de
en
Close
Detailsuche
Bibliotheken
Projekt
Imprint
Privacy Policy
de
en
Close
Imprint
Privacy Policy
jump to main content
Search Details
Quicksearch:
OK
Result-List
Title
Title
Content
Content
Page
Page
Search the document
Efficient computation of the action of matrix rational functions and Laplace transforms / eingereicht von Manuel Tsolakis, M.Sc. Wuppertal, 28. April 2023
Content
Introduction
Review of basic material
Relevant classes of functions
Laplace transforms
Rational functions
Other classes of functions
Continued fractions
Definition of matrix functions
Krylov subspace methods for general matrix functions
The Arnoldi approximation
The restarted Arnoldi method
Error bounds for the restarted Arnoldi method
Iterative methods for rational matrix functions
Krylov subspace methods for the matrix inverse
Algebraic multigrid methods
Matrix pencils
CF-matrices
Introduction
Basic properties
Construction
Search for numerical methods
Partial fraction expansion
Generalized Sylvester equation
Krylov subspace methods
Multigrid methods
Numerical Experiments
Preconditioned CG
Preconditioned GMRES and complex shifts
AMG
Restarts for Laplace transforms
A new representation of the error function
Laplace transforms
Related classes of functions
Implementational aspects
Quadrature
Breaking the recursion
Matrix exponential function
Modifications for complete Bernstein functions
Numerical experiments I: Comparison to other methods
Fractional negative power less than -1
Fractional diffusion processes on graphs
Gamma function
Square root
Entropy
Error bounds
A priori bound I: Finite integration interval
A priori bound II: Exponentially bounded integrand
A priori bound III: Main case
A posteriori bound
Numerical experiments II: Error bounds
Fractional negative power less than -1
Fractional diffusion processes on graphs
Gamma function
Square root
Entropy
Conclusions
Other definitions of the Laplace transform
Bibliography