Digitaler Anhang

Theorie

Durch die Bildung der Differenz zwischen den Bildungsenthalpien der Produkte und der Edukte bzw. Reaktanten kann die Reaktionsenthalpie berechnet werden. Zusammen mit der Entropieänderung unter Standardbedingungen wird, wie in folgender Formel dargestellt, die freie Enthalpie (auch Gibbs-Energien) erhalten. [A90] [A91]

$$\Delta G^0 = \Delta H^0 - T \cdot \Delta S^0 \tag{1}$$

Diese lässt beispielsweise darauf schließen, ob das Ablaufen einer Reaktion thermodynamisch möglich ist – dies schließt eine kinetische Hemmung, etwa aufgrund hoher Aktivierungsenergien, jedoch nicht aus. So der Wert für ΔG^0 negativ ist läuft die Reaktion bei den genannten Bedingungen freiwillig ab, sie ist exergon. [A91] [A92]

Nützlich ist ebenfalls die anhand dieser Formel (bzw. der unten umgestellten Formel) mögliche Berechnung der Grenztemperatur, also jener Temperatur, die mindestens gegeben sein muss, damit aus einer endergonen Reaktion eine exergonische wird. Dies ist in folgender Tabelle für einige typische Brandfolgeprodukte, jedoch bei ihrer Bildung aus Elementen, dargestellt. [A92]

$$T_{min} = \frac{\Delta H^0}{\Delta S^0} \tag{2}$$

Tabelle A.1: Grenztemperaturen einiger in dieser Arbeit relevanter Brandfolgeprodukte zur Bildung aus den Elementen [A1] [A89]

			${ m S}^{\circ}$ gas/liquid(/solid),1 bar		
	Brandgas	$\Delta_{\rm f} {\rm H^{\circ}}_{gas}$ in kJ/mol	in J/mol K	T _{Exergonisch} in K	$T_{\text{Exergonisch}}$ in $^{\circ}\text{C}$
HCN	Cyanwasserstoff	135,1	201,8	669,6	396,5
NH ₃	Ammoniak	-45,9	192,8	< 0	< -273,2
СО	Kohlenstoffmonoxid	-110,5	197,7	< 0	< -273,2
NO ₂	Stickstoffdioxid	33,1	240,0	137,9	-135,3
CO ₂	Kohlenstoffdioxid	-393,5	213,8	< 0	< -273,2
H ₂ O	Wasser	-241,8	188,8	< 0	< -273,2
CH ₄	Methan	-74,9	186,3	< 0	< -273,2
C ₆ H ₆	Benzol	82,9	269,0	308,2	35,0
C ₇ H ₅ N	Benzonitril	219,0	209,1	1047,0	774,0
$C_{12}H_{10}$	Biphenyl	180,0	209,4	860,0	587,0
C ₉ H ₈	Inden	161,2	214,2	752,6	479,5
C ₉ H ₇ N	Isochinolin	204,6	216,0	947,4	674,2
C10H8	Naphthalin	150,0	217,6	689,0	416,0
C ₁₁ H ₇ N	Naphthalin-1-carbonitril	310,6	269,9	1151,2	878,0
C ₈ H ₈	Styrol	146,9	345,1	425,7	152,5
C ₇ H ₈	Toluol	50,1	221,0	226,7	-46,4
C ₈ H ₁₀	Xylol (Ortho)	19,0	353,6	54,0	-219,0
C ₅ H ₅ N	Pyridin	140,2	177,9	788,1	514,9
C ₁₃ H ₉ N	Acridin	273,9	208,0	1316,6	1043,5

Tabelle A.2: Brandfolgeprodukte bei der Verbrennung von heteroatomhaltigen, kohlenwasserstoffbasierten Brandgütern, mit Hervorhebung toxikologisch bedeutsamer Stoffe [A2]

The vollhebung	toxikologisen bedeu			
Element im Brandgut	Oxidations- /Hauptprodukt	Nebenprodukte/Produkte unvollständiger Verbrennung (tw. Reaktions- und Zwischenprodukte)	Beispielhaftes Brandgut und enthaltene Elemente	Zusammensetzung des beispielhaften Brandgutes
С	CO ₂	CO, Aromaten, Ruß	Polyethylen, Polypropylen (C, H)	Polyolefine
Н	H ₂ O		Polyethylen, Polypropylen (C, H)	Polyolefine
0	H ₂ O, CO ₂		Holz (C, H, O)	Polymer aus Zuckerverbindungen und Polyphenylen/Cellulose/Lignin
N (+ C)	N ₂	NO _x , NH ₃ , NH ₂ R HCN	PAN (C, H, N), PA (C, H, N, O), PUR (C, H, N, O)	Stickstoffhaltige Polymere
S	SO ₂	SO ₃ (H ₂ SO ₄), H₂S , HSR	Federn, Haare, Wolle (C, H, N, O, S)	Eiweißprodukte, organische Schwefelverbindungen
Р	P4O10 (H3PO4)	PH ₃	Pflanzenschutzmittel (C, H, P, O, N)	Phosphatester
Cl (+ C, O)		HCl, Cl ₂ COCl ₂	PVC (C, H, Cl)	Chlorhaltiges Polymer
Br		HBr	Flammschutzmittel (C, H, Br)	Polybromierte Substanzen
F		HF	PTFE (C, F)	Fluorhaltiges Polymer
C, N		HCN		
C, O, Cl		COCl ₂		

Auffällig ist, dass aus jedem Element toxische Produkte gebildet werden können – einzig allein auftretender Wasserstoff führt zur Bildung harmlosen Wassers. Betrachtenswert ist auch die Abfolge des Entstehens im idealisierten Brandverlauf, wie im Folgenden aufgeführt.

Tabelle A.3: Differenzierung der Brandfolgeprodukte bezüglich des Auftrittzeitpunkts im Brandverlauf, sesshafte Kontaminanten sind hierbei hervorgehoben [A2]

Element im Brandgut	Brandphase		
	Entstehungsbrand und Flashover	Vollbrand	Abklingender Brand/ Brandbekämpfung und -kontrolle
	und Thushover		Brundbekumpfung und Kondone
С, Н	CO_2 , CO , H_2O	CO_2 , CO , H_2O , NO_x	CO_2 , CO , H_2O , NO_x
	Kohlenwasserstoffe	Aromaten, PAK, gesättigte und ungesättigte Kohlenwasserstoffe, Alkohole, Aldehyde, Carbonsäuren	Aromaten, PAK, gesättigte und ungesättigte Kohlenwasserstoffe, Alkohole, Aldehyde, Carbonsäuren
C, H (Aromaten)	CO_2 , CO , H_2O	CO_2 , CO , H_2O	CO_2 , CO , H_2O
	Aromaten, PAK	Aromaten, PAK, Alkene, Aldehyde	Aromaten, PAK, Alkene, Aldehyde
C, H, N (, O)	CO_2 , CO , H_2O , NO_x	CO ₂ , CO, H ₂ O, HCN, NH ₃ , NO _x	CO ₂ , CO, H ₂ O, HCN, NH ₃ , NO _x
	Amine	Aromaten, PAK, Amine, gesättigte und ungesättigte Kohlenwasserstoffe, Aldehyde, Carbonsäuren, Isocyanate	Aromaten, PAK, Amine, gesättigte und ungesättigte Kohlenwasserstoffe, Aldehyde, Carbonsäuren, Isocyanate
C, H, N, O, S	CO ₂ , CO, H ₂ O, HCN, SO ₂	CO ₂ , CO, H ₂ O, HCN, H ₂ S, SO ₂	CO ₂ , CO, H ₂ O, HCN, H ₂ S, SO ₂

		Aromaten, PAK, Amine, gesättigte und ungesättigte Kohlenwasserstoffe	Aromaten, PAK, Amine
C, H, S (,O)	CO_2 , CO , SO_2	CO_2 , CO , H_2S , SO_2	CO_2 , CO , H_2S , SO_2
	Mercaptane	Aromaten, PAK, gesättigte und ungesättigte Kohlenwasserstoffe	Aromaten, PAK

Zu beachten ist bei Tabelle A.3, dass an kalten Brandstellen, sowie im Umfeld des Brandes oder Oberflächen wie Textilien und Haut von Einsatzkräften vor allem die fett hervorgehobenen, sesshaften Kontaminanten zurückbleiben bzw. nachgewiesen werden. Hieraus resultiert neben der Beeinträchtigung des Menschen bei der Arbeit und als Teil der Umwelt gegebenenfalls auch eine Belastung in den natürlichen Kompartimenten Boden und Wasser, welcher präventiv etwa bei der Anlagenkonzeption, sowie nach Vorfällen bei der Folgenbeseitigung Rechnung getragen werden muss.

Tabelle A.4: Übersicht über die toxischen Leitgase nach NES 713 und AEGL (nach [A5] [A6] [A7], hervorgehoben: vorrangig genutzte Daten)

Gas	C _f ¹ in ppm nach NES 713 2012	C _f in ppm nach NES 713 2000	AEGL- $2_{(30 \text{ min})}^2$ in ppm
Kohlendioxid (CO ₂)	100000	100000	(50.000) [A8]
Kohlenmonoxid (CO)	4000	4000	150
Hydrogensulfid (H ₂ S)	750	750	32
Ammoniak (NH ₃)	750	550	220
Formaldehyd (HCHO)	500	500	14
Chlorwasserstoff (HCl)	500	400	43
Acrylnitril (CH ₂ CHCN)	400	400	3,2
Schwefeldioxid (SO ₂)	400	400	0,75
Stickstoffoxide (NO _x)	250	250	15 (NO ₂)
Phenol (C_6H_5OH)	250	250	29
Cyanwasserstoff (HCN)	150	150	10
Bromwasserstoff (HBr)	150	150	83
Fluorwasserstoff (HF)	100	100	34
Phosgen (COCl ₂)	-	25	

Phosgen wird nicht länger berücksichtigt, da das Gas idR nicht auftritt. [A6]

Genutzt wurden im Rahmen dieser Arbeit die hervorgehobenen Werte.

¹ C_f gibt die Konzentration eines Stoffes in der Luft an, die nach 30-minütiger Exposition zum Tod der exponierten Individuen führt.

² AEGL-2 gibt die Konzentration eines Stoffes in der Luft an, bei deren Überschreitung irreversible oder schwerwiegende, lang andauernde Gesundheitsschäden bei der exponierten allgemeinen Bevölkerung, einschließlich empfindlicher Personen eintreten oder die deren Fluchtfähigkeit beeinträchtigt.

Name	Toxizität nach IARC ³	Strukturformel	Name	Toxizität nach IARC ³	Strukturformel
Acenaphthen	Karzinogen Gruppe 3		Acenaphthylen	Ohne Einstufung	
Anthracen	(sowie Hautreizung und Sensibilisuerng)		Benzo[a]anthracen	Karzinogen Gruppe 2B	
Benzo[a]pyren	Karzinogen Gruppe 1 (sowie Hautreizung und Sensibilisierung)		Benzo[b]fluoranthen	Karzinogen Gruppe 2B	
Benzo[ghi]perylen			Benzo[k]fluoranthen	Karzinogen Gruppe 2B	

Tabelle A.5: Liste der 16 von der EPA als besonders relevant eingestuften PAKs [A9] [A10] [A11]

³ Internationale Agentur für Krebsforschung; Gruppe 1: karzinogen für Menschen, Gruppe 2A: wahrscheinlich karzinogen, Gruppe 2B: möglicherweise karzinogen, Gruppe 3: nicht eingestuft

Name	Toxizität nach IARC ³	Strukturformel	Name	Toxizität nach IARC ³	Strukturformel
Chrysen	Karzinogen Gruppe 2B		Dibenzo[ah]anthracen	Karzinogen Gruppe 2A	
Fluoranthen			Fluoren		
Indeno[1,2,3- dc]pyren	Karzinogen Gruppe 2B		Naphthalin	Karzinogen Gruppe 2B (zudem: Symptome typischer Aromaten, Hautreizung)	
Phenanthren			Pyren		

Tabelle A.6: Entstehende Brandgase aus stickstoffhaltigen Brandgütern bei Bränden (atmosphärische bzw. thermoxidative Brandbedingungen ohne Pyrolysedaten), ergänzt um eigene Ergebnisse, soweit das jeweilige Brandfolgeprodukt in der Literatur angegeben wurde (Zeilen ohne Werte entsprechen in der Literatur nachgewiesenen Brandfolgeprodukten) [A2] [A3] [A12] [A13] [A14] [A15] [A16] [A17] [A18] [A19] [A20] [A21] [A22] [A23] [A24] [A25] [A26] [A27] [A28] [A29] [A30] [A31] [A32] [A33] [A34] [A35] [A36] [A37] [A38] [A39] [A40] [A41] [A42] [A43] [A44] [A45] [A46] [A47] [A48]

Brandgut	Brandfolgeprodukte	Ausbeute in mg/g (1)	Ausbeute (min) in mg/g	Ausbeute (max) in mg/g	Ausbeute simulierter Entstehungsbrand in mg/g	Ausbeute simulierter Feuersprung in mg/g	Ausbeute simulierter unterventilierter Vollbrand in mg/g
	СО	200	15	400	107	122	721
	Acrylnitril	0					
	Aromaten/Ruß					91	230
	CO ₂	100	50	115	680	2682	1112
	gesättigte, ungesättigte Kohlenwasserstoffe						
Jere	HCN	20	1	44	2	3	46
olyn	N_2						
Cop	Naphthalin	35					52
tril-6	NH ₃				0	3	19
ylni	N-Heterocyclen						1
Acı	Nitrile						26
.wzc	Phenanthren	29					
3S (I	Styrol	7					12
AF	Gesamttoxizität (nur Anorganik), Berechnung nach NES 713, Einheitenlos	15			3	7	44
	Tox. mit AEGL berechnet (nur Anorganik), Berechnung nach NES 713, Einheitenlos	273			71	371	780
	СО	300	3	580	440	44	293
	Amine					19	85
	Aromaten/Ruß	19			1068	2129	1239
	CO ₂	1500	907	2216			
	CO _{2(B)}			2320			
	Formaldehyd	5	2	7			
	H ₂ O						
	HCN	50	0	101	1	2	41
РА	Ketone						
	Kohlenwasserstoffe (inkl. Aldehyde, Ketone)						
	N ₂						
	NH ₃	120	32	210	1	1	74
	Nitrile						11
	NO	11					
	NO ₂	1				0	
	NO ₂	20					

	Toluol	10	3	23			4
	Gesamttoxizität (nur Anorganik), Berechnung nach NES 713, Einheitenlos	55			10	3	42
	Tox. mit AEGL berechnet (nur Anorganik), Berechnung nach NES 713, Einheitenlos	647			244	40	540
	Aromaten/Ruß	20	0	41		4	89
	Azaarene	1					1
	Benzol						52
	Caprolactam						
	СО	300	64	510	552	15	266
	CO ₂	1300	170	2100	1237	1175	1284
	Formaldehyd	1					
	gesättigte, ungesättigte Kohlenwasserstoffe						
	HCN	50	0	110	1	0	43
	Ketone						
PA 6	N-Heterocyclen						1
	NH ₃				3	1	72
	Nitrile						12
	NO ₂	5	1	8		0	
	NO _x	9	2	12			
	PANK						1
	Gesamttoxizität (nur						
	Anorganik), Berechnung nach NES 713, Einheitenlos	34			13	1	43
	Tox. mit AEGL berechnet (nur Anorganik), Berechnung nach NES 713, Einheitenlos	575			304	10	545
	Acetylen	7					
	Amide						
	Amine						
	Aromaten/Ruß					19	89
	СО	200	12	380	448	27	348
	CO ₂	1000	290	1420	1040	2369	1353
	Cyclopentanon						
	Ethen	82					
PA 0.0	HCN	40	5	70	2	1	58
	Ketone						
	Methan	39					
	NH ₃	40	1	81	2	2	96
	N-Heterocyclen						0
	Nitrile						14
	NO _x	10	4	305			
	NO ₂					1	

	Gesamttoxizität (nur Anorganik), Berechnung nach NES 713, Einheitenlos	34			11	3	56
	Tox. mit AEGL berechnet (nur Anorganik), Berechnung nach NES 713, Einheitenlos	463			259	21	721
	Acenaphthen						
	Acrylnitril	45					
	Aldehyde						
	Amine						
	Aromaten/Ruß	40	25	60		18	108
	Benzodi- und tetracarbonitrile						
	Benzol	8					14
	CO	200	90	440	355	217	399
	CO ₂	1400	360	2400	1515	2043	1238
	gesättigte, ungesättigte Kohlenwasserstoffe						
	HCN	100	0	190	15	15	119
	höhersiedende Stickstoffverbindungen						
PAN	Methan	8					
	N ₂						
	Naphthalin	5					5
	NH ₃	32			7	2	13
	Nitrile						58
	NO ₂	3	1	4		3	
	NO _x	15	2	19			
	Phenanthren						
	Toluol	9					25
	Gesamttoxizität (nur Anorganik), Berechnung nach NES 713, Einheitenlos	66			18	15	76
	Tox. mit AEGL berechnet (nur Anorganik), Berechnung nach NES 713, Einheitenlos	956			321	247	1204
	CO	150	110	170	355	217	399
	CO ₂	1000	170	1460	1515	2043	1238
	HCN	150	95	190	15	15	119
PAN-Fasern	Gesamttoxizität (nur Anorganik), Berechnung nach NES 713, Einheitenlos	86			18	15	76
	Tox. mit AEGL berechnet (nur Anorganik), Berechnung nach NES 713, Einheitenlos	1325			321	247	1204
PUR	Acetylen	6					

	Acrylnitril	3	0	5			
	Aldehyde						
	Alkohole						
	Amine			0			
	Aniline						
	Aromaten/Ruß	40	23	59		19	44
	Benzol	5	3	6			18
	Carbonsäuren						
	СО	200	2	380	172	25	501
	CO_2	1300	19	2156	700	2528	966
	Ethanol	1					
	Ethen	37					
	Formaldehyd	10					
	Furane und Dioxane (bzw. Vorstufen)						
	gesättigte, ungesättigte Kohlenwasserstoffe						
	HCN	30	0	70	2	1	11
	Isocyanate	1	1	2			
	Ketone						
	Methan	17					
	N ₂						
	NH ₃				0	4	16
	Nitrile						15
	NO ₂	2	1	2		0	
	NO _x	3	1	12			
	TDI	4	2	6			
	Toluol	7	3	10			3
	Gesamttoxizität (nur Anorganik), Berechnung nach NES 713, Einheitenlos	21			5	3	19
	Tox. mit AEGL berechnet (nur Anorganik), Berechnung nach NES 713, Einheitenlos	356			112	26	364
PUR (hart) (*)	HCN	17	1	34	6	0	11
	Aromaten/Ruß					19	35
	СО	500	2	895	138	31	462
	CO_2	1350	900	1800	763	2717	1118
DIID Schaum	gesättigte, ungesättigte Kohlenwasserstoffe	20	6	43			
FUR-Schaum	HCN	30	3	56	1	1	14
	Isocyanate	2					
	NH ₃	1	0	3	0	4	9
	NO	2	0	11			
	NO ₂	3	2	4		0	

	Gesamttoxizität (nur Anorganik), Berechnung nach NES 713, Einheitenlos	20			4	3	19
	Tox. mit AEGL berechnet (nur Anorganik), Berechnung nach NES 713, Einheitenlos	341			89	26	427
PUR FR	HCN	10	5	16	2	1	11
	Aromaten/Ruß	60	33	72		28	59
	CO	180	2	230	317	429	252
	CO_2	1600	25	2340	1595	2359	1511
	HCN	15	3	20	6	0	11
	NH ₃				13	3	13
	NO	2	1	2			
PIR	NO ₂	2	0	2		0	
	Gesamttoxizität (nur Anorganik), Berechnung nach NES 713, Einheitenlos	13			12	10	14
	Tox. mit AEGL berechnet (nur Anorganik), Berechnung nach NES 713, Einheitenlos	221			224	232	234
SAN	Acrylnitril	0					
SAN	HCN	4	3	6	1	3	50
	Acrolein	1					
	Aromaten/Ruß						
	Benzol	24					
	Benzol CO	24 580	1	800			
	Benzol CO CO _(B)	24 580	1 7	800 149			
	Benzol CO CO _(B) CO _{2(B)}	24 580	1 7 1570	800 149 2540			
	Benzol CO CO _(B) CO _{2(B)} COCl ₂	24 580 2	1 7 1570	800 149 2540			
	Benzol CO CO _(B) CO _{2(B)} COCl ₂ Formaldehyd	24 580 2 7	1 7 1570	800 149 2540			
.5	Benzol CO CO _(B) CO _{2(B)} COCl ₂ Formaldehyd HBr	24 580 2 7 100	1 7 1570	800 149 2540			
emein	Benzol CO CO _(B) CO _{2(B)} COCl ₂ Formaldehyd HBr HCl	24 580 2 7 100 284	1 7 1570	800 149 2540			
allgemein	Benzol CO CO _(B) CO _{2(B)} COCl ₂ Formaldehyd HBr HCl HCN	24 580 2 7 100 284 59	1 7 1570	800 149 2540			
offe allgemein	Benzol CO CO _(B) CO _{2(B)} COCl ₂ Formaldehyd HBr HCl HCN Naphthalin	24 580 2 7 100 284 59 31	1 7 1570	800 149 2540			
ıststoffe allgemein	Benzol CO CO _(B) CO _{2(B)} COCl ₂ Formaldehyd HBr HCl HCN Naphthalin NH ₃	24 580 2 7 100 284 59 31 136	1 7 1570	800 149 2540			
Kunststoffe allgemein	Benzol CO CO _(B) CO _{2(B)} COCl ₂ Formaldehyd HBr HCl HCN Naphthalin NH ₃ NO ₂	24 580 2 7 100 284 59 31 136 47	1 7 1570	800 149 2540			
Kunststoffe allgemein	Benzol CO CO _(B) CO _{2(B)} COCl ₂ Formaldehyd HBr HCl HCN Naphthalin NH ₃ NO ₂ SO ₂	24 580 2 7 100 284 59 31 136 47 451	1 7 1570	800 149 2540			
Kunststoffe allgemein	Benzol CO CO _(B) CO _{2(B)} COCl ₂ Formaldehyd HBr HCl HCN Naphthalin NH ₃ NO ₂ SO ₂ Styrol	24 580 2 7 100 284 59 31 136 47 451 710	1 7 1570	800 149 2540			
Kunststoffe allgemein	Benzol CO CO _(B) CO _{2(B)} COCl ₂ Formaldehyd HBr HCl HCN Naphthalin NH ₃ NO ₂ SO ₂ Styrol Gesamttoxizität (nur Anorganik), Berechnung nach NES 713, Einheitenlos	24 580 2 7 100 284 59 31 136 47 451 710 69		800 149 2540			
Kunststoffe allgemein	Benzol CO CO _(B) CO _{2(B)} COCl ₂ Formaldehyd HBr HCl HCN Naphthalin NH ₃ NO ₂ SO ₂ Styrol Gesamttoxizität (nur Anorganik), Berechnung nach NES 713, Einheitenlos Tox. mit AEGL berechnung nach NES 713, Einheitenlos	24 580 2 7 100 284 59 31 136 47 451 710 69 881		800 149 2540			

	СО	150	50	340	126	136	81
	HCN	5	2	8	16	3	10
	N ₂						
	Gesamttoxizität (nur Anorganik), Berechnung nach NES 713, Einheitenlos	6			7	4	14
	Tox. mit AEGL berechnet (nur Anorganik), Berechnung nach NES 713, Einheitenlos	121			104	78	151
	Aromaten/Ruß					2	24
	СО	630			123	483	100
	Formaldehyd	4	2	6			
	HCN	40	7	70	44	2	26
	N_2						
	NH ₃	53			31	11	57
Seidenstoff	Gesamttoxizität (nur Anorganik), Berechnung nach NES 713, Einheitenlos	44			11	14	27
	Tox. mit AEGL berechnet (nur Anorganik), Berechnung nach NES 713, Einheitenlos	700			159	202	300
	Amide						
	Amine						
	Aromaten/Ruß					13	54
	Benzol	12					19
	Benzonitril	6	5	6			12
	Biphenyl	1					0
	Carbonsäuren						
	СО	300	1	555	156	141	102
	CO ₂	1200	380	1903	216	1799	1296
	gesättigte, ungesättigte Kohlenwasserstoffe						
	H ₂ O						
Wolle	H ₂ S	7					
	HCN	40	0	90	22	7	14
	Ketone						
	Kohlenwasserstoffe						
	N ₂						
	Naphthalin	4					6
	Naphthalin-1- carbonitril	1					3
	NH ₃	40	0	50	177	2	51
	N-Heterocyclen						7
	Nitrile						15
	NO	3	3	4			
	NO ₂	1	0	1			

	Phenanthren	1					
	Phenol	2	1	2			
	Schwefelverbindungen	13	7	18			
	SO_2	20	7	32			
	Toluol	13					3
	Gesamttoxizität (nur Anorganik), Berechnung nach NES 713, Einheitenlos	36			12	8	19
	Tox. mit AEGL berechnet (nur Anorganik), Berechnung nach NES 713, Einheitenlos	516			220	147	201
	Aldehyde						
	Amide						
	Amine						
	СО						
	CO ₂						
0	gesättigte, ungesättigte Kohlenwasserstoffe						
Proteine	Glycinanhydrid und Derivate						
pun	H ₂ O						
ren 1	HCN						
osäu	HNCO						
min	Isocyanate						
¥.	Ketone						
	NH ₃						
	Nitrile						
	NO _x						
	PANK						
	Schwefelverbindungen (CH ₂ S, COS, CS ₂)						

(1) Mittelwert, wenn (mehrere) Minimal- und Maximalwerte verfügbar; gerundet

Erläuterung zu Tabelle A.7: Zwar wurden stickstoffhaltige Materialien schon oftmals auf verschiedene Aspekte ihres Brandverhaltens hin untersucht, die Daten stammen jedoch aus der Zeit seit 1960 und wurden unter verschiedenen, meist artifiziellen, Bedingungen erzeugt. Weder sind die älteren Daten für moderne Werkstoffe und Brandbedingungen repräsentativ, noch konnten aktuelle analytische Verfahren zur Ermittlung der Brandfolgeprodukte genutzt werden – woraus meist eine Beschränkung auf die Ermittlung der Kohlenoxidausbeuten und Rauchmengen resultierte. Weiterhin sind die Materialinformationen und die Definition des Brandzustandes nach heutigen Maßstäben oft ungenügend. Untersuchungen der letzten Jahre berücksichtigen zudem die Toxikologie kaum. Wenn veröffentlichte Daten betrachtet werden, werden als Branduntersuchungsergebnisse in den üblichen Quellen und Veröffentlichungen nur Durchschnitts- oder Spitzenwerte für den speziellen – teils auch nur ungenau beschriebenen – Brandversuch genannt. Meist fehlen Angaben zur Ventilation, Brandgutmasse oder den gewählten Randbedingungen. Auch Standardabweichungen fehlen meist. Somit ist die Aussagekraft der Daten beschränkt auf den speziellen untersuchten Fall und können zu einer weiteren Untersuchung der Verbrennung, welche inhärente Schwankungen aufweist, nur bedingt herangezogen werden. Eine Aussage über nicht-simulierte Brandbedingungen ist nahezu unmöglich, da zumeist nur z.B. die Bedingungen des Feuersprungs angenommen und untersucht werden. [A28]

Unklar sind bei dieser Aufzählung jedoch die genauen Brandumstände und Brandgüter, weshalb sich auch teils extreme Spannweiten bei den Ausbeuten erklären. Dies resultiert darin, dass oben genannte Werte nur für Worst-Case-Betrachtungen, zur Einordnung eigener Ergebnisse und zu vorsichtigen Abschätzungen geeignet sind, nicht jedoch zu einer genauen Voraussage von Brandfolgeprodukten unter bestimmten Voraussetzungen. Auch ist die Zahl der Studien, welche den Angaben zugrunde liegen, ungleich. Während für einige Brandgüter über 10 verschiedene Ergebnisse vorlagen und somit der Mittelwert einen breiten Bereich abdeckt, stehen bei anderen nur Einzelwerte oder Daten aus einer einzigen Erhebung zur Verfügung. Da auch die Methodik teils sehr unterschiedlich ist oder Informationen hierzu aus der Literatur nicht erhältlich waren bleiben die Werte indikativer Natur. Eine Mittelung wurde gewählt, um dennoch ein weitgehend einheitliches oder untereinander vergleichbares Maß zu gewährleisten, welches weniger durch Extremwerte (z.B. sehr hohe CO₂-Ausbeuten bzw. ungewöhnlich niedrige CO-Werte bei hoher Brandtemperatur, vollständigem, ggf. aufgezwungenem Brand mit guter Ventilation; überdurchschnittliche HCN-Ausbeuten bei hoher Temperatur und geringer Ventilation) beeinflusst ist. Eine Aufteilung gemäß der einzelnen Brandphasen, wie in dieser Arbeit gewählt, war durch mangelnde Datengrundlagen und unterschiedliche Versuchsdurchführungen mit teils wenig Bezug zu Realbränden nicht möglich – einer der Gründe der vorliegenden Arbeit.

Tabelle A.7: Die 20 proteinogenen Aminosäuren und deren Funktion und Vorkommen [A49]

Tabelle A.o. Literatu	Idekalinte Fylorysepiodukte von Allin	osauren (onne voruntersuchungen) [A52] [A55] [A55] [A50] [A57]
Aminosäure	Anorganische Pyrolyseprodukte	Organische Pyrolyseprodukte
Alanin	CO ₂ , CO, H ₂ O, NH ₃	Acetonitril, Acrylnitril, 3,6-Dimethylpiperazin-2,5-dion (Methylderivat des Glycinanhydrids), Ethanal, Ethen, Propen, Propionitril, Propylamin, Methan, Methylamin
Asparaginsäure	n.a.	2,5-Furandion Maleimid
Glycin	CO ₂ , CO, H ₂ O, NH ₃ , HCN, HNCO	Acetamid, n-Butylamid, Formamid, Propanamid, N- Methylacetamid, Methylamin
Isoleucin	CO ₂ , CO, NH ₃	2-Butanon-methylbutyraldehyd, 2-Methyl-1-buten, 2- Methylbutylamin, Bis(2-methylbutyl)amin, Butan, Buten, Isopentan, N-(2-methylbutyliden)-2-methylbutylamin
Leucin	CO ₂ , CO, NH ₃	3-Methyl-1-buten, Aceton, Diisoamylamin, Isoamylamin, Isobutan, Isobutylamin, Isobutylen, Isobutyraldehyd, Isopentan, Isovaleraldehyd, N-isoamylidenisoamylamin, N- isobutylidenisoamylamin
Serin	CO ₂ , H ₂ O, NH ₃	n.a.
Valin	CO ₂ , CO, NH ₃	Aceton, Diisobutylamin, Isobutan, Isobutylamin, Isobutylen, Isobutyraldehyd, N-Isobutylidenisobutylamin, Propan, Propen

Tabelle A.9: Aminosäureanteile in Wolle [A50] [A51] [A52]

Aminosäure	Anteil in Wolle (in m%)	Anteil in Wollhydrolysat (in	Anteil in kortikalen Zellen
	Wollhydrolysat; kortikale	m%)	(in m%)
	Zellen		
Alanin	3,2-4,08	4,3	5,88
Arginin	9,02-9,29	9,8-10,4	6,85
Asparaginsäure	6,22-6,60	6,8	6,79
Cystin	10,08-13,0		
Cystein		10,3-12,3	9,27
Glutaminsäure	12,6-13,9	14,5	11,68
Glycin	5,0-5,56	4,8-5,5	9,38
Histidin	0,88-1,02	1,2	0,76
Isoleucin	3,6-3,89	3,7	3,28
Leucin	7,60-8,1	8,9	7,85
Lysin	3,00-3,6	3,3	2,86
Methionin	0,50-0,56	0,56	0,44
Phenylalanin	3,22-3,6	4,0	3,13
Prolin	6,22-6,6	6,8	5,95
Serin	7,06-8,9	9,7-9,9	10,35
Threonin	6,28-6,73	6,3-6,5	5,59
Tryptophan		0,94	
Tyrosin	3,74-5,2	5,5-5,9	4,20
Valin	5,7-6,12	5,7	5,70
Gesamtgewichtsanteil	83-87		
Gesamtwolle in m%			

Tabelle A.10: Aminosäurezusammensetzung des Proteins in Hühnerfedern [A51] [A53]

Aminosäure	Massenanteil im Protein
Alanin	3,66-5,4
Arginin	6,57-6,88
Asparaginsäure	4,76-5,82
Cystin	2,11-6,8
Glutaminsäure	9,18-9,02
Glycin	7,57-7,2
Histidin	0,016-0,33
Isoleucin	4,93-5,3
Leucin	7,48-7,44
Lysin	0,57-1
Methionin	0,025-0,38
Phenylalanin	4,11-4,65
Prolin	1-1,01
Serin	13,57-14
Threonin	4,11-4,8
Tyrosin	1,85-2
Valin	7,24-8,8
Gesamtgewichtsanteil in m%	84,7

Abbildung A.38: Aufgezwungene Pyrolyse von PA 6 und Produkte nach Literatur, eigene Darstellung nach [A8] [A41] [A55] [A14] [A93] [A94] [A95]

Es zeigt sich ein mehrstufiger Prozess, überwiegend wird hierbei eine zufällige, homolytische Kettenspaltung der N-Alkylamid-Bindung postuliert, die in der Emission einer Vielzahl kleiner, aliphatischer und oligomerer Moleküle mündet. [A8]

Abbildung A.39: Reaktionsgleichungen der Polymerzersetzungsreaktionen [A96]

Abbildung A.40: Homolytische Spaltungen bei der PAN-Thermolyse, eigene Darstellung nach [A14]

Abbildung A:41: Homolytische Spaltungen, gefolgt von Wasserstoffübertragung bei der PAN-Thermolyse, eigene Darstellung nach [A14]

Versuchsdaten

Tabelle A.12: Elementare Zusammensetzung der Aminosäuren, Peptide, Nukleotide und weiterer stickstoffhaltiger Moleküle, ermittelt mittels Elementaranalytik (grau hinterlegt: Nicht-Aminosäuren; grün: polare/neutrale Aminosäuren, gelb: unpolar/hydrophob, blau: basisch (blaue Schrift: zusätzliche Aminofunktion bei anderer Zugehörigkeit), rot: sauer)

Stoffbezeichnung	m% N	m% C	m% H	Verhältnis C:N	m% Rest (z.B. O, Cr, P, S)
Adenin	51,80	44,44	3,73	11,92	0,03
Coffein	28,84	49,48	5,19	9,53	16,49
Cyanursäure	32,54	27,92	2,34	11,92	37,20
Cytosin	37,80	43,24	4,54	9,53	14,42
D-Threonin	11,75	40,33	7,61	5,30	40,30
Glycin	18,65	32,00	6,71	4,77	42,64
Glycinanhydrid	24,54	42,10	5,30	7,94	28,06
Glycylglycin	21,12	36,36	6,10	5,96	36,41
Glycylglycylglycin	22,20	37,70	5,80	6,50	34,30
Guanin	46,32	39,74	3,33	11,92	10,61
L-Alanin	15,71	40,44	7,86	5,15	35,99
L-Arginin	32,15	41,37	8,10	5,11	18,38
L-Asparagin	21,19	36,36	6,06	6,01	36,39
L-Asparaginsäure	10,52	36,10	5,30	6,81	48,08
L-Cystein	11,55	29,74	5,82	5,11	52,89
L-Cystin	11,65	29,99	5,03	5,96	53,33
L-Glutamin	19,16	41,09	6,90	5,96	32,85
L-Glutaminsäure	9,52	40,82	6,16	6,62	43,50
L-Histidin	27,07	46,45	5,85	7,94	20,64
L-Isoleucin	10,67	54,94	9,99	5,50	24,40
L-Leucin	10,67	54,94	9,99	5,50	24,40
L-Lysin	19,15	49,29	9,65	5,11	21,90
L-Methionin	9,40	40,25	7,43	5,42	42,92
L-Phenylalanin	13,39	65,44	6,71	9,75	14,46
L-Prolin	12,16	52,16	7,88	6,62	27,80
L-Serin	13,32	34,29	6,71	5,11	45,68
L-Threonin	11,75	40,33	7,61	5,30	40,30
L-Tryptophan	13,71	64,69	5,92	10,92	15,68
L-Tyrosin	7,73	59,66	6,12	9,75	26,49
L-Valin	11,95	51,26	9,46	5,42	27,32
Melamin	66,60	28,57	4,79	5,96	0,04
Taurin	11,20	19,19	5,64	3,40	63,97
Thymin	22,22	47,62	4,79	9,93	25,37
Uracil	24,98	42,86	3,60	11,92	28,56

Tabelle A.13: Brandfolgeprodukte HCN und NH₃ der Aminosäuren, Peptide, Nukleotide und weiterer stickstoffhaltiger Moleküle unter Bedingungen des unterventilierten Vollbrands (VCI-Verbrennungsapparatur)

Stoffbezeichnung	Ausbeute HCN in mg/g	Umwandlung m(N-HCN) pro m(N-Brandgut) in %	Stoffmenge HCN / Masse Brandgut in mmol/g	Ausbeute NH3 in mg/g	beute in g Umwandlung m(N-NH ₃) pro m(N-Brandgut) in % Stoffmenge NH ₃ / Masse Brandgut in mmol/g		Verbleibend m(N) in %
Adenin	150,79	15,09	5,58	33,66	5,34	1,98	79,57
Coffein	115,51	20,76	4,27	15,65	4,46	0,92	74,78
Cyanursäure	17,21	2,74	0,64	60,69	15,34	3,56	81,92
Cytosin	5,52	0,76	0,20	66,35	14,44	3,90	84,81
D-Threonin	51,77	22,84	1,92	36,60	25,62	2,15	51,55
Glycin	5,52	1,53	0,20	12,08	5,33	0,71	93,14
Glycinanhydrid	115,34	24,36	4,27	27,80	9,32	1,63	66,32
Glycylglycin	68,62	16,84	2,54	48,49	18,88	2,85	64,28
Glycylglycylglycin	9,10	2,12	0,34	52,87	19,59	3,10	78,29
Guanin	0,00	0,00	0,00	74,13	13,16	4,35	86,84
L-Alanin	6,41	2,11	0,24	11,21	5,87	0,66	92,02
L-Arginin	101,02	16,29	3,74	125,05	31,99	7,34	51,73
L-Asparagin	71,68	17,53	2,65	130,64	50,70	7,67	31,77
L-Asparaginsäure	15,74	7,75	0,58	31,06	24,28	1,82	67,96
L-Cystein	49,90	22,39	1,85	36,89	26,27	2,17	51,34
L-Cystin	9,93	4,42	0,37	11,09	7,83	0,65	87,75
L-Glutamin	67,31	18,21	2,49	53,40	22,92	3,14	58,87
L-Glutaminsäure	61,60	33,54	2,28	12,08	10,44	0,71	56,03
L-Histidin	84,44	16,17	3,12	44,57	13,54	2,62	70,29
L-Isoleucin	23,93	11,62	0,89	67,38	51,94	3,96	36,44
L-Leucin	19,46	9,45	0,72	57,59	44,39	3,38	46,16
L-Lysin	98,96	26,78	3,66	62,16	26,70	3,65	46,52
L-Methionin	28,77	15,86	1,06	15,97	13,97	0,94	70,16
L-Phenylalanin	40,83	15,80	1,51	84,80	52,09	4,98	32,11
L-Prolin	84,25	35,91	3,12	9,16	6,20	0,54	57,90
L-Serin	37,15	14,46	1,37	35,35	21,83	2,08	63,72
L-Threonin	64,48	28,44	2,39	41,64	29,15	2,45	42,41
L-Tryptophan	60,39	22,83	2,23	23,02	13,81	1,35	63,36
L-Tyrosin	40,11	26,89	1,48	21,41	22,78	1,26	50,33
L-Valin	9,71	4,21	0,36	83,74	57,63	4,92	38,16
Melamin	80,17	6,24	2,97	58,48	7,22	3,43	86,54
Taurin	2,71	1,25	0,10	17,65	12,96	1,04	85,79
Thymin	25,34	5,91	0,94	25,88	9,58	1,52	84,51
Uracil	87,53	18,16	3,24	26,60	8,76	1,56	73,08

Tabelle A.14: Brandfolgeprodukt CO der Aminosäuren, Peptide, Nukleotide und weiterer stickstoffhaltiger Moleküle unter Bedingungen des unterventilierten Vollbrands (VCI-Verbrennungsapparatur)

Stoffbezeichnung	Ausbeute CO in mg/g	Umwandlung m(C- CO) pro m(C- Brandgut) in %	Stoffmenge CO / Masse Brandgut in mmol/g	Verhältnis CO : HCN
Adenin	71,82	6,93	2,56	0,46
Coffein	65,38	5,67	2,33	0,55
Cyanursäure	66,78	10,26	2,38	3,74
Cytosin	70,42	6,98	2,51	12,31
D-Threonin	72,45	7,70	2,59	1,35
Glycin	56,10	7,52	2,00	9,81
Glycinanhydrid	59,74	6,08	2,13	0,50
Glycylglycin	64,62	7,62	2,31	0,91
Glycylglycylglycin	72,58	8,25	2,59	7,70
Guanin	75,89	8,19	2,71	n.a.
L-Alanin	67,44	7,15	2,41	10,15
L-Arginin	68,58	7,11	2,45	0,66
L-Asparagin	60,15	7,09	2,15	0,81
L-Asparaginsäure	78,94	9,38	2,82	4,84
L-Cystein	67,46	9,73	2,41	1,30
L-Cystin	58,57	8,37	2,09	5,69
L-Glutamin	77,37	8,07	2,76	1,11
L-Glutaminsäure	81,79	8,59	2,92	1,28
L-Histidin	65,13	6,01	2,33	0,74
L-Isoleucin	73,89	5,77	2,64	2,98
L-Leucin	64,67	5,05	2,31	3,21
L-Lysin	63,90	5,56	2,28	0,62
L-Methionin	59,41	6,33	2,12	1,99
L-Phenylalanin	76,61	5,02	2,74	1,81
L-Prolin	55,37	4,55	1,98	0,63
L-Serin	76,20	9,53	2,72	1,98
L-Threonin	78,96	8,39	2,82	1,18
L-Tryptophan	84,65	5,61	3,02	1,35
L-Tyrosin	63,31	4,55	2,26	1,52
L-Valin	79,86	6,68	2,85	7,94
Melamin	77,31	11,60	2,76	0,93
Taurin	76,23	17,03	2,72	27,14
Thymin	58,77	5,29	2,10	2,24
Uracil	70,46	7,05	2,52	0,78

Tabelle A.15: Brandfolgeprodukt CO₂ der Aminosäuren, Peptide, Nukleotide und weiterer stickstoffhaltiger Moleküle unter Bedingungen des unterventilierten Vollbrands (VCI-Verbrennungsapparatur)

Stoffbezeichnung	Ausbeute CO ₂ in mg/g	Umwandlung m(C- CO ₂) pro m(C- Brandgut) in %	Stoffmenge CO ₂ / Masse Brandgut in mmol/g	Verbleibend m(C) in %	Verhältnis CO : CO ₂
Adenin	1443,78	88,66	32,81	4,41	0,08
Coffein	1656,64	91,37	37,64	2,96	0,06
Cyanursäure	910,60	89,02	20,69	0,72	0,12
Cytosin	1401,18	88,43	31,84	4,59	0,08
D-Threonin	1114,90	75,44	25,33	16,86	0,10
Glycin	1004,00	85,63	22,81	6,85	0,09
Glycinanhydrid	1429,28	92,64	32,48	1,27	0,07
Glycylglycin	1025,88	76,99	23,31	15,39	0,10
Glycylglycylglycin	1215,56	87,99	27,62	3,76	0,09
Guanin	1318,80	90,58	29,97	1,23	0,09
L-Alanin	1321,50	89,18	30,03	3,67	0,08
L-Arginin	1348,44	88,96	30,64	3,93	0,08
L-Asparagin	1231,80	92,45	27,99	0,45	0,08
L-Asparaginsäure	1134,08	85,75	25,77	4,88	0,11
L-Cystein	946,12	86,82	21,50	3,46	0,11
L-Cystin	991,25	90,21	22,52	1,42	0,09
L-Glutamin	1121,10	74,46	25,47	17,47	0,11
L-Glutaminsäure	1210,12	80,91	27,50	10,50	0,11
L-Histidin	1311,12	77,04	29,79	16,95	0,08
L-Isoleucin	1659,69	82,44	37,71	11,79	0,07
L-Leucin	1454,42	72,25	33,05	22,70	0,07
L-Lysin	1379,90	76,40	31,35	18,05	0,07
L-Methionin	1274,43	86,42	28,96	7,25	0,07
L-Phenylalanin	1377,87	57,46	31,31	37,51	0,09
L-Prolin	1699,25	88,91	38,61	6,54	0,05
L-Serin	1109,60	88,32	25,21	2,15	0,11
L-Threonin	1080,12	73,09	24,54	18,52	0,11
L-Tryptophan	1630,92	68,80	37,06	25,59	0,08
L-Tyrosin	1842,44	84,28	41,86	11,17	0,05
L-Valin	1551,36	82,59	35,25	10,73	0,08
Melamin	847,20	80,93	19,25	7,47	0,14
Taurin	568,52	80,84	12,92	2,13	0,21
Thymin	1474,63	84,51	33,51	10,19	0,06
Uracil	1328,72	84,60	30,19	8,35	0,08

Tabelle A.16: Brandfolgeprodukt Acetocyanohydrin der Aminosäuren, Peptide, Nukleotide und weiterer stickstoffhaltiger Moleküle unter Bedingungen des unterventilierten Vollbrands (VCI-Verbrennungsapparatur)

Stoffbezeichnung	Ausbeute Acetocyanohydrin in mg/g	Stoffmenge Acetocyanohydrin / Masse Brandgut in mmol/g	Verhältnis Acetocyanohydrin : HCN
Adenin	0,87	0,01	0,00
Coffein	396,73	4,66	1,09
Cyanursäure	0,00	0,00	0,00
Cytosin	23,29	0,27	1,34
D-Threonin	55,52	0,65	0,34
Glycin	15,31	0,18	0,88
Glycinanhydrid	159,86	1,88	0,44
Glycylglycin	17,06	0,20	0,08
Glycylglycylglycin	20,17	0,24	0,70
Guanin	0,46	0,01	n.a.
L-Alanin	14,64	0,17	0,73
L-Arginin	57,14	0,67	0,18
L-Asparagin	42,38	0,50	0,19
L-Asparaginsäure	59,05	0,69	1,19
L-Cystein	2,89	0,03	0,02
L-Cystin	0,00	0,00	0,00
L-Glutamin	40,37	0,47	0,19
L-Glutaminsäure	49,71	0,58	0,26
L-Histidin	70,87	0,83	0,27
L-Isoleucin	13,61	0,16	0,18
L-Leucin	15,81	0,19	0,26
L-Lysin	64,25	0,75	0,21
L-Methionin	0,00	0,00	0,00
L-Phenylalanin	13,79	0,16	0,11
L-Prolin	116,09	1,36	0,44
L-Serin	51,04	0,60	0,44
L-Threonin	72,93	0,86	0,36
L-Tryptophan	13,56	0,16	0,07
L-Tyrosin	14,57	0,17	0,12
L-Valin	11,63	0,14	0,38
Melamin	0,00	0,00	0,00
Taurin	0,74	0,01	0,09
Thymin	39,65	0,47	0,50
Uracil	28,42	0,33	0,10

Tabelle A.17: Verhältnisse der organischen Brandfolgeprodukte der Aminosäuren, Peptide, Nukleotide und weiterer stickstoffhaltiger Moleküle unter Bedingungen des unterventilierten Vollbrands (VCI-Verbrennungsapparatur)

Stoffbezeichnung	Verhältnis Benzol : Biphenyl	Verhältnis Benzol : Naphthalin	Verhältnis Benzol : Benzonitril	Verhältnis Napthalin : Inden	Verhältnis Benzonitril : Naphthalin-1- carbonitril	Verhältnis Benzonitril : Pyridin	Verhältnis HCN : Pyridin	Verhältnis Benzol : Styrol	Verhältnis Benzol : Toluol
Adenin	17,56	2,75	3,34	n.a.	1,84	n.a.	n.a.	n.a.	n.a.
Coffein	n.a.	n.a.	2,08	n.a.	n.a.	0,14	163,15	n.a.	n.a.
Cyanursäure	4,61	1,35	0,91	n.a.	1,96	n.a.	n.a.	n.a.	n.a.
Cytosin	n.a.	n.a.	2,88	n.a.	n.a.	n.a.	n.a.	n.a.	1,79
D-Threonin	46,23	4,58	3,73	8,16	15,03	0,62	45,11	18,21	n.a.
Glycin	8,80	2,70	2,38	n.a.	4,24	n.a.	n.a.	n.a.	n.a.
Glycinanhydrid	n.a.	n.a.	3,95	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Glycylglycin	n.a.	5,75	3,08	n.a.	7,00	0,60	521,81	n.a.	n.a.
Glycylglycylglycin	n.a.	27,66	3,43	n.a.	n.a.	0,41	52,14	n.a.	n.a.
Guanin	n.a.	16,70	4,10	n.a.	3,81	n.a.	n.a.	n.a.	n.a.
L-Alanin	21,66	3,40	1,54	n.a.	10,51	n.a.	n.a.	0,83	0,58
L-Arginin	75,55	5,00	2,08	9,51	10,12	n.a.	n.a.	26,76	n.a.
L-Asparagin	55,75	5,74	1,53	6,58	13,55	1,11	70,67	16,51	n.a.
L-Asparaginsäure	85,90	6,66	1,97	5,68	11,39	n.a.	n.a.	21,78	1,26
L-Cystein	50,21	7,22	3,10	20,31	9,28	1,07	178,84	47,31	14,45
L-Cystin	n.a.	16,16	3,34	n.a.	15,71	2,13	101,82	n.a.	n.a.
L-Glutamin	63,23	5,81	2,10	7,54	11,51	0,94	63,71	17,52	n.a.
L-Glutaminsäure	73,02	6,21	2,04	6,53	11,44	n.a.	n.a.	19,45	17,39
L-Histidin	25,58	4,60	1,40	n.a.	17,17	0,36	76,43	71,83	n.a.
L-Isoleucin	85,12	6,28	44,60	6,60	7,17	n.a.	n.a.	12,76	10,64

L-Leucin	69,66	5,26	26,15	5,79	9,37	n.a.	n.a.	10,97	9,28
L-Lysin	n.a.	5,51	3,42	7,49	7,87	n.a.	n.a.	14,17	n.a.
L-Methionin	226,10	10,18	6,91	15,04	6,28	n.a.	n.a.	26,99	16,16
L-Phenylalanin	23,85	5,06	15,93	10,26	24,18	n.a.	n.a.	64,08	11,62
L-Prolin	118,54	5,72	3,18	5,64	9,40	1,21	49,31	12,55	2,81
L-Serin	66,81	6,87	2,86	7,82	9,64	0,27	31,98	18,72	n.a.
L-Threonin	322,38	8,06	4,83	6,67	10,58	0,67	79,81	19,67	n.a.
L-Tryptophan	84,74	7,81	2,59	15,46	6,13	n.a.	n.a.	68,35	3,50
L-Tyrosin	27,24	5,34	11,02	11,72	17,81	n.a.	n.a.	75,69	10,02
L-Valin	56,89	1,61	6,22	27,22	8,97	n.a.	n.a.	2,24	1,96
Melamin	n.a.	n.a.	3,03	n.a.	17,57	n.a.	n.a.	n.a.	n.a.
Taurin	n.a.	17,02	8,53	n.a.	n.a.	1,26	51,31	n.a.	n.a.
Thymin	300,39	12,16	3,63	9,38	7,26	2,07	74,59	24,56	n.a.
Uracil	n.a.	14,77	1,68	n.a.	46,83	1,51	397,50	16,81	n.a.

 Tabelle A.18: Toxizitätswerte und Brandzustände der Aminosäuren, Peptide, Nukleotide und weiterer stickstoffhaltiger Moleküle unter Bedingungen des unterventilierten Vollbrands (VCI-Verbrennungsapparatur)

 Gesamttoxizität nach NES

Stoffbezeichnung	Gesamttoxizität nach NES 713 (nur Anorganik)	713 mit AEGL-2 30 min berechnet (nur Anorganik)	λ nach Berechnungsgrundlage [A18]
Adenin	91,45	1309,79	0,92
Coffein	68,76	1003,09	0,94
Cyanursäure	21,97	215,13	0,94
Cytosin	16,82	123,75	0,92
D-Threonin	37,06	490,48	0,79
Glycin	6,81	83,45	0,89
Glycinanhydrid	70,57	1005,82	0,96
Glycylglycin	48,27	633,12	0,81
Glycylglycylglycin	16,38	146,44	0,92
Guanin	15,20	85,50	0,95
L-Alanin	7,53	96,52	0,93
L-Arginin	79,86	949,91	0,92
L-Asparagin	64,39	705,36	0,96
L-Asparaginsäure	16,31	191,81	0,90
L-Cystein	35,90	472,39	0,92
L-Cystin	9,11	120,74	0,94
L-Glutamin	48,71	632,04	0,78
L-Glutaminsäure	38,43	562,37	0,85
L-Histidin	56,48	762,40	0,80
L-Isoleucin	27,38	279,04	0,85
L-Leucin	22,90	231,09	0,75
L-Lysin	67,61	892,72	0,79
L-Methionin	20,55	280,51	0,90
L-Phenylalanin	39,69	430,93	0,60
L-Prolin	50,16	734,63	0,91
L-Serin	28,83	370,47	0,93
L-Threonin	45,09	602,36	0,77
L-Tryptophan	39,95	560,62	0,72
L-Tyrosin	28,14	380,18	0,86
L-Valin	22,45	174,02	0,86
Melamin	56,57	741,56	0,87
Taurin	6,41	73,99	0,89
Thymin	20,48	257,75	0,87
Uracil	55,15	780,13	0,88

TA-Daten der Aminosäuren, Peptide, Nukleotide und weiterer stickstoffhaltiger Moleküle

Der Vergleich der Zersetzungskurven von Glycin, Glycylglycin und Glycylglycylglycin zeigt, dass sich die Anzahl der Zersetzungsstufen bei Glycin nicht unterscheidet, unabhängig von der Atmosphäre. Beide Kurven zeigen zwei Zersetzungsstufen, wobei die erste Stufe bei beiden Verläufen ähnlich ist. Diese findet bei Temperaturen zwischen 220 und 280°C statt und führt zu einem Massenverlust von 50%. Die zweite Zersetzungsstufe verläuft unterschiedlich: Unter oxidativen Bedingungen verläuft die Kurve zwischen 290 und 650°C langsamer und es verbleibt fast keine Restmasse, während unter Stickstoffbedingungen ein kohlenstoffhaltiger Rückstand von 20% zurückbleibt.

Glycylglycin hat im Vergleich zu Glycin einen niedrigeren Schmelzpunkt bei 220°C und unterliegt einer dreistufigen Zersetzung unter oxidativer Atmosphäre und einer vierstufigen Zersetzung unter Stickstoff. Die erste Stufe ist bei beiden Kurven zwischen 220 und 250°C mit einem Massenverlust von 19%. Die dritte Stufe (unter oxidativen Bedingungen) führt zur vollständigen Zersetzung und verläuft zwischen 310 und 650°C. Unter Stickstoff verläuft sie zwischen 320 und 380°C (mit einem Massenverlust von 13%) und fällt dann langsam ab bis 800°C. Es bleibt ein dabei kohlenstoffhaltiger Rückstand von 21% zurück.

Glycylglycylglycin zeigt im Vergleich zu Glycin einen höheren Schmelzpunkt bei 240°C und unterliegt einer vierstufigen Zersetzung. Die erste Stufe der Zersetzung verläuft bei beiden Kurven im Bereich von 240 bis 260°C mit einem Massenverlust von 20%. Die zweite Stufe findet ebenfalls bei beiden Kurven im Temperaturbereich von 260 bis 310°C statt, weist jedoch unterschiedliche Massenverluste auf: Unter oxidativen Bedingungen liegt der Verlust bei 13%, während er unter Stickstoffbedingungen 16% beträgt. Die dritte und vierte Stufe der Zersetzung verlaufen unter oxidativen Bedingungen von 310 bis 440°C mit einem Massenverlust von 23% bzw. von 440 bis 670°C exotherm und einer vollständigen Zersetzung. Unter pyrolytischen Bedingungen hingegen läuft die dritte Stufe lediglich von 310 bis 400°C mit einem Massenverlust von 16%, während die vierte Stufe von 400 bis 800°C mit einem Massenverlust von 21% erfolgt. Letztendlich bleibt ein kohlenstoffhaltiger Rückstand von 27% zurück.

Der Schmelzpunkt von Cystein liegt bei 220°C und wird unter oxidativen Bedingungen sowie unter Stickstoff in zwei Stufen zersetzt. Die erste Stufe der Zersetzung beginnt bei beiden Verläufen bei 220°C und führt zu einem gleichen Massenverlust von 79%. Unter oxidativen Bedingungen dauert die erste Stufe der Zersetzung bis 240°C an, während sie unter Stickstoff bis 250°C anhält. Die zweite Stufe der Zersetzung verläuft etwas unterschiedlich. Unter oxidativen Bedingungen verläuft sie von 240 bis 590°C, wobei ab 410°C die Zersetzung exotherm abläuft und das Cystein restlos zersetzt wird. Demgegenüber zersetzt sich unter Stickstoff das Cystein etwas schneller. Die zweite Stufe unter Stickstoff verläuft von 250 bis 430°C mit einem Massenverlust von 16%, wonach noch 4% als Rückstand zurückbleiben.

Im Vergleich dazu liegt der Schmelzpunkt von Cystin bei 260°C, aber es beginnt auch bei beiden Verläufen bei 220°C zu zersetzen. Die Zersetzung bei beiden Verläufen findet in zwei Stufen statt. Die erste Stufe der Zersetzung bei beiden Verläufen findet im Temperaturbereich von 220 bis 280°C statt, wobei die Zersetzung unter Sauerstoff stärker endotherm reagiert als unter Stickstoff. Der Massenverlust unter Stickstoff ist jedoch größer mit 84% gegenüber der oxidativen Atmosphäre mit 81%. Die zweite Stufe der Zersetzung läuft ähnlich ab wie beim Cystein, da unter oxidativen Bedingungen bei 600°C die Zersetzung vollständig ist und unter Stickstoff ein kohlenstoffhaltiger Rückstand von 7% zurückbleibt.

Tabelle A.19: Vergleich der kondensierten Phasen mit den Brandfolgeprodukten von weiteren stickstoffhaltigen Molekülen (soweit isolierbar) mit Markierung der primär durch Thermolyse veränderten Bereiche (durchgängig umkreist: Brüche/reaktive Stellen, gestrichelt: noch teilweise nachweisbar)

		Molekül in der kondensierten Phase mit markiertem	
Stoffbezeichnung	Zersetzungsstufen TG	thermolytisch verändertem Bereich	Brandfolgeprodukte
Cyanursäure (bzw. die Tautomere Isocyanursäure)	Stufen 1 und 2		etwas CO, etwas NH3, H2O
Cytosin	Stufe 1	NH ₂ N N N N	CO ₂ , H ₂ O, etwas HCN, NH ₃
Cytosin	Stufe 2	NH ₂ O	etwas CO
Guanin	Stufe 1	N NH HN NH ₂	CO ₂ , CO, H ₂ O, HCN, NH ₃

Tabelle A.20: Toxizitätsbestimmende Brandfolgeproduktspezies und erstes Erreichen des Toxizitätswerts 1 bei Aminosäuren, Peptiden, Nukleotiden und weiteren stickstoffhaltigen Molekülen unter Bedingungen des Entstehungsbrandes (TGA)

Stoffbezeichnung	Stufe in der TGA, bei welcher Toxizitätsindex 1 erreicht wird	Temperatur in der TGA, bei welcher Toxizitätsindex 1 erreicht wird	Toxizitätsbestimmende Brandfolgeprodukte
Adenin	2	355	NH ₃ ; HCN
Coffein	2	280	CO; CO ₂
Cyanursäure	3	310	NH ₃
Cytosin	1	275	NH ₃ ; HCN
D-Threonin	1	210	NH ₃ ; HCN
Glycin	2	300	HCN
Glycinanhydrid	2	440	NH ₃ ; HCN
Glycylglycin	4	385	HCN
Glycylglycylglycin	3	480	NH ₃ ; HCN
Guanin	1	410	NH ₃ ; HCN
L-Alanin		n.a.	
L-Arginin	1	220	NH ₃ ; HCN
L-Asparagin		n.a.	
L-Asparaginsäure	1	210	NH ₃ ; HCN
L-Cystein	1	200	NH ₃ ; HCN
L-Cystin	1	210	NH ₃ ; HCN
L-Glutamin	1	185	NH ₃ ; HCN
L-Glutaminsäure	1	190	NH ₃
L-Histidin	1	260	NH ₃
L-Isoleucin	2	300	HCN
L-Leucin	1	195	NH ₃ ; HCN
L-Lysin	1	160	NH ₃
L-Methionin	1	210	NH ₃ ; HCN
L-Phenylalanin	1	180	NH ₃
L-Prolin	2	280	HCN
L-Serin	3	220	HCN
L-Threonin	1	210	NH ₃ ; HCN
L-Tryptophan	3	500	HCN
L-Tyrosin	3	450	HCN
L-Valin	2	280	HCN
Melamin	2	350	CO; CO ₂
Taurin	1	330	NH ₃
Thymin	1	210	NH ₃ ; HCN
Uracil	2	350	NH ₃ ; HCN

TA-Daten der Naturstoffe

Tabelle A.21: Ergebnisse der TGA-Experimente der Naturstoffe

Stoffbezeichnung	Anzahl der Schritte	Beginn Masseverlust in °C	Ende Masseverlust in °C	Massenverlust in Schritt 1 in % der ursprünglichen Masse	Massenverlust in Schritt 2 in % der ursprünglichen Masse	Massenverlust in Schritt 3 in % der ursprünglichen Masse	Massenverlust in Schritt 4 in % der ursprünglichen Masse	Rückstand in m%	Energiefreisetzung Verbrennung in J/g
Leder (gemittelt)	3	170	780	48,08	33,08	1,42		9,27	7225,93
Seide	3	30 (165)	640	36,74	37,83	5,02		4,34	7351,80
Federn	3	30 (80)	620	50,81	28,45	7,78		15,82	7128,48
Schaffell	4	30 (180)	625	38,99	21,98	19,93	0,48	5,87	7045,70
Fell Haut	4	30 (195)	580	32,18	18,93	22,31	4,43	12,94	7512,99
Rohwolle	3	30 (205)	640	40,33	36,44	9,26		6,57	7785,93

Daten der Polyamide

Stoffbezeichnung	m% N	m% C	m% H	m% O	Verhältnis C:N	m% Rest (z.B. Flammschutz-mittel, Glas)
PA 6	12,38	63,68	9,80	14,14	5,14	0,00
PA 12	7,10	73,04	11,75	8,11	10,29	0,00
PA 4.6	14,13	60,58	9,15	16,14	4,29	0,00
PA 6.6	12,38	63,68	9,80	14,14	5,14	0,00
PA 6.12	9,02	69,63	11,04	10,31	7,72	0,00
PA 6 Rohprodukt	12,38	63,68	9,80	14,14	5,14	0,00
PA 6 Technisch	8,38	43,10	6,63	9,57	5,14	32,32
PA 6.6 Rohprodukt	12,38	63,68	9,80	14,14	5,14	0,00
PA 6.6 mit 30% Glaskugeln	8,58	44,12	6,79	9,80	5,14	30,72
PA 6.6 mit Flammschutzmittel	6,24	32,08	4,94	7,12	5,14	49,62
PA 12 mit 30% Glasfasern	4,81	49,53	7,97	5,50	10,29	32,19

Tabelle A.22: Elementare Zusammensetzung der Polyamide

Tabelle A.23: Brandfolgeprodukt Acetocyanohydrin der Polyamide unter Bedingungen des unterventilierten Vollbrands (VCI-Verbrennungsapparatur)

Stoffbezeichnung	Ausbeute Acetocyanohydrin in mg/g	Stoffmenge Acetocyanohydrin / Masse Brandgut in mmol/g	Verhältnis Acetocyanohydrin : HCN
PA 6	74,81	0,88	0,55
PA 12	39,19	0,46	0,34
PA 4.6	64,83	0,76	0,41
PA 6.6	68,20	0,80	0,38
PA 6.12	52,14	0,61	0,36
PA 6 Rohprodukt	94,05	1,11	0,66
PA 6 Technisch	33,15	0,39	0,29
PA 6.6 Rohprodukt	30,18	0,35	0,16
PA 6.6 mit 30% Glaskugeln	46,07	0,54	0,46
PA 6.6 mit Flammschutzmittel	31,46	0,37	0,47
PA 12 mit 30% Glasfasern	63,52	0,75	1,13
Mittelwert	54,33	0,64	0,47
Standardabweichung	19,64	0,23	0,24
Standardabweichung in %	36,14	36,14	51,54

Abbildung A.1: TGA-Daten der Polyamide unter oxidativen Bedingungen (oranger Balken: Beginn der Thermolyse in °C, blauer Balken: Ende der Thermolyse in °C, grüner Balken: Schmelzpunkt in °C, gelb gestrichelt/weiße Zahl: Anzahl der Zersetzungsstufen)

Obenstehende Grafik liefert eine Übersicht des Thermooxidationsverhaltens der PA. Diese Daten werden auch in untenstehender Tabelle gelistet.

Tabelle A.24: Ergebnisse der TGA-Experimente der Polyamide

	Anzahl	Beginn Masseverlust	Ende Masseverlust	Massenverlust in Schritt 1 in % der ursprünglichen	Massenverlust in Schritt 2 in % der ursprünglichen	Massenverlust in Schritt 3 in % der ursprünglichen	Massenverlust in Schritt 4 in % der ursprünglichen	Schmelz
Stoffbezeichnung	Schritte	in °C	in °C	Masse	Masse	Masse	Masse	°C
PA 6	2	250	610	87,06	100,00			222,39
PA 12	2	100	610	87,04	99,88			179,61
PA 4.6	3	300	660	20.09	77,82	98,47		298,85
PA 6.6	2	100	650	82,45	99,36			259,78
PA 6.12	4	50	600	6,58	21,34	84,46	98,64	217,33
PA 6 Rohprodukt	3	170	600	10,17	60,26	69,98		220,84
PA 6.6 mit 30%		100	<00	FO 10				2 60 4 5
Glaskugeln PA 6.6 mit	2	100	600	59,19	70,17			260,45
Flammschutzmittel	4	100	700	4,16	30,43	53,44	60,65	257,68
PA 12 mit 30%								
Glasfasern	3	200	600	14,70	59,72	69,84		178,26

Auffällig ist, dass technisches PA 6 durch die enthaltenen Zusätze bezüglich der Stufenzahl vom analytischen Standard abweicht und die Zersetzung früher beginnt, während Schmelzpunkt und Endpunkt der Zersetzung gleichbleiben. PA 4.6 ist das thermisch stabilste der betrachteten reinen Polyamide. Die langkettigen PA hingegen zersetzen sich früher. Auffällig ist, dass auch PA 6.6 – trotz chemisch sehr ähnlichen Aufbaus wie PA 6 – eine frühe Zersetzung zeigt. Durch Flammschutzmittel wird dies kaum beeinflusst, jedoch erhöht sich die Zahl der Thermolysestufen, was auf die Zersetzung des Flammschutzmittels zurückgeführt werden kann. Dieses führt jedoch ebenfalls dazu, dass die Zersetzung erst bei einer Temperatur von ca. 700 °C endet, also die Zersetzung länger dauert.

Während Glaskugeln scheinbar keinen starken Einfluss auf das Zersetzungsverhalten besitzen führen Glasfasern bei PA 12 zu einem späteren Zersetzungsbeginn und einer zusätzlichen Stufe bei sonst gleichbleibendem Brandverhalten.

Bei konstanten Heizraten von 10 K/min und einer Einwaage von 5-10 mg setzt unter thermooxidativen und pyrolytischen Bedingungen ab ca. 390 bis 430 °C die Zersetzung ein, was durch verstärkte Massenverluste und energetische Prozesse gekennzeichnet ist. Dies unterscheidet sich von den in obiger Tabelle angegebenen Daten des Beginns des Masseverlustes – vor der hauptsächlichen Thermolyse können sich etwa Lösemittel, einzelne Probenbestandteile oder besonders leicht abspaltbare Anteile verflüchtigen. Im Brandgut kommt es bei der Thermolyse zu einer zunehmenden Aufspaltung der linearen Ketten und der Freisetzung von Einzelkomponenten. Unter Sauerstoffeinfluss findet unter angegebenen Bedingungen bei etwa 440-450 °C die Zündung statt, nachdem hiervor zunächst ebenfalls eine Pyrolyse auftritt. Hierbei steigt plötzlich die Wärmefreisetzungsrate an, gleichzeitig setzt eine erhöhte Emission von CO und CO₂ ein. Dies ähnelt, trotz abweichender Bestimmungsmethode, den Literaturdaten [A54]. Die Schwankungsbreite der einzelnen PA liegt bei \pm 10 K und kann hinreichend durch Variation der Probengröße, -oberfläche und chemischer Beschaffenheit erklärt werden. Fehlt Sauerstoff liegt die Wärmefreisetzung deutlich niedriger, auch verbleiben höhere Restmengen. Letzteres tritt ebenfalls bei flammgeschützten PA auf. Insgesamt werden zwischen 2 und 4 Stufen, unabhängig vom Sauerstoffgehalt der Thermolyseatmosphäre, registriert.

Interessant ist auch der Vergleich der Thermolyseverläufe der Polyamide ist von Interesse. Dies ist in folgenden Darstellungen ersichtlich:

Abbildung A.2: Vergleich der Thermogravimetriedaten von PA-Standardmaterialien unter thermooxidativen Bedingungen

Abbildung A.3: Vergleich der Thermogravimetriedaten von technischen PA-Produkten mit Additiven unter thermooxidativen Bedingungen

Beim Vergleich der PA-Standards scheinen längere Wiederholungseinheiten zu niedrigeren Schmelzpunkten zu führen. Den höchsten Schmelzpunkt weist PA 4.6 auf, das auch den spätesten thermischen Abbau aufweist und damit das thermochemisch beständigste der untersuchten PA ist.

Interessant ist, dass die in der Literatur ab ca. 450 °C postulierte Vernetzung an den Verläufen ebenfalls ersichtlich ist – im Bereich dieser Temperatur sinkt auch bei den vorliegenden Materialien die Massenverlustrate deutlich [A55].

Technische Produkte stimmen mit Standardmaterialien bei dieser Untersuchung vorrangig in den Schmelzpunkten überein. Die in der Produktion verwendeten Zusatzstoffe wie Glas, Hitzestabilisator, Farbstoffe und natürlich Flammschutzmittel verändern ihr thermochemisches Verhalten. Eine alleinige Beimischung von Glasperlen führt nur zur Bildung eines höheren Rückstands aus

geschmolzenem Glas im TG, das DSC zeigt jedoch eine späte, aber höhere Wärmefreisetzung, was dem bei MLC-Messungen gefundenen Brennverhalten entspricht.

Das PA 6.6 mit Flammschutz zeigt eine höhere Stufenzahl und einen relativ hohen Masseverlust, welcher vermutlich auf Abspaltprodukte des Flammschutzmittels zurückgeht, früh während der Degradation. Die geringe Wärmefreisetzung im DSC-Signal ist jedoch auf das Flammschutzmittel zurückzuführen. Der hohe Rückstand lässt sich durch die Glasbeimengung und aus dem Phosphinat gebildete Phosphate erklären.

Abbildung A.4: Vergleich der DSC-Daten von technischen PA-Produkten mit Additiven unter thermooxidativen Bedingungen

Stoffbezeichnung	Gesamttoxizität nach NES 713	Gesamttoxizität nach NES 713 mit AEGL- 2 30 min berechnet	λ nach Berechnungsgrundlage [A18]
PA 6	12,59	303,78	0,72
PA 6*	15,26	310,70	0,61
PA 12	10,92	270,83	0,59
PA 4.6	8,82	208,28	0,71
PA 6.6	11,03	259,31	0,60
PA 6.6*	13,39	266,14	0,63
PA 6.12	12,42	306,57	0,61
PA 6 Rohprodukt	10,97	264,73	0,70
PA 6 Technisch	7,81	190,19	0,75
PA 6.6 Rohprodukt	11,79	288,38	0,68
PA 6.6 mit 30% Glaskugeln	7,16	168,01	0,73
PA 6.6 mit Flammschutzmittel	7,70	178,01	0,75
PA 12 mit 30% Glasfasern	9,83	241,72	0,71
Mittelwert	10,10	243,62	0,69
Standardabweichung	1,86	47,81	0,06
Standardabweichung in %	18,44	19,63	8,30

Tabelle A.25: Toxizitätswerte der Polyamide unter Bedingungen des Entstehungsbrands (TGA)

* gemessen mit Sensoren (Xam), Werte durch FTIR-Messdaten ergänzt, wo keine Erfassung mittels Sensorenausstattung möglich war

Abbildung A.5: Rückstand von flammgeschützten PA 6.6 nach Cone-Kalorimeterversuchen mit 35 kW/m² Wärmestromdichte

Daten der Polyurethane und Polyisocyanurate

Tabelle A.26: Brandfolgeprodukt Acetocyanohydrin der Polyurethane und Polyisocyanurate unter Bedingungen des unterventilierten Vollbrands (VCI-Verbrennungsapparatur)

Stoffbezeichnung	Ausbeute Acetocyanohydrin in mg/g	Stoffmenge Acetocyanohydrin / Masse Brandgut in mmol/g	Verhältnis Acetocyanohydrin : HCN
Matratze alt	13,04	0,15	0,24
Matratze neu	12,28	0,14	0,28
PU Schaum weich	22,97	0,27	0,69
Kunstleder	2,21	0,03	0,94
PIR 88	20,32	0,24	0,60
PIR 89	16,42	0,19	0,44
PIR 92	15,57	0,18	0,53
PIR 93	13,22	0,16	0,34
PIR FR gemittelt	16,38	0,19	0,48
Mittelwert	16,26	0,19	0,45
Standardabweichung	3,73	0,04	0,16
Standardabweichung in %	22,96	22,96	35,24

Abbildung A.34: Monomere/Bestandteile und Additive der selbst hergestellten PIR
Stoffbezeichnung	Anzahl der Schritte	Beginn Masseverlust in °C	Ende Masseverlust in °C	Massenverlust in Schritt 1 in % der ursprünglichen Masse	Massenverlust in Schritt 2 in % der ursprünglichen Masse	Massenverlust in Schritt 3 in % der ursprünglichen Masse	Rückstand in m%	Energiefreisetzung Verbrennung in J/g
Matratze alt	3	200	700	29,52	54,53	12,48	3,59	6723,22
Matratze neu	3	190	700	31,29	54,21	10,19	4,79	7946,26
PU Schaum weich	3	200	750	78,34	12,79	2,86	5,84	5635,77
Kunstleder	3	190	750	60,17	28,98	3,29	5,90	7504,63

Im Mittel werden hierbei 6,95 kJ/g ± 12,6 % frei und etwa 5 (± 18,6 %) m% Rückstand verbleiben. Die Analysen wurden mit ca. 5 mg (Matratzen) bzw. 10 mg (restliches PUR) durchgeführt.

Abbildung A.6: ATR-IR-Spektren von PUR Schaum weich bei Standardbedingungen, nach Erwärmung auf 250 °C, 350 °C und 650 °C

Abbildung A.7: ATR-IR-Spektren von PIR 93 bei Standardbedingungen, nach Erwärmung auf 350 °C und 550 °C

Tabelle A.28: Ergebnisse der TGA-Experimente der PIR

Stoffbezeichnung	Anzahl der Schritte	Beginn Masseverlust in °C	Ende Masseverlust in °C	Massenverlust in Schritt 1 in % der ursprünglichen Masse	Massenverlust in Schritt 2 in % der ursprünglichen Masse	Massenverlust in Schritt 3 in % der ursprünglichen Masse	Massenverlust in Schritt 4 in % der ursprünglichen Masse	Rückstand in m%	Energiefreisetzung Verbrennung in J/g
PIR 88	4	30 (250)	950	7,19	17,38	59,46	10,78	4,99	7132,44
PIR 89	4	30 (280)	950	8,55	16,11	50,16	20,11	4,89	6242,69
PIR 92	4	30 (250)	950	7,03	18,24	58,93	8,79	7,34	10600,00
PIR 93	4	30 (250)	950	6,14	19,15	54,86	12,54	7,19	11270,00
37	4	30 (200)	950	2,40	22,00	63,65	7,94	4,36	10490,00
65	3	30 (220)	550	9,67	26,53	60,59	0	2,86	9027,06

Daten der acrylnitrilbasierten Polymere

Tabelle A.29: Elementare Zusammensetzung	g der acı	rylnitrilbasierten	Polymere
--	-----------	--------------------	----------

Stoffbezeichnung	m% N	m% C	m% H	Verhältnis C:N	m% Rest (z.B. O, Cr, P, S)
PAN-Garn	23,65	65,78	5,86	3,24	4,71
Novodur P2MC	5,40	85,56	8,30	18,46	0,74
Teluran SP-6	4,57	86,66	8,39	22,10	0,38
Luran S777K	6,47	79,30	7,45	14,29	6,78
Luran 358N ("LUR")	6,05	86,16	7,40	16,61	0,39
Acrylnitril-Copolymere gemittelt	5,62	84,42	7,89	17,87	2,07

 $Tabelle \ A.30: Brandfolgeprodukte \ HCN \ und \ NH_3 \ der \ acrylnitrilbasierten \ Polymere \ unter \ Bedingungen \ des \ unterventilierten \ Vollbrands \ (VCI-Verbrennungsapparatur)$

\sim	11 /							
Stoffbezeichnung	Ausbeut e HCN in mg/g	Umwandlun g m(N- HCN) pro m(N- Brandgut) in %	Stoffmeng e HCN / Masse Brandgut in mmol/g	Ausbeut e NH ₃ in mg/g	Umwandlun g m(N- NH ₃) pro m(N- Brandgut) in %	Stoffmeng e NH ₃ / Masse Brandgut in mmol/g	Verbleiben d m(N) in %	Verhältni s NH3 : HCN
PAN-Garn	118,60	25,99	4,39	12,61	4,38	0,74	69,62	0,17
Novodur P2MC	42,59	40,88	1,58	20,61	31,39	1,21	27,72	0,77
Teluran SP-6	42,20	47,86	1,56	11,07	19,92	0,65	32,22	0,42
Luran S777K	50,36	40,34	1,86	23,54	29,92	1,38	29,73	0,74
Luran 358N ("LUR")	49,59	42,48	1,83	20,69	28,13	1,21	29,39	0,66
Acrylnitril-Copolymere gemittelt	46,19	42,89	1,71	18,98	27,34	1,11	29,77	0,65
Mittelwert	60,67	39,51	2,24	17,70	22,75	1,04	37,74	0,55
Standardabweichung	29,17	7,26	1,08	4,93	10,00	0,29	16,01	0,23
Standardabweichung in %	48,07	18,39	48,07	27,83	43,97	27,83	42,42	41,37

Tabelle A.31: Brandfolgeprodukt CO der acrylnitrilbasierten Polymere unter Bedingungen des unterventilierten Vollbrands (VCI-Verbrennungsapparatur)

Stoffbezeichnung	Ausbeute CO in mg/g	Umwandlung m(C- CO) pro m(C- Brandgut) in %	Stoffmenge CO / Masse Brandgut in mmol/g	Verhältnis CO : HCN
PAN-Garn	398,51	25,98	14,23	3,24
Novodur P2MC	721,25	36,15	25,75	16,34
Teluran SP-6	748,47	37,03	26,72	17,11
Luran S777K	647,65	35,02	23,12	12,41
Luran 358N ("LUR")	767,31	38,19	27,39	14,93
Acrylnitril-Copolymere gemittelt	721,17	36,60	25,75	15,20
Mittelwert	656,64	34,47	23,44	12,81
Standardabweichung	135,33	4,37	4,83	5,04
Standardabweichung in %	20,61	12,69	20,61	39,38

Tabelle A.32: Brandfolgeprodukt CO_2 der acrylnitrilbasierten Polymere unter Bedingungen des unterventilierten Vollbrands (VCI-Verbrennungsapparatur)

Stoffbezeichnung	Ausbeute CO ₂ in mg/g	Umwandlung m(C- CO ₂) pro m(C- Brandgut) in %	Stoffmenge CO ₂ / Masse Brandgut in mmol/g	Verbleibend m(C) in %	Verhältnis CO : CO2
PAN-Garn	1238,21	51,37	28,14	22,65	0,51
Novodur P2MC	1217,56	38,84	27,67	25,02	0,93
Teluran SP-6	1067,00	33,60	24,24	29,36	1,10
Luran S777K	1039,25	35,77	23,61	29,21	0,98
Luran 358N ("LUR")	1122,78	35,56	25,51	26,25	1,07
Acrylnitril-Copolymere gemittelt	1111,65	35,94	25,26	27,46	1,02
Mittelwert	1136,96	39,03	25,83	26,50	0,92
Standardabweichung	79,23	6,39	1,80	2,55	0,22
Standardabweichung in %	6,97	16,39	6,97	9,64	23,46

Tabelle A.33: Brandfolgeprodukt Acetocyanohydrin der acrylnitrilbasierten Polymere unter Bedingungen des unterventilierten Vollbrands (VCI-Verbrennungsapparatur)

Ausbeute Acetocyanohydrin in mg/g	Stoffmenge Acetocyanohydrin / Masse Brandgut in mmol/g	Verhältnis Acetocyanohydrin : HCN
7,88	0,09	0,02
0,00	0,00	0,00
34,81	0,41	0,26
61,48	0,72	0,39
0,00	0,00	0,00
24,07	0,28	0,16
20,83	0,24	0,13
24,01	0,28	0,16
115,26	115,26	119,91
	Ausbeute Acetocyanohydrin in mg/g 7,88 0,00 34,81 61,48 0,00 24,07 20,83 24,01 115,26	Ausbeute Acetocyanohydrin Stoffmenge Acetocyanohydrin / Masse Brandgut in mmol/g 7,88 0,09 0,00 0,00 34,81 0,41 61,48 0,72 0,00 0,00 24,07 0,28 20,83 0,24 24,01 0,28 115,26 115,26

Tabelle A.34: Toxizitätswerte und Brandzustände der acrylnitrilbasierten Polymere unter Bedingungen des unterventilierten Vollbrands (VCI-Verbrennungsapparatur)

Stoffbezeichnung	Gesamttoxizität nach NES 713 (nur Anorganik)	Gesamttoxizität nach NES 713 mit AEGL- 2 30 min berechnet (nur Anorganik)	Hemmung Leuchtbakterientest in %/mg	λ nach Berechnung sgrundlage [A18]
PAN-Garn	76,39	1204,42	9,75	0,64
Novodur P2MC	42,22	750,99	8,71	0,57
Teluran SP-6	40,79	756,45	8,53	0,52
Luran S777K	45,46	777,83	9,22	0,53
Luran 358N ("LUR")	46,97	833,54	9,34	0,55
Acrylnitril- Copolymere gemittelt	43,86	779,70	8,95	0,54
Mittelwert	50,37	864,65	9,11	0,56
Standardabweich ung	13,20	172,38	0,44	0,04
Standardabweich ung in %	26,20	19,94	4,84	7,73

Tabelle A.35: Ergebnisse der TGA-Experimente der acrylnitrilbasierten Polymere

				Massenverlust in	Massenverlust in		
	Anzahl der	Beginn	Ende Masseverlust	Schritt 1 in % der	Schritt 2 in % der		Energiefreisetzung
Stoffbezeichnung	Schritte	Masseverlust in °C	in °C	ursprünglichen Masse	ursprünglichen Masse	Rückstand in m%	Verbrennung in J/g
PAN-Garn	2	170	750	13,31	84,78	2,00	11330,00
Novodur P2MC	2	250	625	88,03	11,56	0,37	2219,15
Teluran SP-6	2	270	610	87,50	11,44	0,70	2226,26
Luran S777K		250	650	88,05	11,08	0,72	3753,22
Luran 358N ("LUR")	2	270	650	93,13	5,22	0,83	2082,26

Im Mittel werden hierbei $4,32 \text{ kJ/g} \pm 82,3 \%$ frei und nur etwa $0,92 (\pm 60,65 \%) \text{ m}\%$ Rückstand verbleiben. Die Analysen werden mit ca. 10 mg durchgeführt, die Zersetzung ereignet sich trotz aller Unterschiede in den individuellen Temperaturbereichen bei dieser Brandgutgruppe stets in zwei Stufen.

Bekannt ist dabei das charakteristische endotherme Signal bei ca. 380 °C [A56], welches auch bei diesen Untersuchungen nachgewiesen wurde. Ebenfalls auffällig ist, dass bei den Copolymeren stets etwa 90 % der Ursprungsmasse während der ersten Stufe thermolytisch umgesetzt bzw. verflüchtigt werden. Anzumerken ist, dass die Zersetzung – vorrangig aufgrund der vom Standard abweichenden Zersetzungsmethode – deutlich früher als in den Sicherheitsdatenblättern (bzw. Materialinformationen) beginnt.

Abbildung A.8: ATR-IR-Spektren von Novodur P2MC bei Standardbedingungen, nach Erwärmung auf 450 °C

Tabelle A.35: Hauptsächliche Brandfolgeprodukte und Toxizitätswerte der acrylnitrilbasierten Polymere unter Bedingungen des Feuersprungs (Cone-Kalorimeter)

Stoffbezeichnung	Ausbeut e HCN in mg/g	Ausbeut e NH ₃ in mg/g	Ausbeut e CO in mg/g	Ausbeut e CO ₂ in mg/g	Ausbeut e NO ₂ in mg/g	Ausbeut e Ruß in mg/g	Gesamt-toxizität nach NES 713
PAN-Garn	15,27	2,36	217,40	2042,67	3,20	18,27	14,87
Novodur P2MC	2,64	4,65	119,44	2751,62	0,00	95,98	6,58
Teluran SP-6	3,30	2,46	141,54	2992,89	0,00	87,00	7,12
Luran S777K	2,87	4,23	106,30	2268,53	0,00	87,24	6,12
Luran 358N	2,83	2,45	122,49	2716,46	0,00	92,23	6,34
Acrylnitril-Copolymere gemittelt	2,91	3,45	122,44	2682,37	0,00	90,61	6,54
Mittelwert	5,38	3,23	141,43	2554,43	0,64	76,14	8,20
Standardabweichung	4,95	1,00	39,62	346,71	1,28	29,13	3,35
Standardabweichung in %	91,99	30,92	28,01	13,57	200,00	38,26	40,83

Weitere Tabellen und Abbildungen

Abbildung A.9: IR-Spektren wichtiger detektierter toxikologischer Leitgase, organischer Stoffe (anhand zweier repräsentativer Beispiele) und Wasser – Gase mit hoher Absorption und Konzentration (Darstellung des Autors, inhaltlich [A57])

Abbildung A.10: IR-Spektren wichtiger detektierter toxikologischer Leitgase – Gase mit niedriger Absorption und Konzentration (Darstellung des Autors, inhaltlich [A57])

Gemessene Spezies:	Charakteristische Bande verfälscht	Einschränkungen
_	durch:	-
CO ₂	N_2O, H_2O	
СО	N_2O , H_2O , COS	
NO	Acetylen	
NO ₂	SO_2	
HCN	Acetylen	Zum gleichzeitigen Nachweis zum
		Interferenten ist eine Auflösung von 0,5
		cm ⁻¹ notwendig
NH ₃	Acetylen, H ₂ O	Wasserlöslich, somit Heizung
		notwendig
SO_2	H ₂ O, Acetylen, HCN, CH ₄	
Formaldehyd	HCl, Methan, C-C, C-H	Absorption durch Leitungen und Filter
Organik	HCl, Formaldehyd, HCN, NH ₃ , andere	
	Organik	

Tabelle A.36: Analytis	sche Einschränkunger	n und Interferenzen für	verschiedene Gase [A58] [A59] [A60] [A61]

Zündtemperaturen

Zündtemperaturen sind zur Untersuchung der Brandentstehung und zum Nachvollzug oder Simulation der Ausbreitung notwendige Daten. Die klassische Methode zur Bestimmung sieht eigene Apparaturen, beispielsweise Öfen spezieller Bauweisen, vor. Hingegen ist eine Näherung an die hiermit ermittelbaren Werte nach Voruntersuchungen im Forschungsgebiet auch mittels TGA/DSC in Verbindung mit FTIR-Messungen möglich. Es ist möglich, die Zündtemperatur zu bestimmen, indem man die Verläufe der TGAund DSC-Kurven auswertet. Um dies zu tun, muss die Temperatur ermittelt werden, bei der die DSC-Kurve einen starken und plötzlichen Anstieg zeigt, der mit einem deutlichen Massenverlust in der TGA-Kurve einhergeht. Dieser Verlauf steht für die stark ansteigende Freisetzung verschiedener Brandfolgeprodukte durch Bindungsbrüche und zeigt eine plötzliche Erhöhung der Reaktionsgeschwindigkeit der exotherm verlaufenden Thermooxidation an. Dies sind übliche Anzeichen einer Entzündung. Eine zusätzliche Möglichkeit zur Bestimmung der Zündtemperatur besteht darin, die CO-Ausbeuten zu untersuchen, die während der thermischen Zersetzung mittels TGA/DSC im FTIR-Spektrometer ermittelt wurden. Dabei kann der Zeitpunkt, an dem eine signifikante CO-Ausbeute detektiert wird, als Zündpunkt betrachtet werden.

Die genaue Zündtemperatur kann bei einigen Verbindungen nicht über die TGA/DSC-Methode bestimmt werden, da die Zersetzungsstufen größtenteils endotherm verlaufen. Bei strukturverwandten Aminosäuren wie L-Leucin, L-Isoleucin und L-Valin ist beobachtet worden, dass während der ersten Stufe, in der ein enormer Massenverlust von 98 bis 99% auftritt, große Mengen an Pyrolysegasen freigesetzt werden, die jedoch nicht ausreichend thermisch aufbereitet werden und die Entzündungstemperatur

unterschreiten. Die erste Freisetzung von CO, die auch als Indikator für eine Entzündung dient, erfolgt erst während der zweiten Zersetzungsstufe. Bei einigen Verbindungen gibt es einen exothermen Anstieg der DSC-Kurve, der jedoch erst bei relativ hohen Temperaturen auftritt, wenn bereits kein oder nur noch ein minimaler Massenverlust vorliegt, so dass kein Zündzeitpunkt oder keine Zündtemperatur über diese Methode bestimmt werden können. Es ist auch möglich, dass kein CO nachgewiesen wird, was die Bestimmung des Zündzeitpunkts über FTIR verhindert. Die Tabelle zeigt die Temperaturen der TGA/DSC-Methode für diese Verbindungsklasse, wobei die Werte mit begrenzter Aussagekraft mit einem Stern markiert sind. Die meisten Verbindungen haben Zündtemperaturen von 300 bis 400°C. Interessanterweise weisen Moleküle mit Stickstoffringsystemen wie Cytosin und Guanin sowie Moleküle mit langen Alkylketten wie L-Lysin oder L-Arginin etwas höhere Zündtemperaturen auf, die normalerweise im Bereich von 500 bis 600°C liegen.

Tabelle A.37: Zündtemperaturen der Aminosäuren, Peptide, Nukleotide und weiterer stickstoffhaltiger Moleküle unter Bedingungen des Entstehungsbrandes (TGA), n.b. bei fehlender Bestimmbarkeit mit der genannten Methode, * markiert unsichere bzw. nur begrenzt aussagekräftig bestimmbare Bereiche

Stoffbozoichnung	Zündtemperatur, ermittelt anhand von oxidierten Brandfolgeprodukten im FTIR in	Zündtemperatur, ermittelt durch Massenverlust und Energiefreisetzung mittele TGA/DSC in °C
Storrbezeichnung	<u> </u>	
Adenin	375-400	260-380*
Coffein	160-200	170-280*
Cyanursäure	310-350	250-390*
Cytosin	530-550	540-550
D-Threonin	310-350	405-420
Glycin	300-320	410-420
Glycinanhydrid	440-500	380
Glycylglycin	n.b.	490-500
Glycylglycylglycin	n.b.	480-500
Guanin	540-550	480-500
L-Alanin	n.b.	n.b.
L-Arginin	470-500	490-500
L-Asparagin	n.b.	n.b.
L-Asparaginsäure	490-500	500-530
L-Cystein	n.b.	200-280*
L-Cystin	285-300	310-320
L-Glutamin	370-400	410-520
L-Glutaminsäure	330-340	290-300
L-Histidin	450-500	450-660*
L-Isoleucin	300-350	200-280*
L-Leucin	315-350	210-290*
L-Lysin	480-500	470-490
L-Methionin	n.b.	230
L-Phenylalanin	480-500	490-510
L-Prolin	280-300	390-410
L-Serin	n.b.	n.b.
L-Threonin	210-250	240
L-Tryptophan	500-520	510

L-Tyrosin	450-500	485-520
L-Valin	280-300	190-290*
Melamin	350-400	240-350*
Taurin	330-400	380
Thymin	335-350	250-330*
Uracil	355-360	250-350*

Die Zündtemperaturen der Naturstoffe wurden ebenfalls mittels TGA/DSC und FTIR bestimmt. Ein Beispiel der Auswertung kann untenstehender Abbildung entnommen werden:

Abbildung A.11: Über TGA/DSC-Verläufe ermittelte Zündtemperatur bei gewaschener Rohwolle

Die Abbildung zeigt die TGA- und DSC-Kurven von gewaschener Rohwolle sowie die markierte, bestimmte Zündtemperatur, die in diesem Fall zwischen 260 und 270 °C liegt. Obwohl die Methode nur eine grobe Abschätzung liefert, kann sie ausreichende Ergebnisse liefern, da auch die klassischen Methoden zur Bestimmung der Zündtemperaturen ähnliche Schwankungsbereiche aufweisen.

Tabelle A.38: Zündtemperaturen der Naturstoffe unter Bedingungen des Entstehungsbrandes (TGA)

Stoffbezeichnung	Zündtemperatur, ermittelt anhand von oxidierten Brandfolgeprodukten im FTIR in °C	Zündtemperatur, ermittelt durch Massenverlust und Energiefreisetzung mittels TGA/DSC in °C	
Leder weiß (gemittelt)	402 ± 23	378 ± 3	
Leder schwarz (gemittelt)	391 ± 17	376 ± 4	
Seide	185 ± 15	285 ± 15	
Federn	615 ± 5	265 ± 5	
Schaffell	185 ± 15	275 ± 5	
Fell Haut	$202,5 \pm 7,5$	275 ± 5	
Rohwolle	227,5 ± 22,5	265 ± 5	

Auffällig sind die teils extremen Unterschiede zwischen den über die Energiefreisetzung und den Masseverlust bei der Thermooxidation, sowie den CO-Anstieg ermittelten Zündtemperaturen. Besonders die Werte der Federn, bei welchen erst sehr spät CO detektiert wurde, sowie bei Seide und Schaffell, bei denen unmittelbar nach Beginn der Zersetzung CO emittiert wird, verfälschen das Bild. Hier sind somit die durch TGA/DSC bestimmten Zündtemperaturen eher als realistisch zu betrachten, zumal die so ermittelten Werte nahe der Literatur liegen.

Bei solchen Naturstoffen (insb. Leder), welche vorrangig aus Kollagen bestehen, kann ein Vergleich zu den hierin häufig vorkommenden Aminosäuren Glycin und Prolin angestrengt werden. Bei diesen zeigt sich in Polypeptiden ein grundsätzlich ähnlicher Temperaturbereich.

Neben den Proteinen bzw. Aminosäuren können auch weitere Naturstoffbestandteile einen bedeutsamen Einfluss auf das Gesamtbrandgut haben. Hier können z.B. der in Rohwolle enthaltene Lipidanteil genannt werden.

Parallel zur Bestimmung der Zündzeit wurde ebenfalls die Zündtemperatur mittels Wärmebildkamera untersucht. Diese durch Beobachtung der Probenoberfläche ermittelten Temperaturen im Cone-Kalorimeter erwiesen sich als unzureichend präzise. Mögliche Ursachen dafür könnten die unvollständige Erfassung einer großen Fläche sein sowie potenzielle Verfälschungen des Ergebnisses aufgrund von Reflexionen des Probenhalters. In der folgenden Tabelle sind die Zündzeitpunkte der Fremdentzündung mit den entsprechenden Temperaturen aufgeführt. Die festgestellten Zündtemperaturen liegen deutlich über denjenigen der Selbstentzündung. Es sollte jedoch theoretisch erwartet werden, dass die Zündtemperaturen der Fremdentzündung niedriger sind als die der Selbstentzündung. Daher erweist sich die angewandte Messmethodik als unzureichend.

Tabelle A.39: Zündzeitpunkte und -temperaturen der Naturstoffe im Cone-Kalorimeter

Stoffbezeichnung	Zündzeitpunkt in s	Zündtemperatur in °C
Leder weiß (gemittelt)	30	778
Leder schwarz (gemittelt)	27	752
Seide	10	759
Federn	6	767
Schaffell	7	766
Rohwolle	12	778

Wird dies mit der Tabelle A.38 verglichen zeigt sich hier keine Übereinstimmung der Temperaturen – dies lässt sich jedoch auf die deutlich langsamere Erwärmung in der TGA bzw. die Überhitzung der Oberfläche im Cone-Kalorimeter zurückführen. Für eine akkurate Bestimmung des Zeitpunktes, an welchem die zur Zündung nötige Temperatur gemittelt über das gesamte Brandgut beim simulierten Flashover erreicht ist, wären weitere Messungen im Probeninneren notwendig. Zudem ist dies hochgradig von der Form und der Masse der Probe abhängig.

Großbrandversuche und Simulationen

Brandcontainer

Zum Nachvollzug komplexerer Zusammenhänge und Wechselwirkungen sowie zur Überprüfung von Simulationsergebnissen werden oft Real- oder Großbrandversuche durchgeführt. Hier entsprechen oder ähneln die Probengrößen, deren Geometrie, räumliche Anordnung oder auch die oft realmaßstäbliche Bausituation einem bestimmten, zu untersuchenden Brandszenario.

Probleme von Realbrandversuchen sind in Kapitel 3.1 beschrieben. Dennoch ist ein Abgleich mit Realdaten sinnvoll, um die Validität der im Labor- und Technikumsmaßstab gewonnenen Daten zu überprüfen. Damit eine Messung im Labormaßstab als gültig angesehen werden kann, erfordert ISO 16312-1 sogar eine Übereinstimmung zwischen den in einem Laborversuch gemessenen Ausbeutebereichen und denen, die unter den äquivalenten Verbrennungsbedingungen in einem Großversuch gemessen wurden. [A27]

Da Wohnungsbrände im Rahmen dieser Arbeit weder simuliert noch mit den zu betrachtenden Brandgütern retrospektiv untersucht werden konnten (vgl. [A12]), wird auf eine Annäherung im Maßstab eines Containers zurückgegriffen. Dieser bietet einen weitgehend geschlossenen, definierten Raum und wird in der Realbrandausbildung von Feuerwehreinsatzkräften genutzt. Auch können hier Brandgrößen erreicht werden, wie sie einem Entstehungsbrand vor dem Feuersprung entsprechen, gleichzeitig aber schon eine Rauchgasschichtung bilden. Somit können durch Bestimmung der Ausbeuten entstehender Produkte, die zumindest einem Teil der im Labor untersuchten Brandzustände gleichen, die Art und Menge im Labor ermittelter Brandfolgeprodukte überprüft werden.

Genutzt wird ein 20 Fuß Container mit zusätzlicher Rauchschürze und Erhöhung zur Platzierung des Brandguts an der Stirnseite, einem Rauchaustritt (Schornstein) und einer Belüftungsklappe. Weiterhin befindet sich hinter der Rauchschürze, rechts neben der brandgutabgewandten Stirnseite, eine Zugangstüre. Zur Veranschaulichung findet sich im Folgenden Fotographien des Aufbaus.

Abbildung A.12: Fotografie Brandcontainer

Abbildung A.13: Fotografien Innenraum Brandcontainer (vor und während eines Versuchs)

Bei Versuchen in Brandcontainern wurde in der Vergangenheit festgestellt, dass eine Abweichung zu den laborgemäßen Brandfolgeprodukten in der vermehrten Entstehung von sauerstoffhaltigen Substanzen liegt. Dies wird auf die, trotz versuchter Dämmung, allgemein bessere Belüftung zurückgeführt. Im späteren Brandverlauf tritt dennoch ein Sauerstoffunterschuss ein, welcher auch hier zu der Bildung reiner Kohlenwasserstoffe führt – jedoch bleiben, anders als aus Laborversuchen erwartet, sauerstoffhaltige Produkte die primär gebildeten Brandfolgeprodukte. [A62]

Tabelle A.40: Hauptsächliche Brandfolgeprodukte der Naturstoffe unter Bedingungen eines Großbrandversuchs

Stoffbezeichnung	Ausbeute HCN in mg/g	Ausbeute NH3 in mg/g	Ausbeute CO in mg/g	Ausbeute CO2 in mg/g	Ausbeute CH4 [*] in mg/g	Ausbeute SO ₂ in mg/g	Ausbeute NO in mg/g	Ausbeute NO2 in mg/g	Ausbeute N2O in mg/g	Weitere Nachweise	Gesamt- toxizität nach NES 713 (ohne HCN/NH ₃)
Leder	Nachweis (Röhrchen, Photometrisch, XAM)	Nachweis (Röhrchen, XAM)	28,25	691,55	2,66	0,77	0,24	0,51	0,28	Acrylnitril	1,19
Federn	Nachweis (Röhrchen, XAM)	Nachweis (Röhrchen, XAM)	32,06	600,09	4,29	1,47	0,32	0,04	0,46	Acrylnitril, Phenol	1,24
Wolle	Nachweis (Röhrchen, XAM)	Nachweis (Röhrchen, XAM)	25,08	556,61	3,37	0,87	0,48	0,36	0,19	Acrylnitril, Phenol	1,06

* Summenwert Organik, gemessen als CH₄

Tabelle A.41: Hauptsächliche Brandfolgeprodukte der Kunststoffe unter Bedingungen eines Großbrandversuchs

Stoffbezeichnung	Ausbeute HCN in mg/g	Ausbeute NH3 in mg/g	Ausbeute CO in mg/g	Ausbeute CO ₂ in mg/g	Ausbeute CH4 [*] in mg/g	Ausbeute SO ₂ in mg/g	Ausbeute NO in mg/g	Ausbeute NO ₂ in mg/g	Ausbeute N2O in mg/g	Weitere Nachweise	Gesamt- toxizität nach NES 713 (ohne HCN/NH ₃)
PA 6.6	Nachweis (Röhrchen, XAM)	Nachweis (Röhrchen, XAM)	39,24	1255,57	5,69	1,03	4,11	0,43	1,06	Acrylnitril, Formaldehyd	2,61
PUR	Nachweis (Röhrchen, XAM)	Nachweis (Röhrchen, XAM)	1,69	459,22	0,09	0,15	1,70	0,11	0,30	n.a.	0,69
PUR (2000 g)	Nachweis (Röhrchen, XAM)	Nachweis (Röhrchen, XAM)	1,78	552,28	0,04	0,05	1,45	0,03	0,18	Acrylnitril	0,64
PIR	Nachweis (Röhrchen, XAM)	Nachweis (Röhrchen, XAM)	20,02	1081,89	1,57	0,52	1,99	0,20	0,83	Acrylnitril, Phenol	1,59
PAN	Nachweis (Röhrchen, XAM)	Nachweis (Röhrchen, XAM)	24,72	1312,67	2,62	0,96	4,64	0,40	2,39	Acrylnitril, Formaldehyd	2,70
Copolymere des Acrylnitrils (120 g)	Nachweis (Röhrchen, XAM)	Nachweis (Röhrchen, XAM)	40,92	2505,58	5,04	1,12	7,57	0,63	1,12	Acrylnitril, Formaldehyd, Phenol	4,01

* Summenwert Organik, gemessen als CH₄

Es besteht kein Nachweis für Isocyanate, in allen Fällen wurde auch NOx über Röhrchen nachgewiesen

Abbildung A.14: Verlauf der Brandfolgeproduktkonzentrationen von CO (orange), CO₂ (Sekundärachse, grau) und NO_x (gelb) während des Großbrandversuches mit PA 6.6

Abbildung A.15: Verlauf der Toxizitätswerte während des Großbrandversuches mit PA 6.6, berechnet nach NES 713 (30 min, rot) und mit AEGL-2 (30 min)-Werten (blau)

Abbildung A.16: Verlauf der Brandfolgeproduktkonzentrationen von CO (orange), CO_2 (Sekundärachse, grau) und NO_x (gelb) während des Großbrandversuches mit PUR

Abbildung A.17: Verlauf der Toxizitätswerte während des Großbrandversuches mit PUR, berechnet nach NES 713 (30 min, rot) und mit AEGL-2 (30 min)-Werten (blau)

Abbildung A.18: Verlauf der Brandfolgeproduktkonzentrationen von CO (orange), CO₂ (Sekundärachse, grau) und NO_x (gelb) während des Großbrandversuches mit PUR (2000 g)

Abbildung A.19: Verlauf der Toxizitätswerte während des Großbrandversuches mit PUR (2000 g), berechnet nach NES 713 (30 min, rot) und mit AEGL-2 (30 min)-Werten (blau)

Abbildung A.20: Verlauf der Brandfolgeproduktkonzentrationen von CO (orange), CO₂ (Sekundärachse, grau) und NO_x (gelb) während des Großbrandversuches mit Copolymeren des Acrylnitrils

Abbildung A.21: Verlauf der Toxizitätswerte während des Großbrandversuches mit Copolymeren des Acrylnitrils, berechnet nach NES 713 (30 min, rot) und mit AEGL-2 (30 min)-Werten (blau)

Simulationsparameter und -ergebnisse

PUR ($\Delta_V H^0 = 23831,99 \text{ kJ/kg}$)

- 1. Entstehungsbrand: $C_{4,837353}H_{7,917138}O_{1,745690}N_{0,427652} + 1,710582(O_2 + 3,76 N_2) \rightarrow 0,009320 HCN + 0,073216 NH_3 + 0,614276 CO + 0,000699 NO_2 + 0,390960 CO_2 + 3,769260 H_2O + 6,603996 N_2 + 3,785385 C_{Rauch} + 0,037413 CH_{4_{Organik}}$
- 2. Feuersprung: $C_{4,837353}H_{7,917138}O_{1,745690}N_{0,427652} + 1,185144(O_2 + 3,76 N_2) \rightarrow 0,003685 HCN + 0,030655 NH_3 + 0,090295 CO + 0,000001 NO_2 + 0,057469 CO_2 + 3,910745 H_2O + 4,652797 N_2 + 0,168688 C_{Rauch} + 4,517216 C_{Rest}$
- 3. Unterventilierter Vollbrand: $C_{4,837353}H_{7,917138}O_{1,745690}N_{0,427652} + 4,043567(O_2 + 3,76 N_2) → 0,038951 HCN + 0,091211 NH_3 + 1,789193 CO + 2,194841 CO_2 + 3,653950 H_2O + 15,346936 N_2 + 0,483967 C_{Rauch} + 0,022844 C_6H_6(Benzol) + 0,008317 C_7H_5N(Benzonitril) + 0,000334 C_{12}H_{10}(Biphenyl) + 0,001073 C_9H_8(Inden) + 0,001932 C_9H_7N(Isochinolin) + 0,005348 C_{10}H_8(Naphthalin) + 0,000995 C_{11}H_7N(Naphthalincarbonitril) + 0,000001 C_{18}H_{35}ON (Oleamid) + 0,002278 C_8H_8(Styrol) + 0,002920 C_7H_8(Toluol) + 0,000123 C_8H_{10}(Xylol)$

- 1. Entstehungsbrand: $C_{7,215233}H_{8,323908}O_{0,023751}N_{0,326272} + 2,502926(O_2 + 3,76 N_2) \rightarrow 0,002506 HCN + 0,021811 NH_3 + 0,393971 CO + 0,003079 NO_2 + 0,250745 CO_2 + 4,127984 H_2O + 9,560441 N_2 + 6,568010 C_{Rauch} + 0,000001 CH_{4_{Organik}}$
- 2. Feuersprung: $C_{7,215233}H_{8,323908}O_{0,023751}N_{0,326272} + 2,629493(O_2 + 3,76 N_2) \rightarrow 0,012198 HCN + 0,014427 NH_3 + 0,505309 CO + 0,000001 NO_2 + 0,321607 CO_2 + 4,134214 H_2O + 10,036716 N_2 + 0,724383 C_{Rauch} + 5,651737 C_{Rest}$
- 3. Unterventilierter Vollbrand: $C_{7,215233}H_{8,323908}O_{0,023751}N_{0,326272} + 5,306106(O_2 + 3,76 N_2) → 0,156149 HCN + 0,065001 NH_3 + 2,672158 CO + 2,424481 CO_2 + 3,112759 H_2O + 19,990728 N_2 + 0,082585 C_{Rauch} + 0,093728 C_6H_6(Benzol) + 0,016796 C_7H_5N(Benzonitril) + 0,012028 C_{12}H_{10}(Biphenyl) + 0,003867 C_9H_8(Inden) + 0,000438 C_9H_7N(Isochinolin) + 0,056018 C_{10}H_8(Naphthalin) + 0,005902 C_{11}H_7N(Naphthalincarbonitril) + 0,002084 C_{18}H_{35}ON (Oleamid) + 0,016390 C_8H_8(Styrol) + 0,030855 C_7H_8(Toluol) + +0,000365 C_{13}H_9N (Acridin) + 0,000298 C_8H_{10}(Xylol)$

Luran ($\Delta_V H^0 = 27898,77 \text{ kJ/kg}$)

- 1. Entstehungsbrand: $C_{6,602446}H_{7,391313}O_{0,423766}N_{0,461922} + 1,907861(O_2 + 3,76N_2) \rightarrow 0,004648 HCN + 0,034208 NH_3 + 0,288956 CO + 0,005971 NO_2 + 0,183908 CO_2 + 3,570774 H_2O + 7,382105 N_2 + 6,089312 C_{Rauch} + 0,035623 CH_{4Organik}$
- 2. Feuersprung: $C_{6,602446}H_{7,391313}O_{0,423766}N_{0,461922} + 2,045987(O_2 + 3,76 N_2) \rightarrow 0,010617 HCN + 0,024813 NH_3 + 0,379518 CO + 0,241546 CO_2 + 3,653129 H_2O + 7,906156 N_2 + 0,726351 C_{Rauch} + 5,244413 C_{Rest}$
- 3. Unterventilierter Vollbrand: $C_{6,602446}H_{7,391313}O_{0,423766}N_{0,461922} + 4,644496(O_2 + 3,76 N_2) \rightarrow 0,186361 HCN + 0,138222 NH_3 + 2,312217 CO + 2,361429 CO_2 + 2,676119 H_2O + 17,515933 N_2 + 0,152631 C_{Rauch} + 0,075272 C_6H_6(Benzol) + 0,021223 C_7H_5N(Benzonitril) + 0,007941 C_{12}H_{10}(Biphenyl) + 0,002750 C_9H_8(Inden) + 0,000677 C_9H_7N(Isochinolin) + 0,050196 C_{10}H_8(Naphthalin) + 0,008056 C_{11}H_7N(Naphthalincarbonitril) + 0,001564 C_{18}H_{35}ON (Oleamid) + 0,013083 C_8H_8(Styrol) + 0,018961 C_7H_8(Toluol) + +0,000567 C_{13}H_9N (Acridin)$

PIR 92 ($\Delta_V H^0$ = 6890,48 kJ/kg), Phosphoranteil nicht berücksichtigt

- 1. Entstehungsbrand: $C_{5,123765}H_{5,109431}O_{1,573184}N_{0,581150} + 1,762239(O_2 + 3,76 N_2) \rightarrow 0,030277 HCN + 0,008572 NH_3 + 1,156598 CO + 0,004273 NO_2 + 0,736123 CO_2 + 2,460270 H_2O + 6,895032 N_2 + 3,167542 C_{Rauch} + 0,033224 CH_{4Organik}$
- 2. Feuersprung: $C_{5,123765}H_{5,109431}O_{1,573184}N_{0,581150} + 2,673411(O_2 + 3,76 N_2) \rightarrow 0,000001 HCN + 0,014903 NH_3 + 1,930407 CO + 0,000001 NO_2 + 1,228619 CO_2 + 2,532361 H_2O + 10,335149 N_2 + 0,313491 C_{Rauch} + 1,651248 C_{Rest}$
- 3. Unterventilierter Vollbrand: $C_{5,123765}H_{5,109431}O_{1,573184}N_{0,581150} + 4,216973(O_2 + 3,76 N_2) \rightarrow 0,034259 HCN + 0,093324 NH_3 + 0,876471 CO + 3,504076 CO_2 + 2,119597 H_2O + 16,072497 N_2 + 0,160353 C_{Rauch} + 0,044490 C_6H_6(Benzol) + 0,013146 C_7H_5N(Benzonitril) + 0,001214 C_{12}H_{10}(Biphenyl) + 0,000561 C_9H_8(Inden) + 0,001851 C_9H_7N(Isochinolin) + 0,003537 C_{10}H_8(Naphthalin) + 0,000853 C_{11}H_7N(Naphthalincarbonitril) + 0,002910 C_{18}H_{35}ON (Oleamid) + 0,000841 C_8H_8(Styrol) + 0,005006 C_7H_8(Toluol) + +0,000902 C_{13}H_9N (Acridin) + 0,000550 C_5H_5N (Pyridin)$

PA6.6 ($\Delta_V H^0 = 20584, 46 \text{ kJ/kg}$)

- Entstehungsbrand: $C_{12}H_{22}O_2N_2 + 12,085020(O_2 + 3,76 N_2) \rightarrow 0,020367 HCN + 0,015814 NH_3 + 3,618587 CO + 0,058157 NO_2 + 5,785840 CO_2 + 10,863458 H_2O + 46,392506 N_2 + 2,523886 C_{Rauch} + 0,051318 CH_{4_{Organik}}$
- Feuersprung: $C_{12}H_{22}O_2N_2 + 14,596118(O_2 + 3,76N_2) \rightarrow 0,004431 HCN + 0,021646 NH_3 + 0,214747 CO + 0,006086 NO_2 + 10 CO_2 + 10,965316 H_2O + 55,865321 N_2 + 0,356887 C_{Rauch} + 1,423935 C_{Rest}$
- Unterventilierter Vollbrand: $C_{12}H_{22}O_2N_2 + 11,408208(O_2 + 3,76N_2) \rightarrow 0,481516 HCN + 1,271739 NH_3 + 2,812655 CO + 6,958324 CO_2 + 8,083230 H_2O + 43,000114 N_2 + 0,150824 C_{Rauch} + 0,135039 C_6H_6(Benzol) + 0,024070 C_7H_5N(Benzonitril) + 0,002224 C_{12}H_{10}(Biphenyl) + 0,003140 C_9H_8(Inden) + 0,002886 C_9H_7N(Isochinolin) + 0,025929 C_{10}H_8(Naphthalin) + 0,004859 C_{11}H_7N(Naphthalincarbonitril) + 0,003882 C_{18}H_{35}ON (Oleamid) + 0,010464 C_8H_8(Styrol) + 0,009094 C_7H_8(Toluol) + +0,000543 C_{13}H_9N (Acridin)$

- 1. Entstehungsbrand: $C_6H_{11}ON + 5,948010(O_2 + 3,76N_2) \rightarrow 0,003600 HCN + 0,019586 NH_3 + 2,230160 CO + 0,034326 NO_2 + 2,566344 CO_2 + 5,464522 H_2O + 22,835763 N_2 + 1,197747 C_{Rauch} + 0,002149 CH_{4_{Organik}}$
- 2. Feuersprung: $C_6H_{11}ON + 5,299006(O_2 + 3,76N_2) \rightarrow 0,000740 HCN + 0,003846 NH_3 + 0,058751 CO + 0,000799 NO_2 + 3,021901 CO_2 + 5,493861 H_2O + 20,421571 N_2 + 0,038367 C_{Rauch} + 2,880241 C_{Rest}$
- 3. Unterventilierter Vollbrand: $C_6H_{11}ON + 5,498281(O_2 + 3,76N_2) \rightarrow 0,181343 HCN + 0,477932 NH_3 + 1,075098 CO + 3,302171 CO_2 + 4,315951 H_2O + 20,836355 N_2 + 0,656266 C_{Rauch} + 0,074866 C_6H_6(Benzol) + 0,010128 C_7H_5N(Benzonitril) + 0,000957 C_{12}H_{10}(Biphenyl) + 0,001326 C_9H_8(Inden) + 0,001246 C_9H_7N(Isochinolin) + 0,010473 C_{10}H_8(Naphthalin) + 0,002183 C_{11}H_7N(Naphthalincarbonitril) + 0,001170 C_{18}H_{35}ON (Oleamid) + 0,005054 C_8H_8(Styrol) + 0,005065 C_7H_8(Toluol) + +0,000362 C_{13}H_9N (Acridin)$

Abbildung A.22: Verlauf der Brandfolgeproduktkonzentrationen von CO (Sekundärachse, dunkelgrau), CO₂ (Sekundärachse, hellgrau), HCN (blau), NH₃ (orange) und NO_x (gelb) während der FDS-Simulation mit PA 6, gemessen in Kopfhöhe (1,7 m über Bodenniveau) am Raummittelpunkt (Nullpunkt x/y-Achse)

Abbildung A.23: Verlauf der Temperaturen im Brandraum während der FDS-Simulation mit PA 6, gemessen in Kopfhöhe (1,7 m über Bodenniveau, blau), an der Decke (gelb), am Boden (grau) am Raummittelpunkt (Nullpunkt x/y-Achse) und über dem Brandherd (orange)

Abbildung A.24: Verlauf der Rauchdichte im Brandraum während der FDS-Simulation mit PA 6, gemessen in Kopfhöhe (1,7 m über Bodenniveau) am Raummittelpunkt (Nullpunkt x/y-Achse)

Abbildung A.25: Verlauf der Toxizitätswerte während der FDS-Simulation mit PA 6, gemessen in Kopfhöhe (1,7 m über Bodenniveau) am Raummittelpunkt (Nullpunkt x/y-Achse), berechnet nach NES 713 (30 min, rot) und mit AEGL-2 (30 min)-Werten (blau)

Abbildung A.26: Verlauf der Brandfolgeproduktkonzentrationen von CO (Sekundärachse, dunkelgrau), CO₂ (Sekundärachse, hellgrau), HCN (blau), NH₃ (orange) und NO_x (gelb) während der FDS-Simulation mit Copolymeren des Acrylnitrils, gemessen in Kopfhöhe (1,7 m über Bodenniveau) am Raummittelpunkt (Nullpunkt x/y-Achse)

Abbildung A.27: Verlauf der Temperaturen im Brandraum während der FDS-Simulation mit Copolymeren des Acrylnitrils, gemessen in Kopfhöhe (1,7 m über Bodenniveau, blau), an der Decke (gelb), am Boden (grau) am Raummittelpunkt (Nullpunkt x/y-Achse) und über dem Brandherd (orange, Sekundärachse)

Abbildung A.28: Verlauf der Rauchdichte im Brandraum während der FDS-Simulation mit Copolymeren des Acrylnitrils, gemessen in Kopfhöhe (1,7 m über Bodenniveau) am Raummittelpunkt (Nullpunkt x/y-Achse)

Abbildung A.29: Verlauf der Toxizitätswerte während der FDS-Simulation mit Copolymeren des Acrylnitrils, gemessen in Kopfhöhe (1,7 m über Bodenniveau) am Raummittelpunkt (Nullpunkt x/y-Achse), berechnet nach NES 713 (30 min, rot) und mit AEGL-2 (30 min)-Werten (blau)

Abbildung A.30: Verlauf der Brandfolgeproduktkonzentrationen von CO (Sekundärachse, dunkelgrau), CO₂ (Sekundärachse, hellgrau), HCN (blau), NH₃ (orange) und NO_x (gelb) während der FDS-Simulation mit PUR, gemessen in Kopfhöhe (1,7 m über Bodenniveau) am Raummittelpunkt (Nullpunkt x/y-Achse)

Abbildung A.31: Verlauf der Temperaturen im Brandraum während der FDS-Simulation mit PUR, gemessen in Kopfhöhe (1,7 m über Bodenniveau, blau), an der Decke (gelb), am Boden (grau) am Raummittelpunkt (Nullpunkt x/y-Achse) und über dem Brandherd (orange, Sekundärachse)

Abbildung A.32: Verlauf der Rauchdichte im Brandraum während der FDS-Simulation mit PUR, gemessen in Kopfhöhe (1,7 m über Bodenniveau) am Raummittelpunkt (Nullpunkt x/y-Achse)

Abbildung A.33: Verlauf der Toxizitätswerte während der FDS-Simulation mit PUR, gemessen in Kopfhöhe (1,7 m über Bodenniveau) am Raummittelpunkt (Nullpunkt x/y-Achse), berechnet nach NES 713 (30 min, rot) und mit AEGL-2 (30 min)-Werten (blau)

Chemikalien und Brandgüter

Name	Reinheit, Anmerkungen und Beschreibung	Hersteller
Aceton	99,80 %	Fisher Chemical
Acrylnitrilbasierte Copolymere (Pelletiert)	ABS: Novodur P2 MC und Terluran SP-6 ASA: Luran S777 K SAN: Luran 358 N ("LUR") [A63], [A64], [A65], [A66], [A67]	Ineos Styrolution
Adenin	99 %	Alfa Aesar®
Ammoniaklösung	\geq 25 % in Wasser (p.a.)	Carl Roth GmbH
Ammoniumsulfat	per analysis	Bernd Kraft
Benzol	99,70 %	Merck KGaA
Coffein	99 %	Alfa Aesar®
Collar® 2213 PUR-Weichschaum (weiß)	TDI-basierter Weichschaum mit Flammschutzausrüstung Rohdichte 21 kg/m ³ , Stauchhärte 3 kPa [A68]	Dimer GmbH
Cyanursäure	für Synthese	Millipore Sigma
Cyanwasserstoff	15 ppm in N ₂	Dräger Safety AG & Co. KGaA
Cytosin	98+ %	Alfa Aesar®
Dichlormethan	99,90 %	VWR Chemicals
D-Threonin	Für Synthese	Fluka AG
Essigsäure	Ca. 60 %, technische Qualität	Riedel-de Haën

Tabelle A.42: Chemikalien und Brandgüter

	Füllung aus Entenfedern, beheizt nach europäischem Öko-Tex- Standard 4-6 cm	
Federn	> 75 % Rohnroteingehalt in Trockenmasse	n.a.
Clucin	>00 % (HDLC)	Sigma Aldrich®
Chroinenbudeid		
Glycinannydrid	98 %	Acros Organics
Glycine	≥99 %(HPLC)	Sigma Aldrich®
Glycylglycin	99 %	Alfa Aesar®
Glycylglycin	99 %	Alfa Aesar®
Glycylglycylglycin	98+ %	Alfa Aesar®
Guanin	98 %	Alfa Aesar®
Helium	>99,99 %	Linde
Kalibrierstandards	Einwaagen siehe Anhang "Kalibrierdaten.xlsx"; Reinheit der Einzelkomponenten min. > 99 %; EPA Appendix IX Volatiles Calibration mix mit 2 mg/ml in Methanol	Sigma-Aldrich
Kaliumcyanid	96 %	Alfa Aesar®
Kaliumhexacyanoferrat(III)	Reag. Ph. Eur. ⁴	Merck KGaA/ACS
Kohlenstoffdisulfid	99,90 %; > 99,9 %	Acros Organics; VWR Chemicals
Kunstleder	PUR-basiertes, schwarz gefärbtes Lederimitat	n.a.
L-Arginin	≥98,5 %	Sigma-Aldrich
L-Asparagin	99 %	Alfa Aesar®
L-Asparaginsäure	98 %	Alfa Aesar®
L-Histidin	Für Synthese	VWR International
L-Methionin	99 %	Alfa Aesar®
L-Serin	99 %	Alfa Aesar®
Aminosäuren (weitere)	Für Synthese	Merck KGaA
Matratzen	Flammschutzfreier PUR-Weichschaum gem. DIN 13013-12 und Beiblatt 1; Dichte 37 kg/m ³ ; Temperaturbeständig bis 60 °C; Glührückstand (950 ± 50 °C) < 1 m% [A69]	n.a.
Melamin	für Synthese	Merck KGaA
Natriumchlorid	Technisch	Chemikalienlager
Natriumdichlorisocyanurat	96 %	Sigma Aldrich®
Natriumhydrogensulfat-Monohydrat	Reinst.	Merck KGaA
Natriumhydroxid	per analysis	Bernd Kraft
Natriumhydroxid 1 mol/L; 2 mol/L	Wässrige Lösung, Reag. Ph. Eur.	VWR; Bernd Kraft
Natriumpentacyanonitrosylferrat(II)- Dihydrat	96 %	Alfa Aesar®
Natriumsalicylat	per analysis	Bernd Kraft

⁴ Produkt, welches die im Kapitel Analytische Reagenzien der Pharmacopoeia beschriebenen Anforderungen erfüllt

n-Hexan	> 99,9 %	Fisher Chemical
Pentac 12 Produkt (Pentamid L)	67,8 m% reines PA 12 > 25 % Glas, < 1 % Gleitmittel (Stearat), < 5 % Farbstoffe	PENTAC Polymer GmbH
Pentac 6 Produkt (Pentamid B)	67,6 m% reines PA6 > 25 % Glas, < 1 % Gleitmittel (Stearat), < 1 % Hitzestabilisator vom Phenoltyp, < 2 % Farbstoffe	PENTAC Polymer GmbH
Pentac 6.6 Produkt (Pentamid A)	69,2 m% reines PA 6.6 > 25 % Glas, < 1 % Gleitmittel (Stearat), < 1 % Wärmestabilisator vom Phenoltyp	PENTAC Polymer GmbH
Pentac 6.6 Produkt Flammschutz (Pentamid A flammhemmend)	50,3 m% reines PA 6.6 > 25 % Glas, < 20 % Flammschutzmittel auf Phosphinatbasis (stickstofffrei, ca. 25 % P), < 1 % Gleitmittel (Stearat), < 1 % Hitzestabilisator vom Phenoltyp, < 2 % Farbstoffe	PENTAC Polymer GmbH
Polyamid (PA) 6	Reinstoff (> 99 %) 2 mm Pellets	Sigma-Aldrich
Polyamid (PA) 6.12	Reinstoff (> 99 %) 2 mm Pellets	Sigma-Aldrich
Polyamid (PA) 6.6	Reinstoff (> 99 %) 2 mm Pellets	Sigma-Aldrich
Polyamid/Pentac 12	Rohware (> 99 %)	PENTAC Polymer GmbH
Polyamid/Pentac 4.6	Rohware (> 99 %)	PENTAC Polymer GmbH
Polyamid/Pentac 6	Rohware (> 99 %)	PENTAC Polymer GmbH
Polyamid/Pentac 6.6	Rohware (> 99 %)	PENTAC Polymer GmbH
Polyacrylnitril	Rohware (> 99 %)	n.a.
Polyisocyanurate	 Eigene Formulierung, basierend auf: Polyester-Polyol S240 P (Phthalsäure-Polyester-Polyol, OH-Zahl 240) Isocyanaten Desmodur 44V10L/44V20L/44V70L (%NCO: 31,77/31,4/30,87, entsprechend wachsender Anteile an pMDI - 44V10L: 44,9 % MDI, 55,1 % pMDI, 44V20L: 40 % MDI, 60 % pMDI, 44V70L: 32 % MDI, 68 % pMDI, MDI meist 2,4 MDI, pMDI meist 2-5 Kerne) Silikontensid B8421 (Polysiloxan-Polyether-Copolymer, OH-Zahl 115,7) Trimer-Katalysator Desmorapid 1792 (25 % Kaliumacetat in 75 % Diethylenglycol, OH-Zahl 790, bildet harte Segmente) Treibmittlel (Cyclo- oder n-Pentan, Mischungen, jedoch nur Bedeutung für Verfahrenstechnik, im Brandschutz keine Unterschiede feststellbar) Flammschutzmittel, z.B. TCPP, TEP, TPP, Exolit AP422/FR Cros 484, FR Cros C-30, FR Cros 490 Zusätze: Ferrocen, FeO(OH), Cu₂O, Glycin, Kupfer 	Author, mit Materialien der Covestro Deutschland AG

Vorlegen Polyol	Zugabe Additive	Vermischen (Ultra-Turrax)	Abfüllen Isocyanat	Zugabe Cyclopentan, Vermischen (Ultra-Turrax), Zugabe Isocyanat (8 s mischen, 4200 U/min)	Schaum entsteht (typische Liegezeit ca. 20 s, Steigzeit 60 s)	

Abbildung: Herstellungsprozess PIR

Reaktivierungslösung (Na / Ka / Mg / Cl-Lsg.)		Hach Lange GmbH
Rolltreppenbürsten-Filament auf PA 6-Basis	Hauptsächlich PA 6, mit flammhemmender Ausrüstung	Perlon GmbH
Sauerstoff	>99,99 %	Linde
Schwefelsäure 30 %	Wässrige Lösung, technische Qualität	Bernd Kraft
Seide	reines Seidenweiß für Seidenmalerei Pongé 08, > 90 % Proteine (hauptsächlich Fibroin und Sericin)	n.a.
Stickstoff	>99,99 %	n.a.
Synthetische Luft	>99 %	Linde
Taurin	99 %	Alfa Aesar®
Teppich SPINTA 99	Fasern aus 100% Polyamid (Nylon, PA 6.6)	Associated Weavers International Group
Thymin	97 %	Alfa Aesar®
Toluol	99,70 %	Riedel – de Haën
tri-Natriumcitrat-Hydrat	≥99 %	Sigma Aldrich®
Uracil	99+ %	Alfa Aesar®
Vibrio fischeri Leuchtbakterien Typ NRRL B-11177	LCK 484, abgeleitet von DIN EN ISO 11348; [A70] [A71]	Fa. Hach Lange
Wolle	Walliser Schwarznasen-Rohwolle, extrahiert mit Wasser und Tensiden, getrocknet < 90 %, hauptsächlich Keratin	n.a.

Die folgende Tabelle enthält Angaben zu den Standard-Versuchsparametern und in dieser Arbeit genutzten Apparaten. Varianten für einzelne Untersuchungen sind hierbei, aufgrund der vielfältigen Möglichkeiten der notwendigen Analyseverfahren, nicht näher berücksichtigt.

Tabelle A.43: Geräte zur Erzeu	igung und Untersuchung vor	n Brandfolgeprodukte, s	owie der Apparate zur B	randgutcha	rakterisierung
mit Angaben der genutzten Me	ethoden und Parameter				
0 0				1	

Name	Parameter	Hersteller
VCI- Verbrennungsapparatur	V: 20 ml/min synthetische Luft T _{Ofen} : 750 °C	HTM Reetz GmbH Hochtemperatur- Öfen
	m _{Einzelprobe} : 20-25 mg	
	t _{Versuch} : 10 min	
	Adsorbenz: Silicagelröhrchen Dräger Typ G (1100 mg Adsorptionsschicht, 450 mg Nachschaltschicht) Bestell-Nr. 67 28 851 [A72]	
CADAS 200 Spektralphotometer	Photometer zur Verwendung mit LCK 305 Ammonium-Stickstoff oder LCK 315 Cyanid	Hach Lange GmbH
AccuPyc 1330 Pycnometer	Gasverdrängungs-Pyknometrie-System mit Helium	Micromeritics Instrument Corporation
LUMISmini	Luminometer	Hach Lange GmbH
pH/Cond 340i	pH- und Leitfähigkeitsmessgerät	WTW (Xylem Analytics Germany)
Masseverlust-Kalorimeter [A73]	 Basiskonfiguration (kegelförmiger Strahlungsheizkörper mit Wägezelle), ergänzt um einen Kamin mit Thermosäule zur Bestimmung der HRR; Messungen nach EN ISO 13927 und EN ISO 17554, auf Rollwagen (Eigenanfertigung Bergische Universität Wuppertal) Abweichend zur ursprünglichen Konfiguration, wurde beim vorhandenen Gerät die Steuerungselektronik und die vorhandenen Anschlüsse von der Bodenplatte in einen tieferliegenden Bereich in einen Rollwagen verlegt. Dies dient der Verringerung der thermischen Belastung durch die Wärmestrahlung. Rollwagen (Eigenanfertigung Bergische Universität Wuppertal) mit kombinierter Kontrolleinheit, USB-Schnittstelleneinheit, Laptop mit MLCCalc Software Hitzeschutzplatte aus Vermiculite, mit Aluminiumfolie umwickelt; ebenfalls zur Erstickung von Bränden und anschließenden Untersuchung der Brandrückstände (SPME-GC-MS) genutzt Halterahmen/Probekörperhalterungen für Proben (Edelstahl) mit Keramikfaserpolstern (100•100 mm, Dicke ca. 25 mm) Probenvorbereitungswerkzeug (Cutter, Schere, Skalpell) Messlehre (23 mm) Infrarot-Thermometer (Parktech) Brandabzug (mit Abzugsleistung 690-780 m³•h⁻¹) Messung HRR: Q: 35 oder 50 kW/m², entsprechend Norm immer min. 15 kW/m² oberhalb des krit. Wärmestroms mProbe: 50 g 	Fire Testing Technology Ltd.

-	Messung krit. Wärmestrom:	
	Q: $0 - 30 \text{ kW/m}^2$ in Schritten von 1 kW/m ² zwischen 8 und 20 kW/m ² kalibriert, ansonsten 2 kW/m ² -Schritte	
	m _{Probe} : 50 g	
SPME-Faser	Beschichtet mit Dicinylbenzol/Carboxen/Polydimethylsiloxan, Filmdicke 50 µm; geeignet für flüchtige und schwerflüchtige Aromaten im Bereich C3 bis C20	Fa. Supelco
Kalibrierungszubehör	Wassergekühltes Wärmestrommessgerät (Medtherm, GTW-10-32-485A)	Fire Testing
MLC	Stoppuhr	Technology Ltd.
	Flüssigkeitsthermometer	
	Messzylinder (300 ml)	
	Wasserauffangbehälter	
	Messlehre (25 mm)	
	Kalibrierbrenner mit Sand-/Keramikfaserfüllung und Methangasanschluss	
	Rollwagen (Eigenanfertigung Bergische Universität Wuppertal) mit Methangasflasche (Reinheit: mind. 99,5 %) und zwei Rotametern (InFlux UK, Messbereich 1-18 l•min-1 und 0,3-2,8 l•min-1)	
Cone-Kalorimeter Modell ISO 5660-1	Zur Ermittlung der Wärmefreisetzungsrate wurde die Sauerstoffverzehrkalorimetrie in Form des Cone Calorimeters der Firma Wazau angewendet. Hierzu wurden sowohl die vertikale als auch die horizontale Probenanordnung ausgewählt. Lockere Proben (z.B. Federn) wurden unter Verwendung eines Käfigs gem. Norm verbrannt.	DrIng. Georg Wazau Mess- + Prüfsysteme GmbH
	Wägemodul: Mettler Toledo WMS6002C-L/10	
	m _{min} : 0 g	
	m _{max} : 6200 g	
	Auflösung: 0,01 g	
	O2-Analysator - Typ Paramagnetisch	
	CO & CO ₂ -Analysator - Typ Infrarot	
	Thermoelemente - Typ K	
	Wärmestromsensoren – Typ Schmidt-Boelter	
	Die Steuerung der Messung und Ausgabe der Messdaten erfolgte über die im Messgerät integrierte Software MCC DAQ und CONE CALORIMETER ISO 5560-1 der Firma Wazau.	
Wärmebildkamera FLIR E95	Bei der Ermittlung der Zündtemperatur wurde während der Versuche zur Bestimmung der Wärmefreisetzung die nachfolgende Wärmebildkamera so positioniert, dass die Oberflächentemperatur der Probe zum Zeitpunkt der "visuellen" Entzündung aufgezeichnet werden konnte. Neben der freihändigen Führung der Kamera, die insbesondere bei der vertikalen Versuchsausrichtung eingesetzt wurde, wurde zeitweise auch ein Kamerastativ verwendet.	FLIR Systems
	Auflösung IR-Kamera: 464x348 Pixel	
	Messbereiche: -20 – +120 °C; 0 – 650 °C; 300 – 1500 °C	
	Genauigkeit: $\pm 2 \degree C$ oder $\pm 2 \%$ bei $T_{Umgebung} = 15 - 35 \degree C \& T_{Objekt} > 0 \degree C$	
	Zur Auswertung wurden hierbei je nach Dateiformat zum einen die Software FLIR Tools+ der Firma FLIR Systems, zum anderen der VLC Media Player genutzt.	

Haar-Hygrometer		Feingerätebau K. Fischer GmbH				
Präzisionswaage	Ablesbarkeit: 0,1 g	Sartorius AG				
Probenahmepumpe GilAir Plus	Flussbereich 1 bis 5000 ml/min, automatische Flusseinstellung mit TSI Model 4146 Flussmesser, Kalibrierung vor jeder Probenahme/Versuchsdurchführung	Sensidyne				
	Am Cone-Kalorimeter genutzt mit 500 ml/min					
Rasterelektronen- mikroskop	Environmental Scanning Electron Microscope (Quanta 450 FEG) der FG Umweltsicherheit der Bergischen Universität Wuppertal	Firma FEI				
	HV = 20,00 kV					
	Druck = 100 Pa					
	Vergrößerung = 500fach					
Stereo-Mikroskop	Zeiss Stemi 305 mit Axiocam 105 color	Zeiss				
Aluminiumfolie	Materialstärke: 0,03 mm	VWR International				
Umlaufkühler Modell Microcool MC 250	T _{Kühlwasser} : 25,0 °C	LAUDA DR. R. WOBSER GMBH & CO. KG				
Ultraschallbad Modell	T _{Wasser} : 40 °C	BANDELIN				
Soliolex KK 105 H	t _{Ultraschall} : 10 min	& Co. KG				
GC-MS QP2020	V _{Injektion} : 1 µl	Shimadzu Corp.				
Gaschromatograph mit	Injektionsmethode: split (1:30/1:50)					
und gekoppelter	T _{Einlass} : 300,00 °C					
ElektronenstoBionisations- massenspektrometrie	T _{Säule} : 40,0 °C					
	Gesamtfluss: 16,5 ml/min Helium					
	Säulentyp: HP-5MS					
	Säulendimensionen: 30m Länge x 0,25mm Innendurchmesser, 0,25 μ m Filmdicke					
	Temperaturprogramm:					
	Rate inT in °CWartezeit°C/minin min					
	- 40,0 4					
	5 100,0 -					
	10 300,0 4					
GC-2010 Plus	$V_{Injektion}$: 1 µl	Shimadzu Corp.				
Gaschromatograph mit	Injektionsmethode: split (1:30)					
manueller Probenaufgabe	T _{Einlass} : 300,00 °C					
Flammenionisationsdetekt or	T _{Säule} : 40,0 °C					
	Gesamtfluss: 16,5 ml/min Helium					
	Säulentyp: HP-5MS					
	Säulendimensionen: 30m Länge x 0,25mm Innendurchmesser, 0,25 μ m Filmdicke					

	Flammenionisations detektor (FID) (T: 290 °C, 40 ml/min H ₂ und 400 ml/min synt. Luft)						
	Temperaturprogramm:						
	Rate in T in °C Wartezeit °C/min in min						
	- 40,0 4						
	5 100,0 -						
	10 300,0 4						
Tiger handheld VOC	UV-Lampe mit Energie von 10,6 eV	Ion Science / ISM					
detector (Photoionisationsdetektor)	Referenzgas: Isobutyl	Deutschland GmbH					
`````	Messbereich: 0,1 ppm bis 20000 ppm						
	Auflösung: 0,1/1 ppm						
	Genauigkeit: $\pm$ 5 % des Messwertes oder $\pm$ 1 Ziffernschritt (messbereichsabhängig)						
	Linearität: ± 5 % bis 100 ppm						
	Ansprechzeit t ₉₀ : 1,5 s						
	Erholungszeit t ₁₀ : 2,0 s						
	[A75]						
Ionenmobilitäts-	Temperaturbereich: -30 °C bis 50 °C	Bruker Daltonics					
spektrometer BRUKER RAID-M 100	Luftfeuchtigkeit: 5 bis 93 % relative Luftfeuchtigkeit	GmbH					
	Strahlenquelle: ⁶³ Ni mit 100 MBq						
	Dopant: Ammoniak						
	[A76]						
TGA/DSC 1 STARe	V _{ges} : 40 ml/min	Mettler Toledo					
System	Stockstoffatmosphäre: 100 Vol.% N₂, Reinheit 5.0 (≥ 99,999 %) oder besser, Messer Industriegase GmbH)						
	Synthetische Luft: 79 Vol.% N ₂ , s.o., 33 ml/min, 21 Vol.% O ₂ , Reinheit 5.0 ( $\geq$ 99,999 %) oder besser, Messer Industriegase GmbH), 7 ml/min						
	Temperaturprogramm: variabel, meist 25°C-700°C mit 10 K/min (min. 5 K/min, max. 50 K/min); max. genutzte Temperatur zur vollständigen Umsetzung 1000 °C						
	Tiegel: meist zylinderförmiger 70 µl Aluminiumoxidtiegel, alternativ Tiegel aus Aluminium mit oder ohne (durchstoßenen) Deckel						
	m _{Probe} : zwischen 1 und 25 mg (abhängig von Material), Standard 5 mg, bei schäumenden Stoffen Verringerung, bei Rückstandsanalysen 10-25 mg (Ausnahme Weichschaum, hier 5 mg)						
	m _{max} : 5 g						
	Auflösung m: 0,1 µg						
	Software: STARe Auswertesoftware						
	Gas-Kontroller (GC 200) und Gasversorgung (O2, N2)						
	TGA-Verbindungsstelle (TGA interface accessory, Thermo Fisher Scientific)						

Mikrowaage XA105	m _{max} : 41 g	Mettler Toledo
DualRange	Auflösung m: 0,01 mg	
Massenspektrometer THERMOStar [™] GSD	Elektronenstoßionisation mit Quadrupol-Massenfilter und SEM-Detektor und beheizter Zuleitung	Pfeiffer Vacuum GmbH
3201	U _{SEM} : 1000 V	
	Ionisationsenergie: 65 eV	
	Druckbereich: 10 ⁻⁵ -10 ⁻⁶ bar	
	T _{Inlet} : 120 °C	
	T _{Kapillarzuleitungy} : 150 °C	
FTIR-Spektrometer	beheizter Verbindungsschlauch	ThermoFisher
Nicolet iS50 FT-IR	Software: OMNIC Auswertesoftware	SCIENTIFIC
	Auflösung: 4 cm ⁻¹	
	Scanbereich: 500-4000 cm ⁻¹	
	T _{Zelle} : 250 °C	
	T _{Zuleitung} : 200 °C	
	Mittelung Scans: 8 Scans/Messung (in der Regel: 1 Spektrum pro 1,67 °C)	
	Weglänge Zelle: 10 cm	
	Messungen weitgehend gem. der Standards nach [A77] [A78]	
ATR-IR-Spektrometer	iD7 ATR Diamantkristall	ThermoFisher
Nicolet 1S5 FT-IR	Software: OMNIC Auswertesoftware	SCIENTIFIC
	Auflösung: 0,2 cm ⁻¹	
	Scanbereich: 500-4000 cm ⁻¹	
	Mittelung Scans: 32 Scans/Messung	
Kälte-Umwälzthermostat	Temperaturbereich: -40 °C bis 200 °C	Huber
Huber Ministat 230	Kühlleistung (20 °C): 0.42 kW	Kältemaschinenba u AG
	Kühlleistung (0 °C): 0.38 kW	
	Kühlleistung (40 °C): 0.05 kW	
	Heizleistung: 2 kW	
	Druckpumpe, max.: 27 l/min, 0.7 bar	
	Ansaugpumpe, max.: 20 l/min, 0.4 bar	
	Pumpenverbindung: M16 x 1-Stecker	
Dräger X-Pid 9500	Temperaturbereich: -10 °C bis 35 °C	Dräger Safety AG
	Luftfeuchtigkeit: 10 bis 90 % relative Luftfeuchtigkeit	& Co. KGaA
	UV-Lampe mit Energie von 10,6 eV (Sucher)	
	V: 200 mL∕min	
	[A79] [A80]	
Dräger Luftextraktionsverfahren	Gaswaschflaschensystem (250 ml) mit Ansatzstücken [A81], genutzt zur Extraktion von Brandrückständen (mit/alternativ zu SPME)	Dräger Safety AG & Co. KGaA

	Abbildun Temperie bis 85 °C	g: Luftextraktionsve rbar über Babykostv (220 bis 240 V, 80	erfahren wärmer BY 52 ( W, 3 bis 18 min	b) c) Beurer GmbH) Aufwärmzeit)	im Bereich 35		
Mehrgasmessgerät Dräger X-am 7000 (Feuerwehr	Sensor	Sensorart	Messbereich	Auflösung	Nachweis- grenze	Dräger Safety AG & Co. KGaA	
Wuppertal) [A82]	Dräger Sensor ® Smart CatEX (PR)	Katalytisch (Wärmetönungs- sensor)	0 – 100 % UEG (Methan), entsprechend max. 4,4 Vol.%	1,0 % für den Messbereich 0 bis 100% UEG	2 % UEG		
	Dräger Sensor ® IR CO2 HC	Infrarot	0,0 – 100,0 Vol.%	0,2 Vol.%	0,4 Vol.%		
	Dräger Sensor ® XS EC O2-LS	Elektrochemisch	0,0 – 25,0 Vol.%	0,1 Vol.%	0,1 Vol.%		
	Dräger Sensor ® XS EC CO	Elektrochemisch	0 – 2000 ppm	1 ppm	2 ppm		
	Dräger Sensor ® XS R H2S	Elektrochemisch	0,0 – 100 ppm	0,1 ppm	1 ppm		
	Temperaturbereich: -20 °C bis 60 °C (Gesamtsystem, geringe Abweichungen ohne Einfluss im betrachteten Szenario für einzelne Sensoren)						
	Luftfeuchtigkeit: 10 bis 95 % relative Luftfeuchtigkeit (Gesamtsystem, geringe Abweichungen ohne Einfluss im betrachteten Szenario für einzelne Sensoren)						
		pe (optional): 0,2 bis	9,6 L/min				
	[A85] [A	04]					

Mehrgasmessgerät Dräger X-am 7000	Sensor	Sensorart		Messb	ereich	Auflösu	ing	Nachweis- grenze		Dräger Safety AG & Co. KGaA
(Toxizitätsbestimmung) [A82]	Dräger Sensor ® Smart XS EC NH ₃	Elektrochemisc		nisch 0 – 300 p		om 1 ppm		3 ppm		
	Dräger Sensor ® XS EC HCN	Elektrochemisch		iisch 0 – 50 ppm		0,5 ppm		0,1 ppm	-	
	Dräger Sensor ® XS EC NO ₂	Elektrochemisch		n 0 – 50 ppm		0,5 ppm		0,1 ppm	-	
	Dräger Sensor ® Smart CatEX (HC PR)	Katalytisch (Wärmetön sensor)	ungs-	0 – 100 UEG (Metha – 100 Vol.%	) % nn), 0 CH4	2 % UE	G	$\begin{array}{l} 1 \ \% \ UEG; \\ 0,02 \ Vol \\ \% \ <5 \\ Vol \\ \% \\ CH_4 > 1 \\ Vol \\ \% \end{array}$		
	Temperatu Abweichu Sensoren) Luftfeuch geringe A Sensoren) Vinteme Pump [A83] [A8	urbereich: -2 ingen ohne E tigkeit: 10 bi bweichunger pe (optional): 34]	0 °C bi Sinfluss s 95 % n ohne 0,2 bis	is 60 °C s im betr relative Einfluss s 0,6 L/n	(Gesan achteter Luftfe im bet	ntsystem, n Szenario uchtigkei rachteten	gerin o für t (Ge Szer	nge einzelne ssamtsystem, nario für einz	elne	
Prüfröhrchen	Prüfröhr	chen	Mess h in j	sbereic opm	Anwe -berei Temp in °C	endungs ich peratur	Anv h L	wendungsbe uftfeuchtigk	reic eit	Drägerwerk AG & Co. KGaA
	Polytest				0-50	)	≤ 5	0 mg H ₂ O/L		
	Acrylnit	ril 0,2/a	0,2 – 50	4/5-	5-40	)	1 b	is 25 mg H ₂ O	D/L	
	Ammoni	iak 5/a	5-7	00	10 – 5	50	< 2	0 mg H ₂ O/L		
	Blausäur	re 0,5/a	0,5 - 50	5 / 5 -	0-40	)	< 4	0 mg H ₂ O/L		
	Schwefe f 2/b	lwasserstof	2-3	00	0 - 50	)	2 –	20 mg H ₂ O/	L	
	Kohlens d 2/a	toffmonoxi	2-6	0	0-40	)	≤ 2	0 mg H ₂ O/L		
	Perchlor	ethylen 2/a	2-3	00	15 – 3	30	< 2	5 mg H ₂ O/L		
	Toluol 1	00/a	100 -	- 1800	0-40	)	< 3	0 mg H ₂ O/L		
	Phenol 1	/b	1-2	0	10 - 3	30	1 –	18 mg H ₂ O/	L	

	Aceton 100/b	100 – 12000	0 –	40	5 – 20	mg H ₂ O/L	
	Ethylacetat 200/a	200 - 300	00 17	- 40	3 – 15	mg H ₂ O/L	
	Ethanol 100/a	100 - 300	00 5-	35	< 20 n	ng H ₂ O/L	
	Formaldehyd 2/a	2-40	0 -	40	3 – 15	mg H ₂ O/L	
	Chloroform 2/a	2-10	10	- 30	9 mg l	H ₂ O/L	
	Trichlorethylen 50/a	50 - 500	15	- 45	5 – 12	mg H ₂ O/L	
	Toluylendiisocyana t 0,02/A	0,02 - 0,2	2 15	- 30	< 20 n	ng H ₂ O/L	
	Nitrose Gase 2/a	5 - 100 / 1 - 50	2 10	- 30	< 30 n	ng H ₂ O/L	
	Simultantest-Set 3 für organische Dämpfe		10	- 30			
	Silicagel Typ G						
	[A72] [A85] (Reaktion und Luftfeuchtigkeitsh	nsmechanis pereiche)	men, Qu	erempfindli	chkeiter	n, Temperatur-	
Daten Gasspürpumpe	Temperaturbereich: -2	Drägerwerk AG &					
accuro @ [A/2]	Luftfeuchtigkeit: 0 bis	CO. KUAA					
	$\dot{V}$ : 100 ± 5 ml/Hub						
Prüfröhrchen-Pumpe Dräger X-act ® 5000	Temperaturbereich: 5	Dräger Safety AG & Co. KGaA					
	Luftfeuchtigkeit: 0 bis						
	V: 0,1 bis 2,0 L/min						
	Auflösung V: 0,1 – 1,0 Auflösung 0,2 L/min						
	[A86] [A87]						
MGA 5 Portabler Infrarot- Multigasanalysator	Gasentnahmesonde (A	usführung	mit behe	iztem Vorfi	lter im		MRU –
[A88]	Sondengriff (Sondenro Einsatzgebiet bis	Messgeräte für Rauchgase und					
	650 °C; Gasentnahme	GmbH					
	Messkomponenten	Mess- bereich Min.	Mess- bereich Max.	Messzelle		Genauigkei t	
	$\begin{tabular}{ c c c c c c c } Sauerstoff O_2 & 0-25 \ \% \\ (elektrochemischer \\ Sensor) & \\ \end{tabular}$			Elektrochemisc ± 0,2 Vo h %		± 0,2 Vol %	
	Kohlendioxid CO ₂ (NDIR)	0-3 %	0-30 %	Infrarot 3- Messmod	·Gas- ul	3 % vom Mess- bereich	
	Kohlenmonoxid CO (NDIR)	0 – 1000 ppm	0 – 100 %	Infrarot 3- Messmod	-Gas- ul	3 % vom Mess- bereich	
	Kohlenwasserstoff e als Propan C ₃ H ₈ (NDIR)	0 – 1000 ppm	0 – 100 %	Infrarot 3- Messmod	-Gas- ul	3 % vom Mess- bereich	
	Stickstoffmonoxid NO (NDIR)	0 - 2000 ppm	0 - 5000 ppm	Infrarot 2-Gas- Messmodul	3 % vom Mess- bereich		
----------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------	-------------------------	------------------------------	----------------------------------------------	------------------------------------------------------	--
	Stickstoffdioxid NO ₂ (NDIR)	0 - 500 ppm	0 - 1000 ppm	Infrarot 2-Gas- Messmodul	3 % vom Mess- bereich		
	Schwefeldioxid SO ₂ (NDIR)	0 - 1.000 ppm	0 - 5000 ppm	Infrarot 2-Gas- Messmodul	3 % vom Mess- bereich		
	Abgastemperatur (Thermoelement Typ K)	0 - 650 ^c Edelstah Gasentn r	°C mit ll ahmeroh	Thermoelement	± 2 °C < 200 °C, 1 % v. MW > 200 °C		
SB2000 Series Wall/Panel Mount Analyser (Nichtdispersiver Infrarotabsorptionssensor	Messbereich: je nach Auflösung: 1 % des N	ADC Gas Analysis Ltd					
	Zeitliche Auflösung:						
$CO, CO_2)$	Wiederholbarkeit: $\pm 0$						
	Rauschen: $\pm 0,5$ % de						
	Kalibriergenauigkeit:						
	Temperatureinfluss: ±						
	V: 1 > x > 0,01 l/min						
Brandcontainer	Modifizierter Container (20 Fuß, veränderter Innenaufbau mit Rauchschürze, Abzug, Zuluft und Sockel für Brandgut)Feuer Wupp						
	Maße: 5,9 m Länge, 2,4 m Höhe, 2,4 m Breite, Volumen ca. 33 m ³						
	Weitere Informationen zum Großversuch können dem Anhang entnommen werden.						
Kleinbrennertest nach DIN 4102, Teil 1	Entsprechend Aufbau nach DIN 4102, Teil 1					DrIng. Georg Wazau Mess- + Prüfsysteme GmbH	
Elektrischer Bunsenbrenner	Temperatureinstellung: 500 °C					HORO Dr. Hofmann GmbH	

## Tabelle A.44: Hauptsächlich kalibrierte Substanzen

Tabelle A.++. Hauptsaelilleli Kai	ionerie Substanzen		1
		Niedrigste kalibrierte	Höchste kalibrierte Konzentration
Kalibrierte Stoffe	Retentionszeiten in min	Konzentration in mg/ml	in mg/ml
Benzol ¹	2,66	0,006	0,200
Methylmethacrylat ¹	3,41	0,006	0,200
Pyridin ¹	4,02	0,006	0,200
Acetocyanohydrin	4,56	0,003	0,212
Toluol ¹	4,68	0,006	0,200
Ethylmethacrylat ¹	5,28	0,006	0,200
Ethylbenzol ¹	7,64	0,006	0,200
o-Xylol ¹	7,93	0,006	0,200

Styrol ¹	8,65	0,006	0,200
<i>m</i> -Xylol ¹	8,73	0,006	0,200
p-Xylol ¹	8,73	0,006	0,200
Benzonitril	11,88	0,003	0,224
Inden	13,87	0,003	0,188
Naphthalin ¹	18,00	0,006	0,200
2-Methylindolin	18,91	0,003	0,204
Isochinolin ²	19,58	0,003	0,220
Biphenyl	21,68	0,003	0,248
Naphthalin-1-carbonitril	23,39	0,003	0,236
Acridin	27,12	0,002	0,180
Oleamid	32,20	0,010	0,100

¹ aus EPA Appendix IX Volatiles Calibration mix, Grundkonzentration 2 mg/ml in Methanol

² oft durch automatischen Datenbankabgleich als Chinolin erkannt

## Literatur (Anhang)

- [A1] NIST Chemistry WebBook (2020). Online verfügbar unter https://webbook.nist.gov/chemistry/, zu-letzt aktualisiert am 03.05.2020, zuletzt geprüft am 03.10.2020.
- [A2] vfdb Vereinigung zur Förderung des Deutschen Brandschutzes e.V (2009): Schadstoffe bei Bränden. vfdb 10/03: 2009-05 (02). Köln: VdS Schadenverhütung Verlag.
- [A3] Buff, Klaus; Greim, Helmut (1997): Abschätzung der gesundheitlichen Folgen von Großbrän-den.
- [A4] Bildquelle: https://www.megaitaliamedia.com/_resources/files/pdf/ACAT906.U.pdf, zuletzt geprüft am 05.02.2023.
- [A5] U. S. Environmental Protection Agency: Acute Exposure Guideline Levels (AEGL) Defini-tionen. http://www.epa.gov/oppt/aegl/pubs/define.htm, zuletzt aufgerufen am 22.03.2015.
- [A6] NES 713, 2012: Defence Standard 02-713: Determination Of The Toxicity Index Of The Products Of Combustion From Small Specimens Of Materials.
- [A7] NES 713, 2000: Defence Standard 02-713: Determination Of The Toxicity Index Of The Products Of Combustion From Small Specimens Of Materials.
- [A8] Stec, Anna; Hull, Richard (2010): Fire toxicity. Oxford: CRC Press. Online verfügbar unter http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10654024.
- [A9] Stec, Anna A. (2017): Fire toxicity The elephant in the room? In: Fire Safety Journal 91, S. 79–90. DOI: 10.1016/j.firesaf.2017.05.003.
- [A10] Richter, Hans (1999): Brandsimulation durch Mikroverbrennung. Unter Mitarbeit von M. Bahadir. Online verfügbar unter https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00001039.
- [A11] Abdel-Shafy, Hussein I.; Mansour, Mona S.M. (2016): A review on polycyclic aromatic hy-drocarbons: Source, environmental impact, effect on human health and remediation. In: Egyp-tian Journal of Petroleum 25 (1), S. 107–123. DOI: 10.1016/j.ejpe.2015.03.011.
- [A12] Goertz, Roland (1997): Analytik und Systematisierung der organischen Brandrauchinhaltsstoffe.
- [A13] Hurley, Morgan J.; Gottuk, Daniel T.; Hall Jr., John R. (Hg.) (2016): SFPE Handbook of Fire Protection Engineering. 3 Bände. Online verfügbar unter http://dx.doi.org/10.1007/978-1-4939-2565-0.
- [A14] Maclovio. Herrera Salinas (2000): Untersuchung flüchtiger Verbindungen bei der thermischen Zersetzung von stickstoffhaltigen Polymerwerkstoffen.

- [A15] Ortner, Jens (1995): Beurteilung von Kunststoffbränden. bei einer Störung des bestimmungs-gemäßen Betriebs entstehende Stoffe nach den Anhängen II IV der 12. BImSchV. Mün-chen: Bayerisches Landesamt für Umweltschutz. Online verfügbar unter https://opacplus.bsb-muenchen.de/search?id=10702141&View=default&db=100.
- [A16] Troitzsch, Jürgen (Hg.) (2004): Plastics flammability handbook. Principles, regulations, testing and approval. 3. ed. Munich: Hanser.
- [A17] Stec, Anna A.; Hull, T. Richard (2011): Assessment of the fire toxicity of building insulation materials. In: Energy and Buildings 43 (2-3), S. 498–506. DOI: 10.1016/j.enbuild.2010.10.015.
- [A18] Sistovaris, N.; Asshauer, J.; Jeske, V.; Schuster, F. (1989): Combustion processes in laboratory devices fire simulations using the lambda' concept - extent of formation of hydrocyanic acid and aromatic compounds. In: Fresenius Z Anal Chem 334, S. 221–225.
- [A19] Kommission für Anlagensicherheit beim Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (2017): KAS-43 - Empfehlungen zur Ermittlung der Mengen gefährlicher Stoffe bei außer Kontrolle geratenen Prozessen. Online verfügbar unter http://uo.f1f37a1bf7b548e2bdb62f666ac0ec20.bodycote-enr.zetasw.com/recht/t_regeln/kas/43_ges.htm.
- [A20] Chattopadhyay, D. K.; Webster, Dean C. (2009): Thermal stability and flame retardancy of polyurethanes. In: Progress in Polymer Science 34 (10), S. 1068–1133. DOI: 10.1016/j.progpolymsci.2009.06.002.
- [A21] Pielichowski, Krzysztof; Njuguna, James (2005): Thermal degradation of polymeric materials. Shawbury: Rapra Technology. Online verfügbar unter http://lib.myilibrary.com/detail.asp?id=82358.
- [A22] Merz, W.; Neu, H.-J.; Kuck, M.; Winkler, K.; Gorbach, S.; Muffler, H. (1986): Ein Verfahren zur Erzeugung und analytischen Charakterisierung von Brandgasen. In: Z. Anal. Chem. 325 (5), S. 449–460. DOI: 10.1007/BF00489134.
- [A23] Purser, David; Purser, J. (2008): HCN yields and fate of fuel nitrogen for materials under dif-ferent combustion conditions in the ISO 19700 tube furnace and large -scale fires. In: Fire Saf. Sci. 9, S. 1117–1128. DOI: 10.3801/IAFSS.FSS.9-1117.
- [A24] Simonson, Margaret; Tuovinen, Heimo; Emanualsson, Viktor (2000): Formation of Hydrogen Cyanide in Fires. BRANDFORSK Project 510-991.
- [A25] Binder, K. (Hg.) (1982): Zusammensetzung der Brandgase organischer Materialien im Woh-nungsbau. Toxizitäts-Studie. Wien: Facultas-Verl. (Schriftenreihe Chemie Kunststoffe aktuell, 5).
- [A26] McKenna, Sean Thomas; Hull, Terence Richard (2016): The fire toxicity of polyurethane foams. In: Fire Sci Rev 5 (1). DOI: 10.1186/s40038-016-0012-3.
- [A27] Purser, David A. (2016): Toxic Combustion Product Yields as a Function of Equivalence Ra-tio and Flame Retardants in Under-Ventilated Fires: Bench-Large-Scale Comparisons. In: Po-lymers 8 (9). DOI: 10.3390/polym8090330.
- [A28] Jessie (Yih-Pying) Hou (2011): Distribution Curves for Interior Furnishings on CO2, CO, HCN, Soot and Heat of Combustion. Christchurch, New Zealand.
- [A29] Wilhelm, M.; Matuschek, G.; Kettrup, A. (2000): Determination of basic nitrogen-containing polynuclear aromatic hydrocarbons formed during thermal degradation of polymers by high-performance liquid chromatography– fluorescence detection. In: Journal of Chromatography A 878 (2), S. 171–181. DOI: 10.1016/S0021-9673(00)00266-1.
- [A30] Herrera, M.; Wilhelm, M.; Matuschek, G.; Kettrup, A. (2001): Thermoanalytical and pyrolysis studies of nitrogen containing polymers. In: Journal of Analytical and Applied Pyrolysis 58-59, S. 173–188. DOI: 10.1016/S0165-2370(00)00193-5.
- [A31] Hodgkin, J. H.; Galbraith, M. N.; Chong, Y. K. (1983): Combustion products from burning wool fabric. In: Fire Mater. 7 (4), S. 210–215. DOI: 10.1002/fam.810070409.
- [A32] Yablokov, V. Ya.; Smel'tsova, I. L.; Zelyaev, I. A.; Mitrofanova, S. V. (2009): Studies of the rates of thermal decomposition of glycine, alanine, and serine. In: Russ J Gen Chem 79 (8), S. 1704–1706. DOI: 10.1134/S1070363209080209.
- [A33] Lien, Y. C.; Nawas, W. W. (1974): THERMAL DECOMPOSITION OF SOME AMINO ACIDS. Valine, Leucine and Isoleucine. In: J Food Science 39 (5), S. 911–913. DOI: 10.1111/j.1365-2621.1974.tb07274.x.
- [A34] Hansson, K. (2003): Pyrolysis of poly-L-leucine under combustion-like conditions. In: Fuel 82 (6), S. 653–660. DOI: 10.1016/S0016-2361(02)00357-5.
- [A35] Ratcliff, M. A.; Medley, E. E.; Simmonds, P. G. (1974): Pyrolysis of amino acids. Mechanistic considerations. In: The Journal of organic chemistry 39 (11), S. 1481–1490. DOI: 10.1021/jo00924a007.
- [A36] Richmond-Aylor, Amy; Bell, Suzanne; Callery, Patrick; Morris, Keith (2007): Thermal degradation analysis of amino acids in fingerprint residue by pyrolysis GC-MS to develop new latent fingerprint developing reagents. In: Journal of forensic sciences 52 (2), S. 380–382. DOI: 10.1111/j.1556-4029.2007.00384.x.

- [A37] Li, Jie; Wang, Zhiyong; Yang, Xi; Hu, Ling; Liu, Yuwen; Wang, Cunxin (2007): Evaluate the pyrolysis pathway of glycine and glycylglycine by TG–FTIR. In: Journal of Analytical and Applied Pyrolysis 80 (1), S. 247–253. DOI: 10.1016/j.jaap.2007.03.001.
- [A38] Kasarda, D. D.; Black, D. R. (1968): Thermal degradation of proteins studied by mass spec-trometry. In: Biopolymers 6 (7), S. 1001–1004. DOI: 10.1002/bip.1968.360060712.
- [A39] Becker, W.; Sand, H. (1988): The contribution of materials to fire gas toxicity. A critical review of methods of assessment. In: Fire Mater. 13 (1), S. 130–137. DOI: 10.1002/fam.810130118.
- [A40] Bertol, Elisabetta; Mari, Francesco; Orzalesi, Giovanni; Volpato, Ivo (1983): Combustion products from various kinds of fibers: Toxicological hazards from smoke exposure. In: Forensic Science International 22 (2-3), S. 111–116. DOI: 10.1016/0379-0738(83)90002-6.
- [A41] Braun, Emil; Levin, Barbara C. (1987): Nylons: A review of the literature on products of combustion and toxicity. In: Fire Mater. 11 (2), S. 71–88. DOI: 10.1002/fam.810110204.
- [A42] Felde, Natalia (2005): Gassensor-Detektionsmechanismen für Schwelgase von PA-Granulat und PET- Fasern. Gießen.
- [A43] Dümichen, Erik; Eisentraut, Paul; Bannick, Claus Gerhard; Barthel, Anne-Kathrin; Senz, Rainer; Braun, Ulrike (2017): Fast identification of microplastics in complex environmental samples by a thermal degradation method. In: Chemosphere 174, S. 572–584. DOI: 10.1016/j.chemosphere.2017.02.010.
- [A44] Dümichen, E.; Braun, U.; Senz, R.; Fabian, G.; Sturm, H. (2014): Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry. In: Journal of chromatography. A 1354, S. 117–128. DOI: 10.1016/j.chroma.2014.05.057.
- [A45] Kulesza, Kamil; Pielichowski, Krzysztof (2006): Thermal decomposition of bisphenol A-based polyetherurethanes blown with pentane. In: Journal of Analytical and Applied Pyrolysis 76 (1-2), S. 249–253. DOI: 10.1016/j.jaap.2005.12.003.
- [A46] Lucas Bustamante Valencia (2009): Experimental and numerical investigation of the thermal decomposition of materials at three scales: application to polyether polyurethane foam used in upholstered furniture.
- [A47] Kim, Byoung-Hyoun; Yoon, Keongyeon; Moon, Dong Cheul (2012): Thermal degradation behavior of rigid and soft polyurethanes based on methylene diphenyl diisocyanate using evolved gas analysis-(gas chromatography)–mass spectrometry. In: Journal of Analytical and Applied Pyrolysis 98, S. 236–241. DOI: 10.1016/j.jaap.2012.09.010.
- [A48] Herrera, M.; Matuschek, G.; Kettrup, A. (2002): Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. In: Polymer Degradation and Stability 78 (2), S. 323–331. DOI: 10.1016/S0141-3910(02)00181-7.
- [A49] Habermehl, Gerhard G. K.; Hammann, Peter E.; Krebs, Hans Christoph; Ternes, Waldemar (2008): Naturstoffchemie. Eine Einführung. 3., vollst. überarb. und erw. Aufl. Berlin, Heidel-berg: Springer (Springer-Lehrbuch). Online verfügbar unter http://dx.doi.org/10.1007/978-3-540-73733-9.
- [A50] Bradbury, J. H.; Peters, D. E. (1972): The Chemical Composition of Wool. In: Textile Rese-arch Journal 42 (8), S. 471–474. DOI: 10.1177/004051757204200807.
- [A51] Ward, W. H.; Binkley, C. H.; Snell, N. S. (1955): Amino Acid Composition of Normal Wools, Wool Fractions, Mohair, Feather, and Feather Fractions. In: Textile Research Journal 25 (4), S. 314–325. DOI: 10.1177/004051755502500403.
- [A52] Corfield, M. C.; Robson, A. (1955): The amino acid composition of wool. In: The Biochemical journal 59 (1), S. 62– 68. DOI: 10.1042/bj0590062.
- [A53] Arun Gupta; Nuruldiyanah Binti Kamarudin; Chua Yeo; Gek Kee; Mohd Yunus (2012): Ex-traction of Keratin Protein Chicken Feather. In: J. Chem. Chem. Eng. 6. Online verfügbar from unter https://www.researchgate.net/profile/Arun_Gupta8/publication/257653646_Extraction_of_Keratin_Protein_from_Chi cken_Feather/links/59522acdaca272a343db1f61/Extraction-of-Keratin-Protein-from-Chicken-Feather.pdf.
- [A54] Steinleitner, H.-D. (1988). Brandschutz- und sicherheitstechnische Kennwerte gefährlicher Stoffe. Frankfurt / Main: Verlag Harri Deutsch.
- [A55] Sergei V Levchik; Edward D Weil; Menachem Lewin (1999): Thermal decomposition of aliphatic nylons. In: Polymer International 48 (7), S. 532–557. DOI: 10.1002/(SICI)1097-0126(199907)48:7<532::AID-PI214>3.0.CO;2-R.
- [A56] M.M. Shapi, TG and DSC studies of some thermal properties and stability aspects of poly(acrylonitrile-butadienestyrene), polystyrene and poly(acrylonitrile-styrene) plastics. Thermochim Acta, 1991.
- [A57] NIST Chemistry WebBook (2020). Online verfügbar unter https://webbook.nist.gov/chemistry/, zuletzt aktualisiert am 03.05.2020, zuletzt geprüft am 03.10.2020.
- [A58] Erik Dümichen (2016): Einsatz neuer thermoanalytischer Verfahren zur Untersuchungthermi-scher und thermooxidativer Degradationsmechanismensowie dem Netzwerkaufbau von Po-lymeren. Berlin. Online verfügbar unter https://pdfs.semanticscholar.org/e9e1/ba80ac0f7571a06152859cfcb495dc3f29d7.pdf.

- [A59] ISO DIS 19702:2015: Guidance for sampling and analysis of toxic gases and vapours in fire effluents using Fourier Transform Infrared (FTIR) spectroscopy. Online verfügbar unter https://www.iso.org/standard/63169.html.
- [A60]Böcker, Jürgen (2014): Spektroskopie. Instrumentelle Analytik mit Atom- und Molekülspektrometrie. 1st ed. s.l.: Vogel<br/>Buchverlag (LaborPraxis).Online verfügbarunter<br/>unter<br/>https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=1651435.
- [A61] Bechmann, Wolfgang; Schmidt, Joachim (2000): Struktur- und Stoffanalytik mit spektroskopischen Methoden. Wiesbaden: Vieweg+Teubner Verlag (Teubner Studienbücher Chemie).
- [A62] Bräutigam, Andreas (2003): Einflüsse der Brandgutzusammensetzung und der Verbrennungs-bedingungen auf die Entstehung mittel- und schwerflüchtiger organischer Brandrauchinhalts-stoffe. Online verfügbar unter https://hssopus.ub.rub.de/opus4/files/3225/diss.pdf.
- IneosStyrolution, DatenblattLuran358N.[Online]Verfügbarunter:https://www.ineos-[A63]styrolution.com/INTERSHOP/web/WFS/Styrolution-Portal-Site/en<br/>Print.pdf?SKU=400800210155&RenderPageType=ProductDetail.US/-/USD/ViewPDF-
- [A64] Ineos Styrolution, Datenblatt Luran S777K. [Online] Verfügbar unter: https://www.ineosstyrolution.com/INTERSHOP/web/WFS/Styrolution-Portal-Site/en US/-/USD/ViewPDF-Print.pdf?SKU=400700190193&RenderPageType=ProductDetail.
- [A65] Ineos Styrolution, SICHERHEITSDATENBLATT gemäß Verordnung (EG) Nr. 1907/2006 (REACH) und Verordnung (EU) Nr. 2015/830. Terluran® ABS Granulate, Natural Materialnummer TER003, 2019.
- [A66] Ineos Styrolution, SICHERHEITSDATENBLATT gemäß Verordnung (EG) Nr. 1907/2006 (REACH) und Verordnung (EU) Nr. 2015/830. Luran® SAN Granulate Transparent Materialnummer LUR028, 2019.
- [A67] Ineos Styrolution, SICHERHEITSDATENBLATT gemäß Verordnung (EG) Nr. 1907/2006 (REACH) und Verordnung (EU) Nr. 2015/830. Novodur® ABS Granulat Materialnummer ABS005, 2019.
- [A68] Dimer: PUR-Schaum / Polyurethan-Schaumstoff Collar ®. Online verfügbar unter https://www.dimer.com/de/materialien/pur-weichschaum/pur-schaum.php, zuletzt ge-prüft am 29.09.2018.
- [A69] DIN 13014 Beiblatt 1:1977-12, Krankenhausmatratzen aus Polyätherschaum; Hinweise für Verwendung und Behandlung.; DIN 13014:1977-12, Krankenhausmatratzen aus Polyätherschaum; Maße, Anforderungen, Prüfung.
- [A70] Dr. Bruno Lange GmbH & Co. KG. (2008): Möglichkeiten und Grenzen der Untersuchung gefärbter Proben im Leuchtbakterientest.
- [A71] Hach Lange Group (2023): LUMIStox Präsentation. Online verfügbar unter https://waterqualitygroup.my.salesforce.com/sfc/p/#i0000000c0fJ/a/3q000000nCAq/EpzDq7.93PSYs_cFg8WhcTXm 94f5fSxOYJHFzvfWSJ0, zuletzt aktualisiert am 09.02.2023, zuletzt geprüft am 09.02.2023.
- [A72] Handbuch für Dräger Röhrchen® und MicroTubes. Boden-, Wasser- und Luftuntersuchungen sowie technische Gasanalyse (2019). 19. Ausgabe. Lübeck: Dräger Safety AG & Co. KGaA.
- [A73] Fire Testing Technology (2022): Mass Loss Cone ISO 13927 Fire Testing Technology. Online verfügbar unter https://www.fire-testing.com/mass-loss-calorimeter/, zuletzt aktualisiert am 08.11.2022, zuletzt geprüft am 24.08.2023.
- [A74] One-bit-media.com (2013): Probenahmepumpe GilAir Plus für die personengetragene Probenahme. One-bitmedia.com. Online verfügbar unter http://www.probenahmepumpe.info/, zuletzt aktualisiert am 14.08.2013, zuletzt geprüft am 24.03.2020.

Ion Science Ltd (2018): Tiger Select, PID Gasdetektor für Benzol, TAC, VOC. Online verfügbar unter: https://www.ism-

- [A75] https://www.ishid.de/fileadmin/user_upload/ISM_2018_TIGER_SELECT_PID_tragbarer_VOC_und_Benzolgasdetektor_DE.pdf, zuletzt geprüft am 03.03.2019.
- [A76] Bruker Daltonics GmbH (2016): Handbuch für Bediener RAID-M 100 BBK (nicht öffentliche Quelle), Version 1.1 Ausgabe 2016.
- [A77] ISO-FDIS 19701:2012: Guidance for sampling and analysis of toxic gases and vapours in fire effluents using Fourier Transform Infrared (FTIR) spectroscopy.
- [A78] ISO DIS 19702:2015: Guidance for sampling and analysis of toxic gases and vapours in fire effluents using Fourier Transform Infrared (FTIR) spectroscopy. Online verfügbar unter https://www.iso.org/standard/63169.html.
- [A79] Dräger Safety AG & Co. KGaA: Dräger X-pid 9000/9500 Mehrgasmessgerät
- [A80] Dräger Safety AG & Co. KGaA: Dräger X-pid 9000/9500 Sensor Unit Instructions for use.
- [A81] Dräger Safety AG & Co. KGaA (2022): DLE-Set für Analysen mit dem Dräger-Luft-Extraktionsverfahren Gebrauchsanleitung, 2. Auflage. Drägerwerk AG, Lübeck.
- [A82] Roland Ferl: Gerätekonfiguation Mehrgasmessgerät Dräger X-am 7000 der Feuerwehr Wuppertal. E-Mail, 2020.

- [A83] Dräger Safety AG & Co. KGaA (2018): Dräger X-am 7000 Software 2.nn, 15. Auflage Ausgabe März 2018.
- [A84] DrägerSensor®- & Gasmessgeräte-Handbuch (2017). 4. Ausgabe. Lübeck: Dräger Safety AG & Co. KGaA.
- [A85] Dräger Safety AG & Co. KGaA (2018): Dräger-Röhrchen- & CMS-Handbuch. Boden-, Wasser- und Luftuntersuchungen sowie technische Gasanalyse. Drägerwerk AG, Lübeck.
- [A86] Dräger Safety AG & Co. KGaA: Dräger X-act 5000 Instructions for use.
- [A87] Dräger Safety AG & Co. KGaA: Dräger X-act 5000 Dräger Röhrchenpumpe.
- MRU Messgeräte für Rauchgase und Umweltschutz GmbH (o.J.): MGA 5. Portabler Infrarot-Multigasanalysator.
  [A88] http://www.mru.eu/produkte/mobile-abgasmessgeraete/mobile-industriemesstechnik/product/mga-5.html (10. August 2016); Bedienungsanleitung MGA5. Neckarsulm / Obereisesheim: MRU GmbH.
- [A89] DDBST GmbH (2020): Entropy of Benzene from Dortmund Data Bank. Online verfügbar unter http://www.ddbst.com/en/EED/PCP/ETP_C31.php, zuletzt aktualisiert am 03.10.2020, zuletzt geprüft am 03.10.2020.
- [A90] Mortimer, Charles E.; Müller, Ulrich (2007): Chemie. Das Basiswissen der Chemie; ... 126 Tabellen. 9., überarb. Aufl. Stuttgart: Thieme. Online verfügbar unter https://swbplus.bsz-bw.de/bsz265857120idx.htm.
- Brown, Theodore L.; LeMay, Harold Eugene; Bursten, Bruce Edward (2011): Chemie. Studieren kompakt. Unter
  [A91] Mitarbeit von Christian Robl und Wolfgang Weigand. 10., aktualisierte Auflage. München, Harlow, Amsterdam: Pearson Higher Education (Always learning).
- [A92] Hagemann, Philipp (2015): Verhalten der Halogene Fluor, Chlor und Brom bei Verbrennungsprozessen am Beispiel von halogenierten Kunststoffen. Dissertation. Shaker Verlag GmbH.
- [A93] Joos, Franz (2006): Technische Verbrennung. Verbrennungstechnik, Verbrennungsmodellierung, Emissionen : mit 65 Tabellen. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg.
- [A94] Herrera, M.; Matuschek, G.; Kettrup, A. (2001): Main products and kinetics of the thermal degrada-tion of polyamides. In: Chemosphere 42 (5-7), S. 601–607. DOI: 10.1016/S0045-6535(00)00233-2.
- Herrera, M.; Matuschek, G.; Kettrup, A. (2000): Thermal Degradation Studies of Some Aliphatic Polyamides Using
  [A95] Hyphenated Techniques (TG-MS, TG-FTIR). In: Journal of Thermal Analysis and Calorimetry 59 (1/2), S. 385–394.
  DOI: 10.1023/A:1010177105297.
- [A96] Schnabel, Wolfram (1981): Polymer degradation. Principles and practical applications. Reprint 1992. München: Hanser.