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Abstract

In this thesis, the measurement of the single- and double-differential cross-sections for the
charged-current Drell-Yan process in the leptonic decay into an electron and an electron
neutrino, gq¢ -+ W — ev,, is presented. The analysed dataset is recorded by the ATLAS
experiment at the Large Hadron Collider during pp-collisions of the full Run 2 at a centre-of-
mass energy of /s = 13 TeV. In contrast to former measurements, where the cross-section
at the peak of the W boson mass is measured, this thesis focuses on W boson masses
up to @(1TeV), where the cross-sections are measured for the first time. One of the key
ingredients for this measurement is the estimation of the multijet background, originating
from fake electrons. The multijet background is estimated based on the data-driven Matrix
Method. Occurring issues of data-driven methods that depend on the transverse missing
momentum are described and a corresponding systematic uncertainty is assigned. Another
crucial aspect is the unfolding of the analysed dataset in a phase space, where a high amount
of migrations is expected. The measured data distribution is unfolded to the born level
using the Iterative Bayesian Unfolding. Its iterative procedure is well-suited to correct
bin-by-bin migrations. The single-differential cross-section as a function of the transverse
mass of the W boson, m!" € [200,2000] GeV, and the double-differential cross-section as
a function of the transverse mass of the W boson and the absolute value of the electron’s
pseudorapidity, m¥ ® |n(e)| € [200,2000] GeV ® [0.0,2.4], are presented. The differential
cross-sections for both charges of the W boson, i.e. in the e™ and e~ channel, are measured
separately. The corresponding statistical and systematic uncertainties are reported as well.
The unfolded single- and double-differential cross-sections are compared to the theoretical
prediction from POWHEG BoxX v1 and PYTHIA 8, where an overall reasonable agreement
within the uncertainty is found.

ii



iv



Contents

1 Introduction

2 The W boson in the Standard Model
2.1 Matter particles . . . . . . . . ...
2.2 Gauge bosons and fundamental forces . . . ... ... 0oL
2.3 Peculiarities of the weak interaction . . . . . .. ... ... ... ......
2.4 Electroweak unification . . . . . . . .. ... ...
2.5 Higgs mechanism . . . . . .. .. ..
2.6 Predictions of the Standard Model . . . . . . . .. ... ... ... .....

3 The ATLAS experiment at the Large Hadron Collider
3.1 Large Hadron Collider . . . . . . .. .. ... ... .. ... ...,
3.2 ATLAS detector . . . . . . . . . . . e
3.2.1 Coordinate system . . . . . .. ...
3.2.2 Inmer Detector . . . . . . . . . . . ... ...
3.2.3 Calorimeter system . . . . . . . . . ...
3.2.4 Muon Spectrometer . . . . ... ..o
3.2.5 Trigger and Data Acquisition system . . . . . . . ... ... ... ..

4 Strategy for the measurement of the cross-section
5 At a glance: Mathematical formulation of unfolding

6 Data and Monte Carlo samples
6.1 Analysed datasets . . . . . . .. ...
6.2 Event generation at the Large Hadron Collider . . . . ... ... ... ...
6.3 Simulated signal and background samples . . . . . ... ... ... ...
6.4 Validation of alternative Monte Carlo samples . . . . . . .. ... ... ...

7 Event reconstruction with the ATLAS detector
7.1 Trigger . . ... L
7.2 Electron selection . . . . . . .. ...
7.2.1 Reconstruction . . . . .. ... .. o
7.2.2 Energy calibration . . . . .. ... ... 0oL
7.2.3 Identification and isolation requirements . . . . . . . ... ... ...
7.2.4 Efficiency correction . . . . . ... Lo o
7.3 Muon selection . . . ...
7.4 Small-R jet selection . . . . . . ... L o
7.5 Missing transverse momentum EXSS . . o000 oL L.
7.6 Overlap removal . . . . . . . .. ..

23

27

31
31
32
33
36



Contents

8

10

11

12

vi

Signal extraction

8.1 Selection criteria at reconstructed level . . . . . . . ... ... ... ... ..

8.2 Selection criteria at truth level . . . . . . . . . ... ... ...

8.3 Definition of variables for the cross-section measurement . . . . . .. . . ..
8.3.1 Experimental resolution . . . . . . ... ... L oo
8.3.2 Migration . . . . . .. ..
8.3.3 Data statistical uncertainty . . . . . .. .. ..o

Background estimation
9.1 Matrix Method . . . . . . . . . . L
9.2 Dependence on the choice of objects in the EXS calculation . . . . . .. ..
9.2.1 Different energy calibrations of objects and implications on EX®S . .
9.2.2 Estimation of object- and phase-space dependent ERS . . . . . . ..
9.3 Measurement of the real efficiencies . . . . . . . . .. ... ... ... .. ..
9.4 Measurement of the fake efficiencies . . . . . ... ... ... ...
9.5 Systematic uncertainties on the multijet background . . . . . ... .. ...
9.6 Background estimate of the multijet in two different regions . . . . . . . ..
9.6.1 Multijet closure region . . . . . . . ... L Lo oo
9.6.2 Multijet validation region . . . . . . .. ... Lo oL

Comparison of data and prediction

Systematic uncertainties

11.1 Theoretical systematic uncertainties . . . . . . . .. ... ... ... ....
11.1.1 Signal process . . . . . . . . ..o
11.1.2 HEPrOCESS .« o v v v e o e e e

11.2 Experimental systematic uncertainties . . . . .. .. .. ... ..o
11.2.1 Soft track term of the missing transverse momentum . . . . . . . . .
11.2.2 Electron energy scale . . . . . . . . . .. . .. ... ... .. ...
11.2.3 Electron energy resolution and photon energy scale . . . . . . . . ..
11.2.4 Electron scale factor . . . . . . . . .. ...
11.2.5 Jet energy resolution . . . . . . . .. ..o oo
11.2.6 Jet energy scale . . . . . . . . ...
11.2.7 Pile-up . . . . o L
11.2.8 Luminosity . . . . . . . . L
11.2.9 Experimental systematic uncertainties of the background processes .

Unfolding

12.1 Tterative Bayesian Unfolding . . . . . . . . .. .. ... ... ... ... ...
12.1.1 Response matrix . . . . . . . . .. . . . o
12.1.2 Correction factors: efficiency and acceptance . . . . ... ... ...
12.1.3 Unfolding using a shadow bin . . . . . . . . ... ... ... .....

12.2 Technical closure test . . . . . . .. .. .. L L L

12.3 Stresstest . . . . . . . e

12.4 Calculation of the covariance matrix . . . . . .. .. .. .. ... ... ...

47
47
49
50
52
54
55

57
57
o8
59
67
70
71
77
79
79
85

89



Contents

12.5 Regularisation . . . . . . . . .. .. L L 123
12.5.1 Residuals and statistical uncertainty w.r.t. the previous iteration . . 123

12.5.2 X2 tests . . .. 125

12.5.3 Average global correlation coefficient test . . . . .. ... .. .. .. 125

12.5.4 Conclusions on the number of iterations . . . . . .. ... ... ... 127

12.6 Unfolding of experimental and theoretical systematic uncertainties . . . . . 127
12.7 Systematic uncertainty of the unfolding procedure . . . .. ... ... ... 132

13 Results 133
13.1 Unfolded single-differential cross-section in mX . . . . ... ... ... ... 133
13.2 Unfolded double-differential cross-section in m¥ & [n(e)| . . . . . . . .. .. 135

14 Conclusion and Outlook 139
A MC samples and theoretical cross-sections 141
B Issues with large weights from the W MC sample 143
C Background estimation supplemental material 145
D Comparison of data with MC samples supplemental material 153
E Systematic uncertainties supplemental material 157
F  Unfolding supplemental material 159
G Tabular presentation of the measured cross sections 167
References 177

vii



viii



1 Introduction

For centuries, researchers all over the world have been dealing with the question of what the
universe is made of. Already in the 5th century before Christ, Democritus and Leucippus
postulated that the universe and all matter consist of several unique indivisible particles,
that build up all known matter. Back in time, the first candidate for an indivisible particle
were atoms, i.e. the chemical elements like e.g. hydrogen. Although we know nowadays that
atoms consist of varying quantities of protons, neutrons and the most commonly known
electrons, the idea to search for the smallest pieces of matter remained.

From all the searches and studies performed in order to identify the building blocks of our
universe throughout the past centuries, elementary particle physics developed. Besides the
electron, which has been observed as the first elementary particle in 1897 by J.J.Thompson [1],
a large variety of new particles were discovered at several different experiments in the 1950s
and 1960s.

In the 1970s, the Standard Model of Particle Physics (SM) [2-5] has been formulated
representing the current knowledge about elementary particles and their interactions. The
SM is a well-established model successfully predicting experimental behaviour and has
been tested extensively, passing every test so far. Nevertheless, there are unexplained
phenomena as well. Neutrino oscillation, the matter-antimatter asymmetry, dark matter, or
the gravitational interactions are not described by the SM.

The testing and validation of the SM as well as the exclusion or limitation of other models
and their parameters is a main part of a large variety of different studies performed in
elementary particle physics. The prerequisite for observing, measuring, and testing theories
of subatomic particles is their creation in a well-known environment. A great opportunity
offers the production by particle accelerators, where e.g. electrons or protons can be brought
to collision at high energies. As the spacial resolution of particle accelerators is the inverse
of the collisions’ energy, higher and higher energies are required to probe smaller and
smaller structures. The most powerful particle accelerator in the world is the Large Hadron
Collider [6] (LHC) located close to Geneva at the ’Conseil européen pour la recherche
nucléaire’ (CERN). Four large experiments are located at the LHC, namely: ATLAS [7],
CMS [8], LHCb [9] and ALICE [10]. While the ALICE experiment focuses on heavy-ion
physics based on lead ion collisions, the LHCb experiment is dedicated to studies based on
the beauty (or b quark) by exploiting the region close to the particle beam. The ATLAS and
CMS experiments are so-called multi-purpose detectors covering especially the possibilities
of precise measurements of known particles and their properties and the search for new
particles. The knowledge about the SM and its parameters is improved at these experiments
by searches for new physics e.g. extending the SM, which could resolve remaining open
questions, and precise measurements e.g. constraining fundamental SM parameters.

In this thesis, the single-differential and double-differential cross-sections of the charged-
current Drell-Yan (ccDY) process, consisting of the production of a W boson from a
quark and anti-quark annihilation, which decays into an electron and an electron-neutrino,
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qq - W — ev,, are measured. While the cross-section is very well known at the peak of the
W boson mass, the cross-sections focusing on W boson masses up to O(1 TeV) are measured
for the first time.

In this phase space, differential cross-sections of the ccDY itself represent a key result allowing
to investigate the agreement between precise theoretical predictions and the experimental
data and, subsequently, for further interpretations: On one hand, the ccDY process provides
the possibility to constrain the density functions describing the partonic content of the
proton based on the measured differential cross-sections and precise theory predictions of
this process. These density functions can not be calculated directly from theory, thus they
are obtained from experimental data only. The precise knowledge of these density functions
is crucial to precisely predict SM physics.

On the other hand, the differential measurement of the cross-section from W boson masses
in the TeV range allows for the interpretation of the differential cross-sections in an effective
field theory (EFT). An EFT is a model-independent tool to probe new physics. Assuming
that new physics appears at a high mass scale M, far above the energies that can be directly
probed nowadays, the influence of this new physics would be detectable for energies E that
are much smaller than the mass scale M. In the case of the ccDY production, the SM could
be extended by a hypothetical new fermion or vector boson at a mass scale M as explained
in detail in Reference [11]. Such new particles would change the high energy behaviour
of the SM gauge bosons, such as the W boson, and would lead to small deviations of the
cross-section as a function of the W boson mass. The authors of Reference [11] conclude
that the expected sensitivities for the data set that is recorded starting from 2022 at the
LHC could exceed even the high accuracies obtained by the Large Electron-Positron (LEP)
experiment.

This thesis is organised as follows: In Chapter 2, a brief introduction to the SM of particle
physics is presented. Then, the LHC and the ATLAS experiment are described in Chapter 3.
While an overview of the strategy for the measurement is given in Chapter 4, a theoretical
introduction to unfolding is provided in Chapter 5. After the analysed dataset and the
Monte Carlo simulations used are presented in Chapter 6, the event reconstruction and
the signal extraction is explained in Chapter 7 and 8, respectively. While the detailed
description of the background estimation is addressed in Chapter 9, a comparison of signal
and background events with the data events is presented in Chapter 10. Afterwards, the
systematic uncertainties are explained in Chapter 11. The unfolding, in order to obtain the
differential cross-sections, is explained in Chapter 12 and the unfolded results are discussed
in Chapter 13. Finally, the conclusions are drawn and a brief outlook is given in Chapter
14.



2 The W boson in the Standard Model

The theoretical model describing the elementary particles and their interactions at the
subatomic scale is the so-called Standard Model of Particle Physics (SM). The SM [2-5]
describes the dynamics and interactions of the elementary particles based on three of the
four fundamental forces. It consists of fermions, the particles that are the building blocks
of matter, the gauge bosons representing the weak, strong and electromagnetic force that
mediate the fundamental interactions of particles with other particles, themselves or fields
and the Higgs boson, which is a smoking gun for the explanation of how the masses of the
elementary particles are generated.

The SM is a well-established theoretical model, developed during the 1960’s and 1970’s,
which represents the current state of knowledge and successfully predicts experimental
behaviour in a huge amount of experiments. Nevertheless, the matter-antimatter asymmetry
or the absence of dark matter are examples for the deficits of the SM. In addition, the
inclusion of the gravitational interactions into the SM has not been achieved so far. The
incorporation of gravity to the SM would in fact require an additional gauge boson as force
carrier that has not been observed so far and, consequently, strong limits on the expected
coupling have been set [12]. Due to the expected very weak coupling of gravity to elementary
particles, gravitational interactions are neglected.

2.1 Matter particles

In Figure 2.1, the fundamental particles of the SM and their properties are illustrated.
The fundamental particles that build up our matter are so-called fermions f which carry
a half-integer spin s and can be subdivided into quarks ¢ and leptons ¢. Both classes of
fermions are further grouped into three generations based on their mass. The lightest
(heaviest) particles are assigned to the first (third) generation. In our universe, stable matter
consists of first generation fermions, while quarks and charged leptons of the second and
third generation are unstable. Each fermion has a partner which is called anti-fermion® f.
Antiparticles occur with the same mass, but opposite quantum numbers in contrast to
particles.

Quarks are represented by six different eigenstates, called flavours. Besides the categorisation
into three generations, quarks are subdivided into up-type and down-type based on their
electrical charge. The up u, charm ¢ and top t quark are up-type quarks which carry an
electrical charge of +% e and the down d, strange s and bottom b quark are down-type
quarks which carry an electrical charge of —% e. An additional property of quarks is the
colour charge, where red, blue and green? are defined as three independent states.

In the following, f refers to particles and antiparticles, unless stated otherwise.
2 Antiparticles carry the corresponding anti-colours.



2 The W boson in the Standard Model

15 2 3 generation
ﬁwmv h 127 Gev (133scev ) \ \
spin 12 12 12 5
charge| 123, U +2/3e c +2/3¢ t g
Ty +1/2 +1/2 +1/2 5
7)) up charm top 7
N4 \ N - J 3  — —
i 2
< S
- /467 MeV (93 MeV CHS GeV A
(e] 172 172 172 [,
—13e —13e —173e ]
-2 —1/2 -172 o
down strange bottom ]
\ - AR N 8
[]
// 6
=
)
3
2
5
%) H
=z 2
o 5
= , : g
o g
- S

FERMIONS GAUGE BOSONS

Figure 2.1: A schematic overview of the fundamental particles described by the SM. The
mass, spin, charge and third component of the weak isospin is shown for each particle.
The mass of the top quark was determined in Reference [13], the Higgs boson mass is
taken from Reference [14] and the remaining masses can be found in Reference [15]. Three
fundamental forces are indicated by the three blue boxes, which are related to the force
carriers v, W+, Z and ¢g. The connection between the electromagnetic and weak interaction
by spontaneous symmetry breaking is indicated by arrows besides the Higgs boson. Further
details can be found in the description below.

Leptons occur in six different flavours, where in each generation a lepton is associated to a
lepton neutrino. The electron® e, the muon y and the tau 7 represent the charged leptons
whereas the electron neutrino v,, muon neutrino v, and the tau neutrino v, are electrically
uncharged. Although neutrinos are massless in the SM, a non-zero mass is expected from
experimental physics point of view due to the observation of neutrino oscillations [16, 17].

2.2 Gauge bosons and fundamental forces

The theoretical model of the SM is a relativistic, renormalizable quantum field theory
that is invariant under the symmetry group SU(3)o x SU(2); x U(1)y. This group is
composed of the symmetry group of the strong force SU(3). and the electroweak interaction

3The anti-electron is usually called positron. In the following, electron refers to both, the electron e~ and
positron e, unless stated otherwise.
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SU(2);, x U(1)y, where the electroweak interaction summarises the electromagnetic and
weak interaction in a unified theory.

Generally, in a field theory approach, particles are related to so-called fields, which are
functions of space-time. Field theories constitute dynamics of a certain field represented
by Lagrangian densities L. Each Lagrangian density can be subdivided into several terms
describing e.g. mass terms of the fermions or interactions of the fermion field and a gauge
field. Each fundamental interaction in the SM is described by a Lagrangian density and
needs to satisfy their corresponding symmetry group.

In the SM, gauge bosons mediate the fundamental interactions. The strong interaction is
mediated by the gluons g, the electromagnetic interaction by the photon v and the weak
interaction by the W+ and the Z bosons. Each gauge boson couples to certain quantum
numbers which therefore defines which particles participate in the corresponding interaction.
In addition, the coupling strength of each fundamental interaction is energy-dependent,
often referred to as 'running couplings’ The 'running’ of each coupling is described in detail
in the following.

The strong interaction is described by Quantum Chronodynamics (QCD) and is invariant
under the non-abelian symmetry group SU(3)., where the quantum number C refers to the
colour charge in the gauge group representation. The eight generators of SU(3) are identified
with the eight massless gluon fields g. The mediator of the strong interaction, the gluon,
carries and couples to colour and anti-colour charge only. For this reason, gluons couple to
the colour charge of quarks and to themselves. The strength of the QCD coupling constant
ag depends on the momentum () exchanged in particle interactions. The average obtained
by the Particle Data Group for the coupling with an exchanged momentum of Q = M, is
ag(M%) = 0.1179 £ 0.0010 [15], where M, refers to the mass of the Z boson. At smaller
energies, corresponding to large distances, the coupling strength increases, which is called
confinement. As a result, quarks can not occur as single particles but in colourless bound
states, classified as mesons ¢¢ and baryons gqq. Mesons and baryons are summarised as
hadrons and the process of building colourless states is called hadronisation. In contrast, the
coupling constant strength decreases for higher energies, corresponding to small distances,
where quarks are asymptotically free. While the outcome of QCD interactions can be
calculated perturbatively (pertubative QCD) for small coupling constants, it is not possible
for large values of ag, corresponding to small energies, i.e. exchanged momenta.

The electromagnetic interaction is described by an abelian gauge theory, the Quantum
Electrodynamics (QED), and is mediated by the photon . The photon is massless and
carries no charge itself. Furthermore, it couples to electrically-charged particles only. The
coupling strength of the electromagnetic interaction increases for larger energies, referring
to small distances, and reaches a plateau at ag,, = é

The weak interaction is mediated by the gauge bosons W and Z. The W boson is electrically-
charged, while the Z boson is electrically-neutral. The quantum number of the weak
interaction is the weak isospin /5. Because all fermions carry a weak isospin of j:%, the weak
interaction is the only force acting on all elementary fermions. The masses of the W boson
myy = 80.379 4 0.012 GeV® [15] and the mass of the Z boson m, = 90.1876 + 0.0021 GeV [15]
are much higher compared to most of the other elementary particles. Since massive gauge

4In the following, W boson refers to both, the W~ and W, unless stated otherwise
5Tn this thesis ¢ = 1 is used.
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fields violate the gauge invariance of the SM, the gauge bosons are not massive from the
beginning in the electroweak gauge theory. Due to their large masses, the coupling strength
of the weak interaction is small compared to the strong and electromagnetic interaction.
Although it is of the order of a, ., ~ % at the energy of the W and Z boson masses, it
decreases for large energies.

2.3 Peculiarities of the weak interaction

The weak interaction allows for a neutral- and a charged-current interaction. The neutral-
current interaction is mediated by the electrically neutral Z boson. For the coupling
of the Z boson to charged leptons and quarks, the neutral-current interaction involves
components similar to the corresponding electromagnetic interaction. The only process
consisting completely of SU(2); neutral-current components is the scattering of neutrinos.
Furthermore, flavour-changing neutral-currents (FCNCs) are forbidden at tree level in the
SM and suppressed at loop level by the GIM mechanism [18].

The charged-current interaction is mediated by the W bosons, each carrying an electric
charge of +1. One of the most famous properties of the weak interaction, that has not been
observed for the strong or electromagnetic interaction, is the violation of parity. Parity is a
transformation which refers to the mirror symmetry. In 1957, parity violation in the weak
interaction was shown by the experiment of C.S. Wu [19]. In the SM it is mathematically
incorporated in the charged-current weak interaction by the following vertex factor modifying
the coupling of the W boson to quarks and leptons.

= ek (1 — ) 1)

The vertex factor consists of the coupling constant of the weak interaction «,,,; and Dirac
matrices v* with p € [0,1,2,3]. While the single v* leads to a so-called vector coupling
that is invariant under parity transformation, the v*~° displays the so-called azxial vector
coupling, which violates parity due to an additional sign under the parity transformation.
The composed structure of vector and azial vector coupling is the so-called V' — A coupling.
The V — A coupling characterises the charged-current weak interaction by restricting the
coupling of the W bosons to left-handed particles and right-handed antiparticles. The
so-called ’chirality’ determines whether a particle is left- or right-handed based on its
transformation under the symmetry group. For massless particles, chirality is the same as
helicity. The helicity determines the handedness of a particle based on spin and momentum.
A particle with right-handed helicity is defined as a parallel alignment of spin and momentum,
while a particle with left-handed helicity is defined as an anti-parallel alignment.

In addition to the parity transformation, P, there is also the charge transformation, €,
where charges and magnetic moments are reversed, i.e. particles are interchanged by their
antiparticles. The combination of € and P, denoted as CP, was believed to be conserved for
a long time until it was proven to be violated in neutral kaon decays [20].

Another unique property of the charged-current weak interaction for quarks is given by
flavour-changing charged-currents (FCCC). For leptons, W bosons couple to each generation

separately, where cross-generational couplings, i.e. for example et — W™ + v,, are not
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allowed. In case of quarks, those cross-generational couplings, for example s — d+ W™, exist.
A first concept describing the mixing of quarks has been proposed in 1963 by Cabibbo, who
introduced the Cabibbo angle 6, which has been extended in 1970 by Glashow, Iliopoulus
and Maiani (GIM) to the Cabibbo-GIM scheme for two quark generations®. In 1974,
Kobayashi and Maskawa introduced the CKM matrix [21], V;;, based on the Cabibbo-GIM
scheme. The CKM matrix relates the weak eigenstates (d’,s’,b") to the mass eigenstates of
quarks under the strong interaction (d, s,b), where the weak eigenstates are represented by
the superposition of the mass eigenstates weighted with the Cabibbo angle.

d’ Vud Vus Vub d
S =1Vea Ves Vo | |s (2.2)
v Via Vie Vi/ \b

From a theoretical point of view this matrix can not be predicted by the SM and has to be
determined experimentally.

2.4 Electroweak unification

The electromagnetic and weak interactions are summarised in a unified theory: the elec-
troweak interaction. During the 1950s and 1960s Glashow, Weinberg and Salam described
the GWS model [2, 3, 22]. The symmetry group representation of the electroweak interaction
is SU(2); x U(1)y. The SU(2); provides three massless gauge bosons, W* with i € [1,2, 3],
coupling via the weak isospin T5. In addition, the generator of the U(1)y is the massless
gauge boson B, coupling to the weak hypercharge Y, .. = 2(Q — T3), composed of the
electric charge @ and the weak isospin 7.

The superpositions of the four gauge bosons in the GWS model can be measured as

1

Wi = NG (Wi £iW2), (2.3)
Z,, = —sin(Oy) B}, + cos(fy,) W} (2.4)

and A, = cos(fy,) BY) + sin(0y,) W3

in experiments, where the weak mixing angle 0y is defined as cos(fy,) = %V; Nevertheless,
all four gauge bosons remain massless in the GWS model, although masses are experimentally
observed for the W and Z bosons. In the following section, the mechanism generating the
masses for SM particles will be explained.

2.5 Higgs mechanism

In 1964, the Higgs mechanism was proposed by Brout, Englert and Higgs [23-25] in order to
resolve the inconsistency of experimentally observed particle masses of the W and Z bosons
and the massless gauge bosons as described in the gauge theory of the SM. In the Higgs

6At that time, the third generation of quarks wasn’t discovered.
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mechanism, the concept of spontaneous symmetry breaking (SSB) allows the gauge bosons
to obtain their masses as explained in the following. A proof for the Higgs mechanism was
found in 2012, when the Higgs boson, which represents an excitation of the Higgs field, was
discovered at the ATLAS experiment [26] and the CMS experiment [27].

The Higgs field is represented by a complex scalar field of the symmetry group SU(2),

o = (%) 26)

with a spin s = 0. The corresponding Lagrangian density of the Higgs field consists of a
kinematic term and the potential V(¢). The kinematic term introduces the coupling of
the Higgs field to the Wli and B, gauge fields of the unified electroweak interaction. The
potential

V(g) = 12(¢7¢) + AT 9)? (2.7)

leads to the famous shape often referred to as 'mexican hat potential’ for pu? < 0,A >0 .
In addition, the potential provides an infinite number of minima at the so-called vacuum
expectation value (VEV) v ~ 246 GeV. The SSB is achieved, if one of the minima of the
potential is adopted.

The non-zero VEV breaks the symmetry of the electroweak interaction, while the electro-
magnetic and strong symmetry groups remain unbroken. In that way, the W and Z bosons
obtain their mass through the absorption of three degrees of freedom of the Higgs field after
electroweak symmetry breaking, while the gluon and photon remain massless. The overall
symmetry group of the SM is broken down to SU(3)~ x U(1) gps-

Additionally, the mass terms of the fermions can be explained by the Yukawa coupling

Y = \@% (2.8)

of the fermion fields 1 to the Higgs field via the vacuum expectation value v.

2.6 Predictions of the Standard Model

Theoretical predictions of the SM or of physics beyond the SM are a key ingredient for
the precise measurement or for the search for new physics. The comparison of theoretical
predictions and the measured data allows to conclude whether or not a particular theory
describes what can be observed in data. In the following, a brief description of the calculation
of theoretical predictions based on the SM is given, where the focus lies on proton-proton
(pp) collisions at particle colliders. This case corresponds to the origin of the data analysed
in this thesis.
In collider physics, the investigation of a specific process is characterised by the final state
X. The common measure, in order to compare the theoretical predictions to measured data,
is the number of expected events for such a final state, which is defined as
N,,.,=L-opp— Q) -BR(Q — X), (2.9)

exp
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with the cross-section o, the luminosity L and the branching ratio BXR. The integrated
luminosity L describes the total number of particles that pass a unit area. The cross-section
o describes the probability per unit area for a certain particle (Q to be produced in the
collision of two protons and the branching ratio is defined as BR(Q — X) = Ff;);l' The
decay width I'; describes the probability of a certain decay and the sum of all possible decays
n is defined as the total decay width I}, = Z:L: , Ii- While the integrated luminosity is
measured at the corresponding particle collider, the cross-section ¢ and its branching ratio

BR have to be predicted.

The theoretical prediction of a process pp — ) — X, described by the cross-section
and branching ratio, is characterised by the initial and final state. Here, the initial state
is determined by the two protons. A proton is a baryon that is composed of three valence
quarks, two up-type quarks v and one down-type quark d. The valence quarks are bound by
the strong force, which is mediated by gluons. The exchanged gluons can split into ¢q pairs,
building the so-called sea quarks. Additionally, a gluon or quark can radiate further gluons.
For this reason, the sea quarks are dynamically changing. However, the gluons, valence- and
sea-quarks are summarised as partons of the proton.

During inelastic pp collisions, the so-called hard scattering process occurs between partons
of the protons. As an example, consider two colliding protons with momentum p, and
pp leading to a hard scattering of the partons a and b, each of which carry a fraction z,
and z, of the respective protons momentum. The probability for these partons carrying
the indicated momenta is described by the parton distribution functions (PDF) f, 4 and
fv|B- A sketch depicting the hard scattering process of the partons and indicating where
perturbative QCD (pQCD) can be applied is presented in Figure 2.2.

(T

proton

-

1

P -
S —————— perturbative QCD
Proton e

non-perturbative QCD

A sketch of the hard scattering process ab — cd with the cross-section o, .4
The incoming protons p, and pp interact inelastically via the partons a and b with a
momentum of z, and x;, respectively. The corresponding probability for a parton a (b)
with a momentum fraction z, (z;,) is given by the PDFs f, 4 (fy ). In addition, the region
for perturbative (non-perturbative) QCD calculations is indicated by the light (dark) blue
boxes.



2 The W boson in the Standard Model

Based on the initial state consisting of the proton, a difficulty in the calculation of a cross-
section arises from the composite structure of the proton. As stated in Chapter 2.2, the
outcome of QCD, i.e. the cross-section of a process under the strong interaction, can not
be calculated by perturbation theory for large coupling constants, corresponding to small
energies/exchanged momenta. For this reason, it is not possible to calculate the cross-section
directly, as the partons interact at several energies. The factorisation theorem [28] allows to
separate the non-perturbative QCD interactions, i.e. the PDFs, and the pQCD interactions,
i.e. the partonic cross-section &, at a certain factorisation scale pp. According to the
factorisation theorem the cross-section o from protons p, and pg for a final state cd is
defined as

S o / 00 o (T 1) Fo s (T 1) FpcaBopid) s (2.10)

which is the convolution of the partonic cross-section ¢ and the PDFs f, 4 (fy5)-

The partonic cross-section can be calculated based on Feynman rules for pQCD depending
on the order of perturbation theory. The theoretical calculation of a cross-section requires
the matrix-element” M and the available phase-space. A matrix-element is calculated
based on Feynman diagrams [29], a visual representation of the processes of interest. The
calculation of the matrix element of all contributing Feynman diagrams can often not be
performed easily, which is why subsets of the Feynman diagrams, e.g. depending on the
order of perturbative series in ag, are used. A leading order (LO) cross-section is therefore
obtained from LO contributions of Feynman diagrams, while higher order cross-section,
e.g. the next-to-leading order (NLO) cross-sections, take into account further Feynman
diagrams. Higher orders contribute with decreasing impact to the total cross-section, where
all Feynman diagrams are considered.

The cross-section is calculated by integrating the matrix-element over the available phase
space. The phase space factor consists of kinematic terms, e.g. particle momenta or masses.
Divergences in the calculation of the cross-section occur if higher order contributions are
considered. A finite value is obtained by renormalisation depending on the renormalisation
scale ptp, which is an arbitrary energy scale.

In contrast, PDFs can not be calculated directly from theory, but have to be obtained
by global fits of functional forms to data from a large variety of experiments and measure-
ments. The necessary steps in order to determine PDFs are briefly discussed in the following:
PDFs depend on the Bjorken-x, the momentum fraction x, of a parton a and the evolution
with the scale, Q2. Since only the evolution with the scale can be derived from theory,
functional forms at a starting scale ), are used for the parametrisation in order to obtain
the x-dependence. Common parametrisations are defined as

Fi(2,Q}) = AP (1 —2)“ Pi(z), (2.11)

where the index i refers to the considered parton (u,,d,d, s, 5, ¢, ¢, b,b,g) and A, B and C
are free parameters. The term P;(x) can be described by a smooth function such as e.g.

7also called amplitude

10



2.6 Predictions of the Standard Model

Chebyshev or Bernstein polynomials. The starting scale @) is usually chosen in the order of
1 GeV, while the parameters A, B and C' have to be estimated by global fits to measured
experimental data. The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations,
also known as QCD evolution equations, allow to evolve these estimated functional forms
from the starting scale to any desired scale Q.

Before the building of the Large Hadron Collider, data from deep inelastic scattering
(DIS) performed at the HERA accelerator played a crucial role in the determination of PDFs.
Nowadays, the HERA data are still important due to the high precision achieved in the
measurements. Nevertheless, there are areas in the z — Q2 plane that can only be measured
at the LHC. In Figure 2.3, the overall approximated sensitivity of data is visualised in the
x — Q? plane. For the Large Hadron Collider, a particle with mass M and a rapidity of
y is assumed to be produced at a centre-of-mass energy /s = 13 TeV, and the data from

13 TeV LHC parton kinematics
10g JIREARALLL ILNLELLLLL LR LY IRRLRLELALLLL IRNLLLLLLLY BRI E

" Wis20153
= (M/13 TeV) exp(ty) ]
M M=10TeV /3

12

X
108§-Q

Q (GeV?)

Representation of the momentum z of the parton and the transferred mo-
mentum @Q? shown for a generated particle with the mass M and a rapidity y at the LHC
collider at /s = 13 TeV (blue). The x —Q?-plane is investigated at fixed target experiments
and at the HERA experiment [30].
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2 The W boson in the Standard Model

the HERA collider and further fixed target experiments are also depicted. While the data
from the HERA collider contribute especially at smaller scales Q2 for lower momenta x
and the fixed target experiments are sensitive to smaller scales Q2 with higher momenta
x, the most interesting region for the LHC consists of larger Q2 and a broad area in the
parton momentum x. In these areas, the data from the LHC collider will be able to provide
additional insights on the PDFs of the proton.

An example for the x-dependence at two scales of one of the most recent PDFs, NNPDF3.1
that corresponds to next-to-next-to-leading order (NNLO), is given in Figure 2.4. It can
be observed that the valence quarks u,,d, carry a large momentum fraction of the proton
at small scales @2, while the sea quarks carry only a very small fraction of the protons
momentum. However, the fraction of the protons momentum from the sea quarks and gluon

radiations are more relevant for increasing Q2.

The convolution of the estimated PDFs and calculated partonic cross-section, each provided
at a certain accuracy in pQCD, allows to calculate the number of expected events as defined
in Equation 2.9. In turn, PDFs of a certain process can be determined, if the cross-section
is known.

1 T T IIIIII| T T IIIIII| T T TTTTTT] 1_ IIIIII| T T IIIIIII T T TTTTTT]
NNPDF3.1 (NNLO) ] E g/10 ]
0.9 xf(x,u2=10 GeV?) 0.9t xf(xu2=10" GeV?) 1
0.8 3 0.8} .
0.7 0.7F .
E d ]
0.6 0.6 -
5 c 1
0.5 0.5 -]

C U
0.4 0.4F % 3
0.3 0.3F b 3
0.2 0.2F \ .
0.1 0.1% 3

(o] ] SN
O 1 1 IIIIII| 1 L1 11 1 il O 1 1 IIIlII| 1 1 IIIIII\\
10° 1072 107 1 107° 1072 107 1
X X

Parton distribution functions as a function of the parton momentum x
from the NNPDF group (showing NNPDF3.1) at a scale Q% = p? = 10 GeV? (left) and
Q? = p? = 10* GeV? (right) [31].
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3 The ATLAS experiment at the Large Hadron Collider

Although nuclear reactors and cosmic rays offer possibilities to produce and measure
elementary particles, the most central tools predominantly used in particle physics are
particle accelerators. At the Large Hadron Collider, protons are accelerated almost to the
speed of light and brought to collision. Various particles produced in these collisions are
precisely measured by one of the central detection systems: the ATLAS detector. In the
following, the production and acceleration of protons at the Large Hadron Collider and the
composition of the ATLAS detector will be discussed in detail.

3.1 Large Hadron Collider

The Large Hadron Collider (LHC) [6], placed near Geneva at the 'Conseil européen
pour la recherche nucléaire’ (CERN), is a circular particle accelerator and collider with
a circumference of 27km, a design centre-of-mass energy of /s = 14 TeV and a design
luminosity of L = 103 cm~2s7!. The LHC was built in the time of 1998-2008 and since
then, it is the largest and most powerful particle accelerator in the world.

The beam pipe, several superconducting magnets and the accelerating structure of the
LHC has been installed approximately a hundred meters underground in the tunnel of the
Large Electron-Positron (LEP) collider, which has been dismantled in November 2000. At
the LHC, two proton beams, each in a separated beam pipe, are accelerated. In order to
avoid interactions of the protons with gas molecules, the beam pipes are evacuated and
operated at very low pressures, corresponding to an ultrahigh vacuum. A system of several
superconducting magnets, operated at a temperature of 1.9 K, is installed along the beam
pipes to bend and control the particle beams. The cooling of the magnets to such low
temperatures is achieved using liquid helium. Over a thousand dipole magnets, 15 meters
long, deflect the particle beam on the circuit. In addition, quadrupole, sextupole, octapole
and decapole magnets are used in order to focus and adjust the position of the particle
beam. Eight radio-frequency (RF) cavities provide the acceleration of the particles. A RF
cavity provides a field operated with an oscillating voltage at a radio-frequency of 400 MHz
at a temperature of 4.5 K. The frequency is tuned such that protons that achieved their
maximum energy are not accelerated further.

Before a proton is guided into the beam pipe of the LHC, multiple pre-acceleration steps
are performed. An illustration of the particle accelerators at CERN is shown in Figure 3.1.
Protons are obtained by ionising hydrogen and are then accelerated in the Linear Accelerator,
LINAC2. With an energy of approximately 50 MeV they enter the circular collider Booster,
where an energy of 1.4 GeV is reached. Then, the protons are transferred to the Proton
Synchrotron (PS) and subsequently to the Super Proton Synchrotron (SPS), where the

13



3 The ATLAS experiment at the Large Hadron Collider
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Nlustration of the accelerator complex at CERN [32].

proton energy is increased further to 25 GeV and 450 GeV, respectively. Finally, the pre-
accelerated protons are injected into the LHC pipes. The highest proton beam energy at
which the LHC has been operated, is 6.5 TeV per beam. As a result, the centre-of-mass
energy in a pp collision is /s = 13 TeV. The beam at the LHC is composed of bunches
with 10'! protons on average and with a bunch spacing of 25ns, according to a collision
frequency of 40 MHz. The particle bunch collisions are induced at four interaction points
along the beam pipe, where the experiments ATLAS [7], CMS [8], LHCb [9] and ALICE [10]
are located.

Two of the experiments, ATLAS and CMS, are general purpose detectors dedicated to
two broad categories relevant to particle physics. This comprises precise measurements
of SM predictions and parameters, in particular those of the Higgs boson, as well as the
general search for new particles beyond the SM. While most of the experiments are following
different aims, it has been intended to build these two experiments with a similar structure
in order to provide independent measurements, where one experiment can confirm the results
of the other. Another experiment at the LHC is LHCb, where precision measurements of
B-hadrons are performed. These B-hadrons allow the investigation of € violation, which is
a key element in order to understand the matter-antimatter symmetry in the universe. And
finally, there is the ALICE experiment, which focuses on the investigation of the quark-gluon
plasma providing the expected representation of the universe shortly after the Big Bang.
The quark-gluon plasma is produced during special heavy-ion runs at the LHC, where mostly
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3.2 ATLAS detector

lead ions are accelerated and collided.

Over the past years, data-taking periods under different conditions have been provided.
During Run 1, data corresponding to an integrated luminosity of [L d¢ = 4.5 fb~! and
20.3 fb~! were recorded in 2011 at a centre-of-mass energy of /s = 7TeV and in 2012
at /s = 8 TeV, respectively. Then, a long shutdown took place in 2013 and 2014, where
upgrades have been installed at the beam pipe and the experiments. Furthermore, short
and long shutdowns are used for maintenance of the LHC. In Run 2, between 2015 and 2018,
the centre-of-mass energy was further increased to /s = 13 TeV and a total amount of data
corresponding to 139 fb~! was recorded. Since 2019, the second long shutdown is taking
place at the LHC. The data-taking of Run 3 is planned to start during 2022, where the
expected integrated luminosity is approximately 300 fb~!. In the long shutdown starting in
2025, the LHC is upgraded to the High-Luminosity LHC (HL-LHC) [33] with a five times
higher luminosity L ~ 5 x 103>* cm2s~! compared to the LHC.

3.2 ATLAS detector

The largest detector of the four major experiments built around one of the interaction
points along the beam pipe of the LHC belongs to the ATLAS! experiment [7]. ATLAS is
a general purpose detector and has a layered, cylindrical structure with a length of 46 m
and a diameter of 25m and is composed of several subdetectors: The Inner Detector is
closest to the beam pipe and used to precisely measure the tracks of charged particles.
Furthermore, a calorimeter system is used to measure the energy of electrons, photons and
hadrons. Finally, the outermost detector is the muon spectrometer, where the tracks of
muons are measured. Muons are the only elementary particles, besides neutrinos, that are
able to pass the calorimeter system. An overview of the ATLAS detector is presented in
Figure 3.2.

Some of the detector components are immersed with magnetic fields used in order to bend
the trajectory of charged particles, allowing to measure the momentum and electric charge
of the particle. Lastly, a so-called Trigger and Data Acquisition system is used in order to
reduce the huge amount of data by finding and selecting interesting events. In the following,
each component of the ATLAS detector is described and explained in detail.

3.2.1 Coordinate system

The geometry of the ATLAS detector is described based on a right-handed coordinate system,
where the nominal interaction point and the origin of the coordinate system coincide. The
positive x-axis points from the nominal interaction point to the centre of the LHC ring, the
y-axis points upwards to the earth surface and the z-axis is directed along the beam pipe.
Due to the structure of the ATLAS detector, cylindrical coordinates with the radius r, the
azimuthal angle ¢ and the polar angle 6 are commonly used. As a consequence, the angles ¢
and 6 cover the x-y-plane and the y-z-plane, respectively. The range of ¢ € [—m, 7] is defined
such that ¢ = 0 corresponds to the direction of x-axis and therefore, the upper (lower) half

LATLAS is short for A Toroidal LHC ApparatuS
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Figure 3.2: The structure of the ATLAS detector [7].

plane of the detector is described by the range of ¢ € [0, 7] (¢ € [—m,0]). Another definition
of the polar angle, the pseudorapidity 7 defined as

n = —In(tan(0/2)) ,

is commonly used in order to provide a similar particle flow in each An-interval. The range
of 7 is defined as n € [0, oo], where n = 0 points along the y-axis, transverse to the beam
pipe and 1 = oo is parallel to the beam pipe. The pseudorapidity is used for the definition
of the coverage of all detector components.

In addition, a further set of variables is defined in the x-y plane, which is also referred to
as the transverse plane since it covers the transversal motion with respect to the beam
direction. The transverse momentum p; and the transverse energy E are defined as:

pr=p xsin(0) = /p3 +pj ,
Ep=E xsin(f) = \/p2+m?2.

It can be observed that for particles with masses m = 0 the transverse momentum and
transverse energy are equal. Since the x- and y-coordinates of a collision at a hadron collider
are known to be zero, the transverse momentum is conserved. The missing transverse
momentum E* is defined as the negative sum of the transverse momenta of all visible

particles
E%liss _ Z Py

Given that the initial transverse momentum in a collision is zero, a non-zero value? after
the collision suggests that undetected particles have been present. Furthermore, angular
distances AR = /An? + A¢? are measured in the x-y-plane.

2Referring to sizeable values beyond the point of resolution.
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3.2 ATLAS detector

3.2.2 Inner Detector

The detector component closest to the interaction point is the Inner Detector [7, 34, 35]
dedicated to the precise measurement of tracks from charged particles and the reconstruction
of vertices. In the central region it has a cylindrical structure with a length of 6.2m, a
diameter of 2.1 m and end-caps in the forward regions. Furthermore, it is immersed in the
2T magnetic field provided by the surrounding superconducting solenoid magnet. Due to
the magnetic field in the Inner Detector, electrically-charged particles are deflected, which
allows to measure the momentum and the sign of the electric charge of the particle from the
curvature of the track. The momentum resolution relies on the precise measurement of the
curvature of a track. As a consequence, it decreases in case of particles with high momenta,
because their tracks are less curved.

The Inner Detector mainly conists of the Pixel Detector, the Semiconductor Tracker and the
Transition Radiation Tracker. A cut-away view of the Inner Detector and its sub-detectors
with their distance to the beam pipe is shown in Figure 3.3, which will be described in more
detail in the following.

The innermost sub-detector, with a distance of 33.25 mm to the beam pipe, is the Pixel
detector. It consists of silicon pixel modules arranged in four layers in the central region and
three end-cap disks in the forward region. The sensor of each pixel module is a semiconductor
detector. In the layers at a distance of R = 50.5 mm, 83.5 mm, 122.5 mm to the beam pipe
their common size is usually 50 x 400 pm?. Importantly, each of the layers provides an
independent measurement. The semiconductor detectors are composed of a p and n-doped
region. Due to the recombination of free electrons from the n-doped region and free holes
from the p-doped region, a depletion zone arises at the border of the two regions. In order

r R = 1082mm

L- R = 554mm
R = 514mm
R = 443mm

SCT
R=37T1mm

R =299mm

R = 50.5mm
R = 33.25mm

R =0mm

R =122.5mm
pixe's{ R = 88.5mm

A cut-away view of the ATLAS Inner Detector [36] composed of the Insertable
B-Layer (IBL), the Pixel Detector, the Semiconductor Tracker (SCT) and the Transition
Radiation Tracker (TRT) and their distance to the beam pipe. The red line indicates a
charged particle with pp = 10 GeV passing through the detector.
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to further increase the natural depletion zone, silicon detectors are cooled down and an
external voltage in reverse direction is applied. If a particle traverses the detector, free
electron-hole pairs are produced in the depletion zone. Then, the free electrons and holes
are attracted by the anode or cathode and their movement can be measured as a current.

The Insertable B-Layer (IBL) [37, 38], installed during the shutdown of the LHC after Run
1, is the innermost layer of the pixel detector. This additional, fourth layer consists of
semiconductor detectors with a size of 50 x 250 pm? and is especially suited to measure
secondary vertices, which is important for the identification of hadronised b quarks.

The Semiconductor Tracker (SCT) is the second layer of the Inner Detector placed at radii
of 299 mm to 514mm around the Pixel detector. The SCT is a silicon microstrip detector,
which is composed of microstrips with a size of 80 pm x 6.4 cm and ultimately based on
semiconductors as the Pixel detector. It is divided into four layers in the barrel region and
nine disks in each of the end-cap regions. Each layer of the SCT is composed of a two-sided
detector module, combining two silicon layers with 768 strips each. The two strip layers of
the detector module are tilted by 40 mrad. Therefore, the coordinate of a traversing particle
can be measured in the R — ¢ and z plane. Overall, 6.3 million read-out channels are used to
typically measure eight hits for each traversing particle corresponding to four space-points.

The outermost part of the pixel detector is the Transition Radiation Tracker (TRT) composed
of straw tubes with a diameter of 4mm. It is located at radii of 554 mm to 1082 mm to
the beam pipe and covers a region of |n| < 2.0. Each straw tube consists of a gold-plated
tungsten wire and a filling of either argon gas or a mixture of xenon-based gases. A voltage
is applied between the wire and the wall of the tube in order to attract electrons to the
anode that were produced by the ionisation of the gas from traversing particles. As a result,
a signal can be measured for a traversing particle. While straw tubes of a length of 144 cm
are parallel to the beam pipe in the barrel region, straw tubes with a length of 38 cm are
perpendicular to the beam pipe in the end-caps. In the forward region of the Inner detector,
wheels are obtained by the radial arrangement of straw tubes. The 351000 read-out channels
provide an average number of 36 hits per track, which is high compared to the Pixel detector
and the SCT.

In addition to the measurement of the space points of traversing particles, the TRT provides
the opportunity to identify certain particles. A charged relativistic particle that traverses
the TRT generates transition radiation due to the different absolute permittivity of the
materials. The transition radiation differs based on the mass of traversing particles and
therefore allows to distinguish e.g. between electrons and pions, the lightest mesons.

3.2.3 Calorimeter system

The ATLAS calorimeter system [7, 39] is placed around the Inner Detector covering in total
a region of |n| < 4.9 and can be subdivided into the electromagnetic (EM) and the hadronic
calorimeter (HCAL). A sketch of the calorimeters is presented in Figure 3.4.

The main goal of the calorimeter system is to identify and measure the energy of several
particles originating from the pp collisions. All calorimeters are so-called sampling calorime-
ters consisting of alternating layers of absorber plates and active material. Absorber plates
consist of high density material such that when a particle originating from a collision passes
through, it loses its energy by inducing particle showers until it gets stopped eventually. The
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A cut-away view of the ATLAS calorimeters [7].

active material is then read-out in order to measure the particle shower and its corresponding
energy. These showers are mostly produced via bremsstrahlung and pair production in the
EM calorimeter for electrically charged particles. As strongly interacting particles deposit
only a small fraction of their energy in the EM calorimeter, several processes are involved
within the hadronic particle showers leading to energy depositions in the HCAL. While the
electromagnetically interacting particles, like electrons and photons, deposit all their energy
in the EM calorimeter, strongly interacting particles deposit most of their energy in the
HCAL where they are then stopped.

The EM calorimeter measures the energy of electromagnetically interacting particles in the
region of |n| < 3.2. It can be subdivided into the barrel region for |n| < 1.475 and the
end-caps in the range of 1.375 < |n| < 3.2. The end-caps can be further subdivided into the
outer and inner wheel for the region of 1.375 < |n| < 2.5 and 2.5 < || < 3.2, respectively.
The EM calorimeter consists of liquid argon (LAr) as the active material with kapton
electrodes and lead absorber plates. In order to ensure a full ¢ coverage of the calorimeter,
an accordian-shape for the lead absorber plates and the kapton electrodes is chosen. In the
same way, a good electron resolution in the full calorimeter is obtained by the variation of
the thickness of lead in the absorber plates depending on |7)|.

The calorimeter is divided into a different number of sections in depth and various gran-
ularities. Due to the highest resolution and availability of tracking information from the
Inner Detector, the region dedicated to precision physics is represented by |n| < 2.5. The
calorimeter is divided into three sections in depth in this region and into two sections in
depth for the inner wheel of the end-cap. Usually, the overlap of the detectors in the region
between barrel and end-cap is removed due to the large amount of material in front of the
calorimeter. In Figure 3.5, an overview of the three different layers and their granularity in
the |n| — ¢-plane of the EM calorimeter at n = 0 is depicted. First, the presampler of one
thin layer of LAr with a granularity of 0.025 x 0.1 in An x A¢ is positioned upstream of
the EM calorimeter in order to correct for energy losses of incoming particles due to the
interaction with the material of the Inner Detector. The first layer of the calorimeter in the
barrel region, the so-called strip-layer, consists of a fine segmentation made up by strips with
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A sketch of the structure and granularity of the three different layers of the
ATLAS EM calorimeter and the presampler in the barrel region [40].

a coverage of An = 0.0031 and A¢p = 0.1. The strip-layer provides a precise measurement of
the position of the incoming particle. The first layer of the EM calorimeter corresponds to a
radiation length of approximately 4.3 X, at || = 0, where one radiation length corresponds
to the mean distance reducing the energy of an electron to 1/e of its initial energy. In
addition, the second layer has a coarser granularity of 0.025 x 0.0245 in An x A¢. The main
goal of the second layer is to measure most of the incoming particles energy. Consequently,
it is thicker compared to the first layer, corresponding to approximately 16 X, at |n| = 0.
Finally, the third layer is characterised by an even coarser granularity with a cell size of
0.05 x 0.0245 in An x A¢. It has a thickness of approximately 2X, at || = 0, which is
devoted to the measurement of the tails of the particle showers induced by the incoming
particles. These measurements are used for the correction of energy leakage into the HCAL
and for triggering purposes.

The main goal of the HCAL is the energy measurement of hadronically interacting particles.
It is subdivided into the Tile calorimeter in the region of || < 1.0 and the two extended
barrels 0.8 < |n| < 1.7 with a granularity of 0.1 x 0.1 in An x A¢ in the first two layers. A
coarser granularity of 0.2 x 0.1 in An x A¢ is used for the last layer. It consists of scintillating
tiles as the active material and steel absorbers. A traversing particle interacts with the
scintillator tiles, leading to excited states in the tiles. The subsequent deexcitation into the
ground state results in photons which are then read-out. In addition, the hadronic end-caps
(HEC) are segmented into two rings covering the region of 1.5 < |n| < 3.2, where LAr as
the active material alternates with copper absorber plates. The granularity is 0.1 x 0.1 in
An x A¢ for 1.5 < |n| < 2.5 and 0.2 x 0.2 in An x Ag for 2.5 < |n| < 3.2.

The Forward Calorimeter (FCAL) is placed between the end-caps of the calorimeter and the
beam pipe, covering 3.2 < |n| < 4.9. All three sections of the FCAL are based on LAr as the
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active material. Its first section, devoted to the energy measurement of electromagnetically
interacting particles, uses copper absorbers. In contrast, the second and third section,
dedicated to the energy measurement of hadronically interacting particles, is based on LAr
alternating with tungsten absorbers.

3.2.4 Muon Spectrometer

Muons interact only rarely with the detector material and deposit almost no energy traversing
the calorimeter system. For this reason, the identification and measurement of the momenta
of muons is performed by the outermost detector component, the Muon Spectrometer
(MS) [7, 41], where a combination of trigger and high-precision tracking chambers is used.
The MS can be subdivided into the barrel region and two end-caps, with muon chambers
placed cylindrically around the interaction point and the two large wheels orthogonal to
the beam pipe, respectively. All in all, the MS covers the region of |n| < 2.7. In addition,
a superconducting barrel toroid magnet is used in the region of |n| < 1.4 and two endcap
magnets are used in the range of 1.6 < || < 2.7. The corresponding magnetic field, which
deflects electrically-charged particles and therefore bends muon trajectories in the n-plane,
allows to estimate the sign of the electric charge and the momentum of the muon. A cut-away
view of the MS with its sub-detectors is shown in Figure 3.6.

The measurement of the muon momentum is based on high-precision tracking chambers,
namely of Monitored Drift Tubes (MDTs) and Cathode Strip Chambers (CSCs). Although
MDTs are dominantly used over the full region of |n| < 2.7, the innermost layer in the range
of 2.0 < |n| < 2.7 consists of CSCs. In the central region of the detector at |n| ~ 0 the MS
is interrupted by services for the calorimeter system, inner detector and solenoid magnet.
Additionally, measurement inefficiencies are expected at certain values in the n — ¢—plane
due to the support structure of the ATLAS detector.

MDTs are composed of multiple drift tubes filled with Ar/CO, gas, each with a diameter of
30mm and a length of 0.85 — 6.5 m. When muons traverse a drift tube, the gas gets ionised,
leading to the production of free electrons and ions. The produced particles are collected at
wires, allowing the measurement of one space coordinate of the initial interaction. CSCs are
multiwire proportional chambers that are filled with Ar/CO, and CF, gas and that consist
of cathode planes segmented into strips and anode wires. The cathodes and anodes are
arranged perpendicular to each other. If the gas of the CSCs is ionised and free electrons and
ions are produced, electrons get attracted to the anode wires, while the positively charged
ions are collected at the cathode. As a result, two coordinates are obtained for each particles
traversing the CSC, due to the orthogonal arrangement of anodes and cathodes.
Furthermore, a system of trigger chambers is set up consisting of Resistive Plate Chambers
(RPCs) in the region |n| < 1.05 and Thin Gap Chambers (TGCs) in the range of 1.05 <
In| < 2.4. RPCs are built of two parallel plates with high resistance in a distance of 2mm,
where a gas mixture mainly consisting of CoHyF, is filled into the gap between the two
plates and a voltage is applied to create an electric field of 5kV/mm. A traversing muon
ionises the gas and the free electrons are then accelerated to the plate corresponding to the
anode. In contrast, TGCs are multiwire proportional chambers filled with a gas mixture of
CO, and n-C;H,,, with a similar principle of operation as CSCs.

21



3 The ATLAS experiment at the Large Hadron Collider

Thin-gap chambers (TEC)

Cathode strip chambers (CSC)

T ‘(?ip Barrel foroid
7\ Resistive-plate
B chambers (RPC)
End-cap toroid

Monitored drift tubes (MDT)

A cut-away view of the ATLAS muon spectrometer [7].

3.2.5 Trigger and Data Acquisition system

A bunch spacing of 25ns has been used for pp collisions during the data-taking of Run 2,
corresponding to an event rate of 4 x 107 events per second. The amount of data produced
per second is too large to be stored. The decision, whether or not an event should be selected
and stored, is made by the Trigger and Data Acquisition (TDAQ) [42] system. Each event
has to be accepted by the two-level trigger system to be read-out completely and stored
permanently.

The hardware-based Level-1 (L1) trigger is the first stage of the trigger system and can
be subdivided into the L1 Calorimeter Trigger, the L1 Muon Trigger and the L1 Central
Trigger. The information provided by the L1 Calorimeter and Muon Trigger are based on
simple detector signatures in the calorimeter system and the MS, respectively. One part of
the Central Trigger is the L1 topological processor. It combines the information of the L1
Calorimeter and Muon Trigger and provides more complex quantities like invariant masses.
The final decision in the first stage is performed by the L1 trigger processor, which therefore
defines a region-of-interest (Rol). Those events, that are accepted by the L1 trigger, account
to 1 x 10° events per second and are subsequently buffered in the read-out system (ROS).
The second stage of the trigger system is the software-based high-level trigger (HLT).
The decision of the HLT is based on simplified reconstruction algorithms, where the full
event information obtained by the ROS and the L1 trigger ROI are used as inputs. The
reconstruction algorithms depend on the different types of objects specific to the trigger
that is considered. The HLT reduces the event rate to 1000 events per second. Finally, the
information of each event accepted by the HLT is stored permanently.
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4 Strategy for the measurement of the cross-section

The charged-current Drell Yan (ccDY) process [43, 44], ¢q¢ — W — (v, based on data from
pp collisions recorded by the ATLAS experiment at the LHC is investigated. In this thesis,
the cross-section in the electron channel, ¢ = e, is measured. In parallel, another thesis
addresses the cross-section measurement in the muon channel, £ = u, where first results
can be found in Ref. [45]. In a collaborative effort, further details for both channels are
documented in Ref. [46].

The analysed data is recorded during inelastic collisions, where only partons of the proton
interact. The ccDY process is characterised by the production of a W boson from the
annihilation of a quark and anti-quark, where each quark originates from one of the colliding
protons. The cross-section is measured for both electric charges of the W boson separately.
The W+ (W) boson is dominantly generated by the annihilation of up-quark u (down
quark d) and anti-down quark d (anti-up quark ) in order to conserve the electric charge,
while cross-generational quark pairs, e.g. up quark (anti-up quarks) and anti-bottom quark
(bottom quark)® are suppressed by the CKM matrix. In pp collisions, the production rate of
a positively charged W boson is higher compared to a negatively charged W boson. The
difference can be traced back to the composition of partons in the proton, which consists of
one down valence quark and twice as many up valence quarks. Although sea quarks might
contribute to the W boson production as well, the different production rates remain.

Due to the short lifetime of the W boson, it decays into hadrons with a branching ratio
of BR(W — hadrons) = % and into leptons with a branching ratio of BR(W — lv,) = %,
where each lepton flavour contributes with a fraction of % As a consequence of the short
lifetime, only the decay products of the W boson are measured in the detector. In this thesis,
the W~ (W) boson decay into an electron e~ (a positron e™) and electron anti-neutrino
v, (electron neutrino v, ), as displayed in the Feynman diagram with ¢ = e in Figure 4.1, is

e
investigated. The leptonic decay with an electron in the final state benefits from the precise

LA similar argument holds true for production via the strange-quark.

q Ve
W:l:
/
q o+
The Feynman diagram of the charged-current Drell-Yan process. In this

thesis, the electron channel with ¢ = e is investigated.
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4 Strategy for the measurement of the cross-section

electron reconstruction and very good energy resolution in the ATLAS detector. In contrast,
it is much more difficult to measure hadronic final states due to the hadronisation of quarks
in the detector. On the other side, neutrinos leave the detector unseen and instead only the
missing transverse momentum EM¥ can be reconstructed, where the energy resolution is
worse.

The W boson is usually reconstructed from the electron and the electron neutrino. Due to
the missing information of the neutrino at detector level, only the transverse mass of the W
boson defined as

m¥V = \/2 -pr(e) - BRIss (1 — cos(¢(e, EXIS))) (4.1)

can be calculated, where the transverse momentum of the electron, the missing transverse
momentum, and the angle between the electron and the missing transverse momentum are
used. In general, the W boson mass amounts to my, = 80.379 £+ 0.012 GeV [15] and is
described by a Breit-Wigner distribution with a width of I, = 2.046 4 0.049 GeV [15]. As
a consequence of its width, W bosons are produced not only on-shell, referring to produced
W boson masses close to the resonant W boson mass, but also off-shell, referring to W boson
masses far off the resonant W boson mass.

As introduced in Chapter 2.6, the cross-section provides a probability of the amount of
expected, produced particles per unit area. While the cross-section of the W boson mass
is well-known close to the peak of my, ~ 80 GeV, the cross-section as a function of the
transverse mass of the W boson distribution dominantly generated by off-shell W bosons is
measured up to (1 TeV). Additionally, the cross-section as a function of the transverse mass
of the W boson and the absolute value of the electrons’ pseudorapidity |n(e)| is measured.
A sketch of the W boson mass distribution, represented by the blue line, and the targeted
phase space for the cross-section measurement, indicated by the turquoise lines, is visualised
in Figure 4.2.

A search for an additional heavy gauge boson [47], the so-called W’ boson, has been
performed in the phase space of high transverse masses of the W bosons by the ATLAS

NO. EVENTS

— ) '““[II( >

80 GeV 200 GeV
W BOSON MASS

A sketch of the number of events as a function of the W boson mass distribution
in blue. The area indicated by the turquoise lines refers to the region where the cross-section
measurement is performed.
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collaboration. As a result, no significant excess over the SM expectation is observed and
masses of the hypothetical W’ boson up to 6.0 TeV are excluded. The W’ search is used for
cross-checks and the corresponding event selection has been used as a starting point of the
measurement in this thesis. A similar search has been performed at the CMS experiment,
as described in Reference [48], where exclusion limits of up to my,» = 5.7 TeV are set.
These searches are not designed for high precision as in this measurement but aim for the
exclusion of a peak upon the continuous SM prediction. Importantly, small deviations of
the cross-section as targeted by effective field theories (EFT) are not excluded.

In the following, the ccDY process will be referred to as signal. Other processes with a similar
or identical final state contribute as backgrounds to the measurement. The background in
the electron channel consists of real electron and of so-called multijet contributions. Real
electron contributions, i.e. electrons produced in electroweak processes, are described by
Monte Carlo (MC) simulations, as described in Chapter 6. In contrast, the multijet (M.J)
background, where objects measured in the detector are misidentified as real electrons, is
estimated by the data-driven Matrix Method, as described in Chapter 9.

Data events are compared to the estimated signal and background contributions, including
the statistical and systematic uncertainties, as described in Chapter 10 and Chapter 11.
The measured data distribution is unfolded in order to remove detector effects and be able
to compare to theoretical predictions directly. Although a large variety of methods for
the unfolding procedure are available, only the so-called Bin-by-Bin Unfolding and the
Iterative Bayesian Unfolding are considered. Further details on the theoretical background of
unfolding procedures and the extraction of the cross-section are described in Chapter 5 and 12,
respectively.

A combination of the measured cross-sections in the electron and muon channel is intended,
which provides an important consistency check of the separate measurements, because the
results are expected to agree within statistical and systematic uncertainties, due to lepton
universality. This combination is not part of this thesis.
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5 At a glance: Mathematical formulation of unfolding

The following chapter is dedicated to a general introduction and the mathematical formulation
of unfolding, which is based on Ref. [49, 50], and the description of two selected unfolding
techniques commonly used in elementary particle physics, namely bin-by-bin Unfolding and
the Iterative Bayesian Unfolding.

Modern elementary particle physics is often performed at powerful particle accelerators
and colliders with complex detectors, build around the interaction point of the collider.
Produced particles are measured by detectors and a large number of different variables is
investigated by researchers, such as mass or the momentum of a particle. Distributions of
the measured data and theoretical predictions are usually compared in binned variables,
where the theoretical predictions are mostly obtained by MC simulations. A MC simulation
subsequently simulates the hard scattering process at parton level, the hadronisation or
showering of particles and the detector response of a given process. The distribution after
the detector simulation, including the reconstruction and calibration of events, corresponds
to the reconstructed level. The step-by-step approach in the creation of MCs allows to
access the particles’ properties at parton level as well as at reconstructed level. Because
every detector differs slightly from each other, the comparability of results, e.g. to other
experiments, in the measured, binned variable is non-trivial. Furthermore, several detector
effects lead to inefficiencies of the measured quantity from data events, which are often
unique for each detector.

In general, the relation of the true distribution f(¢) of the true variable ¢ and the measured
distribution g(s) of the measured variable s is described by a so-called response function
R(s,t), which accounts for the measurement process. As indicated above, the direct process
from the true distribution f(¢) to the measured distribution g(s) is simulated in the MC
sample, i.e. the true distribution is folded with the detector simulation. The inverse process,
where the true distribution f(t¢) is obtained from the measured distribution g(s), is called
unfolding in particle physics. Mathematically, it is defined as a Fredholm integral equation
of the first kind

/ Ris,t)- f(t)dt +b(s) = g(s), (5.1)
2

where a potential background distribution b(s), contributing to the distribution g(s) is con-
sidered additionally. For binned distributions, the Fredholm integral equation is discretised
and can be expressed ! by

A-x=y (5.2)

with the vector z of size n and the vector y of size m, representing f(¢) and g(s) respectively,
and the m x n matrix A, representing R(s,t).

!The background contributions are removed for simplicity and readopted at a later stage.
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5 At a glance: Mathematical formulation of unfolding

An illustration of the challenge in the unfolding procedure is presented in Figure 5.1. A
hypothetical continuous true distribution 2 f(¢) is compared to a hypothetical corresponding
measured distribution g(s), which is shown as a histogram y. Four typical effects that affect
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Visualisation of the hypothetical true distributions f(¢) for a variable ¢ and
the corresponding measured, binned histogram y representing the distribution g(s) and
the interplaying effects of the two distributions, namely: migration, statistical fluctuation,
limited acceptance, non-linear response [49].

the measured distribution are shown. First, statistical fluctuations, following a Poisson
distribution in case of counted events, occur in all bins. Then, migrations refer to events
that are generated and reconstructed in different bins for the true and measured distribution.
Acceptance effects reduce the number of measured events and a non-linear response leads to
a shift between the two distributions. All these effects are typical for a detector response
and make it difficult to estimate the true distribution from a measured distribution. The
estimation of the true distribution f(¢) via an unfolding procedure allows to compare to
(other) theoretical predictions or other experiments directly and further interpretations, e.g.
the estimation of PDFs, can be performed.

In the following, bin-by-bin unfolding and Iterative Bayesian Unfolding are explained. The
theoretical concept and the advantages of each unfolding procedure are discussed.

The most basic unfolding procedure is the bin-by-bin unfolding. This simple approach is
based on a bin-wise efficiency correction applied to a binned distribution of measured data. If
the matrix A in Equation 5.2 is assumed to be diagonal and symmetric it can be interpreted
as the efficiency. The inverse A~! is multiplied to the vector y in order to estimate the vector
z. Importantly, a symmetric and diagonal matrix can be inverted easily. The calculation of
an inclusive cross-section o from data events, i.e. measured in a single bin, is illustrated by
the equation

o= Ndata - Nbackground
L-BR-e

with the number of expected data events Ng,., and the number of potential background

events Np,ceround- All signal and background processes contribute to the measured data

(5.3)

2In practice and in this thesis, usually binned distributions for the true distribution are used.
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distribution, where the composition of signal and background processes is unknown. The
subtraction of predicted background events from MC from the number of expected data
events ensures to measure the cross-section of the signal process only. Furthermore, the
branching ratio BXR, the integrated luminosity £ of the analysed dataset and the efficiency
¢ = Dreconstructed g0 required. The efficiency, known from MC simulation, is calculated as

parton

the ratio of the theoretical predicted number of events at the reconstructed and the parton
level.
The single-differential cross-section

do . ]Vdabtab7 i Nbackground, i

(5.4)

i.e. the cross-section as a function of a variable z, can be obtained by applying bin-by-bin
unfolding for each bin 7 of the binned distribution.

The bin-by-bin unfolding is restricted to the same amount and size of bins for the true and
measured distribution and is only valid for negligible migrations. Nevertheless, a reasonable
approximation can be obtained in case of non-negligible migrations, if the migrations are
overall small enough.

A more complex approach widely accepted and used in the ATLAS community and beyond,
is the Iterative Bayesian Unfolding (IBU), as described by D’Agostini, where all details
can be found in Ref. [51]. The bayesian approach relies on Bayes Theorem, known from
probability theory and relates measured and true distribution to probabilities and the
response function to a conditional probability. The mathematical definition is based on
causes C;, i.e. events in bin ¢ of the true distribution, and effects £}, i.e. events in bin j of
the measured distribution. The probability for a cause C; and an effect E; is described by
P(C;) and P(E;), respectively. The conditional probability for the i-th cause C; to produce
the j-th effect E; is given by P(E;|C;).

By focusing on the application in the field of experimental particle physics, the true and
measured distributions are assumed to be binned. The number of bins ny and n correspond
to the number of bins in the true and measured distribution, respectively. Consequently, n -
corresponds to the number of causes and ny to the number of effects.

Then, Bayes’ Theorem allows to estimate the probability of a cause C; given a certain effect
E; based on P(E,|C;) and Fy(C;) as defined in

P(EC)) - B (C))

z:7:01 P(Ej’Cl) ’ Po(Cl) ' (5-5)

P(Ci’Ej) =

where P,(C;) is the initial distribution of the probability P(C;). As seen in Equation 5.5, the
observation of a certain event in bin j of the measured distribution, i.e. an effect, corresponds
to the probability of the event in bin ¢ of the true distribution, i.e. a cause ¢, multiplied
with the conditional probability that the true event ¢ produced the measured event j, i.e.
P(E;|C;). The corresponding denominator ensures a normalised probability by summing up
the probabilities of each cause to produce the effect.

In experimental particle physics, the conditional probability P(Ej]Ci) is usually referred to
as response matrix because it describes the detector response. The probabilities of P(E;|C;)
can be estimated based on MC simulations and are not changed during the unfolding. In
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5 At a glance: Mathematical formulation of unfolding

contrast, the initial probability P,(C;) changes after the first iteration of the IBU.

In order to estimate the true number of events from the number of measured events N(E),
taking into account bin-by-bin migrations via the response matrix, the estimator for the
number of true events

Nc,) = ij(Ej) . P(C}|E;), where ¢ £ 0, (5.6)

is defined, where the efficiency €; corresponds to the number of events in the true distribution
that are not reconstructed in the detector. Subsequently, an estimator for probability of the
true distribution is defined as

N(C,)

P(C) = —— .
2.5 NG

(5.7)

The estimator P(C;) relies in particular on the initial distribution P,(C;), where the
estimated number of events lays between the initial distribution and the true distribution.
As a consequence, an iterative procedure in order to obtain the final true distribution
is performed, where the (initial) distribution is replaced by the estimator P(C;) in each
iteration. The optimisation of the number of iterations is specific for each analysis and will
be discussed in Chapter 12 for this measurement.

According to the theoretical basis of the IBU, the single-differential cross-section is defined

as

do 1 1 . , ‘
%j = mg Z Rﬁl " (Nata — Ny ckground) - (5.8)
In Equation 5.8, the bin widths Az; for each bin j of the true distribution, the integrated
luminosity £ and the branching ratio BX ensure the conversion into a single-differential
cross-section according to Equation 2.9. Furthermore, the efficiency €; per bin j of the
true distribution as well as the inverse of the response matrix R;; are required, where the
response matrix can be related to the matrix A defined in Equation 5.2. Then, the number
of measured events from the signal process is incorporated by the difference of data and MC
events, (Ni . — Néackgmund). Finally, another correction factor fi per bin i of the measured
distribution allows to remove the fraction of measured events, which are not part of the true
distribution and for this reason, would not be described by the response matrix.

Overall, the IBU provides a theoretically well-defined procedure that can be applied for
binned distributions, where a different number of bins of the true and measured distribution,
are possible. Besides the ability to unfold one-dimensional distributions, the IBU allows
to unfold multidimensional distributions as well. Furthermore, unfolded distributions are
corrected for migration, inefficiencies and smearing effects. Nevertheless, a realistic guess
about the initial true distribution, i.e. the initial probability of the causes FP,(C;), is
needed.
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6 Data and Monte Carlo samples

A subset of data events, that were recorded by the ATLAS detector, is described and denoted
as analysed dataset in the following. In addition, the properties of simulated MC samples
are presented. The MC simulations provide a precise prediction of the particles’ generation
for a defined process at particle colliders and the corresponding cross-section at a specific
order of perturbation theory with its kinematics. Additionally, the detector response can be
simulated. The process of interest is called the signal, while the contributions from other
processes are summarised as backgrounds.

6.1 Analysed datasets

The datasets used in this measurement consists of data events produced from pp collisions
at the LHC at a centre-of-mass energy of /s = 13 TeV and was collected by the ATLAS
detector during Run 2 between 2015 and 2018. The integrated luminosity as a function of
time is presented in Figure 6.1a. The full luminosity delivered by the LHC is represented by
the green area, whereas the luminosity recorded by the ATLAS detecor is indicated by the
yellow area. The fraction of data events intended for physics, i.e. which have been recorded
under good conditions, is a subset of the recorded dataset, and corresponds to an integrated
luminosity £ = 139.0 + 2.4 fb~! [52].

In Figure 6.1b the average number of interactions per bunch crossing regarding to the full
Run 2 dataset, recorded at the ATLAS experiment in pp collisions between 2015 and 2018,
is presented. Due to the high number of protons in each of the colliding pp bunches, several
additional collisions, so-called pile-up, occur besides the process of interest. The dataset is
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6 Data and Monte Carlo samples

composed of four subsets, that are recorded under different conditions, where the average
number of interactions is 13.4, 25.1, 37.8 and 36.1 in the years 2015, 2016, 2017 and 2018,
respectively.

6.2 Event generation at the Large Hadron Collider

In experimental particle physics, the theoretical predictions based on the SM or models
beyond are provided by MC simulations. The generation of a MC sample [54] can be
subdivided into the hard scattering process, initial and final state radiation (ISR/FSR)
from QCD, additional parton-parton interactions, the hadronisation of final state particles,
the decay of unstable hadrons and the QED radiations. Each of the steps is visualised in
Figure 6.2 and discussed shortly in the following.

Tlustration of the relevant aspects for an exemplary pp collision [55]. The
protons are represented by large, dark green ovals and the partons of the proton, that
correspond to the initial state, by the blue lines. The large (small) red circle corresponds
to the hard scattering process (further decay vertices of generated particles during the
hard scattering) and the red lines visualise the final state radiation from QCD. Additional
parton-parton interactions are shown as a large purple oval and the corresponding lines.
The hadronisation of final state particles is represented by the small, light green ovals and
the decay of hadrons by dark green circles. QED radiations, that can occur at any stage,
are shown as yellow lines.
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6.3 Simulated signal and background samples

As discussed in Chapter 2.6, the factorisation theorem allows to separate perturbative and
non-perturbative QCD interactions, i.e. the description of the hard scattering process and the
distribution of partons in the proton. While PDFs are provided by several different working
groups, the probability distribution of the hard scattering process, which corresponds to
the square of the matrix-element, have to be calculated by Feynman rules via perturbation
theory. Both, PDFs and probability distribution, are used as ingredients to the calculation
of the convolution integral depending on the available phase space, following Equation 2.10.
The convolution integral is solved numerically by MC generators based on the random
sampling via the MC method, which is eponymous for the simulation. MC generators are
used to generate the first step of MC samples, so-called LHE files, consisting of the four
momenta of the particles participating in the hard scattering process and depending in
particular on a certain order of perturbation theory, the factorisation scale p and the
renormalisation scale pip.

Additional radiations from QCD and QED interactions are considered in order to approxi-
mately account for higher orders of perturbation theory. In case of QCD radiations, the
inital state and partons produced in the final state are coloured objects, where gluons can
split into quark anti-quark pairs and quarks can radiate gluons. All these interactions can be
described via parton shower algorithms down to approximately O(1 GeV) by pQCD. Again,
the factorisation theorem allows to separate effects from perturbative and non-perturbative
interactions. Non-perturbative effects of confinement, where pQCD breaks down and partons
form hadrons, become relevant if the parton momentum decreases induced by multiple
parton splittings. Two different approaches, the string model [56] and the cluster model [57],
are commonly used. Furthermore, additional QED radiation is described by parton shower
algorithms as well and might occur at any stage.

Additional parton-parton interaction, which are referred to as underlying event (UE), can
occur between the remnants of the proton besides the hard scattering process in order to
regain a colourless state. Typically, low energy hadrons are formed as a consequence of the
UE where phenomenological models that are tuned to data are used.

Hadrons originating from the hard scattering process or additional parton-parton interactions
are not stable. Consequently, their decays need to be simulated as well, where dedicated
algorithms based on theoretical calculations and measured hadron decays are used.

In the end, each of the simulated events is passed trough a detector simulation in order to
obtain the corresponding detector signals. Each MC sample provides on one hand the events
after the detector simulation, corresponding to the reconstructed level, and on the other
hand, the true particles generated during the hard scattering process, corresponding to the
MC truth level.

6.3 Simulated signal and background samples

In the following, an overview of the MC samples used for the theoretical prediction of
signal and background processes in this thesis is provided. First, general properties of the
MC samples are summarised and subsequently the properties of the signal and each of the
background samples is described. Background contributions from top quark production,
including top anti-top production, tt, and single top production, the neutral-current Drell-
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Yan (ncDY) process Z — ¢¢ with ¢ € 7, e, additional ccDY decay channels W — 7v_ and
furthermore the diboson production of WW, W Z and ZZ are considered.

Every MC sample is passed through the detector simulation based on GEANT4 [58], where a
more detailed, full detector simulation, called FullSim (FS), or a fast detector simulation,
called AtlasFast 2 (AF2) [59], can be performed. All MC samples used in this thesis, except
specific samples only used for the estimation of uncertainties, are based on FS. After the
transition from particles to detector signals, the same software for the object reconstruction,
described in Chapter 7, is used for MC simulation and the analysed dataset.

The generation of a MC sample relies on the matrix-element generator with its PDF and
the parton shower program with its PDF. Commonly, a single program is used to model the
parton shower, hadronisation and the UE. The simulation of the parton shower program can
often be improved by the usage of tuned parameter sets. Finally, the generation of pile-up
events is modelled by the overlay of the hard scattering event with inelastic pp collisions
that where simulated with PyTHIA 8.186 [60] using the PDF NNPDF2.3LO [61] and the
A3 tune [62].

The nominal signal MC, corresponding to the ccDY process W — ev,, is generated using
PowHEG Box v1 [63-65] and the CT10 [66] NLO PDF at NLO in pQCD. The parton shower,
hadronisation and the UE is modelled with PYTHIA 8.186 [67] using the AZNLO tune [68]
and the CTEQ 6 PDF [69]. Additional QED radiations are simulated by Photos [70].

In this thesis, the transverse mass of the W boson is studied up to @(TeV). Since an inclusive
sample without any restrictions concerning the phase space consists dominantly of events
at low masses of the W boson and less statistics is expected for higher and higher masses
of the W boson. As a consequence, an inclusive sample and a set of samples sliced in the
invariant mass of the W boson is used. The inclusive sample is used in the range of invariant
masses of the W boson m!{¥ < 120 GeV. A slicing procedures ensure high statistics by
restricting the phase space to a small range of the invariant mass in the MC event generation.
In total, 18 different MC samples, that cover all-together a range of the invariant mass
m¥ € [120,5000] GeV and one additional sample covers the region of m!Y > 5000 GeV. In

order to avoid double-counting and restrict the inclusive sample to events with an invariant

W boson mass m/V. < 120 GeV, an adequate upper cut is applied on the MC truth level

mv
invariant mass for the inclusive sample. The full list of simulated signal samples and their
respective cross-sections are shown in Appendix A.
A mass-dependent k-factor, centrally provided within the ATLAS collaboration, allows to
apply further corrections improving the accuracy of the signal MC sample. A precision
of NNLO in pQCD, where the CT14 NNLO PDF [71] set is used for the matrix-element
generation, and electroweak corrections at NLO are achieved. Similarly, a mass-dependent

k-factor for the ncDY and W — 7v_ processes is used.

Since the nominal signal MC does not provide theoretical systematic uncertainties and
another MC sample is required as well for the systematic variation of the matrix-element
generation and parton shower, alternative signal MC samples are generated. Two differ-
ent approaches are followed for their generation: One of the MC samples is generated
using POWHEG-Box v2 [63-65] at NLO in pQCD, where the showering is provided by
HERWIG 7 [72, 73]. The PDF set CT18NNLO [74] is used. The validation of this MC sample
was performed as a part of this thesis and is briefly discussed in Chapter 6.4. Another
alternative MC sample is simulated with the SHERPA 2.2.11 [75] generator. The PDF set
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6.3 Simulated signal and background samples

NNPDF3.0 NNLO [76] is used. Final states with zero, one or two additional partons and final
states with three, four or five additional partons achieve an accuracy of NLO and LO in
pQCD, respectively.

The tt background, consisting of the production of a top-anti-top pair, is generated with
PowHEG Box v2 at NLO in QCD using the NNPDF3.0 NNLO PDF, the parton shower is
simulated by PYTHIA 8 using the A14 set of tuned parameters [77].

Alternative tt samples are used for the evaluation of systematic uncertainties concerning
the parton shower and the matrix-element generator. For this reason, two additional MC
samples are used, where in one MC sample the matrix-element generator is replaced by
MADGRAPH5__AMC@NLO v2.6.0 [78] and in the other MC sample the parton shower is
modelled by HERWIG 7. These samples are only available in AF2.

The single top background consists of three contributions, covering the production of a top
quark in association with a W boson (tW) and the single top t- and s-channel processes. The
tW samples are generated with POwWHEG Box at NLO in pQCD using the NNPDF3.0 NLO
PDF sets. The digram removal scheme [79] is used to remove interference and overlap with
tt production. The t-channel contribution is modelled with POowHEG Box at NLO in pQCD
and the NNPDF3.0 NLO nf4 PDF sets, while the s-channel contribution is simulated with
PownEG Box at NLO in pQCD using the NNPDF3.0 NLO PDF sets. The parton shower
and hadronisation is based on PYTHIA 8 with the A14 tune for all three MC samples.
The ncDY background, Z/v* — ¢4, is generated with POWHEG Box v1 interfaced with
PyTHIA 8.186 for the parton shower and hadronisation processes. The PDF CT10 NLO
and the AZNLO tune are used. The ncDY process is divided into a single inclusive and 18
sliced samples as described for the ccDY process.

Another ccDY decay channel, W — 7v_, is simulated based on the same generator and show-
ering as for the simulated signal MC sample and contributes as a background. Subsequent
decays of the 7 lepton into electrons are the reason for the contribution.

The diboson background is splitted into several samples, covering WW, W Z and ZZ, which
are modelled with SHERPA 2.2.1 or SHERPA 2.2.2 [75]. The final state consists especially
of the leptonic contribution originating from the decay of the bosons, where an accuracy of
NLO in pQCD is achieved for final states with zero or one additional parton and two or three
additional partons in the final state are generated at LO in pQCD. All diboson MC samples
are based on the NNPDF3.0 NNLO PDFs and a dedicated set of tuned parton-shower
parameters developed by the SHERPA authors.

The dijet process consists of multiple slices, where each MC sample is generated based on
LO pQCD matrix-elements from PyTHIA 8, which where matched to the parton shower.
Additionally, the modelling of the parton shower and the hadronisation were performed by
PyTHIA 8 using the A14 tune. For both, the matrix-element generation and the parton
shower, the PDF set NNPDF2.3 L0 was used.
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6 Data and Monte Carlo samples

6.4 Validation of alternative Monte Carlo samples

Since the generation of a MC sample requires a substantial amount of computing resources,
it is crucial to check the validity of newly generated events before. This procedure is usually
based on a small sample generated for the purpose of the validation. The alternative MC
sample is based on an updated version of POWHEG BoX and a different showering provided
by HERWIG 7. A common approach for the validation of a new MC sample relies on compar-
isons at MC truth level, where the validation MC sample is compared to an established MC
generator. Usually, a large amount of variables is investigated in such validation procedures
and potentially occuring differences have to be investigated.

In Figure 6.3, two of the distributions that differ most between the nominal POWHEG+PYTHIA
8 MC sample and the POWHEG+HERWIG 7 validation sample are presented. The com-
parison of the transverse momentum of the W boson p} and the rapidity of the W boson
Yy is performed at MC truth level. Additionally, a separate validation sample, where the
parameter ptsgmin is varied to 0.8 in the POWHEG+HERWIG 7 generation is shown. For the
transverse momentum of the W boson differences between the two MC generators close to
pY =~ 2GeV can be observed. These differences are expected and can be traced back to the
special tune that is only available for PYTHIA 8. The variation of the ptsgmin parameter
targets an improved agreement, which can not be observed. As a result, the parameter is
chosen to be ptsqgmin = 1.0. Besides the large differences for low transverse momenta of
the W boson, a good agreement as a function of the rapidity of the W boson can be found
between POWHEG+HERWIG 7 and POWHEG+HPYTHIA 8.
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Comparison of the transverse momentum pYV and the rapidity yy, of the
W boson my, for the MC samples POWHEG+PYTHIAS, denoted as PWGH+PYS8, and
POWHEG+HERWIG 7.2, denoted as PWG+H7.2 on MC truth level. Two variations of
the parameter ptsgmin € [0.8,1.0] are shown for the PWG+H7.2 MC sample.
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7 Event reconstruction with the ATLAS detector

Different objects that are generated during pp collisions are measured and identified with
the ATLAS detector. Dedicated algorithms, based on the information recorded by the
various detector components, are used for the identification of certain particle types. The
identification procedure is the same for the collected data and the MC simulations.
Depending on the multiplicity of each single object the final state of an event is defined. The
final state of the signal process consists of one electron and one electron neutrino. For this
reason, the reconstruction of electrons and of the missing transverse momentum, providing
a measure for undetected particles, i.e. neutrinos, are described in detail. Additionally, the
reconstruction of muons and jets are discussed. Finally, the overlap removal procedure is
explained.

7.1 Trigger

Electron triggers [80] are used to recover events with electrons from the huge amount of data
produced at the LHC. The ATLAS trigger system consists of a level-1 and a high-level trigger
as explained in Chapter 3.2.5. The workflow of the electron triggers and their peculiarities
are described in the following.

As described in Chapter 3.2.5, an EM region of interest in the central region |n| < 2.5 is
identified by the L1 trigger. A first energy measurement within the Rol is performed and
requirements on that energy measurement are denoted e.g. as EM20, where a transverse
energy threshold of E; > 20 GeV is passed. Additionally, there are three optional require-
ments at the L1: First, the usage of a n dependent energy threshold is denoted by the letter
”V?”. Second, a veto for hadronic activity might be applied. In this case, its application is
indicated by the letter "H”. Lastly, an EM isolation of the electron, denoted as ”I”, might
be required.

Subsequently, a fast and a precise reconstruction are performed for electrons in the HLT.
One of the main requirements in the fast reconstruction is based on the matching of a track,
obtained from a fast track reconstruction in the Rol, to an energy cluster of the electron
candidate. The precise reconstruction consists of additional matching requirements between
track and energy cluster, the electron identification using a multivariate technique, and the
application of isolation requirements. The electron identification and isolation requirements
provide a measure for the likeliness that a real electron, with a low event activity around the
electron candidate, has been measured. More details are described below in Chapter 7.2.3.
Although the demanded electron identification and isolation in the precision reconstruction
of the trigger is designed to be as close as possible to the requirements that are applied in
the offline reconstruction, a few exceptions are made. Consequently, the trigger requirements
are slightly less strict with respect to the offline reconstruction.
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7 Event reconstruction with the ATLAS detector

Single electron triggers, as used in this thesis, are characterised by their energy, identification
and isolation requirements. A certain transverse energy of the electron, e.g. E, > 24 GeV,
denoted as e24, is required. In addition, the multivariate technique used for the electron
identification offers the so-called lhloose, [hmedium and Ilhtight working points. An addi-
tional requirement can be demanded for each of the working points, where the information
about the transverse impact parameter® relative to the beam-line d, might be used in the
identification procedure. The application of a d,, requirement especially allows to prevent
inefficiencies related to bremsstrahlung. Finally, an optional track-only isolation, denoted as
iwarloose might be required.

The single electron triggers, separated by the different years of data-taking, are summarised
in the Tab. 7.1.

List of single electron triggers used in this measurement.

Year Trigger

2015 HLT e24 lhmedium L1EM20VH
HLT 60 lhmedium
HLT €120 lhloose

2016-2018 HLT_ e26_ Ihtight_ nod0_ivarloose
HLT e60 lhmedium nod0
HLT €140 Ihloose nod0

7.2 Electron selection

The electron reconstruction and energy calibration, the identification and isolation require-
ments for electrons and the efficiency corrections applied for MC simulations are explained
in this section. Only electrons in the central region of the detector fulfilling |n(e)| < 2.4 are
considered.

7.2.1 Reconstruction

The electron reconstruction [81] is composed of the reconstruction of tracks, the clustering of
energy depositions in the calorimeter cells and their matching to track-cluster pairs, which
are denoted as superclusters. In general, tracks represent the path of a charged particle
through the inner detector. In the following, the reconstruction of electron tracks is described
only. Additionally, clusters of energy depositions allow to obtain an estimate of the energy
of the electron.

The reconstruction of a track [81, 82] starts by collecting hits that are measured in the pixel
and the SCT detector. These hits are assembled in order to built so-called space-points,
corresponding to the position of the interaction of the measured particle with the active
material of the inner detector. In case of the SCT, both sides of the two-sided module are

!Referring to the shortest distance between the particle’s trajectory and the z-axis.
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7.2 Electron selection

combined for a single space-point, whereas in the pixel detector one cluster allows to define
one space-point. In order to obtain a track seed, three space-points from the pixel and the
SCT detector are required. At this point, a pattern recognition algorithm is applied in
order to obtain track candidates, which are extended to additional space points. If no track
candidates can be extrapolated, a more advanced pattern recognition algorithm that relies
on a Kalman filter is used. In this case, the energy losses, due to the material in the detector,
of up to 30% are taken into account. Afterwards, track candidates with a transerverse
momentum of at least 400 GeV are fitted using a global x? track fitter, including hits in the
TRT. At the same time, a dedicated algorithm is used to resolve ambiguities of tracks that
partially rely on the same hits.

The second part of the electron reconstruction is the formation of superclusters [81] from
the energy depositions in the calorimeter. A supercluster is a dynamical, variable-size object
improving the offline reconstruction with respect to former fixed-size cluster approaches,
because the algorithm is able to adjust the cluster size if needed. First, topological clusters
(topo-cluster) are formed based on energy depositions in the EM and hadronic calorimeter
cells, where the cell energy EE) at the EM scale? fulfils EEY > 403\1{5@ o] With the expected
cell noise U%ﬁe’ - Neighbouring cells are subsequently added to the topo-cluster if the
energy threshold of two, instead of four, is exceeded. Afterwards, further neighbouring cells,
where no energy threshold has to be fulfilled, are added. The EM energy of topo-clusters is
based on EM calorimeter cells for electrons in 0 < |n(e)| < 2.4, where the energy deposited
in the presampler and scintillator are added in the region 1.37 < |n(e)| < 1.63. Clusters are
discarded for EM energies smaller than 400 MeV and EM fractions fg,;, which relies on
the ratio of the EM energy and the total cluster energy, of less than 0.5. The remaining
topo-clusters are referred to as EM topo-clusters in the following.

The superclusters are built for electrons and photons separately, while overlap is removed
at a later stage. The supercluster reconstruction consists of two steps: Potential seeds
for building superclusters are identified based on the E;-sorted list of EM topo-clusters.
Clusters with a transverse energy E, > 1GeV and an associated track with four hits in
the SCT are identified as electron supercluster seeds. Subsequently, the EM topo-clusters
next to the electron supercluster seeds are marked as potential satellite cluster candidates,
which might originate e.g. from bremsstrahlung. A satellite cluster candidate becomes a
satellite of the associated seed cluster in one of the two following cases. On the one hand,
the satellite fulfils An x A¢p = 0.0075 x 0.125 around the barycenter of the seed cluster. On
the other hand, the satellite is also added in the range of An x A¢ = 0.125 x 0.300 around
the barycenter of the seed cluster if the track is the best-matched track for the seed cluster.
The combination of a seed cluster and its associated satellites is called supercluster.

Finally, the combination of an electron supercluster and a matched track is called electron
candidate. As mentioned above, the electron and photon candidates are reconstructed
separately, which is why ambiguities have to be resolved. Afterwards, reconstructed electrons
are obtained and their energy has to be calibrated as explained in the following.

2Refers to the basic signal scale that corresponds to the energy depositions of EM showers in the calorimeter.
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7 Event reconstruction with the ATLAS detector

7.2.2 Energy calibration

The energy calibration [81, 82] for electron candidates relies on the deposited energy in
the EM calorimeter. Although the electron shower is usually fully contained in the EM
calorimeter and the energy is expected to be measured precisely by the energy deposits,
a fraction of the electron energy is usually lost before the calorimeter or outside of the
reconstructed supercluster.

The calibration procedure [83] is performed step-wise: First, a MC-based calibration for
electrons is applied. This calibration relies on a multivariate regression algorithm targeting
the correction of energy losses in bins of the pseudorapidity n and the transverse energy
E; based on the description of the detector material in the detector simulation. So-called
uniformity corrections, accounting for non-simulated variations of the detector response in
specific regions, and an intercalibration, correcting for the different scales in each of the
longitudinal EM calorimeter layers, are applied. The final energy calibration is performed
based on Z — ee events, where the electron response in data is calibrated to reflect the
electron response in the MC simulation. In this step, differences in the energy resolution
between data and MC simulations are corrected by applying scale factors to the MC
simulation. More details on energy calibrations based on the energy response are conceptually
described in Chapter 7.4. Lastly, the calibrated electron energy scale is validated for electrons
originating from the J/¥ — ee process.

7.2.3 Identification and isolation requirements

Due to the similarity of energy depositions from electrons, jets and photons, the electron
identification [82] plays a crucial role in the suppression of reconstructed electrons that are e.g.
truly jets or converted photons. The identification efficiency of real electrons has to remain
high at the same time. For this reason, a likelihood discriminant d; is defined as the natural
logarithm applied to the likelihood of the signal and background, Lg and L respectively.
The likelihoods Lg(p) are evaluated from probability density functions combining a selection
of discriminating variables in order to distinguish signal and background. The considered
variables are based on the electron track, the development of the shower in the calorimeters
and the compatibility of the electron track and reconstructed cluster. The probability
distribution functions are obtained by a tag-and-probe method that relies on data events
recorded in 2015 and 2016. Events from Z — ee and J/¥ — ee production, corresponding
to different ranges of E, are used. Further details can be found in Reference [84].

Three operating points covering different signal efficiencies for various physics analysis needs
are considered in this thesis. The LooseAndBLayer, Medium and Tight likelihood operating
points are defined by the requirement of certain thresholds on the likelihood discriminant
that are optimised in bins of the pseudorapidity 7 and bins of transverse energy Er.

An additional isolation criterion, quantified by the activity in a cone around the electron
candidate, allows to further reduce e.g. contributions from electrons originating from
hadronic jets. The electron isolation is defined by one of the following requirements: On one
hand by the number of tracks with a certain transverse momentum corresponding to other
charged particles close to the electron track, track isolation, and on the other hand by the
amount of energy depositions close to the electron candidate, calorimeter isolation.
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7.2 Electron selection

. . . . AR
The track isolation relies on the variable chone max - where the transverse momenta of

all selected tracks in a fixed-size AR cone around the track of the electron candidate are
summed up. For heavy particles or high-momentum particles that decay into much lighter
particles besides an electron, usually AR between the electron and other decay products
is very small. In this case, an isolation requirement with e.g. a fixed-size AR = 0.2 would
reject the event.

Another common definition is based on a variable cone size, where the AR cone shrinks
with increasing transverse momentum of the electron candidate. The variable cone size

AR = min (m,ARmaX)
pr(e)

varconeAR.

is used for the definition of the variable p. max ywith a typical value of AR

=0.2.
The calorimeter isolation depends on the variable E7. neAfmax which consists of the sum
of the raw transverse energies of topo-clusters at the EM scale in a AR cone around the
electron candidate and the core, pile-up and leakage corrections. First, the core correction
excludes contributions in An x A¢ = 0.0125 x 0.175 around the barycentre of the electron
cluster. Afterwards, so-called energy leakage, describing the energy that leaks from the
electrons shower development into the isolation cone, is corrected. Finally, pile-up effects
are removed by a correction function based on the number of reconstructed primary vertices.

As a result, the calorimeter isolation is defined as

max

coneAR
ET

max __

coneAR . core leakage pile-up
T ,raw - ET - ET - ET :

7.2.4 Efficiency correction

The probability to measure a real electron differs for events from MC simulation and data.
For this reason, an efficiency for the electron €., . depending on each individual step is
defined as

6total, ele = €reco X €ID X €igo] X 6trig X EMSID (71)

where the reconstruction efficiency e, the identification efficiency €, the isolation effi-
ciency €., the trigger efficiency e, and the additional charge-misidentification efficiency
Emisip are considered.

The former four efficiencies correspond to the procedures discussed already. The charge
mis-identification efficiency accounts for the amount of electron events, where the charge of
the electron is not reconstructed correctly, i.e. misidentified, at the detector level.

The efficiencies are obtained separately for MC simulations and data based on the well-
known neutral-current DY, Z — ee, the charged-current DY, W — ev, and the J/¥ process,
J /W — ee. The estimation relies on the tag-and-probe method. Each estimated efficiency
for MC simulation, e.g. €;p yr¢, and data, €7 paq, corresponds to a so-called scale factor

(SF)
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7 Event reconstruction with the ATLAS detector

which is applied as multiplicative weights to the event weight. Electron SFs are centrally
provided within ATLAS [85].

In this thesis, electrons with a transverse momentum pp(e) > 20 GeV and a pseudorapidity
In(e)] < 2.4, excluding 1.37 < |n(e)| < 1.52, fulfilling the LooseAndBLayer identification
criteria are considered. Additionally, the compatibility of the electron originating from the
primary vertex is ensured requiring |z, sin(¢)| < 0.5mm and |dy|/o, < 5 based on the
longitudinal and transverse impact parameters, z, and d,. Finally, electrons originating
from a bad calorimeter cluster are vetoed.

7.3 Muon selection

The muon reconstruction [86] relies on tracks in the inner detector and the muon system,
where each detector component is used to reconstruct tracks of muon candidates separately.
Afterwards, a matching between the MS tracks and the inner detector tracks or the MS tracks
and the interaction point is performed. The reconstruction of tracks in the inner detector is
based on a similar strategy as described for electron candidates. This section is dedicated to
the description of the track reconstruction in the MS. In addition, the identification and
isolation requirements of muons are discussed.

The reconstruction of muon track candidates is based on hit patterns in the MS. A Hough
transform [87] is performed and used to search for hits that are aligned on a bended trajectory.
The obtained hits in different layers are fitted, starting in the middle layer of the MS, in
order to obtain a muon track candidate.

Afterwards the combination of tracks from the inner detector and the MS are refitted,
optimised by adding (removing) certain hits to (from) the trajectory and classified as
combined muons (CB). A set of additional algorithms can be used to reconstruct e.g.
extrapolated muons, where muons are reconstructed based on MS tracks in combination
with a loose requirement on originating from the interaction point.

The identification of muons aims for the selection of real muons and suppression of muons
originating from the decay of hadrons, where several working points are provided, namely:
loose, medium, tight, low-p and high-pp. Muons that satisfy the loose, medium and tight
identification are subsets of each other. In this thesis, only muons fulfilling a medium
identification are considered and discussed in the following. The medium working point
relies on CB and extrapolated tracks, where the latter are restricted to the region of
n(p) € [2.5,2.7]. Consequently, only CB muons are considered because leptons are only
investigated up to |n(¢)| < 2.4 in this measurement. CB tracks are required to consist of
three hits in at least two MDT layers for 0.1 < |n(u)| < 2.4 and at least one MDT layer and
a maximum of one MDT hole? layer for |n(u)| < 0.1. Furthermore, a loose compatibility of
the measurement in the inner detector and MS has to be fulfilled.

Finally, the muon isolation, separated into track-based and calorimeter-based isolations,
provides a strong background rejection against muons that e.g. originate from the decay of

hadrons. The track-based isolation piy#*°°"¢ is defined as the scalar sum of transverse momenta

3A hole refers to a missing hit in an active sensor along the particle’s trajectory.
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7.4 Small-R jet selection

. . . . . t
in a variable AR cone and the calorimeter-based isolation E;7*°“" as the transverse energy

of topo-clusters in a fixed size AR cone.

In this thesis, muons with a transverse momentum p;(u) > 20 GeV and an absolute value of
the pseudorapidity |n(u)| < 2.4 fulfilling the medium identification quality are considered.
Additionally the longitudinal and transverse impact parameters have to fulfil, |z, sin(6)| <
0.5mm and |dy|/og < 3.

7.4 Small-R jet selection

Jets are the result of the hadronisation of partons due to confinement. At the ATLAS
experiment, the most common jet definition is based on the anti — k, [88] algorithm with
a radius parameter R = 0.4, corresponding to so-called small-R jets. The small-R jet
reconstruction [89] is described in the following.

Topological clusters are built from the calorimeter cells using a nearest-neighbour algo-
rithm [90]. The total energy of topo-clusters corresponds to the EM scale, which is based on
the measurement of energy depositions from EM showers. Furthermore, topo-clusters, i.e.
jet candidates, are corrected to be compatible with the primary vertex of the hard scattering
process, also known as origin correction.

So-called EMTopo jets, the primary jet definition until the end of Run 2 at the ATLAS
experiment, are reconstructed based on origin-corrected EM scale topo-clusters. A more
advanced approach that includes information from the tracking system besides information
from the calorimeter is called particle flow (PFlow) jet. The PFlow algorithm [91] is the
current primary jet definition used at the ATLAS experiment and aims for the approximate
identification of individual particles. Charged particles and their energy depositions in the
calorimeter can be identified, which allows to subtract the charged particle’s energy from
the topo-cluster and instead consider the tracks’ momenta matched to the topo-cluster.
The advantages of PFlow jets are improved energy and angular resolution, reconstruction
efficiencies and pile-up stability.

The estimation of the jet energy, performed after the jet reconstruction, is based on a jet
energy scale (JES) calibration that is applied stepwise:

—_

. Pile-up corrections

2. Absolute MC-based calibration
3. Global sequential calibration
4. Residual in-situ calibration

Effects from pile-up are corrected in two consecutive steps, where the first depends on the
jet pr-density and jet area and the second removes residual dependencies. Details can be
found in Reference [89].

Then, a MC-based calibration is applied to account for detector-related effects, e.g. the
non-compensating calorimeter response. The energy scale of the reconstructed jet is corrected
to the jet energy at MC truth level. For this reason, a truth-matching of the reconstructed
to the geometrically closest MC truth level jet is performed. The truth-matching depends
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on the angular distance AR = 0.3, as defined in Chapter 3.2.1 and allows to define the
average jet energy response R as the mean of the Gaussian fit to the ratio of the energy
at reconstructed level E*° and MC truth level E'™  Typical jet energy responses are
presented in Figure 7.1, where the average jet energy response for PFlow small-R jets as a
function of the pseudorapidity n and the reconstructed jet energy E™ is shown. In each
of the plots, one of the variables is shown on the z-axis and the other one corresponds to
the differently coloured distributions. It can be observed that the average jet responses
increase for higher reconstructed energies and smaller absolute pseudorapidities. In order to
correct the absolute energy scale for the jet candidates, the inverse of the average jet energy
response is applied to the reconstructed jet energies. After the application of the absolute
MC-based calibration, deviations from unity of the average jet energy response are in the
order of several percent.

Afterwards, the global sequential calibration (GSC) step is focused on corrections concerning
the flavour and energy distribution of the constituent particles, the average particle compo-
sition and shower shape of the jet, and the particle type that initiated the hadronisation
resulting in the reconstructed jet. Especially differences between quark- and gluon-initiated
jets can be observed. Multiple multiplicative correction steps are applied throughout the
GSC improving the jet energy resolution and reducing fluctuations due to the aforementioned
effects. The GSC relies on the p, response defined as the ratio of transverse momenta of the
jet at reconstruction and MC truth level.

Finally, the in situ jet calibration is applied in order to account for differences per jet between
data and MC simulations that occur dominantly due to imperfect simulation, e.g. of the
involved physics processes such as jet formation. Here, the final correction is applied to data
based on a ratio of separately derived jet responses from data and MC simulations.
Another aspect of the jet reconstruction is the estimation of the jet energy resolution (JER),
where a detailed discussion of its measurement can be found in Reference [89]. In this thesis,
JER plays a role because jets are considered in the determination of the missing transverse
momentum E¥5. Especially a precise measurement of the transverse momentum of the jet
is required in order to obtain a reasonable EX resolution.
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7.5 Missing transverse momentum FERss

In this thesis, small-R jet candidates, identified with the PFlow algorithm, have to fulfil
a transverse momentum p,(j) > 25GeV and an absolute value of the pseudorapidity
In(7)| < 2.5. A jet cleaning algorithm is applied in order to further increase the quality of
selected jets.

7.5 Missing transverse momentum FE2ss

Since neutrinos do not interact with the ATLAS detector, an alternative measure is needed.
For this reason, the missing transverse momentum EX'* is determined by exploiting the
momentum conservation in the transverse plane. The colliding protons’ transverse momentum
is approximately zero and, for this reason, the vectorial sum of the transverse momenta of all
final state particles has to be zero as well. Due to momentum conservation it is possible to
measure particles that leave the detector unseen by the missing momentum in the collision.
In the following, the reconstruction of the missing transverse momentum [92, 93] is discussed.
The missing momenta E;mybs in the x- and y-plane are defined as

miss __ pomiss,e miss, "y miss, T miss,jets miss, (4 miss,soft
Ez,y - Ez,y + E%y + E:r,y + Ew,y 7 + Ex,y + E:r,y ’ (72)

where the calibrated momenta of all electrons, photons, taus, jets, muons and the soft
term is summed. In this measurement, photons and 7 leptons are not considered in the
Emiss calculation. There are different approaches to account for objects that have not
been matched in one of the particle reconstruction steps. The track-based soft term (TST)
EXss relies on tracks in the inner detector, while the calorimeter-based soft term (CST)
EXss takes calorimeter signals as input. Depending on the choice of soft term, the EMss
performance and uncertainties associated to FXs differ. Only the TST EXS is considered
in the following.

As described above, it is only possible to account for missing momenta in the transverse
plane. For this reason, the missing momenta Eg“;s are used to define the missing transverse
momentum, FF"°, and the associated angle, ™, in the x-y-plane of the ATLAS detector.

ErTniss — \/<Egrcniss>2 4 (Elr/niss>2 (73)

@™ = arctan (E;mss> (7.4)
E;mss

7.6 Overlap removal

The object reconstruction of all particles discussed in this section is based on tracking and
calorimeter information. Due to independent reconstructions of various particle types an
overlap may occur, where e.g. the same energy deposition is associated to two different
particles. The overlap removal procedure is used to avoid these double-counting effects,
which is crucial in order to correctly estimate the missing transverse momentum EXS of an
event.
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7 Event reconstruction with the ATLAS detector

Criteria for the overlap removal procedure.

Reject Against  Criteria

Muon Electron is calorimeter muon and shared Inner Detector track
Electron Muon shared Inner Detector track

Jet Electron AR < 0.2

Electron Jet AR < 0.4

Jet Muon N,rack < 3 and (ghost-associated or AR < 0.2)

Muon Jet AR < 0.4

A summary of the consecutively performed steps of the overlap removal procedure is given
in Tab. 7.2. All presented requirements are used in the following, unless stated otherwise.

A calorimeter muon is rejected if it shares an Inner Detector track with an electron. In the
next step, remaining electrons with a shared track with a muon are discarded. While jets
geometrically matched within AR < 0.2 to an electron are removed, electrons geometrically
overlapping within AR < 0.4 with a jet are rejected afterwards. Jets with less than three
associated tracks N, and either within AR < 0.2 to a muon or with a ghost-associated*
track in the Inner Detector are discarded. Finally, muons within AR < 0.4 of a jet are
rejected.

Usually, another requirement targeting the overlap of two electrons is part of the overlap
removal procedure. In this case, electrons with a shared track are investigated. The
electron candidate with the lower transverse momentum pr(e) is removed. In this thesis, its
application was intended, but this was prevented by a technical issue.

4A muon is ghost-associated to a jet, if the muons track is identified with a ghost track of the jet. A ghost
track of a jet is characterised by the same direction of the ghost track and the jet, while the transverse
momentum of the ghost track is approximately zero.
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8 Signal extraction

The identification of specific particle types depends on the detector signature of each particle
candidate and allows to distinguish different final states. The selection of events that
corresponds to a desired final state is performed by placing requirements on each event,
where e.g. a certain number of electrons are required. This procedure is the so-called
event selection and discussed in Chapter 8.1. Furthermore, the fiducial event selection
that is required at the MC truth level defines the so-called fiducial volume. The fiducial
event selection is described in Chapter 8.2. Subsequently, the optimised binning of the
variables, where the single-differential and double-differential cross-sections are measured in,
are defined in Chapter 8.3.

8.1 Selection criteria at reconstructed level

The goal of the event selection is the identification of ccDY events in the huge amount of data
recorded by ATLAS during Run 2. The analysed data set is composed of a mixture of several
different processes, where the signal process is a fraction only. The event selection defines the
so-called signal region and, for this reason, is designed such that the final state of the signal
process is dominantly selected, where the enhancement of the number of selected signal
events with respect to the number of selected background events is pursuit. Importantly,
the number of signal region events has to remain as high as possible in order to avoid high
statistical uncertainties in the measurement.

The event selection is subdivided into a pre-selection and a primary selection. The pre-
selection ensures that the events are recorded under good run conditions of the LHC, detected
under good conditions of the detector and have a primary vertex corresponding to the hard
scattering process. These requirements have been outlined in Chapter 6.1 and Chapter 7.
In addition, events are required to fire at least one of the single electron triggers that are
described in Chapter 7.1. The pre-selection is summarised in Tab. 8.1.

Definition of the pre-selection defined in order to ensure good conditions of the
accelerator and detector before the primary selection is performed.

Pre-Selection

Good run conditions of the LHC
Good detector conditions of ATLAS
Primary vertex of the event
Fire at least one single electron tigger
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8 Signal extraction

The primary selection focuses on the identification of the of ccDY process, where the final
state consists of a single electron and its corresponding neutrino. The electron from the
W boson decay is expected to satisfy high identification and isolation requirements. Both,
additional electrons and electrons that fulfil only low identification and isolation requirements
should be rejected. For this reason, two working points for the identification and isolation of
electrons, labelled as loose and tight level, are defined. The loose level is required to fulfil the
LooseAndBLayerLH identification criteria, which is used to ensure basic electron requirements.
Furthermore, the track- and calorimeter-isolation requirement FCLoose, which is defined as
Eme20 < (0.20-pp and pyreone20 < (0.15-pp, has to be fulfilled. In addition to the requirements
on the loose level, the tight level requires TightLH identification criteria and the calorimeter-
isolation criteria FCHighPtCaloOnly, defined as F5"°20 < max (0.015 - pp, 3.5 GeV).

Based on these definitions, exactly one tight level electron with py(e) > 65 GeV is required
and in order to reduce background contributions, additional muons, as defined in Chapter 7.3,
and electrons with a transverse momentum of pr(e) > 20 GeV fulfilling the loose level are
vetoed. Since a single electron is expected in the final state of ccDY, the electron veto is
demanded on the loose level, where more events are suppressed compared to the tight level.
Furthermore, selected events with exactly one tight electron have to fulfil a trigger match,
where the object that fired the trigger initially has to be in the event, after the electron
specific selection steps are performed.

Only electrons with an absolute value of the electron’s pseudorapitidy |n(e)| < 2.4 are
considered. Although the electron measurement until |n(e)| < 2.47 is possible, it is limited
to an absolute value of the pseudorapidity of 2.4, because the single muon trigger in the
muon measurement can not be used beyond. This muon channel requirement has been
adapted in order to ensure that a combination of both channels does not suffer from binning
effects or extrapolations. Anyway, only a negligible fraction of electrons are in the range of
2.4 < |n(e)| < 2.47.

Besides the electron, the final state is characterised by missing transverse momentum from
the electron neutrino, which is accounted for by requiring £ > 85 GeV. A higher value
compared to the transverse momentum of the electron is required for three reasons: First,
Emiss allows to suppress multijet events characterised by small missing transverse momenta.
Then, migration effects are reduced for high ER requirements. Lastly, an asymmetric
selection criteria of p; and EX reduces edge effects in the theoretical calculation of the
transverse mass.

Finally, the targeted phase space for the measurement is defined by a transverse mass of the
W boson m¥ > 200 GeV. Nevertheless, the unfolding procedure benefits from the knowledge
about the number of events in an additional bin in the range of m¥Y € [150, 200] GeV. Further
details are provided in Section 12. The transverse mass of the W boson is composed of
pr and EX thus their selection requirements impact m%v . As an additional motivation,
the py and ER requirements approximately add up to a transverse W boson mass of
mr‘fV ~ 150 GeV, which is equivalent to the lower limit of the m?’ bin edge. As a consequence,
reasonable statistics is expected for m¥ € [150,200] GeV.

The two electron identification and isolation working points and the primary event selection
are summarised in Tab. 8.2.
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8.2 Selection criteria at truth level

Definition of the two electron working points with different identification and
isolation requirements and the corresponding event selection.

Primary-Selection

Criteria Requirement

loose level LooseAndBLayerLH ID
FCLoose isolation

tight level =~ TightLH ID
FixedCutHighPtCaloOnly isolation

Final state == 1 tight level electron + FEMiss
Veto Loose level electrons and muons
n(e)] <24

pr(e) > 65GeV

Exs > 85GeV

my > 200 GeV

8.2 Selection criteria at truth level

The unfolding procedure, as outlined in Chapter 5, allows to estimate the number of events
at truth level based on the number of events at reconstructed level, i.e. removes effects
introduced by the measurement process of data events in the detector. While the event
selection defines the phase space considered at reconstructed level, this section is dedicated
to the definition of the phase space at truth level. The fiducial selection, i.e. event selection
at the truth level, defines the so-called fiducial volume.

The fiducial volume plays a crucial role in the determination of several unfolding effects,
e.g. in the estimation of events that migrate from a certain bin at fiducial level into another
bin at reconstructed level. Furthermore, the unfolded cross-sections can be compared to
theoretical predictions in the fiducial volume. In the following, the truth level definitions of
the electron and the fiducial selection are discussed.

Multiple states of the electron are provided in the truth level record of the MC, which can
be accessed before the particles are passed through the detector simulation. Depending on
the selected state of the truth level electron, the truth level is referred to as

e born level, if the lepton before FSR,
e bare level, if the lepton after FSR,

o or dressed level, if the bare lepton and all photons originating from the same decay
vertex in a cone of AR(e,7y) < 0.1 are added,

is selected. A comparison of the three truth level distributions in the transverse mass of the
W boson can be found in Fig. F.1 in Appendix F, where small differences between the three
distributions are observed. In this thesis, electrons that correspond to the born level are
used only.

In particle physics, the fiducial selection is usually defined similar to the event selection at
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8 Signal extraction

reconstructed level. In case of substantial differences in the definition of the two levels, either
extrapolations or correction factors that rely on the MC sample are required. Since the MC
sample can not be perfect, such corrections should be minimised. The fiducial selection at
born level is summarised in Tab. 8.3.

Events at fiducial level have to fulfil the following selection steps: At born level, a pseu-
dorapidity of the electron [n(epo,)| < 2.4 and a transverse momentum of the electron
Pr(€pom) > 65 GeV are required. In addition, the transverse momentum of the neutrino,
has to fulfil p;(2°™) > 85 GeV. Both, the electron and the electron neutrino are used to
calculate the transverse mass of the W boson at born level m}¥ (born) > 200 GeV.

Definition of fiducial selection performed at the born level.

Fiducial Selection

Criteria Requirement
’n(eborn” <24
pT(eborn> > 65 GeV
pr(vbom) > 85 GeV

mW (e oms VE) > 200 GeV

8.3 Definition of variables for the cross-section measurement

The double-differential cross-section as a function of the transverse mass of the W boson
m¥ and the absolute value of the pseudorapidity of the electron |n(e)| is measured in this
thesis. In addition, the single-differential cross-section as a function of the transverse mass
of the W boson is investigated. The variables, m} and m¥ ® n(e), in which the differential
cross-sections are measured, are denoted as measured variables in the following. Besides
their definition, it is necessary to define a suitable binning for the variables at fiducial level
and at reconstructed level. Several criteria are considered for the definition of the binning
at reconstructed level:

1. Experimental resolution of the reconstructed objects.
2. Bin-wise migration caused by the reconstruction.
3. Statistical uncertainty in the data.

The binning at fiducial level is defined close to the binning of the measured variables at
reconstructed level.

Since two of the three criteria depend on the bin size, the binning is optimised based on an
iterative process. A preliminary binning is chosen and varied until the following requirements
are fulfilled: The size of the bin has to be larger than the experimental resolution in the
muon channel, which is worse compared to the electron channel. Furthermore, a compromise
between large bins in order to reduce statistical uncertainties of the data events and as many
bins as possible have to be made. In the end, the purity, which is defined in the following
subsection, of at least 50% is required.
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8.3 Definition of variables for the cross-section measurement

The final binning for the single-differential cross-section measurement of the transverse mass
of the W boson at reconstructed level is defined as

m¥ = [(150,) 200, 250, 300, 350, 425, 500, 600, 750, 900, 1100, 1400, 2000] GeV,  (8.1)

where one additional bin below m¥ = 200 GeV is added. At a later stage, the low mY bin
is exploited to improve the unfolding, as outlined in Chapter 8.1.

The final binning of the fiducial level is chosen to be identical to the binning defined at
reconstructed level.

In addition, the binning for the double-differential cross-section measurement is defined as
m¥¥ = [(150, ) 200, 300, 425, 600, 900, 2000] GeV, (8.2)

where the number of m}V bins is reduced with respect to the binning of the single-differential
cross-section measurement in order to increase the number of events per m¥V bin, i.e. reduce
the statistical uncertainty. The introduction of an additional binning in |n(e)| reduces the
number of events per m¥ ® |n(e)|, i.e. enlarges the statistical uncertainty, and is defined
as

In(e)| = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.37, 1.52, 1.8, 2.0, 2.2, 2.4] (8.3)
for the first three m} bins,

In(e)| = [0.0, 0.4, 0.8, 1.37, 1.52, 2.0, 2.4] (8.4)
for the fourth and fifth m} bins,

In(e)| =[0.0, 0.6, 1.37, 1.52, 2.4] (8.5)

for the sixth mIfV bins.

The angular resolution in the pseudorapidity is very good, thus the statistical uncertainty
plays the most important role in the definition of the binning. Six bins in mY are chosen such
that the bin edges in the single-differential and double-differential cross-section measurement
match. As a consequence, comparisons between the single-differential and double-differential
cross-sections are easily possible. The absolute value of the pseudorapidity is binned
equidistantly with a size of An(e) = 0.2 in the first three m} bins, with an exception in
the range of |n(e)| € [1.37,1.52], where the events in the transition region of the barrel and
end-cap of the LAr calorimeter are vetoed. Similarly, the |n(e)| binning is chosen for the
last three m}¥ bins, where a broader bin size of An(e) = 0.4(0.6) is used.

The corresponding final binning at the fiducial level is identical as a function of the transverse

mass. In contrast, the |n(e)| binning is defined as

In(e)|gqueial = [0-0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4] (8.6)
for the first three mlfV bins,

1n(€)|gducial = [0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4] (8.7)
for the fourth and fifth m*" bins,

17(6) lqueial = 0.0, 0.6, 1.2, 1.8, 2.4]  (8.8)

for the sixth mlfV bins,
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8 Signal extraction

where a strictly equidistant binning is chosen in order to avoid that peculiarities such as
the transition region of the barrel and end-cap of the LAr calorimeter are reflected in the
measured cross-sections.

Each of the different criteria that have been used for the definition of the optimised binning
of the measured variables is presented in the following subsections.

8.3.1 Experimental resolution

First, the experimental resolution, defined by the ATLAS detector, which provides a measure
for how accurately a variable at reconstructed level is determined concerning its true value.
The estimation of the experimental resolution relies on the W MC sample and is visualised
for the transverse momentum of the electron in Figure 8.1. Technically, a two-dimensional
distribution of the distribution at reconstructed level and the MC truth level, as shown in
Figure 8.1a, is used to obtain the projection of the distribution at reconstructed level for a
range at truth level, as shown in Figure 8.1b. The RMS is calculated for each projection
and used as a measure for the resolution. The experimental resolution as a function of the
transverse momentum of the electron and the missing transverse momentum is estimated
and shown in Figure 8.2. The estimated RMS is at several GeV for small values of the
transverse momentum of the electron and the missing transverse momentum. It increases
continuously up to 40 GeV as a function of pr(e) and to 60 GeV as a function of EM at
approximately 1000 GeV. Overall, similar behaviour as a function of py(e) and EXS is
observed.

In addition, the experimental resolution for the transverse mass of the W boson mr_VFV is
calculated and compared to the muon channel as displayed in Figure 8.3. The experimental
resolution as a function of m¥ is shown in Figure 8.3a, where the trends observed for
the experimental resolution of py(e) and ER can be found as well. While the RMS is
approximately 20 GeV at small m*| the largest RMS of 100 GeV is observed at high m} .
In order to consistently measure the cross-section, the same binning for the electron and

(s =13 TeV
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pT(e) [GeV] projected pT(e) [GeV] of bin 8

Two-dimensional distribution of the electron’s transverse momentum at truth
level and at reconstructed level. Exemplarily, a projection of the reconstructed distribution
in the eights bin, i.e. for a given truth level value between ptT“”h(e) = 280 GeV and
piFuth(e) = 330 GeV, used for the calculation of the RMS is shown.
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Experimental resolution as a function of the transverse mass of the W boson
for a) the electron channel and b) the muon channel at truth level. The experimental
resolution for the muon channel is taken from Reference [46].

muon channel is chosen. Importantly, it has to be taken into account that the experimental
resolution at high m%v is expected to be better in the electron channel compared to the
muon channel. In Figure 8.3b, the experimental resolution of the transverse mass of the
W boson in the muon channel, taken from Reference [46], is shown. At mY = 150GeV a
similar resolution with respect to the electron channel is found. In contrast, the experimental
resolution gets worse with increasing m', where an RMS of up to 400 GeV at high mY is
observed. The experimental resolution at high m} is driven by the experimental resolution
of high transverse momenta of the muon. The momentum of the muon is determined
track-based. At high p,(u), the tracks are less curved and the uncertainty of the momentum
measurement increases. As a result, the experimental resolution of the muon channel is
worse compared to the electron channel and, for this reason, was used for the optimisation
of the binning of the measured variables.
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8 Signal extraction

8.3.2 Migration

Migrations are events that are generated and reconstructed in different bins of the true and
measured distribution, as introduced in Chapter 5. Two main sources are distinguished in the
following: First, migrations across bins at high m%v are expected due to the reconstruction
of particles or events, where e.g. a transverse momentum of the electron is measured too
small. As a result, the event is found in a different bin at truth level and at reconstructed
level. Second, migrations from on-shell W bosons are expected due to the steeply falling
distribution of the transverse mass of the W boson above the mass peak at my, ~ 80 GeV,
which favors the appearance of migration effects.

The migration of events is described by the migration matrix M,; that provides the amount
of events generated at MC truth level in bin ¢ and reconstructed in bin j. Each bin j
of the reconstructed distribution is normalised to unity and afterwards scaled in order to
provide the percentage of events migrating for each of the bins 7. The over- and underflow
is considered in the normalisation. Furthermore, the so-called purity describes the events
that are generated and reconstructed in the same bin, i.e. which fulfil ¢ = j. Overall,
the calculation of the migration matrix relies on the W MC sample, since the true and
reconstructed distributions are required.

In Figure 8.4, the two-dimensional migration matrix M;; as a function of the transverse
mass of the W boson at born level and at reconstructed level in the e~ channel is shown.
The binning of the migration matrix corresponds to the final single-differential cross-section
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Migration matrix M., porn, for the W= — e~ v signal process. The given

numbers are in percent, while under- and overflow bin are considered in the normalisation.
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measurement binning, where a bin at m'¥ € [60, 150] GeV is added. The additional mY bin
targets the visualisation of the second source of migrating events that originate from on-shell
W bosons. All events that fulfil the nominal event selection, where the m%v requirement is
exceptionally lowered to m%v = 60 GeV, are considered. Importantly, the fiducial selection
is not applied.

The smallest purity of 62% can be observed for m}¥ € [150,200] GeV and increases up to
98% for high transverse masses. In general, the purities are clearly higher than 50%, because
the same requirement is used for the binning in the muon channel, where smaller purities are
obsered. Non-zero migrations occur in bins next to the diagonal that mainly originate from
the first source of migrations, i.e. migrations which are induced by the measurement process.
The second source, where the migrations originate from on-shell W bosons, is visible in the
non-zero entries in the first column of the migration matrix. These events are generated
with a transverse mass around 80 GeV, the peak of the W boson mass distribution, and a
non-negligible fraction are reconstructed up to several hundred GeV. Nevertheless, these
events migrate predominantly into bins at low reconstructed m%’ .

The migration matrix for the e™ channel is very similar to the one discussed here and, for
this reason, shown in Appendix F.

Migrations for the absolute value of the pseudorapidity of the electron |n(e)| are known to
be very small because the experimental resolution in |n(e)| is very good. Consequently, a
minor impact on the measurement binning for the double-differential measurement of the
cross-section is expected.

8.3.3 Data statistical uncertainty

The last criteria considered in the optimisation of the measurement binning is the statistical
uncertainty of data events. The binning is adjusted to provide a reasonable small statistical
uncertainty, which can be achieved by increasing the bin sizes, where an increasing amount
of events is selected. However, in order to introduce as much bins in the measurement as
possible, the bin size has to be kept small at the same time.

In general, data events fulfil a Poisson statistics, where the statistical uncertainty is provided
by the square root of the number of events v/N. The corresponding relative statistical
uncertainty, where the statistical uncertainty is shown relative to the number of events %\7 ,
is presented in Figure 8.5 as a function of m'Y and m} ® |n(e)|. The statistical uncertainties
corresponding to the amount of data events fulfilling the event selection, as defined in
Chapter 8.1, are discussed in the following. In Figure 8.5a and Figure 8.5b, the statistical
data uncertainty is presented as a function of the transverse mass of the W boson in the e™
and e~ channel. The first bin in both distributions is marked with a grey coloured shadow,
which indicates that these bins do not correspond to the signal region. It can be observed
that the statistical uncertainty monotonously increases as a function of m!fv , i.e. the number
of data events decreases, where the largest value of about 11% (17%) can be found in the
last bin for the e™ (e”) channel. The statistical uncertainty is larger in the e~ channel,
because the cross-section for W~ bosons in pp collisions is lower compared to W bosons.
The statistical uncertainty of data events in the double-differential measurement binning
for the e™ and e~ channel is shown in Figure 8.5¢ and Figure 8.5d. Here, the binning for
the double-differential cross-section measurement is represented by one single distribution
of m¥¥ ® |n(e)|, where the |n(e)| distributions of each m¥ bin are shown side-by-side.
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Furthermore, perpendicular black lines at the bin borders of m* are added. The binning in
In(e)| can be found at the x-axis and the binning in m!Y is given below. Since transverse
masses below 200 GeV are not measured, the corresponding area is filled with a grey coloured
shadow.

The distribution of the statistical uncertainty in |n(e)| is approximately flat for the first
and second mJY bin, where for the third and following m* bins, the uncertainty increases
within |n(e)|. The event topology of the ccDY changes as a function of mV, where larger
transverse masses of the I boson are produced at smaller absolute rapidities vy, i.e. more
central. As a consequence, the electron is produced more central in the detector, i.e. the
forward region is less populated, which refers to a higher statistical uncertainty. Furthermore,
the same increase of the statistical uncertainty in m* as in the one-dimensional binning
is observed. Overall, the largest statistical uncertainties as a function of m¥ ® |n(e)| are
approximately 13% (15%) in the e (e~) channel, while the statistical uncertainties are

much smaller otherwise.
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9 Background estimation

After the event selection, as discussed in Chapter 8.1, has been applied to the analysed data,
the events are composed of electrons originating from the signal process or the background
processes. Each background process contributes due to a similar final state or due to e.g.
inefficiencies in the detector. As an example, the ncDY process, where a Z boson is produced
from two quarks and decays into two leptons £7¢~, contributes for £ = e in the final state.
The same final state as for the signal process is present, if one of the electrons is missed,
for example in the region of 1.37 < |n(e)| < 1.52. The expected number of background
events, characterised by real electron final states, is well-described by the MC samples and
estimated by requiring the nominal event selection for each of the processes.

The multijet background is characterised by multiple jet events. Although the event selection
requires the electron to fulfil the tight level, which refers to well-defined electrons, a small
fraction of events can originate from jets. A jet can be misidentified as an electron because
of a deposition of the jet energy in the electromagnetic calorimeter together with a mismatch
of a charged particle track onto this energy deposition. Due to the strong requirements
on well-defined electrons, the fraction of jets that are able to 'fake’ a real electron is very
small. However, the cross-section of multijet events is much higher than the cross-section
of the signal process and, for this reason, the contribution is sizeable. The estimation of
multijet background is performed based on a data-driven method, because the small fraction
of electron misidentifications in generated jet events is not sufficient for the generation of a
MC sample.

In the following, the theoretical basis of the Matrix Method is described. Subsequently,
detailed studies concerning the EX' modelling in data-driven background estimates is
performed. Then, the estimation of the MJ background, the evaluation of the systematic un-
certainties corresponding to the MJ estimate and the modelling of the estimated background
is discussed.

9.1 Matrix Method

The Matrix Method is a data-driven approach estimating the number of misidentified,
so-called fake, electrons. One of the main sources for fake electrons are multijet events
where one of the jets is misidentified as an electron. Further contributions originate from
events where e.g. pions are produced in the hadronisation of a jet that further decay in two
electrons and a photon.

The key element of the Matrix Method is based on relaxing the electron identification and
isolation requirements of the tight level and then determining the efficiencies for a loose
object, i.e. real or fake electron to become a measured tight electron. The tight and loose
level, where the latter refers to the relaxed level, as defined in Section 8.1 are used. The
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9 Background estimation

number of loose and tight level electrons is related to the number of real and fake electrons
by using the corresponding efficiencies for real and fake electrons as represented by the

equation
Np\ _ €R €r Npg
(NL> - <1—6R 1—6F> (NF ’ (9.1)

where the number of real (fake) electrons N (Np), the number of tight (loose) electrons N
(N}) and the real (fake) efficiencies € (e€p) are used. The real (fake) efficiency is defined as
the number of real (fake) electrons passing the tight level N}g( ) divided by the number of

real (fake) electrons passing the loose level N 1%< %

Niyr
€ = ——. 9.2

R/F N I%/F ( )
Consequently, the real (fake) efficiencies provide the fraction of real and fake objects fulfilling
the loose and tight level. While the real efficiencies are typically obtained from MC
simulations, the fake efficiencies are not well-described in MC simulations and have to be
estimated in a region enriched with fake electrons, which are generally not described by MC.
Inverting the matrix in Equation 9.1 leads to an estimate for the number of fake leptons,
which are contributing to the tight level, i.e. the measurement level. The corresponding
equation is based on the number of loose and tight level electrons and the real and fake
efficiencies in the following way:

€p

epNp = ler(Np + Np) — Nq] . (9-3)

€R — €F

Importantly, the variables N; and N é P differ. While the former is defined as the number
of loose level electrons that do not fulfil the tight level N, the latter refers to all loose
level electrons independently of whether or not being identified as tight level electrons. In
Equation 9.3, N; and Ny are accessible in data and € and €5 can be measured. Finally,
the multijet estimate, i.e. number of fake electrons measured at the tight level, is obtained
by the multiplication of the following event weights

—1
Wy = Ha =1 (9.4)
€R — €F
€ €
whyyy = T (9.5
R ¢F

to a dataset at the loose level, where the application of the respective weight depends on
whether a loose or a tight level electron is identified in each event. A key element for
a good modelling of the multijet background is the precise estimate of the real and fake
efficiencies.

9.2 Dependence on the choice of objects in the BN calculation

The estimate of the multijet background via the Matrix Method relies on two main require-
ments: The variation of identification and isolation working points and the estimation of
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9.2 Dependence on the choice of objects in the B calculation

real and fake efficiencies. These efficiencies are estimated in specific phase spaces, that are
typically orthogonal to the signal region.

As a consequence, the objects present at each working point and in each phase space can
differ. Since the various objects are used for the calculation of the missing transverse
momentum, deviations in E¥5 are expected at different working points. In Chapter 7.5,
the event reconstruction including electrons, jets, muons, and tracks is discussed, where the
energy and momentum of each object is estimated differently.

In the following, objects used as the input for the calculation of Ef, their energy calibration
and implications on the E are presented.

9.2.1 Different energy calibrations of objects and implications on ERis

Object calibration: Out of the numerous different objects that are used as inputs to the
calculation of EX5| the focus will be on electrons and jets in this section. Both leave
electromagnetic showers in the calorimeter system, thus fake electrons are expected to
dominantly originate from jets. Although both, the electron and jet energy calibration rely
on the response, the estimated energy includes substantial additional correction factors for
jets. In order to correctly estimate the energy of a fake electron, the true object, which could
be an electron or jet, has to be known. In a data-driven approach, the truth quantities are
not known. Consequently, the energy calibration of fake electron candidates is investigated
in MC under two assumptions: a true electron or a true jet. In order to meet the expected
topology of jets faking electrons, a dijet MC, as introduced in Chapter 6.3, is used and
events are selected based on an electron specific selection, where the requirements of

o at least one electron N, =1,
« a transverse momentum of the electron py(e) > 30 GeV,
o electron identification criteria

— loose object: LooseAndBLayerLH

— tight object: TightLH

have to be fulfilled. Another change has to be applied to the common overlap removal
procedure as explained in Sec 7.6. To be able to compare the energy calibration of jets
and electrons, it is necessary to disable the requirement of AR(e,jet) > 0.4. Since the
same object in the calorimeter should be studied, exactly the desired overlap would be
removed by the overlap removal requirement. Apart from these modifications the same
object reconstruction as described in Chapter 7 is applied.

The response X is the measure to evaluate the fraction of reconstructed energy measured in
the detector with respect to the generated energy and is defined as

P pr(measured ?bject) - (9.6)
pr(truth object)

where the mean of the transverse momentum of the measured object divided by the transverse
momentum of the truth object is calculated. This is a measure that is commonly used in a
jet energy calibration, as described in Chapter 7.4. While the transverse momentum of the
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9 Background estimation

measured object is accessible in the MC prediction on reconstructed level, the estimation of
the truth objects’ transverse momentum relies on the MC truth level. In order to ensure the
same object is used on both levels, a truth matching procedure is necessary. An overview of
the truth matching requirements are shown in Tab. 9.1. In both cases, the truth matching

Overview of the truth matching requirement applied for electrons or jets.

Object Truth matching requirements

Electron - choose measured electron with highest transverse momentum
- match truth jet, with highest transverse momentum,
to the measured electron fulfilling AR < 0.1

Jet - choose measured electron with highest transverse momentum
- select measured jet fulfilling AR < 0.1
- match truth jet, with highest transverse momentum,
to the measured jet fulfilling AR < 0.1

starts from the measured electron with the highest transverse momentum. In case of a
measured electron it is possible to directly match the measured electron to the truth object,
which is a jet, in the MC by requiring that the jet agrees geometrically in AR < 0.1. If
multiple candidates fulfil the truth matching, the highest transverse momentum truth jet is
chosen.

In order to ensure that strictly the same objects in the calorimeter are used, the truth
matching procedure for a measured jet starts from the measured electron as well. First, the
selected, measured electron is matched! to the closest measured jet, fulfilling AR < 0.1. If
multiple candidates fulfil the requirement, the object with the highest transverse momentum
is chosen. Afterwards, the same geometrical truth matching of the measured jet to the
closest truth jet is applied.

The response for the same calorimeter object, identified as a jet or an electron for loose
electrons after the event selection are presented in Figure 9.1. A two-dimensional distribution
of the transverse momentum of the reconstructed jet, pp(j._maten)s that is AR-matched
to the reconstructed electron, divided by the truth-matched jets’ transverse momentum,
D1 Giruthmaten), 18 presented as a function of the transverse momentum of the jet pr(J._naten)
in Figure 9.1a. Calculating the mean of the ratio of the two tansverse momenta in the
two-dimensional distribution allows to show the jet response, defined in Equation 9.6, as
a function of the transverse momentum of the jet pr(jo_aten), @ shown in Figure 9.1b.
It can be observed that the two-dimensional distribution in Figure 9.1a is populated the
most close to unity and the corresponding jet response is close to unity as a consequence.
Furthermore, the largest number of the events are found at small transverse momenta, which
is expected from the evolution of the cross-section of dijet events, decreasing with increasing
transverse momentum of the jet.

Since the full jet energy calibration is applied, the response is expected to approximately
agree with unity. In general, the energy of a jet, based on the shower reconstruction in the
electromagnetic and hadronic calorimeters, is measured too small, due to the potentially

!This step of the truth matching is only possible if the corresponding overlap removal is disabled.
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The response of the same calorimeter object identified as a jet or an electron
after requiring at least one LooseAndBLayerLH electron is presented in the upper and lower
row, respectively. Plots are shown as two-dimensional heat map as well as profile.

ambiguous assignment of certain energy depositions to a specific jet. Additionally, because
not all decay particles of the jet can be measured. In order to account for these effects,
a so-called calibration constant, as described in Chapter 7.4, is applied to reconstructed
jet candidates. As a result, the jet energy response after the jet energy calibration is
approximately at unity.

Although deviations from unity are in general in the order of less than a percent for jet
candidates, differences in the jet energy response shown in Fig 9.1b are expected to be larger.
A higher response is possible if the selected objects in the calculation of the calibration
constant differ from the selected jet objects that are investigated. The following has to
be considered: A typical jet deposits a fraction of its energy in the electromagnetic and
hadronic calorimeter each, whereas an electron deposits its energy almost completely in the
electromagnetic calorimeter. A jet, that is likely to be misidentified as an electron as it is
investigated here, deposits usually a higher fraction of its energy in the electromagnetic
calorimeter compared to a typical jet, increasing the similarity between jets and electrons.
The calibration constants are estimated based on a jet specific selection, where ideally a
typical jet is represented. In the distributions shown here, only jets that might be misidentified
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as electrons are selected. Their energy deposited in the electromagnetic calorimeter is higher
compared to typical jets, but the same calibration constant is used. As a consequence, the
response of an electron-matched jet is expected to be above unity, which can be observed in
Figure 9.1b.

In addition, the two-dimensional distribution of the ratio of the transverse momenta of
the electron on reconstructed level and the jet on MC truth level as a function of the p,
of the reconstructed electron with the highest transverse momentum, e, _;cqq4ing, and the
corresponding energy response are shown in Figure 9.1c and Figure 9.1d, respectively. Again,
most events are populated at transverse momenta p, € [30,60] GeV as for the jet events,
due to the decreasing cross-section of dijet events. Apart from this, the two-dimensional
distribution as well as the energy response are notably different compared to the ones where a
jet is reconstructed. The reconstruction of the electron energy does not include a calibration
constant as for jets, since its energy is almost completely deposited in the electromagnetic
calorimeter. As a result, the energy reponse is mostly distributed in a range of & € [0, 1].
The energy response is approximately R = 0.7 for p;p = 30 GeV, increases to X = 0.8 and
is mostly flat for intermediate transverse momenta py € [60,600] GeV and is the highest
for pp > 600 GeV. Overall, a similar energy response as used in the jet energy calibration
shown in Figure 7.1 can be observed.

The same overview of the jet and electron energy responses for selected tight electrons
is displayed in Figure 9.2. The two-dimensional distributions and the energy responses
are very similar to the results in case of the selected loose electrons. In Figure 9.2b, the
jet energy response is above unity, due to the application of calibration constants on jets
selected based on their ability to fake an electron, as explained for Figure 9.1. Now, stricter
identification criteria are required for electrons selected from the dijet MC, where an overall
smaller number of selected events and even higher similarities between electrons and jets are
expected. Although such a jet selection could provide an even higher amount of reconstructed
energy in the electromagnetic calorimeter and subsequently yields a bigger difference with
respect to unity in the energy response, only small differences between Figure 9.1b and
Figure 9.2b can be observed.

In Figure 9.2, similar trends of the electrons as for loose objects in Figure 9.1 are visible. A
selected, measured electron that originates from a truth jet provides a very similar energy
response that does not rely on fulfilling the loose or the tight electron identification criteria,
presented in Figure 9.1d and Figure 9.2d. A slightly different response is observed in the
region of low transverse momenta p; < 150 GeV, whereas the energy response for loose and
tight electrons agree approximately otherwise.

Finally, it can be concluded that the object calibration which is studied based on the energy
response for the same object in the calorimeter differs for being identified as a jet or an
electron. Two effects can be distinguished: First, a large difference in the energy response
is observed if the same object measured in the calorimeter, representing a potential fake
electron, is identified as an electron or a jet. Second, a very small difference is observed if
the investigated object is identified as a loose or tight electron in the selection.

The estimated energy of the object and, subsequently, the EX* in the corresponding event
will depend on taking the object into account as a jet or an electron, because the objects
energy is an input to the estimation of ERss.
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The response of the same calorimeter object identified as a jet or an electron
after requiring at least one TightLH electron is presented in the upper and lower row,
respectively. Plots are shown as two-dimensional heat map as well as the profile.

Comparison of E¥5 working points:  In order to study the implications on E¥* con-
cluded from the previous studies on object calibrations, two working points are defined.
Objects identified as tight electrons are considered as real electrons for both working points,
while objects identified as loose electrons are treated differently in the EM* calculation:

e loose EDss: Consider objects identified as loose electron candidates as electrons.

o tight E®ss: Consider objects identified as loose electron candidates as jets, where
the jet calibration is applied.

Importantly, both working points will provide the same EX if a selection requires tight
electrons only and will only be different as soon as a ER selection requirement is used
together with loose electrons as in the multijet estimation via the Matrix Method.

In Figure 9.3, the loose and tight E®*% are compared for the W MC, and for data events
after the same loose selection as defined for the object calibration studies. In contrast, the
requirement that the electron, fulfilling the loose identification criteria, does not pass the
tight identification criteria is added in order to separate effects from loose and tight electrons.
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The loose and tight EX' for electrons fulfilling the LooseAndBLayerLH
identification and isolation is compared. Only events that are not passing the tight
identification requirements are shown for a) W MC and b) data.

For the W MC, shown in Figure 9.3a, the distribution of the loose ER working point
increases until its maximum value around ER ~ 40 GeV and decreases towards higher
values, as it is expected in case of a true on-shell W boson produced in the simulated event.
The maximum of the tight EXS distribution is shifted to higher values. The EXS in both
working points is approximately the same for EXs* > 125 GeV. The shift of the tight ERis
distribution is induced by the application of the jet calibration, which is applied to the loose
electrons that do not pass the tight identification criteria. Since the W MC consists of true
electrons only, the jet calibration leads to an overestimated energy of the loose electron and
consequently? a larger Emiss,

The same comparison of the two working points for data events is presented in Figure 9.3b.
Differences between the loose EMi®* and the tight EX'S can be observed, where the tight
Emiss distributions is slightly shifted to larger EX5. However, a similar trend of both
distribution is visible. In contrast to Figure 9.3a, no clear maximum of the distribution can
be found. While the true objects are known in the MC, this is not possible in data events.
For this reason, the shape of the data distribution can not be interpreted as easily as for the
MC and different behaviour of loose and tight ER can not be traced back to the true
object and its calibration.

The loose and tight EM are compared as well after the tight selection as defined for the
calibration studies in Figure 9.4. No differences of the two working points are found for tight
electrons simulated by the W MC or originating from data events, per definition.

2Tt is assumed that the produced Eis* dominantly originates from the decay products of the W boson.
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The loose and tight E for electrons fulfilling the TightLH identification
and isolation are shown for a) W MC and b) data.

Predicting the composition of real and fake electrons: The remaining aspect, after study-
ing the effects from object calibrations and implications on ER is the composition of
events with respect to real and fake electrons in the phase-space measured in this thesis. An
estimate of the composition of data events, i.e. the fraction of real electrons and electron
fakes dominantly originating from jets, is investigated based on a comparison of MC events
and data, because the composition is not known in data a priori. The modelling of MC
events is assumed to correctly predict the contribution of real electrons from the MC-based
processes. Data and MC are compared after the loose selection defined for the object
calibration study, where two requirements are added: First, electrons are not allowed to fulfil
the tight identification requirements, because differences are expected to contribute to the
loose identification level only. In addition, the electron is required to pass py(e) > 65 GeV
in order to increase the similarity to the selection in the signal region. The comparison of
data and MC events as a function of E¥*5 based on the loose E**% definition, is shown
in Figure 9.5. The analysed dataset is compared to the stacked contributions from all
simulated MC-based processes, where no multijet estimate is taken into account on purpose.
Importantly, the visualisation corresponding to the loose FE2*% definition represents a
choice only at this point. The MC-based processes are assumed to describe the real electron
fraction of data events, while the remaining difference, i.e. data subtracted by the sum of
all MCs, refers to the fraction of fake electrons.

However, it can be observed in the ratio between data and MC that the fraction of electron
fakes is more than three times higher compared to the fraction of real electron in the
region of B < 60 GeV. In contrast, the fraction of real electrons becomes dominant for
approximately EX > 90 GeV. In the transition region, a decreasing fraction of electron
fakes is visible.
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MC-Data comparison is shown for EX for electrons fulfilling the loose
identification but not the tight identification, denoted as loose-not-tight (LNT). The loose
E2iss definition is used.

Summary and conclusions on the EX working point: In the studies presented in this sec-
tion it has been shown that assumptions on the particle type in the region where the fake
electron background is estimated and the respective calibration applied for these particles
leads to differences in the EXS calculation.

It can be concluded that loose objects that are truly real electrons are well-described by using
the loose E™*° working point, whereas loose objects that are truly jets are well-described
by tight E2ss. But neither the loose FE2*% nor the tight F2* provides an optimal
estimate for the full phase space. In this thesis, the fake background estimation relies on
inverting the E* requirement. Consequently, a difference in the EX is expected for the
region, where the fake background is estimated and the signal region because the fraction of
real and fake electrons in data differs substantially. Nevertheless, it is expected that the
tight E™*®° (loose FE2'*%) provides a more reasonable estimate of the true missing energy
in the region where the fake background is estimated (in the signal region), because it is fake
(real) electron enriched. However, the EX5 working point should not be changed depending
on the phase space, because it would be inconsistent, i.e. the same events would be handled
differently. Nevertheless, the studied dependence on the choice of objects in the EM* has to
be taken into account.

In this thesis, the loose E%5 WP is used due to its more reasonable energy estimation
in the signal region, i.e. EM > 85GeV, where the measurement is performed. In order
to describe the expected differences originating from the composition of real and fake elec-
trons another B WP as described in the following section and applied consistently as a
systematic uncertainty.

Although the discussion has been restricted to differences observed in the EX*S calculation
related to the Matrix Method, it has to be pointed out that alternative methods are affected
as well. For example, the template method also relies on inverting identification criteria and
therefore have to be considered affected as well.
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9.2.2 Estimation of object- and phase-space dependent ERis

In the following, another EX'* working point taking into account the dependence on the
real and fake electron composition and the selected phase space is defined. The so-called
mixed EPS is estimated as the weighted sum of loose E¥*5 and tight E®*S fractions,
where the weighting relies on the real and fake electron fractions.

The estimation of real electron fractions, i.e. the part of events well-described by the
loose E2*®5 and subsequently the estimation of the mixed F¥*% working point are de-
scribed in the following. In the end, the mixed E%'** working point will be used as a
systematic uncertainty.

Calculation of real and fake electron fractions:  The pre-requisite for an estimation of
the mixed EB** working point is the knowledge of the weights required for adding the
loose EM°®5 and tight F@*® estimates proportionally. The fractions depend on the phase
space and, for this reason, need to be estimated for each region where the multijet corre-
sponding to the mixed FE2'*® working point should be estimated. The calculation of the
loose E®*s fractions obtained in the signal region is described exemplarily as a function of
the transverse momentum pr(e) in Figure 9.6.

Here, the comparison of the stacked MC-based processes and the data events are compared,
similarly as in Figure 9.5 in Chapter 9.2.1. The events are selected following the full signal
region selection, except for the tight identification requirement of the electron. Instead, only
the loose identification requirement needs to be passed. The ER requirement refers to the
loose EM*®5 working point in order to consistently use the same working point as for the
nominal estimation. It should be stated that it could not be validated that the loose E®sS
provides, in fact, the most reasonable choice at the timeline of this thesis.
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Distribution of the transverse momentum pr(e) shown as a) MC-Data
comparison, where the electron fulfils the loose identification criteria only and b) the
corresponding loose FE2*S j.e. real electron, fraction in the signal region.
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In Figure 9.6, approximately twice as much data are observed with respect to the sum of
all MC processes for low transverse momenta pr(e). The ratio of data and the sum of MC
events increases for increasing transverse momenta of the electron.

In order to quantify the fraction of events well-described by loose EZ*% and tight E&sS
from the MC-Data comparison, the following equations are used

1
= 9.7
Fioose Data/Pred. ’ (97)
1
Jiignt Data/Pred. ’ (5:8)

where the fraction f . corresponds to events from real electrons that are well-described
by the usage of the loose E®*S working point and the fraction Jtignt Tefers to events
from fake electrons that are well-described using the tight E®*% working point. As an
example, in case of twice as much data as MC it is assumed that half of the data events are
originating from real electrons, i.e. loose FE®*® is more suitable. And subsequently half of
the data originates from fake electrons, i.e. tight E®*S is more suitable. The calculated
loose E®sS fractions following Equation 9.7 are shown in Figure 9.6b. It can be observed
that the inverse behaviour as for the data and MC ratio, where the loose EX*® fraction is
approximately at 50% in the beginning and decreases for increasing transverse momenta.
The same procedure is performed in a three-dimensional binning depending on the transverse
momentum py(e), absolute value of the pseudorapidity |n(e)| and the absolut value of the
angle between the electron and missing transverse momentum |A¢(e, E¥%)| and the result is
shown in Figure 9.7. A strong dependency can be observed in all three variables in Figure 9.7.
Overall, large values of the loose E®® fractions are observed for low and intermediate
transverse momenta, whereas small values of the loose E*® fractions are found for high
transverse momenta of the electron. As a consequence, the loose E®'*S fractions indicate
that more and more fake electrons are found at larger and larger py(e). Furthermore, the
loose E™*s fractions decrease for electrons in the forward region and increase for smaller
angles between the electron and missing transverse momentum.

Estimation of the mixed F¥#%5: The mixed E¥*S is calculated as the weighted sum of the
loose E™°5 and tight E%'*S where the weights are determined based on the loose FE&2'ss
fractions defined in the previous paragraph. In the following, the Matrix Method is used to
determine the contribution from multijet events. A full, separate multijet estimate for the
loose E%'*s and tight FE2**® working point is performed. This is required as a starting
point in order to obtain the mixed E®ss.

The estimation of the multijet background corresponding to the mixed E®* working point,
MJ(mixed E®*%) relies on the following formula:

Nevents Nevents
MJ(nixed Euss) = Z flioose . MJi(loose Emiss) + Z t]ight - MJJ (tight Fmiss), (9.9)
i=0 =0

where per event the fractions fj . and fig, as described in Equation 9.7 and Equa-
tion 9.8 and the estimated multijet of the loose and tight FEX*% MJ(loose FEI*®%) and
MJ(tight E®*%) as described in Equation 9.4 are used. It can be seen that the fractions
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Loose ERs% j.e. real electron, fractions in the signal region binned three-
dimensionally in the transverse momentum of the electron pr(e), the absolute value of the
pseudorapidity |n(e)| and |A¢p(e, EX%)| obtained from MC-Data comparisons, where the
electron fulfils the loose identification criteria only.

are effectively used as weights. These weights are applied for each event ¢ and j in separate
estimations of the multijet. Afterwards, both reweighted multijet estimates are summed up.
Two edge cases have to be considered for fi,,s and fip,: First, the nominal estimate of the
loose EM*s working point is used in case of f . > 100 %, i.e. where more real electrons
described by the MC than data events are present. Second, the nominal estimate of the
tight ET'*% working point is used in case of fj . < 0%, i.e. where no contributions
from real electrons are available, corresponding to a maximal uncertainty with respect to
loose FERiss,

Finally, the two per-event weighted summands are added together and represent the esti-
mated multijet contribution of the mixed E%®'sS. Here, the phase space and the composition
of objects, based on the MC-Data comparisons of loosely identified electrons only, are taken
into account. As aforementioned, the mixed F%**% working point will be used as a systematic
uncertainty, while the loose FE2** is used nominally. In the following, the nominal multijet
estimate via the Matrix Method will be discussed further.
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9 Background estimation

9.3 Measurement of the real efficiencies

The pre-requisite for the application of the Matrix Method is the knowledge of the real and
fake efficiencies. For the estimation of the real electron efficiency, a phase space with a high
fraction of real electrons is required. The event selection defined in Chapter 8.1 is adjusted
in the following way:

e A truth matching of the reconstructed tight level electron to the born level electron is
added. The geometrical distance is restricted to AR(e, e, ,,) < 0.1.

o No Ess and mM requirements.

Since the ER requirement is removed, the estimation of the real efficiency does not depend
on the loose or tight ER* working point®. The real efficiency is measured based on the
signal MC, where the necessary information corresponding to the reconstructed and MC
truth level are available and a very high fraction of real electrons is ensured. In Figure 9.8,
the real efficiency, calculated based on Equation 9.2 in a binned distribution, is shown as a
function of py(e) and |n(e)|.

The binning of the real efficiency is motivated based on two requirements: On the one hand,
it should reflect the dependency in py(e) and |n(e)| precisely. On the other hand, large
statistical uncertainties should be minimised, because of their impact on the precision of
the measurement. Four |n(e)| bins, where two bins are used in the central region until the
transition region of the barrel and end-cap of the LAr calorimeter and two bins are used in
the forward region, and eight p(e) bins per |n(e)| bin are defined.

Overall, the real efficiency is close to unity fulfilling e ; > 0.9 in most py(e) bins. A single sta-
tistical fluctuation can be observed in the bin py(e) € [500,800] GeV and |n(e)| € [2.01,2.4],
which originates from a few events with large weights and large statistical uncertainties of

3Nevertheless, real efficiencies for both working points have been estimated and found to be identical.
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Real efficiencies depending on pr(e) and |n(e)| in the electron channel.
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9.4 Measurement of the fake efficiencies

the inclusive W MC samples. Further details can be found in Appendix B. Furthermore, the
real efficiencies decrease (increase) slightly for large transverse momenta and large (small)
pseudorapidities. Lastly, a minimum in the real efficiency at py(e) &~ 200 — 300 GeV is
visible, which originates from the electron isolation requirement demanded on the tight level.
As described in Chapter 8.1, the isolation requirement consists of two requirements where
the transition area is at pp(e) ~ 233 GeV.

An additional dependency on the angular difference between the electron and missing trans-
verse momentum, A¢(e, EX), has been studied, where no significant impact on the real
efficiency has been found. The real efficiency binned in three variables can be found in
Figure C.1 in Appendix C.

Finally, another study has been performed in order to estimate potential differences due to
the electron charge. The real efficiency, separated into e and e~ channel, is displayed in
Figure C.2 in Appendix C. Only small differences between the e™ and e~ channel are found,
where statistical fluctuations induced by the inclusive W MC sample are expected in the
region of high m¥. As a result, no additional separation in the electron’s charge is used.

9.4 Measurement of the fake efficiencies

Besides the real efficiencies, the fake efficiencies need to be estimated for the evaluation of
the multijet background. A fake enriched region is defined, where only changes with respect
to the signal region event selection defined in Chapter 8.1 are mentioned here:

o The E requirement is inverted to ER < 65 GeV.
e The mlfV requirement is dropped.

This region will be called QCD enriched region because multijet events that contribute
e.g. due to a jet which is misidentified as a fake electron are characterised by a small
missing transverse momentum ER. The dominant source for such jets are dijet events,
where usually no neutrinos are found in the final state. As a consequence, the inversion
of the EXSS requirement ensures a fake electron enriched region and, in addition, provides
orthogonality of the region where the fake efficiencies are estimated and the region where
the fake efficiencies are applied.

Another consequence of the inversion of the EIsS requirement is a substantial difference
in the estimated fake efficiencies between the loose and the tight E®'*% working point,
because a different amount of events fulfil the inverted EXS requirement, due to the shift
of the ER distribution, as discussed in the previous section. Although the loose ERi=*
working point is nominally used, the fake efficiencies for both working points have to be
determined in order to calculate the mixed FE2'*% based multijet estimate as discussed
in Chapter 9.2. In the following, the fake efficiencies for the loose E®** working point
will be discussed, while the fake efficiencies for the tight FE'* working point are only
briefly described. Nevertheless, all releveant distributions for the tight E¥s® are added in
Appendix C.

The estimation of the fake efficiency relies on a data-driven approach, where the fake effi-
ciencies are obtained from MC-Data comparisons instead of MC samples directly. Therefore,
data is compared to the summed contribution from all MC samples, representing the real
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9 Background estimation

electron contributions. The mismatch of the data and the MC sum is identified as fake
electrons. For this reason, the contributions from all MC processes are subtracted from
the data events in order to obtain the electron fakes. The subtraction is demanded on the
loose and on the tight level separately. The amount of fake electrons fulfilling the tight level
are divided by the amount of fake electrons fulfilling the loose level, resulting into the fake
efficiency. A visualisation of this estimation of the fake efficiency is shown exemplarily for
the tight level EXss distribution, where the nominal MC-Data comparison and fake electrons
from the subtraction are shown in Figure 9.9.

In order to cover all dependencies, the fake efficiencies as a function of the transverse
momentum pr(e), the pseudorapidity n(e) and the absolute value of the angle between the
electron and the missing transverse momentum |A¢(e, EXi5)| is investigated. The estimated
fake efficiencies in each of the variables are presented in Figure 9.10. Each fake efficiency is
presented for two regions in the transverse momentum of the electron. The red distribution
displays the lower pp(e) fake efficiency in the range of 65 GeV < pp(e) < 145 GeV and the
blue distribution focuses on the high py(e) fake efficiency with py(e) > 145 GeV. The main
motivation for the separation is given by the trigger threshold at a transverse momentum
of pp(e) = 140 GeV. As introduced in Chapter 7.1, the trigger requires an identification
requirement, which is lowered from mediumLH to looseLH at that threshold. Since the
identification criteria from the trigger is stricter than the loose level of the Matrix Method
for pp(e) < 140 GeV, the loose level is effectively raised to the mediumLH working point
of trigger criteria. For this reason, it is more likely that fake objects are able to fulfil the
tight level of the Matrix Method, because they already fulfil the identification requirement
from the trigger. For pp(e) > 140 GeV the looseLH working point of the trigger is close to
the loose level of the Matrix Method. For this reason, the difference between the loose level
and the tight level of the Matrix Method is larger and therefore less of the loose events are
expected to fulfil the tight level requirement. As a consequence, a substantially smaller fake
efficiency is expected for pp(e) > 140 GeV.

The explained discontinuity in the fake efficiency as a function of the transverse momentum

Xl03 T T T T X103 T T T T
15001 ocp enriched, e 1s=13 TeV, 139.0 fo ] L QCD enriched, &* fs=13TeV 1
i ;\[A)[ati ev. 4 I —e— Data 1
N —— MC

i
1 Diboson 1000-_ Fakes _—

mm Single top 1
1Ztjets -
mW - TV, J

1000

Events / 1.0 GeV
Events /1.0 GeV

5001 500}

20 40 60 80 20 40 60 80
ET™ [GeV] ET™ [GeV]

Visualisation of the determination of fake efficiencies, exemplarily for the tight
level comparison of data and MC for the loose FE*% working point. In a), the comparison
of data and MC events and in b) additionally, the number of fakes from the subtraction of
data and MC is shown explicitly.
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Fake electron efficiency for |A¢(e, ERs%)|, n(e), pr(e) and BRI separated
based on the transverse momentum of 65GeV < pp(e) < 145GeV (red) and pr(e) >
145 GeV (blue) for the loose FE** working point.

can be indeed observed in Figure 9.10a. In addition, the same effect is visible for n(e), EMmiss
and |A¢(e, EXs)| where the high pr(e) fake efficiency is smaller compared to the low
P.(e) fake efficiency. Besides the dependency observed in the transverse momentum, further
dependencies in 7(e) are displayed in Figure 9.10b where a discontinuity in the fake efficiency
close to the transition region from the central to the forward region at |n(e)| € [1.37,1.52] is
visible. Other than that, the fake efficiency differs as a function of the transverse momentum
in the forward region, i.e. comparing the red and blue line in the region |n(e)| > 1.52. Lastly,
the fake efficiency as a function of |Ag(e, EX%)| is given in Figure 9.10c. A fake efficiency
of 40 %(15 %) for small angles and pp(e) < 145GeV (pp(e) > 145GeV) and an increase
for larger angles can be observed. For pp(e) < 140 GeV and |Ad(e, EM)| = 7 the fake
efficiency decreases. The fake efficiency as a function of EX* is shown in Figure 9.10d. The
dependency on the E¥S requirement can not be used for a parametrisation because it is
inverted to ensure the orthogonality. Since a parametrisation is not possible a rather flat
dependence is important, which can only be observed for p(e) > 145 GeV.

The same dependencies of the fake efficiency are investigated for the tight E®'** working
point, as shown in Figure 9.11. The fake efficiency as a function of the transverse momentum
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Fake electron efficiency for |A¢(e, Ems%)|, n(e), pr(e) and EXR separated
based on the transverse momentum of 65GeV < pp(e) < 145GeV (red) and pr(e) >
145 GeV (blue) for the tight E®* working point.

pr(e) and the pseudorapitiy n(e), in Figure 9.11a and Figure 9.11b respectively, are quite
similar to what has been observed for the loose FE**% working point. In contrast, the fake
efficiency as a function of |Ag¢(e, ER*)| behaves very differently. Large fake efficiencies are
visible at small angles monotonously decreasing until |Ag(e, EX%)| = «r. The different trend
can be traced back to the differences visible for the F¥*s distribution. Importantly, a flat
Emiss dependence can not be observed in Figure 9.11.

For the final calculation of the multijet estimate, twelve bins in the angle between the electron
and the missing transverse momentum, four bins in the absolute value of the pseudorapidity
and eleven bins in the transverse momentum of the electron are used in order to cover the
dependencies of the fake efficiency. These fake efficiencies for the 1loose MET working point
are shown in Figure 9.12 and Figure 9.13, where in each six |A¢(e, E2)| bins are shown.
For each of the plots, the |n(e)| binning is indicated by differently coloured distributions of
the transverse momentum p(e).

The same trends that have been discussed for Figure 9.10 can be observed in the three-
dimensionally binned fake efficiencies, which will be used, together with the two-dimensionally
binned real efficiencies described in Chapter 9.3, in order to estimate the nominal multijet
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9.4 Measurement of the fake efficiencies

background via the Matrix Method.
The three-dimensionally binned fake efficiencies for the tight E%* working point are shown
in Figure C.3 and Figure C.4 in Appendix C.
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9.5 Systematic uncertainties on the multijet background

9.5 Systematic uncertainties on the multijet background

Since the requirements in the estimation of the real- and fake efficiencies such as the definition
of the phase space, where the fake efficiencies are estimated, is arbitrary to a certain extend,
a set of systematic uncertainties is defined. The set of the systematic uncertainties accounts
for the uncertainties that are inherent to the Matrix Method. A detailed introduction to
systematic uncertainties is given in Chapter 11. The following criteria are separately varied
in the estimation of the fake efficiency, where each variation corresponds to a systematic
uncertainty:

1. Restrict the missing transverse momentum to ER € [0, 30] GeV.
2. Restrict the missing transverse momentum to E¥* € [30, 65] GeV.
Scale the cross-section of all MC samples in the background subtraction by +6 %.

Require at least 1 jet, with pp(jet) > 30 GeV and AR(jet,e) > 0.2.

oro W

Calculate EX according to the mixed E2*ss WP.

The first and second variation of the event selection is combined as one asymmetric two-sided
systematic uncertainty, i.e. consisting of an up- and down-variation. The threshold of the
EXsS variations is determined based on the fake efficiency in Figure 9.10d, where a constant
efficiency is observed until E¥"® = 30 GeV and a slight increase between ER = 30 GeV
and 65GeV. The systematic uncertainty is denoted as MJ EL MET. Another two-sided
systematic uncertainty is obtained from the variation of the MC cross-sections by +6 %,
labelled as MJ EL MC scaling. The fourth variation, denoted as MJ EL 1 jet, yields a
one-sided systematic uncertainty where the event selection is modified by an additional jet
requirement, enhancing the similarity to dijet events. And finally, a one-sided systematic
uncertainty is defined in order to cover differences observed in the definition of the FMss
estimation, referred to as MJ EL mix MET, as discussed in Chapter 9.2.

Each variation of the event selection is used to calculate individual fake efficiencies and the
corresponding multijet estimate, which is compared to the nominal multijet estimate in
order to determine the size of each systematic uncertainty and is presented after the signal
region selection in Figure 9.14. The measurement binning, as introduced in Chapter 8.3,
is used where the double-differential measurement binning displays the six bins, where the
In(e)| distribution for each m}" bin is shown side-by-side. The first m* bin, which is not
part of the cross-section measurement, is highlighted in grey colour.

The systematic uncertainty is estimated for the combination of the e™ and e~ channel. In
Figure 9.14a and Figure 9.14c, the systematic uncertainty with respect to the nominal
multijet is shown. The systematic uncertainty on the measured cross-section is approximated
by the scaling of the uncertainty to the difference of data and background events per bin.
The obtained expected impact of the systematic uncertainty on the cross-section is displayed
in Figure 9.14b and Figure 9.14d.

Each systematic uncertainty is smoothed, by averaging over neighbouring bins, in order
to reduce statistical fluctuations. The smoothing procedure from the ROOT framework is
applied with respect to the nominal multijet, as shown in Figure 9.14a and Figure 9.14c.
Importantly, the smoothing procedure does not work for the m!¥ ® |n(e)| distribution. As a
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consequence, only fluctuations as a function of |n(e)| are reduced. The MJ EL MC scaling
systematic uncertainty is symmetrised additionally.

The largest impact is observed for the one-sided mixed FE2*S% variation with an uncertainty
of —53% at high mlfV , as shown in Figure 9.14a. The remaining systematic uncertainty
on the nominal multijet estimate extend up to approximately fgggg for the full range of
mY, where especially the MJ EL 1 jet systematic uncertainty is much smaller. As a side
note, an uncertainty of 0% is displayed in the range of mX € [1100,1400] GeV. Since
negative estimates of the multijet background are artificially set to zero, the corresponding
systematic uncertainties are zero as well. The approximated systematic uncertainty on the
cross-section in the measurement range, i.e. m%/ > 200 GeV, is within +2.2 % as displayed
in Figure 9.14b. It should be noted, that these systematic uncertainties are assumed to be
largely uncorrelated and, for this reason, the quadrature sum is needed.
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In Figure 9.14c, the systematic uncertainties are presented for the double-differential cross-
section measurement binning. The systematic uncertainties are the largest in the range of
m¥ € [150,200] GeV and decrease for increasing transverse masses. Furthermore, it can
be seen that most systematic uncertainties with respect to the nominal multijet decrease
for increasing |n(e)| in all m¥ bins. The opposite trend is observed for the approximated
systematic uncertainty on the cross-section. In this case, the uncertainty increases as a
function of |n(e)| and in particular large uncertainties are present for |n(e)| € [1.2,1.4] and
In(e)| € [2.2,2.4]. In the range, where the measurement is performed an up-variation of 41 %
and a down variation of —25 % at most can be observed in Figure 9.14c, which corresponds
to an uncertainty of up to fi:ggz on the cross-section as shown in Figure 9.14d.

Importantly, it should be highlighted that an increase in the multijet estimate results in a

decrease of the cross-section.

9.6 Background estimate of the multijet in two different regions

In the following, the Data-prediction agreement including the estimated fake electron
background, denoted as multijet, is studied. The summed contributions from MC processes
and the estimated multijet is compared to data in two regions different to the signal region.
A reasonable agreement, in order to show whether the multijet is well-modelled, is targeted
for the application of the real and fake efficiencies in the signal region.

9.6.1 Multijet closure region

The first region, the so-called multijet closure region (CR), is defined to be as close as possible
to the region, where the fake efficiencies have been estimated as outlined in Chapter 9.4. The
CR is defined with respect to the event selection described in Chapter 8.1 by the following
requirements:

o The ER requirement is inverted to B < 65 GeV.
o The mY requirement is dropped.

The phase space corresponding to the CR consists dominantly of electron fakes, which mostly
originate from jet events, where the loose FE'*% working point is expected to provide a
non-optimal energy estimate, as discussed in Chapter 9.2. Data events are compared to
MC and multijet contributions in the CR. The systematic uncertainties for the multijet are
evaluated in order to investigate the modelling of the multijet estimate.

Since the evaluation of the mixed E®*° related systematic uncertainty depends on the phase
space, it is necessary to estimate the loose E'*® fractions for the CR first. These are
estimated following the same procedure as described in Chapter 9.2.2.

The same binning as for the determination of the fake efficiencies in the transverse momen-
tum of the electron pr(e), the absolute value of the electron’s pseudorapidity |n(e)| and
the absolute value of the angle between the electron and missing transverse momentum
|Ag(e, Emi5)| is used, where the first six bins and the following six bins in |A¢(e, EXS)|
are shown in Figure 9.15 and Figure 9.16, respectively.
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Overall, it can be observed that the loose E'*S fractions, i.e. the percentage of real
electrons in the data, is 50% or less in all bins. The percentage of real electron is the
highest for low |n(e)| and low py(e), decreasing continuously in the forward region and for
higher pr(e) bins. While the maximal fraction of real electrons is found for py(e) ~ 110 GeV
in the first seven |A¢d(e, EX)| bins, the maximum shifts towards lower py(e) for later
| Ag(e, EXIs5)| bins.

It can be concluded that the amount of electron fakes originating from jets is much higher
in the CR if comparing to the loose FEZ**® fractions estimated for the signal region. In the
CR, most of the electron fakes originate from jet events, which is expected based on the
results discussed in Chapter 9.2.1. Due to the large tight E®'*® fractions, the mixed FE&ss
working point is expected to provide a sizeable systematic uncertainty in the CR. As a result,
the multijet estimate corresponding to the tight EX*° working point would lead to a more
reasonable modelling.

MC-Data comparisons for pp(e), ERS |Ag(e, ER)|, mlV, n(e) and ¢(e) for the e* and
e~ channel in the CR are shown in Figure 9.17 and Figure 9.18. The statistical uncertainty
and the systematic uncertainties from the multijet estimate are added in quadrature and
then represented by the uncertainty band. The systematic uncertainties corresponding to
the multijet estimate are estimated following the procedure described for the signal region
in Chapter 9.5.

In the ratio, data and prediction agree approximately within the estimated uncertainty
band, represented by the grey coloured area, for the et and e~ channel. Several trends can
be observed in the ratios of the kinematic distributions, where the data points are at the
edge of the uncertainty band and some even beyond: A linear shape is observed in the ratio
over the full range of the EXi distribution and in the range of m¥ € [30,130] in the m}
distribution. In addition, a decrease for absolute values of the angles below 7/2 is found
in the ratio of the |A¢(e, ER*)| distribution. Lastly, data points are not covered by the
uncertainty band for |n(e)| € [1.2,1.4] and |n(e)| € [2.2,2.4].

First of all, it has to be considered, that the nominal ratio belongs to the loose EX=s
working point, where the energy calibration has been shown to be suboptimal and, for this
reason, differences are expected to occur. Exactly this flaw of the estimated MJ should be
covered by the developed mixed MET systematic uncertainty. The mixed MET systematic
uncertainty provides indeed the largest contribution of the total MJ systematic uncertainty
and covers to a large fraction the observed differences between data and the nominal
prediction. The MC-Data comaprisons, where only the mixed MET systematic uncertainty is
added as an uncertainty band, are shown exemplarily for the e™ channel in Figure C.5 in
Appendix C.

Furthermore, there are two potential sources for differences between the two regions in
|A¢(e, ERIs5)|: First, the event topologies differ for the two regions, where large | Ag(e, EX)|
correspond to a back-to-back topology of the electron and ER and, in contrast, small
| Ag (e, EXisS)| refer to a boosted topology of the electron and EXi. The former is expected
to be produced from a decay of a particle, where the decaying particle has a small transverse
momentum. In contrast, the later topology is expected to originate from a decay of a particle,
where the decaying particle has a large transverse momentum. The largest contribution at
small |Ag(e, )| is the multijet production, where dominantly dijet events contribute. In
this case, one of the jets with a large transverse momentum is misidentified as an electron,
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83



9 Background estimation

Events per bin width

Events / 0.16

Events /0.2

Data

84

Pred.

3
X
9 T T 10 T T T
10°F MICR, & {s=13 TeV, 139.0 fb* I MICR, e {s=13 TeV, 139.0 fb* 1
7 - et ] [ - mmMue ]
10 1 Diboson mm Single top 1000r 1 Diboson mm Single top
[1Z+jets mW - tv. i [1Z+jets mWwW - tv;

7//, stat.+MJ sys. 7//, stat.+MJ sys.

Events /1.0 GeV

500}

70 10?

2x10? 10° -
p_(e) [GeV] EMSS [GeV]
3
X
4000 10 T T T - 1010 —
[ MICR, e (s=13 TeV, 139.0 fb* 5 10° {s=13 TeV, 139.0 fb™ ]
- ¢ Data mW -ev § mW - ev,]
- mmtt mm Multijet (] mm Multijet
3000F —Diboson  mmSingle top c 107 —Diboson  mmSingle top 4
i [ Z+jets mWwW - TV, o) [1Z+jets mwW - TtV ]
N 7//, stat.+MJ sys. o 7//, stat.+MJ sys. 3
(]
o
82
c
[)
>
LLl
8
@
(a]
o 40 10 2x10° s 10°
IAg(e, EMS9)| m(eEr™) [GeV]
X103 T T T X103 T T T
MJCR, e (s=13 TeV, 139.0 fb* ; 1000F MICR, e {s=13 TeV, 139.0 o™
3 e Data mW - ev, | o Data mWwW - ev, ]
2000F mti B Multiiet ; mtt B Multijet
[ [ Diboson [ Single top ] = [ Diboson I Single top
3 [ Z+jets mW - TtV { < [ Z+jets mW - TV,
1500LF 7/, stat.+MJ sys. h g 7//, stat.+MJ sys. ]
r 7 - 7 ] w
1000F 3
500F ]
0 L L — 1 L
1.2 ©
1 o
0.8 a

ne) )

Comparison of summed MC, the estimated multijet and data in the closure
region for the e~ channel. The uncertainty band is composed of to the statistical uncertainty
and the systematic uncertainties corresponding to the multijet estimate, which have been
added in quadrature.
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while the other jet has a very small transverse momentum. A suboptimal energy estimate
of the fake electron, that is truly a jet, could lead to the reconstruction of fake EMss.
In that way, the different ratio at small |Ag(e, E2%)| might be related to the difference
of the loose E*% and tight FE*% working points. Second, the phase space of small
|Ag(e, Emiss)| is affected by mismeasurements.

Then, it has to be taken into account that the investigated variables are partly highly
correlated, where e.g. a difference between data and prediction in E¥S is visible in m/Y
as well. Similarly, the difference in the ratio at |A¢(e, ER5)| < 1.5 is correlated to the
difference in the ratio of the missing transverse momentum FERs.

Lastly, it should be highlighted that the disagreement in such phase spaces were investigated
in the search for a W’ boson [94], where the trends in the ratio as a function of E and in
the range of m¥ € [110,200] GeV were seen as well.

In addition, a difference in the agreement of data and prediction as a function of the transverse
momentum pp(e) is observed for the e™ and e~ channel. For the multijet estimate, the
combined e* fake efficiencies are used, because from a physics point of view no motivation for
a non-negligible charge-dependence of the fake efficiencies has been found. Since the observed
charge-dependent difference in the agreement is covered by the systematic uncertainty of
estimated multijet, it has not been studied further throughout this thesis.

9.6.2 Multijet validation region

Although the agreement of data and predicted events in the CR is important to show that
the Matrix Method is able to provide a reasonable estimate, the validity in a phase space
which differs from the region, where the fake efficiencies are estimated, has to be studied.
The multijet validation region (VR) is defined with respect to the event selection defined in
Chapter 8.1, where the following requirements are modified:

o The E}' requirement is removed.
o The m} requirement is removed.

In comparison to the CR, the B < 65 GeV requirement is removed, which enhances the
similarity to the event topology of the signal region.

The MC-Data comparisons for pp(e), ERSS |Ag(e, ERiss)|, mM | n(e) and ¢(e) in the
validation region for the e and e~ channel are shown in Figure 9.19 and 9.20. The
uncertainty band represents the statistical uncertainty and the systematic uncertainties from
the MJ estimate as explained in more detail in Chapter 9.5. The loose E!*S fractions,
i.e. percentages of real electrons, for the VR have been estimated in order to determine
the mixed E®*% systematic uncertainty and are shown for completeness in Figure C.6 and
Figure C.7 in Appendix C.

The phase space covered by the CR and VR are not orthogonal to each other, i.e. the
CR is a subset of the VR. Since the predicted number of events decrease as a function of
EXss the behaviour in the VR is characterised by the events in the CR. As a consequnce, a
similar behaviour can be observed for the absolute value of the pseudorapidity |n(e)|, the
azimuthal angle ¢(e), the absolute value of the angle between the electron and the missing
transverse momentum |Ag(e, E2)| and the transverse momentum of the electron py(e),
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where in both regions the amount of data events agree with the predicted events from MC
and multijet within the uncertainty band. In contrast to the CR, high missing transverse
momenta EX > 65 GeV are included in the VR and the modelling up to B ~ 1 TeV is
shown. Subsequently, the transverse mass of the W boson extends up to several TeV, i.e.
covers the phase space of the signal region, as well.

In general, a reasonable agreement of the selected data events and the prediction within
the systematic uncertainties is observed in most variables. Nevertheless, similar trends for
low EXsS| where in the ratio a linear increase in the range EM™ € [10,70], and at small
|Ag(e, Emis5)|, where the ratio differs substantially from unity, are visible. Furthermore,
deviations of data and prediction can be found at EXs € [70,200]GeV, which are not
covered by the estimated systematic uncertainty of the multijet. Differences in this range
of EMisS are known from other analyses, such as the search for a W’ boson [94], where the
differences are not expected to be related to the estimation via the Matrix Method, but
potentially arise from further issues in the EM* modelling.

As already discussed for the CR, a small difference in the agreement of data and prediction
as a function of the transverse momentum pr(e) between the e and e~ channel are found
in the VR as well. In addition, deviations between the e~ and e channel are visible for
Emiss > 200 GeV, where it should be considered that the transverse momentum and missing
transverse momentum are strongly correlated in a final state with a single electron and
single electron neutrino.

Finally, a reasonable agreement between data and prediction within the uncertainty band is
achieved for the key variables, m¥" and |n(e)|, in the CR and the VR. The approximately
linear increase in the ratio of data and prediction for m¥ € [40,200] GeV was investigated
in detail and is covered by the systematic uncertainty, where the largest fraction of the
uncertainty is provided by the mixed FE2'S® systematic uncertainty. Since the final cross-
section measurement is performed for m¥ > 200 GeV, where the agreement of data and
prediction is found to be reasonable, it can be concluded that the multijet background is
well-modelled by the Matrix Method.
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Figure 9.19: Comparison of the summed MC and the estimated multijet with data in the
validation region in the e™ channel. The uncertainty band is composed of the statistical
uncertainty and the systematic uncertainties of the multijet estimate, which have been
added in quadrature.
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Figure 9.20: Comparison of summed MC and the estimated multijet with data in the
validation region for the e~ channel. The uncertainty band is composed of the statistical
uncertainty and the systematic uncertainties of the multijet estimate, which have been

added in quadrature.
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10 Comparison of data and prediction

In the following, the sum of the expected signal and background events, denoted as prediction,
are compared to the number of measured data after the signal region selection. A good
agreement of the prediction with the number of data events is not a pre-requisite for a
measurement of the cross-section, but provides an important insight how well the phase
space and the contribution from each process are understood.

The statistical and systematic uncertainties are presented as an uncertainty band in the
following, where the more general introduction and a detailed breakdown of single systematic
uncertainties can be found in Chapter 11. The sources for systematic uncertainties covered
in this section refer to the calibrated objects such as the electron, potential jets and the
missing transverse momentum, the multijet estimation via the Matrix Method and theoretical
systematic uncertainties of the tt process. Only systematic uncertainties with an impact of
at least 0.5% on the cross-section in at least one bin are considered.

First, an overview of the contributions of the signal and background processes is given. Then,
the comparisons of data and prediction in several different control variables and finally in
the measurement binning of the single and double-differential cross-section are shown.

An overview of the fractions of each process with respect to the prediction for the et and
e~ channels is shown in Figure 10.1, where the signal process contributes with 67.5 % and
56.9 % in the e and e~ channel, respectively. In this case, different fractions in the e™ and
e~ channel are expected due to the W boson charge asymmetry. Consequently, the signal
process provides the highest fraction of events, whereas the background with the largest
fraction is the tf process, which yields a fraction of about 20.6 — 28.0 %, depending on the

high erV, e’ {s=13 TeV, 139.0 fb* high mTW, e {s=13 TeV, 139.0 fb*
mW - ev, (67.5% mW - ev, (56.9%
mtt (20.6 %)( ) mtt (28.0 0%)( )
I Multijet (3.6 %) I Multijet (4.8 %)
—1Diboson (2.7 %) —1Diboson (3.7 %)
mm Single top (2.5 %) mm Single top (3.4 %)
WmWwW - 1v;(2.2%) mwW - 1v.(2.1%)

[1Ztjets (0.9 %) [1Z+jets (1.1 %)

Relative contribution of the different processes in the signal region for (a)
the e™ and (b) the e~ channel.
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10 Comparison of data and prediction

channel. The second largest background contribution is provided by the multijet process.
The MC modelling of the tt contribution has been studied in several dedicated validation
regions throughout the parallel analysis of the muon channel, which is described in detail
in Reference [45] and Reference [46], where it has been concluded that the t¢ process is
well-modelled by the MC.

Distributions of the transverse momentum of the electron, py(e), the missing transverse
momentum, ER25 the transverse mass of the W boson, m¥, the pseudorapidity, 7(e), the
azimuthal angle, ¢(e) and the absolute value of the angle between the electron and the
missing transverse momentum, |Ag¢(e, ER)| are shown for the e™ and e~ channels in
Figure 10.2 and Figure 10.3. In order to illustrate the peculiarities of the signal region,
the erFV € [150,200] GeV bin below the phase space that is actually measured is removed in
Figure 10.2 and Figure 10.3. In each of the distributions, a comparison of the prediction
and data events and the ratio of data events over prediction per bin are presented. The
uncertainty band, illustrating the statistical and the systematic uncertainties, is highlighted
with grey colour in the ratio. Overall, a good agreement between data and prediction for
the e™ and e~ channel can be observed, where almost all data points agree within the
uncertainty band.

The event topology of the signal process is characterised by W bosons that are mostly
produced with high masses and low transverse momenta, where the decay products, i.e. the
electron and electron neutrino, fulfil a back-to-back topology. Consequently, the transverse
momentum of the electron and the missing transverse momentum are expected to fulfil

pr(e) ~ BRI ~ mT"VfV in the majority of the considered events.

In Figure 10.2 and Figure 10.3, an absolute value of the angle |A¢(e, EX5)| ~ 7 illustrates
the aforementioned back-to-back topology of the signal process. As a result, also the
relation between the transverse momenta and the transverse mass of the W boson holds
approximately, where the maximum of the transverse momentum p(e) and of the missing
transverse momentum ER is visible slightly above 100 GeV, which is a consequence of the
mY > 200 GeV requirement of the signal selection.

The distribution of the azimuthal angle of the electron is expected to be flat, because no
flight direction of the decay product from the W boson is preferred. Similarly, the positive
and negative pseudorapidities, accounting for half of the detector each, are symmetric.
Finally, the mlfV distribution is shown in a fine binning. The distribution is monotonously
decreasing over the whole range, which is expected since the on-shell W boson mass at
m%V ~ 80 GeV is far below the requirement of the signal selection.

Finally, the transverse mass of the W boson in the binning of the single-differential cross-
section measurement, as defined in Chapter 8.3, for the et and e~ channel is shown in
Figure 10.4. The additional low m* bin, indicated by the grey coloured area, is re-included
here. The statistical uncertainties at high m%v are reduced by increased bin sizes with respect
to the finer binned distribution in Figure 10.2 and Figure 10.3. A very good agreement
between the measured data and prediction in the full range of mI{ﬂV can be observed, where
all data points agree within the statistical and systematic uncertainties.

In addition, the distributions of the absolute value of the pseudorapidity in bins of the trans-
verse masses m¥ ® |n(e)| in the binning of the double-differential cross-section measurement
for the e™ and e~ channel are shown in Figure 10.5 and Figure 10.6.
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Figure 10.2: Comparison of data and prediction in the signal region, labelled high m:,W ,
for the et channel. The uncertainty band consists of the combined statistical uncertainty
and of the systematic uncertainty, with an impact of more than 0.5% on the cross-section.
The statistical uncertainty of data events is represented by the uncertainty bars.
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Figure 10.3: Comparison of data and prediction in the signal region, labelled high m¥,
for the e~ channel. The uncertainty band consists of the combined statistical uncertainty
and of the systematic uncertainty, with an impact of more than 0.5% on the cross-section.
The statistical uncertainty of data events is represented by the uncertainty bars.
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Figure 10.5: Comparison of data and prediction in the measurement binning of the double-
differential cross-section for the e~ channel in the signal region. The two-dimensional
binning is divided into six |n(e)| distributions, where one |n(e)| distribution corresponds to
one m¥ bin. The uncertainty band consists of the combined statistical uncertainty and of
the systematic uncertainty, with an impact of more than 0.5% on the cross-section. The
statistical uncertainty of data events is represented by the uncertainty bars.
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Figure 10.6: Comparison of data and prediction in the measurement binning of the double-
differential cross-section for the e channel in the signal region. The two-dimensional
binning is divided into six |n(e)| distributions, where one |n(e)| distribution corresponds to
one m¥ bin. The uncertainty band consists of the combined statistical uncertainty and of
the systematic uncertainty, with an impact of more than 0.5% on the cross-section. The
statistical uncertainty of data events is represented by the uncertainty bars.
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10 Comparison of data and prediction

In Figure 10.5 and Figure 10.6, the double-differential measurement binning is represented
by six separated |n(e)| distributions, where one |n(e)| distribution corresponds to one m}
bin. The correspondence to a certain m%‘/ bin is given by a label below the labelling of the
x-axis. Additionally, the low transverse mass bin m¥ € [150,200] GeV is shown.

As previously noted, a symmetric distribution of events as a function of the pseudorapidity
n is expected, due to the symmetry of the ATLAS detector, and the absolute value of
the pseudorapidity is therefore used in the double-differential cross-section measurement.
The absolute value of the pseudorapidity provides roughly twice as many events and a
reduced statistical uncertainty, while the n dependence is still well-described. Furthermore,
additional bins could be added in the binning of |n(e)|, which would not be possible for 7,
while keeping the statistical uncertainty. Nevertheless, differences according to positive and
negative pseudorapidities have been studied and are presented in Figure D.2 and Figure D.3
in Appendix D. It can be concluded that the differences for +n are negligible within the
statistical uncertainty and the assumption of the 1 symmetry is justified.

A good agreement between the prediction and the data events within the uncertainties can
be observed in all distributions for the double-differential cross-section measurement, where
several peculiarities are discussed in the following:

In all distributions a mostly equidistant binning is used. One exception is made in the
transition region of the barrel and end-cap of the LAr calorimeter at 1.37 < |n(e)| < 1.52,
where the events are explicitly vetoed, because the energy measurement of electrons is less
precise in this region. In the neighbouring bins of the empty bin at 1.37 < |n(e)| < 1.52, an
increase of the uncertainty band, which is driven by the systematic uncertainties, indicates
the worse energy measurement.

A disagreement of data and prediction, exceeding the uncertainty band, is observed for
In(e)| > 2.2 in several m¥ bins, where especially the lower m} bins are affected. Two
sources for the disagreement have to be considered: First, the area has sizeable contributions
from the multijet background, because the energy measurement is less precise. Second, the
lepton scale factor is a binned quantity that depends on the transverse momentum and
pseudorapidity of the lepton. The lepton scale factor binning as a function of the absolute
value of the pseudorapidity

In(e)] = [0,0.1,0.6,0.8,1.15,1.37,1.52, 1.81, 2.01, 2.37, 2.47] , (10.1)

taken from Reference [95], is broader than the binning used for the measurement in this
thesis. A potentially too large scale factor for |n(e)| € [2.2,2.4] could arise from the broad bin
of the current lepton scale factor, because this does not sufficiently describe the dependency.
A detailed study concerning a finer 1 binning of the lepton scale factor is investigated by
a dedicated performance group at ATLAS indicating an improvement at high |n(e)| and
close to the transition region of the barrel and end-cap of the LAr calorimeter, but the final
impact on this measurement could not be estimated at the given timeline. Lastly, small
differences in the agreement of data and prediction for the e™ and e~ channel, especially
in the higher mY bins, are visible. A potential source for these deviations are statistical
fluctuations in the signal or background processes. However, the overall agreement within
the uncertainty is reasonable and, for this reason, no further studies are performed.

At the end, another representation of the double-differential cross-section binning, the
m¥ & |n(e)| distribution, is illustrated in Figure 10.7, where the same distributions shown in
Figure 10.5 and Figure 10.6 are combined side-by-side. Consequently, the same conclusions
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can be drawn as for the separated, individual distributions. The combined representation
allows a more compact visualisation and is technically needed for the unfolding as discussed

in detail in Chapter 12.
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The uncertainty band consists of the combined statistical uncertainty and of the systematic
uncertainty, with an impact of more than 0.5% on the cross-section. The statistical
uncertainty of data events is represented by the uncertainty bars.
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11 Systematic uncertainties

This chapter is dedicated to the different sources of systematic uncertainties that are consid-
ered in the cross-section measurement. Systematic uncertainties are categorised into a set of
four sources: theoretical, experimental, fake electron background and unfolding systematic
uncertainties. The systematic uncertainties referring to the multijet background estimation
have already been introduced in Chapter 9.5. Another set of uncertainties is related to the
unfolding procedure, as explained in Chapter 12.7.

A systematic uncertainty can be defined as a two-sided systematic, where the systematically
varied parameter is evaluated at two additional points besides the nominal value, and a
one-sided systematic, where a single systematic variation is used. In case of two-sided
systematic uncertainties, the two-point variations are referred to as an up and a down
variation. In addition, a two-sided systematic uncertainty is defined as symmetric, if the
absolute size of the up and down variations is identical and differs only by its sign, and is
asymmetric otherwise. All one-sided systematic uncertainties are asymmetric by definition.
The impact of the theoretical and experimental systematic uncertainties on the measured
variables m¥ and mY ® |n(e)| is discussed, where each systematic uncertainty is smoothed,
in order to reduce statistical fluctuations, and two-sided systematic uncertainties are sym-
metrised unless stated otherwise. A standard smoothing procedure from the ROOT frame-
work is applied, where statistical fluctuations are reduced by averaging over neighbouring
bins. Importantly, the standard smoothing does not work for the mY & |n(e)| distribution.
As a consequence, only fluctuations as a function of |n(e)| are reduced for m¥¥ ® |n(e)| and
result into different sizes of the systematic uncertainties as a function of m¥ and m* ®|n(e)|,
especially in the m¥ € [150,200] GeV bin.

Since more than a hundred two-sided systematic uncertainties are considered and a substan-
tial fraction of them is very small or negligible, only systematic uncertainties that induce a
difference of more than 0.5% on the measured cross-section in at least one bin are discussed
and presented in the following.

11.1 Theoretical systematic uncertainties

Theoretical systematic uncertainties are described in the following, where parameters required
in the calculation of the SM prediction are varied. Different parameters are separately
discussed, where the

1. ISR and FSR uncertainties,
2. factorisation and renormalisation scale uncertainties,

3. PDF uncertainties,
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11 Systematic uncertainties

4. hard scattering uncertainties,
5. hadronisation uncertainties,
6. HDAMP uncertainties

are considered. Parameters are varied to estimate the systematic uncertainties either based
on alternative MC samples, where a single parameter is varied, or based on the on-the-fly
weights, where additional multiplicative weights are applied to the nominal sample. Whether
a variation is obtained by the former or latter approach depends on the uncertainty.

The ISR and FSR accounts for additional radiations, where exemplarily a gluon is radiated
by one of the two incoming quarks that produce the W boson in the ccDY process. A
two-point systematic is provided as on-the-fly weights for each source of additional radiation.
The factorisation and renormalisation scale uncertainties are stored as on-the-fly weights for
the nominal MC samples. An up and down variation of the factorisation and the renormali-
sation scale is obtained by recalculating the SM predictions, where each scale is varied by
a factor of two. In total, seven combinations of pup € [0.5,1.0,2.0] and pp € [0.5,1.0,2.0]
are taken into account, where the combinations up = 0.5(2.0) and pp = 2.0(0.5) are not
considered. The envelope of all combinations determines the final systematic uncertainty.
The nominal PDFs are associated with a corresponding error set providing the PDF un-
certainties. In this thesis, the PDF uncertainty is obtained based on a hundred variations
contained in the PDF error set. Every individual variation is evaluated and compared to
the central value of the PDF. Evaluating the RMS of all variations allows to assign a single
systematic uncertainty in the end.

The hard scattering and hadronisation uncertainty rely on alternative MC samples. The
former is obtained by the replacement of the MC generator, where the difference of the
distribution of the nominal and the alternative MC sample is taken as an uncertainty. Simi-
larly, the replacement of the MC showering allows to determine a hadronisation uncertainty.
The HDAMP uncertainty relies on a variation of the POWHEG-specific HDAMP parameter,
which determines the damping of radiation with high transverse momenta. Commonly, alter-
native MC samples are used for the estimation of the corresponding HDAMP uncertainty.

11.1.1 Signal process

The nominal signal MC, as outlined in Chapter 6.3, does not contain the variations required
for the estimation of theoretical systematic uncertainties. For this reason, an alternative
MC sample, referred to as POWHEG+HERWIG 7, has been generated. Its validation has
been performed throughout this thesis as briefly discussed in Section 6.4. During the MC
generation, the required on-the-fly weights for the variation of the renormalisation and
factorisation scale as well as several modern PDFs were included. In addition, the alternative
sample allows to define a hadronisation uncertainty. However, the systematic uncertainties
corresponding to ISR and FSR and the HDAMP uncertainty are not covered.

Furthermore, two issues remain unsolved: First, the calculated cross-section obtained from
the generation of the alternative MC sample is 10 — 11% larger compared to the nominal
signal MC sample. Subsequently, a 10 — 11% difference at the truth and reconstructed
distributions between the nominal and the alternative signal sample are observed. Second,
unphysically large event weights were found, where too large weights per event and in the
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11.1 Theoretical systematic uncertainties

weight normalisation result in non-continuous distributions.

Nevertheless, a first estimate of the theoretical systematic uncertainties corresponding to
the factorisation and renormalisation scales as well as the hadronisation uncertainty are
evaluated. A partial dataset, corresponding to the data recorded during the years 2015 and
2016, is considered.

In general, theoretical systematic uncertainties affect the fiducial level distribution and,
as a consequence, the reconstructed level distribution changes as well. While usually only
systematic variations at reconstructed level have to be considered, both levels of the signal
MC are used as inputs to the unfolding, as described in Chapter 5. For this reason, the
relative difference! at both levels has to be evaluated. While their relative differences are
discussed in the following, a final systematic uncertainty for the theoretical uncertainties
can only be assigned after the unfolding.

!'The relative difference of two variables, 2, and x,, is calculated as *1—=2.
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Distributions at fiducial level are shown in a) and b),while the distributions
at reconstructed level are presented in c) and d). Relative difference of the systematic
variation corresponding to the factorisation and renormalisation as well as hadronisation
of the signal process as a function of m} for the combination of the et and e~ channel.
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11 Systematic uncertainties

The relative differences as a function of m}fV at fiducial and reconstructed level are shown in
Figure 11.1. The relative differences corresponding to the factorisation and renormalisation
scales are presented at fiducial level and at reconstructed level in Figure 11.1a and in
Figure 11.1c, respectively. Since the relative difference between the nominal distribution and
the systematically varied distribution of the POWHEG+HERWIG 7 is calculated, no offset
due to the different cross-section is expected.

Overall, a very similar behaviour of these distributions is found: On one hand, an approxi-
mately flat offset is observed for the pp = 2.0, up = 1.0 and pp = 0.5, pp = 1.0 variation.
On the other hand, linear shape differences are found in case of the additional scale vari-
ations, where variations with pp = 0.5 increase and variations with pp = 2.0 decrease in
m¥¥ € [150,2000] GeV.

In Figure 11.1b and Figure 11.1d, the relative difference between the distribution of the
nominal signal MC and the alternative MC, corresponding to the hadronisation systematic
uncertainty are shown at fiducial and reconstructed level. Due to the cross-section difference,
an expected 10 — 11% offset is visible at both levels. Neglecting the offset, an approximately
linear shape difference as a function of mlfv is observed at both levels. Deviations from the
approximately linear shape can be found, which are substantial for mlV € [250,900] GeV at
reconstructed level. In contrast to the relative differences corresponding to the factorisation
and renormalisation scales, the fiducial and reconstructed distributions for the hadronisation
are less similar.

The relative differences as a function of m¥ ® |n(e)| are shown for completeness in Ap-
pendix E, where a flat [n(e)| distribution in m}" € [150, 425] GeV and an increasing difference
for increasing |n(e)| in m¥ € [425,2000] GeV can be found. In addition, even larger fluctua-
tions are observed.

As mentioned above, the fiducial and reconstructed distributions of the signal process enter
the unfolding procedure and, for this reason, the impact on the cross-section can only be
obtained after the unfolding as described in Chapter 12.6.

11.1.2 tt process

In contrast to the signal MC, all required variations of the theoretical systematic uncertainties
are available for the ¢t process and are discussed in the following.

First of all, the estimation of the uncertainties corresponding to the PDF as well as the
ISR and FSR require an additional step before their final evaluation. For this reason, these
uncertainties are discussed first. The nominal PDF of the t¢ MC is NNPDF3.O0NLO, where
additionally a set of 100 variations is available. Each single PDF variation as a function of
the measured variables is represented by one of the red distributions in Figure 11.2a and
Figure 11.2b. The deviations of the varied PDFs from the nominal PDF extend up to 20%
as a function of m¥ and to more than 40% in one bin of the m¥ ® |n(e)| distribution. In
both cases, the RMS of each set of PDF variations is calculated and, in addition, shown
as the dark blue distribution. This final PDF uncertainty will be discussed further in the
following.

Then, the systematic uncertainty corresponding to the factorisation and renormalisation
scale is prepared by evaluating all combinations, as shown in Figure 11.2¢ and Figure 11.2d,
for the measured variables. It can be observed that all combinations are small for low mr‘fV .
Variations with p = 2.0 increase until their maximum of about 8% at high m/V, whereas the
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Preparation of the PDF as well as factorisation and renormalisation systematic
uncertainties corresponding to the ¢t background as a function of the measured variables
for the combination of the et and e~ channel. All PDF variations and their RMS are
visualised in a) and b), while all combinations of the pp, 1y scales are shown in ¢) and d).

pr = 0.5 variations decrease until their largest difference of about —8%. Since the envelope
is reasonably defined by the pp = 0.5, up = 0.5 and the pp = 2.0, pp = 1.0 variation, these
are added as a single two-sided systematic uncertainty with an up and a down variation
instead of using the envelope in the following.

As mentioned before, the HDAMP, hard scattering and hadronisation systematic uncertainties
are based on alternative MC samples. While the POWHEG specific parameter is varied from
HDAMP = 1.5m, to HDAMP = 3.0m,, the POWHEG generator is exchanged with Madgraph
and the PYTHIA 8 showering is replaced with HERwIG 7. Three additional sets of MC
samples are used. As a side note, these alternative MC samples are generated using the AF2
detector simulation. In order to obtain the systematic uncertainty on the nominal ¢¢ sample
with FS, the systematically varied alternative MC samples are compared to the nominal ¢t
sample with AF2 and the resulting relative difference is transferred to the nominal t¢ sample
with FS.

All theoretical systematic uncertainties corresponding to the ¢t MC as a function of the
measured variables are presented in Figure 11.3. Two representations of the uncertainties
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11 Systematic uncertainties

are provided: First, the uncertainties with respect to the nominal distribution of the ¢t MC,
shown in Figure 11.3a and Figure 11.3c. Second, the uncertainties are normalised to the
difference of data and the predicted background contributions, which provides a measure
that is proportional to the systematic uncertainty on the measured cross-section. This is
visualised in Figure 11.3b and Figure 11.3d.

An increasing uncertainty as a function of m*’ is observed in Figure 11.3a and Figure 11.3c.
Most variations can be found within 415 %, where only the HDAMP uncertainty extends up
to 43 %. A relative impact on the cross-section of 2% at the largest is estimated from the
representation in Figure 11.3b and Figure 11.3d. In addition, the shape and the sign of the
systematic uncertainties change, as a consequence of the normalisation. The change of the
sign enters due to the subtraction, whereas the different shape is characterised by the size of
the nominal ¢¢ contribution relative to the amount of data.
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Theoretical systematic uncertainties corresponding to the t¢ background as
a function of the measured variables, m¥ and m¥ & |n(e)| for the combination of the e*
and e~ channel. While the systematic uncertainties corresponding to the ¢t MC are shown
in a) and c), the systematic uncertainty is normalised to the difference of data and the
predicted background contributions in b) and d). The dashed grey line represents the 0.5%
threshold.
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11.2 Experimental systematic uncertainties

11.2 Experimental systematic uncertainties

Another source of uncertainties accounts for the experimental setup, where the detector
architecture itself, but also the measurement of quantities such as the energy of particles
within the detector are considered. These uncertainties are summarised as experimental
systematic uncertainties.

The systematic uncertainties related to the missing transverse momentum, the electron,
the jets as well as the pile up and luminosity uncertainty at reconstructed level are briefly
discussed.

11.2.1 Soft track term of the missing transverse momentum

The missing transverse momentum, as introduced in Chapter 7.5, depends on the calibrated
momenta of considered particles and the additional soft term. While systematic uncertainties
related to the former are covered by the systematic uncertainties associated to each different
particle, for example the energy of the electron for the electron ER term, and reflected
by a change of the B distribution with respect to the nominal distribution, systematic
uncertainties related to the soft term have to be considered additionally and are described
in the following.

Three systematic uncertainties are associated to the E¥*S soft term, where one two-sided
scaling systematic uncertainty, SoftTrk Scale, and two one-sided resolution systematics,
SoftTrk Reso Para and SoftTrk Reso Perp, are provided. The systematic uncertainties are
obtained by the application of either a scaling or a smearing in the MC sample. The
SoftTrk Scale systematic uncertainty relies on a scaling of the transverse momenta of the
considered tracks. In contrast, the two resolution systematic uncertainties consist of a
smearing of the soft term magnitude in parallel, denoted Para, or perpendicularly, denoted
Perp, to the transverse momenta of the considered tracks.

The systematic uncertainties corresponding to the soft term of the EX'* as a function
of the measured variables are shown in Figure 11.4. Deviations between each systematic
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Systematic uncertainty of the missing transverse momentum E}'* as a

function of the measured variables, m¥ and m¥ & |n(e)| for the combination of the e* and
e~ channel. The dashed grey line represents the 0.5% threshold.
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11 Systematic uncertainties

uncertainty and the nominal distribution are displayed, where the largest uncertainty of
approximately 3.5% is found in the lowest m} bin of the m* ® |n(e)| distribution and
decreases in bins referring to larger m%v . Consequently, the largest uncertainty in the
measurement range above m?f = 200 GeV is smaller, where the largest deviation is up to
1% in the m¥ ® |n(e)| distribution. Overall, an approximately flat deviation as a function

of |n(e)| can be observed.

11.2.2 Electron energy scale

The systematic uncertainties of the energy calibration are subdivided into the variation
of the scale and the resolution. The former will be discussed in this paragraph, while
the next paragraph is dedicated to the latter. Both sources of uncertainties as a function
of the transverse energy and pseudorapidity of the electron are provided in the same
uncertainty model, named FULL_ETACORRELATED_v1, which is centrally provided by the e/
(EG) performance group of the ATLAS collaboration.

The FULL_ETACORRELATED_v1 uncertainty model covers variations in all steps of the electron
energy calibration and contains 21 two-sided systematic uncertainties associated to the energy
scale of the electron, where four uncertainties contribute with more than 0.5% in at least
one bin of the measured variables. These four systematic uncertainties as a function of the
measured variables are shown in Figure 11.5. The largest systematic uncertainty associated
to the energy scale is the L2GAIN uncertainty corresponding to the non-linearity in the cell
energy measurement at the second layer of the electromagnetic calorimeter. An increasing
uncertainty as a function of the transverse mass with up to +2.5% in the last mX bin is found.
In the m ® |n(e)| distribution an additional dependency is observed, where the uncertainty
as a function of |n(e)| increases in the range of |n(e)| € [0.60,1.37]. The other presented
systematic uncertainties are as well increasing as a function of m%v up to 1% over the whole
range. In contrast to the L2GAIN uncertainty, their size increases as a function of |n(e)| in
In(e)| € [1.52,2.4]. For m¥ ® |n(e)| = [300,425]GeV ® [2.2,2.4], the largest uncertainty is
the L1GAIN uncertainty, which corresponds to same source of systematic uncertainty as the
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Systematic uncertainty associated to the energy scale of electrons as a

function of the measured variables, m'¥ and m¥ ® |n(e)| for the combination of the e* and
e~ channel. The dashed grey line represents the 0.5% threshold.
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11.2 Experimental systematic uncertainties

L2GAIN uncertainty, but in the first layer of the electromagnetic calorimeter. Further details
of every single systematic uncertainty and its estimation can be found in Reference [96].

11.2.3 Electron energy resolution and photon energy scale

The systematic uncertainties corresponding to the energy resolution and photon scale
are provided by the EG performance group as well. In total, five two-sided systematic
uncertainties for the photon energy scale and seven two-sided systematic uncertainties for
the electron energy resolution can be found in the FULL_ETACORRELATED_v1 uncertainty
model. Their impact on the cross-section has been studied and is found to be smaller than
0.5%.

11.2.4 Electron scale factor

The efficiency corrections, as introduced in Chapter 7.2.4, for the electrons are estimated
based on the tag-and-probe method applied to Z — ¢¢ decays. Systematic uncertainties of the
electron SF are obtained by the variation of the tag-and-probe method, where for example the
event selection required throughout the method is varied. For this thesis, the so-called TOTAL
uncertainty model is chosen, which is centrally provided in ATLAS. The model consists of one
two-sided systematic uncertainty for each electron SF, corresponding to the trigger, isolation,
identification and reconstruction efficiency. For the additional charge misidentification SF,
two two-sided systematic uncertainties are provided, where the statistical and systematic
uncertainties are separated. The considered systematic uncertainties corresponding to the
electron SF are presented in Figure 11.6. The systematic uncertainty associated to the
electron isolation SF reaches its largest value of up to about 3% for mY" € [600,900]GeV
and |n(e)| € [2.0,2.4]. For the electron identification SF, a systematic uncertainty of 1% is
observed in the lowest mY bin that increases to 4.5% for increasing m'’. In addition, both
uncertainties increase as a function of |n(e)|. For this reason, the uncertainty reaches 5% in
single |n(e)| bins.
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Systematic uncertainty associated to the electron scale factor as a function
of the measured variables, m'’ and m'Y ® |n(e)| for the combination of the e* and e~
channel. The dashed grey line represents the 0.5% threshold.
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11 Systematic uncertainties

It will be shown, that the largest systematic uncertainty in the region of m}fV > 500 GeV is
associated to the electron identification SF. As a consequence, a more complex uncertainty
model is recommended, since the systematic uncertainties in the TOTAL uncertainty model
are expected to be overestimated with respect to more complex uncertainty models. This
study is not part of this thesis, where the presented systematic uncertainty for the electron
identification SF should be considered as the upper limit.

11.2.5 Jet energy resolution

The systematic uncertainties associated to the jet energy are grouped into scale and resolution
uncertainties as well, which are provided by the Jet/EX* group of the ATLAS collaboration.
The SimpleJER uncertainty model providing eight variations is chosen in this thesis. Although
no jet requirements are explicitly demanded in the event selection, the evaluation of the JER
systematic uncertainty is required, because jets are used in the calculation of the missing
transverse momentum. In addition, jets are considered in the overlap removal.

In Figure 11.7, the considered systematic uncertainties corresponding to the JER are
presented. In the mY and m¥ ® |n(e)| distribution, the largest relative impact of up to
5.5% is observed for m}Y € [150 — 200]GeV and |n(e)| € [2.2,2.4]. The JER systematic
uncertainties decrease as a function of m%v and are smaller than 0.5% for m%v > 300 GeV.
As a result, these uncertainties are only substantial in the additional low m%v bin and already
below 1% in the first bin of the actual measurement.
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Systematic uncertainty of the jet energy resolution as a function of the
measured variables, m and m¥ & |n(e)| for the combination of the e™ and e~ channel.
The dashed grey line represents the 0.5% threshold.

11.2.6 Jet energy scale

For the jet energy scale, the so-called Category Reduction uncertainty model provided by
the Jet/EXSS group offers a set of 28 uncertainties. The systematic uncertainties associated
to the jet energy scale, fulfilling the 0.5% threshold, are presented in Figure 11.8, where the
relative impact of the uncertainties is largest as a function of |n(e)| in the low m! bin. A
relative impact of the systematic uncertainty as a function of m¥ on the cross-section of less
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Systematic uncertainty of the jet energy scale as a function of the measured
variables, m¥ and m'Y ® |n(e)| for the combination of the e™ and e~ channel. The dashed
grey line represents the 0.5% threshold.

than 0.5% for most bins is observed. In contrast, systematic uncertainties of up to 2.2% are
found as a function of m¥ ® |n(e)|. It can be concluded that the jet energy scale systematic
uncertainties are small in the region of the measurement m* > 200 GeV, whereas a relative
impact of several percent as a function of m¥ & |n(e)| can be observed below.

11.2.7 Pile-up

The pile-up distribution at reconstructed level is achieved by the application of a pile-up
reweighting SF, which adjusts the pile-up distribution of the MC sample to the pile-up
distribution observed in data events. The pile-up reweighting tool, centrally provided by
the ATLAS collaboration, can be used to obtain the nominal weight and the associated
systematic uncertainty. In Figure 11.9, the systematic uncertainty for the pile-up reweighting
SF as a function of the measured variables is shown. While the largest uncertainty of up
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Systematic uncertainty associated to the pile up reweighting as a function of

the measured variables, m¥ and m} ® |n(e)| for the combination of the e* and e~ channel.
The dashed grey line represents the 0.5% threshold.
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to 1.75% can be observed for m¥ ® |n(e)| € [150,200]GeV ® [0.0,0.2], no relative impact of
more than 0.5% is found in the region of m¥ > 200 GeV. As a result, the relative impact of
the pile-up reweighting systematic on the measurement is almost negligible.

11.2.8 Luminosity

As outlined in Chapter 6.1, the integrated luminosity that corresponds to the analysed
dataset is £ = 139.0 + 2.4 fb~!, which can be transformed into an uncertainty of 1.7% as
reported in Reference [52]. The integrated luminosity has to be considered in addition to
the reported systematic uncertainties, as presented in Chapter 13.

11.2.9 Experimental systematic uncertainties of the background processes

Besides the signal process, each real electron background is affected by the experimental
systematic uncertainties as well. Since the amount of background events is smaller compared
to signal events, a reduced relative impact of the experimental systematic uncertainties from
the background processes is expected.

Nevertheless, the relative impact of the experimental systematic uncertainties from the tt
background, which provides the dominant background contribution as described in Section 10,
was evaluated at an earlier stage of the measurement. At this stage, only the measurement
of the single-differential cross-section as a function of m* has been studied. It was shown,
that the relative impact of the systematic uncertainties is at or below 0.5%. Consequently,
it has been decided that these uncertainties are not part of the cross-section measurement.
Nevertheless, a reinvestigation of the experimental uncertainties for the t¢ background
remains important, because the uncertainties per bin are expected to be larger in case of
the double-differential cross-section measurement as a function of m¥ ® 1, which are not
evaluated on the timescale of this thesis.
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In the following, it is explained how the single- and double-differential cross-sections at the
fiducial level, i.e. after the removal of detector effects that refer to the reconstruction, are
obtained by unfolding the measured data. While the theoretical details of the unfolding
procedure, which is IBU, have been discussed in Chapter 5, this chapter focuses on the
application of the theoretical unfolding concepts on this measurement. In addition, the
estimation of the statistical and systematic uncertainties on the unfolded cross-section are
presented and an unfolding systematic uncertainty is discussed.

12.1 Iterative Bayesian Unfolding

Technically, the IBU is implemented via RooUnfold [97]. In this thesis, a custom interface to
the RooUnfold package is used, where the reconstructed and truth level distribution of the
measured variable as well as the response matrix have to be provided as inputs. Furthermore,
the correction factors are implicitly defined as an input, since they are calculable from the
three former input distributions.

While the reconstructed distribution of the measured variable is taken from the comparisons
of data and background prediction after the signal region selection, the truth level distribution
of the measured variables is obtained from the W MC after the fiducial selection. The
following subsections are dedicated to the description of the response matrix, the efficiency ¢;
and the in-smearing f;, required for the unfolding according to Equation 5.8 in Chapter 5.
In the end, the advantages of an unfolding with an additional bin, a so-called shadow bin,
are discussed.

12.1.1 Response matrix

The iterative procedure in the unfolding is based on the response matrix R, where the
migration of events at fiducial level and at reconstructed level is displayed. For this reason,
only events fulfilling both selections enter the response matrix. Importantly, the migration
of events e.g. generated below mIW < 150 GeV and reconstructed after the signal region
selection are not part of the response matrix. The same holds true for events generated within
the fiducial level but not reconstructed after the signal region selection. Two correction
factors are used in order to account for each source of events that are not covered in the
response matrix, which will be explained in the following subsections.

The response matrix is calculated based on the W MC only, where the x-axis corresponds to
the distribution at reconstructed level and the y-axis to the distribution at fiducial level.
After the events are filled, a normalisation and scaling into percent for each truth level bin

is performed. The response matrix as a function of the transverse mass of the W boson m}
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Response matrix R for the measured variable mlfV in the measurement

binning for the a) e~ and b) et channel. The normalisation is performed for each truth
level bin, where under- and overflow bin are not taken into account. Afterwards, the
normalised values are scaled to percent.

in the e™ and e~ channels are presented in Figure 12.1.

In comparison to the migration matrix, as discussed in Chapter 8.3.2, the values on the
diagonal increase especially for low m%V . The difference to the migration matrix is expected,
due to the application of the fiducial selection for the response matrix, where all events
from below m%v = 150 GeV are not considered. At the diagonal, the smallest value of 74%
is visible in the third measurement bin, mlfv € [300,350] GeV, while the largest value of
95% can be found in the last m%V bin. Furthermore, the only substantial migration occur
with respect to the neighbouring bin in mY and are below a percent in all other bins. A
probability, displayed as a zero in the matrix corresponds to a number which is rounded to
zero, whereas no entry refers to a probability of exactly zero percent.

Differences for the response matrix in the e™ and e~ channel are very small, where deviations
of 1% at most are observed. Importantly, the rounding induces an effect of 1% as well even
if the difference might be much smaller.

In Figure 12.2, the response matrix as a function of m¥ ® |n(e)| in the e~ channel is shown.
The response matrix for the e’ channel is very similar and for this reason, it is shown
in Figure F.3 in Appendix F. The visualisation for the double-differential cross-section
measurement, as discussed for Figure 10.7, is technically required. Since a single response
matrix has to be provided to the RooUnfold package, only this representation allows to
display the migrations across m¥ and |n(e)| in the same distribution. As a side note,
although the response matrix is shown by a two-dimensional distribution, in fact a four-
dimensional representation of the migrations is reflected. The measurement binning, as
introduced in Chapter 8 is used. In Figure 12.2, the m¥ ® |n(e)| distribution corresponding
to the reconstructed level at the z-axis and corresponding to the born level after the fiducial
selection at the y-axis is shown. The labelling of the |n(e)| bin is displayed on the respective
axis and subsequently the labelling of the mIfV bins. Each m%V bin is separated from each
other by vertical and perpendicular lines.
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Response matrix R for the measured variable m'¥ ®|n(e)| in the measurement
binning for the e~ channel. The normalisation for each truth level bin is scaled to percent,
where the under- and overflow bins are not taken into account in the normalisation.

In this representation, events migrating in |n(e)| can be found in the squares that arise from
the combination of vertical and perpendicular lines corresponding boundaries of the mr‘fV
bins. For example, an event generated at born level in mY € [200,300] in |n(e)| € [1.0 —1.2]
is reconstructed with a probability of 4% in the lower |n(e)| bin and 88% in the same |n(e)]
bin. Overall, the migrations across |n(e)| are very small.

Furthermore, the migrations of events across m%V are found for the comparison of certain
|n(e)| bins in one specific square and e.g. a neighbouring square. For example, an event
generated at born level in mY € [200,300] GeV and in |n(e)| € [0.0 — 0.2] is reconstructed
with a probability of 8% in the lower m} bin, 89% in the same mY bin and 3% in a
higher m!¥ bin. As a result, the observed off-diagonals in each of the neighbouring squares
correspond to the migration across mV, where a similar behaviour as in Figure 12.1 is found.
Finally, a deviation from the otherwise mostly diagonal response matrix is observed, which
originates from the different binning at reconstructed level, where the transition region

between the barrel and endcap is vetoed, and the fiducial level. While events generated in

113
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the transition region are reconstructed in the neighbouring bin at higher pseudorapidities
for the first three mY bins, a split into bins with a lower and higher absolute value of the
pseudorapidity for the later three m%v bins is observed. The different behaviour originates
from the interplay of the |n(e)| bin size and the relative location of the transition region, i.e.
can be explained by the chosen binning at reconstructed and fiducial level only.

12.1.2 Correction factors: efficiency and acceptance

Two binned correction factors are applied once in the method of IBU, i.e. they are not
entering the iterative procedure. Both correction factors are estimated using the W MC only.

The first factor, f! , referred to as in-smearing correction is used in order to correct the
reconstruction level distribution. Since only events that pass the fiducial and signal region
selection enter the response matrix, the in-smearing corrects for the amount of events that
smear into the measurement range, i.e. in particular on-shell W bosons with a true mass of
approximately 80 GeV that are reconstructed with mr‘fV > 150 GeV. The correction factor is

defined as

i N:eco/\fiducial (12 1)
. N’;L"GCO ’ '

where the number of all events per bin ¢ which fulfil the fiducial and signal region selection,

Nﬁe con fiducials 15 divided by the number of all events at reconstructed level in each bin ¢,

N’IZ'ECO'

The in-smearing correction in the binning for the single- and double-differential cross-sections,
including the additional low m/¥ € [150,200] GeV bin, are presented in Figure 12.3. The
highest correction is visible in the additional low m¥ bin across all distributions and charges.
The fraction of events that smears from outside into the measurement range is described by
1 — fi . Roughly 60% of events smear into the low m¥ bin, whereas the fraction decreases
to approximately 15% in the first measured m%’ bin and approaches zero as a function of
m%v . This is expected, because the low mr‘fV region is affected by events smearing from below
m¥ =150 GeV in the measurement range. The effect has a similar size for the e and e~
channel.

Another effect is visible for m} > 700 GeV, where a slight decrease (increase) of the correction
factor is visible for the e~ (e) channel. This trend originates from the irreducible charge-
misidentification in the reconstruction process, where the opposite charge at reconstructed
level with respect to the charge at generated level of the electron is measured. This effect
increases for electrons with very high transverse momentum py(e), because the tracks are
less bend in the magnetic field and are misidentified more easily. In a way, the charge-
misidentification can be understood as another source of in-smearing events, where events
are not smeared across mJ' but across the electrons charge.

The in-smearing correction as a function of m¥ ® |n(e)| in the measurement binning at
reconstructed level shows the same trend discussed for m%v , where the additional corrections
as a function of |n(e)| can be investigated. As a result, the correction factor as a function of
In(e)| is flat, i.e. no strong dependency is observed.

Finally, it should be noted that the in-smearing corrections of zero at |n(e)| € [1.37,1.52] are
artificially introduced, because these bins are empty in the denominator and numerator.
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The in-smearing correction, f? , per bin i of the reconstructed level distribu-
tion as a function of the transverse mass of the W boson m!V and the absolute value of the
pseudorapidity and transverse mass m¥ ® |n(e)| separated into the e* and e~ channel in
the measurement binning.

The second factor is the efficiency €;, which is applied to the truth level distribution. The
correction targets events that are available on truth level, i.e. have been generated in the MC
sample, but not on the reconstructed level, e.g. due to inefficiencies in the reconstruction
process. The efficiency is defined as

ij’eco/\fiducial

€. =

; : (12.2)

N}iducial
where in each bin j of the truth level distribution, the number of all events passing the
fiducial and signal region selection, N’ is divided by the number of events passing

] reco/ fiducial?
the fiducial selection N7,,, .-
In Figure 12.4, the efficiency ¢, as a function of the transverse mass m* and the transverse
mass and the absolute value of the pseudorapidity mY ® |n(e)| is shown. Here, the fiducial
level binning is used, which is different from the reconstructed level binning as explained in
Chapter 8.3.
In all four distributions an efficiency mostly in the range of € € [0.7,0.9] is observed in the
measurement region, while a smaller efficiency of € 2 0.5 is visible in the additional low mr‘fV

bin. The correction factor slighty increases as a function of m!V, while a drop close to the
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transition region between |n(e)| € [1.37,1.52] in each m} bin and a decrease for forward
electrons in the last three mY bins is observed.

In the measurement range, a fraction of 20 — 30% of the events are generated but not
reconstructed. This inefficiency originates mostly from the requirements on |n(e)|, pr(e) and
EMss in the event selection at reconstructed level, as described in Chapter 8.1. In addition,
the chosen identification and isolation criteria of the electron as well as the single electron
trigger requirements reduce the amount of reconstructed events.

A charge dependence of the efficiency correction in the e~ and et channel is not observed.
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The efficiency €; per bin j of the MC truth level distribution as a function

of the transverse mass of the W boson m¥/ and the absolute value of the pseudorapidity
and transverse mass m¥ ® |n(e)| separated into the e and e~ channel in the measurement
binning.

12.1.3 Unfolding using a shadow bin

A common strategy for the unfolding of phase spaces affected by large migration effects,
in particular at the lower or upper boundaries of the measurement region, is based on an
additional bin, a so-called shadow bin. This is included in the unfolding procedure, but the
measured result is not published. In this thesis, large migrations occur across m}fV , Where
especially on-shell W bosons migrate into the measurement region. For this reason, the
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low m € [150,200] GeV bin is used as a shadow bin in the single- and double-differential
cross-section measurement.

The investigations to assess the usefulness of a shadow bin described in this paragraph
have been performed throughout the parallel measurement in the muon channel [46]. It
has been shown in the muon channel that the in-smearing in the first measurement bin,
i.e. in mY € [200,250] GeV, is reduced from 30% to approximately 15%, due to the usage
of a shadow bin. As a result, the fraction of migrating events is clearly reduced, which is
expected to stabilise the unfolding procedure. Since the migrations do not substantially
differ in the electron and muon final state, the shadow bin is used in the electron channel as
well.

For this thesis, an additional study was performed, where a larger shadow bin is considered.
The advantage of a large shadow bin, which includes the resonant mass peak of the W boson,
would be that nearly all migrations participate in the iterative procedure of the IBU und no
additional in-smearing corrections for migrations would be necessary.

It should be highlighted that the transverse momentum and missing transverse momentum
requirement in the signal region selection are chosen such that the sum adds up to the
lower edge of the transverse mass, 150 GeV, in order to explicitly allow events to populate
the shadow bin. Otherwise, only very few events would enter the shadow bin, making it
essentially useless, due to low statistics and the fact that events would still smear into the
first m'Y bin due to e.g. the higher py(e) requirement. In order to enlarge the shadow bin,
not only the m¥ requirement needs to be lowered, but also the py(e) and EX® requirements.
Due to stricter requirements in the single electron trigger below p(e) < 60 GeV and since
the multijet estimation via the Matrix Method relies on the estimation of fake efficiencies in
the region of E* < 65 GeV, a larger shadow bin is not considered beyond this point.

12.2 Technical closure test

A standard test is the technical closure test, which is used to ensure that the unfolding based
on the custom interface to the RooUnfold implementation is technically set up correctly.
Most important for that are the consistent definition of selection requirements on fiducial
and reconstructed level, including the consideration of under- and overflow bins of the
distributions.

The technical closure test is performed using the signal MC only, where the reconstructed
distribution of the measurement variables from the W MC replaces the distribution of data
events. Since the response matrix, including the estimated correction factors, and the fiducial
distribution are based on the W MC as well, the unfolded distribution of the reconstructed
W MC distribution and the fiducial distribution are expected to be identical. Consequently,
a ratio yields a perfect agreement in all bins.

Distributions for the two measured variables at reconstructed level, at fiducial level and the
unfolded distribution of the signal MC in the et and e~ channel are shown in Figure 12.5. In
addition, a ratio of the unfolded distribution and the distribution at fiducial level, labelled
truth, is presented. The variables in the measurement binning are displayed, where in case
of m¥ ® |n(e)| the equidistant |n(e)| binning corresponding to the fiducial level is used. The
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Technical closure test of the unfolding procedure, where the signal MC is
taken as the input of the unfolding. The distribution of the reconstructed and fiducial
level of the W MC and the unfolded distribution are shown. In addition, the latter two
are compared in a ratio. For m} ® |n(e)|, the presentation of the fiducial level binning is
chosen, although the reconstructed distribution is still binned in the measurement binning
corresponding to the reconstructed level.

binning for the distribution of the reconstructed level, which differs with respect to the
fiducial level, is not shown here.

The expected perfect agreement between the unfolded distribution and the fiducial level
distribution as a function of the measured variables for the e™ and e~ channel can be
observed. As a consequence, the technical setup is assumed to work correctly.

12.3 Stress test

The so-called stress test allows to check the robustness of the unfolding setup, where shape
differences with respect to the modelling in the MC are induced and the difference in the
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unfolded distribution is investigated. Similar to the technical closure test, where perfect
closure has been shown, the stress test is based on the W MC only. Here, the W MC
replaces the measured data distribution, but the difference to the closure test is that a linear
reweighting is applied before the unfolding.

Three different linear reweighting functions are defined, where each provides a multiplicative
weight applied per event. The weights induce a difference of +20% and +50% at the lower
and upper bound of the invariant mass of the W boson m,,, distribution via

0.4
Wyo0% = :':2000 * My + (1 + 02) ) (123)
1
’LU+5O% = —m . mmv + 1.5. (124)

The application of these weights to the transverse mass of the W boson result into a very
similar linear shape difference. The stress test is exemplarily visualised as a function of
m¥ ® |n(e)| in the fiducial level binning for the e~ channel in Figure 12.6. The number of
iterations in the unfolding is varied in the range of N, = [1,4]. The nominal cross-section,
labelled 0%, and the three reweighted distributions, labelled according to the percentage
used in the reweighting, are compared. The visualisation of the stress test is identical for each
different number of iterations, where the nominal and the three reweighted cross-sections are
shown in the upper panel. Each cross-section is presented for the fiducial level represented
by solid lines and the unfolded level, where the reweighted, reconstructed distributions of
the W MC were unfolded, represented by filled dots. The different colours correspond to
differently reweighted distributions.

In addition, a ratio of each stressed, i.e. reweighted, distribution and the nominal distribution
at the fiducial level before the unfolding can be observed in the middle panel. The stressed
distributions differ to the nominal distribution and the linear reweighting can be seen as a
function of mY, where a flat distribution as a function of |n(e)| per m¥ bin is expected.
Lastly, a ratio of the unfolded distributions and their corresponding fiducial level distri-
butions, labelled truth, is added. In Figure 12.6b, it can be observed that all unfolded
distributions agree within 2% with their fiducial level distribution, where the agreement is
mostly below 1%, if the shadow bin is neglected. Since the shadow bin is used to stabilise
the unfolding only, its disagreement should not impact the conclusions on the stress test.
The comparison of the lower panel in Figure 12.6a, Figure 12.6b, Figure 12.6¢ and Fig-
ure 12.6d, respectively, allows to see the evolution of the agreement, where the largest
differences are observed for N, = 1. After two iterations a reasonable agreement, i.e. the
smallest differences between the unfolded and fiducial level distributions, is found already.
Especially in Figure 12.6d, it can be seen that the agreement becomes worse for Ny, = 4
compared to Ny, = 3 in Figure 12.6c.

Since the statistical uncertainty increases as a function of an increasing number of iterations,
as explained in Chapter 12.5.1, it is concluded that the unfolding is able to handle linear
shape differences reasonably within two iterations N, = 2.

Finally, the visualisations of the stress test as a function of m¥ ® |n(e)| in the et channel,
and as a function of m} in both channels are shown in Appendix F in Figure F.7, which
lead to the same conclusions.

ter
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Visualisation of the stress test for the measured variable m¥ ® |n(e)| after
three and four iterations in the unfolding for the e~ channel.

12.4 Calculation of the covariance matrix

In the following, the determination of the covariance matrix, which is a symmetric square
matrix, is described. Its estimation is required for the calculation of the statistical uncertainty
on the cross-section after the unfolding and for the regularisation of the IBU, as described
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12.4 Calculation of the covariance matrix

in Chapter 12.5. The covariance matrix consists of variances and covariances, where the
variances are found on the diagonal. Subsequently, the correlation matrix can be obtained
from the covariance matrix.

Commonly, the calculation of the covariance matrix is based on toy data, which can be
generated either by multiple replicas fluctuating each bin of the measured distribution or by
multiple variations for each event. In this thesis, the generation of toy datasets relies on the
former approach. The following steps are performed in order to calculate the covariance
matrix:

1. The generation of a toy dataset,
2. the background subtraction and unfolding for the generated toy dataset,
3. the calculation of the covariance matrix.

The first and second step are repeated multiple times, before the covariance matrix is
caluclated in the third step. First, a toy dataset is generated based on the prediction and
the measured data. A replica, i.e. one toy dataset, is created by the variation of the amount
of events in each bin ¢ of the measured distribution by the statistical uncertainty. For data,
a Poisson distribution

P(Nf=) (12.5)

is used, where the event yield N@%@ in each bin is used as the mean value, resulting into a
statistically varied amount of data events. For the prediction, the variation is based on a
Gaussian distribution with a mean g = 0 and standard deviation ¢ = 1. A random number
g?oy of the Gaussian distribution is drawn and multiplied to the statistical uncertainty of

1
the MC distribution d, As a result, the variation of the event yield is defined as

7,mcstat -

PASCIE A ) (12.6)

i,mecstat — S¢ 7,mcstat *

The event yield in the toy dataset per bin i is calculated based on the formula

ALY
Nitoy _ ?(Nidata) . (1 + z,mcstat) , (127)

nominal
Ni

where the fluctuated amount of events for data and the prediction and the number of events
before the variations N**minal g ysed.

In the second step, the same unfolding as for the nominal data distribution via the IBU,
including the correction factors and the background subtraction, for each generated toy
dataset is performed.

Finally, the covariance matrix Cov;, ;, which is based on all generated toy datasets, is defined
as

Ntoy
1 ) .
Covi’j = I § (hznomznal _ hzoy)(h;pomznal . h§0y) 7 (128)
toy 0

where the sum of all differences between the nominal unfolded result hﬁomm“l and the
unfolded result of each toy dataset h’,ioy in the k-th bin an the total number of generated toy
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datasets N, are used. The number of generated toy datasets NN, has to be chosen such
that the covariance matrix is independent of statistical fluctuations and still reasonable in
terms of computing resources.
The correlation matrix Corr; ;, where the bin-to-bin correlations of the measured distribu-
tions are calculated, can be derived from the covariance matrix by evaluating
Cov, ;
Corr; j = —=, (12.9)

J

where the uncertainty o, for m =1, j is defined as o, = \/Cov,, ,,.

Exemplarily, the covariance and correlation matrix after two iterations in the IBU based on
5000 toy datasets, including variations of the statistical uncertainty of data and MC based
events, as a function of m¥ | in the e* channel is shown in Figure 12.7 and Figure 12.8.
The covariance and correlation matrix as a function of m in the e~ channel can be found
in Appendix F in Figure F.4 and the covariance matrix as a function of m!¥ ® |n(e)| in
Figure F.5.

In Figure 12.7 and Figure 12.8, the bins of the m} distribution are displayed on z- and
y-axis and covariance or correlation is represented on the z-axis. In Figure 12.7, the variance
is visible at the diagonal of the covariance matrix and is used as the statistical uncertainty
of the unfolded cross-section for the measurement as presented in Chapter 13. It can be
observed that the variance is always larger than the covariance in each mY bin, where e.g
in the fifth bin a variance of 3.3 - 107% is found and the covariance decreases for increasing
distance to the variance. In Figure 12.8, the correlation matrix is displayed, where the
diagonal is correlated with itself by reconstruction. The highest correlations are observed in
the first four off-diagonal mJY bins.

The calculated covariance matrices can be compared to the covariance matrix calculated
by the RooUnfold implementation. It has been checked, that the covariances agree, where
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Covariance matrix after two iterations in the IBU based on the statistical
uncertainty of data and MC based events, generated with 5000 toy datasets, as a function
of m for the e channel.
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Correlation matrix after two iterations in the IBU based on the statistical
uncertainty of data and MC based events, generated with 5000 toy datasets, as a function
of m¥V for the e* channel.

it has to be pointed out, that the statistical uncertainty of data events only is used in
RooUnfold and, for this reason, in the cross-check. As a result, in order to correctly consider
the statistical uncertainty of the MC samples in the full measurement, the covariance matrix
consisting of statistical variations in data and MC based processes is used.

12.5 Regularisation

The process of unfolding, which commonly approximates the inversion of a matrix, belongs
to the category of ill-posed problems. The so-called regularisation allows to add information
in order to solve an ill-posed problem. In IBU, the regularisation parameter is the number
of iterations. The truth distribution after the fiducial selection is used as the 0-th prior in
the bayesian approach. As a result, a strong regularisation, i.e. smaller number of iterations,
enhances the similarity to the induced truth level of the MC. In contrast, a decreasing
regularisation strength, i.e. increasing number of iterations, enhances the similarity to the
measured distribution of data events. The information provided in this paragraph and
further details can be found in Ref. [50, 97].

This section focuses on the regularisation in the IBU. In order to find the optimal value
for the number of iterations, the residuals and the statistical uncertainty, x? tests and the
so-called average global correlation coeflicient test are discussed.

12.5.1 Residuals and statistical uncertainty w.r.t. the previous iteration

First, two basic quantities, the residuals and the statistical uncertainty, as a function
of the number of iterations are investigated. Both studies are based on a fraction of
the Run 2 statistics, corresponding to the integrated luminosity of 36.2 fb~!, obtained
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12 Unfolding

during 2015 and 2016. An alternative signal MC sample is used, which is generated with
PowHEG-BOX v2 and the parton shower is simulated with HERWIG 7, as described in
Chapter 6.3. In the following, this sample is denoted as Powheg+Herwig7. As discussed in
Chapter 11, a couple of issues related to the Powheg+Herwig7 MC sample remain unresolved.
Nevertheless, the quantities studied here are independent of these open issues. Importantly,
the Powheg+Herwig7 sample is statistically independent of the nominal signal MC.

Residuals are defined as the difference between the unfolded distribution after N + 1 and N
iterations in the IBU. Technically, another modified closure test is performed, where the
Powheg+Herwig7 sample provides the distribution of the reconstructed level and is unfolded
using the nominal signal MC. The procedure is performed for different numbers of iterations,
Nier € [1,7]. The residuals as a function of the number of iterations for the measured
variables are presented in Figure 12.9. In Figure 12.9a, each of the twelve bins of the unfolded
distribution of mJY is represented by a different colour. Although the residuals differ in size
depending on the bin, an overall trend of decreasing residuals as a function of increasing
number of iterations N, is observed. A very similar behaviour can be observed for the
unfolded distribution of m¥ ® |n(e)| in Figure 12.9b.

The statistical uncertainty for the two measured variables, mY and m!¥ ®|n(e)|, as a function
of the number of iterations NV, is shown in Figure 12.10. Again, different colours represent
bins of m¥ and m¥ ® [n(e)| in Figure 12.10a and Figure 12.10b, respectively. The statistical
uncertainty increases as a function of increasing number of iterations V.. As a consequence,
the number of iterations in the IBU should be kept as small as possible in order to neglect

high statistical uncertainties in the measurement.
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12.5.2 x? tests

A common procedure used for the optimisation of the number of iterations in the IBU is
based on a x? test, where the consistency of the unfolded distribution and the MC truth
level distribution after the fiducial selection is investigated. Such a test is defined as

x* = VN,, (Tunfolded — Teruth) " - COUNI,) ) VNb (Zunfolded — Ttruth) » (12.10)

where the vector Vyy, refers to the difference between the unfolded z,140q 2and MC truth
level x,,,;, distribution for the number of bins N, and the inverse of the covariance matrix
Cov™!, as described in Chapter 12.4, is used. The x? is calculated as a function of the
number of iterations. A minimum in the x? distribution would refer to an optimal agreement
between the unfolded and truth level distribution.

In this thesis, a x? test based on the covariance matrix, where only the statistical uncertainty
of data events is used for the generation of toy data, is performed. As a result, an
approximately flat distribution is obtained, where no minimum of the x? values as a
function of the measured variables can be observed. This behaviour originates from the
mY distribution, which is monotonously and steeply decreasing in the measurement range.
Consequently, the calculated x? strongly depends on the first considered mlﬁ/ bin and does
not provide a reasonable consistency check. For completeness, the obtained x? distribution
as a function of the number of iterations as a function of m¥ is shown in Figure F.8 in
Appendix F.

12.5.3 Average global correlation coefficient test

The so-called average global correlation coefficient test [98] is based on the covariance matrix
as well, where correlations induced by the iterative procedure of the IBU and their evolution
as a function of the number of iterations in the IBU are exploited. Bin-by-bin correlations
are a consequence of the iterative procedure and the corresponding regularisation. A measure
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for the average global correlation p,,,, is defined as

1

Ny
1 . _ -
Pavg = Fb ij with p; = \/1 — ((Cova)]—j . (CovNi)jj) , (12.11)
=1

where the covariance matrix Covy, , the inverse of the covariance matrix C’ovﬁ and the
number of bins IV, of the unfolded distribution are used. For this test, the covariance matrix
based on the statistical uncertainty of data events is obtained from 5000 toy datasets. The
precise evaluation of Covj\i is crucial for the estimation of the average global correlation
coefficient, because small deviations can lead to imaginary numbers in the calculation of p,,
if the argument of the square root is a negative number.

In general, the average global correlation evolves as a function of the number of iterations. For
a small number of iterations positive correlations are expected, whereas negative correlations
occur in the limit of many iterations [98]. As a consequence, a minimum in the distribution
of the average global correlation is expected, due to the change of the sign of the induced
correlations, offering a measure for the optimal number of iterations. The evolution of
the correlation for Ny, = 1,2,5 in the e* channel is exemplarily shown in Appendix F in
Figure F.6.

In Figure 12.11, the average global correlation for the single-differential cross-section measured
in m¥ as a function of the number of iterations Ny, is shown. A very similar shape of the
average global correlation is visible for the et and e~ channel in the range of N, € [1,6],
where the difference corresponds to a small flat offset in the two channels. The minima,
i.e. the optimal number of iterations in the IBU for the m} distribution, can be found at
Niter =2
Subsequently, the average global correlation for the double-differential cross-section in
m¥ ® |n(e)| is studied. In this case, the average global correlation yields imaginary numbers
in the estimated coefficients, which are found to originate from a non-optimal matrix
inversion. A variation of the number of toys, using 1000 and 10000 toy datasets, or a scaling
of the covariance matrix, in order to exclude problems with small numbers in the matrix
inversion, have been performed, but no improvements could be obtained.

e 04— T ] 2 04— T ]
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0.3 . 0.3F .
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Nier Nier
Average global correlation p,,, as a function of the number of iterations in
the IBU Ny, for the single-differential cross-section measurement in m' separated into

the et and e~ channel.
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12.6 Unfolding of experimental and theoretical systematic uncertainties

12.5.4 Conclusions on the number of iterations

An optimised number of two iterations in the unfolding procedure is chosen for the following
reasons: First, differences of the residuals are expected to be small for a higher number
of iterations. Second, the number of iterations should be kept as small as possible in
order to avoid the increase of the statistical uncertainty. Third, the stress test shows that
the unfolding is able to recover linear shape differences reasonably after two iterations
already. This holds true for both measured variables. In addition, the distribution of the
average global correlation shows a clear minimum for the single-differential cross-section
measurement.

As a side note, the presented tests can be performed for a covariance matrix that is based
on the statistical uncertainty and, in addition, the systematic uncertainties. The inclusion of
systematic uncertainties induce a very high amount of additional correlations and no minima
in the x? distribution or the average global correlation test has been found. Furthermore, it
has been seen that especially the statistical uncertainty increases as a function of Ny,. As
a result, the covariance matrix based on the statistical and systematic uncertainties is not
considered further.

12.6 Unfolding of experimental and theoretical systematic uncertainties

After the optimal number of iterations in the IBU is found, the unfolding of experimental
and theoretical systematic uncertainties is discussed in the following. The unfolding of
systematic uncertainties relies on the number of iterations and allows to assign a systematic
uncertainty on the unfolded cross-section. In the IBU, one of the following two methods are
commonly used. A single one-sided systematic uncertainty on the signal process is assumed
for the description of the two methods: In the first method, the measured distribution of
the W MC is replaced by the systematically varied distribution. Afterwards, the unfolding
using the same response matrix as for the nominal measured distribution is performed. In
the second method, the response matrix built from the W MC is replaced by the response
matrix created from the systematically varied MC. Then, the nominal measured distribution
of the W MC is unfolded using this varied response matrix. In both methods, the resulting
unfolded distribution is compared to the nominal unfolded distribution in order to obtain
the systematic uncertainty on the unfolded distribution.

Both methods have been investigated for this measurement and it has been found, that both
methods provide the same size of the systematic uncertainty on the unfolded distribution.
In this thesis, the first method is used because less computational resources are required.

The largest unfolded experimental systematic uncertainties of the signal process as a function
of the measured variables are shown in Figure 12.12. Only systematic uncertainties with an
expected impact of at least 0.5% on the cross-section are considered. While the systematic
uncertainties of the electron scale factor, the electron energy scale and the jet energy
resolution are presented here, the systematic uncertainties of the EX* soft term and the jet
energy scale can be found in Appendix F in Figure F.9.
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The unfolded distributions of the systematic uncertainties for two iterations in the IBU can
be found in Figure 12.12. Each systematic uncertainty is represented by one colour, where the
solid and the dashed line correspond to the up and down variations, respectively. The blue
band represents the total uncertainty in each of the distributions, where the contributions
of the single systematic uncertainties of each plot are summed up in quadrature. Overall,
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the shape of the systematic uncertainties is very similar to the ones at reconstructed level,
as discussed in Chapter 11.2.

In addition, the theoretical systematic uncertainties of the tt background and the systematic
uncertainties corresponding to the multijet estimate are unfolded. In this thesis, the
systematic uncertainties are unfolded via the replacement of the measured MC distribution,
as explained for systematic uncertainties corresponding to the signal process. For background
processes this procedure does not rely on MC only and, therefore, is adapted in the following
way: In the first step, the nominal unfolded distribution is obtained, where the background
processes are subtracted from the measured distribution of data and the unfolding procedure
using the signal MC is performed. In the second step, the systematically varied unfolded
distribution is obtained. For this reason, the systematically varied backgrounds are subtracted
from the measured data distribution. Afterwards, the unfolding procedure is applied. The
difference of the nominal unfolded and the systematically varied unfolded distribution is
assigned as the systematic uncertainty on the cross-section.

In Figure 12.13, the unfolded theoretical systematic uncertainties of the ¢t background
and the systematic uncertainties corresponding to the multijet estimate as a function of
the measured variables, meV and mr‘fV ® |n(e)|, are presented. The presented unfolded
systematic uncertainties on the cross-section can be compared to systematic uncertainties at
reconstructed level shown in Chapter 9.5 and Chapter 11, where a similar size and shape is
found.

Lastly, the theoretical systematic uncertainties of the signal process are unfolded and their
impact on the cross-section is evaluated. As outlined in Chapter 11.1.1, the systematic
uncertainties corresponding to the cross-section are obtained only after the unfolding. In
the following, the unfolding procedures for the theoretical uncertainties of the signal process
are described, where two different approaches are used.

The unfolding of the renormalisation and factorisation systematic uncertainty are discussed
first. A partial dataset, corresponding to data taken in 2015 and 2016, is unfolded using
the response matrix and correction factors obtained from the POWHEG+HERWIG 7 MC.
Afterwards, the partial dataset is unfolded again for each of the considered systematic
variations, where the response matrix and the correction factors corresponding to one of
the pp, pp variation is used. In the response matrix, relative differences at fiducial and at
reconstructed level are considered at the same time. In the end, each unfolded distribution
corresponding to a pp, (1t variation is compared to the unfolded distribution corresponding
to the nominal POWHEG+HERWIG 7 MC in order to estimate the final systematic uncer-
tainty on the cross-section.

Another unfolding procedure is performed in case of the hadronisation systematic uncertain-
ties. Instead of unfolding the measured data, the estimation of the hadronisation systematic
uncertainties is based on the nominal signal and the alternative signal MC sample only. The
nominal signal MC distribution at reconstructed level is unfolded with the response matrix
and correction factors that correspond to the alternative signal MC sample. The obtained
unfolded distribution is compared to the distribution of the nominal signal MC at fiducial
level. The relative difference of these distributions is defined as the final hadronisation
systematic uncertainty. Since fluctuations have already been observed in Chapter 11.1.1,
the statistical uncertainty of the two MC samples are added. The statistical uncertainty of
the unfolded distribution corresponding to the nominal signal MC is calculated in the IBU,
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Unfolded systematic uncertainties corresponding to the multijet estimate
and the theoretical systematic uncertainties for the t¢ background as a function of the
measured variables, m'Y and m! & |n(e)| for the combination of the e* and e~ channel.
Only systematic uncertainties with an expected impact of 0.5% in any bin are considered.

while the statistical uncertainty of the POWHEG+HERWIG 7 MC has to be added manually.
The covariance matrix for the alternative signal MC is calculated following the description
in Chapter 12.4 and subsequently, the square root of the variance is summed in quadrature
to the statistical uncertainty of the nominal signal MC. The statistical uncertainty of the
fiducial level distribution is very small compared to the other statistical uncertainties and,
in order to obtain uncorrelated statistical uncertainties of the nominal signal MC, artificially
set to zero.

The unfolded renormalisation and factorisation systematic uncertainties and the hadronisa-
tion systematic uncertainties as a function of the measured variables are presented for the
combination of the e* and e~ channel in Figure 12.14. The renormalisation and factorisation
systematic uncertainties as a function of the measured variables are shown in Figure 12.14a
and Figure 12.14b. Overall, their relative difference is very small. The threshold for sys-
tematic uncertainties of 0.5% on the cross-section is fulfilled by the pup = 2.0, up = 2.0
variation for m¥ ® |n(e)| € [300,425] GeV ® [1.8,2.0]. Since the systematic uncertainties in
the neighbouring bins are much smaller, it is assumed that the large uncertainty in this bin
originates from a statistical fluctuation or artificially large event weight. Consequently, the
renormalisation and factorisation systematic uncertainties are not further considered.
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Unfolded theoretical systematic uncertainties of the signal process as
a function of the measured variables for the combination of the e* and e~ channel.
Only systematic uncertainties with an impact of 0.5% in any bin are considered. The
renormalisation and factorisation systematic uncertainties are shown in a) and b), while
the hadronisation systematic uncertainty is displayed in c¢) and d). For the hadronisation
systematic uncertainty, the statistical uncertainty of the nominal signal MC sample and the
alternative signal MC sample is added, which are represented by error bars. A smoothing
procedure has been applied to the hadronisation systematic uncertainty only.

In Figure 12.14c and Figure 12.14d, the hadronisation systematic uncertainties as a function
of the measured variables are presented. In contrast to the pp, - variations, larger relative
differences of up to 1.5% for m'Y and up to 3.5% are found for m¥ ® |n(e)|. If the combined
statistical uncertainties of the both MCs is taken into account, remaining relative differences
of more than 0.5% are observed in one bin as a function of m¥ and in three bins as a
function of m¥ ® |n(e)|.

At the timescale of this thesis, it has not been possible to further study the observed
fluctuations and remaining differences. Three main conclusions are drawn: First, the es-
timated statistical uncertainties cover almost the full relative difference of the systematic
uncertainties. Second, the bins with an impact more than 0.5% on the cross-section are
discontinuously distributed as a function of the measured variables and might originate
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12 Unfolding

from fluctuations. Third, even if remaining differences would be taken into account, their
impact is very small compared to the experimental systematic uncertainties and the multijet
systematic uncertainty. As a result, both considered theoretical systematic uncertainties for
the signal process are assumed to be negligible and not further considered.

12.7 Systematic uncertainty of the unfolding procedure

In the end, a systematic uncertainty corresponding to the unfolding procedure has to be
determined. Although the unfolding systematic uncertainty could not be estimated at the
timescale of this thesis due to the open issues with the alternative MCs, the estimation
procedure is described shortly.

Three different sources are commonly considered for an unfolding systematic uncertainty:
First, a so-called basic unfolding uncertainty is determined, where the sensitivity of the IBU
to differences between the signal MC and the data in the measured variables is studied.
Technically, a so-called data-driven closure test needs to be performed. The signal MC
distribution at reconstructed level is used, where a truth level reweighting in the measured
variables is applied in order to match the signal MC to the distribution of measured data
events. Then, the procedure of the technical closure test, introduced in Chapter 12.2, is
applied. In the end, the difference of the reweighted truth level distribution and the unfolded
distribution of the reweighted reconstructed level distribution is defined as the basic unfolding
uncertainty.

Second, a hidden variables study should be performed. This systematic uncertainty is
estimated similarly as the basic unfolding uncertainty. A truth reweighting is applied such
that the number of predicted MC events and the measured data agrees in variables, that
are not unfolded in this measurement. This uncertainty should estimate the potential
mismodelling that could arise from these variables.

Third, the difference of the unfolded distributions of the nominal signal MC sample and an
alternative MC sample is estimated. Here, the alternative MC is reweighted such that it
agrees with the nominal signal MC on truth level. Afterwards, the reweighted alternative
MC is unfolded using the response matrix of the nominal signal MC. The differences of the
unfolded distribution and the truth level distribution of the alternative MC is used as a
systematic uncertainty.

Even though these tests could not be performed at the time scale of this thesis, it should
be noted that the stress test, as described in Chapter 12.3, provides a first estimate of
a systematic uncertainty corresponding to the unfolding procedure. Although the linear
reweighting in the stress test is certainly not sufficient to account for differences between the
MC and data events and in particular for bin-wise fluctuations entirely, it has been shown
that substantial linear shape differences can be handled with a precision of less than one
percent.
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13 Results

In the following the single-differential cross-section as a function of the transverse mass of
the W boson, m%’ , and the double-differential cross-section as a function of the transverse
mass and the absolute value of the pseudorapidity are presented. The measurement of
the cross-sections consists of the optimised value for the regularisation, i.e. the number
of iterations Ny, = 2, the estimated statistical uncertainty obtained from the covariance
matrices and the systematic uncertainties. The experimental systematic uncertainties of the
signal process and theoretical systematic uncertainties of the ¢ background are considered.
In addition, the systematic uncertainties of the multijet estimate via the Matrix Method are
shown. As outlined in Chapter 11, only a subset of all systematic uncertainties is considered
in the measurement, where an impact of at least 0.5% on the cross-section is required.

13.1 Unfolded single-differential cross-section in m}’

The final unfolded single-differential cross-section in the e™ and e~ channel are shown in
Figure 13.1. The unfolded data as a function of the transverse mass of the W boson for
the e~ and the et channel are presented in Figure 13.1a and Figure 13.1b. The statistical
uncertainty of the unfolded data is represented by black error bars, whereas the light blue
uncertainty band consists of the systematic uncertainties and the dark blue uncertainty

3 - T | 3 - T |
2 z 10 E highm", e (s=13 TeV, 139.0 fb™* § 8 % 10 E highm”, e* (s=13 TeV, 139.0 fb* §
(O] 2F T e Unfolded data : [©) o T e Unfolded data :
— 10°F 3 2 10°F 3
. E [} stat. unc. E . E [} stat. unc. E
r syst. unc. 1 r syst. unc. 1
; 10 ;r total. unc. -E ; 10 ;r total. unc. -E
1 1 F v PWG+PY8 3 1 1: . v PWG+PY8 3
Foov E ECT . E
2 9 o 3 = i e L, 3
— 107'F ey E — 107°F o E
o3+ E ov 3 o3+ E ov E
8 2k g 3 8/ E 1o-2f . 3
S 107°F . 1 s 10°F T 3
_3 i E _3f . E
10°F ov 1 10°F oy

3 . e v F N
[ 1.2F j B 3  1.2F j ]
Elis 1-.......v....'....!....v....:....--v-..+,...+¢...+.'......+..'.- Elis 1-.”....‘..a....-....!.....,.....'....y!...¢,...+.'.......+..'.-

FE ==
5 0.8k . 5 0.8t . 3
3x10? 10° 2x10° 3x10? 10° 2x10°

m¥ [GeV] m¥ [GeV]

Unfolded single-differential cross-section as a function of the transverse
momentum of the W boson, m¥ in the a) e~ and b) e channel. The statistical uncertainty
of the data represented by error bars is shown. The statistical uncertainty of the MC
samples, obtained from the covariance matrix, and the systematic uncertainties with an
impact of more than 0.5% are included in the uncertainty band.
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13 Results

band accounts for the total uncertainty, i.e. displays the squared sum of the statistical and
systematic uncertainties. Furthermore, the m¥ distribution at fiducial level obtained from
the signal MC, labelled as PWG+PY8, is displayed by the red triangles.

Overall, it can be observed that the total uncertainty is characterised by the systematic
uncertainties at low mr‘f‘/ and, in contrast, the statistical uncertainty at high m¥/ . All in all,
a reasonable agreement within the uncertainty band between the PWG+PY8 distribution and
the unfolded data distribution is found in both channels.

An alternative representation of the measured cross-sections is shown in Tab. 13.1 and
Tab. 13.2, where the contribution of each single systematic uncertainty is included.

Final measured single-differential cross-section as a function of the transverse
mass of the W boson where the statistical and systematic uncertainties (larger than 0.5%)
are shown separately for the e~ channel.

bin edges [GeV] 200 250 300 350 425 500 600 750 900 1100 1400
& - 250 - 300 - 350 - 425 - 500 - 600 - 750 - 900 - 1100 - 1400 - 2000

o [pb/GeV] 6.32e-01  2.46e-01  1.13e-01  7.67e-02  3.43¢-02  1.98¢-02  1.16e-02  4.07e-03  1.92e-03  7.80e-04  2.58¢-04
Data stat. unc. [%] 0.55 0.88 1.26 1.55 2.28 2.94 3.63 5.84 8.32 12.27 20.65
MC stat. unc. [%)] 0.72 0.90 0.96 1.26 2.03 4.53 7.39 2.74 4.77
tot. sys. une. %] 3.55 4.14 4.68 5.59 5.66 5.86 6.10 6.19
- Sys. une 14 -4.25 -4.14 -4.17 -5.37 -5.45 -5.48 -5.54 -5.60
SoftTrk Seal 0.25 0.09 0.04 0.03 20.01 20.04 0.04 20.04 0.03
' cale 0.25 0.10 0.04 0.03 0.01 0.04 0.04 0.04 0.03
Soft Trk ResoPara 0.25 2017 0.14 20.07 -0.01 0.01 0.01 0.01 0.01
SoftTrk ResoPerp 0.33 017 ~0.09 -0.06 ~0.05 -0.06 ~0.04 0.03 0.03
0.37 0.40 0.48 20.61 0.63 2065 20.73 2085 20.94

BG SCALE 512 0.37 0.40 0.48 0.61 0.63 0.65 0.73 0.85 0.94
-0.36 20.39 0.47 0.64 ~0.66 0.70 0.82 20.97 -1.09

EG SCALE LARCALIB 0.36 0.39 0.47 0.64 0.66 0.70 0.82 0.97 1.09
) 0.19 0.29 0.37 0.44 0.41 0.34 0.26 0.17 0.07

EG SCALE LIGAIN -0.19 -0.29 -0.37 -0.44 -0.41 -0.34 -0.26 -0.17 -0.07
- . 0.97 1.16 T.41 1.68 .70 176 2.06 252 2.80

G SCALE L2GAIN -0.97 -1.16 -1.41 -1.68 -1.70 -1.76 -2.06 -2.52 -2.80
0.66 0.29 0.01 20.01 20.00 0.03 0.04 0.04 0.02

JER EfINP 1 -0.65 -0.29 0.01 0.01 0.00 -0.03 -0.04 -0.04 -0.02
I 0.60 0.37 0.17 0.10 0.05 0.05 0.05 0.02 0.03
JER BAINP 2 -0.60 -0.37 -0.17 -0.10 -0.05 -0.05 -0.05 -0.02 0.03
0.42 0.27 0.13 0.02 0.01 0.02 0.01 0.01 0.03

JER EANP 3 -0.27 -0.13 -0.04 -0.02 -0.01 -0.02 -0.01 0.01 0.03
0.11 0.02 -0.00 0.01 0.00 0.01 0.00 0.02 0.04

JER EfNP 4 -0.11 -0.02 0.00 -0.01 -0.00 -0.01 -0.00 0.02 0.04
5 0.16 0.04 0.00 0.02 0.02 0.03 0.02 0.00 20.01

JER EfINP 5 -0.16 -0.04 0.00 -0.02 -0.02 -0.03 -0.02 -0.00 0.01
0.22 0.05 0.02 20.01 20.01 0.00 0.01 0.01 0.00

JER EfiNP 6 -0.22 -0.05 0.02 0.01 0.01 -0.00 -0.01 -0.01 -0.00
0.17 0.02 20.04 0.00 0.01 0.01 0.01 0.01 0.00

JER EAINP 7 -0.33 -0.17 -0.02 0.04 0.00 0.01 -0.01 -0.01 -0.01 -0.00
- ~0.08 2012 20.13 0.08 0.03 20.01 0.01 0.02 0.02
JES EfNP Modell 0.08 0.12 0.13 0.08 0.03 0.01 0.01 0.02 0.02
- 0.07 0.05 2011 0.06 20.04 0.02 0.01 0.00 0.01

JES Etalntercalib Model -0.07 0.05 0.11 0.06 0.04 0.02 0.01 -0.00 -0.01
JES Flavor Composition 2011 20.27 2027 2017 ~0.09 20.04 -0.03 20.03 0.02
The A Pos 0.11 0.27 0.27 0.17 0.09 0.04 0.03 0.03 0.02
[ R 0.27 0.32 0.31 0.21 0.11 0.07 0.08 0.08 0.08
: avor Hesponse -0.27 -0.32 -0.31 -0.21 -0.11 -0.07 -0.08 -0.08 -0.08
- ) 0.15 0.05 0.04 0.01 0.02 20.01 20.01 0.00 20.01
JES Pileup OffsetMu -0.15 -0.05 -0.04 -0.01 0.02 0.01 0.01 0.00 0.01
- ) 0.05 0.10 2011 0.08 ~0.04 20.00 0.01 0.01 0.01
JES Pileup OffsetNPV 0.05 0.10 0.11 0.08 0.04 0.00 -0.01 -0.01 -0.01
I 0.10 20.15 20.18 20.13 ~0.06 0.02 0.02 0.02 0.02
JES Pileup RhoTopo 0.10 0.15 0.18 0.13 0.06 0.02 0.02 0.02 0.02
1.36 1.68 2.68 3.78 1.46 152 1.49 1.39 1.36

EL SF 1D -1.36 -1.68 -2.68 -3.78 -4.46 -4.52 -4.49 -4.36
0.45 0.74 0.99 123 1.56 171 1.68 1.45

EL SF Isol -0.45 -0.74 -0.99 -1.23 -1.56 -1.71 -1.68 -1.45
U SF 20.15 20.32 2028 20.16 2012 20.10 0.06 20.03
0.15 0.33 0.28 0.16 0.12 0.10 0.06 0.03

156 130 1.5 139 1,00 112 107 2031

MJ EL MET 0.98 0.92 1.07 1.28 1.01 1.15 1.13 0.02
MJ BL Tjet 0.02 20.00 0.03 0.02 ~0.00 0.00 0.00 20.00
I .05 0.92 0.81 0.71 0.39 0.39 0.40 0.38

MJ EL MC scaling -1.05 -0.92 -0.81 -0.71 -0.39 -0.39 -0.40 -0.38
MJ BL mixMET 2.87 2.63 T1.28 0.54 0.29 115 1.03 2.32
FSR 2021 20.20 0.45 2077 0.52 0.09 0.13 0.10
0.36 0.32 0.93 1.69 1.60 1.11 0.65 0.35

tt g —2.0, pp—1.0 -0.99 S1.22 S1.03 0.95 -0.65 0.45 -0.32 0.25
tt ig —0.5, pup—0.5 1.59 1.48 1.48 1.04 0.60 0.29 0.13
tt hardscatter 1.81 1.68 0.47 -0.74 0.53 0.35 0.76
t1 hadronisation 1.85 1.75 1.03 0.10 -0.33 -0.21 0.97
tt hdamp 0.26 0.37 0.02 -0.33 0.28 0.01 0.13
. S 0.46 20.49 2045 2035 2025 20.23 20.18
tt NNPDF RMS 0.46 0.49 0.45 0.35 0.25 0.23 0.18

134



13.2 Unfolded double-differential cross-section in m¥ ® |n(e)|

Final measured single-differential cross-section as a function of the transverse
mass of the W boson where the statistical and systematic uncertainties (larger than 0.5%)
are shown separately for the e channel.

bin cdges [GeV] 200 250 300 350 425 500 600 750 900 1100 1400
& - 250 - 300 - 350 - 425 - 500 - 600 - 750 - 900 - 1100 - 1400 - 2000

o [pb/GeV] 1.04e+400 4.27e-01 2.03e-01 1.42e-01 6.20e-02 3.97e-02 2.23e-02 8.21e-03 4.42e-03 1.97e-03 6.99e-04
Data stat. unc. [%] 0.40 0.61 0.86 1.06 1.54 1.92 2.48 3.86 5.10 7.25 12.19
MC stat. unc. [%] 0.42 0.51 0.69 0.70 1.23 1.04 1.64 1.23 1.17 1.34 2.69
tot. sys. unc. [%] 2.40 2.42 2.69 2.93 3.42 4.36 5.06 5.32 5.40 5.22 5.61
+ Sys. une. % -3.20 -3.07 -3.02 -3.16 -3.48 -4.29 -4.96 -5.22 -5.90 -5.58 -5.71
SoftTrk Seale 0.68 20.13 0.08 0.03 20.02 20.01 0.00 0.01 20.00 0.00
riose 0.68 0.13 0.08 0.03 0.02 0.01 0.00 0.01 0.00 -0.00

Soft Trk ResoPara 20.52 -0.03 0.04 0.04 0.06 0.07 -0.06 0.05 0.02 0.00
SoftTrk ResoPerp -0.62 -0.09 -0.04 -0.03 -0.04 -0.05 -0.02 0.01 0.03 0.04
- -0.33 -0.36 -0.38 -0.44 -0.48 -0.49 -0.54 -0.63 -0.72 -0.75

EG SCALE 512 0.33 0.36 0.38 0.44 0.48 0.49 0.54 0.63 0.72 0.75
2031 0.36 0.43 0.50 2053 20.54 20.61 0.74 0.86 20.93

BG SCALE LARCALIB 0.31 0.36 0.43 0.50 0.53 0.54 0.61 0.74 0.86 0.93
0.16 0.21 0.24 0.28 0.28 0.23 0.16 0.11 0.07 0.05

EG SCALE LIGAIN -0.16 -0.21 -0.24 -0.28 -0.28 -0.23 -0.16 -0.11 -0.07 -0.05
0.63 .00 .09 1.23 1.36 151 1.76 2.02 2.25 2.52

EG SCALE L2GAIN -0.63 -1.00 -1.09 -1.23 -1.36 -1.51 -1.76 -2.02 -2.25 -2.52
0.90 0.29 0.25 0.22 0.17 0.12 0.09 0.10 0.10 0.10

JER EfNP 1 -0.90 -0.29 -0.25 -0.22 -0.17 -0.12 -0.09 -0.10 -0.10 -0.10
0.64 0.30 0.16 0.08 0.05 0.01 0.03 0.09 0.11 0.10

JER BANP 2 -0.64 -0.30 -0.16 -0.08 -0.05 -0.01 -0.03 -0.09 -0.11 -0.10
] 0.43 0.11 0.09 0.11 0.10 0.04 0.02 0.01 0.02 0.03

JER BfINP 3 -0.43 -0.11 -0.09 -0.11 -0.10 -0.04 0.02 0.01 -0.02 -0.03
0.40 0.17 0.13 0.12 0.10 0.06 0.04 0.05 0.05 0.04

JER BAINP 4 -0.40 -0.17 -0.13 -0.12 -0.10 -0.06 -0.04 -0.05 -0.05 -0.04
0.28 0.20 0.20 0.18 0.12 0.07 0.05 0.05 0.04 0.04

JER BfINP 5 -0.28 -0.20 -0.20 -0.18 -0.12 -0.07 -0.05 -0.05 -0.04 -0.04
- 0.28 0.17 0.16 0.13 0.09 0.05 N 0.04 0.04 0.04

JER EfINP 6 -0.28 -0.17 -0.16 -0.13 -0.09 -0.05 -0.03 -0.04 -0.04 -0.04
— 0.42 0.15 0.10 0.11 0.09 0.06 0.04 0.04 0.04 0.04
JER BfINP 7 -0.42 -0.15 -0.10 -0.11 -0.09 -0.06 -0.04 -0.04 -0.04 -0.04
3 - -0.05 -0.03 -0.02 -0.04 -0.06 -0.04 -0.01 -0.00 -0.02 -0.04
JES EfNP Modell 0.05 0.03 0.02 0.04 0.06 0.04 0.01 0.00 0.02 0.04
- 0.16 0.01 0.02 0.05 0.06 20.03 20.01 0.01 0.00 0.00

JES Etalntercalib Model 0.16 0.01 0.02 0.05 0.06 0.03 0.01 -0.01 -0.00 -0.00
JES Flavor C iti 0.05 -0.05 -0.09 -0.11 -0.09 -0.07 -0.05 -0.04 -0.04 -0.04
) avor Lomposition -0.05 0.05 0.09 0.11 0.09 0.07 0.05 0.04 0.04 0.04
JES Flavor Resnonse 0.01 0.23 0.19 0.14 0.09 0.05 0.03 0.03 0.04 0.05
avi spons -0.01 -0.23 -0.19 -0.14 -0.09 -0.05 -0.03 -0.03 -0.04 -0.05

- 0.34 0.12 0.07 0.03 0.00 0.01 0.00 0.00 ~0.00 -0.01

JES Pileup OffsetMu -0.34 -0.12 -0.07 -0.03 -0.00 -0.01 -0.00 -0.00 0.00 0.01
S ) 0.13 -0.01 Z0.05 0.06 20.05 0.03 20.01 0.00 20.00 0.02
JES Pileup OffsetNPV -0.13 -0.06 0.01 0.05 0.06 0.05 0.03 0.01 -0.00 0.00 0.02
JES Piloup RhoTopo 0.00 0.04 0.04 20.03 0.04 0.06 20.05 0.03 0.02 0.02 0.03
- P P -0.00 0.04 0.04 0.03 0.04 0.06 0.05 0.03 0.02 0.02 0.03
EL SF 1D .07 1.26 153 T.78 2.47 3.64 133 1.48 143 1.34 134
-1.07 -1.26 -1.53 -1.78 -2.47 -3.64 -4.33 -4.48 -4.43 -4.34 -4.34

EL SF Isol 0.23 0.42 0.70 0.85 0.93 1.15 1.42 1.57 1.53 1.42 1.37
” -0.23 -0.42 -0.70 -0.85 -0.93 -1.15 -1.42 -1.57 -1.53 -1.42 -1.37

U SF 0.13 2017 20.24 2028 0.36 2039 0.30 0.18 0.14 2017 2022
-0.13 0.17 0.24 0.28 0.36 0.39 0.30 0.18 0.14 0.17 0.22

121 T.04 20.84 0.86 0.80 20.61 20.74 0.7 0.70 0.04 2078

MJ EL MET 0.65 0.63 0.58 0.69 0.73 0.60 0.75 0.82 0.73 -0.04 0.88
MJ EL 1jet 0.07 0.02 -0.00 -0.02 -0.02 -0.01 -0.00 -0.00 0.00 -0.00 -0.00
. 0.73 0.66 0.57 0.59 0.50 0.32 0.33 0.29 0.21 -0.01 0.17

MJ EL MC scaling -0.73 -0.66 -0.57 -0.59 -0.50 -0.32 -0.33 -0.29 -0.21 0.01 -0.17
MJ EL mixMET 175 -1.96 173 162 121 0.59 0.03 0.82 T.13 0.05 1.45
PSR 20.15 2017 0.14 011 20.07 0.04 0.02 0.11 -0.08 0.28 S0.41
0.17 0.19 0.29 0.46 0.53 0.67 0.80 0.54 0.35 0.07 0.04

tt up=2.0, pp=1.0 -0.35 -0.61 -0.68 -0.62 2057 -0.49 -0.41 -0.26 -0.21 -0.05 -0.03
tt ip = 0.5, pp—0.5 0.45 0.80 0.90 0.91 0.88 0.76 0.64 0.43 0.42 0.14 0.10
t£ hardscatter 0.41 0.67 0.72 0.63 0.44 0.20 0.07 0.12 -0.27 0.49 0.69
tt hadronisation 0.17 0.51 0.69 0.66 0.54 0.37 0.18 -0.02 -1.76 -1.30 -1.10
tt hdamp 0.01 0.14 0.13 -0.02 011 -0.08 -0.04 -0.28 -2.02 -1.37 -1.23
N 0.09 0.19 0.26 0.28 20.27 20.21 20.20 0.09 ~0.08 0.02 0.03

tt NNPDF RMS 0.09 0.19 0.26 0.28 0.27 0.21 0.20 0.09 0.08 0.02 0.03

13.2 Unfolded double-differential cross-section in m¥ ® |n(e)|

The final unfolded double-differential cross-section as a function of the transverse mass
of the W boson and the absolute value of the electron’s pseudorapiditiy, mY¥ ® |n(e)|, for
the e~ and the e™ channel are presented in Figure 13.2 and Figure 13.3, respectively. The
unfolded distribution of the absolute value of the pseudorapidity of the electron |n(e)| is
separately shown for each m%v bin. As for the single-differential cross-section, the statistical
uncertainties of data are represented by black error bars, while the systematic and total

135



13 Results

uncertainty is accounted for by the light and dark uncertainty band, respectively. In addition,
the statistical uncertainty of the MC processes is included in the total uncertainty band and
the fiducial distribution of the signal MC, labelled as PWG+PY8, is added.
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in the e~ channel. The statistical uncertainty of the data is represented by uncertainty
bars. The statistical uncertainty of the MC samples, obtained from the covariance matrix,
and the systematic uncertainties with an impact of more than 0.5% are included in the
uncertainty band.



13.2 Unfolded double-differential cross-section in m¥ ® |n(e)|

In Figure 13.2, the double-differential cross-section in m¥ ® |n(e)| in the e~ channel is shown.
From theoretical physics point of view, a smooth |n(e)| distribution, as described by the
PWG+PY8 MC, is expected. While mostly smooth |n(e)| distributions are observed in the
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in the e’ channel. The statistical uncertainty of the data is represented by uncertainty
bars. The statistical uncertainty of the MC samples, obtained from the covariance matrix,
and the systematic uncertainties with an impact of more than 0.5% are included in the
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13 Results

third and fifth m%v bin, several discontinuities are found in the other mr‘f‘/ bins. Two small
drops are located in the range of 1.2 < |n(e)| < 1.4 and the last |n(e)| bin of the first and
second m%v bin, which are related to the differences observed in the agreement between data
and the prediction at reconstructed level. As discussed in Chapter 10, deviations might
partially originate from the too coarse binning of the electron scale factor that is used.

In Figure 13.3, the double-differential cross-section in mYY ® |n(e)| in the e* channel is shown.
Similar discontinuities, as discussed for the e~ channel, are found in the first and second
m¥ bin. In contrast, a smooth |n(e)| distribution is obtained in the last three m¥ bins.
The ratio between the unfolded data and the distribution at fiducial level of the PWG+PY8 MC
sample is shown for each unfolded distribution in both channels, where agreement within
the total uncertainty band is found in most bins. Overall, a more precise agreement between
the PWG+PY8 MC and unfolded data is found in the e* channel.

The tabular representation of the measured double-differential cross-section, including the
contribution of each systematic uncertainties separately, are shown in Appendix G.

A consistency test of the single- and double-differential cross-sections is performed, where the
single-differential cross-section is integrated across m} bins in order to match the binning of
the double-differential cross-section measurement and compared to the cross-section from the
double-differential cross-section measurement, where the integration has to be done across
the |n(e)| bins. Both cross-sections, binned in mY, and the relative difference obtained from
the single-differential, labelled 1D, and the double-differential, labelled 2D, cross-section

measurement are presented in Tab. 13.3.

Consistency check between the single-differential cross-section as a function
of m¥¥ and the single-differential cross-section obtained from the integration of the |n(e)
bins in each m'V bin.

200 300 425 600 900

bin edges [GeV] - 300 - 425 - 600 - 900 - 2000

et

d”W from 1D [pb/GeV] 1.47e+00 3.45e-01 1.02e-01 3.05e-02 7.08e-03

dm.
ddGW from 2D [pb/GeV] 1.46e+00 3.42e-01 1.02e-01 3.06e-02 7.11e-03
m
T
rel. difference [%] -0.47 -0.69 0.31 0.57 0.43
e
ddaW from 1D [pb/GeV] 8.78e-01 1.90e-01 5.41e-02 1.57e-02 2.95e-03
m
T
ddGW from 2D [pb/GeV] 8.75e-01 1.89e-01 5.42e-02 1.56e-02 2.96e-03
m
rel. difference [%] -0.35 -0.45 0.059 0.53 0.085

As a result, relative differences of less than a percent for the e* and the e~ channel are
observed, i.e. the differential cross-sections as a function of mY from the single and
double-differential measurement are consistent.

138



14 Conclusion and Outlook

In this thesis, the measurement of the single-differential cross-section as a function of the
transverse mass of the W boson, m¥, produced in the charged-current Drell-Yan (ccDY)
process, consisting of the production of a W boson that decays into an electron and an
electron neutrino, was presented. In addition, the double-differential cross-section as a
function of the transverse mass of the W boson and the absolute value of the electron’s
pseudorapidity, mY ® |n(e)|, was measured. The analysed dataset was recorded by the
ATLAS experiment at the Large Hadron Collider, where proton proton collisions at a
centre-of-mass energy of /s = 13TeV are recorded during Run 2, corresponding to an
integrated luminosity of £ = 139 fb~.

The cross-sections were measured for transverse masses ranging from mY = 200 GeV up
to mY = 2000 GeV and the absolute value of the electron’s pseudorapidity in the range
of |n(e)| € [0.0,2.4]. The region of high transverse masses of the W boson is expected to
provide sensitivity to PDFs and parameters of effective field theories. In particular the
double-differential cross-section as a function of m¥ ® 7 is expected to allow for constraints
on the partonic content of the proton.

A dedicated event selection in order to select a high fraction of ccDY events is defined,
where one single electron and transverse missing momentum in the final state is required.
Furthermore, each event has to fulfil a transverse mass of the W boson m¥ > 150 GeV, a
transverse momentum of the electron py(e) > 65 GeV, an absolute value of the electron’s
pseudorapiditiy |n(e)] < 2.4 and a missing transverse momentum EX > 85GeV. The
number of expected events from signal and background processes is mostly predicted by
Monte Carlo (MC) simulations. Only the number of events corresponding to the so-called
multijet (MJ) background relies on the data-driven Matrix Method. The MJ background
consists of fake electrons, which are objects such as jets, that are misidentified as electrons
in the detector. One of the main achievements of this thesis is a detailed investigation of
occurring issues in data-driven methods that depend on the EX modelling. A systematic
uncertainty that targets differences in the EX* based on the composition of true objects in
data that result in fake electrons is developed. The number of predicted events according
to the Standard Model are compared to data events. Overall, a good agreement in all
investigated variables is found. The ccDY process contributes with 67.5 % and 56.9 % in the
et and e~ channel, while the largest background originates from ¢t production with 20.6 %
and 28.0 % in the e™ and e~ channel.

A substantial amount of events produced at the peak of the W boson mass distribution
migrate in particular to the first bins of the m¥ and m} ® |n(e)| distributions. The measured
data distributions are unfolded to a fiducial volume at the born level using the technique of
Iterative Bayesian Unfolding (IBU), where the iterative procedure is well-suited to correct
for migrations. The fiducial volume is characterised by the following requirements at born
level: A transverse mass of the W boson m¥ (born) > 200 GeV, a transverse momentum
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14 Conclusion and Outlook

of the electron pp(ep,,) > 65GeV, an absolute value of the electron’s pseudorapiditiy
In(€porm)| < 2.4 and a transverse momentum of the electron neutrino pp(v,) > 85GeV.
Further achievements are the optimisation of the unfolding, where the optimal regularisation
parameter, i.e. the number of iterations, is studied and a detector-motivated binning is
introduced to account for peculiarities of the detector.

Statistical and systematic uncertainties on the unfolded differential cross-sections are es-
timated. The experimental systematic uncertainties on the signal process, the theoretical
systematic uncertainties of the ¢t process and the systematic uncertainties of the MJ back-
ground were studied. Only the ones with an impact with at least 0.5% on the cross-section
in any bin of the measured variables are considered for the final results. After the un-
folding, the largest contributions correspond to the systematic uncertainties of the MJ
background and the systematic uncertainty corresponding to the electron scale factor. For
this thesis, it has been concluded that the theoretical uncertainties on the ccDY process
are very small and consequently were neglected. A more detailed study based on the full
Run 2 dataset could offer the possibility to validate or disproof this assumption. While
the systematic uncertainties yield with 2 — 5% the largest fraction of the total uncertainty
for mY < 750 GeV, the statistical uncertainty becomes dominant for m¥ > 1000 GeV. In
between, both sources of uncertainties are approximately of the same size. The highest
sensitivity with a total uncertainty of 2 — 3% and 3 — 4% is found for the e and e~ channel
in the range of m¥" € [250, 350] GeV.

The unfolded differential cross-sections are compared to the fiducial level distributions ob-
tained from the signal MC, referred to as Powheg+Pythia8. All in all, a reasonable agreement
between the distributions of the unfolded differential cross-sections and Powheg+Pythia8
within the given uncertainties is found. Deviations between the double-differential cross-
sections and Powheg+Pythia8 are present in the range of 1.2 < |n(e)| < 1.4 and |n(e)| €
[2.2,2.4] in each of the low m!{y bins. These differences are expected to partially originate
from a too coarse binning of the electron scale factor. In the end, the consistency between the
unfolded single-differential cross-section and the unfolded double-differential cross-section as
a function of mY is shown.

The reported single-differential and double-differential cross-sections of the charged-current
Drell-Yan process can be improved in several ways. Especially, a finer binned electron scale
factor offers the opportunity to substantially improve the agreement between unfolded results
and the fiducial level distribution of Powheg+Pythia8 in the double-differential cross-section
measurement. In addition, the estimation of the systematic uncertainty associated to the
unfolding procedure would allow to obtain the final size of the total systematic uncertainty.
The single-differential and double-differential cross-sections represent the basis for several
future studies. The combination of the cross-sections of the et and e~ channel with the
cross-sections of the u™ and = channel, obtained in the parallel measurement as described
in Reference [46], would provide a consistency check of lepton universality. Furthermore, the
presented cross-sections allow constraining the parton distribution functions of the proton
and parameters of effective field theories.
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A MC samples and theoretical cross-sections

Overview of the various samples for positively charged W bosons decaying
into a positron and an electron neutrino. The inclusive cross-section is given for the first
requirement has to be fulfilled afterwards, reducing the given
cross-section effectively. In contrast, the cross-section in the indicated my; range is given

sample, where the m

max

w

elsewhere.

process mip™ [GeV]  mipe® [GeV] o [pb] DSID

W+ —ev - 120 1.13-10* 361100
WT —ev 120 180 32.1 301060
W+ —ev 180 250 5.00 301061
W+ —ev 250 400 1.75 301062
W+ —ev 400 600 3.12-107" 301063
W* —ev 600 800 6.08-1072 301064
WT —ev 800 1000 1.77-102 301065
W* —ev 1000 1250 7.29-107% 301066
WT —ev 1250 1500 2.51-107% 301067
W* —ev 1500 1750 9.86-10~* 301068
W* —ev 1750 2000 4.25-10~* 301069
W* —ev 2000 2250 1.95-107* 301070
WT —ev 2250 2500 9.33-107° 301071
W* —ev 2500 2750 4.63-107° 301072
W* —ev 2750 3000 2.35-10° 301073
W+ —ev 3000 3500 1.84-107° 301074
W+ —ev 3500 4000 5.10-107% 301075
WT — ev 4000 4500 1.43-107% 301076
W* —ev 4500 5000 4.01-107" 301077
WT —ev 5000 - 1.53-1077 301078
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Overview of the various samples for negatively charged W bosons decaying
into an electron and an anti-electron neutrino. The inclusive cross-section is given for the
W requirement has to be fulfilled afterwards, reducing the given
cross-section effectively. In contrast, the cross-section in the indicated my; range is given

first sample, where the m

elsewhere.

process mip™ [GeV]  mip* [GeV] o [pb] DSID

W~ —ev - 120 8.28 - 10" 361103
W= —=ev 120 180 22.2 301080
W— —=ev 180 250 3.28 301081
W= —ev 250 400 1.08 301082
W= —=ev 400 600 1.75-107' 301083
W= —ev 600 800 3.10-1072 301084
W= —=ev 800 1000 8.29-1073 301085
W= —ev 1000 1250 3.16-10~3 301086
W= —ev 1250 1500 1.00-10~% 301087
W= —ev 1500 1750 3.68-10~* 301088
W= —ev 1750 2000 1.49-10~* 301089
W= —ev 2000 2250 6.53-107° 301090
W= —ev 2250 2500 3.02-10° 301091
W= —=ev 2500 2750 1.45-107° 301092
W= —ev 2750 3000 7.26-107% 301093
W= —=erv 3000 3500 5.67-107% 301094
W= —ev 3500 4000 1.60-107% 301095
W= —=ev 4000 4500 4.72-1077 301096
W= —ev 4500 5000 1.43-1077 301097
W= —erv 5000 - 6.16 -10~% 301098




B Issues with large weights from the W MC sample
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Real efficiencies depending on pr(e) and |n(e)| in the electron channel for
a) the full W MC and for b) the sliced samples of the W MC only. Single events with
large weight in comparison to the weights in the slices migrate to high pr(e) and induce
fluctuations. In this thesis, the real efficiencies are evaluated based on the full W MC.
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C Background estimation supplemental material
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four bins of |A¢(e, EX)| in the combined e and e~ channel for the full W MC.
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channel for the full W MC.
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Figure 1.1: Comparison of data and prediction in the signal region, labelled high mIW ,
for the e™ and e~ channel. The uncertainty band consists of the combined statistical
uncertainty from the MC and the systematic uncertainties with an impact of more than 0.5%
on the measured cross-section. The statistical uncertainty of data events are represented
by the uncertainty bars.
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Figure D.2: Comparison of the prediction, i.e. summed MC and the estimated multijet,
and data in the measurement binning of the double-differential cross-section for the e~
channel after the signal region selection. The two-dimensional binning is divided into six
different distributions of 7 for each m* bin. The uncertainty band consists of the statistical
and systematic uncertainty of the signal MC, where only systematic uncertainties with an
impact of 0.5% are considered. The statistical uncertainty of data events are represented
by the uncertainty bars.
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Figure D.3: Comparison of the prediction, i.e. summed MC and the estimated multijet,
and data in the measurement binning of the double-differential cross-section for the et
channel after the signal region selection. The two-dimensional binning is divided into six
different distributions of 7 for each m* bin. The uncertainty band consists of the statistical
and systematic uncertainty of the signal MC, where only systematic uncertainties with an
impact of 0.5% are considered. The statistical uncertainty of data events are represented

by the uncertainty bars.
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Relative difference of the systematic variation corresponding to the hadroni-
sation as well as factorisation and renormalisation of the signal process as a function of
m} ® |n(e)| for the combination of the et and e~ channel. While the relative difference at
fiducial level is presented in a) and b), the relative difference at reconstructed level can be

found in ¢) and d).
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Migration matrix M, ., ;e for the W — e"v signal process. The given
numbers are in percent, while under- and overflow bin are considered in the normalisation.
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G Tabular presentation of the measured cross sections

Final measured double-differential cross-section as a function of the transverse
momentum of the W boson and the absolute value of the electron’s pseudorapidity for
m} = [200 — 300] GeV in the e channel. The statistical uncertainty of the data and of
the MC samples, obtained from the covariance matrix, and the systematic uncertainties
with an impact of more than 0.5% are presented separately.

(1) bin edges 0.0 2 0.4 0.6 0.8 .0 2 1.4 1.6 1.8 2.0 2.2
niE) binedges - 0.2 - 04 - 0.6 -0.8 - 1.0 - 1.2 - 14 -1.6 - 1.8 - 20 -2.2 -24
o [pb/GeV] 1.33¢-01  1.37e-01  1.39e-01  1.36e-01  1.33e-01  1.27e-01  1.20e-01  1.28¢-01  1.23e-01  1.10e-01  1.07e-01  7.47e-02
Data stat. unc. [%] 1.13 1.08 1.06 1.09 111 1.15 1.33 0.99 0.99 1.28 1.24 1.62
MC stat. unc. [%)] 1.23 113 0.83 1.05 1.15 111 1.26 0.91 0.91 111 1.25 1.36
tot. sys. unc. [%] 2.86 2.43 2.13 2.06 2.26 2.60 3.66 2.08 2.08 3.76 5.50
- Sys. unc. % -2.47 -2.13 -1.90 -2.12 -2.39 -3.02 -5.10 -3.23 -3.23 -4.18 -7.54
SoftTrk Seale 0.30 2033 0.39 20.43 0.40 0.30 20.24 20.29 0.28 2025 2015
0.31 0.40 0.44 0.41 0.30 0.24 0.29 0.29 0.25 0.16

Soft Trk ResoPara 0.34 2031 ~0.18 0.03 0.07 0.06 0.17 20.16 0.22 2021
Soft Trk ResoPerp 0.42 0.32 0.19 ~0.08 011 0.26 20.26 ~0.19 0,14
L q - 2025 20.20 20.18 014 0.09 20.24 0.24 0.64 2071
EG SCALE 812 0.25 0.20 0.18 0.14 0.09 0.24 0.24 0.64 0.71
N N 2033 20.28 S0.22 20.19 20.19 20.24 20.24 2041 0.42
BG SCALE LARCALIB 0.33 0.22 0.19 0.19 0.24 0.24 0.41 0.42
) ) 0.17 0.00 0.06 2012 0.10 0.05 0.05 0.66 T.18
EG SCALE L1GAIN 0.17 -0.00 0.06 0.12 0.10 -0.05 -0.05 -0.66 -1.18
Ny 0.61 0.60 117 T.31 T.02 0.35 0.35 0.32 0.32

EG SCALE L2GAIN -0.61 -0.60 117 -1.31 -1.02 -0.35 -0.35 -0.32 -0.32
0.66 0.67 0.57 0.60 0.73 0.98 0.19 20.20

JER BANP 1 -0.66 -0.67 -0.57 -0.60 -0.73 -0.98 -0.19 0.20
] 1.29 0.98 0.43 0.44 0.42 0.38 0.31 0.16

JER EfiNP 2 -1.29 -0.98 -0.43 -0.43 -0.42 -0.38 -0.31 -0.16
0.74 0.70 0.58 0.51 0.38 0.10 0.02 0.09

JER EfINP 3 -0.74 -0.70 -0.58 -0.51 -0.38 -0.10 -0.02 0.09
0.58 0.57 0.54 0.50 0.43 0.40 0.06 0.63

JER EAINP 4 -0.58 -0.57 -0.54 -0.50 -0.43 -0.40 -0.06 0.63
. 20.15 0.09 0.38 0.30 0.11 0.08 0.15 0.00

JER EfINP 5 0.15 0.09 -0.38 -0.30 -0.11 -0.08 -0.15 -0.00
0.03 0.04 0.37 0.35 0.28 0.12 0.05 0.47

JER EfINP 6 -0.03 -0.04 -0.37 -0.35 -0.28 -0.12 0.05 0.47
0.66 0.59 0.44 0.41 0.36 0.11 0.39

JER EAINP 7 -0.66 -0.59 -0.44 -0.41 -0.36 -0.11 0.39
N 0.03 0.03 T0.11 0.08 0.05 20.05 0.03
JES EANP Modell -0.03 0.03 0.11 0.08 0.05 0.05 0.03
N g 0.20 0.13 0.13 0.02 2012 2027 20.34
JES Etalntercalib Model -0.20 -0.13 -0.13 0.02 0.12 0.27 0.34
— - 0.43 2031 0.13 20.15 20.16 0.39 0,50

JES Flavor Composition 0.43 0.31 0.13 0.15 0.17 0.39 0.50
0.62 0.40 0.12 0.09 0.05 0.26 0.18

JES Flavor Response -0.62 -0.40 -0.12 -0.09 -0.05 -0.26 -0.18
- ’ 0.10 0.08 0.15 0.13 0.08 0.16 0.18

JES Pileup OffsetMu -0.10 -0.08 -0.15 -0.13 -0.08 -0.16 -0.18
- - , 0.19 0.06 0.06 011 011 0.02 20.01

JES Pileup OffsetNPV -0.19 -0.06 0.06 0.11 0.11 -0.02 0.01
- 2041 20.19 70.20 2024 2021 2027 20.39

JES Pileup RhoTopo 0.41 0.19 0.20 0.24 0.21 0.27 0.39
0.47 0.47 0.65 0.66 0.67 3.40 118

BL SF ID -0.47 -0.47 -0.65 -0.66 -0.67 -3.40 -4.18
N 0.17 0.17 0.21 0.22 0.24 0.39 0.41

BL SF Isol -0.17 -0.17 -0.21 -0.22 -0.24 -0.39 -0.41
PU SF 20.05 20.07 Z0.01 2012 2017 0.02 0.08
0.05 0.07 0.02 0.12 0.17 -0.02 0.08

0.28 0.24 0.83 1,66 371 20.87 114

MJ EL MET 0.20 -0.09 0.44 0.89 2.03 0.50 2.19
MJ EL Tjet 0.05 0.02 0.06 0.10 0.20 ~0.00 0.05
- 0.32 0.09 0.58 T.14 2.38 0.39 T.89

MJ EL MC scaling -0.32 0.09 -0.58 -1.14 -2.38 -0.39 -1.89
MJ EL mixMET 0.12 0.31 20.75 0.94 182 -1.68 379
FSR 20.19 20.19 017 20.12 0.03 20.08 0.21
0.28 0.24 0.10 0.02 -0.02 0.22 0.38

tt g =2.0, pp=1.0 0.61 -0.58 0.49 -0.46 0.42 0.14 0.13
tt g = 0.5, up=0.5 0.83 0.78 0.65 0.63 0.58 0.15 0.12
% hardscatter 0.86 0.82 0.53 0.49 0.31 0.07 0.25
% hadronisation 1.06 0.71 0.23 0.22 0.15 20,14 -0.16
tt hdamp 0.37 0.20 -0.04 0.03 0.07 0.01 0.07
- 0.25 20.23 0.09 20.14 20.20 0.44 0.56
tt NNPDI RMS 0.25 0.23 0.09 0.14 0.20 0.44 0.56
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G Tabular presentation of the measured cross sections

Final measured double-differential cross-section as a function of the transverse
momentum of the W boson and the absolute value of the electron’s pseudorapidity for
m¥ = [300 — 425] GeV in the e channel. The statistical uncertainty of the data and of
the MC samples, obtained from the covariance matrix, and the systematic uncertainties
with an impact of more than 0.5% are presented separately.

(1) bin edges 0.0 0.2 0.4 0.6 0.8 1.0 2 1.4 1.6 1.8 2.0 2.2
K ages - 0.2 - 0.4 - 0.6 -0.8 - 1.0 - 1.2 - 14 - 1.6 - 1.8 - 2.0 -2.2 -24
o [pb/GeV] 3.33¢-02  3.39e-02  3.51e-02  3.58e-02  3.20e-02  3.06e-02  2.66e-02  3.03¢-02  2.77e-02  2.28e-02  2.06e-02  1.5le-02
Data stat. unc. [%] 2.17 2.16 2.08 2.03 2.11 2.25 2.88 2.04 2.06 2.70 2.80 3.48
MC stat. unc. [%)] 1.73 1.86 1.37 1.58 1.48 1.75 2.58 1.32 1.33 1.55 1.76 2.19
tot. sys. unc. [%] 2.78 2.47 2.22 2.34 2.91 3.32 3.97 2.72 2.73 3.47 5.10 6.75
+ 8YS. uRc. -2.10 -1.84 -177 -2.03 -2.83 -3.34 -4.64 -3.59 -3.61 -4.51 -5.40 -7.31
SoftTrk Seale S0.11 0.08 0.05 0.01 0.04 0.06 0.01 0.01 0.01 0.07 0.08
0.11 0.09 0.05 -0.01 -0.04 -0.06 -0.01 -0.01 -0.01 -0.07 -0.08
Soft Trk ResoPara 0.57 0.19 -0.08 0.15 0.13 ~0.08 0.07 0.07 0.09 0.13 0.14
Soft Trk ResoPerp 0.14 0.12 0.07 0.08 0.11 0.14 0.16 0.17 0.17 0.21 0.20
L s s 20.29 20.28 2025 2021 2035 2035 0.70 107 136
EG SCALE 512 0.29 0.28 0.25 0.21 0.35 0.70 1.07 1.36
s , 20.34 2030 2022 20.30 2052 2074 0.96
EG SCALE LARCALIB 0.34 0.30 0.22 0.30 0.52 0.74 0.96
. 0.01 -0.01 -0.03 0.03 051 1.56 2.99
BG SCALE L1IGAIN 0.01 0.01 0.03 -0.03 -0.51 -1.56 -2.99
e 71 2.13 .79 0.46 0.39 0.51 0.61
EG SCALE L2GAIN -1.71 -2.13 -1.79 -0.46 -0.39 -0.51 -0.61
I 20.06 20.10 20.14 S0.11 20.01 0.07 0.19
JER EAINP 1 0.07 0.10 0.14 0.11 0.02 -0.07 -0.19
5 0.21 0.13 0.02 20.17 0.08 0.06 0.18
JER EfiNP 2 -0.21 -0.13 -0.02 0.17 0.08 -0.06 -0.18
20.00 0.03 0.04 0.10 011 20.07 0.04
JER EfNP 3 0.00 0.03 0.04 0.10 0.11 0.07 -0.04
0.02 0.06 0.08 0.07 0.04 0.04 0.19
JER BEAINP 4 0.02 0.06 0.08 0.07 0.04 -0.04 -0.19
0.03 0.09 20.07 0.02 0.05 0.12 0.25

-
JER EfiNP 5 0.03 0.09 0.07 -0.02 -0.05 -0.12 -0.25
0.03 0.03 0.03 20.01 0.02 0.10 0.22
JER EfINP 6 -0.03 0.03 0.03 0.01 -0.02 -0.10 0.22
0.01 0.04 -0.06 0.05 ~0.00 0.07 0.17
JER EfiNP 7 -0.01 0.04 0.06 0.05 0.00 -0.07 -0.17
} 0.02 0.02 0.02 0.04 20.05 0.06 20.07
JES EfiNP Modell 0.02 0.02 0.02 0.02 0.02 0.04 0.05 0.06 0.07
o - 0.08 0.08 0.06 20.05 0.04 0.04 0.06 0.09 0.09
JES Etalntercalib Model 0.08 0.08 0.06 0.05 0.04 0.04 0.06 0.09 0.09
JES Flavor Combosition 20.14 20.13 011 20.10 2011 0.02 0.08 0.11 0.11
P 0.14 0.13 0.1 0.10 0.11 0.02 -0.08 -0.11 -0.11
JES Flavor Response 0.29 0.26 0.18 0.14 0.14 0.06 0.02 0.02 0.02
> Hlavor Response -0.29 -0.26 -0.18 -0.14 -0.14 -0.06 -0.02 -0.02 -0.02
I 0.02 0.01 0.02 0.03 0.03 0.09 0.16 0.18 0.19
JES Pileup OffsetMu -0.02 -0.01 -0.02 -0.03 -0.03 -0.09 -0.16 -0.18 -0.19
- - 0.03 0.02 20.06 0.04 0.02 0.01 0.02 0.03 0.03
JES Pileup OffsetNPV 0.03 0.02 0.06 0.04 -0.02 -0.01 0.02 0.03 0.03
; 2012 2011 20.06 0.04 0.04 0.03 20.01 0.01 0.05
JES Pileup RhoTopo 0.12 0.11 0.07 0.04 0.04 0.03 0.01 -0.01 -0.05
0.93 1.24 141 1.44 150 1.98 277 1.26 5.25
EL SF ID -0.93 -1.24 141 -1.44 -1.50 -1.98 -1.98 -2.77 -4.25 -5.25
BL SF Tsol 0.57 0.64 0.69 0.71 0.78 T12 113 1.28 T.45 .60
o i -0.57 -0.64 -0.69 -0.71 -0.78 112 -1.13 -1.28 -1.45 -1.60
PU SP 2014 20.25 20.24 2026 20.29 20.19 20.19 20.13 0.08 0.06
s -0.22 0.14 0.25 0.24 0.26 0.30 0.20 0.19 0.13 0.08 -0.06
20.76 20.13 0.01 0.70 119 278 0.99 0.99 0.96 -0.66 101
MJ EL MET 0.56 0.14 0.04 0.46 0.74 1.83 0.83 0.54 1.21
MJ EL Tjet -0.01 0.01 -0.02 ~0.03 ~0.06 011 0.04 0.05 0.25
D 0.45 0.13 0.04 0.57 0.91 7.96 0.45 0.28 0.82
MJ EL MC scaling -0.45 -0.13 -0.04 -0.57 -0.91 -1.96 -0.45 -0.28 -0.82
MJ EL mixMET 0.34 0.18 -0.08 0.87 2092 175 - 2,40 2.88 176 241
FSR 0.30 2028 2027 20.24 20.23 2018 0.08 0.04 0.04 0.09 0.21 0.44
-0.61 -0.35 0.12 0.30 0.31 0.22 0.06 -0.05 -0.05 -0.06 -0.09 -0.15
tt g =2.0, pp=1.0 -0.96 -0.90 -0.86 -0.76 -0.74 -0.70 -0.65 -0.36 -0.36 -0.30 -0.23 -0.21
tt g = 0.5, ip=0.5 118 117 1.19 1.14 1.13 0.95 0.78 0.41 0.40 0.31 0.23 0.20
% hardscatter 0.85 0.77 0.69 0.58 0.56 0.54 0.59 0.50 0.50 0.46 0.35 0.32
% hadronisation 1.61 1.34 0.87 0.49 0.61 0.93 1.07 0.33 0.33 0.22 0.17 0.16
tt hdamp 0.02 0.02 0.05 0.08 0.10 0.10 0.08 -0.06 -0.06 -0.18 -0.36 -0.57
. 0.25 2022 20.23 0.20 20.25 20.31 20.38 0.39 20.40 20.48 20.79 0.63
tt NNPDF RMS 0.25 0.22 0.23 0.20 0.25 0.31 0.38 0.39 0.40 0.48 0.79 0.63
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Final measured double-differential cross-section as a function of the transverse
momentum of the W boson and the absolute value of the electron’s pseudorapidity for
mlY = [425 — 600] GeV in the e* channel. The statistical uncertainty of the data and of
the MC samples, obtained from the covariance matrix, and the systematic uncertainties
with an impact of more than 0.5% are presented separately.

. 0.0 0.4 0.8 1.2 1.6 2.0
n(l) bin edges - 0.4 -0.8 - 1.2 - 1.6 - 2.0 - 2.4
o [pb/GeV] 2.26e-02  2.18¢-02  1.97e-02  1.72e-02  1.34e-02  7.03e-03
Data stat. unc. [%] 2.45 2.48 2.39 1.86 3.33 4.78
MC stat. unc. [%] 1.85 1.45 1.82 1.43 2.58 3.32
tot. sys. une. [%] 4.08 3.55 3.27 3.37 3.87 4.76
- Sys. s e -3.41 -3.16 -3.17 -3.32 -3.85 -4.76
20.02 0.00 0.02 0.02 0.02 -0.01

SoftTrk Scale 0.02 -0.00 -0.02 -0.02 -0.02 0.01
SoftTrk ResoPara -0.14 -0.02 0.03 0.02 -0.01 -0.08
Soft Trk ResoPerp 0.01 0.05 0.06 0.03 20.06 2014
70.40 20.29 0.22 20.36 20.76 129

EG SCALE S12 0.40 0.29 0.22 0.36 0.76 1.29
20.47 20.46 20.42 20.48 20.66 20.97

EG SCALE LARCALIB 0.47 0.46 0.42 0.48 0.66 0.97
0.00 -0.00 -0.01 0.10 0.41 0.76

EG SCALE L1GAIN -0.00 0.00 0.01 -0.10 -0.41 -0.76
1.02 1.01 0.95 0.87 0.63 0.62

EG SCALE L2GAIN -1.02 -1.01 -0.95 -0.87 -0.63 -0.62
0.59 0.40 0.20 0.10 0.13 018

JER EffNP 1 -0.59 -0.40 -0.20 -0.10 0.13 0.18
20.16 20.16 0.12 20.09 0.02 0.01

JER EANP 2 0.16 0.16 0.12 0.09 -0.02 -0.01
0.40 0.18 0.08 0.05 -0.05 S0.12

JER EANP 3 -0.40 -0.18 -0.08 -0.05 0.05 0.12
0.52 0.26 0.14 0.08 20.05 20.08

JER EfNP 4 -0.52 -0.26 -0.14 -0.08 0.05 0.08
0.62 0.29 0.14 0.07 20.10 20.27

JER EffNP 5 -0.62 -0.29 -0.14 -0.07 0.10 0.27
0.46 0.20 0.10 0.05 20.08 0.21

JER EfNP 6 -0.46 -0.20 -0.10 -0.05 0.08 0.21
0.53 0.25 0.12 0.06 20.07 2017

JER EANP 7 -0.53 -0.25 -0.12 -0.06 0.07 0.17
0.00 -0.00 ~0.00 20.02 -0.06 ~0.06

JES EfNP Modell -0.00 0.00 0.00 0.02 0.06 0.06
- 0.04 0.03 0.02 0.02 0.03 0.08

JES Etalntercalib Model -0.04 -0.03 -0.02 -0.02 -0.03 -0.08
. 0.09 0.05 20.02 20.03 20.04 0.04

JES Flavor Composition -0.09 -0.05 0.02 0.03 0.04 -0.04
0.01 0.02 0.01 0.02 0.03 0.06

JES Flavor Response -0.01 -0.02 -0.01 -0.02 -0.03 -0.06
) 0.18 0.11 0.01 -0.00 0.04 -0.01

JES Pileup OffsetMu -0.18 -0.11 -0.01 0.00 0.04 0.01
- 0.02 0.01 20.00 0.00 20.01 20.00

JES Pileup OffsetNPV -0.02 -0.01 0.00 -0.00 0.01 0.00
- 0.06 0.05 0.02 0.02 0.02 0.03

JES Pileup RhoTopo -0.06 -0.05 -0.02 -0.02 -0.02 -0.03
258 256 252 2.70 3.25 3.01

EL SF 1D -2.58 -2.56 -2.52 -2.70 -3.25 -3.91
0.83 0.84 0.82 0.98 1.43 152

EL SF Isol -0.83 -0.84 -0.82 -0.98 -1.43 -1.52
20.27 0.24 -0.14 20.14 T0.11 -0.26

PU SF 0.27 0.24 0.14 0.14 0.11 0.27
T0.57 2051 102 -1.00 20.61 20.01

MJ EL MET 0.52 0.48 0.97 0.95 0.67 0.92
MJ EL 1jet 20.03 20.03 20.06 20.04 0.03 0.09
- 0.30 0.29 0.63 0.57 0.18 0.32

MJ EL MC scaling -0.30 -0.29 -0.63 -0.57 -0.18 -0.32
MJ BEL mixMET 0.06 0.02 0.13 0.08 0.16 0.15
PSR T0.17 0.1 20.03 20.01 0.01 20.01
0.72 0.61 0.37 0.20 -0.17 -0.19

tt pp=2.0, up=1.0 0.74 -0.65 -0.52 0.44 0.25 0.19
tt up=0.5, pp=0.5 1.18 0.97 0.74 0.60 0.32 0.25
tt hardscatter 1.13 0.82 0.34 0.28 0.10 0.17
tt hadronisation 1.55 1.03 0.44 0.32 -0.08 -0.02
tt hdamp 0.30 0.22 0.08 0.04 -0.07 -0.11
- T0.24 0.22 0.25 0.28 20.34 2039
tt NNPDF RMS 0.24 0.22 0.25 0.28 0.34 0.39
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G Tabular presentation of the measured cross sections

Final measured double-differential cross-section as a function of the transverse
momentum of the W boson and the absolute value of the electron’s pseudorapidity for
mlV = [600 —900] GeV in the et channel. The statistical uncertainty of the data and of
the MC samples, obtained from the covariance matrix, and the systematic uncertainties
with an impact of more than 0.5% are presented separately.

) 0.0 0.4 0.8 1.2 1.6 2.0
n(l) bin edges - 0.4 -0.8 - 1.2 - 1.6 - 2.0 - 2.4
o [pb/GeV] 7.58¢-03  7.35e-03  6.66e-03  4.94e-03  2.99e-03  1.17e-03
Data stat. unc. [%] 3.96 3.95 3.87 3.11 6.72 10.99
MC stat. unc. [%] 3.53 2.01 2.10 1.58 1.68 3.76
tot. sys. une. [%] 5.13 4.97 4.84 4.99 5.80 6.51
- 8ys. L -4.94 -4.85 477 -4.94 -5.79 -6.47
0.03 0.00 20.01 0.00 0.03 0.07

SoftTrk Scale -0.03 -0.00 0.01 -0.00 -0.03 -0.07
SoftTrk ResoPara -0.10 -0.12 -0.09 -0.05 0.07 0.13
Soft Trk ResoPerp 20.03 20.05 20.05 70.02 0.08 0.23
T0.42 T0.42 20.39 T0.52 20.88 140

EG SCALE S12 0.42 0.42 0.39 0.51 0.88 1.40
051 2051 20.49 20.55 0.71 20.98

EG SCALE LARCALIB 0.51 0.51 0.49 0.55 0.71 0.98
0.00 0.00 -0.05 0.13 0.65 1.55

EG SCALE L1GAIN 0.00 -0.00 0.05 -0.13 -0.65 -1.55
0.90 0.90 0.87 0.85 0.77 0.78

EG SCALE L2GAIN -0.90 -0.90 -0.87 -0.85 -0.77 -0.78
0.02 0.03 0.01 0.00 20.01 20.01

JER BffNP 1 -0.02 -0.03 -0.01 -0.00 0.01 0.01
0.03 0.03 0.01 0.00 20.00 20.01

JER EfNP 2 -0.03 -0.03 -0.01 -0.00 0.00 0.01
0.04 0.04 0.02 20.01 20.07 -0.08

JER EfiNP 3 -0.04 -0.04 -0.02 0.01 0.07 0.08
20.01 0.00 0.00 -0.01 -0.04 -0.05

JER EffNP 4 0.01 0.00 -0.00 0.01 0.04 0.05
0.01 0.02 0.01 70.01 20.04 20.04

JER BfNP 5 -0.01 -0.02 -0.01 0.01 0.04 0.04
0.03 0.02 0.01 70.00 20.05 20.05

JER EfINP 6 -0.03 -0.02 -0.01 0.00 0.05 0.05
20.00 0.00 0.00 20.01 20.05 20.05

JER EfNP 7 0.00 -0.00 -0.00 0.01 0.05 0.05
0.06 20.05 -0.05 0.04 20.01 0.00

JES EfiNP Modell 0.06 0.05 0.05 0.04 0.01 -0.00
- 20.05 -0.02 20.01 20.01 20.00 20.00

JES Etalntercalib Model 0.05 0.02 0.01 0.01 0.00 0.00
" S0.11 -0.09 -0.07 20.05 T0.01 20.01

JES Flavor Composition 0.11 0.09 0.07 0.05 0.01 0.01
0.05 0.04 0.04 0.03 0.02 0.01

JES Flavor Response -0.05 -0.04 -0.04 -0.03 -0.02 -0.01
) 0.02 20.02 0.01 20.01 0.02 0.03

JES Pileup OffsetMu 0.02 0.02 0.01 0.01 -0.02 -0.03
- S0.04 -0.03 20.03 20.03 20.05 20.06

JES Pileup OffsetNPV 0.04 0.03 0.03 0.03 0.05 0.06
- -0.09 -0.06 20.05 20.05 20.04 20.04

JES Pileup RhoTopo 0.09 0.06 0.05 0.05 0.04 0.04
1.40 136 133 141 170 5.02

EL SF 1D -4.40 -4.36 -4.33 -4.41 -4.69 -5.02
1.28 1.27 1.23 T.61 277 3.01

EL SF Isol -1.28 -1.27 -1.23 -1.61 -2.77 -3.01
20.34 -0.28 -0.18 S0.17 20.13 -0.14

PU SF 0.34 0.28 0.18 0.17 0.13 0.14
20.63 20.63 20.83 20.85 20.89 104

MJ EL MET 0.54 0.53 0.76 0.87 1.17 1.32
MJ BL 1jet 70.00 20.00 0.00 20.00 0.00 0.00
- 0.41 0.36 0.36 0.31 0.15 0.21

MJ EL MC scaling -0.41 -0.36 -0.36 -0.31 -0.15 -0.21
MJ BL mixMET 0.59 0.53 0.56 0.33 -0.28 -0.22
FSR 70.93 0.82 2059 70.38 0.22 0.30
1.37 1.20 0.85 0.66 0.14 0.16

tt pp=2.0, up=1.0 0.54 -0.46 -0.32 -0.26 0.08 -0.07
tt pp=0.5, pup=0.5 1.00 0.72 0.48 0.40 0.16 0.14
tt hardscatter -0.42 -0.28 -0.09 -0.06 -0.01 -0.01
tt hadronisation 0.32 0.27 0.20 0.01 -0.55 -0.44
tt hdamp 0.24 0.10 -0.01 -0.12 -0.46 -0.35
- 0.18 0.14 0.16 0.18 0.23 20.30
tt NNPDF RMS 0.18 0.14 0.16 0.18 0.23 0.30
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Final measured double-differential cross-section as a function of the transverse
momentum of the W boson and the absolute value of the electron’s pseudorapidity for
mlY = [900 — 2000] GeV in the et channel. The statistical uncertainty of the data and of
the MC samples, obtained from the covariance matrix, and the systematic uncertainties
with an impact of more than 0.5% are presented separately.

(1) bin edges 08 -1s .18 -24
o [pb/GeV] 3.420-03  2.41e-03  1.09¢-03  2.070-04
Data stat. unc. [%] 5.37 6.50 8.48 18.61
MC stat. unc. [%] 0.46 1.10 0.00 1.33
tot. sys. unc. (%] 505 485  -5aa 621
oo s T am oo
SoftTrk ResoPara 0.01 0.01 0.00 0.00
SoftTrk ResoPerp 0.03 0.03 0.03 0.04
ro scatr si A N
BG SCALBLARCALIB  "o7¢ "o osr 100
BG SCALE LIGAIN 000 000 oo 003
BG SCALE L2GAIN 21r oy a4 a6
JER BANP 1 012 009 -006  -0.0
JER BANP 2 012 510 o0 oos
JER BANP 3 005 007 004 00
-
JER BNP 4 008 -008  -003 -0
JER NP 5 o0y 007 -008  -bos
N
JER BANP 7 008 005 008 ot
JBS EANP Model1 o1 001 oo oo
JES Etalntercalib Model o0 oo oo oo
I
IR D
s o 4% w0
JES Pileup OffsetNPV s oo oo oo
T T
BL SF ID 230 -4m 453 48t
BL SF Isol 22T A3 e et
PU SF 005 002 oaa o
e Tt
NJ BL Tjet 6.00 0.00 0.00 0.00
T TR N
NT BL mixMBET 1.03 7.8 0.37 159
PSR 01> o0l 005 oo
tt pp =20, pp=1.0 0.08 0.06 0.07 0.0
T ip =05, np—0.5 0.15 0.10 0.07 0.03
tt hardscatter -0.03 -0.02 -0.02 -0.01
tt hadronisation -0.76 -0.35 0.02 0.45
% hdamp 1.20 0.70 0.02 0.90
 er o e e
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G Tabular presentation of the measured cross sections

Final measured double-differential cross-section as a function of the transverse
momentum of the W boson and the absolute value of the electron’s pseudorapidity for
m¥Y = [200 — 300] GeV in the e~ channel. The statistical uncertainty of the data and of
the MC samples, obtained from the covariance matrix, and the systematic uncertainties
with an impact of more than 0.5% are presented separately.

(1) bin edges 0.0 0.2 0.4 0.6 0.8 1.0 2 1.4 1.6 1.8 2.0 2.2
K ages - 0.2 - 0.4 - 0.6 -0.8 - 1.0 - 1.2 - 14 - 1.6 - 1.8 - 2.0 -2.2 -24
o [pb/GeV] 8.20e-02  8.28e-02  8.51e-02  7.98¢-02  7.98e-02  7.94e-02  6.81e-02  7.42e-02  7.09e-02  6.44e-02  6.48¢-02  4.61e-02
Data stat. unc. [%] 1.60 1.54 1.50 1.55 1.56 1.55 1.97 1.43 1.44 1.77 1.67 2.15
MC stat. unc. [%] 1.58 1.46 1.33 1.40 1.30 1.34 1.72 1.20 1.21 1.48 1.54 1.87
tot. sys. unc. [%] 2.28 2.78 3.46 4.25 6.26 3.74 3.73 3.95 4.56 6.36
+ 8YS. uRc. -2.02 -2.33 -3.31 -4.52 -8.83 -5.52 -5.49 -5.80 -5.04 -9.60
SoftTrk Seale ~0.60 20.57 20.53 050 20.48 0.54 20.52 70.60 0.61 20.62
0.61 0.57 0.54 0.50 0.49 0.54 0.52 0.60 0.61 0.62
Soft Trk ResoPara 0.37 20.31 ~0.16 20.10 ~0.08 0.00 0.02 0.13 025 2031
Soft Trk ResoPerp 20.25 0.28 0.24 0.18 0,14 0.27 20.25 0.36 2037 0.37
L s s 20.28 0.26 20.25 T0.21 0.16 20.29 2053 2071 0.80
EG SCALE 512 0.28 0.26 0.25 0.21 0.16 0.29 0.53 0.71 0.80
s ) 20.33 2031 20.27 2023 2020 20.26 20.38 0.49
EG SCALE LARCALIB 0.33 0.31 0.27 0.23 0.20 0.26 0.38 0.49
. -0.02 0.02 0.02 20.02 0.02 20.01 0.20 T.49
BG SCALE L1IGAIN 0.02 0.02 0.02 0.02 0.02 0.01 -0.20 -1.49
e 0.60 0.86 1.32 151 T.18 0.40 0.35 0.28
EG SCALE L2GAIN -0.60 -0.86 -1.32 -1.51 -1.18 -0.40 -0.35 -0.28
I 0.30 0.53 0.99 1.46 1.70 1.41 T.22 0.58
JER EAINP 1 -0.29 -0.52 -0.98 -1.46 -1.69 -141 -1.22 -0.57
( 0.07 0.21 0.65 1.37 T.82 T.28 T11 0.85
JER EfiNP 2 -0.07 -0.21 -0.65 -1.37 -1.82 -1.28 111 -0.85
0.14 0.16 0.37 0.93 T.34 0.87 0.64 0.01
JER EfNP 3 -0.14 -0.16 -0.37 -0.93 134 -0.87 -0.64 -0.01
0.12 0.39 0.62 1.00 1.32 113 0.87 0.43
JER BEAINP 4 0.12 -0.39 -0.62 -1.00 -1.32 4113 -0.87 -0.43
20.24 0.16 051 1.03 T.29 0.53 0.28 0.09

-
JER EfiNP 5 0.24 -0.16 -0.51 -1.03 -1.29 -0.53 -0.28 -0.09
0.16 0.17 0.35 0.82 1.16 0.70 0.50 0.27
JER EfINP 6 -0.16 -0.16 -0.35 -0.82 -1.16 -0.70 -0.50 027
20.20 0.43 0.64 0.90 1.08 0.85 0.68 0.20
JER EfiNP 7 0.20 -0.43 -0.64 -0.90 -1.08 -0.85 -0.68 -0.29
} 0.00 0.14 20.17 20.16 20.15 0.10 20.06 0.00
JES EfiNP Modell -0.00 0.14 0.17 0.16 0.15 0.10 0.06 0.04 0.00
o - 0.04 0.02 20.03 2014 2021 20.14 20.07 20.07 0.06
JES Etalntercalib Model -0.04 -0.02 0.03 0.14 0.21 0.14 0.07 0.07 0.06
[ c i 0.24 20.19 20.22 0.23 20.21 20.19 20.29 20.47 0.54
aver Lomposition 0.25 0.19 0.22 0.23 0.21 0.20 0.30 0.48 0.54
JES Flavor Response 0.02 0.26 0.29 0.27 0.24 0.25 0.26 0.27 0.26
> avor Response -0.02 -0.25 -0.29 -0.27 -0.24 -0.24 -0.26 -0.27 -0.26
I 0.29 0.27 0.07 Z0.05 S0.11 2012 0.04 0.01 0.01
JES Pileup OffsetMu -0.29 -0.27 -0.07 0.06 0.11 0.13 0.04 -0.01 -0.01
- - 20.17 0.06 0.03 20.10 2012 0.10 0.09 0.08 20.07
JES Pileup OffsetNPV 0.17 -0.06 0.03 0.10 0.13 0.10 0.09 0.08 0.07
; 20.29 2021 20.21 2023 2021 2012 20.17 2024 2021
JES Pileup RhoTopo 0.29 0.22 0.21 0.23 0.21 0.12 0.17 0.24 0.21
0.46 0.60 0.67 0.69 0.69 1.00 1.8 3.49 122
EL SF ID -0.46 -0.60 -0.67 -0.69 -0.69 -1.00 -1.98 -3.49 -4.21
BL SF Tsol 0.17 0.20 0.22 0.23 0.25 0.38 0.42 0.44
o i -0.17 -0.20 -0.22 -0.23 -0.25 -0.35 -0.38 -0.42 -0.44
PU SP 0.10 0.15 0.04 0.09 0.20 20.19 0.13 0.09 20.07
s 0.10 -0.07 -0.17 -0.15 -0.04 0.09 0.20 0.20 0.13 0.09 0.07
20.26 0.30 0.50 2077 153 2.08 5.43 2.24 218 128 5.27
MJ EL MET 0.48 0.03 -0.16 0.53 0.82 1.08 2.86 1.40 1.32 0.75 2.82
MJ EL Tjet ~0.02 0.05 -0.06 0.02 0.06 0.08 0.21 ~0.00 0.00 0.02 0.09
D 0.94 0.17 2015 0.82 1.04 1.30 3.46 T17 1.09 0.56 2.36
MJ EL MC scaling -0.94 -0.17 0.15 -0.81 -1.04 -1.30 -3.46 -1.17 -1.09 -0.56 -2.36
MJ EL mixMET 0.21 0.27 0.39 0.75 12 144 “a.41 -3.80 1.13 2.36 5.86
FSR 20.37 2033 20.26 0.24 0.16 0.00 0.09 2012 S0.22 20.19 20.19
-0.13 -0.09 0.23 0.84 1.13 0.74 0.08 0.39 0.88 0.83 0.86
tt i =2.0, ip=1.0 -0.89 -0.86 -0.82 -0.83 -0.77 -0.69 -0.68 -0.44 0.35 0.24 0.23
tt g = 0.5, ip=0.5 1.22 111 111 1.01 0.90 0.88 0.52 0.39 0.25 0.23
% hardscatter 0.60 0.87 114 1.16 1.07 1.04 0.83 112 1.16 1.31
% hadronisation 0.58 0.76 0.95 0.98 0.90 0.76 0.27 0.28 0.35 0.39 0.45
tt hdamp -0.40 0.20 -0.08 0.06 0.15 0.23 0.34 0.35 0.31 0.24 0.24
. 20.41 20.28 0.20 0.14 20.20 0.34 20.55 2055 0.64 20.67 0.88
tt NNPDF RMS 0.41 0.28 0.20 0.14 0.20 0.34 0.55 0.55 0.64 0.67 0.88
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Final measured double-differential cross-section as a function of the transverse
momentum of the W boson and the absolute value of the electron’s pseudorapidity for

W _
mr =

[300 — 425] GeV in the e~ channel. The statistical uncertainty of the data and of

the MC samples, obtained from the covariance matrix, and the systematic uncertainties

with an impact of more than 0.5% are presented separately.

(1) bin edges 0.0 0.2 0.4 0.6 0.8 0 2 1.4 1.6 1.8 2.0 2.2
i ases - 0.2 - 0.4 - 0.6 - 0.8 - 1.0 - 1.2 - 14 -1.6 - 1.8 - 20 -2.2 -24
o [pb/GeV] 1.93e-02  1.85¢-02  1.76e-02  1.71e-02  1.69¢-02  1.66e-02  1.46e-02  1.70e-02  1.61e-02  1.50e-02  1.19e-02  9.47e-03
Data stat. unc. [%] 3.27 3.27 3.35 3.34 3.31 3.33 4.18 2.88 2.86 3.39 3.75 4.47
MC stat. unc. [%] 2.17 2.13 2.09 1.93 2.49 2.64 2.17 1.86 1.85 2.03 1.74 2.46
tot. sys. unc. [%] 5.17 5.12 5.44 5.46 5.15 5.21 3.33 3.33 3.84 5.65 6.96
ot sys. unc. % -3.19 -2.79 -3.42 -3.19 -3.98 -4.37 -5.42 -5.98 -5.98 -7.60 -11.99
0.03 0.02 0.00 0.06 0.15 0.10 0.10 0.05 0.05 20.15
SoftTrk Scale 0.03 0.02 -0.00 -0.06 -0.15 -0.10 -0.10 -0.05 -0.05 0.15
Soft Trk ResoPara 021 0.05 0.03 0.03 0.13 0.19 0.16 -0.07 20,07 0.38
Soft Trk ResoPerp 0.18 0.16 0.10 0.05 0.10 0.05 0.03 ~0.09 ~0.09 2031
L s . 2023 2024 20.24 20.24 2025 20.26 20.27 0.49 0,49 116
BG SCALE 812 0.23 0.24 0.24 0.24 0.25 0.26 0.27 0.49 0.49 1.16
. N 2031 0.36 20,40 0.39 2033 2025 20.23 2034 20.34 0.62
EG SCALE LARCALIB 0.31 0.36 0.40 0.39 0.33 0.25 0.23 0.34 0.34 0.62
0,01 20,01 0,01 20.01 0.01 20.01 20.01 0.15 0.16 2.20
BG SCALE L1GAIN 0.01 0.01 0.01 0.01 0.01 0.01 0.01 -0.15 -0.16 -2.20
S 0.80 0.80 0.87 T.43 2.46 2.90 2.23 0.31 0.31 0.43
EG SCALE L2GAIN -0.80 -0.80 -0.87 -1.43 -2.46 -2.90 -2.22 -0.31 -0.31 -0.43
N 0.00 0.01 0.07 0.25 0.28 0.31 0.12 20.26 20.26 20.13
JER BANP 1 0.00 0.02 -0.07 -0.24 -0.28 -0.30 -0.11 0.27 0.27 0.14
0.10 0.01 0.24 0.60 0.81 0.82 0.49 0.19 0.19 2024
JER BfINP 2 0.10 -0.01 -0.60 -0.81 -0.82 -0.49 0.19 0.20 0.25
0.33 0.31 0.34 0.36 0.27 0.01 2021 20.21 0.04
JER EfINP 3 -0.33 -0.31 -0.34 -0.36 027 -0.01 0.21 0.21 0.04
2033 0.04 0.17 0.15 0.09 0.07 0.21 20.21 2017
JER BANP 4 0.33 -0.03 -0.17 -0.15 -0.09 0.08 0.21 0.21 0.17
. 20.07 0.08 0.07 20.10 0.09 011 011 011 0.06
JER EfiNP 5 0.07 0.08 0.07 0.10 0.09 0.11 0.11 0.11 0.06
2012 2012 20.10 20.10 20.07 0.09 2012 2012 20.07
JER EfINP 6 0.12 0.12 0.10 0.10 0.07 0.09 0.12 0.12 0.07
0.04 0.08 0.44 0.49 0.31 0.00 20.21 20.21 0.14
JER EANP 7 -0.04 -0.08 -0.44 -0.49 -0.31 -0.00 0.21 0.21 0.14
N 2022 2022 20.13 2012 0.09 0.06 0.04 ~0.04 0.08
JES EfiNP Modell 0.22 0.22 0.13 0.12 0.09 0.06 0.04 0.04 0.08
o - 2035 2025 20.24 030 2024 2014 0.10 0.10 0.08
JES Etalntercalib Model 0.35 0.25 0.24 0.30 0.24 0.14 0.10 0.10 0.08
JES Flavor Combosition 0.46 0.47 20.45 20,50 20.44 20.34 -0.33 -0.33 048
pos 0.46 0.47 0.45 0.50 0.44 0.34 0.33 0.33 0.48
JES Flavor Response 0.54 0.44 0.26 0.29 0.23 0.16 0.23 0.23 0.40
avor Hesponse -0.54 -0.44 -0.26 -0.29 -0.23 -0.16 -0.23 -0.23 -0.40
S 20.18 20.19 20.11 S0.11 0.08 20.07 0.08 0.08 0.06
JES Pileup OffsetMu 0.18 0.19 0.11 0.11 0.08 0.07 0.08 0.08 0.06
- - 0.06 20.07 0.14 20.20 20.15 20.05 20.05 20.05 20.05
JES Pileup OffsetNPV 0.06 0.07 0.14 0.20 0.15 0.05 0.05 0.05 0.05
- 2026 2027 0.26 2029 2025 2022 20.20 20.20 2013
JES Pileup RhoTopo 0.26 0.27 0.26 0.29 0.25 0.22 0.20 0.20 0.13
0.84 0.84 1.32 1.50 1.49 1.52 2.02 2.03 133
BL SF 1D -0.84 -0.84 -1.32 -1.50 -1.49 -1.52 -2.02 -2.03 -4.33
5L SF Tsol 0.57 0.57 0.66 0.72 0.73 0.78 T17 117 1.46
- i -0.57 -0.57 -0.66 -0.72 -0.73 -0.78 117 117 -1.46
PU SF 0.2 0.43 20.27 20.19 2012 20.07 20.24 20.24 0.18
b 0.42 0.43 0.27 0.19 0.12 0.07 0.24 0.24 0.18
a1 0.99 2052 20.69 118 3.05 148 147 2072
MJ EL MET 0.85 0.76 0.41 0.53 0.86 2.23 1.31 1.30 0.62
MJ EL Tjet 0.01 0.01 ~0.06 011 0.15 0.22 0.02 0.02 0.10
D 0.78 0.70 0.43 0.63 T.02 2.32 0.69 0.69 0.41
MJ EL MC scaling -0.78 -0.70 -0.43 -0.63 -1.01 -2.32 -0.69 -0.69 -0.41
MJ EL mixMET -0.44 -0.36 -0.65 115 133 -2.05 5.04 5.04 5.24
SR S0.22 0.28 20.77 2073 0.42 0.10 0.01 0.01 0.26
-1.34 -0.31 2.12 1.91 1.27 0.43 -0.53 -0.52 1.18
tt i =2.0, pp=1.0 174 174 1,65 1.48 131 121 -0.70 -0.69 0.42
tt g = 0.5, up=0.5 2.66 2.42 2.22 2.00 1.79 1.61 0.79 0.78 0.38
% hardscatter 1.99 2.21 2.26 2.02 1.78 1.63 0.95 0.94 0.84 0.85
% hadronisation 3.28 3.33 3.32 3.07 2.49 1.90 1.55 0.66 0.65 0.24 -0.30 0.81
tt hdamp 0.60 0.61 0.63 0.62 0.51 0.32 0.10 -0.00 -0.00 -0.08 -0.17 -0.17
0.42 20.42 0.42 20.45 20.42 2055 0.70 0.69 20.69 0.82 0.90 -0.82
tt NNPDI RMS 0.42 0.42 0.42 0.45 0.42 0.55 0.70 0.69 0.69 0.82 0.90 0.82
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Final measured double-differential cross-section as a function of the transverse
momentum of the W boson and the absolute value of the electron’s pseudorapidity for
mlV = [425 — 600] GeV in the e~ channel. The statistical uncertainty of the data and of
the MC samples, obtained from the covariance matrix, and the systematic uncertainties
with an impact of more than 0.5% are presented separately.

) 0.0 0.4 0.8 1.2 1.6 2.0

(1) bin edges - 0.4 -0.8 S1.2 - 1.6 -2.0 -24
o [pb/GeV] 1.13e-02  1.07e-02  8.94e-03  8.73¢-03  8.46e-03  5.94e-03
Data stat. unc. [%] 3.80 3.89 3.94 2.89 4.31 5.21
MC stat. unc. [%] 1.81 2.21 2.18 1.46 1.91 1.81
tot. sys. une. [%] 5.12 4.77 4.74 4.33 4.37 4.99
- 8ys. L -4.28 -4.02 -4.26 -3.99 -3.98 -4.78
20.01 0.11 0.03 0.04 0.07 0.00

SoftTrk Scale 0.01 -0.11 -0.03 -0.04 -0.07 -0.00
SoftTrk ResoPara -0.14 0.05 0.01 0.03 0.08 0.04
Soft Trk ResoPerp 0.00 0.12 0.06 0.06 0.09 0.05
20.65 20.65 2059 20.59 20.63 20.80

EG SCALE S12 0.65 0.65 0.59 0.59 0.63 0.80
T0.71 0.71 20.63 20.59 20.52 20.68

EG SCALE LARCALIB 0.71 0.71 0.63 0.59 0.52 0.68
0.00 0.00 -0.04 0.10 0.46 1.05

EG SCALE L1GAIN 0.00 0.00 0.04 -0.10 -0.46 -1.05
1.67 1.69 1.43 114 0.55 0.61

EG SCALE L2GAIN -1.67 -1.69 -1.43 -1.14 -0.55 -0.61
0.04 20.07 0.07 0.06 0.11 0.19

JER BffNP 1 -0.04 0.08 -0.07 -0.06 -0.11 -0.19
0.71 0.30 0.16 0.12 0.11 0.16

JER EfNP 2 -0.71 -0.30 -0.16 -0.12 -0.11 -0.16
0.15 0.00 -0.03 0.06 20.04 -0.00

JER EfNP 3 -0.15 -0.00 0.03 0.06 0.04 0.00
0.21 0.03 0.00 0.00 0.07 0.13

JER EffNP 4 -0.21 -0.03 -0.00 -0.00 -0.07 -0.13
70.02 20.05 20.04 70.03 20.02 0.01

JER BfNP 5 0.02 0.05 0.04 0.04 0.02 -0.01
0.08 0.01 20.01 20.03 20.05 20.02

JER EfINP 6 -0.08 -0.01 0.01 0.03 0.05 0.02
0.12 20.02 20.03 20.06 20.05 20.02

JER BffNP 7 -0.12 0.02 0.03 0.06 0.05 0.02
0.1 S0.12 -0.10 20.07 -0.03 0.01

JES EffNP Modell 0.11 0.12 0.10 0.07 0.03 0.01
- T0.16 0.19 013 70.09 20.06 20.03

JES Etalntercalib Model 0.16 0.19 0.13 0.09 0.06 0.03
" T0.13 0.17 20.07 20.07 20.10 20.05

JES Flavor Composition 0.13 0.17 0.07 0.07 0.10 0.05
0.34 0.36 0.31 0.22 0.04 0.00

JES Flavor Response -0.34 -0.36 -0.31 -0.22 -0.04 -0.00
) 0.00 -0.06 0.01 20.02 20.07 -0.08

JES Pileup OffsetMu -0.00 0.06 0.01 0.02 0.07 0.08
- 20.08 20.09 20.03 20.02 20.02 20.02

JES Pileup OffsetNPV 0.08 0.09 0.03 0.02 0.02 0.02
- 011 0.13 20.06 70.06 20.08 20.06

JES Pileup RhoTopo 0.11 0.13 0.06 0.06 0.08 0.06
2.63 2.66 257 279 3.34 201

EL SF 1D -2.63 -2.66 -2.57 -2.79 -3.34 -4.01
0.86 0.88 0.83 1.02 1.47 1.55

EL SF Isol -0.86 -0.88 -0.83 -1.02 -1.47 -1.55
20.38 20.37 -0.23 S0.22 -0.21 20.20

PU SF 0.38 0.37 0.23 0.22 0.21 0.20
150 0.73 1902 1.65 0.75 20.99

MJ EL MET 1.25 0.69 1.71 1.53 0.87 0.97
MJ BL 1jet 20.05 20.05 20.07 20.04 0.04 0.09
- 0.87 0.49 1.30 1.02 0.21 0.33

MJ EL MC scaling -0.87 -0.49 -1.30 -1.02 -0.21 -0.33
MJ EL mixMET 0.08 0.16 0.05 -0.03 -0.04 ~0.09
FSR 0.25 0.22 0.19 T0.27 0.55 051
-0.49 -1.04 -0.88 -0.29 1.19 0.65

tt pp=2.0, up=1.0 -1.48 1.35 116 0.84 -0.23 20.12
tt pp=0.5, pup=0.5 2.21 2.06 1.72 1.12 -0.05 -0.06
tt hardscatter 2.02 1.85 1.70 1.19 0.21 0.06
tt hadronisation 1.54 1.44 1.19 1.16 1.23 1.17
tt hdamp ~0.51 -0.25 -0.20 0.04 0.59 0.73
- 0.45 0.45 055 T0.57 0.57 20.54
tt NNPDF RMS 0.45 0.45 0.55 0.57 0.57 0.54




Final measured double-differential cross-section as a function of the transverse
momentum of the W boson and the absolute value of the electron’s pseudorapidity for
mlY = [600 —900] GeV in the e~ channel. The statistical uncertainty of the data and of
the MC samples, obtained from the covariance matrix, and the systematic uncertainties
with an impact of more than 0.5% are presented separately.

. 0.0 0.4 0.8 1.2 1.6 2.0
n(l) bin edges - 0.4 -0.8 - 1.2 - 1.6 - 2.0 - 2.4
o [pb/GeV] 3.66e-03  3.80e-03  2.61e-03  2.48e-03  2.19e-03  7.95e-04
Data stat. unc. [%] 6.01 5.71 6.64 4.77 7.98 13.60
MC stat. unc. [%] 1.52 2.47 6.22 4.13 1.43 3.24
tot. sys. une. [%] 5.45 5.22 5.45 5.44 5.90 6.60
- Sys. s e -5.35 -5.10 -5.09 -5.16 -5.74 -6.52
20.05 20.00 0.02 20.00 20.04 -0.04

SoftTrk Scale 0.05 0.00 -0.02 0.00 0.04 0.04
SoftTrk ResoPara -0.04 -0.00 0.01 0.01 -0.00 -0.01
Soft Trk ResoPerp 20.08 20.04 20.01 0.01 0.06 0.09
20.50 20.48 20.39 20.53 20.88 156

EG SCALE S12 0.50 0.48 0.39 0.53 0.88 1.56
20.54 2053 20.49 T0.57 077 111

EG SCALE LARCALIB 0.54 0.53 0.49 0.57 0.77 1.11
-0.00 -0.00 -0.06 0.15 0.68 1.63

EG SCALE L1GAIN 0.00 0.00 0.06 -0.15 -0.68 -1.63
117 118 T11 .00 0.70 0.73

EG SCALE L2GAIN 117 2118 2111 -1.00 -0.70 -0.73
0.09 20.00 20.07 20.07 20.08 0.18

JER EffNP 1 -0.09 0.00 0.07 0.07 0.08 0.18
0.02 20.00 20.02 20.03 20.06 012

JER EANP 2 -0.02 0.00 0.02 0.03 0.06 0.12
0.07 0.06 0.04 0.03 0.01 0.02

JER EANP 3 -0.07 -0.06 -0.04 -0.03 -0.01 -0.02
-0.02 -0.04 -0.02 20.03 20.05 011

JER EfNP 4 0.02 0.04 0.02 0.03 0.05 0.11
0.07 0.05 0.05 0.01 20.07 0.21

JER EffNP 5 -0.07 -0.05 -0.05 -0.01 0.07 0.21
0.01 20.01 20.01 20.02 20.06 018

JER EfNP 6 -0.01 0.01 0.01 0.02 0.06 0.18
20.00 20.03 20.03 20.03 20.01 20.02

JER EANP 7 0.00 0.03 0.03 0.03 0.01 0.02
0.02 0.00 -0.01 0.00 0.01 0.02

JES EfNP Modell -0.02 -0.00 0.01 0.00 -0.01 -0.02
- 70.00 20.04 20.06 20.03 0.05 0.13

JES Etalntercalib Model 0.00 0.04 0.06 0.03 -0.05 -0.13
. 20.05 20.07 20.07 20.06 20.04 20.03

JES Flavor Composition 0.05 0.07 0.07 0.06 0.04 0.03
0.03 0.04 0.04 0.01 20.06 2016

JES Flavor Response -0.03 -0.04 -0.04 -0.01 0.06 0.16
) -0.00 0.04 -0.05 20.04 0.00 0.05

JES Pileup OffsetMu 0.00 0.04 0.05 0.04 -0.00 -0.05
- 20.06 20.05 20.04 20.02 0.04 0.13

JES Pileup OffsetNPV 0.06 0.05 0.04 0.02 -0.04 -0.13
- 70.09 20.07 20.05 70.02 0.04 0.11

JES Pileup RhoTopo 0.09 0.07 0.05 0.02 -0.04 -0.11
139 1.43 141 1.48 71 5.03

EL SF 1D -4.39 -4.43 -4.40 -4.48 -4.71 -5.03
1.28 1.29 1.24 1.67 277 3.03

EL SF Isol -1.28 -1.29 -1.24 -1.67 -2.77 -3.03
0.26 0.23 0.15 0.08 0.09 -0.07

PU SF -0.26 0.23 -0.15 -0.08 0.09 0.07
124 20.65 129 113 20.79 20.90

MJ EL MET 1.02 0.63 1.37 1.28 1.08 1.18
MJ EL 1jet 0.00 20.01 20.01 20.01 0.00 0.00
- 0.56 0.27 0.46 0.36 0.13 0.19

MJ EL MC scaling -0.56 -0.27 -0.46 -0.36 -0.13 -0.19
MJ BEL mixMET 0.88 0.64 1.03 0.64 -0.18 ~0.04
PSR 11 20.70 20.28 0.17 0.05 0.02
1.88 1.53 1.75 1.45 0.84 0.45

tt pp=2.0, up=1.0 -0.72 0.58 -0.61 0.48 2018 20.12
tt up=0.5, pp=0.5 0.97 0.79 0.84 0.81 0.76 0.54
tt hardscatter -1.01 -0.82 -0.63 -0.41 0.07 0.02
tt hadronisation -0.22 -0.18 -0.14 -0.10 -0.02 -0.02
tt hdamp -0.95 -0.78 -0.60 -0.37 0.13 0.02
- 70.36 20.29 2038 70.36 20.33 20.27
tt NNPDF RMS 0.36 0.29 0.38 0.36 0.33 0.27
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G Tabular presentation of the measured cross sections

Final measured double-differential cross-section as a function of the transverse
momentum of the W boson and the absolute value of the electron’s pseudorapidity for
mlY = [900 — 2000] GeV in the e~ channel. The statistical uncertainty of the data and of
the MC samples, obtained from the covariance matrix, and the systematic uncertainties
with an impact of more than 0.5% are presented separately.

(L) bin edges 06 -v2 o182
o [pb/GeV] 1.20e-03  9.15e-04  6.27e-04  1.99e-04
Data stat. unc. [%] 9.83 10.71 10.84 20.40
MC stat. unc. [%] 9.69 3.93 1.46 1.06
tot. sys. une. [%] 6.10 5.22 5.15 5.50

-4.93 -4.89 -5.59 -6.89
T ow o o
SoftTrk ResoPara 0.01 0.01 0.00 -0.01
SoftTrk ResoPerp -0.06 -0.04 -0.02 0.01
eo soaur 1 R
T T S N
ST
T A R S
R
A T
JER BENP 3 000 000 004 -oor
T ——an—an o
S e on
A
A
TR O
JES Etalntercalib Model oo oo o0 oo
e L S
T v A
T T N O
T
T R N
o S
EL SF Isol FEE T
o i I "
w1 v A
MJ EL 1jet -0.00 -0.00 -0.00 0.00
TR s B = A
MJ EL mixMET 2.27 1.92 0.14 -1.46
FSR oot 004 004 008
tt pp=2.0, pp=1.0 -0.32 -0.22 -0.13 -0.04
tt up=0.5, up=0.5 0.63 0.39 0.20 0.02
tt hardscatter 2.87 -0.07 -1.93 -3.59
tt hadronisation -0.43 -0.40 -0.60 -0.79
tt hdamp 20.41 0.48 20.91 1.31
t¢ NNPDF RMS 013 o2a 019 o
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