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Abstract
This thesis addresses and develops several new aspects of machine learning which
ultimately contribute to the development of a novel pedestrian perception system
for autonomous driving in urban environments. After explaining the problem in
more detail in chapter 1, chapter 2 gives a brief introduction to the main principles
of machine learning. Chapter 3 presents a study on the robustness of different
pool-based active learning approaches and presents a new query method, as well as
drawing conclusions for the practical applicability of these methods in an industrial
setting. The search for the best architecture of a convolutional neural network is
the subject of chapter 4, in which a heuristic for the fast and reliable evaluation of
such configurations is presented and combined with global optimisation. Chapter 5
includes the description of a new system for real-time panoptic segmentation of lidar
point clouds, which combines a clustering approach with efficient classification. After
highlighting further aspects of pedestrian feature extraction in chapter 6, chapter
7 finally describes a system for their localisation and motion prediction. A final
conclusion and an outlook on possible extensions are given in chapter 8.

Zusammenfassung
Die vorliegende Arbeit behandelt und entwickelt neue Aspekte maschinellen Lernens,
die letztendlich zur Entwicklung eines neuartigen Systems zur Wahrnehmung und
Einschätzung von Fußgängern für das autonome Fahren im urbanen Raum beitragen.
Nachdem in Kapitel 1 die Problemstellung näher erläutert wird, gibt Kapitel 2
eine kurze Einführung in die wichtigsten Grundlagen des Machine Learning. In
Kapitel 3 wird eine Studie über die Robustheit verschiedener Pool-Based Active
Learning-Ansätze vorgestellt und eine neue Abfrage-Methode präsentiert, sowie
Schlüsse für die praktische Anwendbarkeit dieser Verfahren in einem industriellen
Umfeld gezogen. Die Suche nach der besten Architektur eines Convolutional Neural
Network ist Gegenstand von Kapitel 4, in dem ein heuristisches Verfahren zur
schnellen und zuverlässigen Bewertung solcher Konfigurationen vorgestellt und mit
einem Ansatz der globalen Optimierung verbunden wird. Kapitel 5 umfasst die
Beschreibung eines neuen Systems zur echtzeitfähigen panoptischen Segmentierung
von Lidar-Punktwolken, welches einen Ansatz zum Clustering mit einer effizienten
Klassifizierung kombiniert. Nachdem in Kapitel 6 weitere Aspekte zur Extraktion
der Merkmale von Fußgängern beleuchtet werden, beschreibt Kapitel 7 schließlich
ein System für deren Lokalisierung und Bewegungs-Prädiktion. Ein abschließendes
Fazit und ein Ausblick auf mögliche Erweiterungen erfolgen in Kapitel 8.
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Introduction 1
„If everyone is moving forward together,

then success takes care of itself.

— Henry Ford
(attributed to)

1.1 Motivation

The concept of automated vehicles and driverless traffic is nearly as old as the
invention of the car itself. It took less than two decades from its commercialisation,
with Ford’s “Model T” in 1908, for a company to present a radio controlled automobile
to the public in the year 1925 (Time Magazine, 1925). While this showcase merely
transferred the controls to the following car equipped with a radio transmitter, it
demonstrates how present the thought of being driven by an automated vehicle was
for people even at that time.
Approximately 60 years later, the programme “PROMETHEUS” was launched by
the European research initiative EUREKA in 1986 to spearhead endeavours in
the automotive industry’s development towards the first real machine-controlled
autonomous cars. While the actual scope of automated vehicle functionality within
the project can be regarded as rudimentary compared with present requirements, the
initiative created foundations for many advanced driver assistance systems (ADAS)
widely used today. These included prototypes of adaptive cruise control systems,
first blueprints for automated lane change and emergency breaking systems, as well
as preliminary stages of early on-board navigation devices. With both academic
and industrial activities in 11 European countries over a period of 96 months and
total funding of more than 700 million Euros equivalent value, the programme
marks a unique effort in this field (EUREKA, 2012). In the decades that followed,
many succeeding initiatives were rolled out with “@CITY” being the current German
government project in this legacy. As the title indicates, more than another thirty
years later, focus of automated driving research and predevelopment now eventually
arrived on the most complex setting of road traffic; inner city scenarios.
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Automated driving in the city is a demanding challenge for two major reasons. First
and foremost, it must be concerned with the safety and integrity of vulnerable
road users like pedestrians and cyclists. Possible malfunctions could be especially
severe in this environment, as accidents even at very low velocities will likely lead to
personal injuries. Secondly, vehicle traffic itself is much more complex. Particularly
in narrow streets with increased pedestrian traffic and residential areas away from
the main road.
Semi-automatic assistance systems, which started to make their way into production
vehicles in recent years, are primarily designed to assist the driver in narrowly
defined scenarios on the highway. Here, traffic flow is separated by directions,
free of intersections, roundabouts and traffic lights and the layout of the road is
widely standardised. While making a machine follow a large set of traffic rules
in a non-standardised environment in itself calls for considerable efforts to be
made, it is the dynamism of these surroundings that immensely expands system
requirements. Furthermore, unpredictable behaviour of all traffic participants needs
to be accounted for, as by nature, pedestrians and human drivers alike will at some
point exhibit disregard of traffic regulations, either deliberately or unintentionally.

The field of machine learning offers a variety of techniques that can be used to
develop solutions to these problems. By design, this class of algorithms plays to
its strengths whenever a manual formulation of a model to solve a task is far too
complex or impossible due to unknown underlying feature characteristics. This
makes it a tool of paramount importance for the concept of autonomous driving.

2 Chapter 1 Introduction



1.2 Outline and Context

The present thesis is concerned with providing new methods and considerations
targeted towards the development of an experimental system for pedestrian detection,
understanding and behaviour prediction for autonomous driving in urban scenarios.
It describes findings in both machine learning fundamentals and its applications to
automotive sensor data.

This work is subdivided into the following chapters and parts:

In a first part, fundamentals of machine learning algorithms and utilised sensors are
described in chapter 2.

Chapter 3 covers active learning and its application to supervised classification
problems. Its practicality to reduce human annotation effort and time and cost
requirements accordingly is analysed and validated on public and private data sets.
Here, special attention is paid to how robust existing and new methods are against
the influence of changing hyperparameters and whether a selection made with one
neural network architecture remains optimal for another slightly different network
layout. The latter can become particularly relevant when models need to be scaled
down after a research or predevelopment period, to be implemented in a product
under computing power restrictions.

A new method for architecture selection of convolutional neural networks (CNN) is
the topic of chapter 4. With a focus on balancing time consumption and precision,
a heuristic approach to evaluate CNN architectures is developed and compared to
other methods. This is then combined with aspects of random search and Bayesian
optimisation to create a complete selection algorithm.

Chapter 5 describes a system for real-time panoptic segmentation in lidar sensor
data. First, a novel clustering algorithm, leveraging methods to preserve three-
dimensional information after reduction to a two-dimensional representation for fast
computation, is introduced. Hereafter, a concept for optimised data representation
and computationally efficient classification of identified object clusters is presented.
Additional remarks are made to underline the capability of both building blocks to
be combined offering a competitive solution for real-time object detection in lidar
point clouds.

Chapter 6 treats further considerations regarding pedestrian behavioural feature
extraction. It proposes an extension to proven methods for human body key point
detection. Here the target is to make performance more robust for automotive
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scenarios where low camera resolution and longer distances from vehicle to pedestrian
can lead to very limited image details. More importantly, the proposed network
consist of significantly fewer parameters than leading approaches utilising very deep
architectures. In addition to this, remarks on the detection of pedestrian awareness
are given.

The combination of aforementioned functions with additional building blocks for
pedestrian localisation and movement prediction into a complete system is explained
in chapter 7. A framework is presented, describing information flow from raw sensor
data through various algorithm blocks towards generating an output useful to
subsequent vehicle path planning and risk assessment systems. Additional examples
for applications of concepts introduced in this work are also given.

Finally, the major findings of this thesis are summarised in a conclusion in chapter 8
along with thoughts on further development in this field and meaningful combination
of machine learning algorithms and deterministic programming in the context of
autonomous vehicles.

This thesis is the result of the scholarship “Detection of Interaction between Traffic
Participants” provided by the University of Wuppertal through funding from Aptiv
Services Deutschland GmbH.
Its contents where in parts developed in cooperation with the project “@CITY
- Automatisierte Fahrfunktionen”1, a research initiative supported by the Federal
Ministry for Economic Affairs and Energy on the basis of a decision by the German
Bundestag. The programme, with partners from both the automotive industry and
academia taking part, is organised into seven subprojects with activities started
between September 2017 and July 2018. The project is scheduled for completion in
June of 2022.

1https://www.atcity-online.de/
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The contents of this thesis have been partly published in the following articles:

• Lukas Hahn, Frederik Hasecke, Anton Kummert
“Fast Object Classification and Meaningful Data Representation of Segmented
Lidar Instances”,
Proceedings of the 23rd IEEE International Conference on Intelligent Transportation
Systems (IEEE ITSC), pages 1-6, DOI: 10.1109/ITSC45102.2020.9294217,
Rhodos (Greece), 2020

• Lukas Hahn, Lutz Roese-Koerner, Peet Cremer, Urs Zimmermann, Ori
Maoz, Anton Kummert
“On the Robustness of Active Learning”,
Proceedings of the 5th Global Conference on Artificial Intelligence (GCAI), EPiC
Series in Computing, Volume 65, pages 152-162, DOI: 10.29007/thws, Bolzano
(Italy), 2019
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ISBN: 978-2-87587-065-0, Bruges (Belgium), 2019

and
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“FLIC: Fast Lidar Image Clustering”,
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486-2, DOI: 10.5220/0010193700250035, Online, 2021
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“Detection System for Predicting Information on Pedestrian”,
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US Patent Application PCT/US/17/649,672, 2022.
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Fundamentals 2
This chapter aims to provide the reader with a description of the field of machine
learning in general, convolutional neural networks (CNNs) in particular and the
underlying mathematical methods employed. It by no means claims to be complete or
give a full introduction to this complex and constantly evolving topic. All references
to real world application of the methods presented in the following have been
researched carefully but notwithstanding this fact remain selective through their
sources’ perspective on the overall picture.
These fundamentals are concluded with descriptions of the technical characteristics
of sensors that are of crucial importance for automotive applications, namely camera
and lidar.

2.1 Machine Learning

Machine learning (ML) is one of, if not the fastest growing field of computer science
in recent years. Resulting from striving for artificial intelligence it is not only
subject of vivid discussions within the research community, but increasing industrial
application and even coverage in mainstream media.
It originates from the pioneer work of Alan Turing, as well as Marvin Minsky
in the early 1950s. In 1951, Minsky build a neurocomputer called “SNARC”
(Stochastic Neural Analog Reinforcement Computer) with the help of Dean Edmonds
(Minsky, 1952). It was the first machine to resemble a neural network using 40
“neurons”. Inspired by the experiments of B.F. Skinner on reinforcement learning
with laboratory rats and hand build from tubes, motors, capacitors and clutches, the
machine was able to learn the same behaviour a rat trying to get food would. Only
one year later, Arthur Samuel developed a machine at IBM which learned to play
the game of checkers (Samuel, 1959).

One of the milestones on the way towards today’s understanding of machine learning
was Frank Rosenblatt’s invention of the perceptron in 1958 (Rosenblatt, 1958). His
algorithm was implemented in the “Mark I Perceptron” machine, build at the Cornell
Aeronautical Laboratory. Although weight updates were still performed mechanically
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by electrical motors moving potentiometers, the machine’s application already was
what today is referred to as image recognition. It was connected to a camera using
an array of 20× 20 cadmium sulfide photocells resulting in an 400-pixel image. The
concept of the perceptron is still the underlying principle of modern classification
algorithms.

After exaggerating the capabilities of his invention, Rosenberg’s predictions were
corrected by Marvin Minsky and Seymour Papert in their 1969 book “Perceptrons”
(Minsky and Papert, 1969). This led to a period of reduced funding for artificial
intelligence, and in combination with the limited computer power available at the
time caused the field to stagnate for many years.

Another important method still frequently used in machine learning today is the
support vector machine (SVM), invented by Vladimir Vapnik and Alexey Chervonenkis
in 1963 (Vapnik and Lerner, 1963; Vapnik and Chervonenkis, 1964) and revised for
its contemporary form by Corinna Cortes and Vapnik in 1995 (Cortes and Vapnik,
1995). The invention to definitively re-popularise intelligent was IBM’s “Deep Blue”,
a chess-playing computer that defeated world champion Garry Kasparov in 1997
(Campbell et al., 2001). Although mainly benefiting from brute computational force
to evaluate millions of positions per second, the win had symbolic significance in
showing how artificial intelligence was becoming capable of challenging humans
in specific tasks. In 2016, Google’s “AlphaGo” set a new landmark by beating
professional player Lee Sedol in a game of Go. Although both tasks show similarities,
the ancient Chinese game has a far higher branching factor than chess, resulting
in a much larger number of possible moves per turn. A brute force approach was
therefore rejected and the system used reinforcement learning of a deep neural
network in combination with a tree search technique (Silver et al., 2016).

The field of machine learning addresses the question of how a computer can learn to
perform a certain task, generating an appropriate response or output when receiving
a given input. The main objective is to generalise from data observed during the
learning process to new, unseen data. Thus, it is not about simply remembering the
training data. To approach this problem, one must decide upon a few points.
The first being the actual task the machine is asked to learn. It defines how any
example data presented as input to the system has to be processed. The data itself
can be regarded as a collection of features representing key information of the
underlying problem. Whether distinct features have to be selected by hand or can be
extracted by the algorithm itself is depending on the particular learning method. A
large portion of ML tasks can be broken down to the function of classification. Here,
the system is asked to assign a single input to one of n distinct classes.
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The second aspect of designing a machine learning algorithm is to choose what kind
of experience the machine is allowed to have. This refers to the way the algorithm
is trained to perform its task. Learning with fixed datasets can be divided into two
categories. In the case of unsupervised learning, a set of data is presented to the
system which is asked to learn useful features from these inputs independent from
additional information. A possible application for this method could be clustering to
find hidden underlying similarities within partitions of the entire input data space.
In contrast to that, supervised learning provides a target or label with every input.
If the task is to classify pieces of furniture, every input representing a chair will
receive the same label, while every table is labelled as such, and so on. Other
learning paradigms, like reinforcement learning are beyond the scope of this work
and therefore will be left unexplained at this point.

Lastly, it is to be determined how the performance of the specified machine learning
algorithm should be measured. For classification tasks, this is either the accuracy
or the error rate. A percentage value describing how many inputs have been
classified correctly or stating the portion of false classifications respectively. In
general, this value is measured not only on the data used to train the classifier, but
more importantly on a separate partition kept solely to validate the performance.
In his 1997 book “Machine Learning”, Tom Mitchell summarised this in the following
often cited quote: “A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.” (Mitchell, 1997a).
Following the presented requirements, a single input for supervised learning of a
classification task must at least contain the following information: 1) The actual
input, for example an image represented by a matrix. 2) A label, for example the
number of the associated class in the form of an integer. And 3), a value expressing
the affiliation to either the training or the validation partition of the dataset.

2.1.1 Neural Networks

In the last two decades, neural networks have possibly become the most popular
method for machine learning. As abstract models of neurons in the brain, they
aim to imitate the way we as humans learn to process information (Rojas, 1996).
Although our brain achieves its capabilities through massive parallel and hierarchical
networking using billions of neurons, a single one can be considered a distinct
“computational” unit. Input signals are electric impulses carried along the dendrites
towards the cell body (see figure 2.1). The output information is then forwarded
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Fig. 2.1.: A biological neuron and its mathematical model (Fei-Fei et al., 2017).

onward the axon, where the message will eventually be transmitted to the dendrites
of other neurons through the axon terminals. In the computational model trying to
mimic this biological phenomenon, an input signal xi is multiplied with a weight
wi resembling the strength of a synapse1. The cell body then sums up all weighted
inputs

∑
iwixi + b adding a bias value b (Mitchell, 1997b). If the final sum is above

a certain threshold, the neuron is activated, it fires. In practice, non-linear activation
functions are used instead of fixed thresholds. The output function of such a neuron
can therefore be expressed as f (∑iwixi + b).

A few dozen up to thousands of neurons together can form a network. Therefore,
they are organised into a hierarchical structure of layers, where each single neuron
from the previous layer is an input to every neuron of the next one. Neurons within
one layer share no connections. In contrast to other learning methods, neural
networks are not dependent on feature characteristics being extracted prior to
training but attempt to detect relevant features in the data on their own during the
training process. This fact is the key to their enormous success in the recent years
and suitability for a broad variety of tasks.

Classification and Loss Function

At the output of every neural network, one would like to calculate a value to
determine whether a given input was classified correctly using the current set of
weights. A value on the basis of which a training process could be started to
optimise the classification result. For this purpose, the term classification should be
specified by a simple example. Considering a Cartesian plane with two groups of
points as pictured in figure 2.2, these could be regarded as members of two classes,

1N.B.: In the following, the running index i is used to indicate single elements xi ∈ {x1, . . . , xn},
whereas j represents whole input samples ~xj ∈ {~x1, . . . , ~xm}. Therefore, a sample vector, consisting
of elements xi, will take the form ~x = (x1, . . . , xn)T .
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1-1

-1

x1

x2

Fig. 2.2.: An example of linear classification of two classes.

distinguishable from each other through characteristic features, that one would like
to separate. The most straightforward way to do so, would be to draw a straight line
between the two groups. Instead of the smallest possible distance from the points
to the line, which is something one would want to achieve in regression analysis
when fitting a line using a linear least squares approach for example, this margin is
to be maximised. This is what a linear support vector machine would do using the
well-known hinge loss function

Φ (~w, b,X, Y ) =


 1
m

m∑

j=1
fj (~w, b, ~xj , yj)


+ λ||~w||2 (2.1)

with
fj (~w, b, ~xj , yj) = max (0, 1− yj (~w~xj + b)) (2.2)

with the weight vector ~w, the bias b, the inputs ~xj ∈ X = {~x1, . . . , ~xm} and
the corresponding class labels yj ∈ Y = {y1, . . . , ym} (James et al., 2013). The
additional parameter λ defines the relation of the data loss to the regularisation
loss, a trade-off between increasing the margin size and the correct separation of the
classes. Returning to the example, every j-th input ~xj is a pair of values containing
the coordinates. Each yj can be either 1 or −1, depending on the class the j-th point
~xj belongs to. The separating line, which rather is a plane mathematically speaking,
is determined by the weights, in this case a two-dimensional column vector. The
values of the weights describe a normal vector to the plane, the bias specifies its
distance from the origin. Without this additional parameter, the SVM could only
generate solutions which pass through the origin of the coordinate system.

2.1 Machine Learning 11



In the given example, a good solution could be achieved by setting the weights
~w = (1,−1) and the bias b = −0.1. For these values, the argument of the max
function for i = 1 would be f1 = 1 − 1 · (1 · 0.5− 1 · (−0.2)− 0.1) = 0.4 and the
overall loss would become

φ =
[1

6 (0.4 + 0 + 0 + 0.3 + 0 + 0)
]

+ 0.1 ·
(
12 +−12

)
≈ 0.3167 with λ = 0.1.

Although the hinge loss could theoretically be used for multi-class classification with
neural networks, it is common to use more sophisticated functions. In practice, the
softmax log-loss

l(~z) = − log (~z) , (2.3)

which is based on the output of the softmax function

zi = σ(~x)i = exi

∑n
k=1 e

xk
for i = 1, . . . , n and ~x = (x1, . . . , xn)T (2.4)

for elements of ~z = (z1, . . . , zn), is a very popular option (Vedaldi et al., 2015). The
softmax function maps arbitrary real inputs on real values in the range [0, 1] that add
up to 1, which is ideal for multi-class classification with neural networks. It enables
a clear and normalised interpretation of the activation of the final class-neurons,
a percentage value for each class, and allows for the possibility to easily add an
optional threshold to this activation.
In practice, this function is widely used in combination with the negative log-
likelihood, as the loss will approach 0 when the confidence approaches 1 and will
grow logarithmically towards infinity the smaller the confidence becomes.

In applications the terms loss function, cost function or objective function are often
used interchangeably. When assessing or comparing the performance of machine
learning algorithms, the loss itself plays the minor part. As described before, the
capability to solve a certain task is usually expressed through a percentage value,
characterizing either the partition of correctly classified or misclassified validation
samples.

Backpropagation

While at this point it should be clear, how a neural network can be formed and what
kind of objective or loss functions can be used to measure the classification result,
this introduction still misses a very important aspect. How can the parameters of a
classification method be adapted to yield better results? Or, figuratively speaking;
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Fig. 2.3.: Example of an error surface.

how can a machine be made to learn? How can the point of minimal loss, denoting
the smallest training classification error, be reached?

With the example from the previous paragraph it is easy to visualise the surface
of the loss function as seen in figure 2.3. This graphic account was created by
parameterising both weights w1 and w2 with values between −10 and 10 and a
fixed bias b = −0.1. The red cross indicates the point (1,−1) previously evaluated.
It shows this point to already describe an optimal combination of weights for
the given bias. Assuming one would have to solve a more complex classification
problem, how could the weights of the learning algorithm be optimised? It is
obvious that one would like to use an iterative process of refining the weights to
minimise the given loss. It is desired to reach the error surface’s global minimum
starting from an arbitrary initial point. Since the dimension of the error surface is
equal to the number of parameters in the learning algorithm, real world problems
imply a multidimensional error surface impossible to imagine. Therefore, the three
dimensional bowl-like error surface from the previous example is used and ways to
descend along its incline down towards the (global) minimum are discussed.
The gradient is the mathematical operator used to gain information on the slope of
a multi-variable function. For a function f , it can be denoted as

∇f(~x) := ∂f

∂x1
~e1 + · · ·+ ∂f

∂xn
~en (2.5)

with the partial derivative

∂f(x1, x2, . . . , xn)
∂xi

:= lim
h→0

f(x1, x2, . . . , xn + h, . . . xn)− f(x1, x2, . . . , xn)
h

(2.6)
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and the unit vectors ~ei. As a vector field of partial derivatives, the gradient points
into the direction of the greatest rate of increase of the function, with the magnitude
of the slope in that direction. When the steepest descent is to be found, it is
hence logical to use the negative gradient for weight optimisation (Rumelhart et
al., 1986a).To calculate the next weights ~wt+1 from the previous ~wt at time t, a
weight-update can be expressed as

~wt+1 = ~wt − εt∇f(~wt), (2.7)

where εt is the step size, mostly referred to as learning rate. This value is one of
the most important hyperparameters in machine learning and determines how big
a step in the direction of the calculated gradient will be. Relating to the bowl-like
error surface, it is easy to conceive that very big steps are likely to overshoot the
minimum, while too small steps require an inefficient total number of iterations.
The whole process of “leading” the error back layer by layer to optimise the individual
weights is named backpropagation and was described by Rumelhart et al. in 1968
(Rumelhart et al., 1986a). In practice, the calculation of the gradient for a whole
neural network makes use of the chain rule, which can be generally express as

∂f

∂x
= ∂f

∂q

∂q

∂x
, (2.8)

to recursively calculate local parts of the gradient. The example from the previous
paragraphs can be used again for a small illustration of this method. With inputs
~x = (x1, x2)T and weights ~w = (w1, w2) as well as the bias b, the gradient on the
function f(~w, b, ~x, y) is sought. The calculation of updates to the weights wi and bias
b for a single input ~x with the loss from equation 2.2, can therefore be denoted as

∂

∂wi
f(~w, b, ~x, y) = ∂

∂wi
max (0, 1− y(~w~x+ b)) = ∂f(q)

∂q

∂q(r)
∂r

∂r(~w)
∂wi

(2.9)

and
∂

∂b
f(~w, b, ~x, y) = ∂f(q)

∂q

∂q(r)
∂b

(2.10)

respectively, with

f(q) = max(0, 1− yq(r))→ ∂f(q)
∂q

=




−y if y(~w~x+ b) < 1

0 if y(~w~x+ b) ≥ 1

q(r) = r(~w) + b→ ∂q(r)
∂r

= 1, ∂q(r)
∂b

= 1

r(~w) = ~w~x→
(
∂r(~w)
∂w1

,
∂r(~w)
∂w2

)T
= ~x.
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Which results in

∂

∂wi
f(~w, b, ~x, y) =




−yxi if y(~w~x+ b) < 1

0 if y(~w~x+ b) ≥ 1
(2.11)

and
∂

∂b
f(~w, b, ~x, y) =




−y if y(~w~x+ b) < 1

0 if y(~w~x+ b) ≥ 1
(2.12)

as possible cases. Let the first input be ~x = (0.5,−0.2)T , y = 1 (cf. figure 2.2) and
initial parameters ~w = (0.5, 0.5) and b = 0, then the calculated updates become
∂
∂w1

= −0.5, ∂
∂w2

= 0.2 and ∂
∂b = −1. With respect to equation 2.7 and a learning

rate of ε = 0.1, the new weights would be ~w = (0.55, 0.48) with a bias b = 0.1. In
this case the overall loss would decrease from 1.05 to 1.02066 with this single step.
This process would of course have to be repeated a number of times for all m input
samples. A cycle of several updates is often referred to as an epoch. After five epochs,
which for six inputs equals 30 updates, the total loss would be reduced from 1.05 to
0.3885 in the given example and would produce final weights of ~w = (1.41,−0.49)
and a bias b = −0.1.

When learning on datasets which contain a separate training and validation partition,
backpropagation is only carried out on training data and weights are obviously
not updated on the validation data. Given a sufficient total number of learnable
parameters, often referred to as capacity, the network will eventually start to overfit
on the training data, learning the samples “by heart”, after a large count of epochs.
In extreme cases, this could be visualised as drawing an area around every single
member of a class instead of one area for all members of the class. Normally,
this leads to poor generalisation and subsequently not ideal performance on the
validation data. Methods to prevent overfitting are presented in 2.1.3.

Convolutional Neural Networks

Convolutional neural networks (CNNs) are very closely related to regular neural
networks. Their particular characteristic is the eponymous convolution. Although
there are other applications, image recognition and classification tasks are the most
popular. Details on the use of the convolution and other building blocks can be
found in the following subsection. An exemplary illustration of a CNN can be seen
in figure 2.4.
Their invention derives from early work on understanding the receptive field in
the visual cortex of living organisms. In 1968 Hubel and Wiesel found that two
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Fig. 2.4.: Example structure of a CNN classifying a traffic sign image patch (derived from
Peemen et al., 2011).

different cell types in the brain extract diverse information from the visual input
(Hubel and Wiesel, 1968). Fukushima’s neural network model “Neocognitron” was
the first to use this very idea for pattern recognition in two dimensional inputs,
laying the foundation for modern CNNs (Fukushima, 1980). Most of today’s CNN
implementations are based on the now famous work of LeCun et al. on recognition of
handwritten digits in 1998 (LeCun et al., 1998). Besides popularising the technique
as it is used today, their work produced the MNIST (abbr. for Modified National
Institute of Standards and Technology) database which has been and continues to
be used in countless works in machine learning.

2.1.2 CNN Building Blocks

Both CNNs in particular and neural networks in general are usually represented
through an acyclic graph of distinct layers. CNNs mainly consist of four basic
building blocks; convolutions, non-linearities, pooling and fully connected layers.

Convolution

As the name suggests, convolution layers are the most distinct feature of CNNs. They
aim to resemble the so-called local receptive field, inspired by the brain’s visual
cortex. Rather than connecting each input with every output, they connect one
neuron to a small region of the input. In this way, they play the part of extracting
abstract features from the input images and finding similarities within members
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of a class. While the convolution of two signals f and g in the one-dimensional
continuous case is generally defined as

(f ∗ g)(x) :=
∫ ∞

−∞
f(τ)g(x− τ) dτ (2.13)

it can be simplified for one-dimensional discrete functions to

(f ∗ g)(n) :=
∑

k∈Z
f(k)g(n− k). (2.14)

For convolution over two axis given a two-dimensional image I and a two-dimensional
kernel K, it can be written as the following (Goodfellow et al., 2016):

(I∗K)(i, j) =
∑

m

∑

n

I(m,n)K(i−m, j−n) =
∑

m

∑

n

I(i−m, j−n)K(m,n). (2.15)

For practical implementation, many machine learning libraries use the cross-correlation
function

(I ∗K)(i, j) = y(i, j) =
∑

m

∑

n

I(i+m, j + n)K(m,n) + b, (2.16)

which applies a similar operation but without flipping the kernel and usually also
adds an adaptable bias b as described in 2.1.1.

The values of the convolution kernel are the weights adapted during the training
process. Nearly all implementations use the valid convolution, which places the
kernel only on positions within the image, rather than the circular, resulting in
smaller image sizes after processing. Padding methods like zero-padding can be
used to retain the original input size. Besides the kernel size F and the amount
of zero padding P , a convolutional layer requires two more hyperparameters; the
number of filters N as well as a stride value S. The latter defines how many pixel
a kernel is moved after each step of the convolution and is normally set to 1. The
number of filters is also equal to the number of resulting images, often referred to as
feature maps. With an input tensor of size W1 ×H1 ×D1, the layer will produce an
output of the size W2 ×H2 ×D2, where

W2 = W1 − F + 2P
S

+ 1

H2 = H1 − F + 2P
S

+ 1

D2 = N.
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Non-linearity

A non-linearity is used as an activation function for the neurons within the network.
Every input value is mapped to a certain output value following a fixed mathematical
operation. In practice, there are three common functions, as pictured in figure 2.5.
The sigmoid originates from the biological model and most closely resembles the
firing rate of an actual neuron. With the mathematical expression

σ(x) = 1
1 + e−x

(2.17)

it saturates values into a range between 0 and 1. The tanh non-linearity attains the
same saturation effect, but within the range [−1, 1] making the output zero-centred.
The equation can also be expressed directly through the sigmoid function

tanh(x) = ex − e−x
ex + e−x

= 1− e−2x

1 + e−2x = 2σ(2x)− 1. (2.18)

The last and most popular function in recent years is the rectified linear unit, usually
shortened to ReLU. First introduced by (Hahnloser et al., 2000) and popularised by
(Jarrett et al., 2009a). The ReLU simply applies a threshold at 0 for all negative
inputs, using the function

fReLU (x) = max(0, x). (2.19)

Input values above 0 remain unchanged without any kind of saturation. Variations
of the ReLU, often called “leaky”, do not completely cut off inputs below 0 but rather
diminish them to very small values.
Non-linearities are typically placed behind convolutional and fully connected layers,
as otherwise neighbouring ones could be directly summarised as a linear combination.

Fig. 2.5.: Non-linear functions: sigmoid (left), tanh (middle) and ReLU (right).
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Pooling

Pooling is another type of layer very commonly used in CNNs. It is applied to
make the network’s representation invariant to small translations of the input and
helps to better learn whether a feature is actually present, rather than its exact
position. This is achieved by selecting a rectangular neighbourhood with the size
of an integer factor k from the input and determine a single representation. It
can thus also be understood as a sampling reduction of the pixel resolution. The
best known pooling operations are to simply select the maximum value from the
neighbourhood or calculate an average value (Zhou and Chellappa, 1988; Nagi et al.,
2011). Like exemplified in figure 2.6, it is common practice to select non-overlapping
pooling regions by choosing a filter stride s = k or s > k resulting in reduced image
resolution by the factor s. Hence, this characteristic pooling is sometimes referred to
as subsampling.

Fig. 2.6.: Example of the max pooling operation (Fei-Fei et al., 2017).

Fully Connected Layers

Fully connected (FC) layers owe their name to the fact that each single input that
this type of layer receives is directly connected to every output. One or more fully
connected layers are normally placed at the end of a CNN’s architecture and often
referred to as the classifier part of the network (cf. figure 2.4). The final FC layer
is generally obliged to have the same number of outputs as the number of classes
the networks wants to classify. The neurons in these layers are often referred to as
“logits”. Other fully connected layers, especially those between the first and last one,
are sometimes called “hidden layers”.
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2.1.3 Training Techniques

As a field of ongoing research and constant development, the possibilities to design
(convolutional) neural networks have been ceaselessly growing. New methods
to optimise convergence, speed up the training process or reduce overfitting for
example are presented every year. Since it is not very meaningful to enumerate all
of them, the following small selection describe four popular techniques used in this
work and likely the majority of others.

Batch Training

Especially in applications with large amounts of data, often containing millions of
samples, it would be time consuming to compute and optimise the loss function
over the entire dataset just to attain one single parameter update. Therefore, in the
vast majority of those cases, an estimation of the gradient is calculated by dividing
data into batches. Typically, this size ranges from one to a few hundred samples
per batch. The actual size can be considered a separate hyperparameter open for
optimisation, since it is correlated with the overall performance. Very small batch
sizes promote overfitting, as each parameter update is based on a small amount of
samples. Overfitting describes the fact, that a learning algorithm learns the training
samples by heart, rather than the underlying features. This leads to a stagnating
validation error, while the training error is minimised. In contrast, large batches
needlessly slow down the training process, commonly resulting in a non-optimal
performance in a fixed amount of epochs. Gradient-based optimisation using batches
is often called “batch gradient descent” or “stochastic gradient descent”.

Momentum

Momentum is a very popular extension to the backpropagation algorithm described
in section 2.1.1. It aims to reduce the tendency of the gradient descent to get stuck
in local minima of the objective error surface. Originally specified by (Polyak, 1964),
this method simply adds a fraction µ ∈ [0, 1) of the previous weight update to the
new one. In practice, typical values for µ are 0.5 or 0.9. The momentum update
(Sutskever et al., 2013) can be formulated like this:

~vt+1 = µ~vt − εt∇f( ~wt)
~wt+1 = ~wt + ~vt+1.

(2.20)
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This optimisation helps to smooth out variations of the gradient changing direction
and achieve a more steady and consistent descent towards the (global) minimum.
Furthermore, it hereby helps to speed up convergence. Just like in the mechanic
example, were momentum is mass times velocity ~p = m · ~v, the weights can be
regarded as a particle moved by the force of the negative gradient. When using
a lot of momentum (µ close to 1), it is generally necessary to reduce the global
learning rate, because otherwise it is likely to rush past the desired minimum
not achieving convergence. The actual implementation of this technique may be
different, depending on the program library in use.

Dropout

Dropout is a rather plain but very effective method presented by Hinton et al. in
2012 (Hinton et al., 2012; Srivastava et al., 2014). During the training process,
this technique randomly drops units in the layer it is applied to with a probability p,
setting them to zero. In this way it can be regarded as sampling one of 2n thinned
networks out of the original n-unit network each iteration. An example is pictured in
figure 2.7. At test time however, all units remain activated with the outgoing weights
multiplied by p ensuring the output of any unit to be the same as the expected
output under the distribution used to drop units.

Fig. 2.7.: A neural network before (left) and after (right) applying dropout (Srivastava
et al., 2014).

Popular ML toolboxes like Tensorflow or Caffe perform this compensation during
training, for example by scaling up inputs and gradients of non-zero units by 1

1−p .
Dropout has been reported to demonstrably and significantly reduce overfitting
through preventing the network from learning too complex co-adaptions (Warde-
Farley et al., 2014). Figuratively speaking, deterring it from learning the training
samples by heart.
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Batch Normalisation

With the goal to “accelerate deep network training by reducing internal covariate shift”,
Ioffe and Szegedy presented a technique referred to as batch normalisation (Ioffe
and Szegedy, 2015). With internal covariate shift the authors refer to the problem of
constantly changing inputs when updating weights in a deep network. This method
forces the activations throughout the neural network to take on a stable distribution,
trying to reduce the dependency on the weight initialisation and low learning rates
to assure convergence. The details of this technique are not expanded here, but can
be found in the original paper. Batch normalisation layers are commonly inserted
after convolutions or fully connected layers and before non-linearities.

2.2 Sensors

Camera

Cameras are probably the most common type of sensor used in the automotive
industry. They can monitor the interior and especially the surroundings of the
vehicle. Here, they are employed for tasks like object perception, lane marking
recognition or traffic sign detection among others.

In general, camera sensors work with light in the visible spectral range, although
systems in the infrared range are in use as well. While cameras for photography or
videography usually have a pixel grid of photo diodes separated by sensitivity for
the elementary colours red, green and blue (cf. (Bayer, 1976)), those used in the
automotive sector often only deliver a grey-scale image for reasons of cost, see figure
2.8. A middle ground may be found in red-pixel cameras which use a red filter for
one of every four sub-pixels. This can be useful if limited colour information is of
use for object classification (of e.g. traffic signs and tail lights).

For further information on camera calibration, both intrinsically and extrinsically,
including details about aspects like focal length, lens distortions, distances between
sensor and lens and others, the reader is kindly referred to the comprehensive work
of (Zhang, 2000).
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Fig. 2.8.: A grey-scale camera image recorded with a module placed on top of a car.

Lidar

Lidar, acronym for “light detection and ranging”, is the method of measuring range
with beams of light. A lidar sensor targets objects with a laser, usually at a wavelength
of the light spectrum invisible to the human eye, and measures the distance d using
the time t of flight as

d = c0 · t
2 with c0 ≈ 3 · 108m

s
. (2.21)

Beyond the pure range information extracted from this relationship, most sensors of
this type also provide measurements of the intensity of the reflected beam. Due to
the shape and nature of the object which reflects the light pulse, the backscattered
rays lose a fraction of the luminous flux to absorption. The intensity of the returned
rays can be used to draw conclusions about the absorption capacity of the object
and therefore its surface material.

While this type of sensor finds applications in many fields including geodesy and
astronomy, two main designs are used in an automotive context. In solid state lidars,
each light beam is emitted from a fixed position, while in rotating versions a line
array of lasers is rotated to scan the surroundings at an angle of up to 360°. For
this, each emitter-receiver pair fires multiple times per revolution to create a circular
measuring line in a given angular position. An image representation of such a
scan frame can be seen in figure 2.9. For applications in the automotive industry,
lidar provides invaluable three-dimensional information of a vehicle’s surroundings
for object detection, self-localisation and range estimation. This can be used to
serve functions like brake assistance, adaptive cruise control or path planning for
autonomous driving.
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A New Study on the
Robustness of Active
Learning

3

This chapter discusses the field of active learning (AL) and its practical applicability.
While section 3.1 gives a short introduction to the concept and pool-based AL
in particular, section 3.2 presents different data query strategies and possible
implementations derived from that. A new strategy of this kind is subsequently
introduced in section 3.2.1. The following passage cover aspects of the robustness
of active learning. Focus is brought to the influence of hyperparameter adjustments
in section 3.3.1. Section 3.3.2 expands these considerations to the transferability
of query selections between different network architectures. A conclusion on the
findings is given in section 3.4 in conjunction with practical application to a task
using a hierarchical classification network.

3.1 Pool-Based Active Learning

Data is the foundation for any form of machine learning. Over the past two to three
decades, a multitude of data scientists have been proposing an even larger number
of methods to optimise the manner in which a model can learn to solve a task from
a given collection of data. Efforts have been made to find approaches that balance
class distributions in data sets or compensate for such imbalance in the loss function.
To determine the optimal validation set to achieve the highest generalisation or
improve it through countless regularisation techniques, just to mention a few.

The question that lies at the core of the field of active learning is not much different
from this after all; how to identify the most useful samples for a Machine Learning
algorithm to be trained with? Compared to other concepts, however, it relies on
active response from the model as an input to create a selection.
Different scenarios to implement this intention have been researched, but especially
from the standpoint of practical application, the so-called pool-based approach
seems to be the one most widely studied (Settles, 2009). Although this makes
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Fig. 3.1.: The pool-based active learning cycle.

for an important motivation, it is not the only reason it is chosen for all further
considerations in this chapter.

Pool-based active learning follows a cycle, as depicted in figure 3.1. Given a set of
data D consisting of a number of feature samples x ∈ X, an initial labelled set L is
defined (heuristically or at random) for training. For every data point in this subset,
a paired label y ∈ Y is annotated. A machine learning algorithm θ is then trained
on L. Every remaining unlabelled sample is then inferred with the trained model.
Using a query metric φ, a number of new data points are selected to be labelled.
This annotation process requires input from an oracle, normally a human, assigning
the correct class. All new feature/label pairs 〈x, y〉 are then added to the training
set and the cycle starts again. A pseudo code representation of a pool-based active
learning algorithm is noted in algorithm 1 below.

The other two main AL scenarios should be mentioned here, to underline their
difference to this concept: stream-based sampling (Lewis and Gale, 1994) looks at
single instances one at a time and is suitable in situations where data points can
be generated on demand. Here, query functions are designed to evaluate a one
item and decide whether to directly assign a label or ask the oracle for annotation.
A third scenario called Membership Query Synthesis (Angluin, 1988) is primarily
interesting for circumstances where the amount of data available is very small. The
query algorithm generates new instances from the underlying distribution, e.g. small
excerpts or cropped sections of other samples, which can lead to results comparable
with methods for data augmentation.
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This form of AL is particularly interesting for application to machine learning
algorithm development in the automotive and other industries due to two major
reasons:
First, it can most importantly be used to decide on a subset of collected data to be
annotated in order to create training and validation set for a supervised machine
learning task. While it can be comparatively easy and inexpensive to record and
gather vehicle sensor data and ever decreasing cost makes it affordable to possibly
neglect storage expenses, reliable ground truth annotation still requires manual
labour and is therefore the crucial factor. In industrial application of machine
learning to various tasks, budget and time constraints play a significant role and
performance can depend on choosing the best n samples to train on.

Secondly, one could think of using active learning methods as a form of regularisation.
While increasing the number of available training samples is in general regarded as
helpful, certain factors can lead to an impaired performance when doing so. The
more objects in a recognition task are standardised, the more redundant information
is potentially added to the dataset with each new sample, which can result in
worsened generalisation. Active learning methods can also be applied to sanitise a
dataset from falsely labelled samples, as a suitable strategy will not pick data points
with a conspicuous difference between label and prediction.

When applied correctly, active learning can be a very powerful tool to counteract
the immense data requirements of (deep) artificial neural networks. However, the
following sections of this study should analyse how robust it is to changes in certain
hyperparameters or mislabelled data. This can become especially important if it was
to be applied without profound domain experience, as some publications claim their
methods to be universally employable, seemingly even without prior knowledge. It
then may be vulnerable to the risk of a sub-optimal sample selection, which, in the
worst case scenario, could render the entire ML task unsuccessful.
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Algorithm 1: Pool-Based Active Learning.
Input :L ⊂ D = {〈x, y〉} : Labelled set,

U = D \L = {〈x, ?〉} : Unlabelled set,
θ : Classification model,
φ: Active learning query function

while |U| > 0 ∧ no stopping criterion do
θ = train(L);
for all 〈x, ?〉 ∈ U do

compute active learning metric φ(x) under θ;
end
Choose x? with highest magnitude of φ(x?) ;
Annotate y?;
L ← L ∪ {〈x?, y?〉};
U ← U \ {〈x?, y?〉};

end

3.2 Active Learning Query Strategies

While the previous section introduced the basic principle behind the term active
learning and its process, query strategies were only regarded as a black box providing
the desired output, i.e. a selection of data samples to be labelled.
In contrast to other methods, active learning query strategies make use of information
from the response of a machine learning model θ to samples from an unlabelled set
U . Of course, well known statistical methods like stochastic neighbour embedding
(SNE) (Hinton and Roweis, 2003; van der Maaten and Hinton, 2008) or even
principal component analysis (PCA) (Pearson, 1901) can be used to analyse high-
dimensional data and one could make selections based on outliers and/or ambiguous
samples in the respective representation. But having the option to use “feedback”
from the very algorithm whose performance is to be improved, offers a considerable
advantage in terms of usable information. In the following paragraphs, various
concrete formulations of AL query strategies are derived on the basis of known
metrics.

One of the most valuable pieces of information that can be obtained from a machine
learning model with regard to a given input, is the (un)certainty of the corresponding
output. The group of methods to be applied here is therefore called uncertainty
sampling (Lewis and Gale, 1994). Prediction from a classification algorithm θ is

28 Chapter 3 A New Study on the Robustness of Active Learning



given by ŷ = arg maxy Pθ(y|x), reflecting the class label with the highest posterior
probability. Accordingly, it could be a straightforward approach to select the
sample

x?LC = arg max
x

(1− Pθ(ŷ|x)) (3.1)

that the classifier is least confident about. Several strategies can be derived from this
measure and in the further course of this work, this family of strategies basing the
decision mainly on the one neuron with the highest activation is referred to as naive
certainty (NC). With no further extension to this concept, the strategy NC Low is
formed. Here, n samples with the minimal maximal activation in the neurons of
the final layer of the classifier are selected. These neurons are often referred to as
“logits”1. The same could be done for a certain range in the logits’ activation (e.g.
[0.2, 0.7]), NC Range, offering to define a lower and upper bound2 to exclude very
hard/easy samples.

The third strategy of this kind, NC Balanced, further aims to balance the class
distribution of the n samples to be selected. A confusion matrix, where each row of
the matrix represents the instances in a predicted class, while each column represents
the instances in an actual class, therefore showing true predictions on the main
diagonal and class-wise errors in the off-diagonal elements, is calculated for the
previous training set. The class distribution of those wrongly predicted samples is
taken into account to determine the class-wise share of new sample to be added.
This strategy terminates if one class contains no more samples to be drawn.

All methods described so far in this section consider the final layer of a neural
network to make decisions about data points to annotate. Although they are not as
easy for humans to interpret as the normalised probability distribution of the output,
previous fully connected layers hold more information. They are often referred
to as embedding layers, since they contain a low-dimensional continuous vector
representation, an embedding, of the discrete categorical input.
Another extension to the pure least confident calculation is to not only select n
samples with minimal maximal activation, but additionally compare them with those
already in the training set to prevent too similar samples from being chosen. In this
NC Diversity, a similarity measure on basis of the embedding vectors is added to
be calculated. Here, the L1 distance, sometimes referred to as Manhattan distance

1Not to be confused with the logit function, the inverse of the standard logistic function, used in the
field of statistics.

2N.B.: Here, the smallest sensible value is directly dependent on the number of classes c, since no
normalised single class prediction value can be smaller than 1/c, as this would already represent a
probability equipartition.
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or taxicab geometry, is used to measure the distance d = ∑
i |x?i − xi| between the

vector representation of every candidate sample x? ∈ U in the unlabelled pool and
the training set x ∈ L. The larger d becomes, the more different a possible new
sample is from the data points already present in the labelled set, at least from the
perspective of the network’s internal representation.

Instead of only looking at the least confident predictions, another way to determine
data points for inclusion into the training set, is to identify candidates which produce
the smallest difference between the two highest activations in logits. This Margin
can be expressed as

x?M = arg min
x

(Pθ(ŷ1|x)− Pθ(ŷ2|x)) (3.2)

and should focus data pool queries on instances that, figuratively speaking, leave
the classification algorithm undecided between two nearly equally likely options. In
doing so, the decision boundary could be refined through these crucial points.

As a wide range of classification tasks are multi-class problems, considering all
given prediction confidences could be beneficial to make valid sample selections.
The Shannon entropy (Shannon, 1948) represents the average level of information
inherent in the possible outcomes of a random variable. It can therefore be used
to measure how peaked or equipartitioned such a distribution is. The more evenly
distributed the activation of the logits, the greater the entropy. To identify a valuable
sample to be labelled, a query strategy could make a selection through the highest
Entropy value;

x?H = arg max
x

(
−
∑

i

Pθ(yi|x) logPθ(yi|x)
)
. (3.3)

A new variant of this consideration factoring in the output distribution is presented
in the following section 3.2.1.

In their work (Sener and Savarese, 2018) proposed an approach for active learning
with CNNs, where they create a core set by approximating the problem of distributing
k centres in m points, such that the minimal distance of all points to the nearest
centre is maximised. This can be applied as follows, using similarity measures
in the embedding space to constitute a method named Core Set Greedy for this
work: Through inference of the trained classification model θ with both the labelled
training set L and the unlabelled pool D, embedding representations are obtained.
Then a matrix is calculate denoting the closest sample in L to any sample in D. To
this purpose, the closest distance is defined as the minimum of the sum of least
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square difference of the embedding vectors. A greedy algorithm is lastly used to
select the sample to be added to L, by finding the point for which the minimum
distance to all x ∈ L is maximised. Eventually, the minimum distance matrix is
updated to factor in the new training sample x?CSG.

3.2.1 A New Method for Pool-Based Active Learning

In Active Learning, we require a measure of how sure the classifier is that its
class decision during inference is accurate. One possibility for such an accuracy-of-
inference measure is to analyse the distribution of the network’s logits. Within the
trained model of the classifier, the logits can be interpreted as probabilities that the
inferred sample belongs to the class associated with the respective logit. If the logits
are strongly biased in favour of a certain class, it is very likely that the given sample
belongs to the class corresponding to the strongest logit. On the contrary, if the logits
do not show a clear preference for a certain class, there is a high risk that taking
the class of the strongest logit results in a false prediction. In other words, to which
degree the distribution of logits tends towards peaks rather than an equipartition
indicates how accurate the inference is going to be.

In previous literature, the Shannon entropy (Shannon, 1948) has been frequently
used as a measure of how peaked or equipartitioned a distribution is. A valid
strategy for active learning could then be to query those samples for annotation,
for which the Shannon entropy H = −∑i li log(li), with li being the values of the
logits, is particularly high. However, a shortcoming of this approach is that it does
not adequately account for the situation when the distribution of logits is admittedly
strongly peaked, but with peaks on more than one class logit. Such a situation can
easily arise in samples, when they belong to classes showing similarities and the
classifier’s model does not yet feature a clear decision boundary between them. In
such a case, the distribution of logits is still far away from an equipartition, resulting
in a relatively low value for the Shannon entropy H. Thus, although labelling these
samples would be particularly valuable for fleshing out the decision boundary and
allowing the classifier to better separate between classes, they would not be added
to the training set.

To overcome these shortcomings of the Shannon entropy H as a measure for
characterising the distribution of logits li, it might be more beneficial to use the
Simpson diversity index D = 1−∑i(li)2 (Simpson, 1949) instead. The closer the
distribution li is to an equipartition, the larger D becomes. If the li shows a strong
peak at a certain i, D is close to zero. Finally, if the li are strongly peaked among
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several classes, D will have a small-to-moderate value between zero and one3. The
latter property of D in particular allows to select those samples for labelling, for
which the classifier can narrow the class decision down to a few classes, among
which it is still unsure. The query strategy, referred to as Sum of Squared Logits
(SOSL) in the further course of this work, is then to select in each iteration the n
samples with the highest D. To selection of a sample could therefore be noted as

x?SOSL = arg max
x

(
1−

∑

i

Pθ(yi|x)2
)
. (3.4)

3.3 Robustness Evaluation

Before moving on to considerations regarding robustness, the performance of the
presented query strategies for pool-based active learning is evaluated on different
data sets for image classification. These consist of the well-known handwritten digit
classification set MNIST (Lecun et al., 1998) and the thereof inspired data sets of
handwritten samples of the Latin alphabet CoMNIST (Vial, 2017) and clothing item
classification Fashion-MNIST (Xiao et al., 2017). Furthermore, sets for general object
classification CIFAR-10 (Krizhevsky et al., 2009) and the house number collection
SVHN (Netzer et al., 2011). Strategies are also tested on a private data set of 33
different classes of traffic signs (TSR) represented through small grey scale images.

For every data set, a distinct but similar plain feed-forward convolutional neural
network is used as classification algorithm. As this experiment is not designed
to set new benchmarks in terms of performance or find the optimal architecture,
but to identify the most promising data samples, the number of layers and feature
map channels are chosen according to the approximate complexity of the task.
The popular Adam algorithm (Kingma and Ba, 2015) is employed as optimisation
method. An exception is made for CIFAR-10, where due to its higher complexity an
implementation of the deep CNN ResNet50 (He et al., 2016) is used.

As table 3.1 shows, all data sets are initially split into a training and validation set.
To obviate any overfitting-like behaviour in training iterations with an early stopping
criterion and any other bias, 10% of the original training set is split into an additional

3Assuming a scenario with 20 logits/classes for example, an equal distribution of the li will result
in D = 0.95, two peaks will be D ∼ 0.662 and one clear single peak could be D ∼ 0.342.
Entropy values are of course not directly comparable, as the value of H increases with the number
of li. But if normalised to the same scale as D, the values for the same scenario would be
H ∼ {0.950, 0.494, 0.332}. With an increasing number of li, the relative value of H for two peaks
will be even closer to that for one peak.
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development set. Used in training as validation after every epoch and balanced in
class distribution. The original validation set is regarded as the test set, only to be
applied once a model is completely trained to determine a final performance score
with the best weights acquired during training according to the development set
accuracy.

For all of these experiments, the initial AL training set L is composed from 100
randomly selected samples per class of the particular dataset. The CNN is trained for
up to 1000 epochs with an early stopping of 200. If the validation accuracy on the
development set does not improve for 200 consecutive epochs, training is ended.
Once a model is trained, it is used to then select new samples to be added to the
training set utilising one of the eight query strategies introduced in 3.2. With each
iteration, the oracle is asked to annotate a number of samples so that the size of
the training set is increased by 20%. As all the original labels are known for these
datasets, the expert labelling step does not require actual human interaction for
these experiments but can be accomplished by the computer automatically.

For statistical significance, every combination of the data sets and query strategies is
tested completely five times. This should allow to suppress any influence of weight
initialisations or positive or negative bias of a particularly good or underperforming
initial training set. To reduce the computational burden of this large-scale experiment,
the AL cycle only queries new samples to be labelled until approximately a third
of the full size of the respective original training set is reached. If no promising
performance result is achieved by this point, the active learning approach could be
considered to have failed anyway. To be able to put the benefit of AL into perspective,
all query strategies are compared to the plain strategy of selecting samples to be
added purely at random. Furthermore, a baseline is created for every data set by
training on the full original training set.

Figure 3.3 illustrates the results of the evaluation of all query strategies on four of
the data sets. On three of those, a benefit provided through the AL methods is clearly
visible. All or at least some of the query strategies produced a training selection
which can result in a performance of the ML model that is comparable to the baseline
already around the 30% mark. This is an important advantage and shows that a
significant portion of the original data contains redundant information. The fact
that most of the strategies also sample data points in a way more advantageous than
random selection is also confirmed. With data from the Fashion-MNIST base this
difference is very clear, although the embeddings-based Core Set approach generates
a visibly underperforming choice. For TSR and MNIST findings are comparable.
Whereas the former shows larger fluctuations in accuracy, possibly due to the
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CIFAR-10 CoMNIST Fashion-MNIST MNIST SVHN TSR
Classes 10 26 10 10 10 33
Image Size 32× 32 32× 32 28× 28 28× 28 32× 32 34× 34
Channels 3 1 1 1 3 1
Training Samples 50 000 9 918 60 000 60 000 73 257 265 774
Validation Samples 10 000 1 300 10 000 10 000 26 032 66 443

Tab. 3.1.: Characteristics of the datasets used for the active learning experiments.

basic population being greater than in the other sets, the latter also seems to be
understandable for the Core Set strategy. The other two datasets, CoMNIST and
SVHN, did not produce significantly different results.
For CIFAR-10 however, this is not true. None of the methods show any profit for
this dataset and are in line with the random sample selection, resulting in a nearly
perfectly linear increase in accuracy. This does not come as a surprise, as CIFAR-10
has very diverse representations of its classes and seems to contain no redundant
information. As the baseline is also clearly not reached at the experiment’s endpoint,
no performance gain is provided through AL overall in this case, making it a first
clear indication that AL should be used with knowledge about the context of the
application.

3.3.1 Hyperparameter Robustness

After this initial evaluation, a dedicated consideration of the robustness of AL query
strategies to external influence is sensible to investigate their applicability in the real
world. This becomes particularly relevant when these methods are considered for
application in industry projects.

First, hyperparameters for the neural network training can be taken into account,
as they are generally important for fine-tuning the performance. In theory these
should be decoupled from the AL cycle and not change performance of a sample
query, as long as the classification algorithm itself is not prevented from converging.
To confirm this notion, alterations of the learning rate and training batch size were
tested. The test was carried out on the MNIST set, since it represents a stable starting
point for all strategies. Adaptions of the learning rate span two orders of magnitude
from 10−3 to 10−5 with five steps in between and the batch size is altered in powers
of two from 25 to 29.
All methods behave very robustly under these influences as figure 3.4 illustrates. No
negative effects on performance are shown and all strategies share a common result
quality. While not directly related to this experiment’s settings, the side-by-side

34 Chapter 3 A New Study on the Robustness of Active Learning



10% 20% 30% 100%
Full Set Size [%]

0.80

0.82

0.84

0.86

0.88

0.90

0.92
Ac

cu
ra

cy

Dataset: fMNIST

Baseline
Random
Core Set
Margin
Entropy
NC Balanced
NC Diversity
NC Low
NC Range
SOSL

10% 20% 30% 100%
Full Set Size [%]

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

Dataset: TSR

Baseline
Random
Core Set
Margin
Entropy
NC Balanced
NC Diversity
NC Low
NC Range
SOSL

Fig. 3.2.: Classification accuracy over training set size for all strategies on Fashion-MNIST
(top) and TSR (bottom). The plotted value is the median of five runs and the
shaded area denotes one standard deviation. Please note the logarithmic scale of
the x axis.
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Fig. 3.3.: Classification accuracy over training set size for all strategies on MNIST (top) and
CIFAR10 (bottom). The plotted value is the median of five runs and the shaded
area denotes one standard deviation. Please note the logarithmic scale of the x
axis.
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comparison displays clearly how NC Balanced reaches its abort criterion and stops
the iterative cycle prior to the other approaches. This has no negative impact, on the
contrary it shows a saving of computing time while the classification performance
remains on par with the other strategies.

In a second experiment the dropout method (cf. sec. 2.1.3) is tested representative
for regularisation approaches. Since this technique stochastically eliminates weights
in (fully connected) layers during training of the network to reduce overfitting, an
impact on the performance of AL query strategies using those to make decisions is
to be expected. All strategies were applied to a network being trained with dropout
rates of 0.3, 0.5 and 0.7. Figure 3.5b shows the outcome of this experiment.
For a factor of 0.3, neither a difference between the methods nor an influence on
the overall classification performance can be identified. If this is increased to 0.5,
performance is slightly impaired in all cases but more noticeably for NC Diversity.
Here, the decrease in validation accuracy becomes clearly visible when plotted. The
other strategies only reach this level of decline by the time dropout is set to 0.7.
Then again, NC Diversity and also the Core Set strategy now exhibit a very severe
performance loss. This underlines a clear disadvantage for these strategies based on
information from embedding layers when dropout is applied, as it understandably
influences their decision-making. These results conclusively do not come as a real
surprise to someone with domain knowledge and experience. However, even this
small example makes it clear that the applicability of AL methods is not universally
valid and is influenced by the use case and training parameters, not only the nature
of the data.

With regard to the data itself, these can of course also have different influences on
the results of the AL task. Achieving high quality in data annotations is an important
cornerstone of solving any machine learning problem. With an increasing size and
complexity, any data set will sooner or later contain a number of incorrectly labelled
samples. These will not only undoubtedly impair the classification accuracy, but can
additionally confuse AL query strategies.

Accordingly, the next experiment introduced synthetic labelling errors by randomly
changing the label of an queried sample, after the oracle annotated it. The results
for error rates of 0%, 1%, 2%, 5% and 10% are given in figure 3.5a. While incorrectly
labelled data in the training set in itself generally will impair training performance,
there are also again differences between the strategies visible. Several of them,
such as NC Low or the proposed SOSL for example, exhibit good results and also
behave robustly in relation to the erroneous data. Yet again, the methods based on
embedding layer information, especially NC Diversity, clearly lose out by comparison.
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median of five runs per method.
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Fig. 3.5.: Active learning strategy validation accuracy results for various synthetic labelling
error rates on Fashion-MNIST (top) and different dropout regularisation rates on
MNIST (bottom). The plotted value is the median of five runs per method.
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Relying on this diversity criterion negatively impacts the outcome, since the selection
process should prevent similar samples from being chosen. Therefore, it may be
more difficult to correct the negative effects that selecting a mislabelled sample
would have and falsely annotated data points make for an even more attractive
query, as they will likely be prominent outliers in the feature space.

3.3.2 Network Architecture Influence and Generalisation

The previous section underlined how different query strategies for pool-based active
learning can be influenced differently by various external factors. In the application
of machine learning, especially in a product context, successive refinement of the
algorithm is very common. A CNN architecture might be adjusted several times over
the course of development or a production process, to optimise the performance
or to adapt to changes in the dataset or external restrictions like computational
resources. Therefore, it is important to investigate to what extent the selection of
samples depends on a specific network architecture and how the usability of AL
might be influenced, if data selection is done by a different network than the one
eventually used.

For this purpose, three CNNs with different numbers of parameters are implemented
ceteris paribus. To reflect their varied capacity, they are in the following simply
referred to as Min, Med and Max. Samples are iteratively selected from the
Fashion-MNIST data set with the query strategies as described before. To ensure
comparability of the results, the same initial dataset of 100 samples per class is
used for all classifiers. Cross-training is then performed, where every network is
trained with the selections of the others but of course also its own. A random sample
selection is also compared. To keep the computational effort within acceptable
limits, this is only done after 3, 5, 10 and 15 iterations of the AL cycle. For statistical
certainty each training is repeated five times.

Figure 3.6 depicts the result of three selected strategies for this experiment. Apart
from information about the replaceability of classifiers, these results can show how
the classifier capacity itself influences the applicability of active learning strategies.
For the example of NC Balanced it can be noted that there is a bias for the own
selection performing best with the Max and Min classifier, while the medium-sized
one shows indifference. The “weaker” the network gets, the better the performance
of the random selection becomes. For the SOSL, this becomes even more clear. While
the selection of the Max classifier is still definitely the best for itself, the smaller
networks show the best performance with the randomised set. The results with the
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Fig. 3.6.: Results (arith. mean of five runs) of cross training of different classifiers, Max
(solid line), Med (dashed), Min (dotted), with the sample selection of the other
networks and its own (blue, green, red), compared against a random selection
(black), for three strategies. Evaluations are made after 3, 5, 10 and 15 Iterations
of querying new samples, except for NC Balanced which already terminated
before the 15th iteration.
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Entropy strategy are very similar, but the gaps become even more obvious. Max now
shows a very clear preference for the own selection compared to any other and the
performance of the active learning strategy selection on the Min network is now
more than three percentage points behind random.

The tendency is that, although preferences are usually visible from the beginning,
they become stronger over the course of the AL cycle. This amplification would
mean that in a continuous application of AL, e.g. in a production programme, a later
change to the classifier could result in significant performance losses. At this point,
even the selection of an otherwise generally well-performing query strategy might
be so biased that a random choice would have been the better method to build a
training data set.
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3.4 Conclusions on the Practical Application

Before drawing a conclusion from the experiments in the previous sections, it
is reasonable to look at a slightly different machine learning task and compare
differences and similarities in the findings. Therefore, a neural network structure
different from the straightforward CNNs in the preceding sections is examined.

3.4.1 Application to Hierarchical Data

In contrast to rudimentary classification networks, hierarchical or cascaded classifiers
do not use a single label per sample but a whole label tree (Weyers et al., 2018).
Consequently, labels are represented as vectors and consist of one of the three
following options per class: “1, 0 or not applicable” and each sample belongs to
exactly one class per hierarchy level.

In this experiment, a private dataset for driver hand gesture recognition is used. It
consists of 12 classes which depict different poses made by a human hand that could
be used to as input for an infotainment system (e.g. “One finger”, “Two fingers”,
“Fist Thumb Up”, etc.). As depicted in figure 3.7, these are structured into three
levels of hierarchy: 1.) “Hand / No Hand”, 2.) a “Hand” class and 3.) a subclass, if
applicable. A sample containing a thumbs up gesture would have the labels “Hand”
and “Fist + Thumb” and “Fist + Thumb Up” for example, while an instance of “No
Hand” would have the other levels beyond the first marked as “not applicable”.

The neural network used for this task consists of three convolutional and pooling
layers in alternating order and two fully connected layers at the end. An intermediate
flatten operation is applied to transfer the tensor into a vector shape. In order to
take the hierarchical nature of the labels into account, non-applicable logit neurons
are masked out during training. This is achieved through a modification of the loss
function and masked-out neurons do not contribute to the loss.

The given data comprise a total of 753 000 samples represented through grey scale
images of size 22 × 46. For the AL experiment, this is split into a pool of 670 000
samples of possible candidates for the training set, as well as a balanced development
set of 75 000 and a balanced test set of 8 000 images. The size of the initial training
set is selected to be 2 000 instances which are also equally distributed among classes.
As in previous trials, every active learning cycle should increase the size of the
labelled training set by 10%. A baseline is created by training on all available
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Fig. 3.7.: Hierarchical label structure for the hand gesture recognition task. Blue boxes
denote the 12 classes.

samples and a random selection is used as comparison for the AL query strategies. All
calculations are repeated ten times per method to achieve statistical significance.

The resulting graphs for all strategies are plotted in figure 3.8. They exhibit a
generally very mixed performance as several strategies perform worse than random
sampling. Especially approaches which rely on quantifying the uncertainty of the
logits are rendered useless, showing a classification accuracy nearly ten percentage
points lower than the one achieved with data selected without any specific decision
criterion at all.

This does not come as a surprise, since these strategies implicitly rely on the
assumption that a single label per sample is used and the neural network learns
to output a probability distribution of classes. In the hierarchical label structure
used here, this is not the case. For certain classes, up to three logits are expected
to take on high values to constitute are correct classification. Output neurons that
belong to classes marked as ”not applicable” in some cases are not considered during
backpropagation and can therefore theoretically take arbitrary values and thus
potentially confuse the AL strategies.

The neurons in the first fully connected layer, which in this example forms the
embedding space, are less strongly affected by this training scheme. This at least
suggests the above-average performance of the Core Set method. In marked contrast
to the preceding observations, it is now the only strategy to outperform random
selection. It is also is the only approach to reach the baseline accuracy early on
even before taking 20% of the available data, making it considerable with regard to
real-world use.
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Fig. 3.8.: Classification accuracy over training set size for different active learning methods
applied to hierarchical neural network for hand gesture classification. The plotted
value is the median of ten runs per strategy and the shaded area denotes one
standard deviation. Please note the logarithmic scale of the x axis.

3.4.2 Summation of the Findings

The different experiments in the preceding sections showed that even within a
comparably narrowly defined selection of applications, in this case image classification
with CNNs, the usability of strategies for pool-based active learning can vary
greatly.

Starting with the nature of the data itself, the conducted test showed that the
performance of query strategies is not independent of this. As seen in section 3,
methods that work well on a number of datasets might suddenly fail on a different
one and certain data collections might be inherently unsuitable for this kind of active
data selection. When the pool of unlabelled data contains no redundant information,
AL will likely yield no benefit.

Although many changes to hyperparameters and erroneous labels on the one hand
have no impact on the performance of certain strategies, changes to the classifier on
the other hand may very well. If AL is considered for application in an industrial
environment where it has a high potential to help to save time and money, caution is
required. Should the classifier be replaced at a later stage due to stricter requirements
or architectural advantages, the performance may be reduced. As the experiments
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clearly displayed a bias for a network architecture to perform best with its own
training data selection.

Changing the output format of a classifier from a straightforward probability
distribution might entail even greater risks. The concluding experiment demonstrated
that using a hierarchical label structure can turn all previous findings upside down.
An even more drastic outcome is to be expected if, for instance, a regression
task was considered. Almost none of the strategies tested here were designed
to understand such a numerical output, and using those that rely on information
from the embeddings would be the best remaining option.

In the end, it can be summarised that active learning can be a helpful tool in data
science, but has to be used with knowledge about the targeted utilisation. Claiming
that it can be applied without domain experience and regardless of the context
would be dangerous. As the experiments underline, in some cases accuracy could
even be negatively affected and an uninformed user would be better advised to use
random sampling.
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This chapter presents a new method for architecture selection of convolutional
neural networks (CNN). First, aspects of the field of hyperparameter optimisation
are described in section 4.1 and a motivation for the problem is given. To evaluate the
performance of a CNN architecture, in section 4.2 a heuristic approach is developed
with a focus on balancing time consumption and prediction reliability. In section 4.3
this is then combined with aspects of random search and Bayesian optimisation to
create a complete selection algorithm.

4.1 Hyperparameter Optimisation

Selecting the optimal network architecture and corresponding hyperparameters
when trying to solve a new machine learning task remains one of the core problems
even for experts in the field. This is a topic that has received a lot of attention in the
research community in recent years, and it exists for three major reasons:

First of all, strategies that are considered best practice and have been shown to
effectively accomplish particular tasks may not be applicable to a different problem.
This stems mostly from the unique features of the given data and is difficult to
standardise. These challenges are also the origin of the independent field of transfer
learning (Zhuang et al., 2021).

Second, as a result of an exponential increase in the number of publications on
machine learning throughout the last decade, new building blocks for designing
neural networks have been introduced to the toolbox, with the state of the art quickly
and continuously changing. Keeping up with this rapid growth can be challenging,
even for those that have prior experience. Last but not least, the time intensive
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difficulty of determining the right solution by analysing a wide range of different
architectures can become the most significant issue. Although this constraint may
not be as serious in research, it most certainly restricts the future success in product
development in business implementations where time and, therefore, money are
key.

Considering these challenges, it stands to reason that one would want to create
methods for determining the best network architecture for a given problem. This
system should not only be effective in forecasting real outcomes, but it should also
be fast enough to clearly outperform manual methods in terms of time consumption.
Since final optimisation through human supervision is unlikely to become entirely
obsolete in the near future, the quicker decision support is given, the more time
exists for fine tuning the result.

In the last years, automated machine learning (AutoML) became a very prominent
research area in computer science. Driven by leading companies in the software
and technology industries, a variety of toolboxes were developed (Zöller and Huber,
2021). These methods mainly target non-experts and are offered as all-in-one
solutions, often with integration into cloud computing and storage products. A
very high level of automation handles not only a model selection process and
hyperparameter optimisation, but offers the user approaches for automatic input data
preprocessing, feature engineering and choice of evaluation metrics and validation
procedures.
Although this technological progress is impressive and can open the doors to the
machine learning world for an even larger number of people, it is largely based
on very deep network architectures, benefits from vast computational resources in
server clusters and employs a multitude of different algorithms for optimisation.
While there a certainly commonalities to this high-level approach, the methods
presented on the following work on a more fundamental level and are tailored to
applications with CNNs. They are therefore not directly comparable.

4.2 A Heuristic Approach

This section should highlight the influence of certain aspects and parameters on the
convergence of training a neural network, especially in an early phase. Furthermore,
references to previous work analysing the significance of the use of random weights
are made. A heuristic approach to the quick evaluation of network architectures is
derived from this.
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4.2.1 Initialisation Influence

Weight initialisation plays an important role in preventing layer activation outputs
from becoming too large (“exploding gradient problem”) or infinitesimally small
(“vanishing gradient problem”) during the course of a forward pass through a neural
network, especially in the initial/early phase of the training process. If one of those
cases occurs, loss gradients will either be too large or too small to be propagated
backwards in a manner beneficial for the convergence of the network, if this is still
possible at all.
Accordingly, it is desirable to initialise neural network weights with small values
around a mean of 0. While using a uniform distribution U(a, b) would not be
completely out of the ordinary, a normal distribution N (µ, σ2) with µ = 0 and
σ2 ≤ 1 was a common standard.
In their work, Glorot and Bengio created a now classic initialisation scaling with the
aim of improving on the standard methods of the time. Their target was to maintain
the variance of activations and gradients in all layers of the network (Glorot and
Bengio, 2010). They proposed the uniform distribution scaling

WXavier ∼ U
[
−

√
6√

nj + nj+1
,

√
6√

nj + nj+1

]
(4.1)

taking into account the number of incoming nj and outgoing connections nj+1 of
a layer. It is now natively implemented in many machine learning libraries and its
scaling can of course be transferred to other distribution functions.

It is easy to understand, that the aspect of initialisation and its influence on
convergence becomes particularly important for a process that should allow for
a very fast evaluation of the performance of an architecture. But even beyond that
there is an influence that should not be neglected, as an initial experiment showed.
The vast majority of random number generators (RNG) used in computer programs
do not produce truly random numbers but pseudo-random ones. An algorithm, like
the widely used “Mersenne Twister” (Matsumoto and Nishimura, 1998) for example,
generates a sequence of numbers whose properties approximate those of a sequence
of random numbers. To do so, a starting value or seed is needed. The output is
therefore entirely dependent on this value and one specific seed will always create
an identical series of numbers.
Figure 4.1 depicts a histogram of the outcome of training the same architecture with
the same data set 15 times for 100 epochs using different seeds to initialise the RNG
and subsequently the network’s weights. The value of the classification error on
validation data ranges over more than one percentage point. Compared with the
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Fig. 4.1.: Distribution of the validation error over 15 weight initialisations of one
architecture, ceteris paribus.

magnitudes of improvement discussed in many publications, especially in regard
to competitive benchmarks, this is a quite significant magnitude. Accordingly, this
shows the necessity to train multiple initialisations of every candidate architecture
for reliable testing and at the same time the need to use the same specific seeds for
reproducibility.

4.2.2 Random Weights and a Heuristic

Methods which sufficiently approximate the outcome of a computationally extensive
task in a short amount of time are used in many areas. Apart from the pure time
saving potential, the reliability of such a prediction is crucial. This is particularly
true for the task of CNN architecture selection. Here, the required amount of time
can become a major problem, especially against the background of uncertainty in
results and the possible need to evaluate a single architecture more than once.

Previous works made use of random weight values to estimate the performance of
learning algorithms or generally make remarks on the training process. (Jarrett et al.,
2009b) were surprised by their own findings about the performance of random filter
weights for feature extraction and stated that “architectural sophistication seems to
compensate for lack of training”. In their 2011 paper, (Saxe et al., 2011) analysed
how random weights perform when used in convolutional and non-convolutional
feature extraction architectures before using a linear support vector machine (SVM)
for classification. They reported a significant correlation with the results using
normal training on these layers and motivated use in the context of architecture
search. Nevertheless, they admitted the need for several random initialisations per
architecture naming the performance difference “not generally negligible”. They
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further said that the correlation between random and trained performance is not
persistent in regard to high performing initialisations.

Given these earlier findings it is clear that random weights could also be considered
for evaluation of CNN architectures. Then again, another methodology which quickly
comes to mind is training the network normally but for a fraction of the normal
period of time. It is natural to expect that this would show a high correlation with
the actual outcome.

A new heuristic approach can be derived against this background combined with
experience gained from training neural networks. Both previously mentioned works
distinguish between a feature extraction and a classification part of their algorithms.
Even without valuable contributions to help understand feature representations in
neural networks (Yosinski et al., 2015), it is clear that even having only roughly
adapted feature extraction filters is preferable to those layers outputting random
distributions. It seems reasonable to assume, that training of the fully connected
layers could benefit from this, since one or two updates to the filter weights could
compensate for far more epochs of training the fully connected part. The initial
phase of training a classifier also normally provides the highest relative performance
improvement, as gradients and subsequently weight updates are large.
Therefore, the following heuristic is proposed:

1. Only compute two epochs of back propagation updates for the feature extraction
layers of the network.

2. After the third forward pass of the training samples through the convolutional
layers, save the feature maps.

3. Based on those intermediate result, train the fully connected classification part
of the network for a few epochs.

Including the second step to transfer the training data into this new format saves
computation time, as otherwise the forward pass of the samples through the
convolutions would need to be computed every time even though only the fully
connected layers are trained. The number of epochs for this training set to 30 on the
basis of an otherwise 100 epoch long full training.
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Random Weights Short Training Proposed Heuristic
Mean Best Mean Best Mean Best

Mean 0.813 0.769 0.832 0.774 0.641 0.852
Best 0.791 0.750 0.757 0.720 0.567 0.843

Time Consumption 89.3% 50.0% 22.6% / 45.2%

Tab. 4.1.: Comparison of three different evaluation methods for architecture performance
as correlation coefficient with the outcome of a reference training and time
required. Correlation is given for mean and best values of the respective methods
and the full training. The time required is given relative to that of one full
training.

4.2.3 Evaluation

In a first experiment the random weights approach, short time training and the
proposed heuristic are compared. Short training is considered to be five epochs of
full training. A small dataset of traffic signs, named TSR-8, was selected. It consists
of eight classes; seven different speed limit signs and a negative “no sign” class. The
training set is balanced comprising 2 500 samples of each speed limit sign and 6 000
of the latter. Validation data includes 200 samples per class. Based on a small CNN
with four convolutional and two fully connected layers, 24 combinations of changes
to this architecture are considered as candidates. To measure how good an estimate
generated by one of the methods approximates the actual training performance, the
Pearson correlation coefficient

r =
∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2 with x = 1

n

n∑

i=1
xi (4.2)

is used. Random weights and short time training compute results of ten initialisations
per candidate architecture, the proposed heuristic only gets five of those performance
samples. The reference training is run five times per network configuration.

Table 4.1 lists the outcome of this experiment. All three approaches exhibit a
generally good correlation with the actual training performance. The proposed
heuristic shows the most significant correlation when looking at the best performing
initialisation of an architecture. It is also clearly the fastest method, taking on
average only 22.6% of the time of single full training (which given the explanations
in subsection 4.2.1 is not entirely reliable on its own). Even if ten initialisations are
calculated per configuration, which brings no performance advantage but an even
fairer comparison with the other approaches, it is still the fastest.
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MNIST USPS CoMNIST SVHN AHC OD
Mean 0.785 0.828 0.679 0.353 0.875 0.800
Best 0.789 0.742 0.597 0.319 0.878 0.818

Tab. 4.2.: Correlation coefficients of the validation error projections from the proposed
heuristic and reference training (arithmetic mean and best) on six data sets.

To further validate the proposed heuristic, its capability to predict a neural network’s
performance is tested on more data sets. These include four public ones; MNIST
(Lecun et al., 1998), USPS (Hull, 1994), CoMNIST (Vial, 2017), SVHN (Netzer et al.,
2011), as well as two private sets; AHC, a data set for light source classification for
high beam control, and OD, a set for the classification of road users. Detailed
information on these data can be found in the appendix table A.1. For each
architecture a number of small CNN architectures are tested in a grid search.
Variations to be evaluated include the number of layer, channels, fully connected
neurons and more, as well as different global hyperparameters. Each architecture is
initialised five times, both for the heuristic in the reference training.

The experiment generally confirmed the significant correlation between performance
projections from the heuristic and the actual training outcome. This is equally true
for the arithmetic mean and best result of the reference training, as table 4.2 shows.
Four out of six data sets verify this without any restriction. Figure 4.2 depicts plots
for all tested configurations on MNIST and AHC. For CoMNIST a reduced correlation
of the results is measured. Nonetheless, the best overall network can still be found
within the first three architectures proposed by the method. These three would be
among the five best networks within the whole search and therefore provide a useful
result in practice. When using the SVHN data for validation, the outcome is not
correlated with the training results. This occurred due to general overfitting in all
architectures, which led to results that were difficult to distinguish even in reference
training.

All things considered, the proposed heuristic approach produced fast and reliable
results for performance evaluation of CNN architectures. It can therefore be
considered a valuable asset to a search for the best network configuration.
To some surprise, the magnitude of the validation error scores produced by the
heuristic is very close to the ones of the reference training in some cases. Validation
errors sometimes deviate by less than one percentage point. While this could be
considered to be proof of the notion expressed in previous works that architecture
sophistication prevails even against a lack of training to some extent, it also rises
interesting questions on how training of neural network layers should be conducted
in general.
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(b) Results for the AHC data set.

Fig. 4.2.: Correlation of validation error performance for full training (x-axis) and the
proposed heuristic (y-axis) for all tested network architectures.
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4.3 Bayesian Optimisation Framework

While the previous section showed, that the proposed heuristic approach offers a fast
and robust way to evaluate candidate architectures without the need of full training,
the underlying grid search, although being good for a comprehensible evaluation, is
not as efficient in covering a vast search space. To further optimise an architecture
search in terms of result quality and computation time, one might want to use a
more sophisticated method. Even though the exhaustive properties of a grid search
can be beneficial, it produces an exponentially growing number of sampling points
to evaluate. As presented in the work of Bergstra et al., random search outperforms
grid search when it comes to hyperparameter optimisation. They compared both
approaches on architecture search for neural networks and discovered, that random
search not only necessitates a fraction of the computation time for equal results, but
by trend finds even better solutions. They stated: “Grid search experiments allocate
too many trials to the exploration of dimensions that do not matter and suffer from
poor coverage in dimensions that are important.” (Bergstra and Bengio, 2012). This
is understandably sensible, as a large-scale multi-parameter search would likely
not be needed in the first place, if the sensitivity of specific parameters was known
beforehand.

To further increase the performance capability of a search method, one might
not want to solely rely on a random process but add an algorithmic component for
more plausibility and focus. Here, approaches in the field of global optimisation can
be considered. Model-based optimisation (MBO) is a type of global optimisation
(cf. Efficient Global Optimisation (EGO) (Jones et al., 1998)) and plays to its full
strength especially when the number of parameter combinations is large and too
expensive to evaluate in respect of the computation time. This method was created
to find solutions for problems with a great variety of input parameters and missing
information of their internal working, so called expensive black-box functions. This
relates to the given task of finding the best architecture for a CNN concerning a vast
number of hyperparameters and their respective possible values. Lastly the principle
of a black-box describes the state of knowledge about internal processes in neural
networks to some extent.

This work makes use of the “mlrMBO” library by (Bischl et al., 2017). The sequential
cycle of this approach to estimate the best parameters for an expensive black-box
function f(~x) can be structured into the following steps:
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1. To establish a reliable data basis that can act as a starting point, an initial
design can be found using a method to one’s choice. As described before, this
is normally a random search since a grid search is deemed to be too expensive.
Here Latin hypercube sampling, originally described by (McKay et al., 1979),
is a good option to refine an otherwise purely random approach. It generalises
the concept of the Latin square to an arbitrary number of dimensions. Each
of the ninit points sampled from this multidimensional space is the only one
in each axis-aligned hyperplane containing it. In this way, the method tries
to cover as much of the valid configuration space as possible with a minimal
amount of samples taken.
Say ~x is a parameter configuration within the space of all valid configurations
X of the CNN algorithm. Then we are searching for an optimal configuration
~x∗ minimizing the cost y, which in this example is the validation error. The
result of this initial step are tuples (~xi, yi) with i = 1, ..., ninit.

2. With the starting points evaluated in step 1, a surrogate model f̂(~x) to
approximate the expensive black-box function f(~x) is estimated. The given
library uses Kriging models, also known as Gaussian process regression, to
estimate a result yi from a not tested configuration f̂(~xi) (Krige, 1951). As
far as this work is concerned, it is sufficient to note that this is a type of
interpolation modelled by a Gaussian process. Essential for this application
within MBO is its characteristic to not only provide result prediction, but also
estimate the corresponding uncertainty σ̂(~xi).

3. Given the surrogate model function f̂(~x) promising points for optimisation
are selected using an infill criterion. While other methods could be used, the
expected improvement

EI(~x) := E(max(ymin − Y (~x), 0)) (4.3)

is a tested choice (Bischl et al., 2014). Let Y (~x) be a random variable,
which for the assumed Gaussian process is normally distributed with Y (~x) ∼
N (µ(~x), σ2(~x)), and ymin the best result obtained so far. With this premise,
the expected improvement can be expressed as

EI(~x) = (ymin − µ̂(~x)) Φ
(
ymin − µ̂(~x)

σ̂(~x)

)
+ σ̂(~x) φ

(
ymin − µ̂(~x)

σ̂(~x)

)
(4.4)

in its full form, where Φ and φ are the distribution and density function of
the standard normal distribution. Accordingly, a desired candidate point is
defined as ~x∗ = arg max~x∈X EI(~x). This formula aims to balance aspects of
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exploitation and exploration in the parameter space using the prediction and
uncertainty provided by the surrogate model estimate. Exploitation describes
pure focus on the lowest estimated mean µ̂(~x) searching for a minimum
with high expectancy. Exploration on the contrary targets regions with large
estimated standard deviation σ̂(~x) and consequently high uncertainty in the
model f̂(~x). In the applied library “mlrMBO” the point to be evaluated
eventually is determined with an infill optimisation algorithm called “focus
search”. Other optimisation methods could be chosen. The specifics of
this algorithm can be found in the original publication. Its function can
be summarised to using the best point obtained so far to focus the search space
around it and identifying the next promising candidates using the expected
improvement.

4. The proposed configuration ~x∗j is then evaluated on f(~x) and the surrogate
model f̂(~x) is thus updated with the new tuple (~x(init+j), y(init+j)).

5. If a defined termination criterion is not reached, to process continues with
step 2. Otherwise the cycle ends. For this application the termination criterion
is chosen to be fixed number of niter iterations. As long as this budget is not
exceeded, no configurations are determined and evaluated and the surrogate
model is subsequently updated. Other criteria like reaching a lower objective
value bound might be a chosen.

6. If the termination criterion in step 5 is reached, the best configuration ~x∗

yielding ymin when evaluated on f(~x) is returned.

In combination to the heuristic architecture evaluation approach proposed in
section 4.2, this application of MBO has the potential for a strong synergetic
effect. Both techniques are designed for economy of time but also provide in-
depth exploration. MBO aims to cover the whole search space with a small number
of sample configurations and focuses on areas with high potential improvement
during optimisation steps. The heuristic adds a reliable measurement basis for
evaluation through multiple initialisations of each architecture.

4.3.1 Evaluation

The significant question to evaluate the usability of the proposed method combination
for architecture search is once again not only about speed, but reliability. Since
it is expected from the beginning, that the introduced heuristic and MBO-based
search will require less runtime than MBO search combined with normal training, it
is important to see whether the former can produce results that are comparable.
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Training + MBO Heuristic + MBO
Runtime 4706 min. 2586 min.

Val. Err. TSR-8 2.56% 2.37%
Val. Err. TSR-20 (best/mean) 0.84% / 0.90% 0.63% / 0.84%

Tab. 4.3.: Performance indicators in comparison for the MBO search using normal training
and the proposed heuristic approach.

To examine both approaches, a search using the TSR-8 data set was conducted.
(Bischl et al., 2017) suggest to acquire five times as many data points for the initial
design as parameters in the optimisation problem. With p = 10 parameters, the
number of initial trainings of architectures determined by Latin hypercube sampling
is set to ninit,T = 5p = 50. The budget for the optimisation iterations is selected
to be niter,T = 100 and every network is trained normally for 100 epochs. Since
the time consumption when using the proposed heuristic is expected to turn out
significantly lower, the contingent for initial and iteration steps is determined as
ninit,H = 100 and niter,H = 200 from the start.

As the results presented in table 4.3 show, even with twice as many configuration sets
to test, the search employing the proposed heuristic only needs ∼ 43 hours compared
to ∼ 78 when using full training, which is approx. 55%. More importantly, with
the proposed search method there are not only no significant losses in performance,
the best candidate architecture actually slightly outperforms the parameter setting
found with normal training, when fully retrained. Even when just using the direct
result from the heuristic approach, the validation error is only 2.88%. As already
noted with other experiments in the previous section, this is surprisingly close in
magnitude to a full training performance. To confirm this finding, both best network
architecture configurations were trained from scratch on the extended TSR-20 data
set, including 12 additional sign classes compared to the TSR-8 representation.
Each network was trained five times using different weight initialisation seeds. The
architecture found with the proposed heuristic combined with MBO again reaches a
slightly better performance on the validation set.

In summary, it could be shown that the presented heuristic and MBO develop a
helpful synergy when applied to the problem of neural network architecture search.
Through multiple initialisations of a single parameter configuration, the heuristic
provides the search optimisation algorithm with results, which are more robust and
reliable than the outcome of one single training, while also offering a clear runtime
benefit.
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A System for Real-Time
Panoptic Segmentation in
Lidar Data

5

To create a fast approach for three-dimensional in-vehicle object recognition, new
methods to facilitate object segmentation in lidar point clouds in real-time are
presented in this chapter. Section 5.1 outlines the existing state of the art for
detection and classification approaches in lidar. The motivation to use a clustering
algorithm to create class-agnostic object instance detection is explained in section
5.2. Here, a new approach is considered to leverage the properties of the Euclidean
distance to retain three-dimensional measurement information, while narrowing
down the point cloud to a two-dimensional representation for fast computation. It is
shown, how this and other optimisation steps help to enable real-time execution on
CPU.
Section 5.3 clarifies how the output of this clustering block can be represented
to form an efficient and meaningful data representation for classification of the
object instances. A neural network to use this format and realise classification is
subsequently introduced in section 5.4. An evaluation regarding different metrics for
object detection and segmentation is eventually presented in section 5.5 alongside
timing measurements. The concept of panoptic segmentation is also introduced and
analysed here.

5.1 Lidar Object Detection Algorithms

There is a multitude of publications concerned with object detection and classification
on lidar data. In an attempt to provide a short overview, they can be roughly divided
into three categories; algorithms that work on unregularised point clouds, those that
use regularised ones, and algorithms that use fusion approaches combining lidar
with other sensors, mostly camera data.
A lot of methods process raw, unregularised point clouds and usually generate per-
point features, therefore being sometimes referred to as point-wise algorithms. A pair
of publications introducing PointNet (Qi et al., 2017b) and its successor PointNet++
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(Qi et al., 2017a) established the baseline of this category. While the original network
generated features on a global level at one scale, the latter improvement cascaded
several instances of these processing layers of the aforementioned approach at
different scales for more localised features.
Several other publications, including PointRCNN (Shi et al., 2019), followed this
direction. While facilitating good performance, these approaches are computationally
intensive and designed to be executed on large GPUs. This rules them out for
embedded application.

A second group of algorithms regularises lidar point clouds before processing them.
To do so, grid structures are used in fixed (Zhou and Tuzel, 2018; Shi et al., 2019;
Chen et al., 2019) or variable sizes (Alsfasser et al., 2020) to preprocess the data.
Zhou and Tuzel laid the foundation for these approaches by introducing what they
called “Voxel Feature Encoding”. Per grid cell, one feature vector with a fixed length
is generated and padded with zeros if not enough data points are available. Taken
together, these then form sparse four-dimensional tensors, which are fed into a
convolutional network.
To alleviate the negative performance influence of many empty grid cells created by
this methods, works like (Yan et al., 2018b) established specific network layers to
exploit this sparsity, providing a significant speed-up. (Lang et al., 2019) reduce grids
to a two-dimensional image-like representation while preserving height information
through an encoding. While this enables the omission of costly 3D convolutions for
faster runtime, these networks are still very demanding in computational resources
and require graphic cards.

The third and last set of works on object detection in the lidar space adds information
from camera sensors to enrich point cloud data. Some of them use camera images
to create region proposals, which are refined by a lidar algorithm in a subsequent
step. Here, a popular approach is the use of a frustum for projection into the point
cloud, as shown in (Qi et al., 2018; Zhao et al., 2019) and (Wang and Jia, 2019) for
example. Comparable methods utilise full three-dimensional object proposals from
image inputs to refine the frustum cutout (Shin et al., 2019) or more complex deep
learning fusion networks (Chen et al., 2017).

All of the approaches mentioned above are highly computationally intensive, with
many of them not being real time capable even on high-end GPUs. There is not
much work to be found concentrating on real-time application of lidar algorithms
on systems with less computational power. (Minemura et al., 2018) claim such
capabilities using specific optimisations for powerful CPUs, but report sub-par
results.
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5.2 Fast Clustering by Density and Connectivity

As motivated in the previous section, there are many powerful methods to accomplish
the task of object detection in lidar point clouds. Since they require equally powerful
hardware to be computed, an alternative approach might be sensible to implement
this function into an experimental test vehicle.

While machine learning can be a versatile and helpful class of algorithms for many
problems, especially when it is not possible to explicitly formulate a model for a
given task, it is not necessary to disregard tried and tested classical methods because
of this. When it comes to separating, or segmenting for this matter, data points
into groups, clustering algorithms are a good and obvious choice. Well-known
representatives include the DBSCAN (Ester et al., 1996), Mean Shift (Fukunaga and
Hostetler, 1975; Comaniciu and Meer, 2002) and OPTICS (Ankerst et al., 1999)
algorithms for example. Although these are comparatively old by the standards
of the rapidly developing machine learning world, especially the first one remains
widely used and was proven to remain relevant especially in data mining (Schubert
et al., 2017). However, it is still clearly too complex for real-time execution on
sensor data with limited computational resources.

Previous works like (Moosmann et al., 2009) recognised this problem and aimed
for approaches more specific to lidar application. They combined a graph-based
approach with analysing the surface of a point cloud locally with regard to the
convexity. Two neighbouring surfaces are termed locally convex to each other, if
their centre points are mutually below each other’s surface. While showing good
results in urban environments, the algorithm fails to achieve real time capability.
(Bogoslavskyi and Stachniss, 2016) targeted mobile application on a robot and
therefore required a very fast execution time. They also regarded surface convexity,
but used angles related to the sensor origin for calculation and more importantly
transferred many operations to a depth image representation.

These publications form a good basis for further considerations in terms of highly
efficient clustering of lidar point clouds. The aspect of maintaining spatial features
while moving operations to a two-dimensional plane is particularly interesting here.
Although data from a lidar sensor is most recognisable when represented as a
three-dimensional animation, raw data packages are of course transmitted as a list
of values. These are normally ordered by channels, which themself are for most
applications stacked in vertical direction. For each scanning position of a channel, a
range measurement is returned alongside a value representing the reflectivity. With
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(a) The angle measurement of lidar points in
the vertical direction is used to define a
horizontal orientation for the ground plane
extraction. (Note that there is no β1, as the
first lidar channel has no previous channel.
β2 is therefore extended to the first channel.)

(b) With the lidar sensor in O, the lines OA
and OB show two neighbouring distance
measurements. The distance between the
two measurements is calculated using the
spanned angle α between the points.

Fig. 5.1.: Trigonometric relationships used in the ground segmentation (a) and the cluster
separation (b).

the channel number as y-axis and the value order per channel as x-axis a range
image, sometimes also called depth image, can be readily created.

Ground Plane Extraction

For any ground-based vehicle, like a car, it is helpful to extract and ignore the
points belonging to the ground plane from the segmentation. This will prevent
the algorithm from connecting two instances via this plane due to the nature of
the lidar scan lines in horizontal direction. Here, a simple height based threshold
clipping values below a certain z-value is not sufficient, as the road surface itself can
be uneven. Pitching and rolling of the ego vehicle can also influence the way the
ground is perceived in the sensor data.

Given detailed information about the lidar sensor, the exit angle σr for each channel
r can be used to determine the angle βr at which the laser beam hits the surface (see
figure 5.1a). Let dn,r be a position in a range image at the n-th cell (on the y-axis of
the image plane) of channel r (on the x-axis). Then, an angle image, representing
the angle values of the lidar beam in relation to the point cloud surface spanned
between the current measurement and the measurement of the channel below, can
be created in which each new cell is calculated using the relationship

βn,r = arctan
(

dn,r · sin (σr+1 − σr)
dn,r+1 − dn,r · cos (σr+1 − σr)

)
, (5.1)

comparing vertically neighbouring range image cells. From this angle image, all
cells below a threshold of ±10◦ to a full horizontal surface are selected and their
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respective counterparts at the same position in the range image are deleted. This
leaves only objects above the ground plane for further processing.

Clustering

Figure 5.1b shows the trigonometric relationship of two adjacent points measured
by a lidar sensor. The range values ||OA|| and ||OB|| correspond to neighbouring
cells d in the depth image. To calculate the Euclidean distance D between the two
points, the cosine law can be applied:

D =
√
||OA||2 + ||OB||2 − 2 · ||OA|| · ||OB|| · cosα .

For any n-th cell of channel r in the range image and using the lidar sensors exit
angles σr this translates to

Dvert
n,r =

√
d2
n,r+1 + d2

n,r − 2 · dn,r+1 · dn,r · cos (σr+1 − σr) (5.2)

for vertical connections. Accordingly, for horizontal connections it can be calculated
as

Dhor
n,r =

√
d2
n+1,r + d2

n,r − 2 · dn+1,r · dn,r · cos θ (5.3)

with an constant horizontal resolution θ, which for most lidar sensors is between
0.2◦ and 0.05◦.

Using this physical distance between two measured points, a threshold value can be
defined between those, which are close enough together to belong to the same object,
or too far apart to be considered neighbours on the same object. The distance of
adjacent measurements on a given object is in general relatively close. The distances
of those points in the range image from two separate objects are substantially larger.
As far as this work is concerned, this threshold is set to 0.8 metres.

By using this clustering criterion with the range image, one horizontal and one
vertical connection image can be created. After applying the selected distance
threshold, these images can be brought to a binary representation where every valid
connection below the threshold value becomes 1 and everything else is 0. In a
subsequent step, the range image is also brought to a binary from, representing the
presence and absence of lidar measurements for the corresponding pixels in the
image.
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These three created binary images contain all the required information to segment
the lidar measurements of the whole frame into clusters and background points. For
this, the images are all dilated and combined into one large grid image as illustrated
in figure 5.2. Now it is possible to apply a simple and efficient image processing
algorithm; connected-component labelling (CCL). Here, the “one component at a
time” CCL implementation of (Abubaker et al., 2007) is used in the fast and straight-
forward version available in the scipy library "label" (Virtanen et al., 2020). The
4-connected pixel connectivity, also known as von Neumann neighbourhood (Toffoli
and Margolus, 1987), is defined as a two-dimensional square lattice composed
of a central cell and its four adjacent cells. Using the CCL algorithm with a 4-
connectivity on the grid image makes it possible to separately label each “island” of
interconnected measurements as a different cluster. The resulting segmented image
is then eventually subsampled to the original range image size. These images are
visualised in figure 5.4.

This ultimately enables the generation of three-dimensional cluster labels directly
from the connected-component image, as each pixel corresponds to a given lidar
point in the three-dimensional point cloud. The lidar sensor measurements are
thus segmented into connected components of separate objects and non-segmented
points, which correspond to the ground plane and background noise. In a final step
all clusters with less than 100 points are rejected to reduce false instances resulting
from noise in the sensor, the ground plane extraction or very small static objects
such as poles and debris on the road.

Map Connections

All lidar segmentation algorithms are to some extent prone to under- and over-
segmentation, due to the characteristics of the sensor. Namely its sparsity (especially
in vertical direction for most 360° rotating lidars) and missing measurements
resulting from deflected laser beams, which have no remission value back to the
sensor. Missing values result in missing connections between areas of the same object,
due to which the direct neighbourhood approach described above will over-segment
a single object into multiple clusters. Examples of such challenging instances are
shown in figure 5.5.

To overcome the limitations of the direct neighbourhood approach and to ensure a
more robust segmentation, the two-dimensional Euclidean clustering is extended
by what is referred to as Map Connections (MC) in the further course of this work.
For this, the combined grid image shown in figure 5.2 is reduced to a sparse matrix,
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Fig. 5.2.: Combination of defined image representations for instance segmentation. The
red squares represent the binary value of present lidar measurements, the yellow
and blue squares represent the horizontal and vertical connections of these
measurements respectively. The kernel shown on the combined image should
indicate the 4-connectivity.

Fig. 5.3.: Additional map connections (dotted lines) between non-neighbouring lidar points
on top of the direct connections to neighbouring points (yellow and blue squares).

connecting only every n-th point in the vertical and horizontal direction, thus
connecting a subset of original points. The schematic visualisation in figure 5.3
displays a connection of each measurement with its second neighbour (n = 2).
Higher values for n are also possible and evaluated later in this chapter. This
allows for a robust connection of segments of the same object which have no direct
connection due to missing measurements or obstruction by other objects in the range
image.

5.2 Fast Clustering by Density and Connectivity 65



Fig. 5.4.: Visualisation of the combined binary grid image representation (top), the applied
4-connectivity (middle) and the result reprojected to the lidar range image
resolution (bottom).

Fig. 5.5.: Left: Results using only the direct connectivity between neighbouring lidar points.
Right: A single additional MC between every second lidar measurement. The
proposed MCs enable a more accurate segmentation of the car (top) and reduce
the over-segmentation of partially occluded objects, as the truck in the bottom
images shows.
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5.3 Meaningful Data Representation of Segmented
Lidar Instances

To prepare and optimise lidar data representations of object instances obtained from
a clustering algorithm for classification in a subsequent step, several operations can
be considered.

5.3.1 Image Layers

From the raw sensor data, different information aspects can be used to describe a
measured point. The obvious first elements are the x, y and z coordinate values of
this point, usually given in Cartesian coordinates with the origin of the coordinate
system in the location of the lidar sensor. Derived from this, the distance or range
of the point from the origin can be calculated, for example as Euclidean distance
r =

√
x2 + y2 + z2. Furthermore, the measured intensity of a point is normally

given in the raw data, enabling indication of the surface reflectivity of an object.
When thinking about preparing lidar data for image classification, these properties
already create five possible image layers.

To gain more knowledge about an object’s surface in the lidar space, normal vectors
are a tried and tested representation. Their application is particularly popular in
the field of odometry or SLAM (Moosmann and Stiller, 2011; Behley and Stachniss,
2018; Li et al., 2019). The normal in geometry is a vector which is perpendicular
to a given object. In three dimensions, the normal of a surface in a given point is
a vector pointing outwards of the surface. To remain in a two-dimensional space
for this use case, it is best to calculate an image representation of the horizontal
and vertical component of the normal vector respectively. The normal vector for
a measured lidar point can be determined using the angle relationships shown in
figure 5.6. α and β are the angles between the line from the sensor origin to the
given point and the line from the given point to its respective neighbour. The angle
bisector Φ

2 of the combined angle φ = α+ β equals one component of the normal
vector.

To further leverage the two-dimensional nature which is the target for all of this
data preparation, it is reasonable to use the scalar values of the angles instead of the
more common cross product calculation between neighbouring points in the three-
dimensional space. This strategy reduces the calculation of the normal vector image
to a simple element-wise matrix subtraction. To compute the horizontal component,
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α
β

Fig. 5.6.: Relationship of angles between lines connecting adjacent lidar measurement
points and the line from the respective point to the sensor origin for calculating
the a normal vector component. With φ = α + β, the angle bisector can be
determined as φ

2 = α+β
2 .

the neighbouring points left and right of the point in question are used. For the
vertical component, the neighbour above and below are considered respectively.
Using just one neighbouring point here would allow for a potentially larger error.
This can be implemented efficiently by creating a total of four copies of the range
image, two per component, with shifts of one pixel in each direction respectively.
With a range image R and two shifted images Sl and Sr, the horizontal component
image NCH can be calculated as

A = atan2(Sl · sin(α), R− Sl · cos(α))
B = atan2(Sr · sin(α), R− Sr · cos(α))

NCH = A−B
(5.4)

given the horizontal resolution α of the lidar sensor in radians. The vertical normal
component image can be determined accordingly. While this implementation
requires a bit more memory, it can be computed very efficiently.
In result, these add two more possible image layers for image classification. An
exemplary representation of both component images can be seen in figure 5.7, with
an additional combined view for illustration purposes.

As this classification approach is build on top of segmented object instances from
the clustering step, this facilitates an additional advantage. Although it would be
conceivable to design a larger end-to-end network that learns to both detect and
classify objects from full frames of these image representations, already having
instances detected is a great advantage.
Since a clustering algorithm produces pointwise results, this information can be used
beyond simply cropping a rectangular image patch from the lidar frames. Each point
that has been labelled as belonging to a cluster can be identified in the image plane.
If an image patch is then created to become the input of a classification algorithm,
the width and height can be derived from the selected points. More importantly,
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Fig. 5.7.: Visualisation of the horizontal (top) and vertical (middle) normal vector
component lidar image, as well as a combined view of both components, using the
red colour channel for the horizontal component and the green channel for the
vertical, for representative purpose. Although it may be difficult for the layman
to identify objects such as house walls, posts and people in this illustration of a
city scene, the division of horizontal and vertical surfaces in the two pictures is
clear. The absence of the entire ground, including the roadway, in the vertical
component image makes this particularly obvious.

Fig. 5.8.: Exemplary image patches of object instance masks for different classes: car, truck,
bicycle, person (two each from left to right).

they can be used to mask out any possible background in this rectangle putting more
emphasis on the object. This should improve classification accuracy, as the shape
of different objects in the automotive context is very distinctive. A few examples of
these instance masks applied to object image patches can be seen in figure 5.8.

5.3.2 Object Statistics

As explained in the preceding section, there is a clear advantage of having object
instances provided by a clustering algorithm before targeting classification. The
again, it also has a downside since clustering itself is class-agnostic. All object
instances above the ground plane will be segmented, independent of whether they
belong to a supported class relevant for automotive application. Hence, classifier
will be presented with a majority of "None" objects along the roadside. For example;
walls of shops and houses can be confused with trucks, street lights or other poles
can resemble pedestrians and in some cases, cars might even be confused with larger
bushes.
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To remedy this situation, additional handcrafted features can be created. These
should be able to convey further information about an object’s geometric nature
to the neural network. From the clustering output, it is straightforward to provide
the number of points belonging to an instance and determine its distance to the
sensor origin. For simplicity, the smallest x and y values of points in the respective
cluster are selected here and the distance is expressed as Euclidean and pure x- and
y-axis lengths. A sense if the object’s size is already conveyed in this manner, as the
number of reflected points per area decreases with distance due to the fanning out
of most lidar sensor’s channels. Further, the width, length and height of the object
are calculated, completing a static vector with seven values.

While the influence of this statistics vector on the overall classification performance
score later revealed itself to be not particularly substantial, its use proved to offer
valuable decision support for critical edge cases. Examples of this advantage in
correcting both false positives and false negatives in the classification can be seen in
figure 5.11.

5.4 A New Architecture for Online Lidar Object
Classification

With the underlying meaningful data representation, a suitable starting point for fast
lidar object instance classification has been created. To support real-time execution
even on CPU, a comparably small convolutional neural network is needed. There
is a multitude of specialised works on this topic analysing a variety of optimised
calculations, e.g. (Freeman et al., 2018; Howard et al., 2017; Arriaga et al., 2019).
In simple terms, they all consider at least one of two important principles. The first
being depth-wise separable convolutions. Actually popularised in the deep Xception
architecture of (Chollet, 2017), these help to save a lot of arithmetic operations
by calculating one n× n× 1 convolution per input channel ci and expanding to co
output channels by applying co 1× 1× ci convolutions instead of co n× n× ci “full”
convolutions1.

The second principle concerns so called residual connections introduced by (He
et al., 2016). By adding the output of a previous layer to the output of the current
layer they mitigated the vanishing gradient problem. These occur when in deep

1For an exemplary conv. layer with a 3× 3 kernel and ci = 5 inputs of size 8× 8 and co = 64 outputs
a normal convolution would move 6 · 6 times, creating 64 · 5 · 3 · 3 · 6 · 6 = 103 680 multiplications.
A depth-wise sep. conv. would only need 3 · 3 · 5 · 6 · 6 + 64 · 1 · 1 · 5 · 6 · 6 = 13 140.
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Fig. 5.9.: Architecture of the proposed CNN for fast lidar object instance classification.

layers of large networks the gradient becomes infinitesimally small due to frequent
multiplications with weight values smaller than 1. But even in smaller networks
they can add helpful non-linearities in a parallel path.

As depicted in figure 5.9, the proposed network architecture for lidar object instance
classification consists of two branches. The first one takes the statistics vector of
length seven presented in section 5.3.1 as input and comprises two fully connected
layers. The second larger branch processes the lidar image representations and is
characterised by two residual separable modules in between common convolution
layers with 3 × 3 kernels. Such a module features two depth-wise separable
convolutions and maximum pooling in parallel to a residual connection with 1× 1
filter kernel. The lidar image patches are expected to have a size of 32× 32 as input
to the network. This is a very much sufficient resolution, as most widely used lidar
sensors offer between 32 and 64 separate channels. In this way, even objects that
theoretically occupy the entire height of the scanned area because they are very
large or very close to the sensor can be sufficiently resolved.
The output of the last 3× 3 conv. layer are five feature maps of size 7× 7. With a
flatten operation, these are restructured to an vector of length 245 before being fed
into a dense layer. Both branches are eventually connected by concatenating their
final layers before the output logits.

The complete network architecture has a total of 20 802 parameters, and its structure
and weights can be stored in a checkpoint file of 398 kBytes in size.
Although it does not make for an entirely fair comparison, state-of-the-art lidar
networks which aim to solve basically the same task in an end-to-end fashion
have many millions of parameters and need much more memory to store weights
accordingly, which is another cost driving factor in addition to their much higher
computational requirements.
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5.5 Experimental Evaluation

In this section, the newly presented clustering and classification methods will be
evaluated concerning both their accuracy on different metrics and speed.

5.5.1 Clustering

To evaluate the performance of the presented clustering method FLIC, its quality
to accurately segment object instances in a lidar point cloud is measured. The
SemanticKITTI data set (Behley et al., 2019) is used here to provide object instance
segmentation ground truth. It is an extension to the well-known KITTI data set
(Geiger et al., 2012), a collection of street scenes recorded with different automotive
sensors, including a 360° rotating lidar with 64 channels, and offering annotations
for a variety of tasks. Its odometry challenge is enhanced with semantic and instance-
wise labels for every lidar measurement by this update.

Two popular measures are used for evaluation of the segmentation quality. The
first to be calculated is the Intersection over Union (IoU), sometimes referred to as
Jaccard Index. It measures how exactly two sets (of points) overlap as a value in the
closed interval [0, 1]. Given a single ground truth instance A and one cluster B, it is
defined as

J(A,B) = |A ∩B||A ∪B| =̂ TP

TP + FP + FN
. (5.5)

representing the area/volume of overlap divided by the area/volume of union. This
corresponds to the number of true positive points (TP) divided by the TP plus the
false positive points (FP) and the missing false negative (FN) points.

The second metric is the precision measure P . It is based on the index and shows
how many instances are matched with an IoU of at least x. Therefore, it can be
defined as

Px = 1
N

N∑

n=0

M∑

m=0
an,m with an,m =





1, if J(n,m) >= x,

0, else
(5.6)

for N instances and M clusters in which each instance and cluster are matched via
J(n,m). Please note, that due to the definition of the Jaccard Index only one cluster
can match a ground truth instance with an IoU > 0.5.
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Method IoUµ Pµ P0.5 P0.95 fµ

Bogoslavskyi et al. 73.93 59.31 83.75 13.18 ≈ 152 Hz
FLIC 76.20 63.73 84.30 22.03 ≈ 165 Hz
FLIC (1 MC) 77.97 66.68 85.60 27.19 ≈ 104 Hz
FLIC (6 MC) 81.14 71.92 88.25 36.05 ≈ 48 Hz
FLIC (14 MC) 84.25 74.68 89.75 40.63 ≈ 26 Hz
DBSCAN 76.21 76.50 81.54 69.25 ≈ 3 Hz

Tab. 5.1.: Comparison of the segmentation quality on SemanticKITTI using the mean
intersection over union and the precision averaged over all bins and for the
bins with an IoU of 0.5 and 0.95. All values are given in percent. The mean
processing frequency of the lidar frames is also listed for the respective algorithm.

For comparison, the well-known DBSCAN algorithm (Ester et al., 1996) and the
comparable state of the art approach of (Bogoslavskyi and Stachniss, 2016) are
tested on the same task as the proposed FLIC. All listed methods are evaluated on a
Intel Core i7-6820HQ CPU @ 2.70 GHz.

For each ground truth object in the data set that consist of at least 100 lidar points,
every algorithm’s cluster output with the highest IoU is selected. All results are
measured instance-wise, so that if two ground truth instances are represented by
only one cluster, only the object with the higher IoU is counted, while the second
object is marked as not found. For all methods the same ground plane extraction
as described in section 5.2 is applied. The intersection over union is calculated for
every instance in a lidar frame and averaged over all 2500 frames in the data set
to form the mean IoUµ. For the precision P , ten bins of point-wise overlap of the
ground truth and the clusters are defined ranging from an IoU of 0.5 to 0.95 in steps
of 0.05. The precision of all bins is averaged into one single metric score Pµ. The
precision is also separately reported for the bins with the lowest (P0.5) and highest
IoU (P0.95) in table 5.1. This also lists the average time for clustering one frame as
the possible processing frequency fµ.

Even when compared to the sophisticated and computationally intensive three-
dimensional clustering of the DBSCAN algorithm, the proposed clustering method
achieves a respectable performance. For the mean IoU the segmentation quality is
precisely on par, even without the use of map connections. If these are added up 14
ones, FLIC becomes the best performing method for this metric by a margin. When it
comes to precision, the slow but precise DBSCAN still has a visible advantage, most
noticeably in the bin with the highest IoU P0.95. Yet, its average processing time
makes it unusable for real-time application.
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The method presented by Bogoslavskyi and Stachniss achieves a very fast runtime,
which can only be caught up by the base implementation of FLIC without map
connections, but lags behind in all other metrics. In the P0.95 bracket, it shows an
all the more pronounced drop in performance. Even with the maximum of map
connections tested here, the presented approach would still be able to run faster
than the recording frequencies of most lidar sensors which are typically between 10
and 20 Hz.

5.5.2 Classification

In the following, several different aspects of the proposed classification of segmented
lidar object instances are analysed. Before applying known metrics on public
data, however, the network architecture and image representation must first be
evaluated.

Architecture

To assess its accuracy performance, the CNN architecture proposed in section 5.4
is compared with two plain CNNs that both only apply classic convolutional layers,
compared to the residual depth-wise separable modules utilised in the former. One of
the plain CNNs simply replaces each of these special blocks with a 3×3 convolutional
layer with the same number of channels, 32 and 64 respectively. To keep the sizes
of the intermediate feature maps the same as they would be in the residual blocks,
maximum pooling layers are added to halve their width and height. The other
straightforward CNN tries to resemble a deeper architecture by using two times two
3× 3 convolutions with 16 channels in this place.

A private data set is created for this experiment from a database of several lidar
point clouds. These were recorded with a 40-channel Hesai Pandora sensor which
is rotating 360° on top of a vehicle. Object instances were originally annotated
as three-dimensional bounding boxes and can thus be transferred in the image
representation. These were otherwise created as described in section 5.3 and a
statistics vector is also determined for every instance. As object classes cars, trucks,
bicycles (including motorbikes) and pedestrians are considered. For a fifth “none”
class, samples generated from areas that do not have any overlapping labels from
the original annotations. A total of ∼ 46 000 training and ∼ 8 000 test samples are
created in this way.
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Num. Params. FLOPS Test Acc.
Proposed 20 802 47 109 0.906

Plain Same 29 066 124 263 0.852
Plain Deep 36 970 167 903 0.893

Tab. 5.2.: Comparison of three CNN architectures for lidar image patch classification in
terms of their number of parameters, floating point operations to process one
input sample and their accuracy on the created private test set.

Table 5.2 shows the computation properties of the three networks and outcome of
training on this data set. While the plain CNN imitating a similar channel structure as
the proposed network already has nearly 50% more parameters and requires two and
a half times as many floating point operations (FLOPS) to process one input sample
it clearly exhibits the inferior performance on the test set. The alternative CNN
with the deep conv. layer structure nearly matches the accuracy of the presented
architecture, it raises the number of parameters and FLOPS even further.

Overall, it can be seen that in this case too, as already shown in prior literature
with other applications, residual depth-wise separable modules can bring great
advantages in terms of computing effort to performance ratio.

Image Configuration

Now that a private data set has been created in the form of the representation
introduced in section 5.3, it is sensible to analyse the composition of the lidar image
patches. On the one hand, to identify possible redundant information in these seven
layers and on the other to reduce the number of input layers which later need to be
processed. Therefore, an ablation experiment is conducted, testing all possible input
combinations (see table 5.3).The binary mask derived from the clustered instance
output is not generated as a separate layer but applied to all other ones masking out
non-related points with zeros.

The analysis shows that one is able to efficiently select only three layers, namely
the intensity values and our horizontal and vertical normal vector component
representations, and maintain performance with only a minimal accuracy decrease
compared to using all seven of them. Consequently, an image input of the size
32× 32× 3 is used in the further course.
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Channel Configuration
X Y Z I D HNV VNV Test Acc.

0.835
• • • 0.875
• • • • 0.892
• • • • 0.879
• • • • • 0.895
• • • • • 0.882
• • • • • • 0.900
• • • • • • 0.890
• • • • • • • 0.902

• 0.887
• 0.861

• • 0.891
• • • 0.896

• • • 0.881
• • • • 0.894

• • 0.873

Tab. 5.3.: Results of the input channel ablation experiment. Configuration options include
the Cartesian coordinates (X, Y, Z), intensity (I) and depth (D), as well as the
horizontal and vertical normal vector component images (HNV, VNV). A binary
mask from the points belonging to the clustered instance is applied at all times.

Semantic Segmentation and Object Detection

After proving the advantages of the proposed network architecture and determining
a selection for the lidar image input layers, the presented approach is evaluated
on public data. The SemanticKITTI data set, which was already introduced in a
preceding section, is utilised again for this purpose.
While good detection/classification rates are important, the proposed CNN, just like
the lidar image clustering, was developed with a focus on real-time capability for
CPU-based platforms. Hence, it is not sensible to expect new benchmark high scores
and compete directly with magnitudes larger end-to-end lidar networks. Given the
strong computational limitations, it can be regarded as sufficient to aspire for a
reliable output.

The semantically segmented point clouds in SemanticKITTI, as well as the additional
instance labels in the dataset, allow for multiple pointwise evaluation approaches.
The first is semantic segmentation for which FLIC is employed to provide separate
class-agnostic object instances from the lidar data. These clusters are then brought
into the previously described image and object statistics vector representations and
are processed by the classification network.
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Input Method None Car Truck Bike Pedestrian

FLIC Instances 0.954 0.750 0.472 0.265 0.282

GT Instances 0.994 0.926 0.732 0.525 0.558

Tab. 5.4.: Semantic segmentation results in the intersection over union metric (see formula
(5.5)), using either clustered instances from the FLIC or ground truth instances
as input for the classification for each of the five classes created.

As with the created private data set before, to target is to classify objects into
five general automotive classes: “Cars”, “Trucks”, “Pedestrians”, “Bikes” and the
“None” class, which embodies all static background classes such as road surface,
buildings and vegetation. To achieve this mapping, the SemanticKITTI classes
“Bicycle”, “Bicyclist”, “Motorcycle” and “Motorcyclist” are combined to “Bike”, as
well as “Truck”, “Bus”, “On-Rails” and “Other-Vehicle” to “Trucks”. The classification
network has been trained with the annotated point clouds of the available training
logs. As suggested in the (Behley and al., 2019) documentation, the 8th log is kept
separate for validation.

Table 5.4 shows the results for the class-wise semantic segmentation intersection
over union (IoU) metric (see formula (5.5)) of the combined approach of clustering
the point cloud and classifying each cluster separately. This metric provides a good
impression of pointwise segmentation quality, since the correct predictions and both
types of incorrect predictions, false positives and false negatives respectively, for
each point are included in the equation.

The score of this metric is computed for two approaches. The first approach is
the classification of clustered instances from the FLIC as an end-to-end pipeline
on point cloud data to show the performance of the proposed method on unseen
samples. The second approach applies the classification directly on the annotated
ground truth instances in the data set. This allows for a comparison, on how the
performance is influenced by the grade of the provided object instances. As the
results show, performance of the semantic segmentation directly depends on the
quality of the given object clusters and the result could be improved, if a clustering
algorithm that is as accurate as the annotated ground truth while offering real-time
processing would exist.

The second evaluation method is meant to assess the performance of object detection.
For this, as previously introduced, the average precision Pµ is calculated and
averaged over ten bins of point-wise overlap of the ground truth and the clusters
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Input Method Pµ P0.5 P0.75 P0.95

FLIC Instances 0.407 0.441 0.419 0.314

GT Instances 0.554 - - -

Tab. 5.5.: Object detection results as average and IoU bin-wise precision on clustered
instances and provided ground truth instances.

ranging from an IoU of 0.5 to 0.95 in steps of 0.05. Additionally, the precision for the
overlap values of 0.5, 0.75 and 0.95 are listed, in which the evaluation is restricted
to objects at or above the denoted IoU. In contrast to the previous object detection
evaluation performed solely on cluster instances, the calculation is now no longer
class-agnostic. Therefore all matched instances that are not attributed to the right
class count against the precision. As only four positive classes out of the 28 classes
from SemanticKITTI are supported, this visibly impairs the score as seen in table 5.5.
This becomes even more clear, when using the ground truth instances as input as
these are perfectly matched and the score still only reaches approximately 55%.

5.5.3 Panoptic Segmentation

By combining the fast lidar image clustering, providing class-less separation of
object clusters and background, with the proposed efficient object classification, it
is possible to perform the task of panoptic segmentation. This term was coined by
Kirillov et al. in their work of the same name (Kirillov et al., 2019). According to
the authors, this task “unifies the typically distinct tasks of semantic segmentation
(assign a class label to each pixel) and instance segmentation (detect and segment
each object instance)”. The clustered instances provide sufficient information on the
separation of objects, while the subsequent classification yields the prediction.

In panoptic segmentation the differentiation between Stuff ie. background and
Things, in this use case active road users, is as important as the separation of Things
among themselves. After separation into background and clusters and classification
of the latter, the predicted class labels are used to remove the instance labels from
clusters which are not part of the Things, in this case all “None” labels such as utility
boxes, road signs and vegetation.

The SemanticKITTI data set also added a panoptic segmentation benchmark in 2020
to validate this task on its content (Behley et al., 2020). This challenge uses the
panoptic quality (PQ), originally proposed by (Kirillov et al., 2019), averaged over
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all classes C, as used by Porzi et al. (Porzi et al., 2019), on the whole test set. For a
single class it is defined as

PQ =
∑

(S,Ŝ)∈TP IoU(S, Ŝ)
|TP |+ 1

2 |FP |+ 1
2 |FN |

(5.7)

and is composed from the segmentation quality (SQ) and the recognition quality
(RQ) as follows

PQ =
∑

(p,g)∈TP IoU(p, g)
|TP |︸ ︷︷ ︸

segmentation quality (SQ)

× |TP |
|TP |+ 1

2 |FP |+ 1
2 |FN |︸ ︷︷ ︸

recognition quality (RQ)

, (5.8)

with true positive (TP), false positive (FP) and false negative (FN) classifications.

At the time of the original publication, the presented method was the only approach
to be submitted for the panoptic segmentation benchmark. Now at the time of
composing this work, several deep learning approaches were entered offering a
better performance. This does not come as a surprise, since this method of combining
the FLIC with a dedicated meaningful data representation and a fast classification
network architecture is as previously shown limited to only 4 of the data set’s classes
and will not yield competitive results summed over all classes. Nevertheless, to
the author’s knowledge, it is still the only published approach to enable panoptic
segmentation in real-time on CPU.

The results in table 5.6 are therefore limited to the four classes described in detail
above. Due to the reduced class mapping explained previously, the performance
on “Truck” and “Bike” is additionally impaired, as the reported official results
for the challenge are evaluated on the full class set. For all four classes, the
segmentation quality yields good to very good results. Apart from “Truck” and “Bike”,
the recognition quality for “Car” is pleasant, but “Pedestrian” recognition could be
better. Then again, SemanticKITTI distinguishes humans between “Pedestrian”,
“Bicyclist” and “Motorcyclist” which further deteriorates the score.

5.5.4 Timing

The network architecture illustrated in figure 5.9 is implemented in Python with
Tensorflow (Abadi et al., 2015), devoid of any further customisation or optimisation.
For 100 input instances of object proposals from the point cloud, which can be
considered to be representative of a residential area to inner-city scene, inference
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Class PQ SQ RQ IoU

Car 0.754 0.866 0.87 0.792

Truck 0.0534 0.888 0.0602 0.0371

Bike 0.0822 0.723 0.114 0.0462

Pedestrian 0.377 0.905 0.417 0.161

Tab. 5.6.: Panoptic segmentation results as panoptic quality (PQ), segmentation quality
(SQ), recognition quality (RQ) and IoU using classification of clustered instances.

time on an Intel i7-6820HQ laptop CPU @ 2.70 GHz is ∼ 32ms. If execution is
limited to only two threads, resembling a small embedded processor, this value rises
to ∼ 71ms.

Timing measurements are often not published alongside high-performing publications.
In exceptional cases, they are reported on powerful GPUs. To get a rough estimate
about the runtime of state-of-the-art networks, the inference of one point cloud from
SemanticKITTI with a network closely comparable to PointPillars (Lang et al., 2019)
is timed. Doing so took ∼ 1.86s, which is nearly 60 times slower than the presented
network, on the same CPU.

5.5.5 Conclusion

The presented holistic approach of combining fast clustering on two-dimensional
mappings of lidar sensor data with a dedicated meaningful data representation
for segmented object instances and a fast classification network architecture was
evaluated extensively in the preceding sections.

While facilitating real-time computation on CPU, it is capable of providing good
results in detecting and classifying relevant road user classes on many metrics.
Through evaluation on public data it was shown, that it achieves good performances
on automotive lidar semantic segmentation and object detection tasks, while being
orders of magnitude faster to compute than current state-of-the-art approaches. The
component-wise decomposed normal vector image, instance masks and selected
statistics make for a efficient data representation to be exchanged between the
clustering and classification algorithm.
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Through the combined use of instance segmentation and classification of these
separated objects, the output can further be regarded as a panoptic segmentation of
street scenes. There is only little previous work on this topic in general and to the
author’s knowledge, this is the first method which can accomplish this task in real
time on CPU.

Finally, figure 5.10 shows the visualisation of a lidar point cloud recorded with
a 40-channel Hesai Pandora sensor on top of a vehicle rotating 360° in a busy
urban environment. This representation makes it possible to clearly see how many
object instances are clustered in such a scene and how the classification manages to
suppress all irrelevant classes and highlight the important road users.
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Fig. 5.10.: Oblique view of the Lidar point cloud of a street scene with coloured highlighting
of the clustered object instances (top) and their classification (bottom). Please
note that the clustering output is agnostic to object classes and colours are
randomised and used to differentiate instances. In the classification, pedestrians
are shown in red, cars in light blue and trucks in light green.
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Fig. 5.11.: Influence of the additional statistic vector described in 5.3. The top left and
middle left figure show examples for false negatives and the bottom left figure
for false positives respectively. The additional statistic vector prevents some of
these errors (right side).
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Aspects of Pedestrian Feature
Extraction

6
The mere detection of pedestrians is an insufficient level of information for the
development of models and systems towards autonomous driving. While the ability
to locate people in an image, e.g. by specifying a bounding box, is still a fundamental
necessity, more features need to be extracted to gain a real understanding. Will the
person cross the road, is he or she walking or standing still and possibly making
a gesture directed at the oncoming ego-vehicle? These are the questions, which
eventually need to be answered to facilitate path planning or de- and acceleration
scheduling.
This chapter highlights two features which can play an important role for the
development of such algorithms. Section 6.1 is concerned with the detection of
pedestrian body keypoints. A sequence of steps is presented for processing camera
and lidar data to generate a representation as input for an efficient machine learning
network. A few remarks to optimise a straightforward method for pedestrian
awareness state detection are given in section 6.2.

6.1 A New Approach for Pedestrian Body Keypoint
Detection

For the object-specific analysis for the understanding of weaker road users like
pedestrians, the detection of body keypoints and the subsequent derivation of a
skeleton model is an important building block. It allows for several subsequent
analyses, such as alternating movements of the legs indicating walking, raising of an
arm to make a gesture or the direction of gaze.

Like with many other fields of machine learning, there is an nearly unmanageable
number of existing publications1. At this stage, algorithms for keypoint detection can
be divided into two main categories; those that first detect individual instances of

1The interested reader is invited to take a look at the very sophisticated keypoint detection literature
survey of (Zheng et al., 2020), in which they cite not less than 299 references.
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people and then estimate a set of keypoints in this predefined framework/bounding
box (called top-down methods), and those that determine presumed keypoints on
the entire image and then combine these into individual skeletons in a second step.
The latter are often referred to as bottom-up approaches and popular works include
those of (Cao et al., 2021; Fang et al., 2017) and (He et al., 2017). These generally
show a very good performance and can learn a potentially deeper understanding
of important points in context, but involve more computational effort on average.
This is due to the fact that much deeper neural networks are required, not only
because of the larger input size, but due to the complexer task of assigning detected
keypoint to individual persons. While the results generated with these algorithms
can be impressive on benchmark data using high-resolution photographs and video
material in mostly well-lit environments, they do not necessarily translate all that
well to automotive camera sensor data. Here, cameras often have a lower resolution,
where a more distant pedestrian might only be represented by a few dozen pixels,
sometimes don’t even provide colour information and captured scenes will have
diverse lighting conditions.

Not only because of this, but also from a systemic point of view, a top-down approach
based on already detected object boxes is better suited for an application in the
vehicle in an automotive context. Object detection, including pedestrians, can be
considered available as it is a necessity for many driver assistance systems in a
modern car and often performed with several different sensors and made robust
through fusion and tracking. Therefore, letting the network first learn the task of
detecting the person can be regarded as an overhead and needlessly added load
for the scarce computation resources in the vehicle. This approach to keypoint
estimation also allows for easier and faster later adaptations and a more flexible
design of the overall system in terms of the order and frequency of execution of
individual algorithmic building blocks.

6.1.1 Network Architecture

Assuming an image patch representing the area of a bounding box containing
a pedestrian in a camera frame as input, a neural network to generate a set of
keypoints could take a structure as depicted in figure 6.1. Such an encoder-decoder
shape, often referred to as autoencoder (Hinton and Salakhutdinov, 2006; Rumelhart
et al., 1986b), offers two helpful properties in this context. Firstly, it automatically
encodes a representation of a given input, hence the name. Secondly, from this
internal encoding it then creates an output which has the same width and height as
the given input. While this can be achieved with different operations, transposed
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convolutions, sometimes incorrectly dubbed deconvolutions, are used here. This
layer applies the convolution operation to a dilated and padded version of its input
to generate an upsampled output (a graphical visualisation of this concept can be
seen in appendix A.1).

The architecture also makes use of skip connections to concatenate feature maps
from the contracting path with feature maps of the same resolution of the expanding
path (Huang et al., 2017). They provide an alternative path for the gradient to
mitigate a possible “vanishing” gradient problem in deep layers due to a long chain
of multiplications with values smaller than one (cf. section 5.4). Especially with this
form of adding “skipped” information by concatenation, it also gives the network
the opportunity to reuse the features from the downwards path.

6.1.2 Data Generation

As the objective for this development was to offer a fast yet robust pedestrian
keypoint detection, it is sensible to leverage the possibilities of the sensor equipment
of a modern vehicle beyond just a camera image. Lidar data is a very useful option
for that. In this context it could offer helpful assistance in two ways. First, by cutting
out the points actually reflected from the respective pedestrian’s body, it can act
as a contour mask making it easier for the neural network to separate it from the
background. The depth information can also convey a sense of three-dimensional
perspective, which could mitigate problems with uncertainty of whether a certain
limb is in the fore- or background.

Using a database of 668 logs of street scenes recorded with a Hesai Pandora (Hesai,
2018) mounted to the roof of a car, a data set is generated for training. This sensor
offers a 360° rotating 40-channel lidar and different cameras, of which a front-facing
RGB-camera with an horizontal angle of view of 52° is used. Figure 6.2 shows an
example frame with the respective lidar points overlayed.
In order to generate training samples of individual pedestrians for keypoint detection
from this data, the following steps are carried out:

1. All camera frames are processed with the state of the art detection and
classification algorithm YOLOv3 (Redmon and Farhadi, 2018), which at this
point is not further specified (cf. section 7.1.2). Every detection that assigned
with the class “person” is considered, but only included for further steps if
it meets certain filter criteria. These include the confidence of the detection
algorithm, where a score of 0.9 or higher must be reached, and a threshold for
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the size of the bounding box in pixels. A valid detection must be at least 40
pixels wide and 80 pixels tall.

2. Based on the rectangle describing the detection in the camera image, a frustum
can be described in the three-dimensional point cloud if the transformation
to the lidar sensor is known. This cone-shaped section of the lidar space
already correctly delimits the width and height of the detected person, but
the depth must be delimited in relation to the sensor origin, as this otherwise
encompasses the entire range and background behind the person would be
included, rendering the idea of masking out its shape unsuccessful. For this
purpose, a simple statistical histogram of the number of points along the depth
can be used in conjunction with a "non-maximum suppression". In case of
later integration into an overall system, the available information from the
lidar object clustering (cf. section 5.2) can be used. Exemplary results of the
isolation of person instances in the lidar space can be seen in figure 6.3.

3. The by the person detection delimited point cloud is transferred into two
two-dimensional image representations, one for the depth and one for the
reflection intensity information. Both are normalised, as especially the depth
values would otherwise cover only a very small value range. In addition, a
classic image processing technique, dilation, is applied in vertical direction to
condense the sparse lidar points, especially in areas where the vertical angle
between the lidar channels is larger, into a closed form (see 6.3 right).

4. As a manual annotation would have exceeded a reasonable time frame, the
found person instances are automatically annotated by the very deep state of
the art algorithm AlphaPose (Fang et al., 2017). Confidence filters are also
applied here to sort out samples for which the network is unsure about how
to label them. The structure of the annotated keypoints follows the format
proposed by (Lin et al., 2014). It denotes the classes the following order:
“nose”, “left eye”, “right eye”, “left ear”, “right ear”, “left shoulder”, “right
shoulder”, “left elbow”, “right elbow”, “left wrist”, “right wrist”, “left hip”,
“right hip”, “left knee”, “right knee”, “left ankle”, “right ankle”.

5. Finally, the data is prepared for the training of the neural network. A five-
channel input image is composed of the camera’s colour image, as well as
the lidar depth and intensity images. This combination is scaled to a size of
128× 128 pixels while maintaining the original aspect ratio and, if necessary,
padded with noise. The keypoints labels, given in image coordinates, are
transformed into heatmaps, one for every point. For each of them a single-
channel image is created with the same size as the input. For the pixel-position
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of the respective point, it has a value of 1 and the adjacent pixels take values
according to a two-dimensional normal with a very small variance. This later
helps the learning process, as the network is not directly “penalised” by the
loss function for an estimate that is off by only one or two pixels. All other
heatmap pixels are set to zero. An example of the input and the heatmap
labels can be seen in figure 6.5a

In this way, a total of approximately 250 000 samples are generated. They are divided
into a training set and a validation set in a ratio of 80:20.

Fig. 6.2.: Camera frame overlayed with a projection of the respective lidar point cloud
section.

Fig. 6.3.: Left: Person detected in the camera image with body limited lidar points projected
on top. Middle: Section of a point cloud limited to a body instance. Right: Body
depth image before and after applying dilation in vertical direction.
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Fig. 6.4.: Two examples for a pedestrian instance represented through a camera image (top
left), lidar depth (top right) and intensity (bottom left) images. A skeleton created
from connecting predicted body keypoints, is shown in the bottom right.

(a) Labels

(b) Network output generated by training with the loss function presented in equation 6.1.

Fig. 6.5.: Visualisation of heatmaps for 17 keypoints with the respective input image patch.
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6.1.3 Training and Evaluation

To train the autoencoder network introduced in section 6.1.1, several aspects to
improve performance are considered. During training, the input batch data is
augmented by optionally vertically flipping the image and/or shifting it by a certain
amount of pixel to the left or right and/or rotating it by up to ±15◦. This should
enable the algorithm to learn translation invariant features and possibly develop a
better understanding of keypoint regions.
Beyond this, the training process uses a learning rate scheduling, where it is halved
every time the validation loss was not improved for 10 consecutive epochs.

Calculating the loss during training is in itself straightforward thanks to the heatmap
label structure. The label and output prediction matrices have the same shape and
can therefore be subtracted from each other. Applying a mean squared error (MSE)
would be an obvious choice. However, initial training attempts showed that the
network in this way is hardly incentivised to make any useful predictions. Generating
noise with a very low amplitude / small random numbers is as good a solution as
predicting an actual keypoint, since the relevant area only accounts for a very few of
the 128 · 128 = 16384 pixels per heatmap.

In order to remedy this situation, for each label heatmap Yi a mask Mi is created. It
contains small values, e.g. 10−3, in every cell, except for those where Yi has values
larger than 0.01. There, it is set to 1. This helps to focus the loss calculation on the
relevant areas and suppresses other regions by giving them a lower weighting. With
labels Yi and output estimates Ŷi, the loss function can thus be stated as

L(Y, Ŷ ) =
N∑

i=0
(Yi− Ŷi)2 ·Mi with Mi(n,m) =





1, if Yi(n,m) > 10−2,

10−3, else
(6.1)

for N = 17 heatmaps. Experiments showed that there is no detectable difference
between defining the loss as a residual sum of squares (RSS), as has been done here,
or as MSE.

As the examples in figure 6.5b demonstrate, this enables the network to generate
output heatmaps which show a clear understanding of body keypoints in the input
image. Parts of the head show very distinctive detections, whereas, especially in the
case with the cyclist, leg regions seem to evoke a bit more uncertainty. Generally,
pairs of body parts show a certain level of ambiguity, as the network unsurprisingly
has a difficult time to distinguish between right and left limbs. This is also a problem
for a lot of other published approaches.
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While a large evaluation is not possible at this stage, if only because, to the author’s
knowledge, there is no data set comparable to the presented data generation with
camera and lidar inputs, training on these samples was analysed to identify certain
behaviour characteristics. By tendency, performance profits from a larger input batch
size, reducing the validation loss by around ten percent when increased from 8 to
64 ceteris paribus. This is to expected, as a larger number of samples in a badge will
stochastically include varied body poses. Conversely, there is hardly any influence
if the lidar intensity values are omitted from the input, as the network does not
seem to extract any useful information from them. The lidar depth image as such, in
contrast, seems to be an important addition improving validation performance by
up to fifteen percent.

6.2 A Note on Pedestrian Awareness Detection

An attentive human driver can decide within a fraction of a second, whether a
pedestrian in the vicinity of the vehicle will behave in such a way that his intervention
is required. He or she is able to subconsciously analyse relevant explicit and implicit
behavioural patterns of the person and to draw conclusions for risk assessment.
When it comes to transferring these skills to a computer, it is not immediately clear
which features are particularly important. However, one aspect that should be
included without question is the recognition of the pedestrian’s awareness level.

In order to implement this, an algorithm is to classify image data of pedestrians into
one of the following four classes:

Aware The pedestrian is facing the vehicle, looking directly at it or its immediate
surroundings.

Partially Aware The pedestrian is looking sideways from the vehicles perspective
but the face is still visible.

Unaware The pedestrian is looking away from the vehicle in more or less the
opposite direction and the face is not visible.

Distracted The pedestrian at a mobile phone or a similar object in his/her hand.

Examples for these classes can be viewed in figure 6.6.

To classify these samples, a small and conventional CNN architecture can be used. It
is build from three 3× 3 convolution layers interconnected with maximum pooling.
The intermediate feature maps are fed into a global average pooling layer to reduce
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Fig. 6.6.: Examples for the four awareness state classes. From left to right: aware, partially
aware, unaware and distracted.

dimensionality and eventually processed by two fully connected layers, the last being
the class output logits.

6.2.1 Data and Results

As source for data an internal database containing a variety of logs recorded by a
vehicle with a multi-sensor setup is considered. Object annotations, including
pedestrians, are available as three-dimensional bounding boxes which can be
projected into a camera image. From this a number of image patch samples can be
cropped. These are then manually labelled into the four categories described above
and a histogram equalisation is applied to mitigate the effect of changing lighting
conditions in the recorded scenes a correct exposure.
Eventually, approximately 6 200 samples are found for the aware class, 10 000 for
partially aware and unaware and 7 000 for distracted. Per class, 1 500 samples are
kept for validation, while the rest is used for training.

The class-wise training results can be seen in table 6.1 for three different metrics. If
precision is defined as the ration of true positive (TP) classifications and the sum of
TP and false positives (FP) and recall is the ratio of TP to TP plus false negative (FN)
classifications, then the F1 score is derived as the harmonic mean of both and can
be expressed as

F1 = 2
recall−1 + precision−1 = TP

TP + 1
2(FP + FN)

.

In contrast to the general accuracy, which is usually defined as the ratio of all positive
classification to the total number of samples, it highlights false classifications and
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Precision Recall F1 Score

Class

Aware 0.83 0.85 0.75
Partially Aware 0.82 0.86 0.84

Unaware 0.94 0.88 0.91
Distracted 0.90 0.87 0.88

Tab. 6.1.: Class-wise metrics for pedestrian awareness classification.

can be helpful in situations where the data set is not balanced. For this case the
accuracy for all classes is 0.862, but the F1 scores for the aware and partially aware
class show a slightly impaired performance. When a confusion matrix is created for
the validation set classification results, it shows that several samples of those two
classes were mutually misclassified.
If this problem could be remedied by adding additional features, this straightforward
approach could otherwise provide valuable pedestrian information to subsequent
algorithms to be used in tasks like pedestrian path prediction or action classification.
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Applications 7
While nearly all of the methods and systems presented in the preceding chapters
where to some extent developed to support endeavours in the field of machine
learning-aided autonomous driving in urban areas, this chapter should emphasise
their practical usability and give examples of applications.
The combination of some aforementioned functions with additional building blocks
for pedestrian localisation and movement prediction into a new and complete system
is explained in section 7.1. A framework is presented, describing information flow
from raw sensor data through various algorithm blocks towards generating an output
useful to subsequent vehicle path planning and risk assessment systems.
Section 7.1.3 describes some additional information on integrating the algorithmic
parts into a real time vehicle environment.
Finally, a short overview of additional existing and possible future applications for
parts of this work is given in section 7.2.

7.1 Designing a New System for Pedestrian
Localisation and Path Prediction

This section describes a new system for localisation, perception and path prediction
of pedestrians. Using raw automotive sensor data and contextual maps as input, the
system comprises several algorithmic building blocks, which incorporate a number
of aspects of methods presented in the previous chapters of this work. As an output,
the system can generate information about the current and possible future positions
of detected pedestrians in the surroundings of the vehicle. This output can then be
used by subsequent systems dealing with tasks like path planning for automated
vehicles or risk assessment for an emergency brake assistant.

7.1.1 Context and Requirements

As initially described in chapter 1, various portions of this work were developed
against the background of the research project “@City”. It is the current autonomous
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Fig. 7.1.: Overview of the @City project structure.

driving research project funded by the German Federal Ministry for Economic Affairs
and Energy based on a decision by the German Bundestag. With representatives from
most of the relevant German car manufacturers, top-level suppliers and additional
companies and participants from universities as project partners, it is split into the
two main categories “@City” and “@City-AF” (for “automatisierte Fahrfunktionen”
or automated driving functions). These are then further subdivided into a total of
seven subprojects, as shown in figure 7.1, representing a field of concrete functions
and methods to be developed.
For this work, the context of subproject “TP7 - Interaction with Vulnerable Road
Users” is specifically relevant.

With the automation of vehicles, technical systems are entering as actors in road
traffic, which was previously characterised solely by human action. Automated
vehicles are faced with the challenge of safely mastering diverse and complex
situations with other road users. An essential prerequisite for this is that automated
vehicles are able to recognise and understand the behaviour and intentions of other
road users. This is particularly true in situations with vulnerable road users, which
communicate in road traffic mainly by means of poses and gestures. In order to
anticipate the behaviour of vulnerable road users, automated vehicles must be
able to reliably recognise and correctly interpret their actions. These goals of the
subproject TP7 are further subdivided into four work packages:

The first work package and starting point for a more advanced behavioural analysis
is the safe and robust recognition of weaker road users in traffic. Camera sensors
and possibly laser scanners and high-resolution radar sensors should be used for this.
Through sensor fusion, the information from the different sensor sources is then
combined into a consistent representation and tracking should be used to be able
to continuously associate detected instances with their respective behaviour and
movement record. The detection of weaker road users is to be realised in particular
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also by means of learning methods, such as deep neural networks, and should be
able to robustly detect weaker road users even under difficult conditions, such as
partial occlusion.

One focus of the sub-project is on the detailed analysis of weaker road users. Relevant
features for intention and gesture recognition should be defined and methods should
be developed and used to extract them from identified object instances. Among
those, features like head and body pose, gaze direction or leg position might be used,
as well as specific gestures such as hand signals of a cyclist for example.

Often, the context in which weaker road users act is important for the exact
interpretation of behaviour or intention. Therefore, in this third focus subject,
relevant elements of the traffic environment (e.g. objects, occupancy / open space,
kerbs, zebra crossings) must also be recognised as contextual information and
interpreted in combination with the gesture features. On the basis of the previously
recognised poses and gestures as well as the relevant contextual information,
intention recognition and behaviour modelling for weaker road users can then
take place.

In the end, the fourth and last work package is concerned with integrating all of
the features into a vehicle and optimising their performance for real-time capability.
Scenarios for evaluation should be defined and tested both online and offline.

7.1.2 System Overview

The sensor inputs, algorithmic blocks and the output of the proposed system are
described below. From object detections in both the camera and lidar domain, which
are hereinafter subject to low-level fusion and tracking, pedestrians are filtered.
Algorithms for behaviour assessment then extract distinct features. Together with
the tracked object detections and a preprocessed representation of map data from
the vicinity of the vehicle, these become input to the path prediction in the following
step. An overview of the structure is shown in figure 7.2.

Inputs

The first type of sensor required for this system is a camera sensor. While a front
facing grey scale camera with a medium wide-angle lens fulfils the minimum
requirements, RGB information and a 360° field of view could be beneficial for
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a more robust performance, extended perception and larger context information.
The output from the camera module should be an rasterised 8-bit image.

Lidar is the other important sensor technology for this system. In theory a wide
variety of solid state and rotating lidars could be used. The higher the number
of scan lines (or channels) and the wider the area covered, the more detailed the
representation of the environment becomes. As an output, the lidar should provide
a list containing the position, in Cartesian or cylindrical coordinates, and intensity
of all reflected points per channel.

The proposed system further makes use of equipment for position determination.
A receiver to obtain information from a type of global navigation satellite system
(GNSS), like GPS (global positioning system) for example, would be the preferred
choice. It is recommended to use methods like differential GPS (dGPS) and/or
ego-motion compensation through data from an inertial measurement unit (IMU), to
increase the accuracy of the localisation. A precise position determination is key for
this kind of application, as half a metre can make an important difference between
locating the vehicle or detected surrounding objects on the sidewalk or the road.
Position information should be provided in a spherical geographic coordinate system.
The world geodetic system (WGS) in its latest revision as WGS84 can be regarded
as the standard (Decker, 1986).

The fourth and last required input is a map providing accurate position description
of the road and surrounding objects like poles, vegetation and fences, as well
as infrastructure including pedestrian crossings, traffic lights and sidewalks. The
format and level of detail of this map can vary greatly and both offline maps and
representations generated during operation could be considered. Distinguishing
between driving lanes and areas that are safe for pedestrians is the central aspect of
this function.

Algorithmic Blocks

In a first step, object detection is performed on camera and lidar sensor inputs.
Relevant objects (e.g. pedestrians, cars, trucks, bikes) are detected independently in
the image and lidar domain.

For image-based detection an implementation of YOLOv3 (Redmon and Farhadi,
2018) is used. This detector-classifier neural network falls into the category of so
called one-stage detectors. In contrast to popular two-stage approaches like Faster
R-CNN (Ren et al., 2015), the "you only look once" method produces bounding boxes
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Fig. 7.2.: General overview of the proposed system architecture for pedestrian localisation
and path prediction. Inputs shown in red are fed into the software framework
running on a computer in the vehicle. The output can then be forwarded to path
planning algorithms for automated driving on urban streets.

and assigns class probabilities in a single pass of the image through the network.
Simply put, this is achieved by the network dividing the input image into a fixed
grid with a cell size of n× n pixels. Each of those cell then predicts a fixed number
of possible object bounding boxes b along with a corresponding confidence score
representing the probability that the bounding box contains an object. If the network
does not recognise an object in the cell, this score will be 0. Furthermore, each
of the grid cells simultaneously predicts a class probability, in this way generating
something that could be regarded as a coarse segmentation map of the input image.
To combine bounding box proposals and classifications, the conditional probability
P (PClass|PBox) is calculated and non-maximum suppression (NMS) is applied to
threshold duplicate detections.

Following this methodology allows the network to perform object detection tasks in
a rapid fashion, since the required prediction can be expressed as one single tensor
of size n×n× (b · 5 + c))m with c being the number of trained object classes and the
5 representing the parameters xcentre, ycentre, width, height and confidence score for
each bounding box proposal. This leads to a short computation time compared with
leading two stage approaches all the while retaining a high level of accuracy.

In the context of this system, the YOLOv3 detector is used to create the following
output for each object instance in every camera image input to be passed on to
subsequent algorithm blocks: (1) a bounding box rectangle in two-dimensional
image pixel coordinates [x1, y1, x2, y2], (2) an object class ID [a defined integer, e.g.
1 for car and 2 for pedestrian etc.], (3) a classification confidence score [a float value
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between 0.0 and 1.0] and (4) the corresponding image frame index [an integer or
another identifier].

To perform object detection on a lidar point cloud input, the new approach for
panoptic segmentation, described in detail in chapter 5, is applied. As it was
designed for fast execution, it is a sensible choice for usage in a real-time system.
Apart from being an independent and redundant source for object detections, the
use of an lidar algorithm has additional benefits for the proposed system. Objects
like pedestrians detected in the lidar domain can be easily located in the three-
dimensional environment of the vehicle. This is crucial in order to easily determine
the distance to the driving lane for example. The dimensions of the respective
objects are thus also directly known. A panoptic segmentation algorithm, like the
one proposed, also offers the advantage of providing classification information for
each single voxel. If transformed to the camera image space, this can be used
as an object segmentation mask to outline the object’s shape just like an image
segmentation would.

To further optimise the runtime of the clustering/classification algorithm when
sharing computation resources with other programs, all clusters that have less than
100 points are rejected as described before, but additional restrictions tailored to
pedestrian detection are added. In this way all clusters that are wider than two
metres, larger than three or smaller than a half metre are roughly filtered out. Finally,
the processed point cloud itself is restricted to 60° in front of the vehicle as depicted
in figure 7.3.

The format of the output used here to describe detections generated by this method
conforms to the following definition: (1) a three-dimensional object bounding box
[cx, cy, cz, lx, ly, lz, rz], described by a centre point c, the expansion l representing
width, depth and height and the rotation r around the z-axis, in the vehicle
coordinate system (VCS). This is a right-handed coordinate system with x pointing
in driving direction (forward), y pointing rightward and z pointing to the ground.
The origin of the VCS is defined as the lateral centre of the vehicle’s rear axle. The
other parts of the output formatting are identical to the one used for camera image
detections, being (2) a class ID, (3) a confidence score and (4) a point cloud frame
index.

102 Chapter 7 Applications



Fig. 7.3.: Two-dimensional bird’s eye view of a lidar point cloud restricted to an angle of
view of 60° in driving direction. Detected pedestrians are indicated through red
rectangles.

Fig. 7.4.: Example for the output of the YOLOv3 algorithm on a camera image recorded
with the @City vehicle. Text on green ground denotes the class prediction and
confidence score for a respective bounding box.
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Before the individual object detections from the camera and lidar domain can be
tracked, they are subject to a low-level fusion. A point w in the world/vehicle
coordinate system can be transformed into the camera image plane using affine
transformation. Given an intrinsic camera calibration matrix I

I =




fx 0 ox 0
0 fy oy 0
0 0 1 0
0 0 0 1




(7.1)

with a focal length f and a principle point offset o, as well as an extrinsic calibration
matrix E

E =
(
R t

0 1

)
=




r1,1 r1,2 r1,3 tx

r2,1 r2,2 r2,3 ty

r3,1 r3,2 r3,3 tz

0 0 0 1




(7.2)

consisting of a rotation matrix R

R(α, β, γ) =

Ryaw(α)



cosα − sinα 0
sinα cosα 0

0 0 1




Rpitch(β)



cosβ 0 sin β
0 1 0

− sin β 0 cosβ




Rroll(γ)



1 0 0
0 cos γ − sin γ
0 sin γ cos γ




=




cosα cosβ cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ
sinα cosβ sinα sin β sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ
− sin β cosβ sin γ cosβ cos γ


 ,

(7.3)

describing a roll by γ, followed by a pitch by β and a yaw by α, and a translation by
t, a point c in the camera space can be calculated as




cu

cv

cw

1




= I · E ·




wx

wy

wz

1




(7.4)
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in homogenous coordinates. To obtain pixel values for a point i on a two-dimensional
image plane, the u- and w-component have to be divided by the w-component, which
is therefore also referred to as perspective divide:

iu = cu
cw

, iv = cv
cw

. (7.5)

Object tracking is not a subject of this work. Therefore, the following paragraph will
only roughly outline the techniques used by other contributors.
Tracking is performed using an interacting multiple model (IMM) algorithm (Bar-
Shalom et al., 1989) with two Kalman filters, one with a constant velocity and
one with a constant acceleration assumption, and object instances are tracked in
global GPS coordinates. The IMM algorithm allows combining state hypotheses from
multiple filter models to get a better state estimate of targets with changing dynamics.
This can be helpful for the sometimes irregular and spontaneous movement of
pedestrians. A likelihood for each filter is computed and together with prior model
probabilities and an a priori defined state switching matrix are then used to update
the model probabilities. The estimates from each filter model are combined as a
weighted sum using the updated model probabilities.
For associating new measurements with existing tracks, a joint probabilistic data
association (JPDA) filter (Bar-Shalom et al., 2009) is applied. This joint version of
the single-target PDA filter is a natural multi-target extension. Rather than making
hard assignment decisions, like a nearest neighbour approach would, at each time-
step, the probability that each measurement should be assigned to a particular target
is used.

Although not yet fully defined at the time of writing, the algorithm block for
pedestrian behaviour assessment contains a method for body key point detection
(as described in section 6.1) and awareness recognition (see section 6.2), as well as
action recognition in the future.
As previously described, body key point detection can benefit from the addition of
a segmented lidar image representation to the input. In this system, such a mask
can directly be derived from the instances provided by the lidar clustering step.
The camera image patch showing the pedestrian is cropped from the bounding box
detection through the YOLO algorithm. This same patch is also used as input to the
awareness classification.

Both of these distinct features, body key points and awareness state, should in
the future be a basis of data for a subsequent action classification. In the context
of autonomous driving, especially in crossing scenarios, understanding pedestrian
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behaviour becomes essential. The intentions of pedestrians can be ascertained
based on either explicit socially understood gestures or on implicit changes in their
body language. Some strong implicit indicators are movement of the head in the
direction of the driver and movement of a leg onto the road. Traditional approaches
like tracking algorithms which use only pedestrian dynamics will not be able to
understand some pedestrians’ intentions such as wanting to cross the road in time.
Hence, models which are based on recognition of implicit gestures as the first step
are necessary in order for autonomous vehicles to be able to accurately understand
human behaviour and make time-constrained decisions. Understanding human
behaviour usually means recognising actions being performed. When looking at
pedestrians, this can either mean recognising coarser actions, such as crossing the
road, or fine-grained actions such as the deceleration or stopping motion.

A first simplified approach could be the classification of pedestrian perception time
series data into walking and standing. Although this is unquestionably already
evident from the tracked detections in relation to the ego-vehicle in the larger
context of the overall system, in this way a suitable method and optimised input
feature selection could be identified. In a straightforward manner, one could create
an n× 2k input vector, representing n time steps and xy-coordinates of k key points.
This could be fed into a recurrent neural network like the LSTM (long short-term
memory) algorithm (Hochreiter and Schmidhuber, 1997) to then predict.

A more sophisticated concept would be to introduce physical constraints into a
neural network. While this is classically done by introducing a constraining term
into the loss function, there are better performing approaches for body key points.
(Yan et al., 2018a) represent the input as a graph consisting of edges between key
points in both spatial and temporal direction. The graph is then partitioned into
subsets based on the neighbouring nodes location relative to the centre of the graph
and a minimum path distance. In a similar way, set division can be reached in
temporal direction.

For references in how to handle possible training data, public data collections
like the “Joint Attention in Autonomous Driving” (JAAD) dataset (Rasouli et al.,
2017) offer traffic video sequences and annotate pedestrian behaviour on a timeline.
These include actions (like crossing, looking, signalling etc.) and movement state
(e.g. moving fast/slow, stopping, speeding up etc.).

The algorithmic blocks for map preprocessing and pedestrian path prediction are not
part of this work and will therefore only be briefly touched upon to give a description
of the contributions made by others.
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High-resolution map data provided in the XML-based “OpenDRIVE” format (Dupuis
et al., 2015). It includes information about the roadway, individual driving lanes
and markings, as well as the sidewalk. Furthermore, a variety of road and road-side
objects like pedestrian crossings, traffic lights, fences, trees, lampposts etc. are
described. This map file is interpreted and transformed into a segmented image
representation, reducing the information quantity to those relevant for pedestrian
movement and given indication of walkable areas and risk classification. The
relevant surrounding area can be identified by self-localisation through data from
the GPS/IMU input.

Together with the tracked object instances and pedestrian behaviour features, the
segmented map is then passed on to the path prediction algorithm. There are a
variety of methods to solve this task which should not be further expanded here.
In general, a plain approach could use the past trajectory from the tracking data
and employ a simple neural network to learn a regression task to predict future
positions. Information from the behaviour assessment inputs could be added for a
better understanding of non-linear movement in cases of certain actions performed
by the pedestrian. More recent and elaborated methods like (Cui et al., 2019) predict
multiple possible trajectories of actors while also estimating their probabilities using
very deep convolutional networks to automatically derive relevant features for the
task.

Output

The output of the described system can be adapted according to the needs of
subsequent algorithms (e.g. for path planning). A sensible option might be to
provide a list of 3D pedestrian bounding boxes in global coordinates, representing
their current positions, and combine them with individual estimates for the predicted
position in the next seconds. As explained in the description of the pedestrian path
prediction block, such predicted positions could be represented as discrete single
trajectories or as a multimodal probability distribution of future positions. While the
first option provides a clearer decision boundary, the latter enables a more complete
representation of the overall situation. This could help decisions made by following
path planning software to be aware of uncertainties in the prediction, especially in
difficult cases.
An example visualisation of the system’s output can be seen in figure 7.5.
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7.1.3 Vehicle Integration

At the time of writing, activities to integrate the system described above into a test
vehicle were planned and started. As the @City project is set to conclude in summer
of 2022 and a possible extension could further delay this date, the given descriptions
of integration, although complete, are preliminary. The base vehicle used for this
project is a BMW 540i as depicted in figure 7.6. All integration measures were
carried out in collaboration with Aptiv staff.

Hardware Infrastructure

The main sensor used for this implementation is a Hesai Pandora (Hesai, 2018). This
roof-mounted unit combines a mechanical rotating lidar with five camera sensors.
The lidar consists of 40 channels, covering 360° in horizontal and 23° (-16°...+7°) in
vertical direction. Vertical resolution is 1° for the upper five and lower ten channels
and 0.33° in between. Horizontal resolution is 0.2° at a recording frequency of
10Hz. Four of the five cameras are arranged in a 90° orientation to each other and
produce grey scale images with a horizontal opening angle of 129°. Additionally,
a front-facing RGB camera with a field of view of 52° is included. All five image
sensors offer a resolution of 1280× 720 pixels.

A Trimble Applanix Pos LV dGPS/IMU unit is used to precisely locate the vehicle with
a claimed theoretical accuracy down to ten centimetres.
For integration of the given algorithms, a computer is installed in the back of the
car. It contains an Intel Core i7-8700T processor and an Nvidia GeForce GTX 1080
graphics card for fast parallelised execution of neural networks. Data between
the roof-mounted sensor unit and the PC is transmitted over UDP/IP through an
Ethernet switch. Information from the dGPS/IMU unit is send over a Controller Area
Network (CAN bus) and translated to TCP/IP over a gateway interface.

Software Integration

To make the required algorithms useable in the vehicle, a dedicated runtime
environment is employed. It handles data input from sensors, output to the car’s
internal network and offers the possibility to visualise raw sensor data and algorithm
results conforming with a certain format. Furthermore, fundamental operations
like camera image rectification and data stream synchronisation based on GPS
timestamps are performed here.
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Fig. 7.6.: The car used for activities in the @City project. The main sensor, Hesai Pandora,
can be seen mounted on the roof.

With all of the proposed algorithms developed in Python (Rossum, 1995) to preserve
experimental flexibility, it is important to facilitate an efficient way to call these. The
runtime environment itself is written in Rust (Matsakis and Klock, 2014) but offers
a Python “wrapper”. This has the advantage of being able to instantiate the Python
interpreter one time and handle all dependencies, libraries and algorithm classes,
while executing the compiled Rust code from there. Calling the Python interpreter
from inside Rust code would introduce more overhead in managing these algorithm
classes and their inputs and outputs.

To enable parallelisation of several algorithms in Python, the library “Ray” (Moritz et
al., 2018) is used. It allows for distributed execution of functions and class methods
on both the CPU and graphic cards. How the algorithms will be arranged eventually
is not finalised at this point. In general, methods based on machine learning strongly
benefit from an execution on GPU, due to the high level of parallelisation. Tasks
like data format conversion between algorithms blocks, object tracking, map data
handling and the optimised lidar clustering will be performed on the CPU.

7.2 Further Applications

Apart from the main use in the system developed for the @City project, methods
presented in this work have also been used in other areas. Two examples are given
in the following.
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Using Active Learning Methods for Efficient Data Annotation

Aspects of the active learning methods presented in chapter 3 were integrated into
a web-based data annotation tool. Here, a user could upload image data and a
classification algorithm, like a neural network for example. He or she would then
be asked to label a small (random) initial training set and provide or label a test
set. Afterwards this would be used to automatically train the classifier. All of the
remaining unlabelled data is then passed through the algorithm to create class
predictions and one or several active learning methods are used to determine a
fixed portion of samples which, when added to the training set, could potentially
most beneficial to improve accuracy. The loop could then continue with the user
labelling these samples and the labels predicted in the previous inference would be
applied as presets to reduce this task to merely correcting false predictions, therefore
saving time. The process could continue until either a specific performance score
was achieved on the test set or a time or monetary budget is exhausted.

To evaluate the potential of this tool chain, tests were conducted with previously
fully annotated datasets for hand gesture and traffic sign classification. In the first
case the classification accuracy of the full set baseline was reached with labelling
132 576 of 673 792 samples (≈19.6%). For the traffic sign data this threshold was
reached at around 30% of the complete data.

Panoptic Lidar Segmentation for Automated “Ground Truthing”

While active learning methods can help to narrow down the choices to the most
valuable samples for manual labelling, it is even more desirable to limit the user
input required for creating a final annotation to a minimum. With the development
of ever more powerful and well generalising machine learning algorithms, in
connection with a larger quantity and higher quality of publicly available datasets,
their application to label familiar but unseen new data samples became increasingly
fruitful. Although it is strictly advisable not to blindly trust even the very best
neural networks, manual interaction for data annotation can be mainly reduced to
reviewing samples and correcting mistakes made by the algorithm, therefore saving
the vast majority of working time.

Object instances of cars, bikes, trucks and pedestrians were to be labelled in
new sequences of lidar point clouds. As this application was run offline in a
server infrastructure and processing time played a very subordinate role, state-
of-the-art network architectures could be employed in conjunction with non-causal

7.2 Further Applications 111



tracking/smoothing filters. Even though these computationally intensive, benchmark
leading methods can clearly outperform the real-time approach presented in 5, the
later proved to be a valuable addition in detecting objects far away from the sensor.
Many datasets focus on instances in close and medium ranges leading to a reduced
performance in the far field. The proposed algorithm combination can mitigate
this shortcoming, as the clustering only depends on a small number of connected
points to detect an instance and the optimised classification uses a fixed size image
representation, which is more relying on shape and perspective than size and
resolution. Overall, this collection of algorithms could achieve 96% precision and
97% recall for cars, 97%/89% for bikes, 95%/78% for pedestrians and 99%/92%
for trucks, when compared to a manually annotated baseline on the same data. This
could potentially reduce time required for labelling of data logs immensely.
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Conclusion and Outlook 8
8.1 Conclusion

In the present work, new methods have been designed and evaluated that address
both the fundamentals of machine learning and its different applications to sensor
data, especially in the automotive field. Ultimately, this led to the development of
the presented experimental system for pedestrian detection, feature extraction and
behaviour prediction for autonomous driving in urban scenarios.

The two chapters 3 and 4, concerned with more elementary considerations of the
field, aimed to provide new perspectives on how to design and train convolutional
neural networks.
The former underlined how the concept of active learning and its application to
supervised classification problems can be a very helpful tool to mitigate the cost
and time requirements for data annotation, but has to be utilised with care and
domain knowledge, as it was shown to not necessarily be unbiased. This was
especially highlighted concerning the replacability of classifiers, which can have
negative impacts on production programmes if the architecture is changed at a later
point. The later chapter detailed the development of an approach for architecture
selection of CNNs and proposed a fast and robust heuristic evaluation method for
candidates. Together with Bayesian optimisation, it was combined into a complete
search algorithm.

An end-to-end approach for real-time panoptic segmentation of lidar sensor data,
was presented in chapter 5. It was explained, how a clustering algorithm, leveraging
several processing steps to preserve three-dimensional information after reduction
to a two-dimensional representation for fast computation, can create an object
instance segmentation as foundation for a new classification architecture. Special
attention was paid to the development of a meaningful data format that efficiently
represents complex features. Detailed evaluations were carried out on public data,
to show that a decent performance on panoptic segmentation and other task for
automotive purposes is possible, even while achieving fast computation on restricted
hardware.
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Chapter 6 covered further considerations regarding pedestrian behavioural feature
extraction. An new approach to combine camera and lidar sensor information into
a body-specific feature collection for keypoint recognition was presented and the
reader was made to understand the benefits of a top-down approach to this problem
for in-vehicle use. This enabled the use of a network consisting of significantly fewer
parameters than needed for very deep full-frame architectures. Additionally, remarks
on the detection of pedestrian awareness were given.

Eventually, the complete framework of an holistic system for pedestrian localisation
and movement prediction was presented. It described the information flow from
raw data of selected sensors through various algorithmic blocks towards generating
an output useful to subsequent vehicle path planning and risk assessment systems.
Here, connections where made to the developments of previous chapters and a plan
for integration was laid out.

8.2 Outlook

It would be very interesting to transfer the robustness considerations for active
learning to other ML tasks and their respective sample query strategies. Particularly
for the problem of semantic segmentation there are interesting new publications
(Mackowiak et al., 2019; Colling et al., 2021). Here, the potential for saving
annotation time is particularly great and this is a task of great importance for
autonomous driving.
Beyond that, finding a way to select the query strategies themselves in an active
fashion based on the data in use and learning algorithm parameters might be the
next step forward for active learning.

For the proposed architecture search, it would be evident to expand the optimisation
process to include more criteria. Especially integrating a trade-off for a candidate’s
computational cost would be helpful. Additionally, one could implement a method
to simultaneously evaluate a network with several initialisations and determine a
measure on how prone an architecture is to such influence.

The presented system for real-time panoptic segmentation of lidar sensor data is very
much self-contained and possible changes must be carefully coordinated with each
other. Yet again, there is room for different aspects of implementation optimisation
and even more efficient data handling, to possibly bring this complex task to a true
embedded platform. Furthermore, it would be interesting to include a fast method
for causal object tracking, maybe even in the depth image space.
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The statements of chapter 6 leave more room for further research. The awareness
feature extraction is made to be directly integrated into the network for body
keypoint detection, whose combination with clustered and classified lidar detections
is already hinted at in chapter 7. Since for a complete system the number of
individual networks can pose a computational overhead, those three functions
and maybe even camera image detection could possibly be integrated into one
multi-headed end-to-end network.

As for the superordinate task of pedestrian understanding for autonomous driving,
no specific outlook for further research is given at this point. The topic is just to vast
and discussing the possibilities would require at least another two chapters. Yet, to
close this work with reference to its very first section; it will be exciting to see which
findings will be presented, once this next chapter in the legacy of research projects
towards assisted/autonomous driving comes to a close.

8.2 Outlook 115



116



Bibliography

Abadi, Martín, Ashish Agarwal, Paul Barham, et al. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. https://www.tensorflow.org/. 2015 (cit. on p. 79).

Abubaker, Ayman, Rami Qahwaji, Stan Ipson, and Mohmmad Saleh. “One scan connected
component labeling technique”. In: IEEE International Conference on Signal Processing and
Communications. 2007, pp. 1283–1286 (cit. on p. 64).

Alsfasser, Martin, Jan Siegemund, Jittu Kurian, and Anton Kummert. “Exploiting polar grid
structure and object shadows for fast object detection in point clouds”. In: International
Conference on Machine Vision. 2020, 114330G (cit. on p. 60).

Angluin, Dana. “Queries and Concept Learning”. In: Machine Learning. Vol. 2. 4. 1988,
pp. 219–342 (cit. on p. 26).

Ankerst, Mihael, Markus M. Breunig, Hans Peter Kriegel, and Jörg Sander. “OPTICS: Ordering
Points to Identify the Clustering Structure”. In: SIGMOD Record (ACM Special Interest
Group on Management of Data). Vol. 28. 2. 1999, pp. 49–60 (cit. on p. 61).

Arriaga, Octavio, Matias Valdenegro-Toro, and Paul G. Plöger. “Real-time Convolutional
Neural Networks for emotion and gender classification”. In: European Symposium on
Artificial Neural Networks, Computational Intelligence and Machine Learning. 2019, pp. 221–
226 (cit. on p. 70).

Bar-Shalom, Y., K. C. Chang, and H. A. P. Blom. “Tracking a maneuvering target using input
estimation versus the interacting multiple model algorithm”. In: IEEE Transactions on
Aerospace and Electronic Systems. Vol. 25. 2. 1989, pp. 296–300 (cit. on p. 105).

Bar-Shalom, Y., F. Daum, and J. Huang. “The probabilistic data association filter”. In: IEEE
Control Systems Magazine. Vol. 29. 6. 2009, pp. 82–100 (cit. on p. 105).

Bayer, Bryce E. “Color imaging array”. In: US Patent 3,971,065. 1976 (cit. on p. 22).

Behley, Jens and Andres Milioto et al. “SemanticKITTI API”. In: https://github.com/PRBonn/
semantic-kitti-api. 2019 (cit. on p. 77).

Behley, Jens, Martin Garbade, Andres Milioto, et al. “SemanticKITTI: A dataset for semantic
scene understanding of lidar sequences”. In: Proceedings of the IEEE International Conference
on Computer Vision. 2019, pp. 9297–9307 (cit. on p. 72).

Behley, Jens, Andres Milioto, and Cyrill Stachniss. “A Benchmark for LiDAR-based Panoptic
Segmentation based on KITTI”. In: arXiv [cs.CV] 2003.02371. 2020 (cit. on p. 78).

Behley, Jens and Cyrill Stachniss. “Efficient Surfel-Based SLAM using 3D Laser Range Data
in Urban Environments.” In: Robotics: Science and Systems. 2018 (cit. on p. 67).

117



Bergstra, James and Yoshua Bengio. “Random Search for Hyper-Parameter Optimization”.
In: Journal of Machine Learning Research. Vol. 13. 10. 2012, pp. 281–305 (cit. on p. 55).

Bischl, Bernd, Jakob Richter, Jakob Bossek, et al. “mlrMBO: A Modular Framework for Model-
Based Optimization of Expensive Black-Box Functions”. In: arXiv [stat.ML] 1703.03373.
2017 (cit. on pp. 55, 58).

Bischl, Bernd, Simon Wessing, Nadja Bauer, Klaus Friedrichs, and Claus Weihs. “MOI-MBO:
Multiobjective Infill for Parallel Model-Based Optimization”. In: International Conference
on Learning and Intelligent Optimization. 2014, pp. 173–186 (cit. on p. 56).

Bogoslavskyi, Igor and Cyrill Stachniss. “Fast range image-based segmentation of sparse 3D
laser scans for online operation”. In: IEEE International Conference on Intelligent Robots
and Systems. 2016, pp. 163–169 (cit. on pp. 61, 73).

Campbell, M., A. J. Hoane, and F. Hsu. “Deep Blue”. In: Artificial Intelligence. Vol. 134. 2001,
pp. 57–83 (cit. on p. 8).

Cao, Zhe, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. “OpenPose: Realtime
Multi-Person 2D Pose Estimation Using Part Affinity Fields”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence. Vol. 43. 1. 2021, pp. 172–186 (cit. on p. 86).

Chen, Qi, Lin Sun, Zhixin Wang, Kui Jia, and Alan Yuille. “Object as Hotspots: An Anchor-
Free 3D Object Detection Approach via Firing of Hotspots”. In: arXiv [cs.CV] 1912.12791.
2019 (cit. on p. 60).

Chen, Xiaozhi, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. “Multi-view 3D Object Detection
Network for Autonomous Driving”. In: IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 6526–6534 (cit. on p. 60).

Chollet, François. “Xception: Deep learning with depthwise separable convolutions”. In: IEEE
Conference on Computer Vision and Pattern Recognition. 2017, pp. 1800–1807 (cit. on
p. 70).

Colling, Pascal, Lutz Roese-Koerner, Hanno Gottschalk, and Matthias Rottmann. “MetaBox+:
A New Region based Active Learning Method for Semantic Segmentation using Priority
Maps”. In: International Conference on Pattern Recognition Applications and Methods. Vol. 1.
2021, pp. 51–62 (cit. on p. 114).

Comaniciu, Dorin and Peter Meer. “Mean shift: A robust approach toward feature space
analysis”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 24. 5.
2002, pp. 603–619 (cit. on p. 61).

Cortes, C. and V. Vapnik. “Support-Vector Networks”. In: Machine Learning. Vol. 20. 1995,
pp. 273–297 (cit. on p. 8).

Cui, H., V. Radosavljevic, F. Chou, et al. “Multimodal Trajectory Predictions for Autonomous
Driving using Deep Convolutional Networks”. In: International Conference on Robotics and
Automation. 2019, pp. 2090–2096 (cit. on p. 107).

Decker, B. Louis. “World Geodetic System 1984”. In: Proceedings of the Fourth International
Geodetic Symposium on Satellite Positioning. 1986, pp. 69–92 (cit. on p. 100).

118 Bibliography



Dumoulin, Vincent and Francesco Visin. “A guide to convolution arithmetic for deep learning”.
In: arXiv [stat.ML] 1603.07285. 2016 (cit. on p. 131).

Dupuis, Marius, Mohamman Bahram, Hans Grezlikowski, et al. “OpenDRIVE – Format
Specification”. In: Technical Report - VIRES Simulationstechnologies GmbH. rev. 1.4. 2015
(cit. on p. 107).

Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. “A Density-Based Algorithm
for Discovering Clusters a Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise”. In: International Conference on Knowledge Discovery and
Data Mining. 1996, pp. 226–231 (cit. on pp. 61, 73).

EUREKA. project website, archived state from 3rd April 2012, retrieved 4th March 2021.
https://web.archive.org/web/20120403075558/http://www.eurekanetwork.org/project/-
/id/45. 2012 (cit. on p. 1).

Fang, Hao-Shu, Shuqin Xie, Yu-Wing Tai, and Cewu Lu. “RMPE: Regional Multi-person
Pose Estimation”. In: IEEE International Conference on Computer Vision (ICCV). 2017,
pp. 2353–2362 (cit. on pp. 86, 89).

Fei-Fei, L., A. Karpathy, J. Johnson, and S. Yeung. CS231n: Convolutional Neural Networks for
Visual Recognition. Stanford University Computer Science Class, http://cs231n.github.io/.
2017 (cit. on pp. 10, 19).

Freeman, Ido, Lutz Roese-Koerner, and Anton Kummert. “Effnet: An Efficient Structure for
Convolutional Neural Networks”. In: IEEE International Conference on Image Processing.
2018, pp. 6–10 (cit. on p. 70).

Fukunaga, K. and L. Hostetler. “The estimation of the gradient of a density function, with
applications in pattern recognition”. In: IEEE Transactions on Information Theory. Vol. 21.
1. 1975, pp. 32–40 (cit. on p. 61).

Fukushima, K. “Neocognitron: A Self-organizing Neural Network Model for a Mechanism of
Pattern Recognition Unaffected by Shift in Position”. In: Biological Cybernetics. Vol. 36.
1980, pp. 193–202 (cit. on p. 16).

Geiger, Andreas, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous driving?
the kitti vision benchmark suite”. In: IEEE Conference on Computer Vision and Pattern
Recognition. 2012, pp. 3354–3361 (cit. on p. 72).

Glorot, Xavier and Yoshua Bengio. “Understanding the difficulty of training deep feedforward
neural networks”. In: 13th International Conference on Artificial Intelligence and Statistics.
Vol. 9. 2010, pp. 249–256 (cit. on p. 49).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016, p. 332
(cit. on p. 17).

Hahnloser, R., R. Sarpeshkar, M. Mahowald, R. Douglas, and S. Seung. “Digital selection and
analogue amplification coexist in a cortex-inspired silicon circuit”. In: Nature. Vol. 405.
2000, pp. 947–951 (cit. on p. 18).

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask R-CNN”. In: Proceedings
of the IEEE International Conference on Computer Vision. 2017, pp. 2961–2969 (cit. on
p. 86).

Bibliography 119



He, Kaiming, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition”.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778
(cit. on p. 32).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for
image recognition”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2016,
pp. 770–778 (cit. on p. 70).

Hesai. Pandora All-in-One Sensing Solution for Autonomous Driving - User’s Manual. 2018
(cit. on pp. 88, 109).

Hinton, Geoffrey E. and Sam Roweis. “Stochastic Neighbor Embedding”. In: Advances in
Neural Information Processing Systems. Vol. 15. 2003 (cit. on p. 28).

Hinton, Geoffrey E. and R. R. Salakhutdinov. “Reducing the Dimensionality of Data with
Neural Networks”. In: Science. Vol. 313. 5786. 2006, pp. 504–507 (cit. on p. 86).

Hinton, Geoffrey E., N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
“Improving Neural Networks by Preventing Co-Adaptions of Feature Detectors”. In: arXiv
[cs.NE] 1207.0580. 2012 (cit. on p. 21).

Hochreiter, Sepp and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural Computation.
Vol. 9. 1997, pp. 1735–1780 (cit. on p. 106).

Howard, Andrew G., Menglong Zhu, Bo Chen, et al. “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications”. In: arXiv [cs.CV] 1704.04861. 2017
(cit. on p. 70).

Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. “Densely
Connected Convolutional Networks”. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2017, pp. 2261–2269 (cit. on p. 88).

Hubel, D. and T. Wiesel. “Receptive Fields And Functional Architecture Of Monkey Striate
Cortex”. In: The Journal of Physiologie. Vol. 195. 1968, pp. 215–243 (cit. on p. 16).

Hull, J. J. “A database for handwritten text recognition research”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence. Vol. 16. 5. 1994, pp. 550–554 (cit. on p. 53).

Ioffe, S. and C. Szegedy. “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift”. In: Proceedings of the 32nd International Conference on
Machine Learning. Vol. 37. 2015, pp. 448–456 (cit. on p. 22).

James, G., D. Witten, T. Hastie, and R. Tibshirani. An Introduction To Statistical Learning.
Springer New York, 2013, p. 356 (cit. on p. 11).

Jarrett, K., K. Kavukcuoglu, M. Ranzato, and Y. LeCun. “What is the Best Multi-Stage
Architecture for Object Recognition?” In: IEEE International Conference on Computer Vision.
2009, pp. 2146–2153 (cit. on p. 18).

Jarrett, K., K. Kavukcuoglu, Marc’Aurelio Ranzato, and Y. LeCun. “What is the best multi-
stage architecture for object recognition?” In: 2009 IEEE 12th International Conference on
Computer Vision (2009), pp. 2146–2153 (cit. on p. 50).

120 Bibliography



Jones, Donald R., Matthias Schonlau, and William J. Welch. “Efficient Global Optimization
of Expensive Black-Box Functions”. In: Journal of Global Optimization. Vol. 13. 4. 1998,
pp. 455–492 (cit. on p. 55).

Kingma, Diederik P. and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In: 3rd
International Conference on Learning Representations. 2015 (cit. on p. 32).

Kirillov, Alexander, Kaiming He, Ross Girshick, Carsten Rother, and Piotr Dollár. “Panoptic
segmentation”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 9404–9413 (cit. on p. 78).

Krige, Daniel G. “A statistical approach to some basic mine valuation problems on the
Witwatersrand”. In: Journal of the Southern African Institute of Mining and Metallurgy.
Vol. 52. 6. 1951, pp. 119–139 (cit. on p. 56).

Krizhevsky, Alex, Vinod Nair, and Geoffrey Hinton. “Learning Multiple Layers of Features
from Tiny Images”. In: Canadian Institute for Advanced Research. 2009 (cit. on p. 32).

Lang, Alex H., Sourabh Vora, Holger Caesar, et al. “PointPillars: Fast Encoders for Object
Detection From Point Clouds”. In: IEEE Conference on Computer Vision and Pattern
Recognition. 2019, pp. 12697–12705 (cit. on pp. 60, 80).

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner. “Gradient-Based Learning Applied to
Document Recognition”. In: Proceedings of the IEEE. Vol. 86. 11. 1998, pp. 2278–2324
(cit. on p. 16).

Lecun, Y., L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to document
recognition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324 (cit. on pp. 32, 53).

Lewis, David D. and William A. Gale. “A Sequential Algorithm for Training Text Classifiers”.
In: SIGIR ’94. 1994, pp. 3–12 (cit. on p. 26).

Lewis, David D. and William A. Gale. “A Sequential Algorithm for Training Text Classifiers”.
In: SIGIR ’94. Ed. by Bruce W. Croft and C. J. van Rijsbergen. London: Springer London,
1994, pp. 3–12 (cit. on p. 28).

Li, Q., S. Chen, C. Wang, et al. “LO-Net: Deep Real-Time Lidar Odometry”. In: IEEE Conference
on Computer Vision and Pattern Recognition. 2019, pp. 8465–8474 (cit. on p. 67).

Lin, Tsung-Yi, Michael Maire, Serge Belongie, et al. “Microsoft COCO: Common objects in
context”. In: European Conference on Computer Vision. 2014, pp. 740–755 (cit. on p. 89).

Mackowiak, Radek, Philip Lenz, Omair Ghori, et al. “CEREALS - Cost-Effective REgion-based
Active Learning for Semantic Segmentation”. In: British Machine Vision Conference. 2019
(cit. on p. 114).

Matsakis, Nicholas D. and Felix S. Klock. “The Rust Language”. In: Proceedings of the 2014
ACM SIGAda Annual Conference on High Integrity Language Technology. 2014, pp. 103–104
(cit. on p. 110).

Matsumoto, Makoto and Takuji Nishimura. “Mersenne Twister: A 623-Dimensionally
Equidistributed Uniform Pseudo-Random Number Generator”. In: ACM Transactions on
Modeling and Computer Simulation. Vol. 8. 1. 1998, pp. 3–30 (cit. on p. 49).

Bibliography 121



McKay, M. D., R. J. Beckman, and W. J. Conover. “A Comparison of Three Methods for
Selecting Values of Input Variables in the Analysis of Output from a Computer Code”. In:
Technometrics 21.2 (1979), pp. 239–245 (cit. on p. 56).

Minemura, Kazuki, Hengfui Liau, Abraham Monrroy, and Shinpei Kato. “LMNet: Real-time
Multiclass Object Detection on CPU Using 3D LiDAR”. In: Asia-Pacific Conference on
Intelligent Robot Systems. 2018, pp. 28–34 (cit. on p. 60).

Minsky, M. “A Neural-Analogue Calculator Based upon a Probability Model of Reinforcement”.
In: Harvard University Psychological Laboratories, Cambridge, Massachusetts. 1952 (cit. on
p. 7).

Minsky, M. and S. Papert. Perceptrons : An Introduction to Computational Geometry. MIT
Press, Cambridge, 1969 (cit. on p. 8).

Mitchell, Tom M. Machine Learning. McGraw-Hill Science/Engineering/Math, 1997, p. 2
(cit. on p. 9).

– Machine Learning. McGraw-Hill Science/Engineering/Math, 1997, p. 87 (cit. on p. 10).

Moosmann, Frank, Oliver Pink, and Christoph Stiller. “Segmentation of 3D lidar data in
non-flat urban environments using a local convexity criterion”. In: IEEE Intelligent Vehicles
Symposium (IV). 2009, pp. 215–220 (cit. on p. 61).

Moosmann, Frank and Christoph Stiller. “Velodyne slam”. In: IEEE Intelligent Vehicles
Symposium. 2011, pp. 393–398 (cit. on p. 67).

Moritz, Philipp, Robert Nishihara, Stephanie Wang, et al. “Ray: A Distributed Framework for
Emerging AI Applications”. In: 13th USENIX Symposium on Operating Systems Design and
Implementation. 2018, pp. 561–577 (cit. on p. 110).

Nagi, J., F. Ducatelle, G. Caro, et al. “Max-Pooling Convolutional Neural Networks for Vision-
based Hand Gesture Recognition”. In: IEEE International Conference on Signal and Image
Processing Applications. 2011, pp. 342–347 (cit. on p. 19).

Netzer, Yuval, Tao Wang, Adam Coates, et al. “Reading Digits in Natural Images with
Unsupervised Feature Learning”. In: NIPS Workshop on Deep Learning and Unsupervised
Feature Learning. 2011 (cit. on pp. 32, 53).

Pearson, Karl. “On lines and planes of closest fit to systems of points in space”. In: The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. Vol. 2. 11.
1901, pp. 559–572 (cit. on p. 28).

Peemen, M., M. Bart, and H. Corporaal. “Speed Sign Detection And Recognition By Convolutional
Neural Networks”. In: Proceedings of the 8th International Automotive Congress. 2011,
pp. 162–170 (cit. on p. 16).

Polyak, B. “Some Methods Of Speeding Up The Convergence Of Iteration Methods”. In:
USSR Computational Mathematics and Mathematical Physics. Vol. 5. 1964, pp. 791–803
(cit. on p. 20).

Porzi, Lorenzo, Samuel Rota Bulo, Aleksander Colovic, and Peter Kontschieder. “Seamless
scene segmentation”. In: IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 8277–8286 (cit. on p. 79).

122 Bibliography



Qi, C. R., W. Liu, C. Wu, H. Su, and L. J. Guibas. “Frustum PointNets for 3D Object Detection
from RGB-D Data”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 918–927 (cit. on p. 60).

Qi, Charles R., Hao Su, Kaichun Mo, and Leonidas J. Guibas. “PointNet: Deep learning on
point sets for 3D classification and segmentation”. In: IEEE Conference on Computer Vision
and Pattern Recognition. 2017, pp. 77–85 (cit. on p. 60).

Qi, Charles R., Li Yi, Hao Su, and Leonidas J. Guibas. “PointNet++: Deep hierarchical feature
learning on point sets in a metric space”. In: Advances in Neural Information Processing
Systems. 2017, pp. 5100–5109 (cit. on p. 59).

Rasouli, Amir, Iuliia Kotseruba, and John K Tsotsos. “Are they going to cross? A benchmark
dataset and baseline for pedestrian crosswalk behavior”. In: Proceedings of the IEEE
International Conference on Computer Vision Workshops. 2017, pp. 206–213 (cit. on
p. 106).

Redmon, Joseph and Ali Farhadi. “YOLOv3: An Incremental Improvement”. In: arXiv [cs.CV]
1804.02767. 2018 (cit. on pp. 88, 100).

Ren, Shaoqing, Kaiming He, Ross Girshick, and Jian Sun. “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks”. In: Advances in Neural Information
Processing Systems. Vol. 28. 2015 (cit. on p. 100).

Rojas, Raul. Neural Networks. Springer Berlin, 1996, p. 3 (cit. on p. 9).

Rosenblatt, F. “The Perceptron: A Probablistic Model For Information Storage and Origanization
in the Brain”. In: Psychological Review. Vol. 65. 6. 1958 (cit. on p. 7).

Rossum, Guido van. “Python tutorial”. In: CS-R9526 - Centrum voor Wiskunde en Informatica
(CWI). 1995 (cit. on p. 110).

Rumelhart, D. E., G. Hinton, and R. Williams. “Learning Representations by Back-Propagating
Errors”. In: Nature. Vol. 323. 1986, pp. 533–536 (cit. on p. 14).

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. “Learning Internal Representations by
Error Propagation”. In: Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Vol. 1: Foundations. 1986, pp. 318–362 (cit. on p. 86).

Samuel, Arthur. “Some Studies In Machine Learning Using the Game of Checkers”. In: IBM
Journal. Vol. 3. 3. 1959 (cit. on p. 7).

Saxe, Andrew M., Pang Wei Koh, Zhenghao Chen, et al. “On Random Weights and Unsupervised
Feature Learning”. In: Proceedings of the 28th International Conference on International
Conference on Machine Learning. 2011, pp. 1089–1096 (cit. on p. 50).

Schubert, Erich, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei Xu. “DBSCAN
Revisited: Why and How You Should (Still) Use DBSCAN”. In: ACM Transactions on
Database Systems. Vol. 42. 3. 2017, p. 21 (cit. on p. 61).

Sener, Ozan and Silvio Savarese. “Active Learning for Convolutional Neural Networks: A
Core-Set Approach”. In: International Conference on Learning Representations. 2018, pp. 1–
13 (cit. on p. 30).

Bibliography 123



Settles, Burr. “Active Learning Literature Survey”. In: Computer Sciences Technical Report,
University of Wisconsin-Madison. Vol. 1648. 2009 (cit. on p. 25).

Shannon, C. E. “A mathematical theory of communication”. In: The Bell System Technical
Journal. Vol. 27. 3. 1948, pp. 379–423 (cit. on pp. 30, 31).

Shi, S., X. Wang, and H. Li. “PointRCNN: 3D Object Proposal Generation and Detection
From Point Cloud”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 770–779 (cit. on p. 60).

Shi, Shaoshuai, Chaoxu Guo, Li Jiang, et al. “PV-RCNN: Point-Voxel Feature Set Abstraction
for 3D Object Detection”. In: arXiv [cs.CV] 1912.13192. 2019 (cit. on p. 60).

Shin, Kiwoo, Youngwook Paul Kwon, and Masayoshi Tomizuka. “Roarnet: A robust 3d
object detection based on region approximation refinement”. In: IEEE Intelligent Vehicles
Symposium. 2019, pp. 2510–2515 (cit. on p. 60).

Silver, D., A. Huang, C. Maddison, and A. Guez et al. “Mastering the game of Go with deep
neural networks and tree search”. In: Nature. Vol. 529. 2016, pp. 484–489 (cit. on p. 8).

Simpson, Edward H. “Measurement of Diversity”. In: Nature. Vol. 163. 1949 (cit. on p. 31).

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. “Dropout: A
Simple Way to Prevent Neural Networks from Overfitting”. In: The Journal of Machine
Learning Research. Vol. 15. 2014, pp. 1929–1958 (cit. on p. 21).

Sutskever, I., J. Martens, G. Dahl, and G. Hinton. “On The Importance Of Initialization And
Momentum In Deep Learning”. In: Proceedings of Machine Learning Research. Vol. 28.
2013, pp. 1139–1147 (cit. on p. 20).

Time Magazine. Science: Radio Auto. Vol. VI. 6. Aug. 1925 (cit. on p. 1).

Toffoli, Tommaso and Norman Margolus. Cellular automata machines: a new environment for
modeling. MIT press, 1987, p. 60 (cit. on p. 64).

van der Maaten, Laurens and Geoffrey Hinton. “Visualizing Data using t-SNE”. In: Journal of
Machine Learning Research. Vol. 9. 86. 2008, pp. 2579–2605 (cit. on p. 28).

Vapnik, V. and A. Chervonenkis. “A Class Of Algorithms For Pattern Recognition Learning”.
In: Avtomatika i Telemakhanika. Vol. 25. 6. 1964, pp. 937–945 (cit. on p. 8).

Vapnik, V. and A. Lerner. “Pattern Recognition Using Generalized Portraits”. In: Avtomatika i
Telemakhanika. Vol. 24. 6. 1963, pp. 774–780 (cit. on p. 8).

Vedaldi, A., K. Lenc, and A. Gupta. “MatConvNet - Convolutional Neural Networks for
MATLAB”. In: Manual (2015) (cit. on p. 12).

Vial, Gregory. “Cyrillic oriented MNIST: A dataset of Latin and Cyrillic letter images”. In:
Website of Kaggle Inc. retrieved 22nd March 2021. 2017 (cit. on pp. 32, 53).

Virtanen, Pauli, Ralf Gommers, Travis E Oliphant, et al. “SciPy 1.0: fundamental algorithms
for scientific computing in Python”. In: Nature Methods. Vol. 17. 3. 2020, pp. 261–272
(cit. on p. 64).

124 Bibliography



Wang, Zhixin and Kui Jia. “Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise
Features for Amodal”. In: IEEE International Conference on Intelligent Robots and Systems.
2019, pp. 1742–1749 (cit. on p. 60).

Warde-Farley, D., I. Goodfellow, A Courville, and Y. Bengio. “An Empirical Analysis Of
Dropout In Piecewise Linear Networks”. In: Proceedings of the 2nd International Conference
on Learning Representations (ICLR). 2014 (cit. on p. 21).

Weyers, Patrick, Alexander Barth, and Anton Kummert. “Driver State Monitoring with
Hierarchical Classification”. In: 21st International Conference on Intelligent Transportation
Systems (ITSC). 2018, pp. 3239–3244 (cit. on p. 43).

Xiao, Han, Kashif Rasul, and Roland Vollgraf. “Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms”. In: arXiv [cs.LG] 1708.07747. 2017 (cit. on
p. 32).

Yan, Sijie, Yuanjun Xiong, and Dahua Lin. “Spatial Temporal Graph Convolutional Networks
for Skeleton-Based Action Recognition”. In: AAAI Conference on Artificial Intelligence. 2018,
pp. 7444–7452 (cit. on p. 106).

Yan, Yan, Yuxing Mao, and Bo Li. “Second: Sparsely embedded convolutional detection”. In:
Sensors. Vol. 18. 10. 2018, p. 3337 (cit. on p. 60).

Yosinski, Jason, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. “Understanding
Neural Networks Through Deep Visualization”. In: Deep Learning Workshop, International
Conference on Machine Learning (ICML). 2015 (cit. on p. 51).

Zhang, Z. “A flexible new technique for camera calibration”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence. Vol. 22. 11. 2000, pp. 1330–1334 (cit. on p. 22).

Zhao, Xin, Zhe Liu, Ruolan Hu, and Kaiqi Huang. “3D object detection using scale invariant
and feature reweighting networks”. In: AAAI Conference on Artificial Intelligence. 2019,
pp. 9267–9274 (cit. on p. 60).

Zheng, Ce, Wenhan Wu, Taojiannan Yang, et al. “Deep Learning-Based Human Pose Estimation:
A Survey”. In: arXiv [cs.CV] 2012.13392. 2020 (cit. on p. 85).

Zhou, Y. and R. Chellappa. “Computation of optical flow using a neural network”. In: IEEE
International Conference on Neural Networks. Vol. 2. 1988, pp. 71–78 (cit. on p. 19).

Zhou, Yin and Oncel Tuzel. “VoxelNet: End-to-End Learning for Point Cloud Based 3D
Object Detection”. In: IEEE Conference on Computer Vision and Pattern Recognition. 2018,
pp. 4490–4499 (cit. on p. 60).

Zhuang, F., Z. Qi, K. Duan, et al. “A Comprehensive Survey on Transfer Learning”. In:
Proceedings of the IEEE. Vol. 109. 1. 2021, pp. 43–76 (cit. on p. 47).

Zöller, Marc-André and Marco F. Huber. “Benchmark and Survey of Automated Machine
Learning Frameworks”. In: Journal of Artificial Intelligence Research. Vol. 70. 2021, pp. 409–
472 (cit. on p. 48).

Bibliography 125



126



List of Figures

2.1 A biological neuron and its mathematical model. . . . . . . . . . . . . 10

2.2 An example of linear classification of two classes. . . . . . . . . . . . . 11

2.3 Example of an error surface. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Example structure of a CNN. . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Non-linear functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Example of the max pooling operation. . . . . . . . . . . . . . . . . . . 19

2.7 Application of dropout on neural networks. . . . . . . . . . . . . . . . 21

2.8 A grey-scale camera image recorded with a module placed on top of a car. 23

2.9 A 360° lidar scan captured from the top of a vehicle. . . . . . . . . . . 24

3.1 The pool-based active learning cycle. . . . . . . . . . . . . . . . . . . . 26

3.2 Classification accuracy over training set size for all AL strategies on two
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Classification accuracy over training set size for all AL strategies on
another two datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Validation accuracy influence of changes in learning rate and batch size. 38

3.5 Active learning strategy validation accuracy results for various synthetic
labelling error and dropout rates. . . . . . . . . . . . . . . . . . . . . . 39

3.6 Results of cross training of different classifiers. . . . . . . . . . . . . . . 41

3.7 Hierarchical label structure for hand gesture recognition. . . . . . . . . 44

3.8 Classification accuracy over training set size for different AL methods
applied to hierarchical neural network. . . . . . . . . . . . . . . . . . . 45

4.1 Distribution of the validation error over 15 weight initialisations of one
architecture, ceteris paribus. . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Correlation of validation error performance for full training and the
proposed heuristic for all tested network architectures. . . . . . . . . . 54

5.1 Trigonometric relationships used in the ground segmentation and the
cluster separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Combination of defined image representations for instance segmentation. 65

5.3 Map connections for lidar image representations. . . . . . . . . . . . . 65

127



5.4 Lidar image clustering visualisation. . . . . . . . . . . . . . . . . . . . 66
5.5 Examples for the influence of map connections on oversegmentation. . 66
5.6 Relationship of angles between lines connecting adjacent lidar points. . 68
5.7 Visualisation of the horizontal and vertical normal vector component

lidar image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.8 Exemplary image patches of object instance masks for different classes. 69
5.9 Architecture of the CNN for fast lidar object instance classification. . . 71
5.10 Oblique view of the Lidar point cloud of a street scene with coloured

highlighting of objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.11 Influence of the additional statistic vector on classification. . . . . . . . 83

6.1 Encoder-decoder CNN structure to generate heatmaps which estimate
keypoints on image patches. . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Camera frame overlayed with a projection of the respective lidar point
cloud section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.3 Aspects of pedestrian instance lidar representation. . . . . . . . . . . . 90
6.4 Different levels of representation of a pedestrian instance. . . . . . . . 91
6.5 Visualisation of heatmaps for 17 keypoints with the respective input

image patch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.6 Examples for the four awareness state classes. . . . . . . . . . . . . . . 94

7.1 Overview of the @City project structure. . . . . . . . . . . . . . . . . . 98
7.2 General overview of the proposed system architecture for pedestrian

localisation and path prediction. . . . . . . . . . . . . . . . . . . . . . . 101
7.3 Two-dimensional bird’s eye view of a lidar point cloud with detected

pedestrians. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4 Example for the output of the YOLOv3 algorithm. . . . . . . . . . . . . 103
7.5 Output of the proposed system for pedestrian localisation and path

prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.6 The car used for activities in the @City project. . . . . . . . . . . . . . 110

A.1 Visualisation of a transposed convolution. . . . . . . . . . . . . . . . . 131

128 List of Figures



List of Tables

3.1 Characteristics of the datasets used for the active learning experiments. 34

4.1 Comparison of three different evaluation methods for architecture
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Correlation coefficients of the validation error projections from the
proposed heuristic and reference training. . . . . . . . . . . . . . . . . 53

4.3 Performance indicators in comparison for the MBO search using normal
training and the proposed heuristic approach. . . . . . . . . . . . . . . 58

5.1 Comparison of the segmentation quality. . . . . . . . . . . . . . . . . . 73
5.2 Comparison of architectures for lidar image patch classification. . . . . 75
5.3 Results of the input channel ablation experiment. . . . . . . . . . . . . 76
5.4 Semantic segmentation results in the intersection over union metric. . 77
5.5 Object detection results as average and IoU bin-wise precision. . . . . . 78
5.6 Panoptic segmentation results in different metrics. . . . . . . . . . . . . 80

6.1 Class-wise metrics for pedestrian awareness classification. . . . . . . . 95

A.1 Description of the properties of the data sets used for evaluation in
section 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

129



130



Appendix A

MNIST USPS CoMNIST SVHN AHC OD
No. Samples 70 000 11 000 11 218 99 289 207 636 70 000
Image Size 28× 28 16× 16 32× 32 32× 32 13× 13 46× 30
No. Classes 10 10 26 10 3 2

No. Input Channels 1 1 1 3 1 1

Tab. A.1.: Description of the properties of the data sets used for evaluation in section 4.2.

Fig. A.1.: Visualisation of a transposed convolution with a stride of two and padding
(Dumoulin and Visin, 2016).
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