de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Advances in Lidar Point Cloud Segmentation for automotive applications : segmenting outside the box / von Frederik Lenard Hasecke. Wuppertal, 2023
Inhalt
Abstract
Acknowledgement
Contents
Contents
1 Introduction
1.1 Main Contributions
1.2 Publications
2 Fundamentals
2.1 Lidar Sensor Fundamentals
2.1.1 Automotive Lidar Sensors
2.2 Deep Learning
2.2.1 Feedforward Neural Networks
2.2.2 Convolutional Neural Networks
2.2.3 Segmentation
2.3 Deep Learning on Lidar Data
I Developing Novel Algorithms and Networks for Lidar Segmentation
3 Contributions to Instance Segmentation: Developing a New Clustering Algorithm for Lidar Data
3.1 Related Work
3.1.1 Clustering Algorithms
3.2 Fast Lidar Image Clustering: Method
3.2.1 Ground Extraction
3.2.2 Clustering
3.3 Fast Lidar Image Clustering: Evaluation
3.3.1 Runtime
3.3.2 Segmentation Quality
3.4 Conclusion
4 Contributions to Semantic Segmentation: Creating an Advanced Network Architecture for Three-Dimensional Semantic Segmentation of Lidar Point Clouds
4.1 Related Work
4.2 RangePillars: Method
4.2.1 Point Cloud to RangePillars
4.2.2 Multi-Scale Pillar Feature Aggregation
4.2.3 Image Backbone
4.2.4 Pillar-Pixel-Point Classification
4.2.5 Hydra Loss
4.3 RangePillars: Evaluation
4.3.1 Ablation Study
4.3.2 Projection Cleaner
4.3.3 Benchmark Results
4.4 Conclusion
5 Contributions to Panoptic Segmentation: Developing Novel and Improved Methods for Panoptic Point Cloud Segmentation
5.1 Related Work
5.2 Lidar Cluster Classification
5.2.1 Lidar Cluster Classification: Method
5.2.2 Lidar Cluster Classification: Evaluation
5.3 Lidar Image Panoptic Segmentation
5.3.1 Lidar Image Panoptic Segmentation: Method
5.3.2 Lidar Image Panoptic Segmentation: Evaluation
5.4 Conclusion
II Enhancing Lidar Segmentation Perception and Adaptability: Novel Techniques for Data Augmentation and Domain Adaptation
6 Developing Advanced Lidar Point Cloud Augmentation Methods for Improved Segmentation
6.1 Related Work
6.1.1 Global Augmentations
6.1.2 Local Augmentations
6.1.3 Context Augmentations
6.2 Structure Aware Lidar Augmentation Methods
6.2.1 Structure Aware Global Lidar Augmentation Methods
6.2.2 Structure Aware Point Cloud Injection
6.2.3 Structure Aware Point Cloud Fusion
6.3 Evaluation
6.3.1 Improving Segmentation
6.3.2 Ablation Study
6.3.3 Overcoming Data Scarcity
6.3.4 State of the Art
6.4 Conclusion
7 Enhancing Lidar Domain Adaptation for Robust Semantic Segmentation
7.1 Related Work
7.2 Lidar Domain Adaptation for Segmentation
7.2.1 Non-Causal Data Collection
7.2.2 Lidar Mesh Creation
7.2.3 Virtual Lidar Sampling
7.2.4 Instance Injections
7.2.5 Mixing Domains
7.2.6 Pseudo Labels
7.3 Evaluation
7.3.1 NuScenes to SemanticKITTI
7.3.2 SemanticKITTI to NuScenes
7.3.3 NuScenes to Velodyne Alpha Prime
7.3.4 SemanticKITTI to InnovizTwo
7.4 Conclusion
III Expanding the Horizons of Autonomous Driving: Novel Applications of Lidar Segmentation
8 Driving Forward with Lidar Segmentation: Innovative Applications in the Automotive Industry
8.1 Lidar Segmentation for Radar Segmentation
8.1.1 Related Work
8.1.2 Method
8.1.3 Results
8.1.4 Conclusion
8.2 Lidar Segmentation for Online Detection
8.2.1 Method
8.2.2 Evaluation
8.2.3 Conclusion
8.3 Lidar Segmentation for Closed Loop Re-Simulation
8.3.1 Method
8.3.2 Evaluation
8.3.3 Conclusion
8.4 Lidar Segmentation Augmentation Techniques for Semi-Supervised Object Detection
8.4.1 Method
8.4.2 Evaluation
8.4.3 Submission
8.4.4 Conclusion
8.5 Conclusions on the Versatility and Effectiveness of Lidar Segmentation in Autonomous Vehicles
9 Conclusion and Outlook
Bibliography
Acronyms
Glossary
List of Figures
List of Tables