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Kurzfassung

Das Ziel dieser Arbeit ist die Entwicklung von neuen Systemen zur Innenrau-
müberwachung von Fahrzeugen basierend auf künstlichen neuronalen Netz-
werken und Time-of-Flight Bilddaten. Diese Entwicklungen beinhalten Me-
thoden zum Trainieren künstlicher neuronaler Netze, um den Zustand und
verschiedene Aktivitäten des Fahrers in einem Fahrzeug zu überwachen. Die
Innenraumüberwachung und Fahrerbeobachtung wird mit steigender Auto-
matisierung der Fahrzeuge immer relevanter. Anwendungen, die die Auf-
merksamkeit des Fahrers überwachen oder Aktivitäten des Fahrers, seien
dies Aktivitäten, die zu den Fahraufgaben oder anderen Aktivitäten gehö-
ren, erkennen, können die Sicherheit und den Komfort eines Fahrzeuges aller
Automatisierungsstufen verbessern.

Um den Bereich des Fahrersitzes eines Autos zu überwachen, wurden
Time-of-Flight Kameras verwendet, die in das Dachmodul mehrerer Test-
fahrzeuge eingebaut sind. Ein Vorteil dieser Kameras ist, dass die Bilder der
verwendeten Kamera unabhängig von der äußeren Beleuchtung sind. Da es
nur wenige öffentliche Datensätze zur Innenraumüberwachung von Fahrzeu-
gen mit Time-of-Flight Kameras gibt, wurden sämtliche verwendete Daten
in den Testfahrzeugen aufgenommen. Dies macht effiziente Trainingsmetho-
den für künstliche neuronale Netze, um von wenig Daten zu lernen, umso
relevanter, da so der Aufwand der Generierung eines Datensatzes für diese
Systeme reduziert werden kann.

Zuerst wird ein System zur Belegungserkennung des Fahrersitzes und zur
Klassifikation des Zustandes des Fahrers beschrieben. Dafür wird eine hierar-
chische Multi-Label Struktur und Fehlerfunktion definiert, welche die Klas-
sifikationsergebnisse des Systems robuster machten. Danach wird ein System
vorgeschlagen, um Aktionen und Objektinteraktionen des Fahrers zu erken-
nen. Das Training und die Klassifikationsraten des zugrundeliegenden Netz-
werkes werden durch eine zeitliche Augmentierung und die Reduzierung des
Eingabe-Merkmalsraums durch Sequenzen von 3D Körper Keypoints und
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Bildausschnitten von Händen verbessert. Folgend wird ein drittes System
zur Erkennung von Aktionen des Fahrers in kontinuierlichen Videodaten
vorgestellt, welches nur mit abgeschlossenen, kurzen Sequenzen von Aktio-
nen trainiert wurde. Dafür werden Techniken zur Erstellung von künstlichen
kontinuierlichen Beispielsequenzen von Aktionen des Fahrers erläutert. Dar-
über hinaus wird eine Trainingsmethode vorgeschlagen, mit derer Wissen des
Netzwerkes aus vorherigen Trainingsschritten für aktuelle Trainingsschritte
von Rekurrenten Neuronalen Netzwerken verwendet werden kann.



Abstract

The goal of this work is the development of new interior sensing systems
based on artificial neural networks and Time-of-Flight image data. This
development includes training methods to monitor the driver’s states and
activities inside a vehicle. Interior sensing and driver monitoring gets more
and more relevant as vehicle automation increases. Applications that mon-
itor the attention of the driver or detect activities related or not related to
the driving tasks can enhance the safety of a vehicle of all stages of vehicle
automation, as well as infotainment applications.

To monitor the driver’s seat region of a car, Time-of-Flight cameras
mounted in the roofs of several test cars are used. One advantage of these
cameras is that the images of the used cameras are independent from ambi-
ent illumination. As only few datasets for interior sensing applications with
Time-of-Flight sensor data are available, all used data was recorded in the
test cars, which makes efficient training methods for artificial neural networks
to learn from less training examples relevant, in order to reduce the effort of
dataset generation for such systems.

First, a system to detect the driver’s seat occupancy and driver’s state
from single images is described. For this, a hierarchical multi-label struc-
ture and loss is defined, which makes classifications more robust. Secondly,
a system for driver action and object interaction recognition is suggested.
The training and classification rates of the underlying classification network
are enhanced by a systematic temporal augmentation technique and the re-
duction of the input feature space, by using 3D body keypoint and hand
patch sequences. Following, a third system to classify actions of the driver
in continuous video streams, while trained only on short isolated action se-
quences is developed. For this, techniques to systematically create artificial
continuous action examples are proposed. Furthermore, a training method is
suggested to integrate knowledge of previous training steps into the training
of recurrent neural networks.
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CHAPTER 1

Introduction

Image based driver monitoring plays an increasingly important role in the
automotive industry. On the one hand, applications like gesture control sys-
tems enhance the comfort of the car occupants as well as they increase their
safety by introducing more intuitive and less distractive methods to inter-
act with the infotainment system of vehicles. On the other hand, existing
driver monitoring applications increase the occupant’s safety by monitoring
the awareness of the driver via head and eye tracking.
Studies show that distracted driving, especially phone usage, is still a grow-
ing risk factor in road traffic. Phone usage during driving increases the risk
of a crash from four up to 23 times. Moreover, the reaction time of the driver
using a phone while driving is about 50% slower than the reaction time of a
no-distracted driver as reported by the authors of [Wor11], [Wor18].
In the near future, semi-automated car drivers will still be responsible for
monitoring the environment and to intervene in the driving actions of the
car, if necessary. Recognising different activities of the driver can be helpful
to draw the attention of the driver back to the road. Nevertheless, the driver
will be allowed to devote his attention to other things than the driving task,
as the automation of the vehicles increases. However, in situations where
the car needs to hand over control to the driver it is necessary to recognise
if the driver is able to take over control. Even in semi-automated vehicles,
the takeover time highly depends on the state of the driver as described by
the authors of [Eri17]. Advanced driver monitoring systems can adaptively
inform or warn the driver, based on the driver’s current state and attentive-
ness to the driving task. Moreover, possibly unintended deactivation of the
autopilot of a highly automated vehicles can be prevented, if the current ac-
tivity or state of the driver is known. Thus, monitoring the state and activity
of the driver remains relevant for highly automated vehicles.

1



2 Chapter 1. Introduction

1.1 Objective of the Thesis

The objective of this thesis is to develop efficient driver monitoring systems
based on Time-of-Flight image data and artificial neural network models.
Gathering data for training these deep learning based systems is often time
consuming and costly, because many different example images or image se-
quences need to be recorded and annotated in order to train neural networks
which generalize to unseen data examples. Moreover, the networks need to
be computationally efficient, in order to be able to be integrated in products
for the automotive industry, as computational resources need to be power ef-
ficient. Thus, small and efficient artificial neural network architectures need
to be trained for these systems. Training these networks is therefore challeng-
ing as the networks must be small enough to run in real-time on embedded
hardware, as well as the amount of available data is very limited, and gener-
ating more data is time consuming and costly.
This thesis proposes different driver monitoring applications which can en-
hance the safety and comfort of the driver and passengers of a vehicle. In
any case, such systems are subject to certain previously mentioned conditions
under which they can be efficiently developed and used. Therefore, this the-
sis addresses training methods for artificial neural networks, to increase the
classification performance of driver monitoring systems.

1.2 Driver Monitoring Applications

In this thesis, three driver monitoring applications based on Time-of-Flight
image data are described. For each application, new enhancements for train-
ing the underlying artificial neural networks are presented, evaluated and
discussed. These methods include a loss for enhancing multi-label classifi-
cation with hierarchical structures, input space feature reduction for action
recognition, a systematic temporal augmentation technique for augmenting
action sequences, as well as a method to efficiently train a continuous ac-
tion classification system with closed isolated action sequence examples only.
Gathering the datasets for training and validating the applications was part
of the author’s work.
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The three presented applications are highly relevant driver monitoring
applications covering current issues in the automotive industry. These appli-
cations are:

1. Occupancy and driver state classification

2. Driver action and object interaction recognition

3. Body movement detection of the driver

The first application deals with occupancy detection of the driver seat as
well as recognising different driver states the driver can adopt while sitting
in the driver’s seat. This application is discussed in chapter 4. Detecting the
occupancy of a driver’s seat is a highly relevant issue insofar as near future
semi-autonomous cars still need to be operated by a trained driver. Distin-
guishing between an adult, a child or objects present in the driver’s seat is
crucial for the safety of the vehicle. Moreover, the ability to detect the cur-
rent state of the driver can be used to estimate the time the driver probably
needs to take over control of an autonomously driving car. Furthermore,
the knowledge about the driver’s state can be used to draw the attention of
the driver back to the road or prevent unintentional deactivation of autopilot
functions. Gathering this knowledge about the occupancy of the driver’s seat
and the driver from camera images can further reduce the number of sensors
in a car, like pressure sensors in the driver’s seat or sensors for detecting if
the driver has his hands on the steering wheel.

The second application, discussed in chapter 5, addresses the detection
of different actions and object interactions of drivers from image sequences.
Detecting actions like leaving the car or unstrapping the seat belt can be
used to warn the driver, if possible dangers are detected by other sensors
outside the vehicle, if detected early enough. Moreover, knowledge about
objects and the way the driver is interacting with them can refine the under-
standing of the distraction of the driver. This can enhance predictions about
the probable takeover time even more. Distinguishing between a driver just
holding a smartphone or typing on a phone can be used to adaptively draw
the attention of the driver back to the road, based on the object or the kind
of interaction with an object.

The third system is discussed in chapter 6 and analyzes different body
movements and positions of the driver. Knowledge about the movements of
the driver can be crucial to understand if the driver is able to drive a car
in his current seating position. Moreover, comfort features, like adaptively
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controlling the in-cabin illumination, can be implemented based on body
movements of the driver or other passengers.

1.3 Structure of the Work

This work is structured in seven chapters. After the introduction, the math-
ematical fundamentals relevant for this work are described in chapter 2. This
includes descriptions about essential artificial neural network structures and
training methods, as well as evaluation metrics for classifiers and image pro-
cessing methods. Moreover, the hardware environment is described in this
chapter.

Chapter 3 addresses related works that have significant influence on the
developed concepts which are presented in this thesis. First, related papers
are discussed which deal with driver monitoring in general. Furthermore,
state of the art concepts for training artificial neural networks in general are
presented as well as results that apply these concepts for driver monitoring
for single images or image sequences. Additional references are provided at
the beginning of the chapters 4, 5 and 6

In chapter 4 a concept for detecting the occupancy of the driver seat and
different driver states is introduced. For this, a hierarchical label structure is
presented to create a fallback system for classifications with low confidence
or misclassifications of fine grained classes. A loss function was developed, to
directly integrate this hierarchical structure into the training of a multi-label
classification network.

An additional system for analyzing several actions a driver can perform
is described in chapter 5. In this chapter, different strategies to train and
optimize action recognition systems on image sequence data are discussed.
These strategies include an augmentation strategy for systematically varying
the pace of sequence examples. Moreover, different methods for reducing the
input feature space are discussed and evaluated.

Chapter 6 covers the topic of training continuous action recognition net-
works on isolated action scenes to recognise the body movements of the
driver. While some concepts to improve the efficiency of the training and
classification performance of the networks, discussed in chapter 5, can be
used, other optimization methods are not applicable. A concept is presented
that can handle the internal hidden states of recurrent neural networks to
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efficiently provide knowledge about class transitions present in continuous
data while trained only on single isolated action examples without explicit
class transition information.

Finally, chapter 7 summarises the presented driver monitoring systems
and methods to optimize the training procedure, even if only few data ex-
amples are available. Furthermore, suggestions for further enhancements of
the discussed systems and methods are given.

1.4 Main Contributions

The main contributions of this work are the development of the three ar-
tificial neural network based driver monitoring systems. This development
includes the proposed training methods to enhance the robustness of the
classification results while trained on limited data.

For the occupancy and driver state classification described in chapter 4, these
contributions are:

• A classification system to detect various occupancy and driver states,

• More robust classifications through hierarchical classification,

• Integration of a fallback option for the driver state monitoring,

• Extension of existing multi-class classification concepts for multi-label
classification.

The contributions which accompany the driver action and object interaction
recognition described in chapter 5 are:

• Development of a more lightweight and flexible system to recognise
drivers actions and object interaction from image sequences compared
to currently available systems,

• An advanced augmentation technique to augment the time component
of training sequences in a more structured way than existing methods,

• Reduction of the input feature space to 3D body keypoints and hand
patches of the driver to focus on most important parts of the scene for
this task,

• Further enhancements of the reduced feature space by rotation and size
normalization of the hand patches.
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The contributions of the body movement detection system described in chap-
ter 6 are:

• A system to recognize driver body movement actions from image se-
quences,

• A systematical way to concatenate image sequences to simulate con-
tinuous data for the training phase of the system,

• A new method to integrate previously calculated hidden states of a
recurrent neural network to enhance the training efficiency for training
a continuous action recognition system only with short isolated action
sequences.



CHAPTER 2

Fundamentals

The methods and systems presented in this work are based on different ma-
chine learning and image signal processing fundamentals. These technical
fundamentals of the proposed methods are described in this chapter.
This chapter is structured as follows. First, an overview of the used deep
learning concepts is given in section 2.1 including feedforward and recurrent
network concepts as well as optimization methods to train the artificial neu-
ral networks. In chapter 2.2 the different metrics and methods to evaluate
classification systems, which are used in this work, are described. Following,
in chapter 2.3 the fundamentals to calculate optical flow images are outlined.
Finally, the used hardware environment is described in chapter 2.4.

2.1 Deep Learning Fundamentals

Deep learning describes a domain of machine learning methods for training
artificial neural networks with representation learning. Besides unsupervised
and reinforced learning, supervised learning represents one of the main train-
ing methods in deep learning. The goal of the supervised learning methods is
to autonomously learn features from examples and match predefined classes
for classification tasks or approximate functions in regression tasks. This
work focuses on the supervised classification tasks with artificial neural net-
works. The artificial neural networks consist of multiple artificial neurons
arranged in different ways. The most common way to connect these neurons
are in a feedforward, fully connected way, resulting in a multi-layer percep-
tron. For image classification, convolutional layers have proven to be highly
effective and deliver state of the art results for image classification tasks. To
analyse sequences, recurrent neural networks were developed to integrate a
memory to the neural networks regarding previous calculations for the calcu-

7



8 Chapter 2. Fundamentals

lations of the current timestep. For training these network models, gradient
descent with backpropagation is the preferred method since modern hard-
ware is able to deliver the required computational power to calculate the
operations of the networks in an acceptable time. State of the art networks
are usually trained with a huge amount of data as described by the authors
[Kri12]. Because such amount of data is often not available or too time
consuming to gather and annotate, different methods for optimizing and reg-
ularizing training and augmenting example images were developed, in order
to train artificial neural networks with less data while still generalizing to
data examples which are not used in the training process.

2.1.1 Multi-Layer Perceptron

The multilayer perceptron, or fully connected network, is a feedforward net-
work which originates from the perceptron presented in [Ros57] and com-
prises multiple perceptrons with continuous nonlinearities. The output of
the fully connected network with one hidden layer z, displayed in figure 2.1,
can be calculated by

yk(x,W) = σ

(
M∑
j=1

w
(2)
kj h

(
N∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
, (2.1)

with the network input vector x and the network weight matrix W =
(W(1),W(2)). The function h(·) represents a nonlinear activation function
which is usually choosen to be a sigmoid function

hsigmoid(x) =
1

1 + e−x
(2.2)

or a rectified linear activation function (RELU)

hRELU(x) =

{
x if x > 0

0 otherwise.
(2.3)

Finally a nonlinear classification activation function ω is applied to the out-
puts. This activation function can again be a sigmoid function 2.2 or a
softmax function

σsoftmax(y)j =
eyj∑
i e
yi

(2.4)

to create pseudo probabilities of the output values.
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Fully connected layer

x0 = 1

x1

xN

W(1) W(2)

zM

z0 = 1

y1

yK

OutputsInputs Hidden units

x2

Information flow

Figure 2.1: Fully connected layer with the input nodes x, one hidden layer
with the hidden nodes z, the output layer with the nodes y and weight
matrices W(1) and W(2). The weights w0x of the weight matrices W(1) and
W(2) represent the bias of the network.

2.1.2 Convolutional Neural Networks

For Convolutional Neural Networks (CNNs) many different network architec-
tures and concepts exist. A CNN for classification tasks usually consists of
multiple convolutional layers, nonlinear activation functions, pooling layers
and a fully connected network. A concept of a CNN with two convolutional
layers, two pooling layers and a fully connected network for image classifica-
tion is visualized in figure 2.2.
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Convolution ConvolutionPooling Pooling
Fully

connected
Classification

Figure 2.2: Common CNN architecture with fully connected layer to classify
images.

Convolutional layer The principle of a convolutional layer and reusing
weights of a neural network was first introduced by LeCun [LeC89] and is
visualized in figure 2.3 and mathematically expressed by

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n). (2.5)

This formula actually expresses a cross-correlation between the input matrix
I and the convolution kernel K, but is still called a convolution in modern
literature in the context of deep learning. However, as the weights of the
kernel K are learned the flipping is unnecessary [Bis06], [Ian16].
In modern CNNs, a convolutional layer produces multiple convolutional op-
erations in parallel resulting in one output matrix, often called feature map,
per convolutional kernel in a convolutional layer. Afterwards a nonlinear ac-
tivation function, like the activation functions described in chapter 2.1.1, are
applied to the feature maps.

Pooling Pooling is another important computation block in CNNs. The
pooling layer reduces the size of feature maps by applying a pooling function
within a rectangular neighborhood of the feature maps. The most common
pooling method is the max pooling introduced by [Zho88], where only the
maximum value of the rectangular neighborhood is reported, resulting in a
smaller feature map. This method helps the network to be invariant to small
translations, which is necessary, as classifications often do not depend on
small translations in the input.
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Figure 2.3: Two dimensional convolution

2.1.3 Recurrent Neural Networks

Recurrent neural networks (RNN) are a kind of neural networks that have
connections to previous network layers, creating feedback loops. Moreover,
with RNNs a network structure was introduced, which contains an internal
memory. In contrast to feedforward neural networks, this memory enables
the RNN to consider previous input examples at runtime.

Long-Short-Term-Memory

A commonly used variant of a RNN is the so-called Long-Short-Term-Memory-
RNN (LSTM), which was introduced by the authors of [Hoc97]. The LSTM
solved the vanishing gradient problem that occurs when training RNNs on
long sequences. The error gradient decreases with every iteration it gets
propagated backwards through the network, resulting in a gradient that has
no valuable information left. The cell state, introduced by the authors, is
strictly regulated, which prevents the vanishing of the gradient. A schematic
visualization of an LSTM cell is shown in figure 2.4. A LSTM contains three
gates which direct the information flow inside the LSTM cell. The output of
the Forget Gate, the Input Gate and the Output Gate are calculated by

yforgett = σ(Wxf · xt + bxf +Whf · ht−1 + bhf ), (2.6)

yinputt = σ(Wxi · xt + bxi +Whi · ht−1 + bhi), (2.7)

youtputt = σ(Wxo · xt + bxo +Who · ht−1 + bho), (2.8)

with σ denoting the sigmoid function and � denoting the Hadamard product.
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LSTM Cell
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Figure 2.4: Structure of an LSTM cell

The output of the LSTM cell splits up in the cell state ct and the hidden
state ht can which can finally be calculated by

ct = yforgett � ct−1 + yinputt � c̃t (2.9)

ht = youtputt � tanh(ct), (2.10)
with c̃t = tanh(Wxc · xt + bxc +Whc · ht−1 + bhc). (2.11)

Gated Recurrent Unit

A gated recurrent unit (GRU) is a variation of an LSTM, which was intro-
duced by [Cho14]. The authors combined the Forget Gate and the Input Gate
as well as the hidden state and the cell state, resulting in a more lightweight
recurrent network structure with fewer parameters than the LSTM. The used
gates in the GRU are called Update Gate zt and Reset Gate rt. The formulas
for calculating the hidden state of a single hidden unit are described with

zt = σ (Wxz · xt +Whz · ht−1) , (2.12)
rt = σ (Wxr · xt +Whr · ht−1) , (2.13)

ht = (1− zt)� ht−1 + zt � h̃t, (2.14)

with h̃t = tanh(Wxh · xt +Whh · (rt � ht−1). (2.15)
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2.1.4 Optimization Through Backpropagation

In order to reduce a cost function E and update the weights of a neural
network, the partial derivative of the cost function with regards to a set of
weights W = (W 1, ...,W l) is calculated. With the chain rule of calculus,

δE

δwlij
=
δE

δzli

δzli
δwlij

(2.16)

with zli =
m∑
j=1

wl−1ij al−1j + wli0 (2.17)

can be formulated with zl as the input to layer l, the activation al = h(zl)
and with m as the number of neurons in layer l − 1.
Further,

δzli
δwlij

= al−1j (2.18)

can be formulated calculating the derivative.
Finally,

δE

δwlij
=
δE

δzli
al−1k (2.19)

denotes the final gradient.
This way, all partial derivatives of E with respect to the weights W can be
calculated and an update step of the weights

Wt+1 = Wt − η∇E (2.20)

with the step size η can be performed.

2.2 Metrics and Test Procedures to Evaluate
Classification Systems

To evaluate a classifier multiple different metrics exist. Each metric evaluates
the performance of a classifier differently. Thus, different metrics can be used
to interpret the performance of the classifier differently. The classification
results of a binary classifier, which distinguishes between a positive and a
negative class can be displayed in a confusion matrix 2.1. This confusion
matrix contains the correctly classified True-Positive (TP) examples, the
mistakenly positive classified False-Positive (FP) examples, the mistakenly
negative classified False-Negative (FN) examples and the correctly negative
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Label
Prediction positive negative

positive TP FN
negative FP TN

Table 2.1: Structure of a confusion matrix for a binary classifier

Label
Prediction positive negative

positive TP
TP+FN

FN
TP+FN

negative FP
FP+TN

TN
FP+TN

Table 2.2: Structure of a confusion matrix with relative numbers for a binary
classifier

classified True-Negative (TN) examples. An example of a binary confusion
matrix with this absolute values is displayed in table 2.1.

The confusion matrix can be displayed with relative values instead of
absolute values as well in order to better visualize the classification distri-
bution. The entries of the relative confusion matrix are the values of the
absolute confusion matrix normalized with all values of the related row as
displayed by table 2.2.

The predictions of a multiclass classifier can be displayed similarly with
the multiple different classes.

Accuracy

One commonly used metric to evaluate a classifier’s performance is the ac-
curacy. The accuracy

ACC =
TP + TN

TP + FP + FN + FP
(2.21)

measures the portion of correct classified examples. For a multiclass classifier
the accuracy is calculated by

ACCmult =
Correctly classified examples
Total number of examples

. (2.22)

As long as the different classes are evenly balanced, the accuracy score is a
meaningful measure for the performance of a classifier. However, as soon as
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the different classes are imbalanced, the accuracy score might give a mislead-
ing impression of the classifier’s performance. To use the accuracy anyway,
the class imbalance can be included in the accuracy score by calculating the
mean of the class wise accuracy by

ACCbalanced =
1

|L|
∑
lεL

TPl
TPl + FNl

(2.23)

with L as the set of classes.

Precision and Recall Metrics

Two commonly used error rates are the precision and the recall, which are
both calculated per class. The precision

precisionl =
TPl

TPl + FPl
(2.24)

measures the rate of how many positive predicted examples are truly positive.
The recall

recalll =
TPl

TPl + FNl

(2.25)

measures the rate of how many positive examples of a class are correctly
classified as this class.

When considering different thresholds for a class to count as positive
class a precision recall curve can be drawn, showing the tradeoff between
the precision and recall of the classifier’s results depending on the different
thresholds. An example of a precision recall-curve is shown in figure 2.5. The
overall performance of the classifier is given by the area under the precision
recall curve often called the average precision. A higher area under the
curve means overall higher precision and recall scores. The performance of a
classifier calculating random predictions about the classes is displayed by the
dotted line. As the curve of a random classifier might look differently, the
area under the curve is 0.5 for a binary classifier, predicting random results.
A combined performance measure of the precision and the recall is given by
the F1-score

F1 = 2 · precision · recall
precision+ recall

(2.26)

which calculates the harmonic mean of both measurements.
For a multiclass classifier for each class one precision recall curve can be

calculated representing the evaluation of this class. In order to calculate the
metrics by class, the evaluation needs to be done in a one versus all manner
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Precision Recall curve example
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Figure 2.5: Precision recall curve of a binary classifier. The dashed line repre-
sents a precision recall curve of a binary classifier with random classification
results. The orange line represents the precision recall curve of a trained
classifier. Depending on the desired behaviour of the classifier to have a high
precision, a high recall or a specific balance between both scores, a thresh-
old can be determined to meet the desired behaviour of the classifier on the
evaluated data.

for each class. The average precision of a class given by a randomly predicting
multiclass classifier equals 1

N
, with N as the total number of classes. To cal-

culate an overall measurement for the multiclass classifier, the measurements
can be combined in different ways. One way to combine the measures for
multiple classes is to calculate the micro-average of the scores. The micro-
average sums the measurements and divides them by the total number of
measurement, for example of the precision scores

precisionmicro =

∑
lεL TPl∑

lεL TPl + FNl

. (2.27)
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A micro precision recall curve can be calculated as well, by quantify-
ing the score on all classes jointly. However, this metric does not consider
class imbalances of the data and could result in a skewed impression of the
classifiers performance, if the classes are imbalanced. To equally weight the
different classes the macro-average of the scores

precisionmacro =
1

|L|
∑
lεL

precisionl (2.28)

can be calculated by calculating the scores per class and average them over
all classes instead of all examples.
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2.2.1 N-Fold Cross Validation

To evaluate the performance of a classifier the classifier is ideally tested and
evaluated on independent test data. This test data should not be used to
train or validate the system and is processed by the system only once to get
the evaluation metric scores. However, sometimes the dataset is too small
to exclude a representative part of the data to be used as test data only. In
these cases the system can be evaluated with a n-fold cross validation. To do
this, the dataset needs to be split in n equal parts. The class distribution for
each class should be the same for each split. The system is then trained n
times, each time without one of the splits and evaluated on the left out split.
Once the trained systems are evaluated, the mean of each left out evaluation
score is computed to evaluate the overall performance of the classifiers.

2.3 Optical Flow

The optical flow of an image sequence describes the translational movement
of objects between images. This translational movement can be caused by
the object actually moving or by camera movements. If the camera has a
fixed position, the translational movement described by the optical flow im-
ages results from actual object movement and not from camera movement.

One way to calculate the dense optical flow is the Farneback’s method
[Far03]. This method for calculating dense optical flow from two consecutive
images approximates each pixel neighbourhood by a polynomial

f1(x) = xTA1x+ bT1 x+ c1 (2.29)

and constructs a new signal by introducing a global displacement to the
polynomial

f2(x) = f1(x− d) = xTA1x+ bT2 x+ c2. (2.30)

This displacement can further be calculated between two frames

d = −1

2
A−11 (b2 − b1) (2.31)

with b2 = b1 − 2A1d (2.32)

and equals the optical flow between those.

Figure 2.6 shows an example of the calculated optical flow of two images.
It can be seen that the strongest movement happens in the vertical axis as
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Frame n Frame n+1

Horizontal-component Vertical-component
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Gray scale images
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Figure 2.6: Example of optical flow images. Top: Original gray scale images.
Bottom: Horizontal- and vertical-components of the optical flow calculated
from the original grayscale images.

the person lifts his right arm to the head. This movement is captured by the
vertical-component of the optical flow images, while less movement happens
in the horizontal axis captured by the horizontal-component of the optical
flow images. Around the person little to no movements happen resulting in
near zero values in the optical flow images. A minimal movement is still
detected in these areas as the image noise contributes to the optical flow
calculation as well.
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Figure 2.7: Time-of-Flight image data examples. Left: Gray scale image
example. Right: Color encoded depth image example. Dark pixel represent
shorter distances to the camera, light pixel represent larger distances to the
camera.

2.4 Hardware and Environment

The camera used in this work to capture image data is a Time-of-Flight (ToF)
camera, which is capable of capturing both a gray-scale image and a depth
map of the scene. ToF cameras are widely used in several domains by now
and have the advantage that they can capture images of a scene regardless of
the ambient light. Following, the principle of calculating the distance from
the camera to the environment which is employed by the used Time-of-Flight
camera is outlined. Furthermore a short overview of the general environment
in which the camera operates is given.

2.4.1 Time-of-Flight Depth Measurement

To calculate the distance from the camera to the environment a light emitting
diode illuminates the environment with near infrared light (IR) pulses. The
emitted light is reflected by the surface of the environment and measured by
a sensor with photo diodes. With

d =
tD
2
· c (2.33)

the distance to the surface can then be calculated based on the time the
emitted light needs to travel to the surface and back to the sensor tD and
the speed of light c = 3 · 108 m/s.

However, the required hardware to emit and measure these IR light pulses
is quite costly. A different approach to measure the distance of the environ-
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ment is to measure the phase shift φ between the emitted and measured
light of modulated light. This phase shift can further be used to calculate
the distance with

d =
c · ϕ

4 · fm · π
(2.34)

and the frequency of the modulated, emitted light fm. The diodes emit light
in the near infrared spectrum in order to be invisible for the human eye
and therefore not being a source of disturbance for the driver. With addi-
tional measurements without the diodes illuminating the scene in between
the ambient light emitted from other sources as the diodes of the camera,
the measurements of the sensors resulting from the ambient light can be sub-
tracted from the measurements with the diodes illuminating the scene. This
results in measurements independent from ambient illumination, e.g. the il-
lumination caused by daylight.
In addition to the depth image, the camera also generates a gray-scale image
of the scene. Figure 2.7 displays an example of the two output images of the
ToF camera. At the left side an IR amplitude image is shown, while on the
right side the corresponding depth map is displayed.

2.4.2 Environment

The cameras are recording images of the front seats of several cars of different
brands and models and are integrated in a special roof module which is
located in the roof of the cars right in front of the rear mirror. Figure 2.8
shows an image of the front seats of one of the test cars. At the roof of the car,
in front of the rear mirror, the camera location is highlighted. The camera
is integrated in a way to monitor the front seats of the car from above. The
example images of the ToF camera, displayed in figure 2.7, show both front
seats, as well as the driver, the steering wheel, the dashboard and partly the
doors of the car on the driver’s side, and on the passenger side. The visibility
of the driver’s head depends on the height of the driver and is mostly not
visible completely due to the location of the camera and the camera’s angle
of view. Depending on the car and the installation position, the images vary
between the different cars not only that another car interior can be seen,
but also that the rotation and translation of the interior visible in the images
changes slightly. Figure 2.9 shows images of 4 different cars each with slightly
different camera positioning. It can be seen that the camera angle differs for
each of the four cars. Moreover, the visibility of the interior in the gray-scale
image highly depends on the material and the color of the interior, resulting
in very dark scenes for the second and the fourth example.
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Figure 2.8: Example of the ToF camera location in one of the test cars. The
camera is installed in the roof module of the car in such a way that it observes
the front seats.
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Figure 2.9: Differences of different cars and camera positions.



CHAPTER 3

Related Work

In recent years many driver monitoring systems were proposed for different
kinds of applications. These applications are mainly safety applications to
detect fatigue or rate the attentiveness of the driver. Besides these safety
applications, methods to enhance the in-vehicle infotainment experience were
proposed as well.
In this chapter, previous works related to driver monitoring and deep learning
are described, on which the methods described in this work are based. First
in 3.1 an overview of different driver monitoring applications is given. In
3.2 related deep learning approaches and contributions using deep learning
approaches for interior sensing are presented. Finally an overview of related
action recognition systems and action recognition systems for interior sensing
are described in 3.3.

3.1 Driver Monitoring

To detect fatigue, papers like [Hor04], [Zha06], [Gan06], [Du08] analyse hand
crafted features of the driver’s eye states. These features are then further
analysed to calculate the eye closure and blink rates, as they are essential in-
dicators for these works. Later, learned features are commonly used to detect
fatigue of the driver, like in the papers of [Li14], [Sha19], [Bor17], [Bor20].
These learned features are used for automatic head and eye localization, pose
estimation and classification of the driver’s state. Moreover the authors of
[Fri18] analyse driver’s eye pupils with a 3D-CNN to estimate the cognitive
load and therewith the driver’s overall performance.

Beside driver’s fatigue, the mood of the driver is essential for the driving
style, as described in [Abd16]. The authors therefore try to classify the
driver’s mood, based on video and audio recording of different drivers.

23
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The papers of [Ohn14b], [Mol15b] analyse image sequences of hands to
recognise different hand gestures in an in-vehicle environment.

Moreover, the papers of [Geb19] focuses on predicting the driver’s inten-
tion by analysing image sequences of the driver.

Currently, one of the most important factors for the safety of a vehicle is
the driver’s attention as mentioned in chapter 1. Most works focus on de-
tecting the driver’s inattention by analysing the driver’s pose and trying to
detect object interactions with non driving related objects, like cellphones.
For this, a variety of approaches exist. The authors of [Hoa16], [Yan16a],
[Mas18], [Era19], [Mar19] use CNNs to classify whether the driver is atten-
tive, or deals with other activities instead of driving. Most works, however,
reduce the input feature space from full images of the driver to focus on spe-
cific attributes. Some papers, like [Cra15], [Yan16b], [Era19], [Xin19] segment
the driver in camera images to reduce the feature space. Other papers focus
on features like the head position, head rotation and gaze attributes [Liu15],
hand features [Ohn13a], [Ohn13b], [Hoa16], or combine different head, hand
and object features [Che07], [Ohn14a], [Era19]. Beside the mentioned fea-
tures of a driver that can be used to classify the driver’s state, some papers
analyse the driver’s body pose reduced to keypoints representing the loca-
tions of the driver’s main body parts, like the head, shoulder, elbow and
hand positions. The papers of [Dem09], [Alb18], [Tor19] focus on detecting
these keypoints in an in-vehicle environment. While the work of [Mar18],
[Mar19] uses only the driver’s body keypoints and their relations, the paper
of [Beh18] combines the keypoint locations with other features, while the
work of [Era19] uses keypoints to cut out the driver’s head and hands from
the original image.

To analyse the driver’s state and activities, the proposed methods rely on
different kinds of sensor data. While some papers rely on RGB image data
[Yan16a], [Beh18], [Mas18], [Geb19], [Geb19], some papers use illumination
invariant image data like infrared images [Dem09], [Mol16], [Yan16a], [Liu16],
[Mar19] or depth sensors [Dem09], [Li14], [Xu14], [Ohn14b], [Mol16], [Cra15],
[Tor19], [Mar19] for driver monitoring applications.
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3.2 Deep Learning for Image Classification and
Single Image Interior Sensing

With the rise of deep learning in the recent years, new opportunities for all
image related applications arose. By means of modern computer technol-
ogy, larger and more complicated artificial neural network structures, such
as the papers of [Kri12], [Sim14b], [Sze15], [Sze16b], [Sze16a], [He16], can be
trained to analyse image data in even shorter time. Together with continu-
ously growing datasets like [Kri12], [Lin14] and the possibility to store and
process more and more data, deep learning applications were widely used
and developed for many different tasks during recent years. This effective-
ness on processing image data with CNNs has made deep learning driven
applications an essential part for interior sensing and driver monitoring.
While the authors of [Yan16a] classify the driver’s posture with a CNN from
images showing the complete driver side of a vehicle from the passenger side,
most papers addressing driver monitoring are based on preprocessing in-cabin
image data.

Human Pose Estimation and Detection Networks

Beside classifying images, artificial neural networks can be used to estimate
human poses and detect objects in images. To estimate human poses and
detect different body parts in images with a trained neural network, different
approaches exist. The authors of [Tos14] formulate the task as a CNN-based
regression problem. First, a CNN extracts features from an image with a
person. These features are then processed by a fully connected network to
predict the x and y coordinates of different body parts of the person in the
image. Further, these coordinates are used to crop out sub images from the
original image, to refine the predicted coordinates with the same network.
Other papers addressing human pose estimation also use CNNs to calculate
features from images to predict the location of human joints in images, but
calculate the final prediction from the feature maps without fully connected
networks. The authors of [Wei16] train the CNN to generate a feature map
for each body joint. Each detected body joint is represented by a 2D Gaus-
sian peak at the position in the feature map, where the body joint is located
in the original image. To address the vanishing gradient problem, which
occurs when training neural networks with many layers, the authors train
multiple stages which calculate refined feature maps based on the output of
the previous stage, as well as the original image.
These techniques are further used to detect body joints of drivers in an in-
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vehicle environment. The authors of [Alb18] use a motion tracking system, to
generate 3D training data for human pose estimation in an in-vehicle mock-
up environment. These 3D points are used to train a convolutional neural
network with a fully connected layer to predict the 3D positions of the driver’s
joints from depth images. The authors of [Tor19] also use depth images to lo-
cate different driver’s body parts. First, a VGG network ([Sim14b]) extracts
features from depth images. Following, three different CNN based branches
calculate heat maps for localising the body parts, part affinity fields to refine
the predictions and the visibility of different joints. As human pose esti-
mation is a very strongly investigated area, most driver monitoring systems
detecting human body parts rely on pre-trained human pose estimation net-
works to detect different body parts in in-vehicle environments such as the
papers proposed by [Beh18], [Era19], [Mar19].

Detecting different objects in images differs from localizing body parts,
as object detection requires not only the position of the object in the images,
but the spatial boundaries in the image plane as well. Therefore, object de-
tection networks like the Faster-RCNN presented by the authors of [Ren15]
propose the location, the height and width of objects in images. While the
Faster-RCNN detects and classifies objects in images in a two step network
architecture, the authors of [Red17] use a CNN based network to do bound-
ing box regression and object classification at the same time. Moreover, the
authors create a hierarchical label structure with mutually exclusive classes
for each hierarchy level for the classification task, to create a fallback mecha-
nism for the network. To avoid misclassifications for fine-grained classes, the
next higher class, relative to the hierarchy, can be predicted if the network
is uncertain about the classification of an object.

Using this kind of region proposal networks, the authors of [Hoa16] use a
semantic detection network to detect the driver’s hands, face and the car’s
steering wheel in two different camera images. The intersection of a detected
hand and the steering wheel is used to classify, if this hand is located on the
steering wheel or not. Moreover, the intersection between a hand and a face
is used as a measurement to decide if the driver is taking a phone call or not.

Combined Approaches

The paper of [Yan16b] uses a similar approach for detecting more general
driver actions. The authors introduce a method for driver activity classifi-
cation by replacing the generic region algorithms with a Gaussian mixture
model for skin segmentation. This results in an approach, which has, through
the skin segmentation, access to additional information about parts of the
driver’s body. The approach described by [Xin19] also uses a Gaussian mix-
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ture model for skin segmentation to separate pixels related to the driver
from the background. The so obtained foreground image of the driver is
then processed by various CNN architectures, like an AlexNet [Kri12], a
GoogLeNet [Sze15] and a ResNet [He16] to distinguish between driver activ-
ities like normal driving, mirror checking or texting on a smartphone. The
paper published by [Era19] uses an ensemble of neural networks to detect
different distractions, like talking to a passenger, phone usage or drinking.
Besides the full image, the authors use detection networks for the driver’s
hands and face, to create hand and face cut outs of the driver’s image as well
as a skin segmentation algorithm to separate the skin related pixels from the
non skin related pixels, resulting in five images showing the full scene, the
driver’s face, the driver’s hands and the driver’s skin respectively. A CNN is
trained to classify each kind of input image and the input image combination
of the hand and face images. Different CNN architectures, like an AlexNet
[Kri12], a VGG [Sim14b], an InceptionNet [Sze16b], and a ResNet [He16],
are tested for classifying the different inputs. Finally the weighted ensemble
of the different classifiers predicts the class probabilities.

3.3 Action Recognition and Driver Activity
Recognition

Action recognition datasets

Beside image recognition, deep learning applications are also commonly used
to recognise actions in image sequences. Similarly to the image recognition
datasets, the number of datasets for action recognition is growing. While
most action recognition datasets originate from movies or YouTube videos
[Kue11], [Abu16], [Car17], some datasets are specially recorded for the task of
action recognition in a specific environment [Sha16], [Mar19]. The authors of
[Mar19] gathered a dataset for the specific task of driver’s action recognition
in an in-vehicle environment, containing multiple typical actions performed
by a driver with multiple persons as drivers. The dataset consists of short
three second clips of the driver recorded with a RGB camera, a depth camera
and multiple IR cameras from different viewpoints, as well as calculated body
keypoints of the driver. Additionally, the authors test several state of the art
action recognition networks, pre-trained on related data, on their dataset.
Although many different datasets for action recognition exist and the datasets
contain many different video sequences, the sequences are mostly distributed
between many different classes, resulting in notably less examples per class
than available examples for single image recognition tasks. This factor and
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the circumstance that gathering and annotating action recognition data is
time consuming complicates deep learning based action recognition tasks.

3D-CNNs

The papers of [Tra15], [Ji12] extend the concept of a CNN with an additional
dimension, creating 3D-CNNs, to cover the additional temporal dimension
in image sequences. Later, [Car17] enhances the idea of the 3D-CNNs by
inflating an InceptionNet with batch normalization ([Iof15]) to a 3D-CNN.
The concept of 3D-CNNs was picked up by the authors of [Mol15a] to recog-
nise hand gestures and was further developed to recognize hand gestures in
an in vehicle environment from RGB, depth and radar images in [Mol15b].
Image streams of each sensor type are recorded, as soon as the radar recog-
nises a certain amount of movement directly in front of the sensors. Once the
sensor does not recognise any movements, the recorded images are stacked
per timestep. As the network requires a fixed length input, the stream length
is re-sampled with nearest-neighbor interpolation. Finally a 3D-CNN calcu-
lates features from the image sequence which are then classified by a fully
connected network.

Action Recognition with Optical Flow Images

A different way to recognise actions from image sequences is to calculate
optical flow images from the image sequences to encode the movement in-
formation of multiple images in single images. The approach described by
[Sim14a] introduces a two stream CNN network for action recognition, split-
ting up the task in a spatial and a temporal component. While the spatial
stream performs action recognition with a CNN on single images of the se-
quence, the temporal part performs action recognition with a second CNN on
multiple optical flow images, calculated from the images of the sequence. The
classification results of both streams are then fused to get a final classification
for the sequence.

Recurrent Neural Networks

Another concept for action recognition from image sequence data is to ex-
tract features from images and analyse these features with recurrent neural
networks, like the authors of the papers of [Don15], [Yue15]. In their papers,
features from single images of the sequences are computed by CNNs. These
extracted features from each timestep of the sequence are then processed by
a RNN to classify the frames of the sequence by considering the previously
seen frames.
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A similar approach is introduced by the authors of [Mol16], extending their
previously described approach for driver’s hand gesture recognition ([Mol15b]).
Instead of classifying large blocks of image sequences each showing one hand
gesture performed by a driver with a 3D-CNN, the authors now extract fea-
tures of smaller image sequence blocks which are further processed by a RNN.
To detect the different instances of a single action, a connectionist temporal
classification loss (CTC) is used to prevent the network from recognising a
single action multiple times.

Skeleton Based Action Recognition

While most papers, which aim to recognise actions with neural networks, rely
on directly analysing image data, some works reduce the input features space
for the networks by using skeleton data or object positions calculated from
the frames of the image sequences. The approach of [Ché15] contains such a
detection network for human body poses. This detection network calculates
the main body keypoints of humans in the image sequences. These body
keypoints are then used to generate cut outs of the full body and important
parts of the visible humans, like the hands and the upper body, resulting
in multiple sub images per frame. Additionally, the optical flow is calcu-
lated between consecutive images of a sequence. Similarly to the approach
of [Sim14a], the sub images are processed in two streams, one spatial stream
and one temporal stream. The concept of using the human pose described
by body keypoints for action recognition is further used by [Liu16], [Sha16],
which use the generated skeleton data to classify action with LSTM net-
works. The authors of [Das18] extend the approach of classifying human
actions with skeleton data processed by an LSTM network with image cut
outs of important body parts. The image cut outs are processed separately
to the skeleton data and fused with the classification results of the LSTM
network for each timestep of the sequence. The approach presented by [S
K19] combines skeleton data with the results of an object detection network
to detect human object interactions.
The concept of using human pose information to detect secondary tasks per-
formed by car drivers while driving is described by [Mar18]. The authors
trained a three stream LSTM network on 3D skeleton data of the driver
to distinguish between classes like drinking, phone call, phone use or driv-
ing. The 3D skeleton data was pre-calculated by triangulating 2D skeleton
information, generated by a human pose estimate network from multiple
viewpoints. The three streams consist of a temporal stream, analysing the
driver’s movements over time, a spatial stream, analysing the spatial rela-
tion of the different body parts in a fixed time frame, and a context stream,
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analysing the relations of the driver’s body parts with parts of the car’s
interior. The approach of [Beh18] aims to recognise different actions with
an in-vehicle environment with skeleton data, object positions and features
calculated from the original images. The authors use a network trained for
human pose estimation and object detection to generate skeleton data of the
driver and localize different objects in RGB images showing the driver from
the passenger side of the car. Between the different skeleton parts and the
object locations, contextual descriptors between two elements are calculated,
like the distance and the orientation to one another in the 2D plane. Ad-
ditionally, a pre-trained VGG network ([Sim14b]) extracts features from the
RGB images. A multi stream LSTM network analyses the skeleton data, the
object location data, the contextual data and the features generated by the
VGG and is finally classified by a softmax classifier for each frame.



CHAPTER 4

Improving Interior Sensing and Driver
Monitoring with Hierarchical Classification

Driver monitoring applications need to be robust in order to meet automo-
tive safety requirements. If safety critical systems misjudge the situation, a
critical situation might not be detected or detected too late. Even non crit-
ical situations can become critical if a safety system misjudges the current
circumstances beyond a critical point. Therefore, these systems need fallback
strategies to weaken the outcome of misclassifications. Moreover, datasets
containing examples for specific tasks are usually not available and need to
be gathered during the development of the system. Collecting the necessary
data is usually time-consuming and expensive. Therefore, it is advantageous
if such systems can be trained on less data than usually required for deep
learning based systems while still resulting in a robust solution meeting the
performance requirements.
Hierarchical classification of the driver seat region can enhance the robust-
ness of driver monitoring systems as well as making the training process more
efficient with less data. The hierarchy integrates a natural fallback option
for classes with low classification confidence to the system. Moreover, classes
in higher layers of the hierarchy can be trained with more data examples
compared to a flat label approach.
Most methods for hierarchical classification suggest applying weights to the
loss function of a classifier as proposed by the authors of [Bin09], [Den10],
[Den11], [Cha15]. These papers show that, considering the taxonomies of
classes, by integrating the distance of misclassifications to the correct class
in the hierarchical class tree into the loss function, the performance of SVM
classifiers can be improved. However, these concepts are only applicable for
multi-class classification tasks to increase the loss for misclassifications de-
pending on the distance to the correct class. Multi-label classification tasks

31
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with explicit classifications for each branch junction, as suggested by the
authors of [Cai04], would not benefit from this approach, as parts of the
classifier would be penalized during training which has no influence on the
part of the network which made a false decision in a higher layer of the clas-
sification tree.
The loss functions, introduced in those papers, are mainly based on the 01-
loss to train support vector machines. This loss is however not suitable for
training an artificial neural network, as no gradients, which are required to
adjust the weights of a neural network, can be computed by replacing correct
classification with a loss of 0 and an incorrect classification with a loss of 1.
A commonly used approach for hierarchical classification with artificial neu-
ral networks is to construct a network adjusted to the hierarchical structure
of the labels. The authors of [Cer14] use an MLP for each layer of the hi-
erarchy for multi-label hierarchical classification. The MLP’s output of a
certain hierarchical level is the input to the following level’s MLP, creating
a stacked neural network with an MLP for each level of the hierarchy. This
paper is extended by [Weh18] with an additional global classifier, classifying
all classes at once. The results of the local and global predictions are then
fused to generate a final prediction.
The paper proposed by [Li16] aims to classify human attributes as the gender
and the clothing style from images. The authors use a detection network to
find regions of interest in images. These regions are hierarchically separated
in categories like a person, the head of a person, a group of persons or the
whole scene. Several different classification networks then calculate predic-
tions from the hierarchical ordered regions for the attributes, which are fused
to generate a prediction about the different attributes. The different stages
can bring different levels of context to the classifiers, supporting the final
classification.
A different approach is used by the authors of [Red17] to hierarchically clas-
sify images. The classification part of the network calculates probabilities
with a softmax function for each set of hyponyms of a parental node in the
hierarchy. Hyponyms are more finely distinguishable subclasses of more gen-
eral parental class. The probabilities along a path of the hierarchical tree
are multiplied to create a conditional prediction for each class node. During
training, the contribution of non-active layers of the tree to the loss are set
to zero, since these branches do not provide any relevant information for the
training.
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Occupancy Classes
Empty Empty driver’s seat
Object Driver’s seat is occupied by an object
Person Driver’s seat is occupied by a person

Driver’s State Classes
In Position The driver is sitting in a driving position
Out of Position The driver has taken a position in which

he cannot drive normally
Hand on Wheel The driver has at least on hand on the

steering wheel
Hands off Wheel The driver has no hand on the steering

wheel
Object Interaction The driver interacts with an object
no Object Interaction The driver is not interacting with an

object

Table 4.1: Classes for the hierarchical occupancy and driver’s state classifi-
cation

The presented method extends the paper of [Red17] by integrating a
multi-label advancement to the hierarchical loss function for training a driver
state monitoring system. The proposed system and methods were published
by the author of this work in [Wey18].

This chapter is structured as follows. First, an overview of the gathered
dataset and its hierarchical structure is given in chapter 4.1. Following, a
method for training a neural network with hierarchical multi-label data is
presented in chapter 4.2. An overview of the neural network used to classify
the different driver states is described in chapter 4.3. The proposed method is
evaluated in chapter 4.4. Finally, a summary and conclusion of the proposed
system is given in chapter 4.5.
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4.1 Hierarchical Occupancy and Driver State
Data

The dataset for classifying the occupancy of the driver’s seat and different
states of the driver consists of multiple images recorded in multiple differ-
ent cars with different persons and objects. Each example image shows the
driver’s seat region of a car in different occupancy states and, if occupied
by a person, with several states of the driver. The examples were annotated
manually and are composed of an amplitude image and a depth image each.
Gathering the dataset, including recording and annotating the data, was part
of the presented work.

The dataset consists of examples showing the different categories used
for the occupancy classification and driver state monitoring. The different
classes are listed in table 4.1. The dataset subdivides into the occupancy cat-
egories Empty for an empty seat, an object laying on driver’s seat (Object)
and a person sitting in driver’s seat (Person). The driver’s state classes are
composed of examples of the classes of a person sitting in the driver’s seat in
a normal driving position (In Position) and a non-driving position (Out of
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Figure 4.1: Examples of empty driver seats. Top row: amplitude images.
Bottom row: Depth images with the corresponding color bar showing the
color to distance coding in mm.
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Position), a person sitting in driver’s seat holding the steering wheel (Hands
On Wheel) or not holding the steering wheel (Hands off Wheel) and a person
sitting in the driver’s seat interacting with an object (Object Interaction) or
not interacting with an object (No Object Interaction).

Figure 4.1 shows examples of empty driver seats recorded in different cars.
It can be seen, that the camera angle differs depending on the car. Moreover,
the interior of the cars can be recognised differently well in the amplitude
images as well as in the depth images, depending on the reflectance of the
different materials of the interior. For example, the driver’s seat is easier to
recognize in the first amplitude image than in the second, while it is the other
way around for the depth images. Moreover, in the first two depth images
the image noise is clearly more visible compared to the third depth image.

Figure 4.2 shows two different categories of the driver’s seat occupancy.
In figure 4.2a the driver seat is occupied by different objects. The first image
shows a wadded jacket. While the jacket is clearly visible in the amplitude
image, it might not be recognised as a jacket in the depth image. However,
it can be seen from the depth image that the driver seat is not empty. The
same applies for the third image tuple, showing a driver seat with a back-
pack on it. While the backpack is clearly visible in the amplitude image, the
depth image only gives a rough idea of what object is located in the driver’s
seat. The second image tuple shows a bottle laying in the driver seat. The
bottle can be recognised as an object in the amplitude image. In the depth
image the bottle is hard to recognise as the bottle is quite small and the
depth values differ very little from those of the driver’s seat. Figure 4.2b
shows images where persons are located in the driver’s seats. The persons
are clearly recognisable in the amplitude and depth images.
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(a) Examples of objects on the driver seats.
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(b) Examples of persons on the driver seats.

Figure 4.2: Examples of occupied driver seats
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While the preceding examples show the different occupancy possibilities,
the driver’s seat, figure 4.3 and figure 4.4 show examples of the different
driver states available in the dataset.

Figure 4.3a shows examples of the drivers holding the steering wheel of
the car with at least one hand. While both arms of the drivers can be
recognised easily in the amplitude images as well as in the depth images of
the first and third image tuples, the driver’s left arm is harder to localise in
the depth image of the second example. This arm is clearly visible in the
amplitude image as it stands out clearly from the background. In contrast,
the arm nearly mixes with the background as it is located very close to the
driver’s door and quite thin, due to the distance to the camera, compared to
the other arm in the depth image.

The second state that the driver can adopt is when the driver holds or
interacts with an object such as a bottle or a smartphone. Figure 4.3b
shows three examples of a driver interacting with different objects. While
the objects are clearly visible in the amplitude image, only the tablet and the
bottle shown in the first two examples can be recognised in the depth images.
The smartphone the driver is holding in the third example cannot precisely
be identified from the depth images as the depth values of the driver’s hands
and the smartphone mix. Merely the small area of the smartphone’s surface
shows a different structure than the driver’s hands and might be an indicator
to distinguish between the hands and the smartphone in this example.

The third state a driver can adopt in the dataset shows the driver in a
non-common seating position where he might not be able to drive the car.
Figure 4.3c shows examples of three non-common driving positions. The first
example shows the driver leaning toward the glove compartment at the pas-
senger side. In the second example, the driver leans towards the rear seats
and in the third example, the driver leans toward the driver’s side door. The
driver and his positions in the driver’s seat are clearly visible in the ampli-
tude and depth images. These states of the driver are not mutually exclusive
and can occur in all possible combinations.
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(a) Examples of persons sitting in the driver’s seats holding with at least one hand
the steering wheel.
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(b) Examples of persons sitting in the drivers seat interacting with an object.

Figure 4.3: Examples of categories for different driver states.
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(c) Examples of persons sitting in the drivers seat in a non-driving position.

Figure 4.3: Examples of categories for different driver states.

Figure 4.4 shows examples of the possible state combinations. The first
example shows the driver holding the steering wheel with the left hand and
a smartphone with the right hand. Because of the reflecting surface of the
smartphone, it can be distinguished clearly from the hand in the depth image,
unlike in the example shown in figure 4.2a. The second example shows again
the driver holding the steering wheel with the left hand. This time, the driver
additionally leans towards the rear seats. The third combination, the driver
holding an object and seated in a non-common position, is shown in the third
example. All three states the driver can adopt are simultaneously shown in
the fourth example. The driver holds the steering wheel with the left hand
while holding a smartphone with the right hand and leaning towards the rear
seats. State combinations with other objects, different non-common seating
positions of the driver and variations of the hands holding the steering wheel
are present in the dataset.

The classes, as defined in this dataset, can be structured in a hierarchical
way. This hierarchy is displayed in figure 4.5. The top layer of the hierarchy
is defined by the occupancy of the driver’s seat and can either be empty or
occupied. The next hierarchical layer is defined by what occupies the driver’s
seat. In the presented dataset, this can be an object or a person. The third
layer is defined by the different drivers states.
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Figure 4.4: Examples of the driver in multiple states at once

The dataset, which was used to evaluate the published paper in [Wey18],
was extended by additional images. Moreover, the overall number of images
was reduced, by sorting out images which were too similar to each other,
resulting in an advanced dataset with less redundant image examples.
Nevertheless, the class imbalance of the dataset remains because the data
is structured hierarchically, which entails a natural class imbalance between
classes in higher layers of the hierarchy compared to classes in lower layers
of the hierarchy. Figure 4.6 shows the class distribution of the dataset. The
hierarchically induced class imbalance occurs because of the fact that every
example of a layer in the hierarchical tree adds to the parental class as well.
The second factor contributing to the class imbalance is that some classes
do not benefit from more examples and collecting valuable examples of these
classes is too time consuming compared to the benefit gained from more
data for these classes. For color images more examples could help the system
to adapt to different conditions as different lightning. However, for ToF
data the ambient light is subtracted in the imaging process and therefore
the data is to a large extend independent from external lightning conditions.
For example, the class Empty was recorded in multiple cars with different
driver seat and steering wheel positions. Adding more examples of this class
would add images to the dataset very similar to already existing examples.
For color images different lightning conditions could enhance the variation
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Seat
occupancy

Empty Occupied

In
position

Object
interaction

Hands on 
wheel

Occupation

Object Person

Yes No Yes No Yes No

Figure 4.5: Hierarchical label structure for driver state sensing with three
hierarchical layers

of the examples additionally. Similarly, the class Object does not benefit
from more examples with the same objects used for recording the examples.
However, adding more examples of different objects would certainly make
the new examples valuable for training a classifier, though being very time
consuming to record and annotate.
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Figure 4.6: Dataset class distribution of the hierarchical driver’s seat occu-
pancy and driver state dataset.
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4.2 Hierarchical Multi-Label Classification

Structuring data in a hierarchical way is a common method in several do-
mains to arrange the data in a structured and reusable way. When classifying
hierarchically structured data the classifier’s performance can be enhanced
by predicting a more general parental class when the more specific subclass
is not recognised accurately enough. The following method is a multi-label
expansion to the paper proposed by the authors of [Red17]. In contrast to
this paper, the proposed method uses binary classifications for each class
decision. Moreover, multiple branches of the hierarchical tree can be active
simultaneously by introducing a hierarchical tree structure for multi-label
classes.

4.2.1 Hierarchical Tree Structure

In order to add the described hierarchy to a classification system, two con-
ditions must be met. First, the labels of the examples must be able be
structured up hierarchically. This means that each label must have a label
that describes a supercategory of the current label. Secondly, each decision
between classes needs to be binary. Figure 4.7 shows the general required
structure of the labels. Each decision node results in exactly two class nodes.
The class nodes can have an arbitrary number of decisions. The described
hierarchical tree consists of Decision nodes and Class nodes. Each decision
node needs to have exactly two Class nodes and represents a binary decision
between these classes. The number of decision nodes branching off a class
node can vary between zero and an arbitrary number.

The Decision nodes each represent one output neuron of the neural net-
work, while the Class nodes represent the class decision based on the pre-
dicted value of the parental Decision node neuron. The output value of a
class depends additionally on the output values of each class on the path
from the root of the hierarchical tree to the current class. The output of a
Decision node represented by the vector d containing all decision nodes di
and the corresponding Class nodes vector c containing the class decisions ci
on the path to the current node is calculated with

P (d = c|I) = P (d0 = c0|I) ·
r−1∏
i=1

P (di = ci|di−1 = ci−1, I), (4.1)

whereas r denotes the number of elements in the path from the root to the
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Figure 4.7: Hierarchical label structure concept with binary classes consisting
of decision and result nodes

current Decision node. Therefore,

P ({SeatOccupancy,Occupation,ObjectInteraction} = {Occupied, Person, Y es}|I) =
P (SeatOccupancy = Occupied|I)

· P (Occupation = Person|SeatOccupancy = Occupied, I)

· P (ObjectInteraction = Y es|Occupation = Person, I)

(4.2)

calculates the output of the node indicating that a person is interacting with
an object.
The output of a positive class directly corresponds to the output of the related
output neuron. The output of a negative class is computed by one minus
the output of the corresponding positive class. Figure 4.8 and 4.9 show an
example for calculating the output values of the output neuron corresponding
with the object interaction displayed by equation 4.2.
The outputs for the negative classes y0i are calculated by 1 − y1i with y1i as
the corresponding positive output. The hierarchical outputs ỹ are calculated
by propagating the outputs according to the hierarchy.

4.2.2 Label Structure and Masked Loss

Applying this hierarchical structure to data examples entails the circum-
stance that some branches and classes in the tree structure are not active
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Figure 4.8: Example values for calculating the output of the neuron indicat-
ing the interaction with an object.
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Figure 4.9: Example hierarchy for calculating the output of the neuron indi-
cating the interaction with an object.

and should be ignored during training. For example, if an image contains an
object on the driver’s seat, the outputs of the neurons related to the classes
Out of Position, Object Interaction and Hands on Wheel should not con-
tribute to the training of the network. These branches should be ignored
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for this example during training and therefore need a masking mechanism
to ignore the outputs of these neuron during training. This mechanism can
consist of a label structure with an additional label for the true values y,
tagging the classes which need to be ignored during training. This structure
can look as follows:

yi =


0, for negative class
1, for positive class
−1, masked class

(4.3)

Here, the label −1 denotes that the corresponding output of a neuron should
be ignored during training. For the previous example of an object laying on
the driver’s seat the label vector would look like this:

y =

[
S. Occupied Occupation In Pos. Object Int. H. on Wheel

1 0 −1 −1 −1

]
The first label element indicates that the driver’s seat is occupied while the
second label element denotes that the driver’s seat is occupied by an object.
The last three elements are labeled with the ignore label −1 to indicate that
these classes should be ignored during training.
In order to ingore the elements marked with an ignore label, the cost function
used to train the network must be adjusted. Following, the binary cross
entropy

Exentropy(ŷ,y) = −
∑
i

yi log(ŷi) + (1− yi) log(1− ŷi) (4.4)

is used as the cost function and adapted to the presented label structure.

With yi as the true label of the ith output neuron calculated from the
current example and ŷi as the predicted output of the ith output neuron. To
ignore the influence of the elements labeled with the ignore label, the loss
function is modified to

Eign(ŷ,y) = −
∑
i

1y 6=−1(y log(ŷ) + (1− y) log(1− ŷ)) (4.5)
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4.2.3 Multi-Label Classification

In comparison to most classification approaches, where one mutually exclu-
sive class is correct, multi-label classification refers to a system where multiple
classes can be active at once. In contrast to the approach proposed by the
authors of [Red17], where one class in each hierarchical layer is mutually
exclusive, the proposed system can have multiple active classes in one layer
of the hierarchy.
In a multi-label classification network, one output neuron for each class is
required, similar to a single label classification system. Since the classes are
not mutually exclusive, the output values of the network need to be normal-
ized independently. One common way to normalize the values of neurons is
by applying the sigmoid function

σ(xi) =
1

1 + e−xi
(4.6)

to every element xi of the output vector x. This way, the output values
of the network are normalized to values in the range of [0, 1] and can be
processed meaningfully by the cross entropy. Each of these normalised values
represents a binary decision between two classes, e.g. whether the driver’s
seat is Empty or Occupied, in the hierarchical tree. A prediction towards
0 denotes a decision of the negative class and therefore the left Class node,
while a prediction towards 1 denotes a decision towards positive class and the
right Result node of a Decision node. The final output values are processed
by propagating the outputs through the networks as proposed by equation
4.1.

4.3 Driver State Monitoring System

The driver state monitoring system consists of a Time-of-Flight camera mon-
itoring the front seats of a vehicle and a classification system to recognise
the current occupancy and driver state from the camera images. Figure 4.10
shows the complete driver state monitoring system. The Time-of-Flight cam-
era records amplitude and depth images. These images are cropped in order
to show only the driver’s seat region. The artificial neural network to detect
occupancy and driver states in an in-vehicle environment consists of a small
CNN followed by a fully connected neural network to classify images of the
driver side of a car. Examples of these images are shown and discussed in
chapter 4.1. Figure 4.11 and 4.12 show the structure of the network pipeline.
First, the input image size is scaled in order to reduce the computational
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Figure 4.10: The information flow chart of the driver state monitoring system
with hierarchical multi-label classification.

effort for the neural network. Then, a CNN extracts features from the scaled
image, which are further processed by a fully connected neural network. The
CNN consists of three convolutional layers with 8, 12 and 18 kernels with a
kernel size of 3× 3 each and pooling layers in between. The fully connected
network has one hidden layer with 24 neurons and an output layer. The re-
sulting output vector is processed by a sigmoid function in order to normalize
the output values. The final classification result is calculated as described
in section 4.2.1. An example for this calculation of an object laying on the
driver’s seat is shown in figure 4.12. The outputs for the negative class are
calculated from the normalized network output. Following, the outputs are
propagated through the network based on the hierarchical label structure as
described in chapter 4.2.1. The branches of the class tree which are not rele-
vant, as the parental node or an even higher related node is not predicted to
be active, are finally marked as irrelevant accordingly. In this example, the
last three values of the output are irrelevant because the network predicts an
occupied seat with the first output and an object on the driver’s seat with

σ

CNN Fully Connected SigmoidInput Image Normalized

Output

Scaled Image

Figure 4.11: Network structure for hierarchical multi-label interior state sens-
ing. Cropped images of the front seats of a car showing the driver’s side are
re-scaled and fed to a CNN. The extracted features are classified with a fully
connected network and a sigmoid function.
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Figure 4.12: Example for the final classification based on the hierarchical
label structure. The normalized network output is split up to represent the
class outputs for each class. These outputs are propagated accordingly to
the hierarchical label structure to get the final classification result.

the second output.

4.4 Driver State Sensing Results

The proposed method is evaluated by a five fold cross validation. Thus, the
dataset was split in five parts with roughly equal size. For each split about
one fifth of each class subset was selected. To prevent that too similar ex-
amples are located both in the training and validation set, examples which
origin from the same recording are placed in the same split.

To compare the proposed method to other multi-label classification meth-
ods, the approach proposed by the authors of [Red17] was adjusted to be able
to predict multi-label classification. For this purpose, the structure of the
hierarchy was changed in a way that each class can have multiple mutually
independent sets of hyponyms, i.e. several more specific subclasses, instead
of one set. Each set of hyponyms represents a binary decision related to the
decision tree presented in chapter 4.1. This approach is further denoted as
multi-label Yolo.

In addition, the class structure was flattened to train a classifier with a
one-hot-encoding, where each possible class combination is represented by
its own class. Flattening the proposed class structure results in 10 mutually
exclusive classes: Empty, Object, Person (In Position + No Object Inter-
action + No Hands on Steering Wheel), Person (In Position + No Object
Interaction + Hands on Steering Wheel) and all other combinations of posi-
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Acc F1 mAP
mean std mean std mean std

Amplitude
Hierarchical multi-label 0.884 0.023 0.881 0.084 0.918 0.011
Multi-label Yolo 0.864 0.006 0.871 0.078 0.888 0.011
Flat encoding 0.721 0.064 0.759 0.148 0.551 0.060
Depth
Hierarchical multi-label 0.885 0.023 0.888 0.082 0.915 0.016
Multi-label Yolo 0.876 0.028 0.885 0.072 0.919 0.009
Flat encoding 0.717 0.066 0.764 0.140 0.583 0.022
Both
Hierarchical multi-label 0.889 0.023 0.893 0.080 0.920 0.008
Multi-label Yolo 0.882 0.030 0.890 0.078 0.922 0.013
Flat encoding 0.728 0.066 0.770 0.144 0.588 0.023

Table 4.2: Five fold cross validation macro average results of the trained
networks for occupancy and driver state detection with amplitude, depth
and combined input images

tioning (In and Out of Position), object interaction (No Object Interaction
and Interaction) and hands on the steering wheel (Hands on and Hands off
Steering Wheel) of a person sitting in the driver’s seat.

For the networks trained with the hierarchical structures, the classes are
evaluated individually and the scores are combined at macro-level, while the
flattened approach is evaluated in a one vs. all manner. The networks are
trained on amplitude images, depth images and both image types combined
and evaluated and compared with the balanced accuracy, F1-score and mAP.

Table 4.2 shows the cross evaluation results of the different approaches.
The flat approach performs worst compared to the proposed hierarchical
and multi-label Yolo approach for all metrics and input types. The poor
performances of this approach results from the circumstance that some single
classes and class combinations are significantly more frequent than other class
combinations, resulting in an even heavier class imbalance than the class
imbalance present in the multi-label dataset. The networks trained with the
flat class label approach achieve the best performance when trained with
the combination of amplitude and depth images as input. When training
the networks with amplitude images, the proposed hierarchical multi-label
approach performs best regarding the overall metrics compared to the multi-



4.4. Driver State Sensing Results 51

0 Empty 0.94 0.04 0.01 0.01 0 0 0 0 0 0

0.18 0.66 0.04 0 0.1 0 0.02 0 0 0

0 0 0.57 0.14 0.25 0.01 0.03 0.01 0 0

0 0 0.11 0.74 0.06 0.06 0 0.02 0 0

0 0 0.26 0.03 0.67 0.02 0.01 0 0 0

0 0 0.04 0.38 0.14 0.43 0 0.01 0 0

0.01 0.01 0.09 0.02 0.05 0.01 0.74 0.09 0 0

0 0 0.02 0.13 0.01 0.01 0.15 0.68 0 0

0.01 0 0.05 0.03 0.16 0 0.71 0.03 0 0

0 0 0 0.11 0 0 0.33 0.56 0 0

0.0

0.2

0.4

0.6

0.8

1.0

1 Object

2 In Position
no Object Inter.

Hands off

3 In Position

no Object Inter.

Hands on

4 In Position

Object Inter.

Hands off

5 In Position

Object Inter.

Hands on

6 Out of Position

no Object Inter.

Hands off

7 Out of Position

no Object Inter.

Hands on

8 Out of Position

Object Inter.

Hands off

9 Out of Position

Object Inter.

Hands on

0 
E

m
p
ty

1 
O

b
je

ct

2 
In

 P
os

it
io

n
n
o 

O
b
je

ct
 I

n
te

r.
H

an
d
s 

of
f

3 
In

 P
os

it
io

n
n
o 

O
b
je

ct
 I

n
te

r.
H

an
d
s 

on
4 

In
 P

os
it

io
n

O
b
je

ct
 I

n
te

r.
H

an
d
s 

of
f

5 
In

 P
os

it
io

n
O

b
je

ct
 I

n
te

r.
H

an
d
s 

on
6 

O
u
t 

of
 P

os
it
io

n
n
o 

O
b
je

ct
 I

n
te

r.
H

an
d
s 

of
f

7 
O

u
t 

of
 P

os
it
io

n
n
o 

O
b
je

ct
 I

n
te

r.
H

an
d
s 

on
8 

O
u
t 

of
 P

os
it
io

n
O

b
je

ct
 I

n
te

r.
H

an
d
s 

of
f

9 
O

u
t 

of
 P

os
it
io

n
O

b
je

ct
 I

n
te

r.
H

an
d
s 

on

L
ab

el

Prediction

Figure 4.13: Relative confusion matrix of the validation results computed by
the networks trained with the flat class label approach and both input image
types combined.

label Yolo and the flat approach. This approach achieves similar results
when trained on depth image data, while the performance of the networks
trained with the multi-label Yolo is raised when trained on depth image data
to a comparable level regarding the hierarchical multi-label approach. When
using both data types as input to the networks the results of both approaches
differ only slightly.

Figure 4.13 shows the confusion matrix of the validation classification
results of the networks trained with the flat label structure. Some classes,
like Empty, a person sitting in a driving position with at least one hand
on the steering wheel and a person being out of a driving position are ac-
curately recognised. Furthermore, the classes containing object interactions
are most likely confused with the same driver state combination without
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Figure 4.14: Precision recall curves of the validation results computed by
the networks trained with the flat class label approach and both input image
types combined.

the object interaction. Moreover, the last two classes containing the driver
state combinations Out of Position and Object Interaction as well as the
state combination Out of Position, Object Interaction and Hands on Wheel
are not recognised at all. In the examples of these classes the Object Inter-
action is most likely not recognised, resulting in confusion with the classes
with same driver state combination, but without the Object Interaction. The
two classes representing these class combinations are furthermore the classes
which are most underrepresented in the dataset.

The precision recall curves of the class predictions from the validation
data are shown in figure 4.14. The curves show that the networks are most
uncertain about the class predictions for the classes with the least recognised
classes described before. With the predictions for the class Empty the net-
works are most certain, which can also be seen at the confusion matrix scores
for this class.

The balanced accuracy per class of the validation data computed by the
networks trained with the hierarchical approaches and both input image
types combined is shown in table 4.3 and table 4.4. For the classes Empty,
Occupied, Object and Person the networks trained with the proposed hierar-
chical multi-label structure show higher balanced accuracy scores compared
to networks trained with the modified multi-label Yolo approach. For the
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Class
Method Empty Occupied Object Person

Acc Std Acc Std Acc Std Acc Std
Hierarchical multi-label 0.958 0.074 0.958 0.074 0.923 0.048 0.991 0.006
Multi-label Yolo 0.942 0.082 0.939 0.081 0.869 0.097 0.976 0.023

Table 4.3: Balanced accuracy per class results of the validation data com-
puted by the networks trained with hierarchical label structure and both
input image types combined.

Class
Method InPosition OutOfPosition OffWheel OnWheel NoInteraction ObjectInteraction

Acc Std Acc Std Acc Std Acc Std Acc Std Acc Std
Hierarchical 0.922 0.014 0.890 0.023 0.872 0.015 0.870 0.016 0.778 0.032 0.732 0.064
Yolo 0.918 0.014 0.893 0.026 0.875 0.018 0.873 0.013 0.787 0.046 0.748 0.062

Table 4.4: Balanced accuracy per class results of the validation data com-
puted by the networks trained with hierarchical label structure and both
input image types combined (continued).

different driver states the modified multi-label Yolo approach shows better
results for the classes describing the object interaction. The results for the
remaining classes are comparable between both approaches.

The mAP scores of both hierarchical approaches are shown in table 4.5
and table 4.6. When comparing both approaches, it can be seen that the pro-
posed hierarchical multi-label approach scores slightly better for the classes
Empty, Occupied and Person, while scoring markedly better for the class
Object. The driver state classes are classified with comparable mAP scores
between both approaches for most of the classes. Merely the class Object In-
teraction is more reliable classified by the modified multi-label Yolo approach.

The remaining confusion matrices and precision recall curves of the vali-
dation results of the networks trained with the flat label approach are shown
in chapter A.
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Class
Method Empty Occupied Object Person

Acc Std Acc Std Acc Std Acc Std
Hierarchical multi-label 0.991 0.014 1.000 0.000 0.851 0.089 1.000 0.000
Multi-label Yolo 0.986 0.018 0.999 0.002 0.814 0.070 1.000 0.001

Table 4.5: Average precision scores per class of the validation data computed
by the networks trained with hierarchical label structure and both input
image types combined.

Class
Method InPosition OutOfPosition OffWheel OnWheel NoInteraction ObjectInteraction

Acc Std Acc Std Acc Std Acc Std Acc Std Acc Std
Hierarchical multi-label 0.988 0.006 0.919 0.027 0.938 0.026 0.911 0.020 0.913 0.046 0.684 0.070
Multi-label Yolo 0.990 0.003 0.930 0.017 0.938 0.033 0.917 0.020 0.920 0.042 0.722 0.062

Table 4.6: Average precision scores per class of the validation data computed
by the networks trained with hierarchical label structure and both input
image types combined (continued).
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4.5 Summary and Conclusion of the Hierarchi-
cal Multi-Label Driver Monitoring

In this chapter a system for recognising the occupancy of the driver’s seat
and various states that a driver may adopt is presented. For this purpose
a dataset was recorded and annotated consisting of Time-of-Flight image
data showing the driver’s seat area of a car. To train a neural network effi-
ciently for the task of multi-label classification with this data, a hierarchical
multi-label structure is proposed to directly integrate a class hierarchy into
artificial neural network training. Every decision node in the hierarchy is
represented by a binary class decision for the network, resulting in a classifi-
cation structure, with an integrated fall back strategy for uncertain predicted
classes. Moreover, the proposed hierarchical methods allow it to ignore parts
of the classification that are irrelevant for training other parts of the network.

In contrast to a flat label hierarchy, it is not required that every possible
class combination is encoded as a single class, which can result in an unnec-
essarily confusing label structure, as well as heavy class imbalances within
the dataset if many different class combinations are possible. A class imbal-
ance within the dataset is not preventable for hierarchical structured labels,
as parental nodes in the hierarchy always contain all examples correspond-
ing to the child nodes. Nevertheless, this class imbalance is usually not as
prominent as in the flat hierarchical structure if the data is gathered carefully.

The results show that integrating a hierarchy to the training and classifi-
cation process can increase the performance of classifiers significantly, com-
pared to a flat label approach, if multiple classes can be active at the same
time. Two similar hierarchical structures to integrate hierarchical classifi-
cation to a single network were proposed. While the proposed hierarchical
multi-label approach shows better results for classifying the driver’s seat oc-
cupancy and driver’s states for networks trained on amplitude images, the
method proposed by [Red17] works comparably well, when extended to multi-
label classification on a combination of amplitude and depth images.

Overall it was shown that a hierarchical multi-label classification can in-
crease the performance of a classifier by focusing only on relevant information
during training. Moreover, a hierarchy yields a natural fallback option for
classification tasks, through the sequential data structure.
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CHAPTER 5

Suggestion of an Action and Object Interaction
Recognition System for Driver Monitoring

In order to gain a deeper understanding of the driver’s activities using in-
cabin cameras, the action and object interaction classification aims to recog-
nize different activities of the driver as well as the driver’s interaction with
different objects from image sequences.

As the proposed application is targeted to run on an embedded processor
in a vehicle, the system’s computational effort needs to be as low as pos-
sible. Moreover, the recording and annotating data sequences for training
the system is time consuming and costly. Therefore, a lightweight network
architecture and new training procedures needs to be designed to train the
system efficiently with the available data and process the input data fast and
confidently.

To classify different driver activities the authors of [Ohn14a] detect the
location of interesting regions in images showing the interior of the front seats
of a car. Interesting regions are the region where the steering wheel, the in-
struments or the gear shift are present. These subimages are further analysed
to detect the presence of hands. Moreover, the position of the driver’s head
along facial landmarks are located in images from a camera facing the driver.
Instead of detecting interesting regions of the interior the authors of [Hoa16]
directly detect hands and objects to further analyse geometric features of the
detected regions and put them into context. Image regions of the driver’s
face and binary images of the driver’s skin are analysed along with hand
images with an ensemble of convolutional neural networks to detect driver
distractions in the paper of [Era19]. The authors of [Beh18] analyse the con-
nections between detected body key points of the driver and object locations.

57
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The system aims to enhance the driver monitoring application presented
in chapter 4 with a functionality to bring images of a sequence into context
to classify action sequences performed by a driver. This extension of func-
tionality allows the system to distinguish between fine grained actions that
a system that can only infer about the driver’s condition through individual
images cannot. As most actions or object interactions of a driver are either
performed with the full body or the hands, the input features of an action
and object interaction system can be reduced to the driver’s body pose and
cut outs of the driver’s hands.

In contrast to the previously introduced papers, the presented system
focuses on analysing the driver’s body movements based on the driver’s 3D
body key points only. As object interactions are mainly performed with the
driver’s hands, sub images of the driver’s hands are analysed alongside the
driver’s 3D body key points to recognize fine grained object interactions.
This combination of features reduces the input feature space significantly,
while still preserving all in this context relevant input features, which allows
smaller, computationally more efficient networks to be used.

Some papers [Yan16b], [Xin19], [Era19] use skin color detection for image
segmentation to localize body parts such as hands. However, as most skin
color detection methods rely on color images these methods are not suitable
for Time-of-Flight images. Skin segmentation in amplitude images is also er-
ror prone due to similarities with other materials (e.g. fabrics, leather, etc.).
Moreover, it is not uncustomary that the skin of the driver is visible at all
due to clothes that cover him completely. Not detecting any skin regions of
the driver would be problematic for the system if it depends on this infor-
mation. Therefore, the proposed system does not rely on any skin detection
mechanism.

Even though the presented work focuses on driver’s actions and object
interactions, the methods are not restrained to be used only for recognizing
the actions and object interactions of a driver, but for passengers or different
settings beyond interior sensing as well.

The dataset used to train and validate this system was recorded in dif-
ferent car interiors with multiple people performing predefined actions and
object interactions. Gathering the video data and annotating was part of the
presented work. The described system and methods origin from the paper
proposed by the author of this work in [Wey19].
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Driver Actions

Nothing
Default class showing a driver
doing normal body movements
related to driving

Enter Driver enters vehicle
Leave Driver leaves vehicle
Strap Driver fastens seatbelt
Unstrap Driver unbuckles seatbelt

Object Interactions
Phone Idle Driver holds a phone

Phone Interaction Driver interacts with a phone
(e.g. typing)

Phone Call Driver takes a phone call
Bottle Idle Driver holds a bottle

Bottle Interaction Driver interacts with a bottle
(e.g. opening, closing)

Drinking Driver drinks from a bottle

Table 5.1: Action and object interaction labels and descriptions. The labels
subdivide in the two categories Driver Actions and Object Interactions.

At the beginning of this chapter, an overview of the gathered dataset is
given in section 5.1. In section 5.2, a new method for augmenting the time
component of sequence data is presented and evaluated. The methods for
generating the driver’s body key points and hand sub images are presented
in section 5.3. Following, the system, including the network architecture, is
presented in section 5.3.5. The proposed system is evaluated in section 5.3.6.
Finally, section 5.4 summarises the proposed training methods and results.



60
Chapter 5. Suggestion of an Action and Object Interaction

Recognition System for Driver Monitoring

5.1 Action and Object Interaction Recognition
Data

The dataset used to classify actions and object interactions consists of mul-
tiple sequences each showing one action or object interaction performed by
a driver of a car. The images have the same field of view of the car’s front
seats as the dataset recorded for the hierarchical occupancy and driver state
classification described in chapter 4.1. Each sequence was recorded in one of
the available cars and was labeled manually.

The action label categories are listed in table 5.1 and subdivide in the
actions Nothing, entering the car (Enter), leaving the car (Leave), fastening
the seat belt (Strap) and unstrapping the seat belt (Unstrap). The object
interaction focuses on the interaction with two objects, namely a phone and
a bottle. This interaction categories subdivides into the categories of holding
the object (PhoneIdle, BottleIdle), interacting with the object (PhoneInter-
action, BottleInteraction) and using the object (PhoneCall, Drinking). The
class PhoneInteraction shows sequences where the driver is using a phone
in a way where he is typing on the display or the keyboard of the phone,
whereas the class PhoneCall explicitly shows the driver leading the phone to
one ear with one of his hands. Similarly, the class BottleInteraction shows
the driver opening and closing bottles, while the class Drinking, although this
class may also fall into the category BottleInteraction, gets its own category.
Other possible interactions that can be performed with a phone or a bottle
are not part of the dataset, but can be integrated easily.

Figure 5.1, figure 5.2 and figure 5.3 show example scenes of the actions
and object interactions of the dataset. A selection of amplitude images as
well as the corresponding depth images of a sequence are shown to visual-
ize the different classes used for the action and object interaction recognition.

Figure 5.1a shows a sequence of the category Nothing. At the beginning
a driver is sitting on the driver’s seat, with the hands on the jacket. In the
further course of the scene, the driver lifts the arms to grab the steering wheel
while moving the upper body in different directions. This example shows the
default case where a driver is present, but performs none of the mentioned
actions.
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(a) Nothing sequence,

(b) Enter sequence,

(c) Leave sequence,

(d) Fasten the seat belt sequence,

(e) Unstrapping the seat belt sequence.

Figure 5.1: Driver actions.
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An example of a driver entering the car is shown in figure 5.1b. In the
beginning of the sequence, the driver’s seat is empty. From the second frame
on, parts of the driver are visible as he enters the car at the driver’s side. In
the process of the scene, the driver, as he enters the car, gets more and more
visible, until he sits completely in the driver’s seat.

Next, figure 5.1c shows a driver leaving the driver’s seat. The scene starts
with the driver moving his left hand towards the driver’s door. Following,
the driver leaves the car, by grabbing the steering wheel with the right hand
and pulling himself out. Finally, the driver’s seat is empty and only a small
part of the driver is still visible in the driver’s door frame.

A scene where the driver fastens the seat belt is shown in figure 5.1d.
The driver reaches behind his left shoulder to grab the seat belt. Then, he
pulls the seat belt from the pillar loop, forwards the tongue of the seat belt
to the right hand and locks it at the buckle of the seat belt.

Figure 5.1e shows an example of a driver unstrapping the seat belt. The
driver unlocks the tongue of the seat belt from its buckle with the left hand
and leads it back to its pillar loop.

Figure 5.2 shows one example for each phone interaction class, respec-
tively.

An example of the driver just holding a phone is shown in figure 5.2a.
The driver sits in the driver’s seat in a normal position while holding a phone.
In the beginning, the driver holds the phone in the right hand while the left
hand grabs the steering wheel. In the whole scene, the phone is only held in
the hand and not being used in terms of direct interacting, like typing on it.

The direct interaction with a phone is shown in figure 5.2b. This time,
both hands hold the phone for the complete sequence while the driver’s fin-
gers are present at different locations of the display, indicating that the driver
is typing on the phone and therefore directly interacting with it.

An example sequence of the driver taking a phone call is shown in figure
5.2c. The example starts with the driver holding a phone in the left hand.
In the following frames, the driver leads the phone towards his left ear.
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(a) Holding a phone sequence,

(b) Interacting (typing) with a phone sequence,

(c) Taking a phone call sequence.

Figure 5.2: Driver phone interactions.
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(a) Holding a bottle sequence,

(b) Interacting (opening) a bottle sequence,

(c) Drinking sequence.

Figure 5.3: Driver bottle interactions.
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Examples of the different interaction classes with a bottle are shown in
figure 5.3. The first example, displayed in figure 5.3a, shows the driver hold-
ing a bottle with the left hand at different locations in the scene.

Secondly, figure 5.3b shows the driver opening the screw cap of the bottle
with the right hand, while the bottle is located in the left hand.

An example of the driver drinking from a bottle is shown in figure 5.3c.
The driver holds the bottle in the left hand, lifting it in order to drink in the
progression of the scene and finally lowering it again. It can be seen, that
most part of the left arm is not visible as the arm is lifted. The bottle is also
only partly visible as it is lifted and only gets visible again as the hand with
the bottle is lowered again.

The sequence length varies from 30 frames per sequence to up to 180
frames per sequence. Some recordings of the classes Nothing, Phone idle,
Phone interaction and Bottle idle are significantly longer than the maximum
sequence length of 180 frames in the dataset as it is more convenient to
record this kind of data in longer sequences. However, if a recording of a
class exceeds 180 frames, the recording is subdivided into multiple sequences
with a maximum sequence length of 180 frames.

The class distribution of the dataset is shown in figure 5.4. The classes
imbalance results from the data acquisition. Some of the sequences were
especially recorded for this system while others were used from already ex-
isting recordings. As some classes like Nothing or Phone idle occur more
naturally and are easier to record, some classes like Enter or Strap require
more recording and labeling effort, resulting in unevenly balanced classes.
Moreover, examples for a subset of the classes were initially recorded for dif-
ferent tasks. Nevertheless, as they display actions used for the proposed task
they were included in the dataset, increasing the class imbalance even more.
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Figure 5.4: Dataset distribution for action and object interaction recognition

5.2 Time Augmentation

As the dataset is comparatively small for training neural networks for action
recognition, the data needs to be augmented in order to get more variance
to the training data. Augmenting sequence data cannot only be done in a
spatial way, but in the time component as well. For this, jittering is applied
to the image sequence by the authors of [Sim14a], [Mol16]. The authors
of [Car17] randomly select the starting frame of a sequence to augment the
time component. Here, a method is described to speed up and slow down
sequences at different phases of the sequences systematically. The augmenta-
tion method is based on randomly calculated sine-curves, each representing
the speed of a sequence at different parts of the sequence. This speed defines
where frames of the sequence to augment are skipped or added to artificially
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accelerate or decelerate the sequence and thus creating different ways of e.g.
performing an action in a sequence.

5.2.1 Sequence Speed Variation Function

To augment the time component of the sequences, a sine function is calculated
describing the speed at different parts of the sequence. The sine function
is calculated with random parameters for the dilation and phase angle in
predefined ranges. Moreover, the sine function

fsine(t) = 0.5 · sin(ω(t+ t0)) + 1, (5.1)

with ω =
2 · π
T̂

(5.2)

is defined in a way that it has an amplitude of 0.5 and a bias of 1 to provide
values between 0.5 and 1.5 which is used as an indicator of how much values
of a part of a sequence are used later in order to augment it temporally.
The value t represents the current frame number. The shift t0 is selected
randomly in the range of [0, T − 1]. To get a random dilation of the period



68
Chapter 5. Suggestion of an Action and Object Interaction

Recognition System for Driver Monitoring

1.0

1.5

0.5

P
er
ce
nt
ag

e
of

fr
am

es
to

us
e

0 T

Block 0 Block 1 Block N

Frame number τ

Figure 5.6: Temporal augmentation concept visualization. A sequence is
split into several blocks. Each block is assigned to a part of a function which
defines how many frames of the block are used.

length of the sine curve dependent on the sequence length T of the current
sequence,

T̂ = T · θ (5.3)
is calculated with T as the number of frames of the current sequence and θ as a
random float number between 1 and 4 to prevent the curve from oscillating to
little or to much. Figure 5.5 shows different curves with different parameters.

5.2.2 Frame Selection

To apply the calculated values of the randomly generated sine curve the
sequence is separated into N+1 blocks. Each Block consists of ni consecutive
frames of the sequence with i = 0, 1, ..., N . For each block with its frame
numbers the mean of the function outputs of fsine for the corresponding
frames is calculated. An αi value

αi =
1

ni

τi+ni−1∑
τ=τi

fsine(τ), (5.4)

where τi is the number of the fist frame in block i, is used as a factor for each
block i to describe how many frames of this block are used. E.g. a factor of
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Figure 5.7: Frame selection example for selecting two and three frames of a
block with five frames.

1.5 means that half of the frames of this block are doubled. Therefore, blocks
assigned with a lower factor are accelerated by skipping frames, while blocks
assigned with a high factor are slowed down by duplicating frames. This is
visualized in figure 5.6 with five frames per block.

To select the frames in one block that should be augmented,

naugi = |round(ni · αi)− ni| (5.5)

frames to augment are selected. From all frames of a block naugi equidistant
frames of block i are selected to ensure that each block is augmented homo-
geneously. For example, if two frames from a block with five frames should
be selected, the second and the fourth frame would be selected. The selection
of frames for a block of five frames is visualized in figure 5.7.

To choose equidistant frames of a block of frames, the algorithm 1 is
executed: The function linspace creates a vector with ascending values from
the start value to the end value with a certain steps size between each value.
If αi > 1, the selected frames are duplicated and inserted right after their
origin. If αi < 1, the selected frames are deleted from the sequence. In case
αi = 1, no frames are selected and thus the current block i is not temporally
augmented.
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Algorithm 1 Choose equidistant frames
1: procedure SelectEquidistantFrames(m,n) . select m numbers

from n
2: start = 1− n

2·min(m,n)
3: end = n+ n

2·min(m,n)
4: step = min(m,n) + 2
5: idx = round(linspace(start, end, step)
6: results = List[0]
7: for idx in IDX do
8: if idx > 0 AND idx ≤ n− 1 then
9: results.append(idx)

return results

5.2.3 Results of Time Augmentation

To evaluate the influence of the described systematic time augmentation,
multiple convolutional neural networks were trained on the full amplitude,
depth and optical flow data without temporal augmentation, with random
temporal augmentation and with the proposed systematic temporal augmen-
tation to classify the different actions and object interactions. In order to
evaluate the different approaches, each approach was trained five times, each
time with a different validation split, resulting in a five fold cross validation.
The networks trained with no temporal augmentation were trained and val-
idated on every fourth frame of the sequences, whereas the start frame was
randomly selected within the first four frames while training. For training
the random and systematical temporal augmentation approaches, the frame
selection was randomly selected between every third to every fifth frame.
Additionally, the start frame was selected within the first frames depending
on the skip selection. No temporal augmentation was applied to the vali-
dation data. For validating those two approaches, every fourth frame was
selected, starting with the first frame. For the random temporal augmenta-
tion, a random selection of frames up to 20% of the sequence length were
randomly skipped or duplicated. The optical flow images were calculated
after the frame selection between the used consecutive frames.

The final classification result of a sequence was generated by averaging
the last three network predictions of the sequence. The results of the different
approaches are displayed in table 5.2. For the amplitude image sequences,
the networks trained with random augmentation perform better compared
to the networks trained with no temporal augmentation, while the networks
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Acc F1 mAP
mean std mean std mean std

Amplitude
no time
augmentation 0.683 0.044 0.637 0.061 0.700 0.061

random time
augmentation 0.694 0.019 0.654 0.036 0.718 0.022

systematic
time augmentation 0.701 0.033 0.674 0.020 0.729 0.017

Depth
no time
augmentation 0.731 0.046 0.697 0.047 0.747 0.043

random time
augmentation 0.735 0.044 0.701 0.050 0.766 0.038

systematic
time augmentation 0.748 0.048 0.715 0.055 0.783 0.045

Flow
no time
augmentation 0.774 0.025 0.750 0.018 0.823 0.032

random time
augmentation 0.779 0.018 0.754 0.025 0.829 0.026

systematic
time augmentation 0.793 0.018 0.769 0.019 0.858 0.026

Table 5.2: Cross validation results of networks trained with different time
augmentation techniques and different input image formats.
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trained with the systematic temporal augmentation perform better than the
networks trained with random temporal augmentation in all three metrics.
Moreover, the standard deviation of the results was reduced with both aug-
mentation techniques compared to the results of the networks trained with no
augmentation. Overall, the networks trained on amplitude image sequences
perform worst, compared to the networks trained on depth or optical flow
images. This might result from the small network structure of being able to
learn relevant features from the amplitude image sequences as the variation
in those images is higher than in the depth or optical flow images. However,
using a bigger network structure resulted in overfitting of the networks to
the training data.

While the mean balanced accuracy and F1-scores of the networks trained
with depth image sequences with no temporal augmentation and random
temporal augmentation is similar, the mAP of the networks results trained
with random temporal augmentation has risen compared to the networks
results with no temporal augmentation. The results of the networks with
systematic augmentation exceed the other two approaches in all three met-
rics. Compared to the networks trained on amplitude images, the networks
trained on depth images result in better balanced accuracy, F1-scores and
mAP. The depth images show a reduced variance compared to the amplitude
images, which is the reason for the improved results on the validation splits.

The networks trained on optical flow image sequences show the best re-
sults compared to the networks trained on amplitude and depth images.
These images reduce the variance even more, because only the movements
of the driver are visible. The results of the networks trained with no tempo-
ral augmentation and random augmentation show no significant differences,
while the results of the network trained with systematic temporal augmen-
tation exceed these approaches.

Figure 5.8 shows the confusion matrix of all validation results calculated
by the networks trained on optical flow image sequences with systematic
temporal augmentation. The predictions show that actions which require
the driver to perform large movements, like entering the car, leaving the car,
strapping the seat belt or taking a phone call, are recognised much more
frequently than fine grained actions like actions which aim to distinguish be-
tween holding a phone or typing on a phone. This differentiation is much
more difficult to recognise from optical flow images as the movements of these
fine grained actions might not be captured by the optical flow.
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Figure 5.8: Confusion matrix of the validation predictions from the network
trained on optical flow image sequences with systematic temporal augmen-
tation.

The worst confusion happens with the class Bottle Idle. As optical flow
images only capture the movements between consecutive frames the network
might not be able to distinguish between holding a bottle and holding a
phone as not much movements happens in the examples of these classes.
The fact that the class Bottle Idle is classified in 0.29% of the cases, but
the class Phone Idle is not recognised as that, is most likely a result of the
class imbalance of the dataset. That the network recognises 0.46% of the
class Bottle Idle can be the result of the fact that bottles are usually larger
than phones and certain movements appear in the Idle classes which can be
recognised by the network.
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Figure 5.9: Precision recall curves of the validation predictions from the
network trained on optical flow image sequences with systematic temporal
augmentation.

The precision recall curves of the networks are displayed in figure 5.9.
The classes Enter and Leave are recognised with average precision values of
0.99 and 0.98 with the biggest certainty. This strengthens the assumption
that the classes with the most body movement of the driver are recognised
most confidently by the networks. The class Bottle Idle is recognised with
the lowest certainty as seen before. This uncertainty results in a lower cer-
tainty for the class Phone Idle as well, as these classes might get confused.
With an average precision value of at least 0.81 the networks are much more
confident in classifying the remaining classes.

Training on a combination of optical flow and amplitude or depth images
is also possible to enhance the classification results. However, combining two
different input formats required a significantly increased network architec-
ture, making the approach impractical in terms of computational efficiency.

These results show that training on the right input features can be cru-
cial for training a recurrent neural network. Moreover, applying a systematic
temporal augmentation to the training process can enhance the ability of a
RNN to classify image sequences.

The remaining confusion matrices and precision-recall curves of the vali-
dation results of the networks trained with the different time augmentation
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techniques are shown in chapter B

5.3 Reduced Features

When analysing image sequences to recognise different human actions or hu-
man interactions with objects, image sequences provide a huge number of fea-
tures to analyse. Approaches relying on artificial neural networks achieve bet-
ter and better results on open access action recognition datasets like [Abu16],
[Car17]. However, these networks usually consist of many stacked layers with
many operations and are therefore too big and therefore too computational
expensive to run in a real-time environment like a car.

In order to reduce the size of the networks the input feature space can
be reduced to channel the attention of the networks directly to important
features of the input image sequences. Smaller networks with less operations
can then be used to classify image sequences in real-time.

One way to reduce the feature space of image sequences is to calculate
optical flow images between consecutive frames. This way, the network can
focus on movements in the imagery and does not need to find relevant features
in the original image sequences on its own. However, optical flow images need
to be calculated as well, additionally increasing the computational effort of
the system.

Moreover, depending on the resolution of the images and the overall move-
ments in the scenery, optical flow images might miss information about fine
grained movements, like typing on a smartphone, as not only the fingers
might move to type, but the hands and arms move as well.

A different approach to reduce the feature space of the input data can be
to calculate body keypoints of a person and use these coordinates as input
for the action recognition [Sha16], [Zha17], [Beh18]. Those body keypoints
can further be used to crop out important parts of the images that cannot be
displayed with body keypoints alone [Ché15], [Das18], [Era19]. However, cal-
culating these body keypoints increases the overall computational cost again.

As most object interactions are performed with the hands, the hand image
crops can hold valuable information about current interactions. On the con-
trary, the body keypoints represent the driver’s body pose and can be used
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FCNInput image Output heatmaps

Figure 5.10: Body keypoint extraction concept with fully convolutional neu-
ral networks.

to reduce the input search space for a neural network for classifying more
general actions performed with the whole body, like entering a car, while
the combination of body keypoints and hand crops is suitable for combined
actions like strapping the seatbelt. In contrast to the mentioned approaches,
the proposed method therefore relies only on the body keypoints and the
hand crop images of the driver, in order to reduce the computational effort
of the neural network and focus on the most relevant features related to the
task of action and object interaction classification.

5.3.1 Body Keypoints

Body keypoints are coordinates that describe the location of different body
parts in images. Papers like [Dem09], [Beh18], [Mar18] showed that body
keypoints can play an essential role to describe the driver’s body pose. The
body keypoints can either be 2D coordinates representing the locations in
2D images or they can be expressed as 3D coordinates, if either the network
is able to calculate these, or additional information is provided with which
the 2D coordinates can be transformed. To calculate body keypoints a fully
convolutional neural network is used to detect the 2D locations of different
body parts in the imagery. Figure 5.10 shows an example of a fully convo-
lutional neural network extracting heat maps for the keypoint localization
from an image. The neural network consists of multiple convolution layers,
pooling layers and non-linearities. In contrast to a classification network,
no fully-connected layers are used at the end of the network, resulting in a
fully convolutional neural network which calculates heat maps, showing the
prediction for the locations of one body part each. These heat maps are then
further used to calculate the exact prediction of the locations of the body
parts.
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The final keypoint location ~rc is computed by calculating the center of
mass around the area of the maximum of the current keypoint heat map.

~rc =
1

M

∑
i

mi · ~ri (5.6)

with M =
∑
i

mi. (5.7)

As this calculation of the keypoints from the heat maps is not considering
if a keypoints is visible, an additional confidence value is calculated for each
keypoint, describing if the keypoint is visible or not.

The confidence of a calculated body keypoint depends on the sum of the
values of the corresponding heat map in a certain range around the calcu-
lated coordinates. The sum is normalized by a normalization factor to limit
the range of the confidence to [0, 1]. If the confidence value is smaller than a
certain threshold, the keypoint is marked as not located, as the detection of
the network for this body keypoint is not sufficient.

After calculating the 2D location and the confidence value of each body
part, the 3D coordinates can be calculated by transforming the 2D coordi-
nates by considering the depth values at these locations. Beginning with the
homogeneously normalized transformationuv

1

 =

fx 0 u0
0 fy v0
0 0 1

 ·
X

Z
Y
Z

1

 (5.8)

to transform image coordinates to normalized camera coordinates, the equa-
tion can be expanded to calculate the 3D coordinates X and Y in camera
coordinates with

X = Z · u− u0
fx

(5.9)

Y = Z · v − v0
fy

(5.10)

if the depth value Z and the intrinsic camera parameters fx, fy, u0 and v0
are given.

Basic human body parts to analyse the drivers body pose, actions or gen-
eral behaviour are the head, the shoulders, the elbows, the hands, the hips,
the knees and the feet. These body keypoints are visualized in figure 5.11.
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Figure 5.11: Visualization of the body keypoints of the driver.

Figure 5.11a shows an image of a driver with the body keypoint locations
and their connections. Figure 5.11b illustrates the 2D body keypoints while
figure 5.11c shows the transformed 3D keypoints. The red colored points
illustrate the visible body keypoints, while the blue colored points illustrate
the body keypoints which are not directly visible in the image.

However, some of these body parts are not visible in the current camera
setting most of the time, because they are covered by the interior of the car
or they are located beyond the image frame. The left knee is covered by
the steering wheel in the majority of the cases, while both feet are usually
located in the footwell of the car, which is not visible in this camera setting.
The head of the driver is not captured by the camera most of the time. These
four body parts are not detected by the system as they are not visible in most
cases, resulting in a reduced subset of nine body parts to detect, consisting of
the shoulders, the elbows, the hands, the hips and the right knee. Figure 5.12
shows the reduced set of body keypoints of the driver on the original image.
Figure 5.12b shows the reduced set of 2D body keypoints while figure 5.12c
shows the reduced set of transformed 3D keypoints. Again, the red colored
points illustrate the visible body keypoints, while the blue colored points
illustrate the body keypoints which are not directly visible in the image.



5.3. Reduced Features 79

Reduced set of body keypoints

+

+

+

+

+

+

++

+

(a) Original image with
reduced set of body key-
points,

+

+

+

+

+

+

++

+

(b) Reduced set of 2D
body keypoint locations,

x
y

z

(c) Reduced set of trans-
formed 3D body keypoints.

Figure 5.12: Reduced set of body keypoints.

Finally the nine keypoints are grouped to a keypoint-vector with three
elements for each 2D keypoint and four elements for each 3D keypoint re-
sulting in a 27 element and a 36 element long vector for the 2D keypoints
and 3D keypoints respectively.

Keypoint results

To evaluate the ability of a network to classify the proposed action based
only on the body keypoints of a driver, RNNs are trained to classify the 3D
body keypoints of the different validation splits of the dataset. The networks
consist of a fully connected layer, preprocessing the 3D body keypoints, an
LSTM network and a second fully connected network to classify the body
keypoints per timestep. The networks were trained with the temporal aug-
mentation technique proposed in chapter 5.2 and evaluated on the mean
prediction of the last three classifications of a sequence. The results of the
cross validation are shown in table 5.3. With a mean balanced accuracy score
of 0.72, a mean F1-score of 0.678 and a mAP of 0.738 the network performs
comparably to the network trained on amplitude image sequences and worse
than the networks trained on depth and optical flow image sequences.
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Acc F1 mAP
mean std mean std mean std

Keypoints 0.720 0.014 0.678 0.026 0.738 0.027

Table 5.3: Cross validation results of the networks trained to classify actions
from 3D body keypoints of the driver.

However, actions with strongly visible movement like Enter, Leave, Strap,
Unstrap, Phone Call are recognised quite well as displayed in the confusion
matrix of the validation results in figure 5.13, whereas classes which depend
on fine grained visual differences, like Phone Idle, Phone Interaction and
Bottle Idle, which can only be distinguished by recognising a phone, moving
fingers on a phone, or a bottle, are not recognised well and are most likely
confused among each other. As the 3D body keypoints are not capturing
these differences, the network is not able to properly distinguish between
these classes.

The precision recall curves displayed in figure 5.14 show that the networks
are most uncertain with the class Bottle Idle. Moreover, the networks are
more certain for the classes with much movement of the driver.
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Figure 5.13: Relative confusion matrix of the cross validation results from
the networks trained only on 3D body keypoints.
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Figure 5.14: Precision recall curves of the cross validation results from the
networks trained only on 3D body keypoints.
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5.3.2 Hand Crops

As most important object interactions of the driver, like interacting with
a smartphone or handling a bottle, involve the hands of the driver, most
meaningful features to recognise these interactions are found in the image
area of the driver’s hands. In order to reduce the image search space and to
recognise these interactions, hand crops of a specific size are cropped out of
the original image. Of all 2D keypoints found by the keypoint localizer net-
work, the 2D locations of both hands are extracted and used as a reference to
crop out subimages showing only one hand respectively. Figure 5.15 shows
an example of the hand cropping with 2D hand keypoints. The detected
hand locations are shown along the crop borders in figure 5.15a. The results
in figure 5.15b show perfectly cropped out hands, where in the left hand a
smartphone is held and the right hand is empty.

Original image with hand
locations

+
+

(a) Localized hands and crop mask for
each hand,

Cropped hand images

Left hand

Right Hand

(b) Cropped hand images.

Figure 5.15: Visualization of the hand crop concept.
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Figure 5.16: Examples of hand locations. Despite similar hand locations and
visible similarity of the hands, the detected locations of the hand varies.

However, although the hand keypoints are optimally localized in the ex-
ample shown in figure 5.15, not all keypoints are detected that precisely.
Figure 5.16 shows six example images with the detected hand locations. Es-
pecially the detected locations for the left hand vary between the real hand
location, the left wrist and the smartphone located in the left hand. This
variation results in different cut outs of the hands, as seen in figure 5.17. Fig-
ure 5.17a shows three examples of hand localizations and the corresponding
crop box. Figure 5.17b shows the resulting crops of the left hands. These
images show the impact of the precision of the hand localization to the crop
images. The variations result in different cut outs, which might display only
parts of the hand or the object in the hands. As not every frame of the
dataset can be labeled, the keypoints need to be generated by the keypoint
detector network. Moreover, it is very likely that these variations appear in
new data frames because of a different environment or camera setting and
therefore need to be considered in the training process.
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Driver image

(a) Driver image with
hand coordinates and
left crop box,

Left hand

(b) Cropped left hand.

Figure 5.17: Hand image crop examples. Different hand localizations result
in different cut out regions of the hands.
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5.3.3 Hand Crop Normalization

In order to reduce the variation of hand orientation and size resulting from
different positions in the space of the interior cabin, the hand cut outs are
rotated and the image size is scaled depending on a subset of the detected
body keypoint locations. This ensures that the hands in the cropped out
image patches have always the same orientation and size, if the depending
variables are calculated correctly.

Rotation Normalization

To calculate a rotation angle to rotate the hand crops a reference point
needs to be defined from which a line can be drawn to the hand location
which spans an angle with the vertical axis. The most natural point to be
used as a reference point is the corresponding elbow location. However, the
elbow might not be able to be detected, because it is not visible. The sec-
ond most natural point would be the corresponding shoulder, but this point
might not be able to be detected as well. To get a more static reference
point, the mean location in between those two points is calculated. If one
of these points is not located, the other one is used. If both points are not
located, the rotation angle is set to zero and the image will not be rotated.
Figure 5.18 shows the hand point PH , the corresponding elbow point PE, the
corresponding shoulder point PS, the resulting reference point PR and the
resulting rotation angle σ.

Finally the image is rotated about the rotation angle in degrees

σ = −
arctan

(
PRx−PHx

PRy−PHy

)
· 180

π
(5.11)

to normalize the orientation of the current hand.
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Rotation angle calculation

σ

Figure 5.18: Visualization of the angle calculation for rotation normalization
of the right hand of a driver. The middle point between the elbow and the
shoulder of the driver’s right side is used as a reference point for the rotation
of the driver’s right hand.

Size Normalization

Additionally to the rotation normalization, the images are scaled depending
on the distance of the hands to the camera. Like this, the hands always have
the same size in the images independently of their position in space of the
car cabin. The distance

d =
√
P 2
x + P 2

y + P 2
z (5.12)

of the hand to the camera is calculated from the 3D body keypoint of the
hand. The scaling factor to scale the image size

s =
d

cd
(5.13)

is calculated with a constant cd which defines the distance a hand needs to
have to not being scaled. The image is then scaled by the calculated scaling
factor s. Hand images with a keypoint too close or too far away are not
scaled.
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Normalized Hand Crop Examples

Cut out images of hands resulting from different images and hand localiza-
tions are shown in figure 5.19. Figure 5.19a show correctly localized cut out
images of hands. The hands are located in the middle of the images and have
about the same size. The wrists of the hands are located at the bottom of the
images. Figure 5.19b shows different sized hand images caused by different
depth measurements. The size of the hands can vary because of variations
in the depth measurement. Figure 5.19c shows examples of hand cut out
images with misplaced hand locations. It can be seen that the hands are not
located in the middle of the images, meaning that the hand is not localized
at the correct position, but slightly next to the hand. These mislocalizations
result in a hand cut out image with an offset, only showing the hand, if the
hand is localized close to the real hand location. Finally, figure 5.19d shows
hand cut out images with hands which are located near the border of the
original image. Cutting out the image in a way that the hand is localized in
the middle of the cut out results in images which stick out beyond the origi-
nal image border. This part of the images are padded with zeros in order to
conserve the predefined image size.

5.3.4 Reduced Feature Dataset

The dataset with reduced features originates from the dataset described in
section 5.1 and consists of the files holding the body keypoints for each frame,
and images showing only the normalized hand patches. The body keypoints
were calculated beforehand, to reduce the computational effort during the
training process. The same applies for the generation of the hand cut outs.

Examples of the reduced feature dataset are shown in figure 5.20, figure
5.21b and figure 5.22 along the original images to show the origin of the data.
The shown examples of the reduced feature dataset of the actions and ob-
ject interactions recognition consists of the amplitude images, the detected
body keypoints of the driver, visualized by marking the coordinates in the
amplitude images, and the normalized amplitude hand cut outs of each ex-
ample frame directly under the original amplitude frame. Additionally, the
bounding boxes of the hands cut outs of the first image are shown at the first
amplitude image of each sequence example to visualize the normalization of
the hand cut outs. Even though the visualized examples show only amplitude
images, the corresponding depth images are also part of the reduced feature
dataset.
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(a) Examples of different normalized cut out images of hands,

(b) Examples of different cut out images of hands with different sizes caused by
depth measurement variations,

(c) Examples of different cut out images of hands with mislocated hand positions,

(d) Examples of different cut out images of hands located at the image border
with zero padding.

Figure 5.19: Examples of different cut outs of hands with different charac-
teristics.

Figure 5.20a shows the reduced features for the example of a driver per-
forming no action or object interaction. Most of the body parts with a cor-
responding body keypoint are visible in the scene. The left shoulder and left
elbow are hidden behind the rest of the body in the first frames. Nevertheless,
both are detected in the third frame roughly at their correct position. The
right hip is covered by the right arm in the sixth and seventh frame. More-
over, only the left and right hand as well as the right elbow are detected by
the body keypoint detection network in the last frame, as the driver leans
forward.
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(a) Reduced features of a driver,

(b) Reduced features of a driver entering a car,

(c) Reduced features of a driver leaving the car,

(d) Reduced features of a driver fasten the seat belt,

(e) Reduced features of a driver unstrapping the seat belt.

Figure 5.20: Reduced features of driver actions.
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An example of the reduced feature data of a driver entering the car is
shown in figure 5.20b. At first, the driver seat is empty and no body key-
points are detected and therefore no hands are cropped out. As more and
more of the driver’s body gets visible in the scene as the driver enters the
car, more keypoints are detected until all body keypoints of the driver, except
the left hand which is not visible in the images, are detected correctly. As
soon as the right hand is detected it is cut out from the image and visualized
underneath the original image.

Next, figure 5.20c shows the reduced feature data of a driver leaving the
driver’s seat. The left hand of the driver is not visible in this scene. The
right hand is correctly detected in the first three frames. Later, the right
hand is detected in two images, though not visible in the scene anymore,
resulting in a cut out of the right forearm. As the driver leaves the car, less
body keypoints are detected until the driver is not visible anymore and the
driver’s seat is empty. At this point no body keypoints are detected.

A scene where the driver fastens the seat belt is shown in figure 5.20d.
At the beginning, the driver reaches behind to grab the seat belt, resulting
in the left hand not being visible and not being detected in the scene at this
frame. As the seat belt is pulled out of the pillar loop, the left hand gets
detected, although not quite precisely in the first frame the hand is visible.
The left hand is detected at the right above the correct location of the hand,
resulting in a cut out where the hand is in fact visible, but not in the center of
the image. In the following frames, the hands are located correctly resulting
in crop outs where the hands are visible completely and the handover of the
seat belt tongue from the left to the right hand is visible in the cropped hand
images. Following, the seat belt tongue is lead to the seat belt buckle with
the right hand. In the last frame, the left hand is not detected correctly,
resulting in a crop out of the lap instead of the hand. The remaining body
keypoints are detected at their correct location, if their corresponding body
part is visible.

Figure 5.20e shows an example of a driver unstrapping the seat belt. In
the first frame the right hand is not detected, while the left hand is detected
at its wrist, resulting in an incomplete cut out of the hand. In the following
frames, the hands get detected more precisely and it can be seen that the
seat belt tongue is unlocked from the buckle with the left hand and lead back
to its pillar loop. In the last frames, where the left hand is located near the
left image border, the hand is detected at the forearm, resulting again in cut
outs of the forearm.
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(a) Reduced features of a driver holding a phone,

(b) Reduced features of a driver interacting (typing) on a phone,

(c) Reduced features of a driver taking a phone call.

Figure 5.21: Reduced features of a driver with phone interactions.

Figure 5.21 shows one example for each phone interaction class, respec-
tively.

Figure 5.21a shows the reduced feature data of the driver while holding a
phone. Both hands are located correctly, resulting in the hand crops showing
the hands. In the course of the sequence, the right hand is moved slightly
while the left hand leads towards the right hand and the phone. Both hands
are located correctly in all of the shown frames, resulting in a sustained se-
quence of hand cut outs for both hands. The remaining body keypoints are
detected correctly in all the images of the scene. Merely the right knee is not
located in two frames as the view on the knee is partly blocked by the phone
in these images.
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(a) Reduced features of a driver holding a bottle sequence,

(b) Reduced features of a driver interacting (opening) with a bottle sequence,

(c) Reduced features of a driver drinking from a bottle.

Figure 5.22: Reduced features of a driver with bottle interactions.

The direct interaction with a phone is shown in figure 5.21b. Again, both
hands are sustainably detected in the sequence. In the hand patch sequence,
it is easier to see that the fingers are moving over the display of the phone,
showing that the driver is directly interacting with it. The hip locations are
not detected as both hips are covered by the arms of the driver.

The reduced features for the example sequence of the driver taking a
phone call is shown in figure 5.21c. In the first two frames, the left hand
with the phone is located correctly. From the third frame on, the left hand
with the phone is not detected anymore, resulting in no crop out of this hand
for these frames. In these images, the keypoints for the right hand are located
at the side of the hand, resulting in slightly shifted images of this hand. As
the elbow is not detected in the first images, the rotation of the cut out of
the right hand depends only on the location of the right shoulder detection,
resulting in a tilted hand cut out compared to the later frames where the
elbow is detected and approximately located correctly.
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Examples of the reduced features for the different interaction classes with
a bottle are shown in figure 5.22.

The first example displayed in figure 5.22a shows the body keypoints and
the hand patches of the driver while holding a bottle. Both hands are located
correctly, though the left hand is mostly covered by the bottle and only single
fingers are visible. The other body parts are located correctly.

Secondly, figure 5.22b shows the reduced feature data for a scene where
the driver opens a bottle. Both hands are located correctly in the scene,
resulting in correct crop outs of both hands. The remaining body keypoints
are again located correctly.

An example of the driver drinking from a bottle is shown in figure 5.22c.
At the beginning both hands are classified correctly and the cut outs of both
hands show the hands. As the driver lifts the hand with the bottle to drink
from it, the hand disappears from the scene, resulting in correctly not detect-
ing the hand by the keypoint detection network. As soon as the bottle is put
down, the hand is visible again and detected correctly. Therefore, the hand
with the bottle is cropped out again. Similarly, the left elbow is not visible in
the beginning of the scene and only gets visible and correctly detected when
the arm is lifted.

5.3.5 Reduced Features Action Recognition System

The system to recognise actions and object interactions of a driver consists
of a Time-of-Flight camera observing the front seats of a vehicle, different
image and coordinate transformations and a network to classify the actions
and objects interactions. A full overview of the system is shown in figure
5.23. The images from the Time-of-Flight camera are cropped in order to
show only the driver’s side. With a body keypoint detection network, 2D-
body keypoints are calculated and transformed to 3D-body keypoints with
the distance of the body parts to the camera obtained from the depth image
as described in chapter 5.3.1. With the 2D-body keypoints and the depth
image of the driver the location and rotation of the hands of the driver are
known as well as the distance to the camera. The normalized hand images
are cut out of the original image of the driver as described in chapter 5.3.2.
The normalized hand cut outs and the 3D-body keypoints are then fed to the
network. The network to classify actions and object interactions of a driver
is a variant of a many-to-many CNN-RNN combination, classifying the in-
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put of each timestep with respect to the previously calculated classifications.
The full network concept is shown in figure 5.24.

For each timestep, a convolutional neural network extracts features from
the hand patches. The network extracts spatial features from both hand
patches separately, resulting in one feature vector for each hand. This CNN
consists of three layers with 8, 12, and 24 kernels and a kernel size of 3× 3.

The spatial features of the 3D body keypoint vector of the current timestep
are analysed with a small fully connected network with two hidden layers with
32 and 24 neurons, also resulting in a feature vector. The extracted feature
vectors for both hands are then concatenated with the extracted features
from the keypoints. This combined feature vector, holding spatial informa-
tion of both hands and the 3D body pose of the driver, is further analysed
by an LSTM network (2.1.3) which consists of two LSTM cells with a size
of 32 connected in series. This recurrent networks extracts temporal fea-
tures from the combined feature vector at each timestep, with respect to
the previously calculated combined feature vectors. Finally, the extracted
temporal features are classified with a fully connected neural network with
one hidden dimension with 24 neurons and an output layer with 11 neurons
and a softmax classifier for each timestep. This way, the network provides
predictions about the current action or object interaction at each timestep.
If a hand is not visible, the corresponding feature vector elements are set to
zero. Similarly, keypoints coordinates are set to zero as well, if the keypoints
are not detected.
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Figure 5.23: Action and object interaction recognition system overview with
reduced features and normalized hand cut outs.



96
Chapter 5. Suggestion of an Action and Object Interaction

Recognition System for Driver Monitoring

Action and object interaction network concept

Weight
sharing

Concatenating

LSTM 
- 

Network

Fully connected layers

softmax

Classification

3D body keypoint
data

Hand crops

Figure 5.24: Concept of the driver action and object interaction network. The
hand cut outs of the driver’s hands as well as the 3D body keypoints of the
driver are used as input for the action recognition network. A CNN extracts
features of the hand cut outs which are combined with the processed 3D
body keypoints. These combined features are further processed by an LSTM
network. The output of each timestep is then classified by a fully connected
network and a softmax classifier.

5.3.6 Reduced Features Action Recognition Results

To evaluate the proposed system, the networks were trained on the driver’s
calculated body keypoints as well as hand cut outs of the driver. The se-
quences were temporally augmented as described in chapter 5.2 and evaluated
on the mean predictions of the last three examples of an example sequence.
Two kinds of networks were trained on the different validation splits. One set
of networks was trained to recognise the different action and object recogni-
tion classes from the body keypoints and the unnormalized hand crop images,
while the second set of networks was trained on the body keypoints and the
normalized hand crop images of the driver. Each set of networks was trained
on amplitude, depth and optical flow images with the proposed systematic
time augmentation described in section 5.2. The optical flow images are cal-
culated between the image of the hand crop sequences.

The results of the proposed action and object interaction system with
reduced features are shown in table 5.4. The networks trained on rotation
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Acc F1 mAP
mean std mean std mean std

Amplitude
hand crops 0.782 0.027 0.749 0.026 0.812 0.024
normed hand crops 0.819 0.031 0.788 0.024 0.852 0.022

Depth
hand crops 0.777 0.024 0.745 0.033 0.810 0.021
normed hand crops 0.798 0.022 0.760 0.034 0.831 0.027

Flow
hand crops 0.716 0.012 0.683 0.028 0.734 0.036
normed hand crops 0.727 0.059 0.705 0.052 0.782 0.041

Table 5.4: Cross validation results of the action and object interaction recog-
nition system with reduced features with and without normalized hand cut
outs

and size normalized hand crops perform better in terms of balanced accuracy,
F1-score and mAP on amplitude, depth and optical flow images compared
to the networks trained on unnormalized hand crops. The network trained
on body keypoints and normalized amplitude hand crop sequences shows the
best results, compared to the networks trained on depth or optical flow hand
crop image sequences. Reducing the image size also reduces the variance
of the images, which enables the network to learn better features for the
task of the action and object interaction from amplitude hand image crops.
Using optical flow image crops results in the worst network performance on
the validation data. As the hands are moved through the scene, the optical
flow images of the hands capture rather movements around the hands than
movements of the hands. Additionally, the body keypoints slightly move,
even if the corresponding body part does not move in the scene, as image
noise is present in all images. As a result, additional artificial movement
is visible in consecutive hand cut outs which is present in the optical flow
images and contributes to the worse results of the networks trained with
optical flow image patches of the driver’s hands. Moreover, objects cannot
be recognized from optical flow images generated by moving hand crops as
well as from amplitude or depth image crops.
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Figure 5.25: Confusion matrix of validation results from the action and object
interaction recognition systems trained on 3D body keypoints and normalized
amplitude hand crop images

Figure 5.25 shows the confusion matrix of the classification results from
the validation examples. The least recognized class Bottle Idle is most likely
confused by the networks with the class Bottle Interaction. Moreover, some
examples of the classes Phone Idle and Phone Interaction are mistaken. This
confusion is most likely the result of the similarity of both classes, as they can
only be distinguished by recognising the finger movements over the display or
keyboard of the phone. However, both classes are recognized correctly most
of the time. Another confusion between classes occurs between the classes
Phone Call and Drinking. This confusion might result from the similarity
of the sequences, as a movement from at least one hand to the driver’s head
happens in both actions.
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Figure 5.26: Precision recall curves of validation results from the action and
object interaction recognition systems trained on 3D body keypoints and
normalized amplitude hand crop images

The precision recall curves of the predictions on the validation examples
are shown in figure 5.26. The curves show that the classifiers are most confi-
dent predicting the classes Enter and Leave, as these classes are the classes
whose examples show the most movement of the driver. Moreover, the ab-
sence of the driver’s body keypoints at some point of these sequences can be
a strong feature for the classifiers to recognise these actions. With a minimal
average precision of 0.70 for the class Bottle Idle, the classifiers are overall
quite sure about the classifications.

The remaining confusion matrices and precision-recall curves of the val-
idation results of the networks trained with the reduced dataset with and
without the proposed hand normalization are shown in chapter B.
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5.4 Action and Object Interaction Recognition
System Summary

In this chapter, different approaches for classifying actions and object in-
teractions performed by car drivers were proposed. As an extension to the
driver’s state classification described in chapter 4, the driver’s state is anal-
ysed by recognising fine grained actions performed by the driver.

When using full images of the driver to train an action recognition sys-
tem, the ability of the networks to classify the actions can be enhanced by
selecting a proper input image format. Amplitude images showing the whole
scene can be too variable for too small networks to learn the right features
from them. Especially if the size of the dataset is also small, the performance
of the networks can be enhanced by selecting an input image format which
is less variable, like depth or optical flow images as shown in the evaluation
of chapter 5.2. Moreover, it was shown that the performance of the networks
can further be enhanced by augmenting the temporal component of the se-
quences systematically.

When training only on body keypoints of the driver, the networks are
able to recognize actions with much body movement of the driver as shown
in chapter 5.3.1. Fine grained object interactions cannot be recognized as well
as with full images, as contextual information, like the presence of a phone or
a bottle, is not existent in body keypoints. Moreover, small movements, like
finger movements on a smartphone, cannot be recognised, which makes the
task of recognising the interaction with a phone more difficult. Combining
the 3D body keypoints and subimages of the hands of the driver in a network
resulted in networks which are capable of recognising the proposed actions
and object interaction reliably, as shown in chapter 5.3. When training the
proposed system on the reduced features consisting of hand crops and 3D
body keypoints of the driver, it is preferable to use amplitude image cut outs
of the hands as this image format holds more contextual information about
the current hand interactions which can be extracted by small CNNs com-
pared to image formats like depth images or optical flow images. Moreover,
normalizing the hands to always have the same rotation and size in the image
crops improved the capability of the networks even more.

Table 5.5 shows a comparison of the best proposed networks. It can be
seen that the networks trained on 3D body keypoints and normalized ampli-
tude hand crops result in the best mean balanced accuracy and F1-score of
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Acc F1 mAP
mean std mean std mean std

Amplitude time
augmentation 0.701 0.033 0.674 0.020 0.729 0.017

Depth time
augmentation 0.748 0.048 0.715 0.055 0.783 0.045

Optical flow time
augmentation 0.793 0.018 0.769 0.019 0.858 0.026

Keypoints 0.720 0.014 0.678 0.026 0.738 0.027
KP +
normed amplitude hand crops 0.819 0.031 0.788 0.024 0.852 0.022

KP +
normed depth hand crops 0.798 0.022 0.760 0.034 0.831 0.027

KP +
normed flow hand crops 0.727 0.059 0.705 0.052 0.782 0.041

Table 5.5: Cross validation results of the best evaluated networks for action
and object interaction recognition

the evaluated networks, while the mAP score is comparable to the networks
trained on optical flow images showing the movement of the complete driver
side.

In this chapter, it was shown how an action and object interaction recogni-
tion system for driver state monitoring can be enhanced by applying temporal
augmentation to the training process of recurrent neural networks. Further-
more, a system was developed to reduce the input feature space to 3D body
keypoints and hand cut outs of the driver. The 3D body keypoints con-
tain valuable features for recognising different actions, if the action examples
contain much movement. Fine grained actions with small movements require
additional contextual information to be recognised reliable. Combining 3D
body keypoints with amplitude image crops of the driver’s hands enhanced
the capability of the networks to not only recognise actions with much move-
ment present, but to recognise fine grained object interactions as well.
Moreover, selecting the right input image format to classify the action and
object interactions reliably is crucial for small neural networks. While the
evaluated networks learned to recognise the presented actions best from opti-
cal flow images, when using full images, using amplitude images is preferable,
when using hand cut outs as input images. This results from the circum-
stance, that the small neural networks can rather classify actions correctly
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from full images of the driver, if unnecessary information, as present in com-
plete amplitude images, is filtered out by calculating optical flow images
which focus only on movements of the driver. However, when focusing on
cut outs of the driver’s hands contextual information, like the textures of the
object the driver is holding, is lost by calculating optical flow images from
hand crop sequences. Therefore, amplitude image cut outs are preferable for
training small neural networks, if the image cut outs are chosen in a way that
they cut out unnecessary information.



CHAPTER 6

Improving Continuous Online Action
Recognition from Short Isolated Sequences

Classifying continuous data can be challenging, as no explicit information
about the start or the end of actions in video streams is given, except the
information visible in the image frames. In contrast to most action classifi-
cation papers, which focus either on classifying isolated actions in video clips
showing only one action or detecting specific actions in untrimmed video
clips, continuous online action classification aims to recognise different ac-
tions in long sequence data, in which multiple classes can occur, as they
appear. Therefore, the systems need to classify single frames or short blocks
of frames based on information from previous image data.

While most papers on action recognition focus on analysing isolated ac-
tion clips [Sim14a], [Car17], [Mar19], other works like the papers of [Sin17],
[Zol18] focus on online action recognition in untrimmed videos and only few
papers focus on continuous action recognition [Mol16]. This can be seen
from the amount of different published datasets for the two tasks. Most
action recognition datasets include trimmed videos showing isolated action
sequences [Kue11], [Abu16], [Car17], [Goy17], [Mar19], whereas only few
datasets with untrimmed videos of different actions exist [Jia14], [Cab15].
Moreover, these untrimmed action recognition datasets contain only few or
no transitions between actions, making them useful for action detection of
single actions in this kind of setting, but not for continuous action recogni-
tion, where class transitions are relevant. For action recognition in continuous
video data also only very few datasets exist. The dataset described in the
paper of [Ste13] shows videos of people preparing salads, while the dataset
proposed by [Kue14] shows continuous video streams of people doing daily
cooking activities. Another drawback of some action datasets is, that they

103
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contain only few examples of each action, which makes them inappropriate
for most deep learning techniques. For example, the dataset proposed by
[Ste13] contains 44 to 64 example sequences per class which makes it too
small to be usable for pre-training of an action recognition network.

The Action and Object Interaction described in chapter 5, creates the
basis to recognize not only single, trimmed sequences, but to classify the
frames of a continuous video stream showing different actions performed by
a driver. However, some body movements of the driver might result in poses
which body keypoints are hard to localize or can only be localized reliably
with an excessive amount of training data, which is again time consuming
to gather. Therefore, in contrast to the Action and Object Interaction, the
proposed system works only with image sequences showing the driver’s seat
and optical flow image sequences showing the movements in the driver’s seat
region and contains no body keypoints or crops of special regions except the
driver’s seat region. The described system and methods were proposed by
the author of this work in [Wey21].

In this chapter, an overview of the obtained data, including the recog-
nition tasks, examples of the different classes and the datasets statistics are
given in section 6.1. In section 6.2 an overview of the used network archi-
tecture is given and evaluated for a first baseline. In section 6.3 a method
for improving the networks performance on continuous data by structuring
the input data for training the network, is suggested and evaluated. Finally
a new method for handling the hidden states while training the recurrent
networks is proposed, evaluated and compared to the previously evaluated
methods in section 6.4.

6.1 Isolated Action Data

The dataset consists of several image sequences showing the driver’s seat.
The actions in the dataset show different basic body movements of a driver.

In order to train and test a continuous action recognition system whose
actions can occur in different orders, a partly new dataset was gathered.
Some sequences of the Action and Object Interaction Recognition dataset
proposed in chapter 5.1 were used along additional recorded data sequences.
In contrast to the previously used action recognition dataset, the classes are
explicitly chosen in a way that they can precede each other and a continuous
action stream can be generated by lining up different classes. The classes
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Movement Actions
To Front Driver leaning towards steering wheel

(leaning forward)
To Right Driver leaning towards passenger side

(leaning rightward)
To Back Driver leaning towards rear seats

(leaning backward)
From Front Driver returning from a forward leaning

position
From Right Driver returning from a rightward learning

position
From Back Driver returning from a backward leaning

position

Static
Empty Empty driver’s seat
In Position Driver sitting in a driving position
Front Driver leaned towards steering wheel
Right Driver leaned towards passender side
Back Driver leaned towards rear seats

Driver Actions
Enter Driver enters the car
Leave Driver leaves the car
Strap Driver fastens the seatbelt
Unstrap Driver unbuckles the seatbelt

Table 6.1: Classes for action recognition from short isolated sequences. The
classes subdivide in the three categories Movement Actions of the driver,
Static scenes and Driver Actions
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of the Action and Object Recognition dataset was not designed to be con-
catenated one after another as the objective of this system was to create a
lightweight system for single action recognition. Some classes of this dataset
can be concatenated to generate meaningful continuous label sequences, but
with too little variation for training a continuous action recognition system.

The actions for the continuous action recognition are subdivided into ba-
sic body movements towards or from non-common driving positions of the
driver, static scenes with little to no visible motion, and common driver ac-
tions. An overview of the labels is shown in table 6.1.

The different movement actions are: Leaning towards the steering wheel
(To front), leaning towards the passenger seat (To right), leaning towards
the rear seats (To back), returning from the steering wheel (From front),
returning from passenger seat (From right) and returning from back seat
(From back). Examples for these classes are shown in figure 6.1.

Figure 6.1a shows a driver leaning towards the steering wheel. The driver
is initially in a normal driving position leaning against the back of the driver’s
seat. In the progression of the scene the driver leaves his leaning position in
order to lean forward to the steering wheel. Secondly, figure 6.1b shows a
snippet of a scene, where the driver leaves his initial position of leaning to the
back of the driver’s seat towards the passenger side. Next, figure 6.1c shows
the driver leaning from the initial position, leaning at the driver seat’s back
towards the rear seats. The starting phase of this leaning action is similar
to the starting phase of the action, where the driver leans to the passenger
side, as the first part of the way to the final position is the same. Figure 6.1d
shows a driver returning from the steering wheel back into a driving position,
leaning at the driver seat’s backrest. Following, figure 6.1e shows the driver
leaning from the passenger side back to the position, where he leans at the
backrest of the driver’s seat. Figure 6.1f shows the last movement action,
namely the driver returning from a position where he leans towards the rear
seat, back in a position where he sits normally in the driver’s seat. Again,
the end phase of this movement action is similar to the movement action,
where the driver returns from the passenger side as the way the driver covers
on the way back to the driver’s seat, is partly the same as the way the driver
covers when returning from the passenger side.



6.1. Isolated Action Data 107

(a) To steering wheel sequence,

(b) To passenger side sequence,

(c) To rear seat sequence,

(d) From steering wheel sequence,

(e) From passenger side sequence,

(f) From rear seats sequence.

Figure 6.1: Driver movement actions.



108
Chapter 6. Improving Continuous Online Action Recognition

from Short Isolated Sequences

The static scenes consist of sequences where the driver is either in a driv-
ing position (In Position), leaned towards the steering wheel (Front), leaned
towards the passenger side (Right) and leaned towards the rear seats (Back).
This subset of the classes includes also the class Empty, where the driver’s
seat is not occupied by a person. These classes contain little to no motion,
with the exception of the class In Position, which contains normal driving
movements of the driver. Examples of these classes are shown in figure 6.2.

Figure 6.2a shows images of a sequence with an empty driver seat. As the
driver’s seat is not occupied, the scene does not change in the course of the
sequence. Secondly, figure 6.2b shows a driver in a normal driving position.
In the beginning of the scene the driver sits on the driver’s seat leaning at
the backseat of the driver’s seat with his hands on his lap. In the sequence of
events the driver grabs the steering wheel and turns it in different directions
or holds it at different positions. Following, figure 6.2c shows a driver moving
in a position where he leans towards the steering wheel. Next, figure 6.2d
shows a subset of images of the driver leaning towards the passenger side.
While leaning in that position the driver moves slightly around. Figure 6.2e
shows the driver leaned towards the rear seats.

The common driver actions includes the actions: Entering the car (En-
ter), leaving the car (Leave), strapping the seat belt (Strap) and unstrapping
the seat belt (Unstrap). Examples of these classes are shown in figure 6.3.

Figure 6.3a shows a driver entering the car at the driver’s side. The first
images show the empty driver’s seat, while at the driver’s door movements
are already visible. Following, the driver enters the car, until he is fully
seated in the driver’s seat. Contrary, figure 6.3b shows a driver leaving the
car. In this example the driver begins this action by leaning forward towards
the driver’s door side to open the driver’s door. The driver steps out of
the car, by leaning even further towards the driver’s door, until he is out,
leaving an empty driver’s seat. Figure 6.3c shows the driver strapping the
seat belt. This scene starts with the driver reaching behind to grab the seat
belt. Following, the driver pulls on the seat belt to draw it from its pillar
loop and finishing the action by buckling it up. Finally, figure 6.3d shows
the driver unstrapping the seat belt. This action starts with unbuckling the
seat belt by the driver, followed by leading it back to its pillar loop.
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(a) Empty scene sequence,

(b) In driving position sequence,

(c) Leaned to front sequence,

(d) Leaned to passenger side sequence,

(e) Leaned to rear seats sequence.

Figure 6.2: Static scene sequences.
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(a) Enter sequence,

(b) Leave sequence,

(c) Strapping seat belt sequence,

(d) Unstrap seat belt sequence.

Figure 6.3: Driver actions.

The examples show snippets of the whole sequences, as the full sequences
are too long to display. The length of the different sequences from the dataset
varies from short sequences with 20 frames to longer sequences with up to
180 frames.

When training on optical flow images, the optical flow is calculated at
runtime of the training, since the images between which the optical flow is
calculated may vary. The images can be augmented spatially or the sequence
can be augmented in its temporal component, leading to different optical flow
images each training cycle. An example of an optical flow sequence with its
origin images is shown in figure 6.4. At the top in 6.4a the origin of the flow
images is shown. The x- and y-component of the optical flow is shown in
6.4b and 6.4c. In the fist two frames no movement is present. In the third
frame the door opens, resulting in movement at the left part of the image, as
it can be seen in the second optical flow images. Following, a person enters
the car, resulting in even more movement and optical flow, as shown in the
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Example of optical flow images for continuous driver action
recognition

(a) amplitude sequence of a driver entering the car,

(b) x-component of the optical flow,

(c) y-component of the optical flow.

Figure 6.4: Optical flow example images.

optical flow images. The optical flow sequences is one frame shorter as the
amplitude sequence, since one optical flow image is calculated between two
consecutive amplitude images resulting in a sequence length of n− 1, if n is
the number of frames of the origin sequence.

The class distribution of the dataset is shown in figure 6.5. Similar to
the distribution from the action and object interaction recognition dataset
described in chapter 5.1 the classes are unbalanced. This results again from
the fact that some classes appear more naturally between different classes,
like the class In position, which appears naturally between other classes.

For this dataset no body keypoints were calculated, as the body keypoint
localizer network is not trained to detect body keypoints for this application.
For example, the body keypoints for a driver who leans to the passenger side
cannot be captures as the field of view for the keypoint localization is limited
to the driver side.
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Single action examples
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Figure 6.5: Isolated action sequences dataset distribution
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6.2 Continuous Action Recognition System

The system to detect actions of a driver in a continuous video stream consists
of a Time-of-Flight camera, multiple image processing nodes and an artificial
neural network to classify the video stream frame wise. An overview of the
system is shown in figure 6.6. The images from the Time-of-Flight camera
are cropped in a way to show only the driver’s seat and parts of the central
console of the car. The cropped images are used to calculate optical flow im-
ages from consecutive frames of the video stream. These optical flow images
are further processed by a network to recognise the actions in continuous
image streams, which is a many to many convolutional and recurrent neu-
ral network combination (CNN-RNN), consisting of a convolutional neural
network with three layers with 8, 12, and 18 kernels of size 3 × 3 with max
pooling layers in between to extract spatial features from the input data,
a recurrent neural network with gated recurrent units (2.1.3) of size 32 as
recurrent units to extract temporal features from the previously calculated
spatial features and a fully connected classification network with one hidden
dimension with 32 neurons, 15 output neurons and a softmax layer to fi-
nally classify the extracted temporal features. The systems uses every fourth
frame of the original sequences. Gated recurrent units as recurrent units are
chosen as they contain fewer parameters and less computational operations
than long-short-term memory (2.1.3). The network is visualized in figure 6.7.

The input images are optical flow image tuples calculated between con-
secutive frames of the input sequence. For each timestep, the CNN calcu-
lates spatial features from the input. These features are input to the RNN-

GRU

ToF camera

Amplitude &
depth images

Crop Optical flow

calculation

CNN
Softmax

classification

Driver action

recognition

result

Drivers's
side images

Fully

connected

Optical flow images of driver's side

Figure 6.6: Overview of the system to recognize driver’s actions in continu-
ous video streams with optical flow image sequences. If depth or amplitude
images are used as input for the CNN, the optical flow images are not calcu-
lated.
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Continuous action recognition network
Input

images
CNN Classification

t

t+1

t+n

Step

GRU 
-

Network

RNN

GRU 
-

Network

GRU 
-

Network

Figure 6.7: Network concept for continuous action recognition with optical
flow image tuples as input. The Network consists of a CNN, a recurrent
network and a fully connected network.

network, which calculates temporal features based on the spatial features
of the current and previous timesteps. Afterwards the calculated temporal
features are classified with a fully connected classification network to get a
classification for the current timestep. The input for the next timesteps is
processed in the same way, while the hidden states of the recurrent network
are updated for each timestep. The input of the network can be varied by
adapting the first convolutional layer of the CNN. This way, single amplitude
or depth images as well as optical flow image touples can be used as input
to the network.
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6.2.1 Hidden State Reset Results

To define a baseline for the online action recognition network trained on
closed actions, two networks for each input data format are trained with two
common initialization methods. The networks are trained on amplitude and
depth image sequences, as well as flow sequences calculated from consecutive
amplitude images of a sequence. While testing, different reset strategies are
evaluated, which define at which timesteps the hidden states of the networks
are reset with the trained method. While training, the hidden states of the
networks are initialized with zeros as proposed by the authors of [Cho14] and
randomly generated numbers as proposed by the authors of [Zim12] for each
network respectively at the beginning of each training example sequence.

Amplitude Depth Flow
Acc F1 mAP Acc F1 mAP Acc F1 mAP

Zeros,
no reset 0.183 0.173 0.247 0.189 0.195 0.294 0.263 0.223 0.364

Zeros,
min reset 0.334 0.322 0.362 0.393 0.368 0.425 0.478 0.413 0.452

Zeros,
mean reset 0.387 0.397 0.389 0.470 0.453 0.477 0.499 0.455 0.478

Zeros,
max reset 0.301 0.323 0.309 0.348 0.354 0.368 0.377 0.344 0.366

Random,
no reset 0.296 0.299 0.330 0.269 0.257 0.344 0.371 0.328 0.463

Random,
min reset 0.329 0.293 0.350 0.375 0.358 0.411 0.482 0.400 0.453

Random,
mean reset 0.374 0.365 0.387 0.430 0.424 0.449 0.509 0.458 0.500

Random,
max reset 0.327 0.332 0.326 0.364 0.374 0.381 0.436 0.404 0.442

Table 6.2: Results for networks trained with zero or random initialization
evaluated with different reset strategies at test time. The hidden states of
the network are not reset at test time, reset at the minimal sequence length
of the training examples, the mean sequence length of the training examples
and the maximum sequence length of the training examples at test time.
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Besides calculating the test predictions and resetting the hidden states
only at the beginning of a new test sequence, different reset strategies which
are applied at test time are evaluated. These reset strategies are resetting the
hidden states at the minimum sequence length, resetting the hidden states
at the mean sequence length and resetting the hidden states at the maxi-
mum sequence length of the training examples. Table 6.2 shows the results
calculated from the test sequences.

Resetting the hidden states only at the beginning of a new test sequence
resulted in the worst classification results for the network trained with zero
initialization. When applying reset strategies to this network the classifi-
cation results improve. Resetting the hidden states at the mean sequence
length results in the best classification results on the test data, for all input
image formats. The network trained on the optical flow image sequences
resulted in a balanced accuracy of 0.499, a F1-score of 0.455 and a mAP of
0.478. The network trained with random initialization of the hidden states
results in better classification results on the test data when not resetting
the hidden states at test time, compared to the zero initialization method
without resetting. Similarly to the zero initialization networks, resetting the
hidden states of the network at the mean length of the training sequences
results in the best test scores for all input image formats. The results on op-
tical flow image sequences with mean reset surpasses the results of the zero
initialization network with the same configuration slightly with a balanced
accuracy score of 0.509, a F1-score of 0.458 and a mAP of 0.5. Resetting
the hidden states of the network at every mean training example length re-
sults in the best classification results. Moreover, using optical flow image
sequences improves the capability of the network to classify continuous data
when trained only on isolated sequence examples.
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Figure 6.8: Relative confusion matrix of the action recognition network
trained on flow image sequences trained with random initialization and reset
at the mean sequence length at test time.

Figure 6.8 shows the confusion matrix of the test results from the action
recognition network trained on optical flow image sequences with random
initialization reset at the mean sequence length of the training examples.
The matrix shows that the network classifications tend to be right for most
of the classes, as the main classifications can be found on the main diagonal,
which indicates a correct classification.
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Figure 6.9: Precision recall curves of the action recognition network trained
on flow image sequences and with random initialization and reset at the mean
sequence length at test time.

How sure the classifier is about these classifications can be seen in fig-
ure 6.9. For the classes Empty, In Position and Enter the classifier reaches
average precision values over 0.7 indicating that the classifier is sure about
its predictions. The other classes are, despite having markedly lower aver-
age precision scores between 0.32 to 0.55, still better than random guessing,
which would give an average precision score of 0.067 as 15 classes are present.

The remaining confusion matrices and precision recall curves of the test
results of the networks trained with zero and random initialization and dif-
ferent reset strategies are displayed in appendix C. It can be seen that all
networks tend to classify the frames of the continuous data as the class In
Position if the network is not reset during test time. When resetting the
hidden states at test time periodically more classes are classified correctly.
However, most misclassifications are due to a class confused with the class In
Position, which happens because of the bigger amount of different training
examples of this class.



6.3. Class Transitions 119

6.3 Class Transitions

In order to train a classification system to recognise actions from a continu-
ous data stream, real continuous data is preferable to train on. However, this
data for action recognition tasks is often not available and too time consum-
ing to record and annotate. All classes and their transition behaviour need
to be considered while recording. Adding a class that is not yet recorded re-
sults in re-recording the complete dataset. An alternative to use continuous
data is to concatenate action sequences to artificially generate continuous
data sequences. The sequences can either be concatenated randomly, or in
a systematic way. In case the sequences are connected completely randomly,
sequences combination might occur that would normally not occur in the
real data. If the transitions between classes are known sequences of specific
classes can be connected in a way that classes that are logically connected
precede each other.

For this a transition list can be created, which contains all reasonable class
transitions. A possible binary transition table for the introduced dataset is
shown in figure 6.10. On the columns the current classes are listed, while
on the rows the previous classes are listed. A 0 between a current and a
previous class indicates that this class transition is unreasonable, while a 1
indicates a reasonable class transition. Those indicators also can be used as
weights to alter the probability of a specific class to precede another class. For
example, the class Strap can only be preceded by the classes In Position and
Mount. This binary transition list, displaying only the possible transitions,
can be extended to contain the transition possibilities. If every reasonable
class is equally likely to occur before the current class the probabilities of a
reasonable class to precede the current class

PWcurri
(Wprevj) =

ωij∑
ij

ωij
(6.1)

can be calculated with PWcurri
(Wprevj) as the probability of class j to precede

class i and ωij = 1 as the class weights. The resulting transition list with
probabilities is shown in figure 6.11. In contrast to the previously shown
transition list, the transition indicators are replaced by probabilities, which
depend on the number of possible transitions for each current class.
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Figure 6.10: Binary transition list showing the reasonable class transitions
for each class of the proposed dataset [Wey21].
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Figure 6.11: Transition list showing the probabilities for each class transition
based on the number of reasonable transitions to other classes of each class
[Wey21].
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Figure 6.12: Transition list showing the probabilities of the class transitions
with a minimum transition probability of choosing a non reasonable class of
0.05 [Wey21].

However, as classification systems might classify a single or multiple
frames wrongly, the system still needs to be able to overcome unreason-
able class transitions. To consider this possibility that an unreasonable class
transition occurs in the continuous data, the transition lists can be modified
with a probability that these unreasonable class transitions occur. Figure
6.12 shows this transition probability table with a minimal transition prob-
ability of 0.05 for an unreasonable transition.
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6.3.1 Class Transition Results

The results of the networks trained on concatenated sequences are displayed
in table 6.3. When training a network on two concatenated image sequences,
the network classification error can be calculated depending on both se-
quences, or only on the latter one. The hidden states are initialized with
random values at the beginning of each training step. Moreover, the effect
of the specific class transition is evaluated. The transition probabilities are
calculated as described in chapter 6.3, with a probability 0.05 of selecting an
unreasonable previous class.

When training the networks on reasonable concatenated sequences, the
evaluation scores improve for the networks trained on depth and optical flow
image sequences, compared with the networks which are trained on the ran-
domly concatenated sequences. Moreover, training on only the latter se-
quence of the concatenated sequences shows even better results than the
networks trained on both concatenated sequences. This might result from
the random initialization at the beginning of each training step. The network
additionally tries to learn to adapt from those random values, which results
in a network which is less capable of classifying continuous data. Only for
the network trained on infrared image sequences the network with reasonable
sequence transitions yields better results on the test data, when trained on
both concatenated sequences. Overall the networks seems to learn better
from depth and optical flow image sequences than from infrared image se-
quences, which might result from the circumstance that in infrared images
the variation in imagery is higher than in depth and optical flow images.
Therefore, the small networks might learn better features for this task of

Amplitude Depth Flow
Acc F1 mAP Acc F1 mAP Acc F1 mAP

random transition,
train second half 0.415 0.410 0.444 0.416 0.428 0.472 0.669 0.607 0.704

reasonable transition,
train second half 0.392 0.398 0.453 0.477 0.518 0.561 0.682 0.649 0.740

random transition,
train all 0.330 0.311 0.386 0.280 0.299 0.375 0.563 0.539 0.630

reasonable transition,
train all 0.419 0.413 0.475 0.398 0.402 0.447 0.622 0.590 0.708

Table 6.3: Test results of the networks trained on randomly and reasonably
concatenated action sequences. The networks are trained on the second half
of the concatenated action sequences and on all frames of the concatenated
action sequences with each training method.
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Amplitude Depth Flow
Acc F1 mAP Acc F1 mAP Acc F1 mAP

Zero initialization,
mean reset 0.387 0.397 0.389 0.470 0.453 0.477 0.499 0.455 0.478

random initialization,
mean reset 0.374 0.365 0.387 0.430 0.424 0.449 0.509 0.458 0.500

reasonable transition,
train second half 0.392 0.398 0.453 0.477 0.518 0.561 0.682 0.649 0.740

reasonable transition,
train all 0.419 0.413 0.475 0.398 0.402 0.447 0.622 0.590 0.708

Table 6.4: Test results comparison of the networks trained with zero and ran-
dom initialization reset at the mean length of the training sequences at test
time, the network trained on the second half reasonably concatenated action
sequences and the network trained on all frames of reasonably concatenated
action sequences.

action recognition from the more standardized imagery in depth and opti-
cal flow images, rather than from infrared images. Moreover, the networks
trained on optical flow image sequences show better results than the networks
trained on depth image sequences.

The results of the networks with reasonable class transitions are directly
compared to the networks with a reset strategy in table 6.4. The reasonable
concatenation of image sequences clearly raises the ability of the networks to
classify online action sequences, while trained on trimmed action sequences
only. Concatenating reasonable class examples additionally boosts the classi-
fier’s performance on continuous data. The network trained on only the latter
optical flow sequence examples, which is preceded by a reasonable class with
a probability of 0.95 performs best with a balanced accuracy of 0.682, an
F1-score of 0.649 and an mAP of 0.74 on the continuous test examples.
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Figure 6.13: Relative confusion matrix of the action recognition network
trained on the second half of reasonable concatenated optical flow image
sequences.

The confusion matrix of the test results shown in figure 6.13 shows the
improved performance of the classifier as well. With the reasonable concate-
nation approach at least half of the timesteps are classified correctly for most
classes. Only the classes Leave and Unstrap are not recognised that well. The
class Leave is most likely confused by the classifier with the class In Position.
This might result from similarities in the beginning of the scenes of the class
Leave with the class In Position. That effect is visible for some other classes
as well, as those classes are also confused with this class.
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Figure 6.14: Precision recall curves of the action recognition network trained
on the second half of reasonable concatenated optical flow image sequences.

The precision recall curves of this classifier’s results are displayed in fig-
ure 6.14. It can be seen that the performance of the classifiers was clearly
improved by training on concatenated sequences with reasonable class tran-
sitions, as the macro mAP was raised from 0.5 for the network with random
initialization and mean sequence length reset to 0.74. Moreover, the lowest
average precision value was raised from 0.32 to 0.5, showing, the improve-
ment of the classifier more clearly.

The remaining confusion matrices and precision recall curves of the test
results of the networks trained with the proposed transition strategies of
concatenating action sequences are displayed in chapter C.
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6.4 State Handling

In order to use the information from relevant previous classes to train a
network, which is capable of classifying images of a continuous data stream,
while trained only on isolated action sequences, a new concept for using
and handling the recurrent hidden states of relevant previous examples is
presented. The concept was previously published by the author in [Wey21]
and is further explained in detail.

6.4.1 Recurrent States

Concatenating different sequences is the most intuitive, but for multiple rea-
sons, not the best or an efficient way to simulate continuous data and class
transitions. When training a neural network on concatenated sequences,
the previous class sequence needs to be processed by the network for every
training example. This can be beneficial, as the results from the previous
sequences are always calculated by the most up to date neural network, in
terms of training steps. However, calculating these additional sequences re-
quires additional computational effort, as not only the current example needs
to be calculated. Moreover, when training a recurrent neural network, the
dimensions of the tensor need to be predefined. For a single example the
sequence length is set to the maximum sequence length of the examples.
Shorter sequences are padded to fit the defined sequence length. When con-
catenating sequences, the maximum sequence length of a training example
equals the maximum sequence length of the examples multiplied by the num-
ber of concatenated sequences, resulting in more computational effort needed
for each training step. An alternative to concatenating example sequences to
simulate continuous data is to store the hidden states of previously processed
sequences and use those stored hidden states as initialization for future train-
ing steps. This way, only current training examples and one hidden state per
example need to be loaded and computed per training step.

6.4.2 Recurrent State Handling

The goal of the recurrent state handling is to define a concept to store and
handle the hidden states of the recurrent units of a neural network, so that
previously calculated hidden states can easily be accessed during training.
The state memory is a memory block to store the hidden states of the re-
current units during training. Figure 6.15 displays the basic concept of the
state handling approach for two input tensors x0 and x1 and three timsteps
per input example. For the first input example x0 the GRU is initialized
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Figure 6.15: State handling with a GRU for two input examples x0 and
x1 for three timesteps. The hidden states y of each timestep are stored in a
state memory. Before starting to process new hidden states with a new input
sequence, the hidden states of the GRU are initialized with a hidden state
hinit loaded from the state memory.

with one reasonable hidden state hinit0 from the State-memory, while for the
second input example x1 a reasonable initial hidden state hinit1 is selected
from the State-memory. The new calculated hidden states for each timestep
h0, h1 and h2 are stored in the State-memory.

The calculated hidden states of the training process are stored in a State
Memory as seen in figure 6.16. This State Memory consists of multiple mem-
ory queues. Each memory queue handles the hidden states of one class Ci,
whereas each cell of the queue stores one hidden state. The size of the queues
are variable to hold only a predefined number of hidden states. Old hidden
states calculated in previous training steps will therefore be deleted when
the capacity of the corresponding queue is exhausted and new hidden states
are calculated. This mechanism prevents that old hidden states from previ-
ous training steps are used to initialize the recurrent units as they become
obsolete for future training steps. This way, hidden states calculated only
from the latest training steps are stored in the State Memory and the hidden
states selected to initialize the recurrent unit are always up to date.
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Figure 6.16: Visualization of the state memory concept. New hidden states
are stored in memory queus of the respective class the hidden state originates
from.

To use this state handling concept for recurrent networks with multiple
recurrent layers the hidden states of each layer need to be stored jointly. To
initialize the recurrent layers meaningfully all hidden states belonging to the
same timestep of the same input example need to be loaded.

When using LSTMs as recurrent units the State-memory needs to be
adapted in a way to be able to store the calculated cell states of the LSTMs
jointly to the hidden states. For other recurrent network structures, which
need to be initialized, the State-memory needs to be adapted respectively to
fit the state structure of the chosen recurrent network structure.

6.4.3 State Memory Network Adaptation

To use the previously calculated hidden states of the examples, the network
has additionally access to a state memory module which handles the hidden
states while training the network. Figure 6.17 shows how the hidden states of
the RNN-network are handled during training. The RNN-network is initial-
ized with a hidden state of the network at the beginning of a training step.
After each timestep the recently calculated hidden states of the RNN are
stored in the state memory. As the training proceeds, the hidden states of
the RNN-network are re-initialized with hidden states from the state memory
at the beginning of each new sequence. This way, the RNN-network starts
with a previously calculated hidden state configuration at the beginning of
each training sequence. If the State Memory for a class is empty the hidden
state can also be initialized with zero or random values.
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Figure 6.17: State handling concept for continuous action recognition. The
calculated hidden states of each training example are stored in the state
memory. For each new training example one hidden state of a previous
example related to a reasonable or random class is loaded to initialize the
GRU.

6.4.4 Recurrent State handling Results

The state handling approach can be applied to the training process when
training on single action sequences, as well as concatenated sequences. The
results of both approaches are shown in table 6.5. When training on ampli-
tude image sequences, the state handling approach improves the test results
on single actions in terms of balanced accuracy, F1-score and mAP more
than trained on concatenated sequences with the state handling approach.
This might result again from the circumstance that the amplitude image se-
quences sceneries vary and the point at which the sequences are concatenated
brings too abrupt change of the scenery. Morphing or filtering the sequences
at the sequence transition creates artifacts disturbing the network even more.
Therefore, the previously calculated states are better for learning to classify
online actions from closed action examples as the combined approach. For
the depth image sequences, the state handling approach helps the network
to generate better states from the first half of the concatenated sequences,
which generates better test results when trained only on the second half.

The networks trained on optical flow image sequences score the best when
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Amplitude Depth Flow
Acc F1 mAP Acc F1 mAP Acc F1 mAP

state handling 0.467 0.495 0.549 0.471 0.493 0.594 0.691 0.667 0.729
state handling,
concatenated,
train second half

0.411 0.410 0.458 0.522 0.525 0.614 0.715 0.657 0.755

state handling,
concatenated,
train all

0.368 0.371 0.430 0.371 0.355 0.400 0.675 0.655 0.735

Table 6.5: Test results of the networks trained on single action sequences,
the second half of concatenated action sequences with active state handling
and all frames of concatenated action sequences with active state handling.

Amplitude Depth Flow
Acc F1 mAP Acc F1 mAP Acc F1 mAP

Zero initialization,
mean reset 0.387 0.397 0.389 0.470 0.453 0.477 0.499 0.455 0.478

random initialization,
mean reset 0.374 0.365 0.387 0.430 0.424 0.449 0.509 0.458 0.500

reasonable transition,
train second half 0.392 0.398 0.453 0.477 0.518 0.561 0.682 0.649 0.740

reasonable transition,
train all 0.419 0.413 0.475 0.398 0.402 0.447 0.622 0.590 0.708

state handling 0.467 0.495 0.549 0.471 0.493 0.594 0.691 0.667 0.729
state handling,
concatenated,
train second half

0.411 0.410 0.458 0.522 0.525 0.614 0.715 0.657 0.755

Table 6.6: Comparison of the networks trained with the state handling
method and the network trained on the second half of concatenated image
sequences with the best previously evaluated networks and training methods.

trained additionally with the state handling approach. The network trained
on single actions achieves an F1-score of 0.667, scoring higher than the other
two approaches, while the network trained on the latter sequence of concate-
nated sequences with the state handling approach scores best in terms of
balanced accuracy (0.715) and mAP (0.755). This indicates that the state
handling approach alone results in a better recall for training on optical flow
images, while the other networks scores better in terms of precision.

The direct comparison to the previously evaluated networks is shown
in table 6.6. It can be seen that training a recurrent neural network on
reasonable concatenated image sequences of isolated actions results in better
performing classifiers on continuous data compared to the recurrent networks
trained with commonly used initialization methods and resetting the hidden
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Figure 6.18: Relative confusion matrix of the action recognition network
trained on the latter sequence of concatenated optical flow image sequences
with reasonable state handling.

states at test time. If the networks should be trained on both concatenated
image sequences or only on the latter one depends on the input data, as
networks trained on input data with reduced variance like depth images or
optical flow images perform better on continuous data when trained only
on the latter sequences. Moreover, applying the proposed state handling
approach while training the network additionally boosts the classifier’s per-
formance on continuous sequence data. The following networks are trained
on optical flow image sequences only, as the previously analysed networks
trained on optical flow image sequences provide significant better results on
the test data as the networks trained on amplitude or depth image sequences.

When inspecting the confusion matrix of the network trained on the lat-
ter concatenated optical flow image sequences with state handling approach
displayed in figure 6.18, it can be seen that classes like From Right, Back,
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Figure 6.19: Precision recall curves of the action recognition network trained
on the latter sequence of concatenated optical flow image sequences with
reasonable state handling.

Leave and Unstrap are classified much more often correctly than with the
networks trained with random initialization and hidden state reset at the
mean sequence length (figure 6.8) or the network trained on the second half
of reasonable concatenated optical flow image sequences without state han-
dling (figure 6.13). Other classes like Empty, In Position and To Front are
slightly less classified correctly and more likely confused with classes that
show similarities to those classes compared to the network trained on the
second half of reasonable concatenated optical flow image sequences without
state handling. For instance, this effect can be seen between the classes To
Front and Leave. A driver leaning forward can be recognized as a driver leav-
ing the car, as leaning forward can be part of the leaving action. A different
example is the confusion of the class Empty with the classes Enter or Leave,
as those classes might show an empty seat for at least a short time.

Figure 6.19 shows the precision recall curve of this classifier. It can be
seen that for every class the network performs far better than the networks
evaluated with a reset strategy. Moreover, the minimal average precision
score was raised from 0.5 of the network trained only on the latter sequence
of the reasonable concatenated sequences without explicit state handling to
0.64.

Comparing the average precision scores per class of the networks trained
on optical flow image sequences, shown in table 6.7, it can be seen that for



6.4. State Handling 133

most classes the networks trained with the state handling approach results in
the best average precision scores. The remaining classes score best in terms
of average precision per class for the networks trained with reasonable con-
catenated sequences without the state handling approach. This shows that
the performance of a continuous action recognition network trained on short
isolated sequences can be enhanced with two of the proposed training tech-
niques. First, by training on reasonably concatenated training sequences,
and secondly by combining it with the proposed state handling approach.
Combining both approaches to train the network improves the system even
more.

The remaining confusion matrices and precision recall curves of the test
results of the networks trained with the proposed state handling approach
are displayed in chapter C.
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LSTM Results In order to evaluate the performance of the proposed on-
line action recognition network with LSTMs as recurrent units compared
to GRUs as recurrent units, table 6.8 provides the results of the different
networks on the test set. The best previously evaluated networks are now
trained with LSTM networks instead of GRUs as recurrent units to com-
pare the performance of both recurrent network structures. Similarly to the
GRU version of the evaluated networks, the networks with LSTMs as recur-
rent units perform worst when trained on amplitude image sequences. While
the performance of the network trained only on the latter sequence of the
concatenated sequences and the state handling approach results in higher
evaluation scores than the network with GRUs as recurrent units with the
same training configuration, the other two training methods preform worse
than the GRU networks. This might result from the fact that LSTMs con-
tain more trainable parameters than GRUs and therefore need more training
examples to be trained properly.

Amplitude Depth Flow
Acc F1 mAP Acc F1 mAP Acc F1 mAP

GRU,
state handling 0.467 0.495 0.549 0.471 0.493 0.594 0.691 0.667 0.729

GRU,
state handling,
concatenated,
train second half

0.411 0.410 0.458 0.522 0.525 0.614 0.715 0.657 0.755

GRU,
state handling,
concatenated,
train all

0.368 0.371 0.430 0.371 0.355 0.400 0.675 0.655 0.735

LSTM,
state handling 0.346 0.324 0.319 0.513 0.508 0.577 0.671 0.614 0.686

LSTM,
state handling,
concatenated,
train second half

0.438 0.445 0.468 0.498 0.482 0.550 0.730 0.662 0.749

LSTM,
state handling,
concatenated,
train all

0.321 0.284 0.336 0.447 0.474 0.533 0.651 0.631 0.727

Table 6.8: Comparison of LSTMs and GRUs for the recurrent units of the
online action recognition network
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For the networks trained on depth image sequences, the networks trained
with state handling on single image sequences and trained on both concate-
nated image sequences with state handling perform better than their com-
plement GRU networks. However, the GRU network trained only on the
latter sequences of the concatenated sequences still scores better in terms of
balanced accuracy, F1-score and mAP than the LSTM networks.

The networks trained on optical flow image sequences result in the best
training scores for the LSTM networks compared to the networks trained
on amplitude and depth sequences. The network trained only on the latter
sequence of the concatenated sequences with state handling performs best
with a balanced accuracy score of 0.73, surpassing the balanced accuracy
scores of the GRU networks. The F1-score and the mAP values are slightly
below the results of the GRU networks. Therefore, a network with GRUs as
recurrent units performs similarly to the networks with LSTMs as recurrent
units, while containing fewer parameters and less computations.

The remaining confusion matrices and precision recall curves of the test
results of the networks with LSTM modules are shown in chapter C.

To bring the results into more context table 6.9 shows current state of
the art action segmentation results of the papers of [Hua20] and [Che20]
on the continuous action recognition datasets 50Salats [Ste13] and Break-
fast [Kue14]. These offline approaches segment video streams with multiple
actions into action segments. The F1-scores are calculated at different over-
lapping limits at which the segmented action counts as correctly segmented,
while the accuracy is calculated frame wise. However, since most action
recognition systems that analyze continuous data segment actions in an of-
fline approach with access to previous and future frames of the sequence, the
results are not very fair to compare with the proposed approach that aims
to classify frames of a sequence in real-time with access only to the previous
frame. Nevertheless, it can be seen that the metric scores of the proposed
approaches are in a similar range as two of the current state of the art ap-
proaches on the public available dataset.
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F1 Acc@10 @25 @50
50Salats [Ste13]
[Hua20] 0.754 0.728 0.639 0.826
[Che20] 0.820 80.1 0.725 0.832

Breakfast [Kue14]
[Hua20] 0.575 0.540 0.433 0.650
[Che20] 0.742 0.686 0.565 0.710

Table 6.9: Two current state of the art action recognition results on the
datasets 50Salats [Ste13] and Breakfast [Ste13]

6.5 Continuous Online Action Recognition from
Short Isolated Sequences Summary

In this chapter, new training methods for recurrent neural networks were
presented to train online action recognition systems from isolated sequences
with the basis of classifying trimmed driver’s actions described in chapter 5.
As continuous data for training online action recognition networks with many
classes are very time consuming to gather the presented approaches improve
the classification scores of networks trained on trimmed action sequences.

First, networks were trained on single action sequences with zero or ran-
dom initialized hidden states. For testing the trained network on continuous
data the hidden states were then reset in different intervals.

Secondly, a method to concatenate reasonable sequences was presented.
Concatenating reasonable classes improve the classifiers performances com-
pared to approaches trained only on single trimmed videos with different
strategies to reset the hidden states at runtime.

Third, a new method to initialize the hidden states was proposed to train
the recurrent networks on single isolated action sequences, without concate-
nating them with other sequences, reducing the computational effort of a
training step, compared to the concatenation approach.

It was shown, that the results of the network trained with the proposed
state handling approach and amplitude images exceeds the classification re-
sults of all other evaluated approaches trained on amplitude image sequences.
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When training the networks on depth or optical flow image sequences the net-
works trained with the state handling method scores similar compared to the
networks trained on concatenated sequences. Combining both approaches
boosted the classification results on the test data for the network trained on
depth images even more compared to the test results of the network trained
with only one of these approaches. The network trained on concatenated op-
tical flow image sequences with the proposed state handling approach scores
slightly better in terms of balanced accuracy and mean average precision
than the approaches trained with only one of these approaches.

As seen in chapter 5 the choice of the data input format essentially in-
fluences the capability of the networks to classify the proposed actions. As
the action dataset is composed of actions with much body movement of the
driver the results of the networks trained on optical flow images exceeds the
results of the networks trained on amplitude or depth image sequences.

Overall, two practicable methods were presented to train online action
recognition systems from short isolated action sequences. One big advantage
of those methods to train an online action recognition system is that these
short isolated action sequences are much easier to gather and annotate com-
pared to continuous data. Moreover, using the calculated hidden states of a
training sequence to initialize future training steps while training a recurrent
neural network exceeds the test results of the networks trained with random
or zero initialization and reset at runtime. Additionally, these networks score
similar to the networks trained on concatenated image sequences, while be-
ing computationally more efficient, as only one image sequence needs to be
loaded and processed instead of multiple image sequences.



CHAPTER 7

Conclusion and Outlook

In this thesis different training methods to improve Time-of-Flight image
based driver monitoring systems were proposed, discussed and evaluated.
For that, existing methods were refined and new methods were proposed in
order to improve artificial neural network based classification systems and
their training for interior sensing and driver monitoring applications. Such
interior sensing and driver monitoring applications and systems are highly rel-
evant issues in the automotive industry by now. Developing computationally
efficient systems for these tasks is insofar important as several applications
need to run at once on computational limited recources. Moreover, artificial
neural network and deep learning based systems usually require a big amount
of data in order to be trained properly and generalize to unseen data. Gath-
ering these datasets is time consuming and costly, as the data not only needs
to be recorded but annotated as well, especially for image sequence data.

In this thesis three driver monitoring systems were developed. For each
system new training methods for artificial neural networks were proposed to
improve the classification results of small networks trained on limited image
data. This methods include a multi-label extension for hierarchical classifica-
tion to integrate a fallback option for single image occupancy classification of
the driver’s seat as well as classifying the state of the driver. Moreover, differ-
ent methods for reducing and normalizing the input feature space for action
recognition were proposed, in order to train action recognition systems with
limited data and computational resources. Furthermore, an augmentation
technique to systematically augment the time component of sequence data
is introduced. Finally, problems of training a system for continuous action
recognition systems are discussed and a computational efficient solution for
training continuous action recognition systems with isolated action sequence
training data is proposed.

139
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For the first application described in chapter 4 an interior sensing system
based on single Time-of-Flight images was developed classifying the occu-
pancy of a driver’s seat as well as the current state of the driver if a driver
is present. A hierarchical structure integrated in the classification network,
providing a built-in fallback option if the classifier is unsure about a class
decision of a sub domain. The proposed multi-label extended hierarchical
structure improves the classification by masking out irrelevant parts of the
label structure due to the hierarchical structure of the labels. This mask-
ing enables the network to learn only from the relevant classifications during
training and ignore irrelevant parts. This structure not only scores with a
difference of 0.325 in Accuracy, 0.123 in F1-score and 0.332 in mean average
precision significantly better than an approach trained with a flat label struc-
ture, but provides more structured labels while providing a fallback option
through the hierarchy. Compared to the proposed multi-label extension of
the Yolo approach described by the authors of [Red17], the networks trained
with the proposed approach show slightly better classification performances
for the labels located higher in the hierarchy (+0.026 mean balanced accu-
racy, +0.011mean average precision for the first two hierarchical layers) while
the classification performance is comparable for the labels located in the lower
part of the hierarchy (−0.005 mean balanced accuracy, −0.01 mean average
precision for the last hierarchical layer). Moreover, it was shown that for
the task of occupancy and driver state monitoring, artificial neural network
based systems benefit from combined amplitude and depth images compared
to the networks trained with only one of these input image types. Overall a
hierarchical Time-of-Flight based system was introduced to efficiently detect
the occupancy of driver seats and driver states while providing fallback op-
tions for uncertain classification decisions.

The second application, discussed in chapter 5, deals with action and
object interaction recognition of the driver and enhances the capability of
the Driver’s State Monitoring System described in chapter 4 to recognise
the driver’s state by analysing image sequences instead of single images of
the driver. A system was introduced to analyse the body movements of a
driver along his hand interactions from sequence data in real-time. For this,
a feature reduction method was proposed which extracts the positions of rel-
evant body parts of the driver as well as orientation and size normalized cut
outs of the hand regions. These reduced features were further used to train
smaller networks as the feature space to be searched for valuable informa-
tion for the actions and object interactions was reduced with the mentioned
feature reduction beforehand. These networks perform markedly better than
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the networks trained on sequences of images showing the complete driver
seat region instead of the reduced features only. It was shown that optical
flow images provide valuable information for recognising classes with strong
movement, but should not be preferred for distinguishing between object
interactions as only movements are present in this image format and infor-
mation about the objects are most likely lost. However, optical flow images
need to be calculated from two sensor images, adding an additional compu-
tation step to the overall computational cost. Moreover, a new augmentation
method to systematically augment the time component of sequence data was
introduced and has shown a valuable positive effect on the test classification
performance of the networks when applied during training.

Finally, the third system discussed in chapter 6 aims to classify several
body movements of the driver and offers the possibility to extend systems,
like Action and Object Interaction described in chapter 5, that analyze iso-
lated action sequences, so that they can also process continuous data. For
this system a training method was suggested which is able to handle the hid-
den states of a recurrent neural network for more efficient training of a system
classifying continuous sequence data while trained only on closed trimmed
action sequences, compared to concatenating these sequences during train-
ing. Methods for training a system to classify continuous data sequences
from short isolated action sequences is valuable insofar as it simplifies the
process of gathering training data. Single action sequences can be recorded
without having to make sure that certain class transitions are sufficiently
present in the dataset. Moreover, adding new classes to the system as the
transitions from and to the new classes can easily be added to the proposed
transition table instead of recording new data examples with all possible class
transitions present. It was shown that the trained network was able to learn
these class transitions with the proposed methods with comparable results
to the concatenation approach while being more efficient during training.
Combining the state handling approach with the approach of systematically
concatenating the training sequences improved the classification results even
more. As already shown in chapter 5, training a recurrent neural network
to recognise action classes with much movement benefits from training with
optical flow images as input image format, compared to amplitude or depth
image sequences.

Overall, three Time-of-Flight based interior sensing and driver monitoring
systems as well as new training methods for artificial neural networks were
presented. The proposed systems can provide valuable information about
the occupancy of the driver’s seat as well as the state of the driver. This



142 Chapter 7. Conclusion and Outlook

information can further be used to gain a deeper understanding of possible
distractions and the readiness of the driver to take over control of the vehicle
in near future semi-automated cars. Moreover, warning strategies can be
adapted more precisely to the current state of the driver to draw his atten-
tion back to the road if necessary, increasing the overall vehicle’s safety.
However, not only safety systems can benefit from the additional knowledge
about the driver’s activities in the car. Infotainment and comfort systems
can be adapted to the state of the driver as well, increasing the comfort of
the vehicle.
While the focus of this thesis was to develop systems to monitor the driver
seat region and the driver, all presented systems can be adapted to monitor
the passenger seats as well as the passengers of a vehicle. Moreover, the
systems can be used in non-vehicle settings as well as with image data other
than Time-of-Flight image data if appropriately adapted to the new environ-
ment.

Future systems can combine the presented approaches to be more failsafe
while trained on less data than deep learning systems usually need.

To integrate the hierarchical structure proposed in chapter 4 in an action
recognition system as describes in the chapters 5 and 6 the classes need to be
changed in a way, that they feature a hierarchical structure, independently
from the input feature format. Once the classes feature a hierarchical struc-
ture the proposed method can be implemented as described. The system
can benefit similarly as the hierarchy integrates a natural fallback option to
higher layers of the class hierarchy.
The approaches to train action recognition systems described in the chapters
5 and 6 can be combined as well to train a continuous action recognition
system with trimmed action sequences of reduced features. For this, the sys-
tem needs to meet three criteria. First, the classes must be able to be lined
up meaningfully one after the other in order to artificially generate continu-
ous sequence data. Secondly, for all relevant body poses of the driver body
keypoints must be predictable. And finally, the part of the network that is
responsible for bringing features of different timesteps into context need to
be a recurrent neural network with storable hidden states for each timestep.
If these three criteria are met, a continuous action recognition system can
be trained on isolated action sequences of body keypoints and additional
relevant features.
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APPENDIX A

Hierarchical Classification for Interior Sensing
and Driver Monitoring

Flat encoding

Following, the confusion matrices and precision recall curves of the remaining
systems trained with a flat label encoding described in chapter 4.4 are shown
and belong to the systems evaluated in table 4.2. These remaining system
are either trained on amplitude or depth images.

175
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Appendix A. Hierarchical Classification for Interior Sensing

and Driver Monitoring
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Figure A.1: Relative confusion matrix of the validation results computed by
the networks trained with the flat class label approach and amplitude images
as input
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Figure A.2: Precision recall curves of the validation results computed by the
networks trained with the flat class label approach and amplitude images as
input
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Figure A.3: Relative confusion matrix of the validation results computed by
the networks trained with the flat class label approach and depth images as
input
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Figure A.4: Precision recall curves of the validation results computed by the
networks trained with the flat class label approach and depth images as input
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APPENDIX B

Action and Object Interaction

Time Augmentation

Following, the confusion matrices and precision recall curves of the remaining
systems trained with and without the time augmentation method described in
chapter 5.2.3 are shown and belong to the systems evaluated in table 5.2. The
systems were trained to evaluate the time augmentation method proposed in
chapter 5.2 with amplitude, depth and optical flow image sequences of the
driver’s seat region.
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Figure B.1: Relative confusion matrix of the validation predictions from the
network trained on amplitude image sequences without temporal augmenta-
tion
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Figure B.2: Precision-Recall curves of the validation predictions from the
network trained on amplitude image sequences without temporal augmenta-
tion
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Figure B.3: Relative confusion matrix of the validation predictions from
the network trained on amplitude image sequences with random temporal
augmentation
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Figure B.5: Relative confusion matrix of the validation predictions from the
network trained on amplitude image sequences with systematical temporal
augmentation
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Figure B.6: Precision-Recall curves of the validation predictions from the
network trained on amplitude image sequences with systematical temporal
augmentation
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Figure B.7: Relative confusion matrix of the validation predictions from the
network trained on depth image sequences without temporal augmentation
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Figure B.8: Precision-Recall curves of the validation predictions from the
network trained on depth image sequences without temporal augmentation
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Figure B.9: Relative confusion matrix of the validation predictions from the
network trained on depth image sequences with random temporal augmen-
tation
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Figure B.10: Precision-Recall curves of the validation predictions from the
network trained on depth image sequences with random temporal augmen-
tation
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Figure B.11: Relative confusion matrix of the validation predictions from
the network trained on depth image sequences with systematical temporal
augmentation
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Figure B.12: Precision-Recall curves of the validation predictions from the
network trained on depth image sequences with systematical temporal aug-
mentation
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Figure B.13: Relative confusion matrix of the validation predictions from the
network trained on flow image sequences without temporal augmentation
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Figure B.14: Precision-Recall curves of the validation predictions from the
network trained on flow image sequences without temporal augmentation
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Figure B.15: Relative confusion matrix of the validation predictions from the
network trained on flow image sequences with random temporal augmenta-
tion
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Figure B.16: Precision-Recall curves of the validation predictions from the
network trained on flow image sequences with random temporal augmenta-
tion
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Hand Normalization

Following, the confusion matrices and precision recall curves of the remain-
ing systems described in chapter 5.3.6 are shown and belong to the systems
evaluated in table 5.4. The networks were trained with normalized and un-
normalized hand patch sequences with 3D body keypoints. The hand patches
origin from the amplitude, depth and optical flow image sequences.
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Figure B.17: Relative confusion matrix of validation results from the action
and object interaction recognition systems trained on 3D body keypoints and
original amplitude hand crop images
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Figure B.18: Precision-Recall curves of validation results from the action
and object interaction recognition systems trained on 3D body keypoints
and original amplitude hand crop images
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Figure B.19: Relative confusion matrix of validation results from the action
and object interaction recognition systems trained on 3D body keypoints and
original depth hand crop images
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Figure B.20: Precision-Recall curves of validation results from the action
and object interaction recognition systems trained on 3D body keypoints
and original depth hand crop images
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Figure B.21: Relative confusion matrix of validation results from the action
and object interaction recognition systems trained on 3D body keypoints and
normalized depth hand crop images
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Figure B.22: Precision-Recall curves of validation results from the action
and object interaction recognition systems trained on 3D body keypoints
and normalized depth hand crop images
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Optical Flow Input
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Figure B.23: Relative confusion matrix of validation results from the action
and object interaction recognition systems trained on 3D body keypoints and
original optical flow hand crop images
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Figure B.24: Precision-Recall curves of validation results from the action
and object interaction recognition systems trained on 3D body keypoints
and original optical flow hand crop images
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Figure B.25: Relative confusion matrix of validation results from the action
and object interaction recognition systems trained on 3D body keypoints and
normalized optical flow hand crop images
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Figure B.26: Precision-Recall curves of validation results from the action
and object interaction recognition systems trained on 3D body keypoints
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APPENDIX C

Continuous Action Recognition From Short
Isolated Sequences

Reset Results

Following, the confusion matrices and precision recall curves of the remain-
ing systems described in chapter 6.2.1 are shown and belong to the systems
evaluated in table 6.2. The networks were trained with zero and random ini-
tialization and tested with the different reset strategies at test time described
in chapter 6.2.1. As input to the network short amplitude, depth or optical
flow image sequences were used to train the networks while longer sequences
of the corresponding training input format were used for testing.
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Figure C.1: Relative confusion matrix of the action recognition network
trained on amplitude image sequences trained with zero initialization and
no reset at runtime
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Figure C.2: Precision recall curves of the action recognition network trained
on amplitude image sequences trained with zero initialization and no reset
at runtime
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Figure C.3: Relative confusion matrix of the action recognition network
trained on amplitude image sequences trained with zero initialization and
reset at the minimum sequence length at runtime
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Figure C.4: Precision recall curves of the action recognition network trained
on amplitude image sequences trained with zero initialization and reset at
the minimum sequence length runtime
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Figure C.5: Relative confusion matrix of the action recognition network
trained on amplitude image sequences trained with zero initialization and
reset at the mean sequence length at runtime

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

f1=0.2

f1=0 .4

f1=0 .6

f1=0 .8

PR Curve

mAP macro: 0.39
iso-f1 curves

Empty: 0.82

In Position: 0.75
To Front: 0.16
To Right: 0.29
To Back: 0.34

From Front: 0.31
From Right: 0.36
From Back: 0.25
Front: 0.41
Right: 0.46
Back: 0.45

mAP micro: 0.56

Enter: 0.57
Leave: 0.27
Strap: 0.20
Unstrap: 0.18

Figure C.6: Precision recall curves of the action recognition network trained
on amplitude image sequences trained with zero initialization and reset at
the mean sequence length runtime
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Figure C.7: Relative confusion matrix of the action recognition network
trained on amplitude image sequences trained with zero initialization and
reset at the maximum sequence length at runtime
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the maximum sequence length runtime



200
Appendix C. Continuous Action Recognition From Short

Isolated Sequences

e
m

p
ty

in
 p

o
si

ti
o
n

to
 f
ro

n
t

to
 r

ig
h
t

to
 b

a
ck

fr
o
m

 f
ro

n
t

fr
o
m

 r
ig

h
t

fr
o
m

 b
a
ck

O
u
tP

o
sF

ro
n
t

O
u
tP

o
sR

ig
h
t

O
u
tP

o
sB

a
ck

m
o
u
n
t

le
a
ve

st
ra

p

u
n
st

ra
p

empty

in position

to front

to right

to back

from front

from right

from back

OutPosFront

OutPosRight

OutPosBack

mount

leave

strap

unstrap

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.01 0.89 0 0 0 0 0 0 0 0 0 0.06 0.01 0.02 0

0.01 0.52 0.14 0.03 0.01 0 0.01 0 0.06 0.02 0.01 0.05 0.13 0.02 0

0 0.38 0 0.41 0.03 0 0 0 0.05 0 0.03 0.03 0 0.07 0

0 0.61 0 0.08 0.18 0 0 0 0 0 0.05 0.02 0 0.06 0

0.02 0.6 0.01 0 0 0.01 0 0 0.19 0 0 0.07 0.07 0.02 0

0 0.2 0 0.14 0 0 0.18 0.01 0.01 0.25 0.03 0.04 0 0.14 0

0 0.53 0 0.01 0.01 0 0 0.02 0 0.01 0.27 0 0 0.15 0

0 0.24 0.18 0.02 0 0 0 0 0.28 0 0 0.01 0.28 0 0

0 0.1 0 0.68 0 0 0 0 0.01 0.1 0.04 0 0.01 0.06 0

0 0.42 0 0.07 0.16 0 0 0 0 0 0.26 0 0 0.09 0

0.5 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0

0.07 0.6 0 0.01 0 0 0 0 0 0 0 0.01 0.27 0.03 0

0 0.71 0 0 0.01 0 0 0 0 0 0.01 0.05 0.02 0.2 0

0 0.91 0 0.01 0.03 0 0 0 0 0 0 0 0 0.05 0

0.0

0.2

0.4

0.6

0.8

1.0

L
ab

el

Prediction

System

Continuous Action
Recognition

From
Short Isolated
Sequences

Experiments Reset strategies

Input Amplitude image
sequences

Method Random initialization
no reset

Figure C.9: Relative confusion matrix of the action recognition network
trained on amplitude image sequences trained with random initialization and
no reset at runtime
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Figure C.10: Precision recall curves of the action recognition network trained
on amplitude image sequences trained with random initialization and no reset
at runtime
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Figure C.11: Relative confusion matrix of the action recognition network
trained on amplitude image sequences trained with random initialization and
reset at the minimum sequence length at runtime

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

f1=0.2

f1=0 .4

f1=0 .6

f1=0 .8

PR Curve

mAP macro: 0.35
iso-f1 curves

Empty: 0.88

In Position: 0.76
To Front: 0.22
To Right: 0.28
To Back: 0.07

From Front: 0.21
From Right: 0.39
From Back: 0.18
Front: 0.69
Right: 0.61
Back: 0.33

mAP micro: 0.52

Enter: 0.26
Leave: 0.11
Strap: 0.19
Unstrap: 0.08

Figure C.12: Precision recall curves of the action recognition network trained
on amplitude image sequences trained with random initialization and reset
at the minimum sequence length runtime
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Figure C.13: Relative confusion matrix of the action recognition network
trained on amplitude image sequences trained with random initialization and
reset at the mean sequence length at runtime
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Figure C.14: Precision recall curves of the action recognition network trained
on amplitude image sequences trained with random initialization and reset
at the mean sequence length runtime
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Figure C.15: Relative confusion matrix of the action recognition network
trained on amplitude image sequences trained with random initialization and
reset at the maximum sequence length at runtime
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Figure C.16: Precision recall curves of the action recognition network trained
on amplitude image sequences trained with random initialization and reset
at the maximum sequence length runtime
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Figure C.17: Relative confusion matrix of the action recognition network
trained on depth image sequences trained with zero initialization and no
reset at runtime
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Figure C.18: Precision recall curves of the action recognition network trained
on depth image sequences trained with zero initialization and no reset at
runtime
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Figure C.19: Relative confusion matrix of the action recognition network
trained on depth image sequences trained with zero initialization and reset
at the minimum sequence length at runtime
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Figure C.20: Precision recall curves of the action recognition network trained
on depth image sequences trained with zero initialization and reset at the
minimum sequence length runtime
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Figure C.21: Relative confusion matrix of the action recognition network
trained on depth image sequences trained with zero initialization and reset
at the mean sequence length at runtime
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Figure C.22: Precision recall curves of the action recognition network trained
on depth image sequences trained with zero initialization and reset at the
mean sequence length runtime
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Figure C.23: Relative confusion matrix of the action recognition network
trained on depth image sequences trained with zero initialization and reset
at the maximum sequence length at runtime

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

f1=0.2

f1=0 .4

f1=0 .6

f1=0 .8

PR Curve

mAP macro: 0.37
iso-f1 curves

Empty: 0.82

In Position: 0.81
To Front: 0.21
To Right: 0.18
To Back: 0.18

From Front: 0.31
From Right: 0.32
From Back: 0.16
Front: 0.53
Right: 0.41
Back: 0.47

mAP micro: 0.58

Enter: 0.36
Leave: 0.45
Strap: 0.14
Unstrap: 0.17

Figure C.24: Precision recall curves of the action recognition network trained
on depth image sequences trained with zero initialization and reset at the
maximum sequence length runtime
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Figure C.25: Relative confusion matrix of the action recognition network
trained on depth image sequences trained with random initialization and no
reset at runtime
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Figure C.26: Precision recall curves of the action recognition network trained
on depth image sequences trained with random initialization and no reset at
runtime
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Figure C.27: Relative confusion matrix of the action recognition network
trained on depth image sequences trained with random initialization and
reset at the minimum sequence length at runtime
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Figure C.28: Precision recall curves of the action recognition network trained
on depth image sequences trained with random initialization and reset at the
minimum sequence length runtime
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Figure C.29: Relative confusion matrix of the action recognition network
trained on depth image sequences trained with random initialization and
reset at the mean sequence length at runtime
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Figure C.30: Precision recall curves of the action recognition network trained
on depth image sequences trained with random initialization and reset at the
mean sequence length runtime
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Figure C.31: Relative confusion matrix of the action recognition network
trained on depth image sequences trained with random initialization and
reset at the maximum sequence length at runtime
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Figure C.32: Precision recall curves of the action recognition network trained
on depth image sequences trained with random initialization and reset at the
maximum sequence length runtime
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Figure C.33: Relative confusion matrix of the action recognition network
trained on flow image sequences trained with zero initialization and no reset
at runtime
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Figure C.34: Precision recall curves of the action recognition network trained
on optical flow image sequences trained with zero initialization and no reset
at runtime
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Figure C.35: Relative confusion matrix of the action recognition network
trained on flow image sequences trained with zero initialization and reset at
the minimum sequence length at runtime
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Figure C.36: Precision recall curves of the action recognition network trained
on optical flow image sequences trained with zero initialization and reset at
the minimum sequence length runtime
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Figure C.37: Relative confusion matrix of the action recognition network
trained on flow image sequences trained with zero initialization and reset at
the mean sequence length at runtime
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Figure C.38: Precision recall curves of the action recognition network trained
on optical flow image sequences trained with zero initialization and reset at
the mean sequence length runtime
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Figure C.39: Relative confusion matrix of the action recognition network
trained on flow image sequences trained with zero initialization and reset at
the maximum sequence length at runtime
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Figure C.40: Precision recall curves of the action recognition network trained
on optical flow image sequences trained with zero initialization and reset at
the maximum sequence length runtime
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Figure C.41: Relative confusion matrix of the action recognition network
trained on flow image sequences trained with random initialization and no
reset at runtime
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Figure C.42: Precision recall curves of the action recognition network trained
on optical flow image sequences trained with random initialization and no
reset at runtime
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Figure C.43: Relative confusion matrix of the action recognition network
trained on flow image sequences trained with random initialization and reset
at the minimum sequence length at runtime
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Figure C.44: Precision recall curves of the action recognition network trained
on optical flow image sequences trained with random initialization and reset
at the minimum sequence length runtime
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Figure C.45: Relative confusion matrix of the action recognition network
trained on flow image sequences trained with random initialization and reset
at the maximum sequence length at runtime
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Figure C.46: Precision recall curves of the action recognition network trained
on optical flow image sequences trained with random initialization and reset
at the maximum sequence length runtime
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Class Transition Results

Following, the confusion matrices and precision recall curves of the remaining
systems described in chapter 6.3.1 are shown and belong to the systems
evaluated in table 6.3. The networks were trained with different methods
of concatenating short action sequences described in chapter 6.3 to simulate
the training on continuous data streams.
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Figure C.47: Relative confusion matrix of the action recognition network
trained on the second half of randomly concatenated amplitude image se-
quences
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Figure C.48: Precision recall curves of the action recognition network trained
on the second half of randomly concatenated amplitude image sequences
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Figure C.49: Relative confusion matrix of the action recognition network
trained on all frames of randomly concatenated amplitude image sequences
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Figure C.50: Precision recall curves of the action recognition network trained
on all frames of randomly concatenated amplitude image sequences
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Figure C.51: Relative confusion matrix of the action recognition network
trained on the second half of randomly concatenated depth image sequences
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Figure C.52: Precision recall curves of the action recognition network trained
on the second half of randomly concatenated depth image sequences
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Figure C.53: Relative confusion matrix of the action recognition network
trained on all frames of randomly concatenated depth image sequences
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Figure C.54: Precision recall curves of the action recognition network trained
on all frames of randomly concatenated depth image sequences
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Figure C.55: Relative confusion matrix of the action recognition network
trained on the second half of randomly concatenated optical flow image se-
quences
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Figure C.56: Precision recall curves of the action recognition network trained
on the second half of randomly concatenated optical flow image sequences
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Figure C.57: Relative confusion matrix of the action recognition network
trained on all frames of randomly concatenated optical flow image sequences
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Figure C.58: Precision recall curves of the action recognition network trained
on all frames of randomly concatenated optical flow image sequences
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Figure C.59: Relative confusion matrix of the action recognition network
trained on the second half of reasonably concatenated amplitude image se-
quences
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Figure C.60: Precision recall curves of the action recognition network trained
on the second half of reasonably concatenated amplitude image sequences
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Figure C.61: Relative confusion matrix of the action recognition network
trained on all frames of reasonably concatenated amplitude image sequences
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Figure C.62: Precision recall curves of the action recognition network trained
on all frames of reasonably concatenated amplitude image sequences
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Figure C.63: Relative confusion matrix of the action recognition network
trained on the second half of reasonably concatenated depth image sequences
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Figure C.64: Precision recall curves of the action recognition network trained
on the second half of reasonably concatenated depth image sequences
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Figure C.65: Relative confusion matrix of the action recognition network
trained on all frames of reasonably concatenated depth image sequences
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Figure C.66: Precision recall curves of the action recognition network trained
on all frames of reasonably concatenated depth image sequences
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Figure C.67: Relative confusion matrix of the action recognition network
trained on all frames of reasonably concatenated optical flow image sequences
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Figure C.68: Precision recall curves of the action recognition network trained
on all frames of reasonably concatenated optical flow image sequences
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State Handling Results

Following, the confusion matrices and precision recall curves of the remaining
systems described in chapter 6.4.4 are shown and belong to the systems eval-
uated in table 6.5. The networks were trained with combinations of the state
handling method, described in chapter 6.4 and the sequence concatenation
approaches described in chapter 6.3.
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Figure C.69: Relative confusion matrix of the action recognition network
trained on amplitude image sequences with reasonable state handling
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Figure C.70: Precision recall curves of the action recognition network trained
on amplitude image sequences with reasonable state handling
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Figure C.71: Relative confusion matrix of the action recognition network
trained on the second half of reasonably concatenated amplitude image se-
quences with reasonable state handling
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Figure C.72: Precision recall curves of the action recognition network trained
on the second half of reasonably concatenated amplitude image sequences
with reasonable state handling
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Figure C.73: Relative confusion matrix of the action recognition network
trained on all frames of reasonably concatenated amplitude image sequences
with reasonable state handling
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Figure C.74: Precision recall curves of the action recognition network trained
on all frames of reasonably concatenated amplitude image sequences with
reasonable state handling
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Figure C.75: Relative confusion matrix of the action recognition network
trained on depth image sequences with reasonable state handling
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Figure C.76: Precision recall curves of the action recognition network trained
on depth image sequences with reasonable state handling
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Figure C.77: Relative confusion matrix of the action recognition network
trained on the second half of reasonably concatenated depth image sequences
with reasonable state handling
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Figure C.78: Precision recall curves of the action recognition network trained
on the second half of reasonably concatenated depth image sequences with
reasonable state handling
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Figure C.79: Relative confusion matrix of the action recognition network
trained on all frames of reasonably concatenated depth image sequences with
reasonable state handling
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Figure C.81: Relative confusion matrix of the action recognition network
trained on optical flow image sequences with reasonable state handling
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Figure C.82: Precision recall curves of the action recognition network trained
on optical flow image sequences with reasonable state handling
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Figure C.83: Relative confusion matrix of the action recognition network
trained on all frames of reasonably concatenated optical flow image sequences
with reasonable state handling
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LSTM Results

Following, the confusion matrices and precision recall curves of the remaining
systems described in chapter 6.4.4 are shown and belong to the systems
evaluated in table 6.8. The networks trained with reasonable state handling
and action sequence concatenation described in the chapters 6.3 and 6.4 were
trained with LSTM networks instead of GRU networks.
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Figure C.85: Relative confusion matrix of the action recognition network with
LSTM modules as recurrent units trained on amplitude image sequences with
reasonable state handling
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LSTM modules as recurrent units trained on amplitude image sequences with
reasonable state handling
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Figure C.87: Relative confusion matrix of the action recognition network with
LSTM modules as recurrent units trained on the second half of reasonably
concatenated amplitude image sequences with reasonable state handling
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Figure C.88: Precision recall curves of the action recognition network with
LSTM modules as recurrent units trained on the second half of reasonably
concatenated amplitude image sequences with reasonable state handling
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Figure C.89: Relative confusion matrix of the action recognition network
with LSTM modules as recurrent units trained on all frames of reasonably
concatenated amplitude image sequences with reasonable state handling
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Figure C.90: Precision recall curves of the action recognition network trained
with LSTM modules as recurrent units on all frames of reasonably concate-
nated amplitude image sequences with reasonable state handling
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Figure C.91: Relative confusion matrix of the action recognition network
with LSTM modules as recurrent units trained on depth image sequences
with reasonable state handling
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Figure C.92: Precision recall curves of the action recognition network with
LSTM modules as recurrent units trained on depth image sequences with
reasonable state handling
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Figure C.93: Relative confusion matrix of the action recognition network with
LSTM modules as recurrent units trained on the second half of reasonably
concatenated depth sequences with reasonable state handling
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Figure C.94: Precision recall curves of the action recognition network with
LSTM modules as recurrent units trained on the second half of reasonably
concatenated depth image sequences with reasonable state handling
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Figure C.95: Relative confusion matrix of the action recognition network
with LSTM modules as recurrent units trained on all frames of reasonably
concatenated depth image sequences with reasonable state handling
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Figure C.96: Precision recall curves of the action recognition network trained
with LSTM modules as recurrent units on all frames of reasonably concate-
nated depth image sequences with reasonable state handling
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Figure C.97: Relative confusion matrix of the action recognition network with
LSTM modules as recurrent units trained on optical flow image sequences
with reasonable state handling
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Figure C.98: Precision recall curves of the action recognition network with
LSTM modules as recurrent units trained on optical flow image sequences
with reasonable state handling



248
Appendix C. Continuous Action Recognition From Short

Isolated Sequences

0.0

0.2

0.4

0.6

0.8

1.0

e
m

p
ty

in
 p

o
si

ti
o
n

to
 f
ro

n
t

to
 r

ig
h
t

to
 b

a
ck

fr
o
m

 f
ro

n
t

fr
o
m

 r
ig

h
t

fr
o
m

 b
a
ck

O
u
tP

o
sF

ro
n
t

O
u
tP

o
sR

ig
h
t

O
u
tP

o
sB

a
ck

m
o
u
n
t

le
a
ve

st
ra

p

u
n
st

ra
p

empty

in position

to front

to right

to back

from front

from right

from back

OutPosFront

OutPosRight

OutPosBack

mount

leave

strap

unstrap

0.89 0 0 0 0 0 0 0 0 0 0 0.06 0.05 0 0

0.03 0.68 0.01 0 0.01 0.01 0 0.02 0.04 0 0.02 0.04 0.07 0.03 0.04

0 0.09 0.68 0.01 0.03 0.01 0.01 0.02 0.09 0.01 0 0.01 0.05 0 0

0 0.07 0.01 0.4 0.19 0.06 0.01 0.04 0.02 0.08 0.08 0.01 0 0.01 0.01

0 0.09 0.01 0 0.53 0.01 0 0.03 0 0.01 0.27 0 0 0.04 0.02

0 0.07 0 0 0 0.87 0 0 0.06 0 0 0 0 0 0

0 0.04 0.01 0.01 0.01 0 0.54 0.19 0.01 0.13 0.04 0 0 0.02 0.01

0 0.01 0 0 0 0 0 0.82 0 0 0.17 0 0 0 0

0 0 0.05 0 0 0.06 0 0 0.86 0 0 0 0.03 0 0

0 0 0 0.02 0.01 0 0.05 0 0.01 0.77 0.12 0 0 0.01 0

0 0.04 0 0 0.01 0 0 0.02 0 0 0.92 0 0 0 0

0.02 0 0 0 0 0 0 0.01 0 0 0 0.97 0 0 0

0.01 0.07 0.02 0 0 0 0 0.02 0.01 0 0 0.03 0.82 0.02 0

0 0.16 0 0.01 0.08 0 0 0.05 0 0 0.01 0.01 0.03 0.48 0.17

0 0.13 0 0.01 0.03 0 0 0.03 0 0 0.02 0 0.01 0.08 0.69

L
ab

el

Prediction

System

Continuous Action
Recognition

From
Short Isolated
Sequences

Experiments LSTM

Input Optical flow
image sequences

Method

LSTM with
second half
of reasonably
concatenated
sequences with
reasonable

state handling

Figure C.99: Relative confusion matrix of the action recognition network with
LSTM modules as recurrent units trained on the second half of reasonably
concatenated amplitude optical flow sequences with reasonable state handling
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Figure C.100: Precision recall curves of the action recognition network with
LSTM modules as recurrent units trained on the second half of reasonably
concatenated optical flow image sequences with reasonable state handling
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Figure C.101: Relative confusion matrix of the action recognition network
with LSTM modules as recurrent units trained on all frames of reasonably
concatenated optical flow image sequences with reasonable state handling
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Figure C.102: Precision recall curves of the action recognition network
trained with LSTM modules as recurrent units on all frames of reasonably
concatenated optical flow image sequences with reasonable state handling
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