.

58This configuration was provided by the lattice QCD group at the University of Regensburg via
the Collaborative Research Centre SFB-TRR55, with parameters m0 = −0.332159624413
and csw = 1.9192 [171].

117

6 Multigrid Multilevel Monte Carlo

for multilevel Monte Carlo computations; in tab. 6.2 we list the changed ones.
The parameters have been changed, compared to the base ones in tab. 4.2, to
improve the quality of the operators at levels ℓ = 2 and ℓ = 3 as they will be
more similar now to the finest-level one, in the sense of having a more similar near
kernel (see sect. 3.3.1 for more on the concept of near kernel, and sects. 6.1.3.1 and
6.1.3.2 where we have discussed why it is important to have “similar” operators
when going from one level to the next in the multigrid hierarchy employed in our
multilevel Monte Carlo method).

As discussed before, we present execution times in this section rather than results
in terms of a cost model. We do so mainly because a cost model for DD-αAMG
would be quite involved, mostly due to the mixture of K-cycles with different
types of communications (i.e. global and nearest-neighbors).

ℓ = 1 number of test vectors 28
boostrap setup iterations 7

ℓ = 2 boostrap setup iterations 6

Table 6.2: Parameters in DD-αAMG for multilevel Monte Carlo.

As in fig. 6.1 for Schwinger, we present our results in the Wilson case in fig. 6.2,
where we see a similar behaviour: the two difference levels are not affected by
changes in the value of m0. The coarsest level does get affected by changes in m0,
leading to values in the number of estimates as large as in Hutchinson. But due
to the coarsest-level’s small size, the overall execution time is then considerably
smaller in the multilevel Monte Carlo case, compared to the Hutchinson case, by
a factor of around 5 for the most ill-conditioned m0.

6.2.3 LQCD II: twisted mass operator

We apply now our multigrid multilevel Monte Carlo method to twisted mass
matrices. The numerical tests are the same as for Wilson, but in this case we have
used a 96 × 483 lattice59. The coarsest-level solves are done now via MUMPS.
Similar to tab. 4.6, the DD-αAMG parameters used in the run, changed with
respect to tab. 4.2, can be found in tab. 6.3. At the coarsest level, we have set
δ = 1.0.

For our multilevel Monte-Carlo trace computation we have tuned the stopping
criteria for the sample root mean square deviations to be ρ1 =

√
0.45ϵτ , ρ2 =

59From the Extended Twisted Mass Collaboration, provided to us by Jacob Finkenrath, who
is part of CaSToRC at the Cyprus Institute. The main parameters of this configuration are
κ = 0.137290, csw = 1.57551 and µ = 0.0009.

118

6.2 Numerical tests

Figure 6.2: Multilevel Monte-Carlo and “plain” Hutchinson for the clover-
improved Wilson-Dirac matrix: no of stochastic estimates on each level difference
eq. 6.21 and total execution time for different masses m. Contrary to fig. 6.1
where we have used connecting lines in the plots, we have fitted here the data
with exponentials. For ℓ = 1, the values on the left plot are around 40 and on
the right plot around 2000.0. The corresponding (approximate) values for ℓ = 2
are 90 and 1000.0.

√
0.45ϵτ , ρ3 =

√
0.09ϵτ and ρ4 =

√
0.01ϵτ . The trace at the coarsest level is com-

puted via (non-deflated) Hutchinson, and we compare here the overall multilevel
Monte-Carlo against non-deflated Hutchinson. We have set ϵ = 2.0 · 10−5, and τ
is obtained again by averaging over five estimates.

The computations were done on a single node Intel(R) Xeon(R) Platinum 8180
CPU @ 2.50GHz with 56 cores and 1.5 TB or RAM. We ran with 54 processes
and 1 OpenMP thread per process. Tab. 6.4 shows the results of our run.

The last row in tab. 6.4 displays the total computational gain of our multilevel
method over (non-deflated) Hutchinson, with a speedup of a bit over a factor of 5.
But, more importantly, we see a tremendous algorithmic gain when comparing the
first difference level in the multilevel Monte Carlo method versus Hutchinson: we
see a reduction in the number of estimates of the former of around 18 times smaller
than the latter. This algorithmic gain is spoiled mostly by the expensive execution
time associated to the solves of the operator at the second level: the time for
solving with the operator at the finest level is only a factor of 2.4 more expensive
than solving at the second level, which is the main element bringing down the
algorithmic factor of 18 down the computational factor of 5. This interference
of the second-level operator motivates us again to skip levels in multilevel Monte
Carlo: in the Schwinger model, the second-level operator contained, roughly,
the same number of nonzero entries as the finest-level one, and skipping that
level in the multilevel Monte Carlo computation represented improvements in the
computational results, with relatively small increase in the number of estimates.

119

6 Multigrid Multilevel Monte Carlo

ℓ = 1 number of test vectors 32
post-smoothing steps 4

boostrap setup iterations 8
number of test vectors 36
post-smoothing steps 3

ℓ = 2 boostrap setup iterations 7
ℓ = 3 restart length of FGMRES 5

maximal restarts of FGMRES 2
relative residual tolerance 10−1

number of test vectors 36
size of lattice-blocks for aggregates 24

pre-smoothing steps 0
post-smoothing steps 3

Minimal Residual iterations 4
boostrap setup iterations 6

ℓ = 4 restart length of GMRES 60
maximal restarts of FGMRES 20
relative residual tolerance 10−1

Table 6.3: Base parameters in our DD-αAMG solves, for multilevel Monte Carlo
with MUMPS.

The results in tab. 6.4 seem to indicate that skipping the second level might
be a good idea again in the twisted mass case. We might see more algorithmic
loss in twisted mass than with the Schwinger model, but the combination of our
method with deflation might overcome this issue (this is future work, though; see
sect. 6.3).

6.3 Outlook on multigrid multilevel Monte Carlo

The results in sect. 6.2.1 are remarkable, and they have motivated us to further
perform the tests in sects. 6.2.2 and 6.2.3. The performance gains in the latter
two sections, i.e. in the context of lattice QCD, although not compared yet to
deflated Hutchinson, show the great potential of our multigrid multilevel Monte
Carlo method when applied to lattice QCD matrices.

Due to each level difference (and level, the coarsest) in our multigrid multilevel
Monte Carlo being computed via Hutchinson, the method is very adaptable, in
the sense that we can now further enhance each level difference, via different
already-existing methods typically used for the computation of tr f(A) in lattice
QCD. Two of these methods are deflation [40] and hierarchical probing [41]. We

120

6.3 Outlook on multigrid multilevel Monte Carlo

measurement Mult. MC Hutchinson

ℓ = 1 # estimates 63 1164
time (seconds) 17,010.0 221,160.0

ℓ = 2 # estimates 172 -
time (seconds) 15,480.0 -

ℓ = 3 # estimates 903 -
time (seconds) 9,030.0 -

ℓ = 4 # estimates 7715 -
time (seconds) 1,543.0 -

total # estimates - 1164
total time (seconds) 43,063.0 221,160.0

Table 6.4: Results for the application of multigrid multilevel Monte Carlo in the
twisted mass case. For multilevel Monte Carlo, ℓ = 1, ℓ = 2 and ℓ = 3 represent
difference levels, wherereas ℓ = 4 is the coarsest level. For the Hutchinson
method there are no difference levels, hence ℓ = 1 is the only option.

will pursue this line of research further, still in the context of both Wilson and
twisted mass fermions, and we will combine our multigrid multilevel Monte Carlo
method with deflation and hierarchical probing, within the PhD research work of
Jose Jiménez. Deflation, in particular, is of importance in combination with our
method: when taking difference levels, and due to the approximate nature of the
test vectors and furthermore of P and R due to local coherence, there might be
some outlying eigenvectors which might be easy to pick and deflate. Our method
is not restricted, though, to be combined with deflation and probing only, hence
many other (algorithmic) doors have been opened with the introduction of this
new technique, and we will also explore some of them.

Another interesting feature of the method introduced here, but this time of a
rather more computational nature, is the possibility to use agglomeration, as
discussed in sect. 4.5, in a dynamic way at every level: we can run the first
difference level on the total number of nodes, but then we can re-factor the code
to run the second level difference in an agglomerated/batched way, i.e. we can
run this second difference level on for example a quarter of the total number of
nodes, and each subset of processes can run a certain number of estimates (i.e. a
batch) before all the subsets synchronize to check for convergence. This process
can be repeated recursively and coarser difference levels can be computed on less
nodes i.e. with an even more aggressive agglomeration. We will investigate this
in future work.

121

List of Figures

2.1 Our convention for gauge links on the lattice. Image taken from
[45]. A more common convention is the one where the gauge links
go in the opposite direcion [43]. 14

2.2 Left panel : spectrum of a 44 Wilson-Dirac operator with m0 = 0
and csw = 0. Right panel : spectrum of a 44 clover improved Wilson-
Dirac operator with m0 = 0 and csw = 1. Image taken from [45]. . 17

2.3 Left panel : connected pieces of a meson correlator. Rigt panel :
disconnected pieces of a meson correlator. Image taken from [43]. 20

3.1 Error e(k) of the Gauss-Seidel method when applied to the Laplace
2D problem with random initial guess x(0) and k = 1 iterations for
the left plot and k = 20 iterations for the right plot. 38

3.2 Linear interpolation of a vector on the coarse grid to the fine grid
in a one-dimensional lattice. Image taken from [80]. 41

3.3 Construction of P from the decomposition, based on local coher-
ence, of a few vectors from the near kernel of the Dirac operator.
Image taken from [45]. 46

3.4 Comparing computational cost for solving linear systems with a
configuration from a BMW collaboration configuration60 using DD-
αAMG and a Krylov subspace method. The left plot reports on
timings for the solve only, whereas the right plot includes the multi-
grid setup time. Both plots were generated on the JUROPA high
performance computer from the Jülich Supercomputing Centre. . 52

123

LIST OF FIGURES

4.1 Tuning of the parameters k and d . The color of each square in the
heatmap from the left represents the total execution time of the
whole DD-αAMG solver, while the right corresponds to the time
spent at the coarsest level. The configuration was for a lattice of
size 128×643; we used 32 nodes with 48 OpenMP threads, each. All
these computations were done for m0 = −0.355937 (i.e. the most
ill-conditioned case in fig. 4.2). The darkest boxes in the heatmap
on the left all represent times larger than 200 seconds for d = 0 and
around 92 seconds for (k, d) = (0, 4). The numbers in the boxes on
the right indicate the average number of iterations at the coarsest
level during the whole multigrid solve. 70

4.2 Total execution time of the solve phase in DD-αAMG as the system
becomes more ill-conditioned (i.e. as m0 becomes more negative).
The vertical dashed line closest to -0.354 represents the value with
which the Markov chain was generated and the vertical dashed
line closest to -0.356 represents mcrit. The right plot zooms into
the region where the old version of the solver does not perform well. 72

4.3 Strong scaling tests on Wilson fermions for the new coarsest-level
additions. The solves were applied over a 128×643 lattice. Old
means the previous version of DD-αAMG without the coarsest-
level improvements introduced in this chapter, and the vertical
axis represents the whole solve time. The dashed lines indicate
how both cases would behave in case of perfect scaling. All these
computations were done for m0 = −0.355937 (i.e. the most ill-
conditioned case in fig. 4.2). 74

4.4 Strong scaling tests on Wilson fermions for the new coarsest-level
additions. The solves were applied over a 128×643 lattice. Old
means the previous version of DD-αAMG without the coarsest-
level improvements discussed in this chapter, and the vertical axis
represents the whole solve time. The dashed lines indicate how
both cases would behave in case of perfect scaling. All these com-
putations were done for m0 = −0.35371847789. 75

4.5 Strong scaling tests on twisted mass fermions for the new coarsest-
level additions. Left : µc = 8.0, comparing the previous version
of DD-αAMG (old) with the one including coarsest-level improve-
ments (new), and total representing the whole solve time. Right :
strong scaling plus running over different values of µc, with only
total (and not coarsest) times plotted. 76

5.1 One step of DD-αAMG’s 3-level multigrid (MG). 84

124

LIST OF FIGURES

5.2 Illustration of how we mapped the domain-decomposition blocks
to be computed to the CUDA threads used for such computations.
Note that M ≥ N i.e. {Bi} is a subset of {DDi}. The illustration
here is for the case when our domain-decomposition block size is
44 and the CUDA block size is 96 with 6 CUDA threads per lattice
site. 90

5.3 Four hopping terms in 2D. 91

5.4 Left : CPU coarsening. Right : GPU coarsening. 95

5.5 Strong scaling for m0 = −0.35371847789 of the old version of DD-
αAMG (before the GPU improvements) and the new (running on
GPUs) version. The solid lines represent total execution time of a
whole solve, and the dashed lines the time spent on coarser levels.
The dotted line exemplifies how perfect scaling would look like in
the hybrid solver. For CPU executions, 1 MPI process corresponds
to 1 node, and for GPU executions we associate 4 MPI processes
to each node with 1 GPU per MPI process. 96

6.1 Multilevel Monte-Carlo and deflated Hutchinson for the Schwinger
matrix: no of stochastic estimates on each level difference eq. 6.21
and total cost for different masses m. 116

6.2 Multilevel Monte-Carlo and “plain” Hutchinson for the clover-improved
Wilson-Dirac matrix: no of stochastic estimates on each level dif-
ference eq. 6.21 and total execution time for different masses m.
Contrary to fig. 6.1 where we have used connecting lines in the
plots, we have fitted here the data with exponentials. For ℓ = 1,
the values on the left plot are around 40 and on the right plot
around 2000.0. The corresponding (approximate) values for ℓ = 2
are 90 and 1000.0. 119

125

List of Tables

2.1 The twelve fundamental fermions divided into quarks and leptons,
with their corresponding charge and mass. Table taken from [42]. 6

2.2 The forces experienced by different fundamental fermions. Table
taken from [42]. 6

2.3 Exchange bosons for the four forces in nature. The relative strengths
are approximate indicative values for two fundamental particles at
a distance of 1 fm = 10−15 m (roughly the radius of a proton).
Table taken from [42]. 7

2.4 Quantum numbers of the most commonly used meson interpola-
tors. Table taken from [43]. 20

4.1 Effect of the block diagonal preconditioner (BDP) on coarsest-level
solves in DD-αAMG, where we have the BDP as the only precon-
ditioner of GMRES. The second and third columns are average
number of iterations at the coarsest level in the solve phase. We
have used configuration D450r010n1 here with different values of
m0. 68

4.2 Base parameters in our DD-αAMG solves. 69

4.3 Effect of pipelining on the whole DD-αAMG solver. We have used
configuration D450r010n1 here with m0 = −0.355937. 70

4.4 Execution times for parts of the coarse grid solves with and without
pipelining. Times in last three columns are in seconds. 71

4.5 Number of iterations of the outermost FGMRES in DD-αAMG as
m0 moves down to more ill-conditioned cases. 72

4.6 Base parameters in our DD-αAMG solves, with MUMPS. 79

126

LIST OF TABLES

4.7 Execution times for the comparison of MUMPS versus no MUMPS
in coarsest-level solves in a twisted mass gauge configuration with
a lattice size of 128× 643. The times are in seconds. 80

5.1 Two types of speedup for the smoother on GPUs, one taking into
account only computations and the second one (last column) in-
cluding times for transferring data from the CPU to the GPU and
viceversa. The first column indicates the size of the local lattice.
NVIDIA Quadro P6000 GPUs were used. 93

5.2 Time per SAP call versus domain decomposition block size, on a
lattice of size 64×323 with two processes and one GPU per MPI
process. NVIDIA Quadro P6000 were used. 94

5.3 More detailed timings of some multigrid components in DD-αAMG,
corresponding to the run with 64 processes from fig. 5.5. Times here
are in seconds. Coarse grid time represents in this case the total
time spent at ℓ = 2 and ℓ = 3 combined. The columns labeled as
CPU and GPU1 correspond to the data displayed in fig. 5.5. . . . 96

6.1 Parameters and quantities for the numerical experiments with the
Schwinger operator. 116

6.2 Parameters in DD-αAMG for multilevel Monte Carlo. 118

6.3 Base parameters in our DD-αAMG solves, for multilevel Monte
Carlo with MUMPS. 120

6.4 Results for the application of multigrid multilevel Monte Carlo in
the twisted mass case. For multilevel Monte Carlo, ℓ = 1, ℓ = 2 and
ℓ = 3 represent difference levels, wherereas ℓ = 4 is the coarsest
level. For the Hutchinson method there are no difference levels,
hence ℓ = 1 is the only option. 121

127

List of Algorithms & Scripts

3.1 Additive SAP (block Jacobi) . 30

3.2 Multiplicative SAP (block Gauss-Seidel) 30

3.3 Arnoldi process . 32

3.4 Flexible GMRES (FGMRES) . 35

3.5 Two-level V-cycle with post-smoothing 44

3.6 K-cycle . 50

3.7 Bootstrap AMG setup . 51

4.1 Arnoldi process . 57

4.2 Leja ordering of harmonic Ritz values 62

4.3 Polynomialy-Preconditioned GMRES(m) 62

4.4 Latency 1 pipelined preconditioned GMRES 66

4.5 Latency 1 pipelined preconditioned GCRO-DR 67

5.1 SAP on CPUs . 86

5.2 SAP on GPUs . 88

128

Bibliography

[1] Andreas Frommer, Mostafa Nasr Khalil, and Gustavo Ramirez-Hidalgo. A
multilevel approach to variance reduction in the stochastic estimation of the
trace of a matrix. arXiv preprint arXiv:2108.11281, 2021. Accepted in the
SIAM Journal on Scientific Computing.

[2] Jesus Espinoza-Valverde, Andreas Frommer, Gustavo Ramirez-Hidalgo, and
Matthias Rottmann. Coarsest-level improvements in multigrid for lattice
QCD on large-scale computers. arXiv preprint arXiv:2205.09104, 2022.

[3] John Campbell, Joey Huston, and Frank Krauss. The Black Book of Quan-
tum Chromodynamics: a Primer for the LHC Era. Oxford University Press,
2018.

[4] Walter Greiner, Stefan Schramm, and Eckart Stein. Quantum Chromody-
namics. Springer Science & Business Media, 2007.

[5] Kenneth G Wilson. Confinement of quarks. Physical review D, 10(8):2445,
1974.

[6] Tanja Bergrath, Maria Ramalho, Richard Kenway, et al. PRACE
scientific annual report 2012. Technical report, PRACE, 2012.
http://www.prace-ri.eu/IMG/pdf/PRACE Scientific Annual Report

2012.pdf, p. 32.

[7] Martyn Guest, Giovanni Aloisio, Richard Kenway, et al. The scientific case
for HPC in Europe 2012 - 2020. Technical report, PRACE, October 2012.
http://www.prace-ri.eu/PRACE-The-Scientific-Case-for-HPC, p. 75.

[8] S. Dürr, Z. Fodor, J. Frison, C. Hoelbling, R. Hoffmann, S. D. Katz,
S. Krieg, T. Kurth, L. Lellouch, T. Lippert, K. K. Szabo, and G. Vul-
vert. Ab initio determination of light hadron masses. Science, 322(5905):

129

BIBLIOGRAPHY

1224–1227, 2008. ISSN 0036-8075. doi: 10.1126/science.1163233. URL
http://science.sciencemag.org/content/322/5905/1224.

[9] Thomas A. DeGrand and Pietro Rossi. Conditioning techniques for dy-
namical fermions. Comput. Phys. Commun., 60:211–214, 1990. doi:
10.1016/0010-4655(90)90006-M.

[10] S. Fischer, A. Frommer, U. Glassner, T. Lippert, G. Ritzenhofer, and
K. Schilling. A parallel SSOR preconditioner for lattice QCD. Comput.
Phys. Commun., 98:20–34, 1996. doi: 10.1016/0010-4655(96)00089-6.

[11] Martin Lüscher. Local coherence and deflation of the low quark modes in
lattice QCD. JHEP, 2007(07):081, 2007. URL http://stacks.iop.org/

1126-6708/2007/i=07/a=081.

[12] Andreas Frommer, Andrea Nobile, and Paul Zingler. Deflation and flexi-
ble SAP-preconditioning of GMRES in lattice QCD simulations. 4 2012.
arXiv:1204.5463.

[13] Martin Lüscher. Solution of the Dirac equation in lattice QCD using a
domain decomposition method. Comput. Phys. Commun., 156:209–220,
2004. doi: 10.1016/S0010-4655(03)00486-7.

[14] R Ben-Av, Achi Brandt, M Harmatz, E Katznelson, PG Lauwers, Shay
Solomon, and K Wolowesky. Fermion simulations using parallel transported
multigrid. Physics Letters B, 253(1-2):185–192, 1991.

[15] Richard C Brower, K Moriarty, E Myers, and Claudio Rebbi. The multigrid
method for fermion calculations in quantum chromodynamics. Multigrid
Methods: Theory, Applications, and Supercomputing, SF McCormick, ed,
110:85–100, 1987.

[16] Thomas Kalkreuter. Multigrid methods for propagators in lattice gauge
theories. Journal of computational and applied mathematics, 63(1-3):57–68,
1995.

[17] Jeroen C Vink. Multigrid inversion of staggered and Wilson fermion oper-
ators with SU(2) gauge fields in two dimensions. Physics Letters,(Section)
B;(Netherlands), 272(1/2), 1991.

[18] J. C. Osborn, R. Babich, J. Brannick, R. C. Brower, M. A. Clark, S. D.
Cohen, and C. Rebbi. Multigrid solver for clover fermions. PoS, LAT-
TICE2010:037, 2010. doi: 10.22323/1.105.0037.

[19] Richard C Brower, MA Clark, Alexei Strelchenko, and Evan Weinberg.
Multigrid for staggered lattice fermions. arXiv preprint arXiv:1801.07823,
2018.

130

http://science.sciencemag.org/content/322/5905/1224
http://stacks.iop.org/1126-6708/2007/i=07/a=081
http://stacks.iop.org/1126-6708/2007/i=07/a=081

BIBLIOGRAPHY

[20] Saul D Cohen, RC Brower, MA Clark, and JC Osborn. Multigrid algorithms
for domain-wall fermions. arXiv preprint arXiv:1205.2933, 2012.

[21] J.C. Osborn. QOPQDP software. https://github.com/usqcd-software/
qopqdp.

[22] OpenQCD. https://luscher.web.cern.ch/luscher/openQCD/. 2012.

[23] QUDA: A library for QCD on GPUs. http://lattice.github.io/quda/.
Accessed: 2022-04-11.

[24] Andreas Frommer, Karsten Kahl, Stefan Krieg, Björn Leder, and Matthias
Rottmann. Adaptive aggregation-based domain decomposition multigrid for
the lattice Wilson-Dirac operator. SIAM journal on scientific computing,
36(4):A1581–A1608, 2014.

[25] Andreas Frommer, K Kahl, S Krieg, B Leder, and M Rottmann. An
adaptive aggregation based domain decomposition multilevel method for
the lattice Wilson-Dirac operator: Multilevel results. arXiv preprint
arXiv:1307.6101, 2013.

[26] M. Rottmann, A Strebel, S. Heybrock, S. Bacchio,
B. Leder, and I Kanamori. DD-αAMG software, Wilson.
https://github.com/DDalphaAMG/DDalphaAMG, .

[27] Constantia Alexandrou, Simone Bacchio, Jacob Finkenrath, Andreas From-
mer, Karsten Kahl, and Matthias Rottmann. Adaptive aggregation-based
domain decomposition multigrid for twisted mass fermions. Physical Review
D, 94(11):114509, 2016.

[28] Simone G Bacchio. Simulating Maximally Twisted Fermions at the Physical
Point with Multigrid Methods. PhD thesis, 2019.

[29] M. Rottmann, A Strebel, S. Heybrock, S. Bacchio, B. Leder,
and I Kanamori. DD-αAMG software, twisted mass.
https://github.com/sbacchio/DDalphaAMG, .

[30] M. Parks, E. De Sturler, G. Mackey, D. Johnson, and S. Maiti. Recycling
Krylov subspaces for sequences of linear systems. SIAM J. Sci. Comput.,
28(5):1651–1674, 2006.

[31] M. Embree, J. Loe, and R. Morgan. Polynomial preconditioned Arnoldi.
arXiv preprint arXiv:1806.08020, 2018.

[32] J. Loe and R. Morgan. New polynomial preconditioned GMRES. arXiv
preprint arXiv:1911.07065, 2019.

131

https://luscher.web.cern.ch/luscher/openQCD/
http://lattice.github.io/quda/

BIBLIOGRAPHY

[33] N. Nachtigal, L. Reichel, and L. Trefethen. A hybrid GMRES algorithm for
nonsymmetric linear systems. SIAM J. Matrix Anal. Appl., 13(3):796–825,
1992.

[34] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[35] P. Ghysels, T. Ashby, K. Meerbergen, and W. Vanroose. Hiding global
communication latency in the GMRES algorithm on massively parallel ma-
chines. SIAM J. Sci. Comput., 35(1):C48–C71, 2013.

[36] Patrick R Amestoy, Alfredo Buttari, Jean-Yves L’excellent, and Theo Mary.
Performance and scalability of the block low-rank multifrontal factorization
on multicore architectures. ACM Transactions on Mathematical Software
(TOMS), 45(1):1–26, 2019.

[37] Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. A
fully asynchronous multifrontal solver using distributed dynamic scheduling.
SIAM Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.

[38] J. Cheng, M. Grossman, and Ty. McKercher. Professional CUDA C Pro-
gramming. John Wiley & Sons, Inc., 2014.

[39] Michael B Giles. Multilevel Monte Carlo methods. Acta Numer., 24:259–
328, 2015. doi: 10.1017/S096249291500001X.

[40] Arjun Singh Gambhir, Andreas Stathopoulos, and Kostas Orginos. De-
flation as a method of variance reduction for estimating the trace of a
matrix inverse. SIAM J. on Sci. Comput., 39(2):A532–A558, 2017. doi:
10.1137/16M1066361.

[41] Andreas Stathopoulos, Jesse Laeuchli, and Kostas Orginos. Hierarchical
probing for estimating the trace of the matrix inverse on toroidal lattices.
SIAM J. Sci. Comput., 35(5):299–322, 2013.

[42] Mark Thomson. Modern Particle Physics. Cambridge University Press,
2013.

[43] Christof Gattringer and Christian Lang. Quantum Chromodynamics on
the Lattice: an Introductory Presentation, volume 788. Springer Science &
Business Media, 2009.

[44] Arjun Singh Gambhir. Disconnected Diagrams in Lattice QCD. PhD thesis,
College of William and Mary, 2017.

[45] Matthias Rottmann. Adaptive Domain Decomposition Multigrid for Lattice
QCD. PhD thesis, Wuppertal U., 2016.

132

BIBLIOGRAPHY

[46] Karsten Kahl. Adaptive Algebraic Multigrid for Lattice QCD computations.
PhD thesis, Universität Wuppertal, Fakultät für Mathematik und Natur-
wissenschaften, 2018.

[47] Aron Beekman, Louk Rademaker, and Jasper van Wezel. An introduction
to spontaneous symmetry breaking. SciPost Physics Lecture Notes, page
011, 2019.

[48] Giovanni Costa and Gianluigi Fogli. Symmetries and Group Theory in
Particle Physics: An Introduction to Space-time and Internal Symmetries,
volume 823. Springer Science & Business Media, 2012.

[49] H Fritzsch. The history of quantum chromodynamics. International Journal
of Modern Physics A, 34(01):1930001, 2019.

[50] Leslie E Ballentine. Quantum Mechanics: a Modern Development. World
Scientific Publishing Company, 2014.

[51] Jun John Sakurai and Jim Napolitano. Modern Quantum Mechanics; 2nd
ed. Addison-Wesley, San Francisco, CA, 2011. URL https://cds.cern.

ch/record/1341875.

[52] Leonard Susskind and Art Friedman. Special Relativity and Classical Field
Theory. Penguin UK, 2017.

[53] Michael Peskin. An Introduction to Quantum Field Theory. CRC press,
2018.

[54] Steven Weinberg. The Quantum Theory of Fields, volume 2. Cambridge
university press, 1995.

[55] Charles Kittel and Herbert Kroemer. Thermal Physics, volume 9690. Wiley
New York, 1970.

[56] Richard Phillips Feynman. Space-time approach to non-relativistic quan-
tum mechanics. Feynman’s Thesis—A New Approach To Quantum Theory,
pages 71–109, 2005.

[57] Richard P Feynman, Albert R Hibbs, and Daniel F Styer. Quantum Me-
chanics and Path Integrals. Courier Corporation, 2010.

[58] Philip J Davis and Philip Rabinowitz. Methods of Numerical Integration.
Courier Corporation, 2007.

[59] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan
Roweth. Hybrid Monte Carlo. Physics letters B, 195(2):216–222, 1987.

133

https://cds.cern.ch/record/1341875
https://cds.cern.ch/record/1341875

BIBLIOGRAPHY

[60] Herbert Goldstein. Classical Mechanics. Addison-Wesley, 1980.

[61] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook
of Markov Chain Monte Carlo. CRC press, 2011.

[62] Michael Betancourt. A conceptual introduction to Hamiltonian Monte
Carlo. arXiv preprint arXiv:1701.02434, 2017.

[63] Taylor Ryan Haar. Optimisations to Hybrid Monte Carlo for Lattice QCD.
PhD thesis, 2019.

[64] W.K. Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57:97–109, 1970. doi: 10.1093/biomet/57.1.
97.

[65] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and
E. Teller. Equation of state calculations by fast computing machines. J.
Chem. Phys., 21:1087–1092, 1953. doi: 10.1063/1.1699114.

[66] Paul Adrien Maurice Dirac. The quantum theory of the electron. Pro-
ceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, 117(778):610–624, 1928.

[67] H Blaine Lawson and Marie-Louise Michelsohn. Spin Geometry (PMS-38),
Volume 38. Princeton university press, 2016.

[68] Roberto Frezzotti, Pietro Antonio Grassi, Stefan Sint, and Peter Weisz. A
local formulation of lattice QCD without unphysical fermion zero modes.
Nuclear Physics B-Proceedings Supplements, 83:941–946, 2000.

[69] John Kogut and Leonard Susskind. Hamiltonian formulation of Wilson’s
lattice gauge theories. Physical Review D, 11(2):395, 1975.

[70] Gordon D Smith, Gordon D Smith, and Gordon Dennis Smith Smith. Nu-
merical Solution of Partial Differential Equations: Finite Difference Meth-
ods. Oxford university press, 1985.

[71] Leonard Susskind. Lattice fermions. Physical Review D, 16(10):3031, 1977.

[72] Kenneth G. Wilson. Quarks and Strings on a Lattice. Springer US, 1977.

[73] István Montvay and Gernot Münster. Quantum Fields on a Lattice. Cam-
bridge University Press, 1997.

[74] Bijan Sheikholeslami and Ralf Wohlert. Improved continuum limit lattice
action for QCD with Wilson fermions. Nuclear Physics B, 259(4):572–596,
1985.

134

BIBLIOGRAPHY

[75] Roberto Frezzotti, Pietro Antonio Grassi, Stefan Sint, Peter Weisz, Alpha
Collaboration, et al. Lattice QCD with a chirally twisted mass term. Journal
of High Energy Physics, 2001(08):058, 2001.

[76] Roberto Frezzotti, Stefan Sint, and Peter Weisz. O(a) improved twisted
mass lattice QCD. Journal of High Energy Physics, 2001(07):048, 2001.

[77] Julian Schwinger. Gauge invariance and mass. II. Physical Review, 128(5):
2425, 1962.

[78] Robert Link. The Schwinger Model. PhD thesis, University of British
Columbia, 1986.

[79] Lloyd N Trefethen and David Bau III. Numerical Linear Algebra, volume 50.
Siam, 1997.

[80] William L Briggs, Van Emden Henson, and Steve F McCormick. A Multigrid
Tutorial. SIAM, 2000.

[81] Artur Strebel. Advanced Applications for Algebraic Multigrid Methods in
Lattice QCD. PhD thesis, Universität Wuppertal, Fakultät für Mathematik
und Naturwissenschaften, 2020.

[82] James W Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[83] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press,
2013.

[84] William Kahan. Lecture notes on the status of IEEE standard 754 for
binary floating-point arithmetic. http://http. cs. berkeley. edu/˜ wka-
han/ieee754status/ieee. ps, 1996.

[85] James R Bunch and Beresford N Parlett. Direct methods for solving sym-
metric indefinite systems of linear equations. SIAM Journal on Numerical
Analysis, 8(4):639–655, 1971.

[86] Andrew Tanenbaum. Modern Operating Systems. Pearson Education, Inc.,,
2009.

[87] Kyle Gallivan, William Jalby, and Ulrike Meier. The use of BLAS3 in linear
algebra on a parallel processor with a hierarchical memory. SIAM Journal
on Scientific and Statistical Computing, 8(6):1079–1084, 1987.

[88] H. Schwarz. Gesammelte mathematische Abhandlungen. Vierteljahrschrift
Naturforsch. Ges. Zürich, pages 272–286, 1870.

135

BIBLIOGRAPHY

[89] B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain Decomposition:
Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cam-
bridge University Press, New York, 1996.

[90] Yousef Saad and Martin H Schultz. GMRES: A gneralized minimal resid-
ual algorithm for solving nonsymmetric linear systems. SIAM Journal on
scientific and statistical computing, 7(3):856–869, 1986.

[91] Mongi Benhamadou et al. On the FOM algorithm for the resolution of the
linear systems Ax= b. Advances in Linear Algebra & Matrix Theory, 4(03):
156, 2014.

[92] Walter Edwin Arnoldi. The principle of minimized iterations in the solution
of the matrix eigenvalue problem. Quarterly of applied mathematics, 9(1):
17–29, 1951.

[93] Wayne Joubert. On the convergence behavior of the restarted GMRES
algorithm for solving nonsymmetric linear systems. Numerical linear algebra
with applications, 1(5):427–447, 1994.

[94] Ilya Zavorin, DianneP O’Leary, and Howard Elman. Complete stagnation
of GMRES. Linear Algebra and its Applications, 367:165–183, 2003.

[95] Mark Embree. The tortoise and the hare restart GMRES. SIAM review, 45
(2):259–266, 2003.

[96] Guido Cossu, Peter Boyle, Norman Christ, Chulwoo Jung, Andreas Jüttner,
and Francesco Sanfilippo. Testing algorithms for critical slowing down. In
EPJ Web of Conferences, volume 175, page 02008. EDP Sciences, 2018.

[97] Wolfgang Hackbusch. Multi-grid Methods and Applications, volume 4.
Springer Science & Business Media, 2013.

[98] John W Ruge and Klaus Stüben. Algebraic multigrid. InMultigrid methods,
pages 73–130. SIAM, 1987.

[99] John David Jackson. Classical electrodynamics, volume 31999. Wiley New
York, 1977.

[100] Eric Poisson and Clifford M Will. Gravity: Newtonian, post-Newtonian,
Relativistic. Cambridge University Press, 2014.

[101] Pieter Wesseling and Cornelis W Oosterlee. Geometric multigrid with ap-
plications to computational fluid dynamics. Journal of computational and
applied mathematics, 128(1-2):311–334, 2001.

136

BIBLIOGRAPHY

[102] Suha Kayum, Michel Cancelliere, Marcin Rogowski, and Ahmed Al-Zawawi.
Application of algebraic multigrid in fully implicit massive reservoir simu-
lations. In SPE Europec featured at 81st EAGE Conference and Exhibition.
OnePetro, 2019.

[103] Mark F Adams. Algebraic multigrid methods for constrained linear systems
with applications to contact problems in solid mechanics. Numerical linear
algebra with applications, 11(2-3):141–153, 2004.

[104] Ronald Babich, James Brannick, Richard C Brower, MA Clark, Thomas A
Manteuffel, SF McCormick, JC Osborn, and C Rebbi. Adaptive multigrid
algorithm for the lattice Wilson-Dirac operator. Physical review letters, 105
(20):201602, 2010.

[105] James Brannick, Richard C Brower, MA Clark, James C Osborn, and Clau-
dio Rebbi. Adaptive multigrid algorithm for lattice QCD. Physical review
letters, 100(4):041601, 2008.

[106] A. Frommer, K. Kahl, S. Krieg, B. Leder, and M. Rottmann. Aggregation-
based multilevel methods for lattice QCD. Proceedings of Science, LAT-
TICE2011:046, 2011. http://pos.sissa.it.

[107] Dietrich Braess. Towards algebraic multigrid for elliptic problems of second
order. Computing, 55(4):379–393, 1995.

[108] Marian Brezina, R Falgout, Scott MacLachlan, T Manteuffel, S McCormick,
and J Ruge. Adaptive smoothed aggregation (αSA) multigrid. SIAM review,
47(2):317–346, 2005.

[109] Yvan Notay and Panayot S Vassilevski. Recursive Krylov-based multigrid
cycles. Numerical Linear Algebra with Applications, 15(5):473–487, 2008.

[110] Achi Brandt, James Brannick, Karsten Kahl, and Irene Livshits. Bootstrap
amg. SIAM Journal on Scientific Computing, 33(2):612–632, 2011.

[111] M. Clark, B. Joó, A. Strelchenko, M. Cheng, A. Gambhir, and R. Brower.
Accelerating lattice QCD multigrid on GPUs using fine-grained paralleliza-
tion. In SC’16: Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis, pages 795–806.
IEEE, 2016.

[112] Henning Leemhuis. Approximate direct solves on the coarsest level of multi-
grid. Master’s thesis, Bergische Universität Wuppertal, Germany, 2022.

[113] Y. Saad. Practical use of polynomial preconditionings for the conjugate
gradient method. SIAM J. Sci. Statist. Comput., 6(4):865–881, 1985.

137

http://pos.sissa.it

BIBLIOGRAPHY

[114] R. Morgan. Computing interior eigenvalues of large matrices. Linear Algebra
Appl., 154:289–309, 1991.

[115] R. Morgan and M. Zeng. A harmonic restarted Arnoldi algorithm for calcu-
lating eigenvalues and determining multiplicity. Linear Algebra Appl., 415
(1):96–113, 2006.

[116] D. Calvetti and L. Reichel. On the evaluation of polynomial coefficients.
Numerical Algorithms, 33(1-4):153–161, 2003.

[117] O. Coulaud, L. Giraud, P. Ramet, and X. Vasseur. Deflation and aug-
mentation techniques in Krylov subspace methods for the solution of linear
systems. arXiv preprint arXiv:1303.5692, 2013.

[118] K. Soodhalter, E. de Sturler, and M. Kilmer. A survey of subspace recycling
iterative methods. GAMM-Mitteilungen, 43(4):e202000016, 2020.

[119] A. Stathopoulos and K. Orginos. Computing and deflating eigenvalues while
solving multiple right-hand side linear systems with an application to quan-
tum chromodynamics. SIAM J. Sci. Comput., 32(1):439–462, 2010.

[120] R. Morgan. GMRES with deflated restarting. SIAM J. Sci. Comput., 24
(1):20–37, 2002.

[121] Eric de Sturler. Nested Krylov methods based on GCR. Journal of Com-
putational and Applied Mathematics, 67(1):15–41, 1996.

[122] Daniel Mohler, Stefan Schaefer, and Jakob Simeth. CLS 2+1 flavor simula-
tions at physical light- and strange-quark masses. In EPJ Web of Confer-
ences, volume 175, page 02010. EDP Sciences, 2018.

[123] Constantia Alexandrou, Simone Bacchio, Panagiotis Charalambous, Pet-
ros Dimopoulos, Jacob Finkenrath, Roberto Frezzotti, Kyriakos Hadjiyian-
nakou, Karl Jansen, Giannis Koutsou, Bartosz Kostrzewa, et al. Simulating
twisted mass fermions at physical light, strange, and charm quark masses.
Physical Review D, 98(5):054518, 2018.

[124] Stefan Krieg and Thomas Lippert. Tuning lattice QCD to petascale on Blue
Gene. In P, NIC Symposium, volume 2010, pages 155–164, 2010.

[125] Mark Hoemmen. Communication-Avoiding Krylov Subspace Methods. PhD
thesis, University of California, Berkeley, 2010.

[126] Philippe Leleux. Hybrid Direct and Interactive Solvers for Sparse Indefinite
and Overdetermined Systems on Future Exascale Architectures. PhD thesis,
2021.

138

BIBLIOGRAPHY

[127] D. Steinkraus, I. Buck, and P. Y. Simard. Using GPUs for machine learning
algorithms. In Eighth International Conference on Document Analysis and
Recognition (ICDAR’05), pages 1115–1120 Vol. 2, 2005.

[128] C. Yang, Q. Wu, J. Chen, and Z. Ge. GPU acceleration of high-speed
collision molecular dynamics simulation. In 2009 Ninth IEEE International
Conference on Computer and Information Technology, volume 2, pages 254–
259, 2009.

[129] M.A. Clark, R. Babich, K. Barros, R.C. Brower, and C. Rebbi. Solving
lattice QCD systems of equations using mixed precision solvers on GPUs.
Computer Physics Communications, 181(9):1517–1528, Sep 2010. ISSN
0010-4655. doi: 10.1016/j.cpc.2010.05.002. URL http://dx.doi.org/10.

1016/j.cpc.2010.05.002.

[130] Y. Nakamura, K. Ishikawa, Y. Kuramashi, T. Sakurai, and H. Tadano.
Modified block BiCGStab for lattice QCD. Comput. Phys. Commun., 183
(1):34–37, 2012.

[131] M. Lüscher. Lattice QCD and the Schwarz alternating procedure. JHEP,
183:p. 052, 2003.

[132] J. Cardoso, J. Coutinho, and P. Diniz. Embedded Computing for High Per-
formance Computing. Elsevier Inc., 2017. ISBN 9781417642595. URL
http://books.google.com/books?id=W-xMPgAACAAJ.

[133] Jose Jiménez. A Block Trace estimator and its Application to Lattice QCD.
Master’s thesis, Bergische Universität Wuppertal, Germany, 2022.

[134] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.
ISBN 0898716462, 9780898716467.

[135] B. Sapoval, Th. Gobron, and A. Margolina. Vibrations of fractal drums.
Phys. Rev. Lett., 67:2974–2977, Nov 1991.

[136] Gene H. Golub and Urs von Matt. Generalized cross-validation for large
scale problems. J. Comput. Graph. Statist., 6:1–34, 1995.

[137] Gene H Golub, Michael Heath, and Grace Wahba. Generalized cross-
validation as a method for choosing a good ridge parameter. Technometrics,
21(2):215–223, 1979.

[138] Ernesto Estrada and Desmond J Higham. Network properties revealed
through matrix functions. SIAM Rev., 52(4):696–714, 2010.

139

http://dx.doi.org/10.1016/j.cpc.2010.05.002
http://dx.doi.org/10.1016/j.cpc.2010.05.002
http://books.google.com/books?id=W-xMPgAACAAJ

BIBLIOGRAPHY

[139] Yuval Ginosar, Ivan Gutman, Toufik Mansour, and Matthias Schork.
Estrada index and Chebyshev polynomials. Chem. Phys. Lett., 454:145–
147, 2008.

[140] Ernesto Estrada. The Structure of Complex Networks: Theory and Appli-
cations. Oxford University Press, Inc., New York, 2011.

[141] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Pro-
cesses for Machine Learning (Adaptive Computation and Machine Learn-
ing). The MIT Press, 2005.

[142] Havard Rue and Leonhard Held. Gaussian Markov Random Fields: Theory
And Applications. CRC press, 2005.

[143] Raphael A Meyer, Cameron Musco, Christopher Musco, and David P
Woodruff. Hutch++: Optimal stochastic trace estimation. In Symposium
on Simplicity in Algorithms (SOSA), pages 142–155. SIAM, 2021.

[144] Shashanka Ubaru and Yousef Saad. Applications of trace estimation tech-
niques. In International Conference on High Performance Computing in
Science and Engineering, pages 19–33. Springer, 2017.

[145] Shashanka Ubaru, Jie Chen, and Yousef Saad. Fast estimation of tr(f(A))
via stochastic Lanczos quadrature. SIAM J. Matrix Anal. Appl., 38(4):
1075–1099, 2017.

[146] J. Sexton and D. Weingarten. Systematic expansion for full QCD based on
the valence approximation, 1994.

[147] Costas Bekas, Effrosyni Kokiopoulou, and Yousef Saad. An estimator for
the diagonal of a matrix. Applied Numerical Mathematics, 57:1214–1229,
11 2007.

[148] Eric Endress, Carlos Pena, and Karthee Sivalingam. Variance Reduction
with Practical All-to-all Lattice Propagators. Comput. Phys. Commun.,
195:35–48, 2015. doi: 10.1016/j.cpc.2015.04.017.

[149] Jok M. Tang and Yousef Saad. A probing method for computing the di-
agonal of a matrix inverse. Numer. Linear Algebra Appl., 19(3):485–501,
2012.

[150] Jesse Laeuchli and Andreas Stathopoulos. Extending hierarchical probing
for computing the trace of matrix inverses. SIAM J. Sci. Comput., 42(3):
A1459–A1485, 2020.

140

BIBLIOGRAPHY

[151] Andreas Frommer, Claudia Schimmel, and Marcel Schweitzer. Analysis of
probing techniques for sparse approximation and trace estimation of decay-
ing matrix functions. SIAM J. Matrix Anal. Appl., 42:1290–1318, 2021. doi:
https://doi.org/10.1137/20M1364461.

[152] A. H. Bentbib, M. El Ghomari, K. Jbilou, and L. Reichel. Shifted extended
global Lanczos processes for trace estimation with application to network
analysis. Calcolo, 58(1):Paper No. 4, 35, 2021. ISSN 0008-0624. doi: 10.
1007/s10092-020-00395-1.

[153] Jie Chen and Yousef Saad. A posteriori error estimate for computing
tr(f(A)) by using the Lanczos method. Numer. Linear Algebra Appl., 25
(5):e2170, 20, 2018. ISSN 1070-5325. doi: 10.1002/nla.2170.

[154] Lin Lin, Yousef Saad, and Chao Yang. Approximating spectral densities
of large matrices. SIAM Rev., 58(1):34–65, 2016. ISSN 0036-1445. doi:
10.1137/130934283.

[155] M. F. Hutchinson. A stochastic estimator of the trace of the influence matrix
for Laplacian smoothing splines. Comm. Statist. Simulation Comput., 19
(2):433–450, 1990. ISSN 0361-0918. doi: 10.1080/03610919008812864.

[156] S.J. Dong and K.F. Liu. Stochastic estimation with Z2 noise. Phys. Lett.
B, 328:130–136, 1994.

[157] Walter Wilcox. Noise methods for flavor singlet quantities. 1999.

[158] Haim Avron and Sivan Toledo. Randomized algorithms for estimating the
trace of an implicit symmetric positive semi-definite matrix. J. ACM, 58
(2), 2011.

[159] Alice Cortinovis and Daniel Kressner. On randomized trace estimates for
indefinite matrices with an application to determinants, 2020.

[160] Farbod Roosta Khorasani and Uri Ascher. Improved bounds on sample
size for implicit matrix trace estimators. Foundations of Computational
Mathematics, 15(5):1187–1212, 2015.

[161] Dietrich Braess. Towards algebraic multigrid for elliptic problems of second
order. Computing, 55(4):379–393, 1995. doi: {10.1007/BF02238488}.

[162] Thomas A. DeGrand and Stefan Schaefer. Improving Meson Two Point
Functions in Lattice QCD. Comput. Phys. Commun., 159:185–191, 2004.
doi: 10.1016/j.cpc.2004.02.006.

141

BIBLIOGRAPHY

[163] Leonardo Giusti, P. Hernandez, M. Laine, P. Weisz, and H. Wittig. Low-
energy Couplings of QCD from Current Correlators near the Chiral Limit.
JHEP, 04:013, 2004. doi: 10.1088/1126-6708/2004/04/013.

[164] Gunnar Bali, Sara Collins, Andreas Frommer, Karsten Kahl, Issaku
Kanamori, Benjamin Müller, Matthias Rottmann, and Jakob Simeth. (Ap-
proximate) low-mode averaging with a new multigrid eigensolver, 2015.

[165] Eloy Romero, Andreas Stathopoulos, and Kostas Orginos. Multigrid de-
flation for lattice QCD. J. Comput. Phys., 409:109356, May 2020. ISSN
0021-9991. doi: 10.1016/j.jcp.2020.109356.

[166] Suman Baral, Travis Whyte, Walter Wilcox, and Ronald B. Morgan. Dis-
connected loop subtraction methods in lattice QCD. Comput. Phys. Com-
mun., 241:64–79, 2019. ISSN 0010-4655.

[167] Quan Liu, Walter Wilcox, and Ron Morgan. Polynomial subtraction method
for disconnected quark loops, 2014.

[168] C. Alexandrou, M. Constantinou, V. Drach, K. Hadjiyiannakou, K. Jansen,
G. Koutsou, A. Strelchenko, and A. Vaquero. Evaluation of disconnected
quark loops for hadron structure using GPUs. Comput. Phys. Commun., 185
(5):1370–1382, May 2014. ISSN 0010-4655. doi: 10.1016/j.cpc.2014.01.009.

[169] Insu Han, Dmitry Malioutov, Haim Avron, and Jinwoo Shin. Approxi-
mating spectral sums of large-scale matrices using stochastic Chebyshev
approximations. SIAM J. Sci. Comput., 39(4):A1558–A1585, 2017. ISSN
1064-8275. doi: 10.1137/16M1078148.

[170] Insu Han, Dmitry Malioutov, and Jinwoo Shin. Large-scale log-determinant
computation through stochastic Chebyshev expansions. In International
Conference on Machine Learning, pages 908–917, 2015.

[171] Gunnar S. Bali, Sara Collins, Benjamin Gläßle, Meinulf Göckeler, Johannes
Najjar, Rudolf H. Rödl, Andreas Schäfer, Rainer W. Schiel, André Stern-
beck, and Wolfgang Söldner. The moment ⟨x⟩u−d of the nucleon from nf = 2
lattice QCD down to nearly physical quark masses. Phys. Rev., D90(7):
074510, 2014. doi: 10.1103/PhysRevD.90.074510.

142

	Acknowledgments
	Foreword
	Contents
	Introduction
	Quantum chromodynamics on the lattice
	The standard model and quantum chromodynamics
	Path integral and hybrid Monte Carlo
	Lattice discretizations in quantum chromodynamics
	Disconnected diagrams
	Other theories: the Schwinger model

	Domain decomposition aggregation-based αdaptive algebraic multigrid method
	Numerical linear algebra fundamentals
	Eigenvalues, singular values and conditioning
	Iterative methods for sparse linear systems of equations

	Multigrid methods
	Motivation
	Two levels and multilevel multigrid

	Algebraic multigrid
	Algebraic multigrid in lattice QCD
	Aggregation-based prolongation and restriction
	Petrov-Galerkin approach
	Domain decomposition aggregation-based αdaptive algebraic multigrid method
	DD-αAMG for twisted mass fermions

	Coarsest level improvements
	Krylov based improvements
	Numerical tests: Krylov based
	The clover-improved Wilson operator
	The twisted mass operator

	LU based improvements
	Direct solves via MUMPS

	Numerical tests: LU based
	Outlook on coarsets-level computations

	Hybrid GPU/CPU DD-αAMG
	SAP in DD-αAMG
	Schwarz Alternating Procedure on GPUs
	Domain Decomposition: GPUs vs CPUs
	SAP in DD-αAMG on GPUs: implementation details

	Numerical tests
	SAP on GPUs
	Hybrid GPU+CPU DD-αAMG solver

	Outlook on GPU implementations

	Multigrid Multilevel Monte Carlo
	Stochastic trace estimation and multilevel Monte Carlo
	Multilevel Monte-Carlo
	Stochastic estimation of the trace of a matrix
	Multilevel Monte-Carlo for the trace of the inverse

	Numerical tests
	Schwinger model
	LQCD I: clover-improved Wilson-Dirac operator
	LQCD II: twisted mass operator

	Outlook on multigrid multilevel Monte Carlo

	List of Figures
	List of Tables
	List of Algorithms & Scripts
	Bibliography

