de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
How machine learning enables automated side-channel detection / Jan Peter Drees, M.Sc. [Wuppertal], April 19, 2023
Inhalt
Introduction
State of the Art
Our Contributions
Outline
Publication Overview
Fundamentals
Side-Channel Attacks
Remote Side Channels
Local Side Channels
Machine Learning
Formal Definition of Machine Learning
Statistical Tests
New Techniques for Side-Channel Detection with Machine Learning
Introduction
The Information Leakage Problem
Our Approaches for Information Leakage Detection
Paired t-Test Approaches
Fisher's Exact Test Approaches
On Robustness
Empirical Evaluation
Dataset Descriptions
Implementation Details
Results
Conclusion and Open Problems
Application to Bleichenbacher's Attack
Introduction
Related Work
Preliminaries
Bleichenbacher's Attack on TLS
Machine Learning
Implementation of Automated Side-Channel Detection
Manipulated TLS Client
Feature Extraction
Classification Model Learning
Error Correction and Report Generation
Analysis
Test Setup
Basic Approach Validation
Detecting Klíma-Pokorný-Rosa Side Channels
Detecting ROBOT Side Channels
Testing open-source Implementations
Commercial Integration
Conclusions and Open Problems
Automating Hardware Attacks
Introduction
Related Work
Background
Supervised Learning for Profiled Side-Channel Attacks
Convolutional Neural Networks
Leakage Model
Neural Architecture Search
Our Approach
Two-Dimensional Input Reshaping
Search Strategies
Setup of Our Parameter Study
Methodology
Baseline Architectures
Computing Hardware and Runtime
Parameter Study Results
Overall Reliability
Optimal Neural Architecture Search Parameters
Comparison with Fixed Architectures
Conclusion and Open Problems
Conclusion and Outlook
Bibliography
Appendix
Minimum Bleichenbacher Dataset Sizes
Hardware Datasets
Neural Architecture Search Space