de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
An epidemiological crack percolation model with application to probabilities of failure for gas turbines / by: Mathis Harder, M.Sc. Wuppertal, Januar 2024
Inhalt
1 Introduction
1.1 Motivation
1.2 Outline
2 Basics on Mechanics and Fatigue of Metals
2.1 Polycrystalline Structure of Metals
2.2 Strain and Stress
2.2.1 Isotropic and Anisotropic material
2.3 Plastic deformation
2.3.1 Dislocations
2.3.2 Slip Systems
2.3.3 Yield criterion
2.3.4 Multiaxial yield criteria
2.4 Schmid factors
2.5 Fatigue
2.5.1 Load During Fatigue Testing
2.5.2 Stage I: Crack Initiation
2.5.3 Stage II: Crack Propagation
2.5.4 Stage III: Fracture
2.5.5 Wöhler Curves
2.5.6 Damage Accumulation
2.6 Stress Intensity Factor
2.6.1 Fracture Criteria
2.7 LCF Experiments
3 Mathematic Foundation
3.1 Boundary Value Problem
3.1.1 Weak Solutions
3.1.2 Linear Elasticity as a Boundary Value Problem
3.1.3 Finite Element Method
3.2 Rotations
3.2.1 Symmetries of the Compliance Tensor
3.2.2 Haar measure
3.3 Crack Initiation Process
4 Epidemiological Percolation Model Uniaxial Stress
4.1 Single Grain Crack Initiation Times
4.1.1 Random Schmid Factors
4.1.2 Random Crack Initiation Times
4.2 Percolation Model
4.3 Uniaxial Infection Function
4.3.1 Geometry and Boundary Conditions
4.3.2 Numerical Results
4.3.3 Gradient Boosting Trees
4.3.4 The Surrogate Model
4.4 Failure Criteria
4.5 Results and Experimental Validation
4.5.1 Fitting the Models
4.5.2 Results
5 Microstructual Models
5.1 Grain Orientations
5.1.1 Feed Forward Neural Networks
5.1.2 Density Estimation as Supervised Function Approximation
5.1.3 Sampling new Angles
5.2 Percolation with Grain Boundary
5.2.1 Adjustments to the Percolation Model
5.2.2 Results
6 Multiaxial Percolation
6.1 Adjustments to the Percolation Model
6.2 Multiaxial Infection Function
6.2.1 Decomposition of the Stress
6.2.2 Geometry
6.2.3 Boundary Conditions
6.2.4 The Surrogate Models
6.2.5 Integration into the Percolation Model
6.3 Fitting the Model
6.4 Experimental Validation
6.4.1 Empirical shift
6.5 Comparison of the Different Orientation Distributions
6.5.1 Schmid Factors
6.5.2 Percolation with different Orientational Distributions
7 Application to a Turbine Blade
7.1 Linear Hazards
7.2 Blisk-Geometry and Surfaces Stress
7.3 Surrogate Model for the local cumulative Hazard rate
7.3.1 Generation of the Database
7.3.2 The Model
7.4 FEM Postprocessor
8 Conclusion and Outlook
9 References