de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
de
en
Schliessen
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Methods and applications of uncertainty quantification for object recognition / submitted by Tobias Riedlinger, M.Sc. Wuppertal, September 4, 2023
Inhalt
Acknowledgements
Foreword
Introduction
Foundations
Statistical Learning Theory
Supervised vs. Unsupervised Learning
Supervised Learning
Unsupervised Learning
Probabilistic Supervised Learning
PAC Learning
ERM Learning
Error Decomposition
Maximum-Likelihood Estimation
Deep Learning
Architectures
Perceptrons
Convolutional Neural Networks
Transformers
Training Neural Networks
Stochastic Gradient Descent
Backpropagation
Universal Approximation
Single-Layer Perceptrons
Perceptrons with ReLU Activation
Convolutional Neural Networks
Transformer Neural Networks
Uncertainty Quantification
Sources of Uncertainty
Estimating Uncertainty
Advanced Computer Vision Tasks
Image Classification
Loss Functions
Evaluation Metrics
Example Architectures
Object Detection
Loss Functions
Evaluation Metrics
Example Architectures
Semantic Segmentation
Loss Functions
Evaluation Metrics
Example Architectures
Gradient Uncertainty for Deep Object Detectors
Introduction
Related Work
Method
Gradient-Based Uncertainty
Classification Setting
Theoretical Link
Extension to Object Detectors
Computational Complexity
Meta Classification and Meta Regression
Experiments
Implementation Details
Comparison with Output-based Uncertainty
Generalization over Architectures
Calibration
Pedestrian Detection
MetaFusion
Runtime
Conclusion
Gradient Uncertainty in Semantic Segmentation
Introduction
Related Work
Methods
Efficient Computation
Gradient Uncertainty Scores
Experiments
Implementation Details
MetaSeg Feature Construction
Pixel-wise Uncertainty Quantification
Segment-wise Uncertainty Quantification
Out-of-Distribution Segmentation
Runtime
Conclusion
Rapid Prototyping of Active Learning for Object Detection
Introduction
Related Work
Methods
Active Learning
Sandbox Datasets
Sandbox Models
AL Methods in Object Detection
Evaluation Methods
Experiments
Implementation Details
Benchmark Results
Generalization of Sandbox Results
Image-Aggregation Methods
Runtime
Conclusion
Label Error Identification For Object Detection Datasets
Introduction
Related Work
Methods
Benchmarking
Instance-wise Loss Values
Theoretical Justification
Evaluation Metrics
Experiments
Implementation Details
Baseline Methods
Benchmark Results
Real Label Errors
Conclusion
Prediction Quality Estimation for Lidar Object Detection
Introduction
Related Work
Methods
LMD Features
Post-Processing
Experiments
Implementation Details
Correlation of Features and IoUBEV
Meta Classification Models
Generalization over Datasets and Networks
Feature Selection
Confidence Calibration
Label Error Detection
Conclusion
Conclusion and Outlook
List of Notations