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l>s, 0 , 8 rc . , in denen sich je zwei benachbarte Tangenten
schneiden , so zerfällt jedes Viereck in zwei kongruente (Fr . 811 . )
rechtwinkelige Dreiecke . Die 2 u Winkel um N sind daher
sämtlich gleich , weil die Strecken NO re . die nach
Fr . 54 IV . gleichen Centriwinkel MI 8 , MIO re . halbieren .
Da deshalb die 2 n rechtwinkeligen Dreiecke unter sich kon¬
gruentsind (Fr . 81II . ) , so folgert man daraus nach Fr . 6711 .
leicht die Gleichheit sämtlicher (halben und ganzen ) Seiten
und Winkel des umgeschriebenen Vielecks .

VIII . Werden durch dieselben n Teilpunkte .4 , 8 , 6 re.
(Fig . 125 ) eines Kreises ein eingeschriebenes und ein um¬
geschriebenes regelmäßiges Vieleck von n Seiten gezeichnet ,
so halbieren die Strecken LM , NO rc . die Bögen r18 , 80 re.

Der Kreis ist daher nunmehr in 2u gleiche Bögen
L8 ^ 80 rc . geteilt .

Zeichnet man jetzt die beiden 2n - ecke , so zeigt sich das
eingeschriebene größer , das umgeschriebene kleiner als das
eingeschriebene , beziehentlich das umgeschriebene u -eck. Durch
fortgesetzte Verdoppelung der Seitenzahlen erhält man dann
Vielecke von 4n , 8 n rc . Seiten , und da sich diese Vielecke
immer inniger an den Kreis anschmiegen , je größer ihre
Seitenzahl wird , so pflegt man den Kreis als ein regelmäßiges
Vieleck von unzählig vielen Seiten zu betrachten .

Fünftes Hupftet .

Einige Aufgaben und Äbungssätze .

114. Wie zeichnet man ein gleichseitiges Dreieck ?

Schlägt man aus den Endpunkten V und 8 der (gegebenen
oder willkürlich gewählten ) Strecke r18 zwei Kreise mit H.8
als Halbmesser , so schneidensich die Kreise , da diein Fr . 102 VII .
gestellten Bedingungen erfüllt sind , in zwei Punkten 0 , und O2.
Die beiden (kongruenten , Fr . 80 I . ) Dreiecke L.80 , und 4 .6 O2
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sind gleichseitig (Fr . 20 V . ) , da 40 --- 46 und 60 — 46
(Fr . 48 III . ).

115. Wie zeichnet man ein gleichschenkeliges Dreieck ?
Man verfahre wie in Fr . 114 , schlage aber die zwei

gleichen Kreise mit einem der Strecke 4. 1! nicht gleichenden
Halbmesser, der größer als die Hälfte von 4.6 ist .

116. Wie zeichnet man ein Dreieck aus den drei Seiten?
Genügen die drei Seiten a , b und e den in Fr . 7 6 gestellten

Bedingungen , so schneiden sich die aus den Endpunkten von
46 — o mit den Halbmessern d und a geschlagenen Kreise
in zwei Punkten 0 , und Os (Fr . 102 VII . ) und Seiten der
(kongruenten , Fr. 80 I . ) Dreiecke 460 , und 466 , sind
a, b und o.

117. Wie zieht man von einem Punkte ? zwei gleiche Strecken
nach einer Geraden 6 ?

Schlägt man aus 6 , wie in Fig. 96 , durch einen jenseits
6 gelegenen Punkts einen Kreis 6 , so schneidet dieser 6 in
2 Punkten U, und 46 (Fr. 83 XIII . ) und es ist 4l,6 — U,1'
(Fr . 48 III .) .

118. Wie trägt man an einen Strahl 48 in 4 einen gegebenen
Winkel VM an ?

Man verbinde zwei auf den Schenkeln IW und 66 will¬
kürlich gewählte Punkte II und L durch eine Strecke HL
und zeichne nach Fr. 116 an 46 ein dem Dreieck 66L kon¬
gruentes Dreieck II,4L, , so daß 4L , — 6L von 4 aus in 46
liegt , und 411, — 66 wird . Dann ist :

/ (. II,4L , — / ^ II6L — / 1( l)66 (Fr. 67 II . ) .
119. Wie zieht man in einer gegebenen Ebene durch einen

gegebenen Punkt v eine Parallele vb zu einer gegebenenGeraden Ili ?
Man verbinde 0 mit einem Punkte 6 in 6L und mache

^ 600 — / ,06L (Fr. 118) , so daß 0 und L auf ver¬
schiedenen Seiten von 66 liegen (wie in Fig . 32 auf S . 40) ;
dann ist V06//6L (Fr . 62 II . 2 .) . Vergl . Fr. 57 I.



Fr . 120—124. Einige Ausgaben und Übungssätze . 133

12Ü . Wie fällt man von einem Punkte k aus eine nicht durch
k gehende Gerade k eine Senkrechte?

Zieht man von ? nach zwei beliebigen Punkten Ick, und Ick,
in K (wie in Fig . 93 bis 96 ) Strecken , so schneiden sich zwei
aus Ick, und Ick, mit Ick,8 und ick,,? als Halbmessern geschlagene
Kreise noch in einem Punkte H und es ist (Fr . 102III . ) .

Nach Fr . 117 könnte man dabei zwei gleiche Kreise erhalten .

121. Wie errichtet man in einem Punkte ü einer Geraden K
eine Senkrechte?

In 0 mache man Xv — X6 (Fig - 55 ) und über OU

2X DtzO gleichschenkelig (Fr . 115 ) , so ist - l - 6 (Fr . 74

XVII . ) .

122 . Wie errichtet man im Endpunkte v einer Strecke 1k
eine Senkrechte?

Man zeichne über X8 (Fig . 67 ) ein gleichschenkliges
^XXV8 (Fr . 115 ) , verlängere XV nach 8 , bis V8 — VII

— VX wird ; dann ist I '8 _? X8 (Fr . 71 III .) , da / ^,VX8
- s- ^ V88 / ^ X8V - s- l (. 8SV (Fr . 74 I .) .

123 . Wie schlägt man um ein rechtwinkeliges Dreieck einen
Kreis ? Vergl . Fr . 88 IV . und 89.

I . Teilt man den rechten Winkel 8 so , daß (wie in Fig . 86 )
XlVck — ^ . 8X2 wird , dann schneidet die Teillinie IVck

die Hypotenuse X2 im Mittelpunkte Ick des gesuchten Kreises

(Fr . 71 II . und 73 I . ) .
II . Eine andere Lösung bietet Fr . 96 VII . mit Hilfe von

Fr . 127 .

124 . Wie legt man einen rechten Winkel so , daß seine Schenkel
durch zwei gegebene Punkte 1 und 2 gehen und sein Scheitel auf
einer gegebenen Geraden 6 liegt ?

Hat der über X2 ( Fig . 86 ) als Durchmesser geschlagene
Kreis mit der Geraden 6 einen , oder zwei Punkte , z. B . 8
und 6 , gemein (Fr . 83 ) , so sind X62 und X62 eine , bezw .
zwei der gestellten Bedingung genügende Lagen des rechten
Winkels (Fr . 96 III . ) .
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125. Wie halbiert man einen gegebenen Winkel ?

Macht man vom Scheitel U , des zu halbierenden / X ? U,H
aus (wie in Fig . 93 und 94 ) LI,? — U,tz und beschreibt
man über ein gleichschenkeliges / XkU ^ (Fr . 115 ) , so
halbiert U,Uz den (Fr . 102 IX . ) ; denn aus LI ,
und Uz lassen sich Kreise durch 6 und tz ziehen (Fr . 47 II .) .

Am zweckmäßigsten legt man das / X ? U, (j nicht auf
dieselbe Seite von 6 (j , auf welcher/x ? U,H liegt (vergl.
Fig . 95 ) .

Ist der Scheitel 0 des zu halbierenden / X LV. OLVs ,
Fig . 102 , nicht zugänglich , so ziehe man beliebig 716 und
halbiere durch xLNo , ^ LI-,, 6U „, 6ÜIg die Winkel bei L. und
6 ; dann liegen U„ und Uz in der Halbierungslinie UzUzO
(Fr . 104 II . ) .

126 . Wie teilt man einen rechten Winkel in drei Teile ?
Man beschreibe in dem gegebenen rechten Winkel X6V

über der in dem einen Schenkel 6X liegenden Strecke 6L.
ein gleichseitiges ^ x160 (Fr . 114 ) , dann ist / ) 66X —
(Fr . 74 V .) , folglich ^ . 06V — 4, R .

127. Wie halbiert man eine Strecke Ich oder einen Bogen Ich ?

Zeichnet man über ktz (wie in Fig . 93 S . 101 am besten
auf verschiedenen Seiten von 6H ) zwei gleichschenklige Drei¬
ecke I' tM , und (Fr . 115 ) , so halbiert U .Uz sowohl
ktz (Fr . 102 VIII . ) , als 6 ^ (Fr . 90 V . ) .

128. Wie teilt man eine Strecke XII in n gleiche Teile ?
Man trage in L an I4II unter beliebig großem Winkel

HX einen Strahl an , trage ( wie in Fig . 122 S . 125 ) auf
diesem von IL aus n gleiche Teile (L8 — 8V — L.6 —
. — OX ) auf , verbinde den letzten Teilpnnkt X mit II und
ziehe durch die anderen Teilpunkte 8 , 6 re. Parallele zu
XII ; dann teilen diese Parallelen die Strecke IvII in n gleiche
Teile ( Fr . 111 VI . ) .
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129 . Wie zeichnet man ein Dreieck mit einer gegebenen Seite n
und einem gegebenen Gegenwinkel 1 dieser Seite ?

I . Man verfahre , wie in Fr . 7 9III . 4 . angedeutet wurde ;
man mache über 06 — a , z . B . / ^ 06X — ^ . 60V —
180

^
X ^ oo ° — n und l^ e durch 6 , 0 und den

Schnittpunkte zwischen OV und 6X einen Kreis (Fr . 881 . ) .

II . Wären für ein Dreieck a , X und 0 X2 — b (Fig . 72 )
gegeben , fo brauchte man in den nach I . geschlagenen Kreis
nur noch die Sehne 0X2 — b einzutragen (Fr . 102 XII . ) .
Bei b a lassen sich wegen Fr . 9-1 VIII . aus a , X und b
zwei verschiedene Dreiecke zeichnen . Vergl . Fr . 79 VIII .

130 . Wie zeichnet man ein Dreieck , von dem ein Winkel 4
eine anliegende Seite c und I . die Summe n -j- b, oder II. die
Differenz n - b der beiden anderen Seiten gegeben ist ?

Auf dem einen Schenkel XX des Winkels X trage man
die Seite X6 — e , auf dem andern SchenkelXV die Strecke:

I . XV — u -s- b , oder II . X6 — b — u

auf ; dann :
I . schneide man von dem V6X den / i, 1) 60 — / . 6VX

(Fr . 118 ) ab ; schneiden sich nun 60 und XI) in 0 , so ist
X60 das gesuchte Dreieck (Fr . 74 VI . ) . Vergl . Fig . 68S . 70 .

II . trage man in 6 an 66 auf der 6X entgegengesetzten
Seite den (spitzen) 660 ^ / . 66V an (Fr . 118 ) ;
schneiden sich nun 60 und XV in 0 , so ist das Dreieck X60
das gesuchte (Fr . 74 VI .) . Vergl . Fig . 59 S . 70 .

131. Wie zeichnet man ein Dreieck aus zwei Winkeln u und v
und der Summe der drei Seiten? Vergl . Fr . 79 VII .

An den Endpunkten X und U der Strecke XL! — u - s- b
- j- 0 trage man / ^ NXX — I / . u und 2/ MIV — ^ / (. v
an ; ist nun u - j- v < 2R (Fr . 69 IV .) , so ist / ) UXX
-s- 2/ XRV R und XX und UV schneiden sich in 0
(Fr . 62 IV . 3 .) ; schneidet man jetzt vom (stumpfen) Winkel
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UON die /^ UOII — 4 u und ^,NOV — 4 v ab und ver¬
bindet 0 mit den Punkten 4 und 8 , in denen UN von 08
und OV geschnitten wird (Fr . 62 IV. 3 . ) , so hat das ^,480
die drei Seiten 48 — o , 40 — 4U — b und 80 — 8N — s
(Fr . 74 VI. ) , während ^ 048 — u und / 1084 v ist
(Fr . 69 VI . ) .

132. Wie teilt man einen Kreis in 4, 8,16 re. und in 3,
6 , 12, 24 rc. gleiche Teile ? und wie zeichnet man ein regelmäßiges
Vieleck von dieser Seitenzahl ?

I. Zeichnet man in einem Kreise zwei auf einander senk¬
rechte Durchmesser 48 und 00 (Fr . 121 ) , so ist :

40 ^ 08 ^ 8V ^ V4 (Fr - 39 III. , 54 III . ) .
II . Zeichnet man über einem Halbmesser N4 ein gleich¬

seitiges / X 4N8 , so ist der Centriwinkel 4N8 — 60 °

(Fr . 74 V . ) , also 48 der sechste Teil vom ganzen Kreise
(Fr . 54 V . und 50 II.) .

Ein aus .4 mit 4N als Halbmesser geschlagener Kreis
geht durch 8 (Fr . 48 III. , 64 III. ) und schneidet auf der
anderen Seite von 4N einen Bogen 4,0 ab, der 48 gleicht rc.

III . Zwei benachbarte Bögen von 60 °
( II . ) geben als

Summe einen Bogen von 120°
, d . h . den dritten Teil des

ganzen Kreises .
IV . Durch fortgesetzte Halbierung der Bögen (Fr . 127 )

erhält man aus I . bezw . II . die Teilung in 8 , 16 , 32 rc .,
bezw . 12 , 24 , 48 rc . gleiche Teile . Vergl . Fr . 113 VIII.

V. Ein regelmäßiges Vieleck mit 3 , 6 , 12 u . s. f . und
mit 4 , 8 , 16 u . s. f . Seiten erhält man nach I. bis IV. und
Fr . 113 VII.

Anm. Über das Zeichnen des regelmäßigen Vielecks von s , lü , 20 . . . .
Seiten vergl . Fr. 164 VI . in Verbindung mit Fr. lis VIII .

133 . Wie beweist man die Richtigkeit folgender Sätze?
I . Ein Viereck, dessen Winkel sämtlich rechte sind , ist ein

Rechteck , oder ein Quadrat (Fr . 62 II . 3 . , oder 107 III. ) .
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II . Die Halbierungslinien der vier Winkel eines Recht¬
ecks begrenzen ein Quadrat (Fr . 74 VI-, 68 II . ) .

III . Die Halbierungsliniender vier Winkel eines Rhom-
boids begrenzen ein Rechteck sFr . 107 I . , 68 II . ) .

IV . In jedem Sehnenvielecke von gerader Seitenzahl
ist die Summe des ersten, dritten, fünften rc . Winkels gleich
der Summe des zweiten, vierten , sechsten rc . (Fr . 48 III.
und 74 I .) . Vergl. Fr . 96 VIII.

V . In jedem Tangentenvielecke von gerader Seiten¬
zahl ist die Summe der ersten , dritten , fünften rc . Seite
gleich der Summe der zweiten , vierten , sechsten rc . Seite
(Fr. 103 V . ) . Vergl. Fr . 104 X.

VI . Jeder Punkt V innerhalb der Centralstrecke VXl-,
(Fig . 93) zweier sich schneidenden Kreise ist von der gemein¬
schaftlichen Tangente V dieser Kreise weiter entfernt als
von jedem der Schnittpunkte ? und H der beiden Kreise
(Fr . 91 VI. , oder XIII . , 20 III . ) .

Jeder Punkt V in der Verlängerung der Centralstrecke
liegt dem nächsten Berührungspunkte und deshalb (Fr . 74
VIII .) auch der gemeinschaftlichen Tangente näher als dem
Schnittpunkte der beidenKreise(Fr . 91VI. , oderXIII. , 74IX. ) .

Es giebt demnach in der Centralstrecke und ihren Ver¬
längerungen keinen dritten Punkt , aus dem sich ein die
gemeinschaftliche Tangente V berührender Kreis durch einen der
Schnittpunkte ? oder tz der beiden erstenKreise schlagen läßt.

VII. Der Umfang eines Vielecks mit lauter hohlen
Winkeln ist kleiner als der Umfang eines dasselbe um¬
schließenden Vielecks .

VIII . Der geometrische Ort für die Endpunkte aller gleich
langen Tangenten desselben Kreises ist ein dem gegebenen
concentrischer Kreis .

134 . Wie lassen sich die geometrischen Aufgaben einteilen und
welche Teile umfaßt ihre Auslösung?

I . Die in Fr . 114 bis 132 vorgeführten einfachen Auf¬
gaben (vergl . Fr . 136 IV. ) aus dem Gebiete der ebenen



138 Fünftes Kapitel. Fr . IS «.

Geometrie lassen erkennen , daß den Gegenstand derselben die
Auffindung und Zeichnung von Punkten , Geraden , Dreiecken,
Vielecken und Kreisen bildet . Im Grunde genommen kommt
es immer auf die Bestimmung von Punkten hinaus, welche
ihrerseits (vergl . z . B . Fr . 9 I . , 88 III . rc .) für die Bestim¬
mung der andern Gebilde bestimmend sind .

Die geometrischen Aufgaben lassen sich in örtliche und
nichtörtliche einteilen. Bei ersteren ist der Ort , wo die
Lösung der Aufgabe vorgenommeu werden soll , im voraus
bestimmt, wie z. B . in Fr. 123 und 132 I . bis IV . ; bei den
letzteren , z . B . in Fr . 129 , 130 , 132 V ., ist dieser Ort nicht
bestimmt.

In der Aufgabe lassen sich ferner die gegebenen Stücke
von den gesuchten , aus jenen zu findenden Stücken unter¬
scheiden .

II . Zur Auffindung der Lösung ist es meist sehr förder¬
lich und deshalb zu empfehlen, daß man eine der Aufgabe
entsprechende Figur zeichne , welche man als die zu findende
und bereits gefundene ansieht, und daß man aus dieser Figur,
besonders aus den in ihr enthaltenen Dreiecken , maßgebende
Beziehungen zwischen den gegebenen und gesuchten Stücken
herzuleiten trachtet. Dies ist der Zweck der Analysis der
Aufgabe.

So gelangt man zur Konstruktion , welche angiebt, wie
die Aufgabe gelöst wird . Dann folgt der Beweis , welcher
aus der Konstruktion und aus bekannten Sätzen nachweist ,
daß die Lösung richtig ist und wirklich die gesuchten Stücke
aus den gegebenen liefert .

Dann hat endlich noch die Determination zu folgen,
welche darthut : 1 . ob die Lösung immer und allgemein, oder
nur unter gewissen Bedingungen möglich ist , und 2 . ob die
Aufgabe eindeutig, zweideutig, oder mehrdeutig ist , d . h . eine,
zwei, oder mehrere Figuren den Forderungen der Aufgabe
genügen. Hierbei ist namentlich die Größe der gegebenen
Stücke und ihre gegenseitige Lage ins Auge zu fassen und
als veränderlich zu behandeln.
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III . Eine Aufgabe ist bestimmt , wenn die gegebenen
Stücke nur eine endliche Anzahl, unbestimmt , wenn sie
unendlich viele Lösungen zulassen, überstimmt , wenn mehr
Stücke gegeben sind , als zur Bestimmtheit erforderlich sind .

IV . Fehlt zur Bestimmtheit einer Aufgabe nur ein Stück ,
oder nur eine Bedingung , so kann man doch häufig aus
bekannten Sätzen sagen, daß der einzige , nicht völlig bestimmte
Punkt auf einer bestimmten Geraden , oder auf einem be¬
stimmten Kreise liegen muß (vergl . z . B . Fr . 74 XVII. ) .
Man nennt dann die Gerade und den Kreis den geome¬
trischen Ort dieses Punktes.

Unter dem geometrischenOrte eines nicht völlig bestimmten
Punktes (oder eines andern Raumgebildes ; vergl . Fr. 166
X . und XI .) versteht man im allgemeinen eine Linie, oder
eine Fläche, welche so beschaffen ist , daß alle ihre Punkte
und nur ihre Punkte allein eine bestimmte Bedingung
für die Lage jenes Punktes ( oder jenes Raumgebildes ) erfüllen .

Bei völlig bestimmten Aufgaben können sich für einen
noch unbekannten Punkt mehrere geometrischeÖrter angeben
lassen , welche jedoch dann nur einen gemeinschaftlichen Punkt
haben werden .

V . Ist die Lösung einer Aufgabe so einfach und von selbst
einleuchtend, daß eine besondere Konstruktion gar nicht erst
angegeben zu werden pflegt , Analysis , Beweis und Deter¬
mination daher auch wegfallen , so nennt man sie eine
Forderung (ein Postulat) . Vergl . z . B . Fr. 15 V . und
Fr . 47 VII.

135. Wie zeichnet man ein Dreieck aus einer Seite a > der
Projektion i» derselben auf die Seite e und der Mittellinie m-, ?

I . An dieser Aufgabe möge der Inhalt von Fr. 134
erläutert werden.

Analysis . Man zeichne irgend ein Dreieck 4olZ„(ch hin,
mache Ooll>o - i- ^ »Lo und ziehe VoL» nach der Mitte X » von
ll,6o . Man sieht dann , daß das / X L»Oovo aus a,„ p§ und

bestimmt ist (Fr 811 .), und erkennt , daß der Punkts
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in L„v „ , oder in seiner Verlängerung liegt , und zwar in der
Entfernung von fliegt .

Konstruktion . Man ziehe die Gerade 6V und nehme
M p, mache 61)2 ^ 90° und schneide in 0 die Senk¬
rechte V2 mit einem Kreise aus 6 vom Halbmesser a ; dann
halbiere man 06 in X und schlage um U einen Kreis vom
Halbmesser m „ , welcher 6V in ^ schneidet . 46̂0 (vergl.
Fig. 126) ist das gesuchte Dreieck .

Beweis . 60 a (Konstr .) ; 01) HIV und 61 ) p,
also p Projektion von a auf o (Fr. 112 I . ) ; OM ^ X6 ,
also X4 Mittellinie und (Konstr .) .

Determination . Die Aufgabe ist unlösbar , wenn
a < 1 p (Fr . 74 VIII. ) ; ebenso wenn kleiner ist als die
von M auf 64 gefällte Normale (Fr. 83 I . ) . Die Aufgabe
ist eindeutig , wenn der von H auf 4.6 gefällten Senk¬
rechten gleicht (Fr . 83 II .) . Es giebt ferner zwei Lösungen
(Fr. 83 III. ) , wenn diese Senkrechte w» und ^ ^
ist ; dabei sind die beiden gefundenen Dreiecke beide spitz¬
winkelig bei 6 , wenn << , bei dagegen
eins spitzwinkelig und eins stumpfwinkelig. Bei

endlich ist die Aufgabe wieder eindeutig und das Dreieck
rechtwinkelig (Fr. 83 IX. ) . Vergl . auch Fr. 79 VIII.

II . Aus I . erkennt man zugleich , daß das Dreieck , wenn
eine Höhe ll« gegeben ist, sowohl als Summe, wie als Diffe¬
renz der beiden durch diese Höhe und die Seiten n und b
erzeugten Dreiecke erscheinen kann .

136 . Was versteht man unter einem Datum?
I . Von den Fr . 80 I . bis III . und V. entsprechenden

vier Grundaufgaben über das Dreieck ist unter den vor¬
hergehenden Aufgaben nur die eine in Fr. 116 gestellt worden ,
eine zweite in Fr. 129 II . ; die Lösung der beiden andern
folgt unmittelbar aus Fr . 118 .



Fr . ISS . Einige Aufgaben und Übungssatze . 141

II . In den vorausgegangenen Aufgaben konnten die

gegebenen Stücke selbst und ohne weiteres zur Lösung benutzt
werden . Es kann aber auch sein , daß einige der gegebenen
Stücke zwar sich nicht unmittelbar zur Lösung verwenden

lassen , daß man aber wohl durch sie ein nicht unmittelbar

gegebenes Stück zu finden vermag , welches dann an Stelle eines
unmittelbar gegebenen treten und so die ursprüngliche Auf¬

gabe in eine andere , womöglich leichter zu lösende um¬
wandeln kann .

Stehen eine Anzahl von Bestimmungsstücken in einem

solchen Zusammenhänge mit einander , daß man jedes einzelne -

derselben finden kann , wenn die übrigen bekannt sind , so nennt

man die Gesamtheit ein Datum .

III . Der Inhalt von II . mag an einem Beispiele erläutert
werden .

Ist in einem Dreiecke ^ .80 die Winkelhalbierende
01gegeben und schneidet dieselbe die Seite o in 1 , so

ist bei H. )> 8 nach Fr . 69 VI . und 68 II . der spitze Winkel

1110 . 8 - j- ^ 0 8 n (180 ° — — 8 ) - 90 ° — 1

(H — 8 ) . Die zugehörige Höhe 00 ^ b „ hat aber ihren
Fußpunkt zwischen und 1 (Fr . 71V .) , und deshalb ist der
Winkel ^ 10 auch ^ 90 ° — / j . 100 (Fr . 71 II . ) ; also ist

nach Fr . 20 VIII .
^ 10 v - - b «) 8 ) , wenn ^ > 8 ,

^ ( 8 — wenn8j > ^ .

Somit bilden die Winkelhalbierender ^ , dieHöhell ^
und die Winkeldifferenz (^ — 8 ) ein Datum , d . h . je
zwei dieser drei Stücke bestimmen das dritte , sie genügen
indessen natürlich noch nicht zur Bestimmung des Dreiecks .

IV . Außer den Winkeln und Seiten (Fr . 79 ) giebt es

für das Dreieck und für die Vielecke auch noch andere

Bestimmungsstücke . Unter diese wird aber für jetzt der

Flächeninhalt noch nicht mit aufzunehmen sein , vielmehr
sollen einige darauf bezügliche Aufgaben später (im siebenten
Kapitel , Fr . 180 ) nachgetragen werden . In Fr . 139 bis 143
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dagegen folgen einige Aufgaben , deren Lösung einen beson¬
dere Kunstgriff nötig macht ; auf sie können verschiedene
andere Aufgaben mit Vorteil zuriickgeführt werden .

137. Welche Data für das Dreieck sind hier zu nennen ?

I . Die drei Winkel 8 , 0 . Vergl . Fr . 68 II .
II . Die beiden Winkel an der Hypotenuse eines recht¬

winkeligen Dreiecks . Vergl . Fr . 71 II .
III . Im symmetrischen Dreiecke der Winkel an der Spitze

und die Winkel an der Grundseite . Vergl . Fr . 75 III .
IV . Die Winkelhalbierende , die Höhe und die Winkel¬

differenz . Vergl . Fr . 136 III .
V . Die Höhe und Mittellinie für eine Seite und die

Differenz der Projektionen der beiden andern Seiten auf
jene Seite .

Es sei / 0 / 0 8 ; dann ist die Projektion 80 — p ,
Fig . 126 , der Seite a auf o größer als die Projektion — g
von b auf o (Fr . 112 X . ) . Nun ist 8V 8L . — I >.)

— g — l (p — g ) . Das rechtwinke¬
lige Dreieck 01) 8 läßt sich aber konstruieren (Fr . 81 I . ) ,
wenn von seinen drei Seiten 00 ich , 08 — m, und 8V

zwei gegeben sind ; also läßt sich aus zweien die dritte finden .
Wäre das Dreieck ^ 80 stumpfwinkelig , so wäre 8ov
81) — 88 p - l <; — p — l « f>— — ö

Nach Fr . 112 VII . wäre ja als negativ aufzufassen .
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VI . Der Halbmesser des umschriebenen Kreises , eine
Seite o und ihr Gegenwinkel 0 .

Wäre r und o bekannt, so trage man e in den Kreis vom
Halbmesser r ein (Fr . 102 XII . ) ; dann ist nach 98 II .
zugleich der Winkel 0 zweideutig bestimmt.

Wäre r und 0 bekannt, so mache man im Kreise vom
Halbmesser r an der Tangente H , Fig . 91 S . 99 , in L
den /Xu 0 und der Schnittpunkt v liefert dann LD o
(Fr . 100 I . und 98 IV . ) .

Wäre o und 6 bekannt , so trage man Lv - o , Fig . 91
S . 99 , auf dem einen Schenkel des Winkels u 0 auf ; der
Kreis berührt dann den andern SchenkelH in I-l und besitzt
Lv als Sehne (Fr . 100 I . ) ; sein Mittelpunkt U ist also auf
verschiedene Weise leicht zu finden, z . B . nach Fr . 89 V .

In allen Fällen ist die Lage des Punktes 0 auf dem
Kreise und daher auch das Dreieck selbst noch nicht bestimmt.

VII . Der Halbmesser i-o des eingeschriebenen Kreises um
V,„ ein Winkel 0 und die um dessen Gegenseiteo verminderte
Summe u - stb der beiden anliegenden Seiten .

In Fig . 102 S . 108 ist in dem rechtwinkeligen Dreieck
611„ll , der — st 0 und nach Fr . 105 XI.

und 104 VIII . aber auch d . tu ^ ^ ^
^- - -

Das /X 6Noll>l ist aber durch je zwei der genannten Stücke
bestimmt (Fr . 81 ) und somit läßt sich aus den letzteren das
dritte Stück finden.

VIII . Der Halbmesser rz des einer Seite o angeschriebenen
Kreises um Nz , der Gegenwinkel 0 dieser Seite und die
Summe s - u -st- b - st o der drei Seiten (Fr . 81 ) .

In Fig . 102 S . 108 ist ja im rechtwinkeligen /X6L1z1V ,
der / H01V, — ! 0 und U^ V , iz , nach Fr . 105 XII .

g. - st b - st o

2aber 6VV ,
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138 . Welche Data für die Vierecke sind hier aufzusiihren ?
I . Die vier Winkel. Vergl . Fr . 72 III .
II . Bei Parallelogrammen zwei parallele Seiten , die

Höhe (Fr . 108 XIII. ) für das zweite Seitenpaar und die
Winkel . Vergl . Fr . 81 .

Anstatt eines Winkels könnte auch der Winkel zwischen
den beiden Höhen gewählt werden ; vergl . Fr. 71 VI.

III. Beim Parallelogramm eine Diagonale , eine der
beiden Höhen und der Winkel, welchen sie mit jener Diago¬
nale macht . Vergl . Fr . 81 .

IV . Bei Trapezen eine der nichtparallelen Seiten , der
an dieser liegende Winkel und die Höhe (Fr . 108 XIII. ) .
Vergl . Fr . 81 .

V . Bei Trapezen zwei benachbarte Seiten, der von ihnen
eingeschlossene Winkel und die ihre freien Enden verbindende
Diagonale . Vergl . Fr . 80 I . und II.

VI . Bei Trapezen eine Diagonale , der Winkel zwischen
ihr und einer parallelen Seite und die Höhe. Vergl . Fr. 81 .

VII. Bei Trapezen die Verbindungsstrecke der Mitten der
beiden parallelen Seiten , die Höhe und die Differenz der
Projektionen der nichtparallelen Seiten auf die parallelen .
Vergl . Fr. 137 V. .

139 . Ein Dreieck zu konstruieren aus der Höhe L, dem Winkelk
an der Spitze und der Differenz p — «z der Projektionen der beiden
andern Seiten r und b auf die Grundseitc e.

Anleitung zur Lösung. Errichtet man beim /VVLO ,
Mg . 126 , im Endpunkte V„ der Projektionendifferenz IW
— p — lg eine Normale VL , verlängert man VO , bis sie

in X schneidet , und macht man noch 6L ->- V,2„ so ist
/ XOVA ^ / X V,6V (Fr. 108 XII. und I.)

6L V .. I) VI) (Fr . 67 II . , 75 III .)
/ X 6LX ^ / X vvo (Fr. 81 II . , 62 I .)

XL ^ 60 VoL (Fr . 67 II . , 108 XIII . ) ;
es ist also VoX - 2V0 2b , und außerdem /^. XOL

180° — 0 .
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Lösung . Man konstruiere /(xL4oN aus L^ ° - p — 1,
^ ^ 90 ° und 4.°N — 2 00 . Der Eckpunkt 0 des
gesuchten Dreiecks liegt dann zugleich in einer Parallelen zu
LV„ im Abstande V „N — b° und auf einem Kreise mit dem
Peripheriewinkel ( 180 ° — 0) über der Sehne IM (Fr. 98
VII . ) . Der Eckpunkt V findet sich schließlich am bequemsten
aus 0^ — 04. ° , oder auch durch Verlängerungvon NO.

Von den beiden Schnittpunkten zwischen dem Kreise und
LO ist nur der von LN aus nach Vo2 hin liegende zu ge¬
brauchen ; der andere liefert Hin unbrauchbares Dreieck ,
welches nicht alle gegebenen Stücke enthält.

Wäre ll° nicht gegeben , so wäre die Aufgabe unbestimmt ;
jedes andere beliefert ein anderes V .,N und LN, sowie einen
anderen Kreisbogen , aber doch ein Dreieck mit V .,L — 9— q
und 0 .

140 . Wie konstruiert man ein Dreieck ans der Grundseite 0,
der Höhe d° und der Differenz 4 — 1! der Grundseitcnwinkel ?

Anleitung zur Lösung. Ist im /X4.L0 , Fig - 126 ,
L)I° Lv — v ^ ° Lv — VV ^ p — g die Differenz
der Projektionen der Seiten a und b auf 0 , so ist / O V°OL
^ / ( 0^ °X — ^ L (Fr . 69 VI . ) --- / ^ OXV ° — ^ . L
(Fr . 75 VII . ) — / ( V — /OL. Ferner ist ^ °0 ° ^ 0 °L
und 1)0 ° ^ VX° - j- X°0 ° ^ VV - j- 0 °6 ^ L ^ z <>.

Lösung. Man mache 00 ° — ^ v , / ^ 0°V2 — 90° und
1)0 — ll ° , sodann verlängere man 00 ° um 0°X — 0 °0 und
zeichne über OX ein Parallelogramm 08X^ ° , worin der
^ 06X ^ 180° — ^ °0L - -- 180° — / ( (V — L) .
Dazu hätte man einen Kreis zu schlagen , in welchem der Peri¬
pheriewinkel über der Sehne OX die Größe 180° — sX — L)
hat (Fr . 98 VII. ) , und diesen mit der Verlängerung von
1)0° in L zu schneiden . V findet sich endlich aus 84 . — 0.

DerPunktL (undähnlich OinFr . 139) erscheint bestimmt
durch zwei geometrische Örter (Fr. 74XVII . ) , nämlich:
den Kreis und die Gerade 00 °.

Zetzsche , Geometrie. 3 . Aufl. 10
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141. Ein Dreieck 486 zu zeichnen aus dem Halbmesser r des
umschriebenen Kreises , der Grundseile 48 — e und der Winkel¬
halbierenden 64 -- .

I. Anleitung zur Lösung. Ist in Fig . 127 der
Kreis L um das / X XLO geschlagen und schneidet ihn die
Winkelhalbierende 04 in ck«, so entstehen nach Fr . 69 I . zwei
gleichwinkelige Dreiecke 4o4X und wenn manche zieht.
Denn es ist ja

/ (. chOX — / 1. 4oOL — ^ 4„XL (Vor. undFr . 96 II. )
/^ XchO — (Fr- 20 I .) .

Lösung *) . Man schlage einen Kreis L um N mit dem
Halbmesser NX — r , trage in ihn die Sehne X6 — o ein
(Fr . 102 XII . ; vergl . auch Fr . 98 VII . ) und mache Xckl^ ckstZ
(Fr . 90 III . ) ; dann geht die Winkelhalbierende durch ch
(Fr . 98IV. ) . Ferner mache man XX Xch und XX — ^

' ) Allgemeiner <aber etwas umständlicher) lautete die Lösung : Man trage
in den um dl geschlagenen Kreis L vom Halbmesser I die Sehne ° ein,
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schlage aus U den Kreis X , durch V , schneide ihn durch die

Gerade loXI ^ und schlage aus Io den Kreis X 2 durch Og ;
dann schneidet X , den Kreis X im gesuchten Punkte 0 des
Dreiecks VHO . — Der zweite Schnittpunkt zwischen X und

X . liefert nichts Neues .
Natürlich muß auch 1„1 — sein und man könnte damit

den Punkt 1 in LV bestimmen ; wegen der unvermeidlichen
Ungenauigkeiten im Zeichnen ist es aber für die Praxis im

allgemeinen vorzuziehen , 1oO durch die weiter von einander

entfernten Punkte1 „ und 6 zu bestimmen .
Der Beweis folgt in Fr . 161VIII . Ein anderer Beweis

liegt in Fr . 160 IV .
In gleicher Weise wäre die Aufgabe zu lösen , wenn

statt 01 die Halbierungslinie 01 " — vi/ des Außen¬
winkels bei 0 gegeben wäre ; nur würde dann der Bogen

V1/L in Io
"

zu halbieren und die Normale VX " — ^ >v „
"

auf VI / zu errichten sein . Wie 1/ in der Verlängerung von
UV liegt , so liegt Xin der Verlängerung von 1 ..V ; 01 "

liegt
in Fig . 127 rechts von OV und X / ist um Io"

durch 0, "

zu ziehen .
II . Eine andere Lösung folgt in Fr . 161 X .

142 . Wie findet man das Dreieck 4kl! aus der Grundseite e,
dem Gegenwinkel l! und der Winkelhalbierenden w -, ?

I . Beschreibt man über VL — o einen Kreis X , in

welchem der Peripheriewinkel über v — 0 ist (Fr . 98 VII . ) ,
so kann man aus dessen Halbmesser r nebst o und nach

*
Fr . 141 das 2X VL0 finden .

II . Zwei andere Lösungen folgen in Fr . 161 IX . und X.
- -

mache schlage um einen beliebigen Punkt n in ti.2 einen
Kreis Lg durch L , über lg? einen Halbkreis Lj , trage in diesen von n aus eine
Sehne Ntz ein. welche der Entfernung einer gleichenden Sehne des Kreises
Lg vom Mittelpunkte n an Länge gleicht, und ziehe lotz. Dann schneidet IgH
den Kreis Lg in zwei Punkten Lj und Lg und es ist nach Fr. SS I . LjLg— V- ,
ebenso lwie in Fr. 161 IV .) I„vj . IgLg — IgL , deshalb ebenfalls I,vg
und Igll — ilgLj .

1Ü«
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143 . Wie findet man in einer gegebenen Geraden k einen
Punkt »I , dessen Entfernungen »4 und W von zwei gegebenen
Punkten 4 und k eine vorgeschriebene Summe 8 ( oder Differenz <I >
liefern ? Vergl . Fr . 148 I .

I . Anleitung zur Lösung. Der gesuchte Punkt U
läßt sich auch auffassen als Mittelpunkt eines Kreises X,'
(Fig . 128) vom Halbmesser LlL — 4M und letzterer berührt

Fig. I2S.

den um mit dem Halbmesser ^.11 — s — 41^ -s- M (oder
ä — 41^ — 4111 ) geschlagenen Kreis M von innen (oder von
außen) in II . Wird ferner um irgend einen Punkt bl in 6
mit dem Halbmesser M ein dritter Kreis X. geschlagen , so
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schneiden sich Lg und L . in L und L , (Fr . 102 HI . ) , Lg
und Lg in V und X (Fr . 102 VII . und Fr . 76) , weil
XX> XII — XII > XII — XL . und XX < XII - s- XII
< XII -s- XL , (Fr. 91 XIII .) . LL . und XV schneiden sich
in einem Punkte () , und es muß die nach dem Berührungs¬
punkte II zwischen L , und Lg gezogene Strecke t^II die beiden
Kreise L , und L2 zugleich berühren .

Lösung. Man mache L2 _!_ 6 und L . Ti — L2 , schlage
aus X den Kreis L2 mit dem Halbmesser XII — s (oder ä) ,
aus einem Punkte X in 6 den Kreis Lg durch 6 und Ich,
welcher Lg in V und X schneidet , und ziehe vom Schnitt¬
punkte zwischen LL . und VX die Tangente HII an L2
(Fr . 103 I.) ; dann schneidet IIX die Gerade 0 in LI. —
Nach Fr . 103II . giebt es zwei Tangenten (jll an L2, zwei
Berührungspunkte II und zwei Punkte U in tz.

Der Beweis folgt in Fr . 161 XI.
Dürfen X und L auf verschiedenen Seiten von 6 liegen?

Darf 6 durch X , durch L , oder durch beide gehen ? Wie
gestaltet sich dann die Lösung?

II . Wie ließe sich die Aufgabe mittels eines biegsamen
Fadens von der Länge s (oder ck) lösen , dessen Enden in X
und L festzumachen wären?

III . Über eine dritte Lösung vergl. 170 VIII.

Sechstes Hapilel .

Die Ähnlichkeit ebener Figuren .

144. Wenn sind zwei Strecken kommensurabel ? wenn inkom¬
mensurabel ?

I. Ist eine Strecke 01)
^ ^ e , » ^^ (Fig . 129) genau

2 , 3 , 4 . . . . x mal so groß ^ - ^ e?
als eine andere Strecke XL
— m , so heißt u ein ganzes Mg. 129 .
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