de
en
Close
Detailsuche
Bibliotheken
Projekt
Imprint
Privacy Policy
de
en
Close
Imprint
Privacy Policy
jump to main content
Search Details
Quicksearch:
OK
Result-List
Title
Title
Content
Content
Page
Page
Search the document
Optimal creation operators for charmonium spectroscopy on the lattice / Author: Juan Andrés Urrea-Niño ; Supervisors: Prof. Dr. Francesco Knechtli, Prof. Dr. Michael Peardon. Wuppertal, 2023
Content
Declaration of Authorship
Acknowledgements
Introduction
Methods
Lattice QCD
Fields on a lattice
The action on the lattice
Hadron spectroscopy
Angular momentum on the lattice
Operators on the lattice
Accessing different energy levels
Smearing of Gauge Fields
Monte-Carlo integration with link variables
Distillation
Ensembles
Nf = 2
Nf = 0
Nf = 3 + 1
Charmonium
Meson operators on the lattice
Meson correlation functions in the lattice using distillation
Optimizing the distillation operator for meson operators
Charmonium spectrum using the optimal meson distillation profiles
Eigenpair calculation
Elemental calculation
Perambulator calculation
Correlation calculation
Iso-vector spectrum results in Nf = 2
Local operators
Derivative-based operators
Mixed operators
Optimal meson distillation profiles
Spatial profiles via the optimal meson distillation profiles
Disconnected contributions and charmonium-glueball mixing
Iso-scalar charmonium spectrum
Optimal meson distillation profiles
Gluonic spectrum
Gluonic operators from spatial Wilson loops
Results in Nf = 0
Results in Nf = 2
Mesonic-Gluonic mixing
Towards the physical point
Open temporal boundary conditions
Charmonium in ensemble B
Setup of distillation parameters
Results from local and derivative-based operators
Charmonium spectrum
Optimal meson distillation profiles
Spatial profiles via the optimal meson distillation profiles
Comparison with other lattice calculations
A first look at the disconnected contributions
Conclusions and outlook
The cubic group
C(tG)-orthonormality of plateau-averaged GEVP vectors
Conventions
Bibliography