de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Unsupervised open world recognition in computer vision / eingereicht von Svenja Uhlemeyer, M.Sc. Wuppertal, 29.03.2023
Inhalt
Acknowledgments
Foreword
Contents
Introduction
Foundations
Statistical Learning Theory for Supervised Learning
Learning Models and Learnability
Sources of Error and Uncertainty
Deep Neural Networks
Feedforward Neural Networks
Convolutional Neural Networks
Training of Neural Networks
Deep Learning for Computer Vision
Image Classification
Semantic Segmentation
Evaluation Metrics
Learning from Unlabeled Data
Unsupervised Learning Algorithms
Unlabeled Data in Semantic Segmentation
Road Anomalies
Perception Datasets for Autonomous Driving
Anomaly Sources
Definition of Normality
Anomaly Datasets
Discussion
Applications
Anomaly Segmentation
Anomaly Clustering
Towards Unsupervised Open World Semantic Segmentation
Introduction
Related Works
Discovery of Unknown Semantic Classes
Meta Regressor
Uncertainty Metrics and Prediction Quality Estimation
Embedding and Clustering of Image Patches
Novelty Segmentation
Extension of the Model's Semantic Space
Experiments
Experimental Setup
Evaluation of Results
Conclusion
Detecting Novelties with Empty Classes
Introduction
Related Works
Method Description
Adjustments for Semantic Segmentation
Numerical Experiments
Experimental Setup
Evaluation & Ablation Studies
Conclusion & Outlook
Conclusion & Outlook
List of Figures
List of Tables
Bibliography